
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2016

Design of a Data Encryption Test-Bed Used to
Analyze Encryption Processing Overhead
Swarna Rekha Manchikatla
St. Cloud State University, swarnarekha6236@gmail.com

Follow this and additional works at: http://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact kewing@stcloudstate.edu.

Recommended Citation
Manchikatla, Swarna Rekha, "Design of a Data Encryption Test-Bed Used to Analyze Encryption Processing Overhead" (2016).
Culminating Projects in Information Assurance. 12.
http://repository.stcloudstate.edu/msia_etds/12

http://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds/12?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kewing@stcloudstate.edu

Design of a Data Encryption Test-Bed Used to Analyze Encryption Processing Overhead

by

Swarna Rekha Manchikatla

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

October, 2016

Starred Paper Committee:

Dr. Dennis Guster, Chairperson

Dr. Susantha Herath

Dr. Balasubramanian Kasi

2

Abstract

Data security is one of the most pressing issues faced by the organizations today.

Unauthorized access to confidential information corresponding to employees/customers like SSN

(Social Security numbers), financial information, health records, birth dates can be compromised

both to the individual customers involved and the company withholding the data. The problem

has become immense, approximately 260 million records were compromised since 2005 and

companies, states and countries have reacted by mandating that industries should stringently

follow the best security practices, including encryption and decryption of data. Also, the costs

associated with data threats are quite increasing (Whitfield & Susan, 2007). Businesses that use

strong encryption methodologies in their mobile devices, computers, cloud systems, other

locations might not gain 100 % protection from dangerous hackers, but they can decrease their

vulnerability to such attacks and thereby the potential of financial losses. Data encryption is the

method of converting data in a computer or any communication system making it unintelligible

in a way that the data can be reversed only by the authorized people accessing the original data.

The primary goal is to safeguard the confidentiality of data, but integrity checks are also

provided by the technique in various forms of authentication message codes. For instance, digital

signature schemes are also fundamentals of encryption. The purpose of it is to ensure the

authenticity of the identity of the receiver and sender. With an increasing awareness of security

threats, many of the current companies are using cryptographic techniques for ensuring data

security. Many of the companies like Amazon, Apple, AT&T and Comcast are using encryption

techniques for securing the information. While there are a many encryption and decryption

techniques available today, there is an obvious requirement for the current companies to find and

choose the best reliable cryptographic techniques for securing their data. A performance test of

various algorithms is needed to bring up the best technique. This research paper deals with the

implementation of different cryptographic algorithms with a programming language called

JAVA. It involves designing a graphical user interface (GUI) where sample input can be entered,

common algorithms used to encrypt and decrypt the input can be selected. A mechanism for

building a test bed for comparing the performances of the implemented algorithms is designed to

calculate the encryption processing overhead.

3

Table of Contents

Page

List of Tables .. 6

List of Figures ... 7

Chapter

I. Introduction ... 9

 Introduction ... 9

 Problem Statement .. 10

 Significance of the Study .. 10

 Objective of the Study .. 10

 Acronyms .. 11

 Summary ... 12

II. Background and Review of Literature .. 13

 Introduction ... 13

 Encryption ... 17

 Decryption... 17

 Encryption Techniques ... 17

 Importance of Cryptosystem ... 19

 Encryption Implementation in Different Areas .. 20

 Companies Encrypting Data ... 23

 Summary ... 25

III. Methodology ... 26

4

 Introduction ... 26

 JAVA Programming Language... 26

 Advantages of JAVA .. 26

 How Does JAVA Work? .. 27

 Swing in JAVA ... 29

 Integrated Development Environment (IDE) .. 31

 Purpose of Cryptography .. 33

 Cryptographic Algorithms .. 34

 Other Encryption Algorithms Under Study .. 51

 Design of a Test-Bed for Encryption Processing Overhead 51

 System Design .. 52

 Interface Design .. 58

 System Testing .. 59

 Test Results ... 63

 Summary ... 63

IV. Analysis of Results ... 64

 Introduction ... 64

 Running the Data Encryption Test Bed Project .. 64

 Hardware and Software Requirements ... 72

 Summary ... 73

V. Conclusion and Future Study .. 74

 Introduction ... 74

5

 Conclusion .. 74

 Future Work .. 75

References ... 76

Appendix ... 82

6

List of Tables

Table Page

1. Acronyms .. 11

2. AES State Structure .. 47

3. AES Rounds Based on Block and Key Length ... 48

7

List of Figures

Figure Page

1. Symmetric Encryption .. 18

2. Asymmetric Encryption .. 19

3. Top Companies Security Policies ... 24

4. Classification of Encryption Methods .. 25

5. Byte Code Conversion of JAVA Virtual Machine ... 29

6. JAVA Swing Class Hierarchy .. 31

7. Data Encryption Standard Functionality ... 36

8. DES Key Schedule .. 37

9. Feistel Scheme of DES ... 38

10. Functionality of Triple DES Algorithm .. 39

11. Public Key Cryptography ... 40

12. Steps of AES Encryption .. 43

13. AES Structure ... 46

14. Cipher Block Chaining (CBS) Mode Encryption and Decryption 49

15. Generation of Message Digest Using MD5 .. 50

16. MD5 File Transfer .. 50

17. Use Case Diagram for Design of Data Encryption Test-Bed 54

18. Class Diagram for Design of Data Encryption Test-Bed.. 55

19. Sequence Diagram for Design of a Data Encryption Test-Bed 56

20. Activity Diagram for Design of Data Encryption Test-Bed ... 57

8

21. Collaboration Diagram for Design of Data Encryption Test-Bed 58

22. Running Project for Main Window ... 65

23. Main Window for Data Encryption Test-Bed Project .. 66

24. Selection Algorithm for Data Encryption and Decryption ... 67

25. Entering Plain Text to Encrypt and Decrypt ... 68

26. Displaying the Best Algorithm for the Given Plain Text ... 69

27. Encrypted and Decrypted Text ... 70

28. Encryption and Decryption Details ... 71

29. Graphical Chart Representation of Encryption/Decryption Algorithms 72

9

Chapter I: Introduction

Introduction

Security breaches have been intensively seen across multiple financial/commercial

organizations over decades. About 42.8 million security incidents occurred in 2014, which is a

48% increase since 2013. These are just the incidents that the companies were originally aware

of. Every year, organizations are putting millions and billions of dollars into data security and,

every time, hackers are finding new and innovative ways to access sensitive data which has

become a serious problem in the businesses today. Many businesses have looked to encryption to

solve their security risks. Strong encryption is an imperative part of any business security plan.

Encryption is a method used to secure data such that it can be read only by the corresponding

intended recipient. Encryption uses a set of instructions called a cipher or algorithm to modify a

message or any other piece of data into another form that don’t at all resemble the original text.

Encryption is used to ensure both confidentiality and integrity. There is an obvious need of a tool

that investigates the best cryptographic algorithms amongst the available ones for the businesses

or organizations involving huge clients (National Academy of Public Administration, 2015).

This paper gives a high-level overview of popular encryption and decryption algorithms.

The primary goal of the paper is to develop a test-bed that compares the performance overhead

of various cryptographic algorithms implemented using JAVA programming language that

decides the best reliable algorithm based on the time taken to encrypt and decrypt the input

message. This tool allows the organizations to choose the best algorithm for encryption of their

data without requiring any additional budget for research or analysis.

http://searchsecurity.techtarget.com/definition/cipher

10

Problem Statement

Many organizations today are facing difficulties in choosing the best encryption and

decryption algorithms for incorporating data security, confidentiality, and integrity in their

businesses. Organizations need huge budget for analyzing the encryption processing overhead of

a variety of cryptographic algorithms that are available in the market today.

Significance of the Study

 The proposed system develops a Graphical User Interface (GUI) that allows a user to

analyze the performance of different encryption and decryption algorithms. The user can run the

project for different input text messages and compare the time taken for encryption and

decryption of the given text against different encryption and decryption algorithms. For the

entered text and selected algorithm, the project displays the best algorithm from amongst the

available algorithms based on encryption and decryption times. The user also has the provision

to view the performance reports of executed encryption and decryption algorithms in a pictorial

representation.

Objective of the Study

 The objective of the study is to design a data encryption test-bed that analyzes the

encryption processing overhead of different encryption algorithms and displays the best reliable

algorithm from amongst the available ones. This tool also gives a graphical representation of the

performance of different algorithms.

11

Acronyms

Table 1

Acronyms Used in This Document

Acronym

DES Data Encryption Standard

AES Advanced Encryption Standard

CBC Cipher Block Chaining

SHA Secure Hash Algorithm

MD5 Message Digest Algorithm

RC6 Rivest cipher 6

RSA Rivest-Shamir-Adleman

IDE Integrated Development Environment

JDK Java Development Tool Kit

JRE Java Runtime Environment

GUI Graphical User Interface

HTTP Hyper Text Transport Protocol

HSTS HTTP Strict Transport Security

MVC Model View Controller

AWT Abstract Window Toolkit

SVN Subversion

PKC Public Key Cryptography

CPU Central Processing Unit

ASCII American Standard Code for International Interexchange

ECB Electronic Code Book

NIST The National Institute of Standards and Technology

12

Summary

The problems faced by the organizations in the current arena are briefly described in this

chapter. The significance and objective of this research paper is also discussed. The

encryption/decryption process, importance/implementation of cryptosystem in the real world is

described and the studies conducted by different authors in the past are illustrated in Chapter II.

13

Chapter II: Background and Review of Literature

Introduction

The modern computers are associated with standard encryption in one way or another.

There is no coincidence when the first computers that is, semi-programmable computer called

Colossus, was developed to decrypt text at the time of Second World War (Kopplin, 2002).

Arora et al. (cited in Priyanka, Arun, & Himanshu, 2012) investigated the performance of

various security algorithms on single and multiple processors for various sizes of input. Arora et

al. also researched about the quantitative entities such as Speedup Ratio that helps in evaluating

the performance of various security algorithms like RSA, MD5 and AES that are used in the

current world for encrypting/decrypting huge quantity of data. She considered three

cryptographic algorithms, namely MD5 (a hashing technique), RSA (an asymmetric

cryptographic algorithm), and AES (a symmetric cryptographic algorithm).

Seth et al. (cited in Shashi, & Rajan, 2011) did a depth analysis on three algorithms—

DES, RSA, and AE—by considering few parameters; for example, computational time, output

byte, and memory utilization. These factors form the significant issue in any Encryption

Algorithm. Test results prove that the DES algorithm takes minimum encryption time, whereas

AES algorithm takes minimum memory utilization but the encryption time difference in AES

and DES algorithms is extremely minor. On the other hand, RSA algorithms take the longest

encryption time and memory utilization but output byte is minimized.

 Abdul, Kader, and Mohie (2008) made an analysis on the performance of Symmetric

Encryption and Decryption Algorithms. Their research paper gave an assessment of six of the

most widely recognized encryption algorithms: RC2, AES (Rijndael), Blowfish, DES, 3DES,

http://searchsecurity.techtarget.com/answer/Block-ciphers-REESSE3-vs-International-Data-Encryption-Algorithm

14

and RC6. A comparison at different settings was conducted for each algorithm. For example,

various data block sizes, various data types, utilization of battery power, diverse key size, and

speed of encryption or decryption. Experiments show following test results. There is no huge

difference when the test results are shown either in hexadecimal base encoding or in encoding of

base 64. In the scenario of the changing size of packet, it was discovered formerly that RC6 need

less time when compared to all other algorithms except Blowfish. If there should be an

occurrence of changing data type, for example, image rather than text, it was found that RC6,

RC2, and Blowfish has the drawback over different other algorithms as far as time utilization is

concerned. Likewise, 3DES has very low performance when compared to DES algorithm.

Because of changing key size (just in RC6 and AES algorithms), it can be concluded that the

higher key size prompts a clear change in the time and battery utilization.

Pavithra and Ramadevi (2012) analyzed the performance assessment of different

cryptographic algorithms. Taking time as a parameter, different cryptographic algorithms are

assessed on various video files. Various video files are having distinctive processing speed on

which files of different sizes are processed. Time is calculated for encryption and decryption in

various video file formats; for example, .vob and .DAT, having document size range from 1MB

to 1100MB. Test experiments show that AES algorithm is executed in minimum processing time

and high throughput level when compared with BLOWFISH and DES. Alanazi et al. (2010) did

a comparison experiment of three Encryption Algorithms (AES, DES, and 3DES) using nine

components, for example, Block Size, Key Lengths, Security, Cipher Type, Possible ASCII

printable character keys, Possible Keys, and Time needed to verify all feasible keys at 50 billion

keys every second and so on. Results demonstrated that AES is better when compared to DES

15

and 3DES. Mandal et al. (cited in Akash, Chandra, & Archana, 2012) worked on comparing the

two most generally used symmetric encryption methods, namely Advanced encryption standard

(AES) and Data encryption standard (DES) based on Avalanche effect because of a bit variation

in input plaintext making the key and plaintext constant, requirement of memory and simulation

time for implementation and encryption respectively. Avalanche effect is a feature of any

encryption algorithm where a piece of variance either in the key or the input plaintext results in a

noticeable change in the output cipher text.

Avalanche Effect = Number of flipped bits in the output cipher text/Number of bits in the

output cipher text.

Avalanche effect is huge in AES when compared to DES while simulation time and

memory requirement for DES is more than that of AES, which demonstrates AES is better when

compared to DES. AES is perfect for encrypting messages sent between objects by means of chat

channels, and is helpful for objects involving monetary transactions. Kakkar et al. (cited in Ajay,

Singh, & Bansal, 2012) researched different procedures and algorithms utilized for the security

of data in MN (Multinode Network). They found that the system strength relies on the

management of key, number of keys, type of cryptographic key (private or public keys), number

of bits utilized as a part of a key. Longer key length and information length expends more power

and results in more warmth dispersal. Long key and data lengths require more power and leads to

more spread of heat. All the keys rely on the mathematical properties and in accordance with

time, their strength reduces. The keys having more number of bits require more processing time,

which basically demonstrates that the system need more time for data encryption.

16

 Data Encryption Algorithms were compared by Raman and Simar (2011. The

experimental results demonstrated that Blowfish has performed better when compared to other

common encryption algorithms. AES showed bad performance in the experiment when

compared to other encryption algorithms because of the need of additional processing power.

The primary analysis is made using ECB Mode. The outcomes demonstrated that the Blowfish

algorithm takes less processing time on comparing with other algorithms. The results also

showed that AES need additional resources as the block size of data increases. Another point can

be seen here that 3DES requires constantly more time than DES because of its triple stage

encryption method. Blowfish, that has a long key (448 bits), dominates other encryption

algorithms. DES and 3DES are known to have worm gaps in their security method, AES and

Blowfish did not have any such things noticed as of today (Simar & Raman, 2011).

Turki Al-Somani et al. (cited in Thambiraja, Ramesh, & Umarani, 2012) conducted

Performance Evaluation of three Encryption / Decryption Algorithms on different Operating

systems like SunOS and Linux. They implemented three symmetric block encryption and

decryption algorithms with the help of Java and JCA. The principle goal was to assess the

performance of these algorithms regarding CPU execution time. The estimations were performed

on SunOS and Linux platforms. The CPU execution time for producing the encryption,

decryption and secret key on a 10MB file is analyzed. The outcomes demonstrated that the

Blowfish algorithm was the fast algorithm, which is followed by the DES algorithm and Triple-

DES algorithm. The 3DES algorithm was moderate in its performance because of the additional

complexity and security that it has on top of DES algorithm (Thambiraja et al., 2012).

17

Encryption

Encryption is a method of encoding information in such a way that it makes difficult to

decode the information. The longer the length of the cipher/key (in bits), the more difficult it

would be to break.

Decryption

Decryption is a methodology of changing encrypted data back into its original form. This

process requires a public or private key.

Encryption Techniques

Symmetric encryption. Symmetric encryption uses only a single cipher/key for data

encryption and decryption. In this scenario, the Sender And receiver accept to share a common

secret key. Both Sender And receiver encrypt and decrypt their input messages using the same

shared key. In Figure 1, the Sender A and Receiver B agree to use a common encryption and

decryption technique. The sender encrypts the input text using the shared key and the encryption

technique selected. On the other hand, the receiver decrypts the encrypted text using the same

shared key and corresponding decryption technique. The key plays a major role in symmetric

encrypt as the whole system compromises if the shared key is known by any third party for any

reason (Abdel, 2006).

http://searchdatacenter.techtarget.com/tip/Does-SSL-decryption-deserve-a-place-in-the-enterprise-data-center
http://searchdatacenter.techtarget.com/tip/Does-SSL-decryption-deserve-a-place-in-the-enterprise-data-center

18

Figure 1. Symmetric Encryption (Abdel, 2006).

Asymmetric encryption. Asymmetric encryption is also named as public-key

encryption. It uses two keys, one to encrypt and the other to decrypt data so that the data is sent

more securely. This mechanism is also known as PKC—Public Key Cryptography. Here users

use public key that is viewed by public, private key that is viewed only by users. Figure 2 shows

that Sender A and Receiver B accept to use a common encryption and decryption technique.

Node A encrypts the input message using the public key. Node B decrypts the received input

message using its own private key. Managing the secret keys is a tedious task in Asymmetric

encryption, but more security is incorporated in this mechanism (Abdel, 2006). Asymmetric

encryption runs 1,000 times slower when compared to symmetric because of the complex

mathematical processing it undergoes. To take advantage of both benefits, hybrid

encryption/decryption technique is used, where exchange of secret keys is taken care by

asymmetric encryption and transfer of input message from sender to receiver is taken care by the

symmetric encryption (Yogesh & Munjal, 2011).

19

Figure 2. Asymmetric Encryption (Abdel, 2006).

Importance of Cryptosystem

Cryptosystem refers to a suite of cryptographic algorithms that are needed to implement a

specific security service, most commonly for achieving confidentiality (encryption). It includes

both encryption and decryption of data.

Companies can encrypt their websites using HTTPS—Hypertext Transfer Protocol

Secure—by default which means that in cases when a user connects to the website, HTTPS will

automatically use a separate channel which encrypts the communications from the dedicated

computer to the website. Companies need to flag all authentication cookies as secure which

means that cookie communications are restricted only to encrypt transmission that aids web

browsers to use the cookies through only an encrypted connection. Also, it stops network

operators from stealing/logging user’s identities by dealing with authentication cookies passing

over insecure connections. To ensure that the communication remains secure, companies can

enable HTTP Strict Transport Security (HSTS). It essentially guides on using only secure

20

communications, thereby preventing few attacks in situations when a network acts that the site

has actually asked to insecurely communicate (Korde, 2016).

Email service providers implement STARTTLS for email transfer. STARTTLS is an

encryption system that is used to encrypt communications between email servers using the

standard—Simple Mail Transfer Protocol (SMTP). Whenever a user emails on another provider,

for instance, Hotmail user sending email to a Gmail user, the mail message has to be delivered

actually over the Internet. In cases where both the email servers understand STARTTLS, then

only the communications will be encrypted. If not, they would be exposed to eavesdropping,

hence it is important to many email service providers to implement the system (Lucian, 2016).

Companies can use forward secrecy for encryption of keys. Forward secrecy is developed to

secure previously encrypted communications, even in case one of the service provider’s keys is

compromised in the future. Without the forward secrecy, an attacker who has a service

provider’s secret key can use it instantly for going back and read previous communications and

may be the ones that were recorded in the past, some months or more ago.

Encryption Implementation in Different Areas

Encryption will always secure, clean data in addition to allowing it to get transferred to

any other parties while being in accordance with many other security measures. Once a file is

encrypted, it would be difficult for other outside parties to get in and get access to

sensitive/personal or business data. Encryption is available for any device/area where data is

stored, which includes internet traffic, USB and external drive, complete hard drives, passwords,

and cloud storage.

http://www.pcworld.com/article/2025462/how-to-encrypt-almost-anything.html

21

Internet traffic. Travelling with a laptop is a convenient way to get into company files

whenever you need them, but, using an unsecured Wi-Fi network in any public place may make

you vulnerable to malicious attacks. Using a VPN—virtual private network—users can access

third-party server, which in fact, encrypts the information (Drew, 2014).

USB and external drive. Portable data storage devices are convenient to use, but they

have the potential risk of theft or loss. On the other hand, products like BitLocker help keep

removable media encrypted in the scenarios where they might fall into the deceptive hands

irrespective of type.

Complete hard drives. Usually, a user’s login id and password to a PC that corresponds

to a specific company will not be helpful if someone steals the complete hard drive. As soon as

the drive is plugged into another PC, the thief can get at all of its contents. For computers with

operating systems as Enterprise or Vista (or the Enterprise/Pro, Windows 8) or Ultimate,

Windows 7 or Microsoft, BitLocker software is provided which comes with complete

encryption. Just navigate to Control Panel, System and Security and turn BitLocker Drive

Encryption on by selecting the appropriate radio button.

Passwords. The most vital component of encryption is a password. For the most hack-

proof password, choose a long code of more than 10 characters that includes both upper and

lower case letters, special characters, and numbers. Assign each system or device a separate

password and store them in a secure place if it is too difficult to remember them.

Cloud storage. Services like Dropbox provide built-in data encryption, which provides

security when your data is on their servers. Even then, they also have decryption keys that give

22

them access to your data under certain situations. Products such as TrueCrypt added to cloud

storage locations deliver an extra layer of security.

In the early modern encryption, Cryptosystem’s standards became important in the mid-

1970s. The first was the DES Data Encryption Standard (DES) cryptographic algorithm using a

cipher/key with 56 bits long. DES was considered strong enough before that is to be used for

securing bank’s Automatic Teller Machines (ATMs) but, as the processing power gradually

increased, it was then replaced by triple DES that actually ran the same data using the DES

algorithm for about three times for more strength (National Institute of Standards and

Technology, 1977). A new encryption technique named Advanced Encryption Standard (AES)

was developed in 2001. We could encrypt the cipher/key with another one, but still the problem

of sending the second cipher/key securely to the receiver remains (Schneier et al., 1998).

Physically handing over the key to someone is not practical in a commercial way and, hence

sending the keys to others to decrypt data securely becomes quite impossible. Therefore, the

second kind of encryption, namely asymmetric/public key encryption, was developed. This

encryption uses two keys, one is a private one and the other is a public one. If one key is used to

encrypt the data, the other will decrypt it. If Company X wants to send a text to Company Y, it

uses Y’s public key, which is available to the public, to encrypt the text. After it is encrypted, the

only one that can decrypt the text is the Y’s private key which is accessible only by B. The

original development of this technology formed RSA Security that is still used today in their

products and organizations.

Symmetric key encryption type is, in fact, faster than asymmetric, hence, we encrypt data

using a symmetric key and again encrypt the key using the famed RSA algorithm,” according to

http://searchsecurity.techtarget.com/definition/Data-Encryption-Standard

23

Mike Vegara, Director of RSA product management (Abdul, Kader, Abdul, & Hadhoud, 2001, p.

1). On the other hand, AES has a small cipher/key length of 128 bits, whereas the RSA algorithm

begins at 1,024 bits. However, according to Nicko van Someren, Cipher’s chief technical officer,

the difference is that RSA is very difficult to break. He said that 1,024-bit RSA uses 10 times as

many numbers of processor cycles for computation but it takes in the order of about 30,000 times

much longer to break (Abdulet al., 2001).

Similar to symmetric encryption, hashing algorithms are also coming in different flavors.

One such is MD5 that is still used in many of the today’s systems, but has been overtaken by

SHA-1, that is developed by the National Security Agency (NSA) during the mid-1990s. Even

then, the security of SHA-1 has been doubted by the community of cryptography using some

alleged attacks.

Companies Encrypting Data

Four companies, namely, Google, Dropbox, Spider Oak, and Sonic.net are implementing

five of the best standards for encryption as illustrated in Figure 3. Also, Yahoo! has just

published that it is taking several measures to increase encryption, which includes the very

powerful data center encryption of links, Twitter announced that it has started the data center

links encryption. By using encryption over networks and computer systems, service providers

can make surveillance of backdoor much challenging (Kurt, Nate, & Parker, 2013).

24

Figure 3: Top Companies Security Policies (Kurt et al., 2013).

Shashi and Rajan (2011) did a Data Communication Comparative Analysis of Encryption

Algorithms. These researchers evaluated the performance of the encryption and decryption

algorithms based on memory usage, output bytes, and computational time for the algorithms

illustrated in below figure. The test outcomes demonstrated the correlation of AES, DES, and

RSA utilizing same input text file for five experiments. AES and DES produced the same output

byte for various file sizes. The authors showed that the RSA has extremely small output byte

when compared to DES and AES algorithms. Execution time of the RSA algorithm is much

higher when compared with DES and AES algorithms. The authors concluded taking into

account the text files and test results, that DES algorithm has less encryption time whereas AES

has less memory usage. However, AES and DES have very minor encryption time differences.

25

RSA took longest encryption time and memory use is likewise high, however the output byte is

comparatively very less in RSA algorithm (Shashi & Rajan, 2011).

Figure 4. Classification of Encryption Methods (Gurpreet & Supriya, 2013).

Agrawal and Pradeep (2012) presented a study of the well-known symmetric key

encryption algorithms; for example, DES, 3DES, AES, and Blowfish. Usually, Symmetric Key

algorithms run faster when compared to Asymmetric Key algorithms; for example, RSA, etc. and

the requirement of memory for symmetric algorithms is less than that of asymmetric encryption

algorithms. Also, the security factor of symmetric key encryption is better than that of

Asymmetric key encryption (Agrawal & Pradeep, 2012).

Summary

 Different encryption standards used by various companies and research works of various

authors are discussed in this chapter. The purpose of cryptography, a high-level overview of

cryptographic algorithms and the implementation details of data encryption test-bed is illustrated

in Chapter III.

26

Chapter III: Methodology

Introduction

Cryptographic techniques can be implemented in a variety of ways. One such way is to

use a programming language. There are many programming languages available today. Picking a

strong programming language like JAVA gives an appropriate implementation of algorithms.

Because of the Java features like robust, cross-platform capabilities, ease of use, and security, it

has universally become a language chosen more frequently because it provides Internet solutions

worldwide. It comes in different versions and this paper uses the JAVA 1.6 version.

JAVA Programming Language

JAVA was released by Sun Microsystems in 1995 and is inherited from C and C++

languages. It is an open source programming language which is used worldwide today in

developing web applications, websites, online games, mobile applications, and many more.

Advantages of JAVA

1. Java is easy to learn: Java was developed to be easy to use and is, therefore, easy to

understand, code, compile, run, debug, and finally learn when compared to other

programming languages.

2. Java is object-oriented: Object oriented concept enables you to develop modular and

reusable code.

3. Java is platform-independent: Platform independent is one of the most important uses

of Java, as is the ability to move the code easily from one computer system to another

and execute successfully. The ability to run the same Java program on different

27

systems is important to software on World Wide Web, and Java achieves it 100% by

being platform-independent on both the source and binary levels.

4. Java is distributed: Java is developed to make computing, distributed across different

places easy with the capability of networking which is integrated inherently into it.

Writing programs of networking in Java is similar to sending and receiving

information to and from a file.

5. Java is secure: Java views security at its design phase itself. The Java language, JDK

–Java Runtime, Developer Kit, compiler, interpreter, and finally runtime environment

is incorporated with security.

6. Java is robust: Robust stands for reliability. Java has much emphasis on checking for

possible and unexpected errors, as Java compilers can detect many issues which

would first appear during the time of execution in other languages.

7. Java is multithreaded: Multithreaded is the ability of a program to do several

operations concurrently in a program. In Java, multithreaded programming is

integrated into it, whereas in other languages, OS-specific functions need to be

explicitly called to enable multithreading.

How Does JAVA Work?

Java Runtime Environment (JRE). Java Runtime Environment is a runtime

environment that comes with JAVA Software package. It consists of JVM (Java Virtual

Machine), Java predefined classes, and Libraries. JRE is needed to run a JAVA program in the

web browser.

28

Java Development Kit (JDK). Java Development Kit is a development environment that

is used to develop applications or applets. It consists of JRE (Java Runtime Environment), a Java

compiler (javac), the Java interpreter (Java), Java archive (jar), Java documentation generator

(Javadoc) and other tools that are required for development of Java code.

Java Virtual Environment (JVM). The JAVA programming language is designed in

such a way that a JAVA program runs in any machine independent of the platform avoiding the

task of rewriting or recompiling the JAVA program for each different platform. This is

accomplished by a Java Virtual machine (JVM). Initially, a Java Compiler (javac) converts the

Java program into Java binary code called ‘byte code.’ Java Virtual Machine is present in every

platform and converts the byte code to platform specific machine language which is finally

processed. A JVM can interpret the byte code one instruction at a time or all instructions at a

time. JVM is identified as a real processor where byte code is processed irrespective of the

operating system it is running as shown in the below figure. For instance, to establish a socket

connection from the source (a workstation) to a destination (a remote machine), includes an

operating system call. Here, although sockets are handled differently by the two operating

systems, the JVM converts the Java program code in such a way that two machines which are on

different platforms should be able to connect (Simon, 2012).

29

Figure 5. Byte Code Conversion of Java Virtual Machine (JVM) (Byrne, 2015).

Swing in JAVA

Swing in JAVA is a Model-View-Controller (MVC) design that consists of a set of

components providing capability of developing Graphical User Interface (GUI) components like

textboxes, labels, text areas, buttons, and scrollbar’s etc., which are independent of the Operating

system windowing scheme. Swing has more advanced GUI components when compared to the

earlier AWT (Abstract Window Toolkit) that are used to create Applets. Swing is a most

powerful and flexible toolkit which provides other sophisticated components like trees, tables,

30

tabbed panel, scroll panes, lists etc. The hierarchy of the Swing classes are illustrated in the

below figure.

Following are advantages of swing:

 Configurable. Swing is configurable where programmers can define their own look

and feel that reflects the changes uniformly across the whole application without

requiring any programmatic changes to the application code.

 Extensible. Users can define their own custom implementations of existing

components to overriding the default ones. It is a component-based architecture,

where its components are inherited from javax.swing.JComponent.

 Lightweight GUI. Swing overrides the OS’s GUI framework with its own semantics.

Hence it implements a lightweight GUI. For instance, every Swing component

renders paint on the graphic device as a response to the component.paint () method

call. But unlike AWT, it delegates the task of painting to its native OS.

 MVC. The Swing framework makes use of Model-View-Controller design pattern. It

provides a set of default view implementations, which minimizes the need to define

custom implementations for the application specific components. The Model stands

for the Java bean classes representing User Interface (UI) elements, View stands for

the UI components that the user views, Controller stand for the request and response

handler that fetches the request, processes it and sends the appropriate response to the

UI.

 Loosely coupled. MVC in Swing provides a loosely coupled object relationship

pattern, where the mapping of event listeners to a data object is performed through

31

programming. This feature of Swings makes the Application testing easier for

programmers.

Figure 6. JAVA Swing Class Hierarchy (GURU, 2013).

Integrated Development Environment (IDE)

 There are many types of Integrated Development Environments in the market today. An

IDE is a software application that enables programmers, for the development of Software.

Developers use different IDEs like Eclipse, Net Beans, IntelliJ, Visual Studio, Windows

PowerShell etc. for developing software projects.

Net Beans IDE 8.2. Net Beans is an open source Integrated Development Environment

that is used for Software development by programmers. It is specifically intended for developing

JAVA projects, but also supports other programming languages like C, C++, PHP, HTML5 etc.

32

It facilitates source code formatting, color coding, error diagnostics, debugging, reporting, easy

navigation, ease of adding external jars/libraries, suggestions while coding etc. This allows

programmers to compile and execute code easily and maintain the changes to code uniformly

across the project. IDEs can also integrate third party libraries like Subversion (SVN), GitHub,

and Apache Tomcat. It also allows to add different plugins like Check style, PMD (Programming

Mistake Detector) tools for maintaining the coding standards.

Advantages include:

 Free and open source IDE: Net Beans is a free and open source IDE that is widely

used across the organizations.

 Easy and Efficient Management of Projects: It is easy to use and supports efficient

management of different types of projects.

 Supports a variety of programming languages: It supports different kinds of

programming languages like .Net, JAVA, etc.

 Helps in writing bug free application code: It aids developers or programmers in

writing error free code.

 Supports cross platform: It supports programmability across different platforms like

Windows, UNIX, Linux, etc.

 Facilitates powerful tools for CSS3, HTML5 and JavaScript: It provides strong and

standard tools for writing and supporting CSS3, HTML5, Java script, etc.

 An advanced set of default plugins: It provides many advanced default plugins that

eases the programming.

33

 Supports latest technologies: It supports the latest and advanced technologies

including the upgraded versions.

 Smart, fast and Easy code editing: It enables fast, easy and smart modifications of

code with many short-cut keys.

 Rapid and Fast User Interface Development: It allows rapid and fast development of

User Interface for any type of web application.

 Provides default Look and Feel Themes: The programmers can use a set of default

themes provided by Net Beans that enhances the look and feel of the User Interface.

Purpose of Cryptography

Cryptography gives various security objectives to guarantee the privacy of data, no data

alteration etc. Because of the featured security advantages of cryptography, it is broadly utilized

today (Denning, 1982). Following are the different objectives of cryptography:

 Confidentiality: Data in a PC is transmitted and must be accessible only to authorized

people / users and not to any other individuals.

 Authentication: The data received by any system need to verify the sender’s identity

by checking whether the data are sent from an authorized party or not.

 Integrity: Just the authorized party is permitted to change the transmitted information.

Nobody other than Sender And receiver is permitted to change the given message.

 Non Repudiation: Non Repudiation feature guarantees that neither the sender, nor the

receiver of the message ought to have the ability to reject the transmission.

 Access Control: Access Control feature of cryptography ensures that just the

authenticated individuals have access to the given information. Cryptography,

34

Encryption algorithms can be characterized into two general types - Symmetric and

Asymmetric key encryption types (Thambiraja et al., 2012).

Cryptographic Algorithms

Data encryption standard. The Data Encryption Standard (DES) is a symmetric key

algorithm Developed in the early 1970s at IBM. The Data Encryption Standard is the most

widely used cipher. It was designed in 1977 by IBM and it can to resist all attempts at

cryptanalysis. The Data Encryption Standard is a square figure, which means a cryptographic

key and calculation are connected to a piece of information all the while as opposed to one piece

at once. To scramble a plain text message, DES bunches it into 64-bit pieces. Every bit is

encrypted utilizing the secret key to generate a 64-bit output cipher text by a method for stage

and substitution. The procedure includes 16 adjusts and can keep running in four unique modes,

or scrambling pieces exclusively. Decoding is basically the opposite of encryption, taking after

the same strides yet turning around the request in which the keys are connected. The quantity of

conceivable keys depends on the length of the key and the plausibility—of this kind of assault.

DES utilizes a key of 64-bits, out of which eight of the bits are utilized for equality checks,

successfully constraining the way to 56-bits. Henceforth, it would take a great of 2^56, or

72,057,594,037,927,936, endeavors locate the right key. It divides the data to be encrypted into a

particular sequence of blocks of 64-bit and also uses a key of 56-bit to do a series of

mathematical transformations to it. There are various variations of the DES algorithm, namely,

cipher block chaining, in which every block of data applies XOR function with the previous

block even before encryption, and on the other hand, in triple-DES, the technique of DES is

applied three times in the series. The purpose of the DES algorithm is to give a standard

https://en.wikipedia.org/wiki/IBM

35

methodology for securing confidential and unclassified information. In this process, both

encryption and decryption process use the same key.

DES algorithm consists of the following steps:

1. Encryption. DES takes an input of plaintext that has 56-bit key where 8 bits are of

parity and is 64-bit long that finally generates an output of 64 bit block. The plaintext

block needs to shift the bits around. The eight bits of parity are taken out of the key

by applying the key to its Key Permutation.

The plaintext and key will be processed by the following steps:

a. The key is split into two halves of 28.

b. Every half of the key based on the round is rotated/shifted by one or two bits.

c. The halves are recombined and then are subjected to a permutation—a

compression to reduce the key right from 56 bits to 48 bits. The keys compressed

are used to encrypt this plaintext block of rounds.

d. Then the rotated/shifted key halves generated from Step b are used in the next

round.

e. After that, the data block is then divided into two halves of 32-bit as illustrated in

Figure 7 and processed alternatively. This crisscrossing is called Feistel scheme.

f. One half is subjected to a permutation-expansion to increase the size to 48 bits.

g. Output of above step is then applied XOR with 48- bit key compressed Step c as

illustrated in Figure 7. Output of above step is given as an input to the S-box that

substitutes key bits and hence reduces the block of 48-bit back to 32-bits. Output

of above step is subjected to a P-box to permute the given bits. The output of P-

36

box is applied XOR with other half of the data block. The two halves of data are

then swapped to be the next round’s input. This is repeated for 16 rounds

(Mahajan, & Sachdeva, 2013).

Figure 7. Data Encryption Standard Functionality (Mahajan, & Sachdeva, 2013).

1. Decryption. Decryption in DES uses the same structure as that of encryption, but the

keys are used in reverse order.

2. Key schedule (n.d.). From the initial key with 64 bits, 56 bits are selected and the

remaining 8 bits are used as parity check bits or discarded. The 56 bits are divided

37

into two halves with 28 bits each. Each half is process separately. In the next rounds,

each half is rotated left by 1 or 2 bits and finally, PC2 (Permutation Choice 2) selects

48 sub key bits and 24 bits from the left and right halves respectively. The symbol

‘<<<‘ makes sure that every sub key should use a different set of bits as illustrated in

the below figure. In decryption, a similar process is used, except that the sub keys are

used in reverse order.

Figure 8. DES Key Schedule (Key schedule, n.d.).

The Feistel scheme. The crisscrossing used in the DES algorithm is called a Feistel

scheme. This scheme makes sure that encryption and decryption are performed in a similar

manner. The sub keys are used in a reverse order in decryption which is the only difference in

the process of encryption and decryption making implementation simpler without the need of

separate encryption and decryption algorithms.

The Feistel function operates in the following four stages on 32 bits at a time:

38

 Expansion: Using the expansion permutation represented by the E in Figure 9, the 32-

bit is expanded to 48 bits by duplicating the bits. The output contains eight 6-bits,

pieces that are equivalent to 48 bits each containing a corresponding copy of four

input bits and adjacent bit present on either side.

 Key mixing: The result of Expansion stage is applied XOR with a sub key. Sixteen

sub keys of 48 bits are derived from 16 rounds of DES Key schedule process. This is

termed Key Mixing.

 Substitution: The resultant block is divided into eight 6-bit pieces that are passed to

Substitution boxes (S-Boxes) for processing. Each S-box replaces 6-bits with four

output bits.

 Permutation: The final 32 outputs generated from S-Boxes are rearranged based on a

permutation (P-Box) as illustrated in Figure 9. After permutation, the output bits are

distributed in the next rounds across four S boxes.

Figure 9. Feistel Scheme of DES (Wikiversity, n.d.).

39

3-DES encryption with cipher block chaining. Triple DES was designed to illustrate

the flaws in previous DES without developing a whole new cryptosystem. It simply increases the

size of key of DES by applying the logic three times in series with three different keys. Hence,

the combined key size is 168 bits (3 x 56). It is always viewed with some doubt since the original

algorithm was not developed to be used in this context, but no serious issues are seen in the

3DES design and, hence, it is the available cryptosystem today used in many Internet protocols.

Triple Data Encryption Standard (DES) is a sort of automated cryptography where piece figure

calculations are connected three times to every information square. The key size is expanded in

Triple DES to guarantee extra security through encryption capacities. Every piece contains 64

bits of information. Three keys are alluded to as group keys with 56 bits for every key as

illustrated in Figure 10. There are three entering keys in data encryption benchmarks: (a) Key 1

and Key 2 being free keys, (b) all three keys being indistinguishable, and (c) Key alternative

Number 3 is named as triple DES. The key length of triple DES consists of 168 bits; however,

the key security tumbles to 112 bits.

Figure 10. Functionality of Triple DES Algorithm (Singh & Bharti, 2013).

40

RSA algorithm. The RSA (Rivest-Shamir-Adleman) algorithm is the most powerful and

vital public-key cryptosystem. RSA gets its security from the trouble of figuring extensive whole

numbers that are the result of two vast prime numbers. Duplicating these two numbers is simple,

yet deciding the first prime numbers from the aggregate figuring is viewed as infeasible because

of the time it would take not withstanding utilizing today’s super PCs.

Figure 11. Public Key Cryptography (Gerasimos, 2012).

Two huge prime numbers, p and q, are produced utilizing the Rabin-Miller primality test

calculation. A modulus n is figured by duplicating p and q. This number is utilized by the private

keys and gives the connection between them. Its length, typically communicated in bits, is

known as the key length. The key comprises of the modulus n, and an open type, e, which is

ordinarily set at 65537, as it is a prime number that is not very huge. The private key comprises

41

of the modulus n and the private type’d’, which is ascertained utilizing the Extended Euclidean

calculation to locate the multiplicative converse of n.

As illustrated in Figure 11, the RSA works like this:

1. Alice chooses two large primes pA and qA.

2. Alice computes n A = pA qA and ϕ(n A) = (pA–1)(qA–1)

3. Alice chooses an integer eA with gcd(eA,ϕ(n A)) = 1, possibly at random.

4. Alice computes dA ≡ eA −1 (mod ϕ (n A)).

5. Alice’s public key is (n A, eA). She distributes this. Her private key is dA. She keeps

this secret. Alice can discard pA, qA, and ϕ (n A).

6. If 2k ≤ n A < 2k+1, Alice’s function of encryption for short texts (k bits or even less,

so M < n A) is: EA (M) = MeA (mod n A). Anyone can compute EA (M). A long

message is encrypted by dividing it into blocks of k-bits, and then encrypting every

block separately. Note that each encrypted block has k+1 bits.

7. Alice’s function of decryption for small messages is: DA (M) = MdA (mod n A),

given 0 ≤ M < n A. No one else other than Alice (or others who has Alice’s private

key) can compute this. Note: D A (EA (M)) ≡ (MeA) dA ≡ MeA dA ≡ M (mod n A)

since eA dA ≡ 1 (mod ϕ (n A)).

Once Alice has done this, she can (a) receive messages that are encrypted from Bob (or

others), and (b) send digitally-signed messages to Bob (or anyone else). If Alice needs to send

encrypted texts, or receive digitally-signed texts to and from Bob respectively, Bob needs to

choose his own private and public keys, dB and (nB, eB). Bob sends a short message M (at most

k bits) to Alice like this:

42

1. Bob encrypts M as MeA (mod n A), and sends MeA to Alice. (Note Bob knows eA

and n A.)

2. Alice decrypts MeA as (MeA) dA ≡ M (mod n A). Thu,s Alice recovers M. (Make a

note that Alice actually recovers the M value (mod n A), but this is equivalent to M

satisfying M < n A.) For big messages, Bob could divide the message to k- bit blocks,

and encrypt separately every block. Alice would divide the message that is encrypted

in k+1 bit blocks, and decrypt separately every block.

Advanced Encryption Standard (AES). During the 1990s, the United States National

Institute of Standards and Technology (NIST) conducted a competition to design a substitute for

DES. The winner, Rijndael, was announced in 2001. This made the RSA algorithm the new

Advanced Encryption Standard (AES). AES involves three square figures, AES-128, AES-192

and AES-256. Every figure encodes and decodes information in squares of 128 bits utilizing

cryptographic keys of 128-, 192-, and 256-bits, individually. (Rijndael was intended to handle

extra piece sizes and key lengths, however the usefulness was not highlighted in AES.)

Symmetric algorithms utilize the common secret key for both decryption and encryption, so both

the sender and receiver should be aware and be able to utilize the same secret key. Every single

key length is esteemed adequately to make sure ordered data requiring either 192-or 256-bit key

lengths. There are 10 rounds of 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-

bit keys (a round consists of a few base steps that include shifting, mixing, and substitution of the

input plaintext and change it into the last yield of cipher text). Rijndael mixes up the SPN model

by including Galios operations of the field in every round. A bit similar to arithmetic operations

43

of RSA modulo, the field operations of Galios produced gibberish, but can be inverted

mathematically. AES has Security and, in addition, it has a relation between time and cost.

Figure 12. Steps of AES Encryption (Pranav, 2005).

Encryption. Following are the key steps involved in the AES algorithm as illustrated in

Figure 12:

1. Key Expansion

2. Initial Round

 Add Round Key

44

3. Rounds

 Shift Rows

 Sub Bytes

 Add Round Key

 Mix Columns

4. Final Round

 Sub Bytes

 Shift Rows

 Add Round Key

Key expansion. Key Expansion is an important step in the AES algorithm. There are

multiple rounds involved in AES encryption and decryption process. The initial is manipulated

and converted to generate sub keys for the subsequent rounds. The key expansion step takes a

key as input that is of bytes 4*Nk. Here Nk can be 4 or 6 or 8. The output of the key expansion is

named as an expanded key that is of bytes 4 * Nb * (Nr+1), where Nr represents the number of

rounds and Nb is always a constant that equals to 4.

Sub bytes. In Sub Bytes step, each byte is replaced with another byte located at 8-bit

substitution box (S-Box) representing a lookup table.

Shift rows. The Shift Row step operates on each row of the byte matrix. In each row of

the state, the bytes are shifted to the left. The number of bytes shifted is based on certain offset

for each row. In the first row, the bytes are left stable. In the second row, each byte is shifted left

by one position. Similarly, in the fourth and fifth rows, all bytes are shifted by two and three

positions left respectively. This logic remains same for any size of block either 128 or 192 bits.

45

Mix columns. In Mix Columns step, each four bytes of a column are united using a linear

transformation. This step takes input of four bytes and generates output of four bytes. Here, the

output bytes are affected by each input byte. In this step, each column is transformed by

multiplying by a constant matrix generating new values in the column. This matrix multiplication

includes both addition and multiplication. The addition implies a simple XOR function. The

multiplication implies applying a polynomial order of x to the power of 7.

Add round key. In the Add Round Key step, the state is combined with the sub key. In

each round, Rijndael’s key schedule is used to derive a sub key from main key where the size of

the sub key is same as that of the state. Each byte of the state is added with the sub key using

bitwise XOR operation.

As illustrated in Figure 13, in the final round the step of column mixing is not performed.

The round keys are derived from the key by a key schedule. For each round, we need a round

key of the same size as the size of the state. This is achieved by recursive expansion of 11 the

key to the size of (number of rounds) * (size of state). From this expanded key, the round keys

are taken sequentially.

46

Figure 13. AES Structure (Shankar & Jenifer, 2013).

Decryption. The inverse of a round is given by Add Round Key, Inverted Mix Column,

inverted Shift Row, and inverted Byte Sub. The inverse of a final round is got by Add Round

Key, inverted Shift Row and inverted Byte Sub. After which a final Add Round Key is done.

AES–128/256. Advanced Encryption Standard comes with a 128-bit block size, but it

also supports 128, 192, 256 bit keys. Usually huge sized keys are most likely required for

building an efficient hashing function. AES takes after the custom of square ciphers. NIST gave

as its explanations behind selecting Rijndael that it performs exceptionally well in all possible

modes in both hardware and software over a wide nine range of environments. It has efficient

setup time for key and has low requirements of memory; furthermore, its operations have the

47

ease to protect against timing and power attacks. In the real world, regularly utilized ciphers are

block ciphers. They change a fixed size data block into another fixed size data block with the

help of the function that the key chooses. In the case where the key, input, and output blocks

have n bits, a one-to-one mapping of the integers of n bits to permutations of integers of n bits, is

defined by the block cipher. In case the same block is twice encrypted with the same key, the

subsequent cipher blocks of text are also similar. This method of encryption is named as

electronic codebook (ECB). This data could be helpful to an attacker. To make identical blocks

of plaintext to encrypt to a different text blocks of cipher, two modes are usually utilized as

standards: AES is an iterated cipher block with a variable length of the block and a variable

length of the key. The block and the key lengths respectively can be picked as 128, 192, 256 bits.

The block on which the operations are performed is known as a state. A state is represented as an

array of eight bits having four columns. The count of columns is equivalent to the length of the

block divided by 32. Hence there are four rows and eight columns in Table 2, where 8*4=32.

Each element in the table is denoted as Ai,j, where i represents row and j represents column as

shown in the below table. Same structure is applied to the cipher key. Below is a sample state

with 192 bits (Anush, 2000).

Table 2

AES State Structure

A0,0 A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7

A1,0 A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7

A2,0 A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7

A3,0 A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7

(Anush, 2000)

48

Similar to DES, AES contains a number of rounds. The number of rounds is based on the

block and key lengths respectively and is represented in Table 3, where the first column

represents the block length and first row represents the key length.

Table 3

AES Rounds Based on Block and Key Length

 128 192 256

128 10 12 14

192 12 12 14

256 14 14 14

(Anush, 2000)

DES CBC mode with RSA-MD5. DES CBC mode with RSA-MD5 (des-CBC-md5) is a

form of DES algorithm that includes encryption and decryption of input text using keys of 56

bits, blocks of eight bytes in CBC (Cipher Block Chaining) mode and Initialization Vector (IV).

The passwords generated from an application specific algorithm is used to derive keys. Un-keyed

and Encrypted MD5 (Message Digest 5) hash is used to protect the Data Integrity of the Input

Text. This MD5 is associated with the checksum of rsa-md5-des. This is one of the strongest

encryption mechanisms that are interoperable.

Cipher Block Chaining (CBC). CBC is used to operate on a block cipher, where the

chunk of bits is encrypted and decrypted as a single block or unit. CBC uses a single cipher key

on the entire block. CBC uses Initialization Vector (IV) of a particular length and has a key

feature of using chaining mechanism. This chaining mechanism makes the decryption of cipher

block to depend on every preceding cipher block. Hence, the preceding blocks validity is

captured in the previous immediate cipher block. As a result, any minor error in a cipher block

67

Initially, the user need to select the encryption and decryption algorithm from the drop

down associated with the label “Algorithm” as shown in Figure 24.

Figure 24. Selecting Algorithm for Data Encryption and Decryption.

The drop-down values on the user interface has the below values:

 DES CBC mode with RSA-MD5

 Triple DES

 RSA

 AES-256

 AES-128

68

Step 4: After selecting the encryption/decryption algorithm, he/she needs to enter the

input text message that should be encrypted and decrypted in the text box associated with the

label “Enter Plain Text.” To execute the selected encryption/decryption algorithm against the

enter plain text, the user need to click on “Submit” button as shown in Figure 25.

Figure 25. Entering Plain Text to Encrypt and Decrypt.

Step 5: After submitting, all the algorithms listed in the drop down are executed for the

given plain text. The plain text is encrypted and decrypted with the respective algorithms. The

time taken for encrypting and decrypting the given plain text is calculated. We will get the pop

up displaying the best suitable algorithm with least time taken for encryption/decryption of the

given plain text message from amongst the executed algorithms as illustrated in Figure 26.

73

Summary

Various steps to run the Test-Bed tool are illustrated in this Chapter. The results of the

execution of project are also analyzed. The possible enhancements of the project are discussed

and the study is concluded in Chapter V.

74

Chapter VI: Conclusion and Future Study

Introduction

The study proposed and implemented in this paper is precisely supported in this chapter.

The achievements of the study are described and conclusion of the study is made here. The

possible enhancements or recommendations to the study are also discussed.

Conclusion

In conclusion, this research paper helps the business organizations to choose the best

reliable encryption and decryption algorithms for their organizations using the data encryption

tool developed without any additional budget required for analysis.

This paper gives a high-level overview of a few of the most commonly used

encryption/decryption algorithms like DES, Triple DES, RSA, AES128, and AES256 and

illustrates the implementation of a test-bed for analyzing the encryption procession overhead of

different cryptographic algorithms using a simple GUI (Graphical User Interface). A user-

friendly interface is developed that allows any user to give any kind of input plaintext and

execute it against a set of available encryption and decryption algorithms. Every minute detail

starting from the requirements gathering to the implementation of the project has been presented

in the paper in a theoretical and practical way. The primary focus is on clearly presenting the

time taken for encrypting and decrypting the input text using which organizations can easily

analyze the performance of different algorithms. For ease of understanding, the project also gives

a graphical representation of the performance analysis.

75

Future Work

All encryption algorithms mentioned in this research paper are studied in the due course

and completed the implementation. The study can be extended by including other encryption and

decryption algorithms in the project that might gain major attention in the future. The tool can be

enhanced by adding an option on the GUI like a browse button, etc. to upload a file which can

hold huge amount of data.

76

References

Abdel, K. A. T. (2006). Performance analysis of data encryption algorithms. Retrieved from

http://www.cse.wustl.edu/~jain/cse567-06/ftp/encryption_perf.pdf

Abdul, E., Kader, A., & Mohie, H. (2008). Performance evaluation of symmetric encryption

algorithms. IJCSNS International Journal of Computer Science and Network Security,

8(12), 280-286.

Abdul, M., Kader, D. S., Abdul, H. M., & Hadhoud, M. M. (2001). Analysis of performance for

symmetric cryptography. Communications of the IBIMA, 8, 1943-7765.

Agrawal, M., & Pradeep, M. (2012). A comparative survey on symmetric key encryption

techniques. Retrieved from http://www.enggjournals.com/ijcse/doc/IJCSE12-04-05-

237.pdf

Ajay, K., Singh, M. L., & Bansal, P. K. (2012). Comparison of various encryption algorithms

and techniques for secured data communication in multi-node network, IJETnternational

Journal of Engineering and Technology, 2(1), 87-92.

Akash, M., Chandra, P., & Archana, T. (2012). Performance evaluation of cryptographic

algorithms: DES and AES. IEEE Students’ Conference on Electrical, Electronics and

Computer Science, 1-5.

Alanazi, O., Zaidan, B. B., Zaidan, A. A., Jalab, A., Shabbir, M., & Al-Nabhani, Y. (2010). New

comparative study between DES, 3DES and AES within nine factors. Journal of

Computing, 2(3), 152-157.

http://www.cse.wustl.edu/~jain/cse567-06/ftp/encryption_perf.pdf

77

Anush, K. (2000). Performance impact of encryption algorithms on Kerberos network

Authentication protocol (Unpublished Master’s thesis). Oklahoma State University,

Stillwater, OK.

Byrne, M. (2015, October 18). Know your language: The slow flickering Star-Death of Java

(Part 1). Retrieved from http://motherboard.vice.com/read/know-your-language-the-

slow-flickering-star-death-of-java-part-one

Denning, D. E. R. (1982). Cryptography and data security. Boston, MA: Purdue University,

Addison-Wesley Publishing Company. Retrieved from

http://faculty.nps.edu/dedennin/publications/Denning-CryptographyDataSecurity.pdf

Dinesh, T. (2013). MD5–What is Message Digest 5 (MD 5)? Retrieved from

http://ecomputernotes.com/computernetworkingnotes/security/md5

Drew, H. (2014). How to encrypt your business data for optimal security. Retrieved from

http://www.forbes.com/sites/drewhendricks/2014/09/30/how-to-encrypt-your-business-

data-for-optimal-security/#2dad10db72c0

Gerasimos, K. (2012). Crypto for pentesters. Retrieved from

http://securityhorror.blogspot.com/2012/11/crypto-for-pentesters.html

Gurpreet, S., & Supriya. (2013). A study of encryption algorithms (RSA, DES, 3DES and AES)

for Information Security, International Journal of Computer Applications (0975–8887),

67(19). Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5601&rep=rep1&type=pdf

GURU. (2013). Creating GUI components using java swing tutorial. Retrieved from

http://www.guru99.com/java-swing-gui.html#1

ttp://motherboard.vice.com/read/know-your-l
http://faculty.nps.edu/dedennin/publications/Denning-
http://www.forbes.com/sites/drewhendricks/2014/09/30/how-to-encrypt-your-
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.403.5601&rep=rep1&t

78

Key schedule. (n.d.). Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Key_schedule

Kopplin, J. (2002). An illustrated history of computers, Part 3. Retrieved from

http://www.computersciencelab.com/ComputerHistory/HistoryPt3.htm

Korde, V. (2016). The importance of a proper HTTP Strict transport security implementation on

your web server. Security Labs. Retrieved from

https://blog.qualys.com/securitylabs/2016/03/28/the-importance-of-a-proper-http-strict-

transport-security-implementation-on-your-web-server

Kurt, O., Nate, C., & Parker, H. (2013). Which companies are encrypting your data properly?

Retrieved from http://gizmodo.com/which-companies-are-encrypting-your-data-properly-

1468088449

Lucian, C. (2016). Google, Microsoft, Yahoo and others publish new email Security standard.

IDS News service. Retrieved from

http://www.pcworld.com/article/3046484/security/google-microsoft-yahoo-and-others-

publish-new-email-security-standard.html

Mahajan, P., & Sachdeva, A. (2013). A study of encryption algorithms AES, DES and RSA for

security. Global Journal of Computer Science and Technology Network, Web and

Security, 13(16), Version 1.0. Retrieved from

https://globaljournals.org/GJCST_Volume13/4-A-Study-of-Encryption-Algorithms.pdf.

Murat, K. (2007). Modes of operation. Retrieved from

http://www.utdallas.edu/~muratk/courses/crypto07_files/modes.pdf

https://blog.qualys.com/securitylabs/2016/03/28/the-importance-of-a-proper-http-
http://gizmodo.com/which-companies-are-
http://www.pcworld.com/article/3046484/security/google-microsoft-yahoo-and-
https://globaljournals.org/GJCST_Volume13/4-A-Study-of-Encryption-

79

National Academy of Public Administration. (2015). Increasing the effectiveness of the federal

role in cybersecurity education. Retrieved from

http://napawash.org/images/reports/2015/Increasing_Effectiveness_of_Federal_Role_in_

Cyber_Education.pdf

National Institute of Standards and Technology. (1977). Data encryption standard (DES). FIPS

Publication 46. Washington, DC: Author.

Pavithra, S., & Ramadevi, E. (2012). Performance evaluation of symmetric algorithms. Journal

of Global Research in Computer Science, 3(8), 43- 45.

Pluke, E. (2012). MD5. Retrieved from https://en.wikipedia.org/wiki/MD5

Pranav, A. (2005). Short tutorial on advanced encryption standard. Retrieved from

http://pranav-mnit.tripod.com/aes.htm

Priyanka, A., Arun, S., & Himanshu, T. (2012). Evaluation and comparison of security issues on

cloud computing environment. World of Computer Science and Information Technology

Journal (WCSIT), 2(5), 179-183.

Rouse, M. (2007). Cipher block chaining (CBC). Retrieved from

http://searchsecurity.techtarget.com/definition/cipher-block-chaining

Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., & Ferguson, N. (1998). Comparison

of performance of the submissions of AES. Counterpane Systems. Retrieved from

http://www.counterpane.com/AESperformance.html

Shankar, G., & Jenifer, N. (2013). FPGA based SCA resistant AES S-Box Design. International

Journal of Scientific and Engineering Research, 4(4), 1143-1149.

http://napawash.org/images/reports/2015/Increasing_Effectiveness_of_Federal_R
http://www.counterpane.com/AESperformance.html

80

Shashi, S., & Rajan, I. (2011). Comparative analysis of encryption algorithms for data

communication. International Journal of Computer Science and Technology, 2(2), 192-

294.

Simar, S., & Raman, M. (2011). Comparison of data encryption algorithms. International

Journal of Computer Science and Communication, 2(1), pp. 125-127.

Simon, S. (2012). What is java virtual machine and how does it work? Retrieved from

http://www.makeuseof.com/tag/java-virtual-machine-work-makeuseof-explains/

Singh, L., & Bharti, R. K. (2013). Comparative analysis of cryptographic algorithms.

International Journal of Advanced Engineering Technology. Retrieved from

http://www.technicaljournalsonline.com/ijeat/VOL%20IV/IJAET%20VOL%20IV%20IS

SUE%20III%20JULY%20SEPTEMBER%202013/Vol%20IV%20Issue%20III%20Articl

e%205.pdf%20Article%205.pdf

Thambiraja, E., Ramesh, G., & Umarani, R. (2012). A survey on various most common

encryption techniques. International Journal of Advanced Research in Computer Science

and Software Engineering, 2(7), 226-233.

Whitfield, D., & Susan, L. (2007). Privacy on the line. The politics of wiretapping and

encryption (Updated and expanded edition). Retrieved from

https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262042406_Privacy_

On_The_Line.pdf

Wikiversity. (n.d.). Cryptography/data encryption standard. Retrieved from

https://en.wikiversity.org/wiki/Cryptography/Data_Encryption_Standard

ttp://www.makeuseof.com/tag/java-virtual-machine-work-makeuseof-e
http://www.technicaljournalsonline.com/ijeat/VOL%20IV/IJAET%20VOL
https://mitpress.mit.edu/sites/default/files/titles/free_download/9780262042406_P

81

Yogesh, K., & Munjal, R. (2011). Comparison of symmetric and asymmetric cryptography with

previous vulnerabilities. IJCSMS International Journal of Computer Science and

Management Studies, 11(3), 60-63.

82

Appendix

The Encryption Algorithms Project

The ‘Encryption Algorithms’ JAVA research project includes a number of java

Classes and jar files for designing a test bed to analyze encryption processing overhead.

DES Algorithm

package com.enc.algorithm;

import javax.crypto.Cipher;

import javax.crypto.KeyGenerator;

import javax.crypto.SecretKey;

/**

 * DES encryption

 */

public class DataEncryptionStandardAlg {

 Cipher encryptionCipr;

 Cipher decryptionCipr;

 public DataEncryptionStandardAlg() throws Exception {

 SecretKey scrtKey = KeyGenerator.getInstance(“DES”).generateKey();

 encryptionCipr = Cipher.getInstance(“DES”);

 decryptionCipr = Cipher.getInstance(“DES”);

 encryptionCipr.init(Cipher.ENCRYPT_MODE, scrtKey);

 decryptionCipr.init(Cipher.DECRYPT_MODE, scrtKey);

 }

83

 public String encryptTxt(String txt) throws Exception {

 // Encode the string into bytes using utf-8

 byte[] utf8bytes = txt.getBytes(“UTF8”);

 // Encrypt

 byte[] encBytes = encryptionCipr.doFinal(utf8bytes);

 // Encode bytes to base64 to get a string

 return new sun.misc.BASE64Encoder().encode(encBytes);

 }

 public String decryptTxt(String txt) throws Exception {

 // Decode base64 to get bytes

 byte[] decBytes = new sun.misc.BASE64Decoder().decodeBuffer(txt);

 byte[] utf8Bytes = decryptionCipr.doFinal(decBytes);

 // Decode using utf-8

 return new String(utf8Bytes, “UTF8”);

 }

 public static void main(String[] arguments) throws Exception {

 DataEncryptionStandardAlg encryptAlg = new DataEncryptionStandardAlg();

 String encryptedTxt = encryptAlg.encryptTxt(“Don’t tell anybody!”);

 String decryptedTxt = encryptAlg.decryptTxt(encryptedTxt);

 }

}

84

AES 128 Algorithm

package com.enc.algorithm;

import javax.crypto.Cipher;

import javax.crypto.spec.IvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

/**

 * AES 128 encryption

 */

public class AES128Alg {

 static String InitializerVector = “AAAAAAAAAAAAAAAA”;

 static String inputTxt = “test text 1234\0\0\0”; /* Note null padding */

 static String encrypKey = “0123456789abcdef”;

 static int cal = 0;

 public static void main(String[] args) {

 try {

 byte[] cipherTxt = encryptFun(inputTxt);

 for (int i = 0; i < cipherTxt.length; i++)

 System.out.print(new Integer(cipherTxt[i]) + “ “);

 String decryptedTxt = decryptFun(cipherTxt);

 } catch (Exception e) {

85

 e.printStackTrace();

 }

 }

 public static byte[] encryptFun(String inputTxt) throws Exception {

 if (inputTxt.getBytes().length % 16 != 0) {

 cal = 16 - inputTxt.getBytes().length % 16;

 for (int i = 0; i < cal; i++)

 inputTxt = inputTxt + “ “;

 }

 Cipher ciprTxt = Cipher.getInstance(“AES/CBC/NoPadding,” “SunJCE”);

 SecretKeySpec scrtKey = new

SecretKeySpec(encrypKey.getBytes(“UTF-

8”), “AES”);

 ciprTxt.init(Cipher.ENCRYPT_MODE, scrtKey, new IvParameterSpec(

 InitializerVector.getBytes(“UTF-8”)));

 return ciprTxt.doFinal(inputTxt.getBytes(“UTF-8”));

 }

 public static String decryptFun(byte[] ciprTxt) throws Exception {

 Cipher ciphrTxt = Cipher.getInstance(“AES/CBC/NoPadding,”

“SunJCE”);

 SecretKeySpec scrtKey = new

SecretKeySpec(encrypKey.getBytes(“UTF-

86

8”), “AES”);

 ciphrTxt.init(Cipher.DECRYPT_MODE, scrtKey, new IvParameterSpec(

 InitializerVector.getBytes(“UTF-8”)));

 return new String(ciphrTxt.doFinal(ciphrTxt), “UTF-8”).substring(0,

 new String(ciphrTxt.doFinal(ciphrTxt), “UTF-8”).length() - cal);

 }

}

AES 256 Algorithm

package com.enc.algorithm;

import java.io.UnsupportedEncodingException;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.util.Arrays;

import javax.crypto.Cipher;

import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;

/**

 * AES 256 encryption

 */

public class AES_256 {

 public static SecretKeySpec getScrtKey() {

 return scrtKey;

87

 }

 public static void setScrtKey(SecretKeySpec scrtKey) {

 AES_256.scrtKey = scrtKey;

 }

 public static byte[] getByteKey() {

 return byteKey;

 }

 public static void setByteKey(byte[] byteKey) {

 AES_256.byteKey = byteKey;

 }

 public static String getDcryptdStr() {

 return dcryptdStr;

 }

 public static void setDcryptdStr(String dcryptdStr) {

 AES_256.dcryptdStr = dcryptdStr;

 }

 public static String getEncryptdStr() {

 return encryptdStr;

 }

 public static void setEncryptdStr(String encryptdStr) {

 AES_256.encryptdStr = encryptdStr;

 }

88

 private static SecretKeySpec scrtKey;

 private static byte[] byteKey;

 private static String dcryptdStr;

 private static String encryptdStr;

 public static void setScrtKey(String myScrtKey) {

 MessageDigest mdSha = null;

 try {

 byteKey = myScrtKey.getBytes(“UTF-8”);

 mdSha = MessageDigest.getInstance(“SHA-1”);

 byteKey = mdSha.digest(byteKey);

 byteKey = Arrays.copyOf(byteKey, 16); // use only first 128 bit

 scrtKey = new SecretKeySpec(byteKey, “AES”);

 } catch (NoSuchAlgorithmException e) {

 e.printStackTrace();

 } catch (UnsupportedEncodingException e) {

 e.printStackTrace();

 }

 }

 public static String encryptTxt(String txtToEncrypt) {

 try {

 Cipher ciphrTxt = Cipher.getInstance(“AES/ECB/PKCS5Padding”);

 ciphrTxt.init(Cipher.ENCRYPT_MODE, scrtKey);

89

 setEncryptedString(Base64.encodeBase64String(ciphrTxt

 .doFinal(txtToEncrypt.getBytes(“UTF-8”))));

 } catch (Exception e) {

 System.out.println(“Error while encrypting: “ + e.toString());

 }

 return encryptdStr;

 }

 public static String decryptTxt(String strToDecrypt) {

 try {

 Cipher cphr = Cipher.getInstance(“AES/ECB/PKCS5PADDING”);

 cphr.init(Cipher.DECRYPT_MODE, scrtKey);

 setDcryptdStr(new String(cphr.doFinal(Base64

 .decodeBase64(strToDecrypt))));

 } catch (Exception e) {

 System.out.println(“Error while decrypting: “ + e.toString());

 }

 return dcryptdStr;

 }

 public static void main(String arguments[]) {

 final String txtToEncrypt = “My text to encrypt”;

 final String pssword = “encryptor key”;

90

 AES_256.setScrtKey(pssword);

 AES_256.encryptTxt(txtToEncrypt.trim());

 final String txtToDecrypt = AES_256.getEncryptedString();

 AES_256.decryptTxt(txtToDecrypt.trim());

 }

}

RSA Algorithm

package com.enc.algorithm;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.PublicKey;

import javax.crypto.Cipher;

import javax.swing.JOptionPane;

91

/*RSA Algorithm*/

public class RSAAlg {

 public static final String RSA_ALGORITHM = “RSA”;

 public static final String PRVTE_KEY = “private.key”;

 public static final String PBLIC_KEY = “public.key”;

 /**

 * Generate key which contains a pair of private and public key using 1024

 * bytes. Store the set of keys in Prvate.key and Public.key files.

 * @throws NoSuchAlgorithmException

 * @throws IOException

 * @throws FileNotFoundException

 */

 public static void keyGenratn() {

 try {

 final KeyPairGenerator keyGenratn = KeyPairGenerator

 .getInstance(RSA_ALGORITHM);

 keyGenratn.initialize(1024);

 final KeyPair keyPr = keyGenratn.generateKeyPair();

 File prvteKeyFile = new File(PRVTE_KEY);

 File pblicKeyFile = new File(PBLIC_KEY);

 // Create files to store public and private key

 if (prvteKeyFile.getParentFile() != null) {

92

 prvteKeyFile.getParentFile().mkdirs();

 }

 prvteKeyFile.createNewFile();

 if (pblicKeyFile.getParentFile() != null) {

 pblicKeyFile.getParentFile().mkdirs();

 }

 pblicKeyFile.createNewFile();

 // Saving the Public key in a file

 ObjectOutputStream pblicKeyStream = new ObjectOutputStream(

 new FileOutputStream(pblicKeyFile));

 pblicKeyStream.writeObject(keyPr.getPublic());

 pblicKeyStream.close();

 // Saving the Private key in a file

 ObjectOutputStream prvteKeyStream = new ObjectOutputStream(

 new FileOutputStream(prvteKeyFile));

 prvteKeyStream.writeObject(keyPr.getPrivate());

 prvteKeyStream.close();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 /**

93

 * The method checks if the pair of public and private key has been

 * generated.

 * @return flag indicating if the pair of keys were generated.

 */

 public static boolean keyPresent() {

 File prvtKey = new File(PRVTE_KEY);

 File pblicKey = new File(PBLIC_KEY);

 if (prvtKey.exists() && pblicKey.exists()) {

 return true;

 }

 return false;

 }

 /**

 * Encrypt the plain text using public key.

 * @param txt: original plain text

 * @param pblcKey:The public key

 * @return Encrypted text

 * @throws java.lang.Exception

 */

 public static byte[] encryptTxt(String txt, PublicKey pblcKey) {

 byte[] ciprTxt = null;

 try {

94

 // get an RSA cipher object and print the provider

 final Cipher cphr = Cipher.getInstance(RSA_ALGORITHM);

 // encrypt the plain text using the public key

 cphr.init(Cipher.ENCRYPT_MODE, pblcKey);

 ciprTxt = cphr.doFinal(txt.getBytes());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return ciprTxt;

 }

 public static String decryptTxt(byte[] txt, PrivateKey prvtKey) {

 byte[] dcryptdTxt = null;

 try {

 // get an RSA cipher object and print the provider

 final Cipher ciphr = Cipher.getInstance(RSA_ALGORITHM);

 // decrypt the text using the private key

 ciphr.init(Cipher.DECRYPT_MODE, prvtKey);

 dcryptdTxt = ciphr.doFinal(txt);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return new String(dcryptdTxt);

95

 }

 /**

 * Test the EncryptionUtil

 */

 public static void main(String[] args) {

 try {

 // Check if the pair of keys are present else generate those.

 if (!keyPresent()) {

 // Method generates a pair of keys using the RSA algorithm and

 // stores it

 // in their respective files

 keyGenratn();

 }

 final String actualText = “Text to be encrypted “;

 ObjectInputStream iStream = null;

 // Encrypt the string using the public key

 iStream = new ObjectInputStream(new

FileInputStream(PBLIC_KEY));

 final PublicKey pblcKey = (PublicKey) iStream.readObject();

 final byte[] cphrTxt = encryptTxt(actualText, pblcKey);

 // Decrypt the cipher text using the private key.

 iStream = new ObjectInputStream(new

96

FileInputStream(PRVTE_KEY));

 final PrivateKey prvtKey = (PrivateKey) iStream.readObject();

 final String inputTxt = decryptTxt(cphrTxt, prvtKey);

 // Printing the Original, Encrypted and Decrypted Text

 System.out.println(“Original Text: “ + actualText);

 System.out.println(“Encrypted Text: “ + cphrTxt.toString());

 System.out.println(“Decrypted Text: “ + inputTxt);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Triple DES Algorithm

package com.enc.algorithm;

import java.security.MessageDigest;

import java.util.Arrays;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

import javax.crypto.spec.SecretKeySpec;

import org.apache.commons.codec.binary.Base64;

/**

 * Simple TripleDES Encrypt/Decrypt Test sha1, utf-8, no padding

97

 * uses commons-codec-1.6 javac -cp :commons-codec-1.6.jar TripleDESTest.java

 * java -cp :commons-codec-1.6.jar TripleDESTest

 */

public class TripleDES {

 public static void main(String[] arguments) throws Exception {

 String txt = “textToEncrypt”;

 String codedtxt = new TripleDES().encryptFunc(txt, “SecretKey”);

 String decodedtxt = new TripleDES().decryptFunc(codedtxt,

“SecretKey”);

 }

 public String encryptFunc(String msg, String scrtKey) throws Exception {

 MessageDigest msgd = MessageDigest.getInstance(“SHA-1”);

 byte[] digestOfPass = msgd.digest(scrtKey.getBytes(“utf-8”));

 byte[] kyBytes = Arrays.copyOf(digestOfPass, 24);

 SecretKey scrtK = new SecretKeySpec(kyBytes, “DESede”);

 Cipher cipr = Cipher.getInstance(“DESede”);

 cipr.init(Cipher.ENCRYPT_MODE, scrtK);

 byte[] inputTxtBytes = msg.getBytes(“utf-8”);

 byte[] buffer = cipr.doFinal(inputTxtBytes);

 byte[] bse64Bytes = Base64.encodeBase64(buffer);

 String bse64EncryptString = new String(bse64Bytes);

 return bse64EncryptString;

98

 }

 public String decryptFunc(String encryptedTxt, String scrtKey)

 throws Exception {

 byte[] msg = Base64.decodeBase64(encryptedTxt.getBytes(“utf-8”));

 MessageDigest msgd = MessageDigest.getInstance(“SHA-1”);

 byte[] digestOfPaswd = msgd.digest(scrtKey.getBytes(“utf-8”));

 byte[] kBytes = Arrays.copyOf(digestOfPaswd, 24);

 SecretKey scrtK = new SecretKeySpec(kBytes, “DESede”);

 Cipher dcipher = Cipher.getInstance(“DESede”);

 dcipher.init(Cipher.DECRYPT_MODE, scrtK);

 byte[] inputTxt = dcipher.doFinal(msg);

 return new String(inputTxt, “UTF-8”);

 }

}

