
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

8-2017

Hybrid Quantum Encryption Device using
Radioactive Decay
Anthony B. Kunkel
Saint Cloud State University, kuan0902@stcloudstate.edu

Follow this and additional works at: http://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact modea@stcloudstate.edu,rswexelbaum@stcloudstate.edu.

Recommended Citation
Kunkel, Anthony B., "Hybrid Quantum Encryption Device using Radioactive Decay" (2017). Culminating Projects in Information
Assurance. 31.
http://repository.stcloudstate.edu/msia_etds/31

http://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.stcloudstate.edu/msia_etds/31?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:modea@stcloudstate.edu,rswexelbaum@stcloudstate.edu

Hybrid Quantum Encryption Device using Radioactive Decay

by

Anthony Kunkel

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Information Assurance

August, 2017

Thesis Committee:
Dennis Guster, Chairperson

Kevin Haglin
Renat Sultanov

2

Abstract

The future in how computing is done is heading in the direction of quantum computing
given that the space used to store information is finite. Data will eventually be encoded
using particles that are on the atomic scale. Objects of these scales are governed by
the laws of quantum mechanics. Computing can be done exponentially faster using the
properties provided by quantum mechanics. Unfortunately, the increase in computing
power creates a security risk for modern encryption standards. Thus, to continue the
transfer of data securely one must look to innovative encryption methods that protect
information from the speed of quantum computers. This paper is focused on a method
that secures information using radioactive decay events in conjunction with an
encryption algorithm. The main purpose of this method is the develop an encryption
device that holds quantum properties and is interfaceable with a computer system.

3

Acknowledgement

 I would like to thank Dr. Dennis Guster, Dr. Kevin Haglin, Erich Rice, Karthik

Paidi, and Dr. Renat Sultanov for all of their help and continued support in the

completion of this project.

4

Table of Contents

Page

List of Tables ... 6

List of Figures .. 7

Chapter

I. Introduction .. 8

Introduction ... 8

Problem Statement ... 9

Nature and Significance of the Problem ... 9

Objective of the Study .. 9

Study Questions/Hypotheses ... 9

Limitations of the Study .. 10

Summary .. 10

II. Background and Review of Literature ... 11

Introduction ... 11

Background and Literature Related to the Problem 11

Literature Related to the Methodology .. 15

Summary .. 16

III. Methodology ... 17

Introduction ... 17

Design of the Study ... 17

5

Chapter Page

Encryption Algorithm .. 19

Data Analysis .. 22

Summary .. 23

IV. Analysis of Results ... 24

Introduction ... 24

Data Presentation ... 24

Data Analysis .. 35

Summary .. 38

V. Results, Conclusions, and Future Work .. 39

Introduction ... 39

Results ... 39

Conclusions .. 40

Future Work .. 41

References .. 42

Appendix A .. 46

6

List of Tables

Table Page

1. Radioactive Decay Time Bit Value ..15

2. Four Cases ..20

3. Encrypted Bits Example ..25

4. Encrypted Bits Multiple Cases Example ..33

5. Eight Cases ...35

7

List of Figures

Figure Page

1. Device Block Diagram ... 17

2. 10,000 Encrypted Bits ... 26

3. Frequency of 10,000 Encrypted Bits ... 27

4. C++ 168-bit String Cases .. 28

5. C++ 256-bit String Cases .. 29

6. C++ 1024-bit String Cases .. 29

7. Device 168-bit String Cases .. 30

8. Device 256-bit String Cases .. 30

9. Device 1024-bit String Cases .. 31

10. Histogram of Decimal Integers .. 36

11. Histogram of NIST P-values .. 37

8

Chapter I: Introduction

Introduction

 Security of personal information is a constant concern in everyday life. Without

the secure transfer of this information, services like social media and online banking

would not be possible. To reap the benefits of the internet one must accept the security

risks of storing personal information (Wright, 2017). For the most part, current

encryption algorithms have been effective at keeping sensitive information protected

from potential malicious entities (Singh & Garg, 2005). However, recently limitations

have been revealed in current encryption algorithms (Blumenthal, 2007). One specific

algorithm that encrypts a significant amount of information, designed by Rivest, Shamir,

and Adleman (RSA), has been shown to have issues. The algorithm has been

extensively tested and continues to securely protect data, but due to the potential

quantum computing future it may not remain secure (Bimpikis &Jaiswal, 2005; Lenstra,

Lenstra Jr., Manasse, & Pollard, 1990; Mone, 2013; Oppliger, 2014; Sengupta & Das,

2017). Progress being made in quantum physics, as it is related to encryption

technology, is changing the way we currently use cryptography (Edwards, 2017). Albeit,

quantum computers are still in their infancy it is imperative that new encryption methods

are designed. Some of these encryption methods have been designed but are difficult to

implement and expensive (Haw et al., 2016). A solution proposed herein is to bridge the

gap between the quantum and classical world. The proposed method is in the design of

an inexpensive encryption device that holds quantum properties and is easily

implemented on classical computers.

9

Problem Statement

 A new way to encrypt information must be designed as current encryption

schemes are at risk of becoming obsolete. The design of a hybrid quantum encryption

device is proposed to take the first steps in a future of new encryption techniques.

Nature and Significance of the Problem

 The secure transfer of data is of the utmost importance and a future that puts this

process at risk must be addressed. With the progression of quantum computers and

their threat to RSA encryption it is necessary that a hybrid encryption device be

designed. The hybridization allows for the continued protection of information without

changing the information transfer systems that we already have in place. The

development of this device paves the way for new encryption algorithms to be designed

that are resistant against quantum computer attacks.

Objective of the Study

 The creation of a device that utilizes the quantum properties of nature but is

implemented on classical computer systems is the main objective. To further solidify the

usefulness of this device some goals should be reached. The radioactive element must

produce reliably random numbers as a seed to be used by the algorithm. The

information encrypted must also be complex enough to protect from guessing.

Study Questions/Hypotheses

 The null hypothesis of this study is that the radioactive decay events generate

random numbers.

10

Limitations of the Study

 Limitations of the study is in part the vast data that was required to analyze the

randomness of the generated numbers. The other issue comes from the length of time it

takes to generate enough data points. The weak radioactive source outputs roughly

5,000 bits per hour. Statistical tests require on the order of 106 to 107 bits to provide

significant results.

Summary

 Personal information is constantly at risk of being obtained and now faces an

even greater risk in the future of quantum computers. Current encryption methods work

well but they will not work forever. As the quantum computing world continues to break

ground it is now time to investigate new encryption techniques. The first step in this

process is to transition to an area of cryptography that is between the quantum and

classical worlds. It is proposed in this study that using a quantum random number

generating source as a seed for an encryption algorithm, can be implemented on a

classical computer. Moreover, the algorithm designed is not dependent on integer

factorization and is strong against quantum computer attacks where RSA is weak. To

further investigate this idea, it is useful to discuss the literature surrounding quantum

computing, quantum key distribution, and the proposed encryption algorithm itself.

11

Chapter II: Background and Review of Literature

Introduction

 In this chapter, the background information and literature reviewed in this study.

Topics that will be discussed are: quantum key distribution (QKD), quantum computing,

RSA encryption, and radioactive decay detection. Along with this, the literature from the

hybrid encryption algorithm is also discussed.

Background and Literature Related to the Problem

Quantum cryptography began by the ideas presented by Stephen Wiesner. In the

1983 Wiesner published an article “Conjugate Coding” which argued that quantum

systems isolated from the environment are irreproducible (Wiesner, 1983). Wiesner

believed that a real-world application of this idea was to encode money on quantum

systems. Therefore, if a quantum system is irreproducible then it would be impossible to

make a counterfeit copy of the money. Charles Bennet brought this idea to Gilles

Brassard and they developed the first quantum cryptography protocol called BB84

(Bennett & Wiesner, 1992; Brassard, 2005; Svozil, 2006). Conjugate coding is still quite

important and work has been done to enhance its basic process (Hamada, 2006).

BB84 combined the ideas of public-key distribution and quantum mechanics to

form QKD (Bennett & Brassard, 1984). The protocol transmits a quantum state |𝜓⟩

through an assumed secure quantum channel. The quantum state |𝜓⟩ is a two-state

quantum particle known as a quantum bit (qubit) (Ballentine, 1970). A qubit, like a

classical bit, hold values of a “0” or “1” but the quantum property of superposition allows

both values to exist simultaneously. The property of superposition is only one of three

12

important quantum rules that BB84 utilizes. The second property exploited is that any

observation on a quantum particle transforms the state of the particle (Nisticò & Sestito,

2016). Last, quantum mechanics forbids the reproducibility of any quantum state known

as the no-cloning theorem (Wootters & Zurek, 1982). The second and third property

illustrates the usefulness of quantum mechanics in cryptography. As an example, if a

communication channel is insecure and an eavesdropper tried to access information

from the quantum state, the transformation of the state would alert the sender and

receiver of the insecure channel (Anghel, 2011). Additionally, it would be impossible for

the eavesdropper to record information from the quantum state, reproduce an exact

copy, and hide its presence on the channel. If the quantum states transform the sender

and receiver must stop their communication and establish a new channel.

The theory of the BB84 protocol is very powerful but quantum physics makes it

difficult and expensive to develop (Barde, Thakur, Bardapurkar, & Dalvi, 2012). Isolation

of quantum systems from the environment is one of the greatest challenges faced in

quantum cryptography. Quantum particle’s tendency to interact with the environment

often requires the system to be placed in a vacuum and held at very low temperatures,

only a few degrees Kelvin (Dressel, Malik, Miatto, Jordan, & Boyd, 2014). In addition to

the difficulties of protecting the quantum states it is also very expensive to keep the

systems cooled and in a vacuum.

Ideas using QKD helped to facilitate the development of the first efficient

quantum computer. It was Richard Feynman who suggested that the unique properties

of quantum mechanics could allow for an extremely efficient computer (Feynman,

13

1986). He argued that the qubit would be faster than its classical counterpart, given the

qubit inherently holds twice as many binary values. To provide a better illustration of this

process a simple example is discussed. The example is designed to provide a quick

review of the superposition properties.

In this example, a qubit is represented by an electron and quantum state can be

described by the following equation:

|𝜓⟩ =
1

√2
|0⟩ +

1

√2
|1⟩,

where |0⟩ and |1⟩ are the electron’s respective spin states. |0⟩ represents the electron in

a spin up state and |1⟩ is the electron in the spin down state. The factors of
1

√2
 are the

square root probability of observing each state. In quantum computing unitary quantum

operators act on the qubit states, the operators are known as quantum gates. Like

classical computer logic gates that transform bits, quantum gates transform qubits. One

or more qubits are sent through the quantum gates until the algorithm that was

implemented is complete. The qubits final state is then observed to output a desired |0⟩

or |1⟩. Since each qubit contains two values simultaneously, each quantum gate

completes two operations at once. Compared to classical computations on a single bit a

qubit increases the computations by two.

However, the number of qubits inside a quantum computer can be extended. In

fact, as the number is extended to n-qubits, a quantum computer processes 2𝑛 times

more information than its classical counterpart. Such a speed increase is the main

reason why the idea of quantum computers is so tantalizing. Quantum computer’s

14

incredible computational power will allow for solving problems that are difficult and time

consuming on classical computers.

A difficult problem central to this work is the integer factorization problem.

Classical computers take an extremely long time to factor integers. RSA encryption is

based on the classical computers lengthy factoring issue. RSA uses the product of two

large prime numbers to encrypt keys for public-key distribution. The problem for

classical computers gets even more difficult as the number of digits in the prime

numbers increase. According to Kirsch (2015), “factoring time grows exponentially with

input length in bits”.

 However, the issue that RSA faces is that it is only secure and reliable if the

speeds of computers stays relatively slow. Peter Shor illustrated this potential

vulnerability. Using a quantum algorithm, known as Shor’s Algorithm, he showed that

integers could be factored much faster. Shor’s Algorithm utilized the computational

speed of qubits to solve the integer factorization problem in polynomial time, as

opposed to classical algorithms which require exponential time (Shor, 1999). If Shor’s

Algorithm is implemented on a quantum computer with enough qubits, it poses a direct

threat to RSA encryption. At this time, quantum computers are not large or stable

enough to solve the 2048 binary digit semi-prime used currently in RSA encryption.

However, the designs of quantum computers are progressing and they appear to have

the potential to solving this problem in the near future (Nordrum, 2016).

15

Literature Related to the Methodology

 To prepare for a future where the use of RSA encryption is no longer reliable, it is

the purpose of this discussion to propose a hybrid approach. A hybrid approach helps

bridge the gap between classical and quantum cryptography. The proposed solution

suggests the design of an encryption device that uses quantum principles that is then

implemented on classical computers. The non-deterministic time between two

consecutive radioactive decay events acts as the quantum property in the hybrid

scheme (Rohe, 2003).

 A radioactive source is an unstable element that decays to a more stable

element by α-decay, β-decay, or γ-decay. These decay reactions can then be detected

using a Geiger-Mϋller (GM) detector which converts detections into electrical pulses that

can then be recorded. The time between two decay events is probabilistic by nature and

can therefore be treated as a random number source. The random numbers are

generated by comparing the time difference between consecutive decay events. Table 1

shows how each digit is represented.

Table 1: Radioactive Decay Time Bit Value. Associated bit value based on the
relationship of consecutive decay events.

Relationship Between Decay
Times

Bit
Value

Δt1 < Δt2 0

Δt1 > Δt2 1

Δt1 = Δt2 Nothing

Δt1 represents the time difference between the first and second recorded decay times,

and Δt2 represents the time difference between the third and fourth recorded decay

16

times. Assigning a bit value to the time difference relationship allows to generate

decimal integers by converting the base-2 binary form to the base-10 equivalent.

The random numbers generated are used as a seed for the encryption algorithm

developed by Paidi et al. (Paidi, Kunkel, Guster, Sultanov, & Rice, 2016). The original

algorithm proposed used photon polarizations as the quantum source but it is far less

expensive to use radioactive elements, as used in this study. Illustrating the

randomness of radioactive decay will further validate the use of this algorithm. Further,

when using the algorithm in conjunction with the random number generator it is critical

to motivate the use of this method, rather than integer factorization, since it is not easily

broken by quantum computers.

Summary

 The ideas presented in the literature show how quantum mechanics can be

exploited and used in the field of cryptography. Not only does quantum mechanics aid in

the secure transfer of information but it also plays a role in shaking the basis of current

encryption schemes. The material presented, further motivates the need for a new

encryption scheme to continue protecting transferred data. Given that a purely quantum

encryption system is expensive and difficult to implement, developing a hybrid system is

a suitable first step. The following chapter will present the design of such a hybrid

system and attempt to further motivate its complexity and usefulness.

17

Chapter III: Methodology

Introduction

 To provide structure in presenting the methodology, this chapter will have three

sections. The first section is focused on the design of the device used for the random

number generator which will include several electronic components. The second section

describes the encryption algorithm tailored for the use of the radioactive source device.

The last section presents the randomness test suite that is used to analyze the numbers

generated.

Design of the Study

 Several electronic components are utilized to design a quantum random number

generator device which supports the encryption algorithm. These components include: a

Cesium-137 source, a GM detector, an Arduino, an Arduino interface shield, and a

Raspberry Pi. Additionally, the Raspberry Pi and Arduino have programs that were

developed to initiate the detection process and to collect the data. A block diagram of

the device is illustrated in Figure 1.

Figure 1: Device Block Diagram. Block diagram of the components of the encryption

device.

GM Tube

Arduino
Interface
Shield

Arduino
Raspberry
Pi

CS-137

18

The GM detector converts each decay event into a voltage signal that is then

passed to the Arduino through the interface shield. After each detection, the detector is

discharged for a finite period of time, which is known as the dead time. During this

phase, no detections can be made. In the interest of efficiency, the selection of a

detector with a relatively short dead time is ideal. The detector in the experiment had a

dead time of 90 microseconds (μs) which is adequate for the data collection process.

For the sake of device simplicity, the detector operates using a 5-volt (V) power source

which is supplied by the Arduino. In fact, all the components, excluding the Raspberry

Pi, run on 5V. The radioactive source chosen is a 1 microcurie Cesium-137 radioactive

isotope. This radioactive isotope provides two advantages. First, the source is relatively

weak so that it does not pose significant health concerns for extended exposure.

Second, Cesium-137 has a longer half-life of 30.17 years and will therefore produce

consistent decay events for several years.

 The Arduino acts as a micro-controller that takes the signals from the GM

detector and records the data. To generate the numbers the Arduino records the time

difference between two consecutive decay events, following the program uploaded on

the system. The program sends the recorded information to the serial port, which is

subsequently extracted using a python program initiated on the Raspberry Pi. Each time

difference is recorded in microseconds to allow for the highest accuracy in detection

events.

 Classical computing is done on the Raspberry Pi, which is a mobile computer

interface that easily communicates with other computer systems. The extracted random

19

numbers from the Arduino’s serial port is stored and sent to the encryption algorithm,

which is described in more detail in the next section. At this data collection stage, the

numbers are manually extracted and passed to the encryption algorithm. However, the

Raspberry Pi’s OS will allow the whole process to be automated on startup.

 Given that the device is built with a Raspberry Pi and relatively small

components, it can be effectively designed to be portable. The portability of the device

allows it to act as a black box that could be connected to a computer system using a

USB cable. A small amount of shielding could encase the system to protect users from

the radiation source. However, merely distancing the user from the source may be

enough, due to the considerable weakness of the source. The device may also be

converted to a card that could be placed into a PCI Bus with limited change to the

device configuration.

 A second device could also be created for maximum efficiency. The second

device acts as a receiver of the encrypted information sent by the first device.

Advantages of a second device include the absence of the radioactive decay element.

This greatly reduces cost and promotes greater safety to the user. The second device

would only require that it includes the decryption algorithm. In a server-client setup, the

first device would be housed on the server side while multiple second devices could be

used on the client systems.

Encryption Algorithm

 The first step in the algorithm accepts a user specified set of bits to be encrypted.

In an operational system, the set of bits would be analogous to a secret key that would

20

be sent to the receiver. The complexity of the algorithm is customized by the user to

create a unique and more robust encryption process. However, for this initial

demonstration the simplest case will be presented as to not impede the reader’s

understanding.

 Separating the randomly generated numbers, R, into two sections around an

average number, N, four different cases arise for the encryption process.

Table 2: Four Cases. Four possible case conditions utilized in the encryption process.

Relation Between the Generated Number and

the Average
The First Bit

Case 1

0

Case 2

1

Case 3

0

Case 4

1

To reiterate again, this is the simplest case but the number of cases can be expanded

as the number of sections the random numbers are separated into increase.

 Based on which case the algorithm finds true, a conversion of bits phase initiates

to the bit string.

 For Case 1 all bits are converted by a pseudo-randomly generated number

between 100-549 if the bit is a 0, else a number between 550-999 is generated

for a 1.

𝑅 ≤ 𝑁

𝑅 ≤ 𝑁

𝑅 > 𝑁

𝑅 > 𝑁

21

 For Case 2 all bits are converted by a pseudo-randomly generated number

between 550-999 if the bit is a 0, else a number between 100-549 is generated

for a 1.

 For Case 3 all bits are converted by a pseudo-randomly generated number

between 550-999 if the bit is a 0, else a number between 100-549 is generated

for a 1.

 For Case 4 all bits are converted by a pseudo-randomly generated number

between 100-549 if the bit is a 0, else a number between 550-999 is generated

for a 1.

The range of the pseudo-randomly generated numbers is arbitrary, but for simplicity in

the string processing the ranges are chosen to contain three digits. Each range contains

equal amount of numbers so that no bias is introduced that favors a particular range.

 The decryption of bits is done using the same cases presented before but the

process is reversed. Knowing the generated time and the first bit in the string, one can

convert back to the original bit string using the following set of instructions.

 For Case 1 each converted bit is checked and if it lies in the range of 100-

549 then it becomes a 0, else it becomes a 1.

 For Case 2 each converted bit is checked and if it lies in the range of 550-

999 then it becomes a 0, else it becomes a 1.

 For Case 3 each converted bit is checked and if it lies in the range of 550-

999 then it becomes a 0, else it becomes a 1.

22

 For Case 4 each converted bit is checked and if it is lies in the range of 100-

549 then it becomes a 0, else it becomes a 1.

This method holds advantages in that each random decay event could restart the

process, further complicating the ability to guess which method was used. Moreover,

the quantum source used to seed the algorithm is independent of the encryption

process, eliminating the predictability of which cases were used. However, for each

random number used in the algorithm subsequently increases the communication

complexity, as it requires a greater volume of information sent to the receiver.

Remembering that the receiver must have knowledge of both the generated time and

first bit to properly decrypt the message.

Data Analysis

 To properly analyze the random numbers generated via the radioactive element

it is important that they be subjected to a series of statistical tests. The way in which

true- and pseudo-random number generators are tested is by test suites developed over

the years. Some of the most widely used test suites include: Dieharder, NIST, ENT, and

TESTU01 (Brown, Eddelbuettel, & Bauer, 2013; L’Ecuyer & Simard, 2007; Walker,

2008). The test suites each have their own advantages and disadvantages, but they all

contain numerous random number statistical evaluations. To focus the scope of this

discussion the NIST test suite, which is the cryptography standard, will be utilized. The

primary goal is to use the tests in the suite to evaluate the validity of using the random

numbers in the encryption algorithm and further, using the device itself.

23

Summary

The components used in the device design hold the advantage of being

developed and implemented compactly and portable. Using the random numbers

generated by the radioactive source as a seed in the algorithm, allows for the

development of several cases that dictates the encryption process. Each radioactive

decay has the potential to restart the encryption process further complexing the ability to

predict the cases used. To be confident in the true randomness of the numbers

generated, one must subject them to statistical test suites used in randomness testing.

In the next chapter, the results from the encryption process, proposed complexities to

the algorithm, and the analysis of the random numbers will be presented and discussed.

24

Chapter IV: Data Presentation and Analysis

 Introduction

 In this chapter, several aspects of the data collected are analyzed. An example of

the previously described encryption algorithm is presented in its simplest working form.

Complexities to the algorithm our introduced and investigated to further protect against

decryption predictability. The radioactive decay events collected from the device are

analyzed using the NIST randomness tests.

 Data Presentation

 As a demonstration of the algorithm’s encryption process, an example is

presented on a subset of hypothetical secret key bits. Only a subset is presented for

simplicity and readability. The conversion phase of the algorithm on the bits is displayed

in Table 3. In these examples, the device generated several 8-bit stings which were

then converted to decimal integers.

 An R of 183 and an average N of 128 is used in the example. Based on the cases

and given that the first bit is a 1, the bits are converted using Case 4. According to the

algorithms instructions, all bits that are 0 are converted to a range between 100-549 and

all that are 1 are converted

between 550-999.

25

Table 3: Encrypted Bits Example. Table of encrypted bits with a random number of
183.

Bits
Encrypted

Value
1 666

1 557

0 113

1 767

1 766

0 432

1 857

0 541

0 531

1 554

1 618

1 650

1 929

1 911

1 553

1 558

1 754

1 730

1 572

1 808

1 883

1 620

1 953

0 243

0 304

0 389

0 110

0 392

1 612

0 496

0 292

1 566

26

With knowledge of which case was used in the conversion phase it is straightforward to

decrypt back to the original bits. The decryption phase is processed in a similar manner

as the conversion phase but in reverse. Therefore, all converted bits in the range of

100-549 will be reverted to a 0 and all in the range of 550-999 will become a 1.

 Extending the number of bits to the order of a several thousand, it is important to

investigate the way the algorithm acts in a more complex situation. As it is not feasible

or easily readable to present this information in tables, it is more useful to present the

information graphically. The set of converted bits are displayed in Figure 2. The x- and

y-axis represent the number of bits converted and the encrypted value, respectively.

Figure 2: 10,000 Encrypted Bits. Graphical representation of 10,000 encrypted bits.

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

En
cr

yp
te

d
 V

al
u

e

Bit Number

27

 Using the data plotted in Figure 2 it is important to investigate how the

distribution of encrypted bits relates to one another. Specifically, the values that are

encrypted must not favor a certain number. A number that appears more frequently

could create a bias and an attacker could focus more on that number and possible

obtain more information about the original bit string. Figure 3 displays the data of how

frequently each encrypted value is used in the 10,000-bit conversion process.

Figure 3: Frequency of encrypted 10,000-bit string.

The data shows nearly uniform frequency for all bits converted. Uniform frequency is

desirable in this case since each encrypted value is equally likely to appear.

 Given that the encrypted values are uniform in frequency the next logical

question to ask is if each case used is equally likely. Assume that there is a four-sided

die with each case written on a respective side. Probability states that there is a 25%

chance of rolling any one side. The following data was collected by testing the algorithm

several times and recording the number of times each case was used. The cases

28

required that the algorithm used different random numbers in conjunction with a binary

string. Two different binary strings were used in these tests. One string was generated

by a C++ random bit generator. The other string was taken from the binary numbers

generated by the device. Using the different strings probes the idea that the algorithm

may be dependent on using a true random binary string. The bit lengths of each string

were 168-, 256-, and 1024-bit to mimic the actual size of a key that would be used in the

algorithm.

Figure 4: C++ 168-bit String Cases. Percentage of cases used with a C++ generated
168-bit string.

22.50%

23.00%

23.50%

24.00%

24.50%

25.00%

25.50%

26.00%

26.50%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

29

Figure 5: C++ 256-bit String Cases. Percentage of cases used with a C++ generated
256-bit string.

Figure 6: C++ 1024-bit String Cases. Percentage of cases used with a C++ generated
1024-bit string.

20.00%

21.00%

22.00%

23.00%

24.00%

25.00%

26.00%

27.00%

28.00%

29.00%

30.00%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

22.00%

23.00%

24.00%

25.00%

26.00%

27.00%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

30

Figure 7: Device 168-bit String Cases. Percentage of cases used with a device
generated 168-bit string.

Figure 8: Device 256-bit String Cases. Percentage of cases used with a device
generated 256-bit string.

20.00%

21.00%

22.00%

23.00%

24.00%

25.00%

26.00%

27.00%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

20.00%

21.00%

22.00%

23.00%

24.00%

25.00%

26.00%

27.00%

28.00%

29.00%

30.00%

31.00%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

31

Figure 9: Device 1024-bit String Cases. Percentage of cases used with a device
generated 1024-bit string.

 The percentages displayed using the C++ generated bits are displayed in

Figures 4-6. These percentages do not equate to each case being used 25% of the time

as expected. Cases 2 and 4 are more prevalent in these figures as compared to cases

1 and 3. All cases are above 21% and below 30% for each bit string, which is

encouraging. Figures 7-9 also do not meet the 25% expectation. Interestingly, case 1 is

most prevalent in all three figures. The case percentages were above 21% and below

30% just as the C++ generated produced. The usefulness of these results indicate that

the cases do not vary too strongly away from the ideal 25% case distribution. They also

present little difference in the choice of bit strings used. Such results could indicate that

the algorithm is more dependent on the random numbers generated, rather than the

input binary strings.

 A distribution of the cases used in the encryption process is an important step in

increasing the complexity of the device. In the original example of showing the

encryption process of the algorithm only one case was used for simplicity. Although, a

22.00%

23.00%

24.00%

25.00%

26.00%

27.00%

28.00%

1 2 3 4

Pe
rc

en
ta

ge

Case Number

32

simplistic approach would not work in a real-world situation. If an attacker were to obtain

or “guess” the case used, they would be able to obtain the whole original bit string

through the decryption process. Since this is clearly undesirable, it would be more

beneficial to use several cases, more specifically, use more random generated

numbers. Such a feat can be achieved by dividing the bit string into several pieces and

using a new random number for each piece.

 In the following example, a binary string is divided up into several 8-bit sections

and a new case is used at the start of each section. Table 4 displays a sample of

original bits, their encrypted value, and the cases used in each section.

33

Table 4: Encrypted Bits Multiple Cases Example. Table of encrypted bits with
multiple cases used.

Original Bits Encrypted Value Case Number

1 337

Case 2

1 138

0 925

1 474

1 201

0 552

1 228

0 378

Case 1

0 532

1 893

1 618

1 639

1 586

1 602

1 785

1 594

Case 4

1 748

1 911

1 608

1 883

1 884

1 777

1 663

The table illustrates three important ideas about a potential attacker obtaining the

original bit string. First, with the correct guess of a case the attacker only uncovers a

small section of the original data. Second, the attacker must continually guess a new

case in order to obtain the exact original string. Finally, the 8-bit division suggested in

34

the example is completely arbitrary in nature. One could choose 2-, 6-, or 24-bit

divisions if so desired. The number of sections also do not have to be constant and can

change as the bit string progresses. The only requirement is that the information be

hard-coded into the decryption algorithm.

 Another step in a more complex and secure algorithm comes from expanding the

number of cases used. Using only four cases would give an attacker a relatively easy

trial-and-error problem that would not take too long to solve. Since the value of a bit is

fixed, the next logical step in case expansion would be to split the average of the

random numbers into more sections. Currently, the average is only split into two

sections: either the random number is less than or equal to, or greater than the average.

For simplicity, we will split the average in half to create a total of four new sections. On

top of that, there are two values a bit can hold which translates to eight conditions in all.

However, there is still an issue that must be addressed. In the original example, the

encrypted value is placed into two sections, 100-549 and 550-999. Only two sections

are not ideal since one can easily see that some cases will share the same ranges for

both a zero or one bit value. A solution to this problem is to create four sections of

encrypted values just as we split the average into. Table 5 breaks down each possible

condition and their respective encrypted values. Since each case does not extend the

entire range from 100-999, multiple cases should be used to further hide original bits.

35

Table 5: Eight Cases. Eight conditions that can be used to increase security in the
algorithm.

Random Generated Number Bit

Encrypted Value
For 0

Encrypted
Value For 1

Case 1 0 ↔
𝑁

2
−1 0 100-324

325-549

Case 2
𝑁

2
↔ 𝑁 − 1 0 325-549

100-324

Case 3 𝑁 ↔ 𝑁 +
𝑁

2
− 1 0 550-774

775-999

Case 4 𝑁 +
𝑁

2
↔ 2𝑁 − 1 0 775-999

550-774

Case 5 0 ↔
𝑁

2
−1 1 775-999

100-324

Case 6
𝑁

2
↔ 𝑁 − 1 1 550-774

325-549

Case 7 𝑁 ↔ 𝑁 +
𝑁

2
− 1 1 325-549

550-774

Case 8 𝑁 +
𝑁

2
↔ 2𝑁 − 1 1 100-324

775-999

Data Analysis

 The data generated by the device was tested to determine if the information

collected is random. 361 MB of data was collected over a five-month period. All the data

was stored in a text file which contains several million 8-bit strings of ASCII 0’s and 1’s.

As a preliminary test, the binary strings were converted to decimal integers between 0

and 255. The integers were then plotted in a histogram as shown in Figure 10.

36

Figure 10: Histogram of Decimal Integers. Frequency counts of random decimal
integers generated by the device.

The histogram shows that the distribution of decimal numbers is nearly uniform for all

the data in the file. Much like the encrypted bits graph, the uniform distribution is most

desirable. If the data that seeds the algorithm has an equally likely chance to be

selected, it makes it much more difficult for an attacker to guess the seed with high

certainty.

 Although, preliminary tests are encouraging the random numbers generated

need to be subject to more robust tests. These tests are well established in the NIST

randomness test suite. NIST includes fifteen different tests in the suite, each test

investigating different types of non-randomness. A final report is given as a text file

which contains several p-values for the sub-tests of each of the fifteen tests. The report

also includes the proportions of the p-values that passed the significance level. The

significance level, α, used in the tests was set at 0.01. Therefore, p-values that are

greater than or equal to α accept the null hypothesis (the binary sequence is random). A

37

histogram of the p-values generated from the NIST test suites for all the tests and sub-

tests are shown in Figure 11.

Figure 11: Histogram of NIST P-values. Frequency counts of the p-value calculations
from the NIST randomness test suite.

Only one test failed the p-value test which was the Maurer’s “Universal Statistical” Test

with a p-value of 0. Such a distinct p-value indicates that the number of input bits was

insufficient to compute a proper p-value. Therefore, for a correct p-value computation

requires more data to be collected which is part of the limitations of the study.

 The proportion of p-values that passed each test and sub-test was also given in

the final analysis text file. Based on the input bits subjected to the tests required that 96

out of the 100 binary sequences p-values must be greater than or equal to α. One test

and one sub-test failed to meet the proportion requirement. The Maurer’s Test and a

Non-Overlapping Template sub-test resulted in 0 and 95 p-values passed, respectively.

The final analysis of the NIST test suite is given in the appendix.

38

Summary

 The data collected in this study was used to illustrate an example of the

encryption algorithms process. Two forms of the example were displayed, one being a

simple example using only a few bits. The other was a more complex example with a

large number of bits used. Complexities added to the algorithm were investigated to

make it more difficult to break the encryption. Case frequency was tested to determine if

each case had an equal chance of being chosen via the random numbers generated.

The algorithm was shown to change cases multiple times within the same bit string to

decrease the amount of information obtainable by a single case. Further expansion of

the number of cases were developed to slow an attacker trying to obtain the original bit

string. Using the NIST test suite to analyze the data presented the p-values computed

from each test. In the next chapter, the data analysis will be discussed and conclusions

will be made on the findings.

39

Chapter V: Results, Conclusion, and Future Work

Introduction

 In this chapter, the data that was analyzed will be discussed further. Conclusions

will also be made on the findings from the collected data. Finally, work that still needs to

be done in the future will be presented.

Results

 The initial example was simply an active implementation of the algorithm. It is

quickly realized that as the encryption works as designed but it lacks complexity and

could be easily broken. A plot and histogram of 10,000 bits encrypted using the initial

algorithm shows that there is minimal bias in the values that the bits are encrypted to.

Recording the cases used for several implementations of the algorithm on multiple bit

strings motivated the use of several device generated random numbers to increase the

encryption’s complexity.

 The second step in raising the complexity of the algorithm was designed by

creating more conditions and therefore more cases. The new algorithm would make it

more difficult to crack and could translate to even more than eight cases if constructed

properly. However, more cases required sectioning the encrypted value ranges and

lead to each case only spanning a portion of the entire 100-999 possible values.

Therefore, the algorithm should use the expanded cases and multiple random numbers

to span all possible values between 100-999.

The p-values computed from the final results of the NIST test suites are very

encouraging but the data did fail in two areas. Maurer’s Test failed to produce a p-value

40

for any of its bit sequences and therefore also failed the proportion test. Further, the

Non-Overlapping Template sub-test missed the proportion test by one p-value.

Fortunately, the histogram of p-values, for the most part, was uniform as expected by

the NIST test suite. Collecting a greater sample of data would lead to the passing of all

tests if the analysis is correct.

Conclusion

 A key point in the discussion of this study is that the proposed device uses hybrid

properties to combat the difficulty in the current state of quantum encryption

implementation. The device has advantages in that the encryption process does not

depend on the factorization of integers like RSA encryption. This fact alone makes it

more powerful against quantum computer attacks. The size of the device is

advantageous as it can be portable and interfaced easily with a computer system. With

little change to the device configuration one can easily make the device include a plug-

and-play interface to simplify its use for a user. Moreover, the cost of the encryption

device is extremely low and could be done for less than $300.

 Increasing the complexity of the algorithm as proposed would further solidify its

use in a real-world scenario. Although, the encryption process should be extensively

tested against standard hacking attacks to be more conclusive. The results from the

NIST test suite allows for the acceptance of the null hypothesis, except in two tests.

 The security risk posed by quantum computers to current encryption schemes

further motivates the idea that new algorithms must be pursued. Given the complex

41

nature of quantum encryption, it is apparent that the development of hybrid systems is

the logical first step in securing personal information.

Future Work

 To improve this study more data must be collected to further analyze the

randomness of the numbers generated. Using a larger sample of random numbers will

produce a value for the Maurer’s Test and hopefully provide a passing p-value. It would

also give a new proportion test for the Non-Overlapping Template sub-test. A useful

next step would be to automate the device so that information can be encrypted just by

providing power to the device. This step was not taken in the study as it was more

focused on data collection rather than user simplicity. Further steps can also be taken to

design a second device without the radioactive element or detector. The second device

would act as a receiver and obtain information from the first device and decrypt what is

received. Once developed, the two devices could create a local system that could be

probed for potential holes in the encryption not currently investigated in this study.

42

References

Anghel, C. (2011). New eavesdropper detection method in quantum cryptography.

Annals of Dunarea De Jos, Vol 34, Iss 1, Pp 1-8 (2011), (1), 1.

Ballentine, L. E. (1970). The statistical interpretation of quantum mechanics. Reviews of

Modern Physics, 42(4), 358-381. doi:10.1103/RevModPhys.42.358

Barde, N., Thakur, D., Bardapurkar, P., & Dalvi, S. (2012). Consequences and

limitations of conventional computers and their solutions through quantum

computers. Leonardo Electronic Journal of Practices and Technologies, Vol 10, Iss

19, Pp 161-171 (2012), (19), 161.

Bennett, C. H. and Brassard, G. (1984). Quantum cryptography: Public key distribution

and coin tossing. In Proceedings of the IEEE International Conference on

Computers, Systems and Signal Processing, pages 175–179, New York. IEEE

Press.

Bennett, C. H., & Wiesner, S. J. (1992). Communication via one-and two-particle

operators on einstein-podolsky-rosen states. Physical Review Letters, 69(20), 2881.

Bimpikis, K., & Jaiswal, R. (2005). Modern factoring algorithms. University of California,

San Diego.

Blumenthal, M. (2007). Encryption: Strengths and weaknesses of public-key

cryptography. CSRS 2007, 1.

Brassard, G. (2005). Brief history of quantum cryptography: A personal perspective.

Theory and Practice in Information-Theoretic Security, 2005. IEEE Information

Theory Workshop on, 19-23.

43

Brown, R. G., Eddelbuettel, D., & Bauer, D. (2013). Dieharder: A random number test

suite. Open Source software library, under development.

Dressel, J., Malik, M., Miatto, F. M., Jordan, A. N., & Boyd, R. W. (2014). Colloquium:

Understanding quantum weak values: Basics and applications. Reviews of Modern

Physics, 86(1), 307.

Edwards, C. (2017). Secure quantum communications. Communications of the ACM,

60(2), 15-17. doi:10.1145/3022179

Feynman, R. P. (1986). Quantum mechanical computers. Foundations of Physics,

16(6), 507-531.

Hamada, M. (2006). Conjugate codes and applications to cryptography. arXiv preprint

quant-ph/0610193.

Haw, J. Y., Zhao, J., Dias, J., Assad, S. M., Bradshaw, M., Blandino, R., . . . Lam, P. K.

(2016). Surpassing the no-cloning limit with a heralded hybrid linear amplifier for

coherent states. Nature Communications, 7, 13222-13222.

doi:10.1038/ncomms13222

Kirsch, Z., & Chow, M. (2015). Quantum Computing: The Risk to Existing Encryption

Methods.

L'Ecuyer, P., & Simard, R. (2007). TestU01: AC library for empirical testing of random

number generators. ACM Transactions on Mathematical Software (TOMS), 33(4),

22.

44

Lenstra, A. K., Lenstra Jr, H. W., Manasse, M. S., & Pollard, J. M. (1990). The number

field sieve. In Proceedings of the twenty-second annual ACM symposium on Theory

of computing (pp. 564-572). ACM.

Mone, G. (2013). Future-proof encryption. Communications of the ACM, 56(11), 12-14.

Nisticò, G., & Sestito, A. (2016). “Evaluations” of observables versus measurements in

quantum theory. International Journal of Theoretical Physics, 55(3), 1798-1810.

doi:10.1007/s10773-015-2819-4

Nordrum, A. (2016). Quantum computer comes closer to cracking RSA encryption.

IEEE Spectrum.

Oppliger, R. (2014). Secure messaging on the internet. (pp. 57-58) Artech House.

Paidi, K., Kunkel, A., Guster, D., Sultanov, R., & Rice, E. (2016). A hybrid quantum

encryption algorithm that utilizes photon rotation to insure secure transmission of

data. In Proceedings of the 2016 Midwest Instruction and Computing Symposium.

Rohe, M. (2003). RANDy-A true-random generator based on radioactive decay.

Saarland University, 1-36.

Sengupta, B., & Das, A. (2017). Use of SIMD-based data parallelism to speed up

sieving in integer-factoring algorithms. Applied Mathematics and Computation, 293,

204-217. doi:http://dx.doi.org.libproxy.stcloudstate.edu/10.1016/j.amc.2016.08.019

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer. SIAM Review, 41(2), 303-332.

Singh, D. G., & Garg, D. (2005). Soft computing. Allied Publishers.

45

Svozil, K. (2006). Staging quantum cryptography with chocolate balls a. American

Journal of Physics, 74(9), 800-803.

Walker, J. (2008). Ent: A pseudorandom number sequence test program. Software and

Documentation Available at/www.Fourmilab.ch/random/S,

Wiesner, S. (1983). Conjugate coding. ACM Sigact News, 15(1), 78-88.

Wootters, W. K., & Zurek, W. H. (1982). A single quantum cannot be cloned. Nature,

299(5886), 802-803.

Wright, A. (2017). Mapping the internet of things. Communications of the ACM, 60(1),

16-18. doi:10.1145/3014392

46

Appendix A

--

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF

PASSING SEQUENCES

--

 generator is </home/Quantum/RandomGen/8bit07102017ent.txt>

--

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION

STATISTICAL TEST

--

 8 6 11 16 9 6 17 4 13 10 0.051942 100/100

Frequency

 13 7 8 8 10 14 13 9 11 7 0.719747 99/100

BlockFrequency

 10 6 9 15 14 12 9 11 9 5 0.437274 100/100

CumulativeSums

 9 10 11 11 9 9 12 12 7 10 0.987896 100/100

CumulativeSums

 10 7 12 7 9 6 11 11 13 14 0.678686 100/100

Runs

 11 6 8 11 9 9 14 9 12 11 0.867692 97/100

LongestRun

 8 7 11 13 13 9 9 9 9 12 0.911413 99/100

Rank

 12 13 11 10 11 8 10 6 12 7 0.851383 96/100

FFT

 14 12 5 9 8 13 10 12 12 5 0.419021 98/100

NonOverlappingTemplate

 15 11 11 15 9 7 9 10 9 4 0.350485 97/100

NonOverlappingTemplate

 15 9 11 11 11 11 5 9 10 8 0.739918 100/100

NonOverlappingTemplate

 17 13 8 4 6 13 7 12 14 6 0.051942 97/100

NonOverlappingTemplate

 10 10 16 6 13 12 10 10 9 4 0.334538 98/100

NonOverlappingTemplate

 10 14 7 14 10 7 10 7 12 9 0.699313 97/100

NonOverlappingTemplate

 9 11 12 12 14 9 9 5 12 7 0.678686 98/100

NonOverlappingTemplate

47

 11 14 14 10 5 10 9 14 8 5 0.319084 100/100

NonOverlappingTemplate

 13 11 9 10 9 9 8 8 9 14 0.924076 98/100

NonOverlappingTemplate

 12 16 11 7 9 10 9 9 6 11 0.637119 98/100

NonOverlappingTemplate

 11 11 5 8 9 11 17 9 9 10 0.494392 99/100

NonOverlappingTemplate

 15 8 10 14 11 6 8 10 9 9 0.657933 99/100

NonOverlappingTemplate

 10 12 7 8 8 7 11 11 11 15 0.759756 100/100

NonOverlappingTemplate

 6 13 13 8 9 7 13 13 7 11 0.574903 100/100

NonOverlappingTemplate

 11 5 14 12 11 6 9 9 9 14 0.514124 98/100

NonOverlappingTemplate

 16 11 10 13 6 1 8 13 7 15 0.025193 97/100

NonOverlappingTemplate

 6 11 10 10 13 12 9 8 13 8 0.851383 100/100

NonOverlappingTemplate

 13 15 6 11 9 13 5 8 9 11 0.419021 98/100

NonOverlappingTemplate

 9 8 10 11 9 9 10 10 9 15 0.946308 98/100

NonOverlappingTemplate

 5 7 13 13 9 13 8 11 14 7 0.419021 99/100

NonOverlappingTemplate

 5 11 10 9 7 10 13 10 11 14 0.719747 98/100

NonOverlappingTemplate

 6 10 14 12 4 15 11 5 11 12 0.171867 100/100

NonOverlappingTemplate

 9 9 14 8 11 14 6 8 13 8 0.616305 100/100

NonOverlappingTemplate

 7 11 9 10 12 15 10 8 10 8 0.851383 100/100

NonOverlappingTemplate

 10 13 13 6 10 7 12 10 10 9 0.851383 99/100

NonOverlappingTemplate

 9 7 10 11 7 8 6 14 15 13 0.437274 99/100

NonOverlappingTemplate

 11 8 11 6 9 19 8 9 8 11 0.249284 95/100 *

NonOverlappingTemplate

 15 8 6 11 9 13 8 7 13 10 0.554420 100/100

NonOverlappingTemplate

 13 8 10 12 13 9 9 12 9 5 0.759756 100/100

NonOverlappingTemplate

48

 10 12 11 9 10 10 8 10 9 11 0.998821 99/100

NonOverlappingTemplate

 12 6 10 10 17 10 10 11 5 9 0.383827 98/100

NonOverlappingTemplate

 12 10 11 10 10 14 6 11 9 7 0.851383 98/100

NonOverlappingTemplate

 9 11 12 12 8 11 12 11 9 5 0.867692 99/100

NonOverlappingTemplate

 18 7 7 16 7 9 12 5 9 10 0.071177 99/100

NonOverlappingTemplate

 13 8 7 9 13 11 8 12 12 7 0.798139 99/100

NonOverlappingTemplate

 10 9 7 16 11 9 8 10 9 11 0.798139 98/100

NonOverlappingTemplate

 15 9 9 14 11 9 3 13 11 6 0.213309 100/100

NonOverlappingTemplate

 10 8 15 9 11 11 14 7 6 9 0.595549 99/100

NonOverlappingTemplate

 10 12 12 13 10 14 5 8 9 7 0.616305 97/100

NonOverlappingTemplate

 15 8 7 8 13 15 10 6 12 6 0.262249 97/100

NonOverlappingTemplate

 7 5 9 13 7 10 18 11 10 10 0.224821 100/100

NonOverlappingTemplate

 9 8 12 7 10 9 5 15 12 13 0.514124 99/100

NonOverlappingTemplate

 10 9 11 10 11 10 8 12 11 8 0.996335 100/100

NonOverlappingTemplate

 6 12 15 11 15 7 11 6 7 10 0.304126 99/100

NonOverlappingTemplate

 13 2 13 12 17 14 4 6 13 6 0.006661 99/100

NonOverlappingTemplate

 13 2 11 9 15 8 12 7 7 16 0.062821 100/100

NonOverlappingTemplate

 11 8 10 4 10 8 15 11 11 12 0.574903 100/100

NonOverlappingTemplate

 8 7 8 16 10 8 9 13 12 9 0.616305 99/100

NonOverlappingTemplate

 14 10 10 6 8 14 10 9 10 9 0.798139 100/100

NonOverlappingTemplate

 11 5 12 7 13 14 10 7 14 7 0.366918 98/100

NonOverlappingTemplate

 8 6 8 24 6 10 12 11 8 7 0.002559 99/100

NonOverlappingTemplate

49

 6 13 12 11 11 9 13 7 10 8 0.798139 98/100

NonOverlappingTemplate

 9 13 13 10 7 12 9 11 10 6 0.834308 98/100

NonOverlappingTemplate

 9 13 9 8 10 7 14 13 6 11 0.678686 100/100

NonOverlappingTemplate

 9 9 9 12 13 6 9 13 8 12 0.834308 100/100

NonOverlappingTemplate

 12 9 13 12 9 7 8 7 11 12 0.867692 99/100

NonOverlappingTemplate

 5 10 11 5 8 9 11 16 13 12 0.304126 100/100

NonOverlappingTemplate

 8 14 7 12 8 10 6 12 12 11 0.719747 98/100

NonOverlappingTemplate

 10 17 6 9 3 17 5 11 9 13 0.017912 98/100

NonOverlappingTemplate

 5 11 17 5 9 12 13 12 5 11 0.108791 98/100

NonOverlappingTemplate

 13 11 12 9 11 3 13 11 9 8 0.534146 100/100

NonOverlappingTemplate

 18 13 12 9 10 9 11 4 10 4 0.085587 97/100

NonOverlappingTemplate

 11 11 7 6 11 8 12 13 8 13 0.759756 99/100

NonOverlappingTemplate

 8 9 8 7 8 13 11 16 11 9 0.637119 99/100

NonOverlappingTemplate

 13 9 10 8 11 8 9 14 8 10 0.911413 97/100

NonOverlappingTemplate

 9 8 11 10 11 7 8 15 11 10 0.867692 100/100

NonOverlappingTemplate

 10 6 9 10 10 11 12 8 15 9 0.816537 99/100

NonOverlappingTemplate

 4 11 5 12 11 18 10 14 12 3 0.017912 100/100

NonOverlappingTemplate

 10 7 11 16 8 9 8 12 9 10 0.739918 99/100

NonOverlappingTemplate

 11 10 12 12 9 4 17 10 10 5 0.213309 99/100

NonOverlappingTemplate

 12 11 9 10 8 9 7 15 14 5 0.474986 99/100

NonOverlappingTemplate

 3 14 9 12 10 11 11 9 15 6 0.249284 99/100

NonOverlappingTemplate

 7 10 10 11 11 11 9 9 11 11 0.996335 97/100

NonOverlappingTemplate

50

 14 3 9 14 10 8 9 8 14 11 0.289667 99/100

NonOverlappingTemplate

 14 12 5 9 8 13 10 12 12 5 0.419021 98/100

NonOverlappingTemplate

 10 9 14 11 7 8 13 12 6 10 0.739918 100/100

NonOverlappingTemplate

 8 14 12 14 9 7 8 6 12 10 0.595549 98/100

NonOverlappingTemplate

 17 6 9 8 17 11 4 7 11 10 0.055361 99/100

NonOverlappingTemplate

 6 12 13 18 7 10 11 6 9 8 0.191687 100/100

NonOverlappingTemplate

 11 6 11 13 6 11 9 10 11 12 0.834308 100/100

NonOverlappingTemplate

 12 8 13 10 9 18 6 9 6 9 0.236810 100/100

NonOverlappingTemplate

 5 11 8 10 8 7 9 15 11 16 0.304126 100/100

NonOverlappingTemplate

 11 13 8 8 10 14 13 8 6 9 0.699313 99/100

NonOverlappingTemplate

 11 9 8 8 12 9 11 10 11 11 0.994250 99/100

NonOverlappingTemplate

 6 8 11 9 11 6 7 15 14 13 0.366918 98/100

NonOverlappingTemplate

 10 10 6 8 12 9 13 10 10 12 0.924076 97/100

NonOverlappingTemplate

 7 11 5 9 10 12 5 15 11 15 0.236810 99/100

NonOverlappingTemplate

 11 5 12 10 10 12 12 10 8 10 0.897763 100/100

NonOverlappingTemplate

 7 10 12 7 11 6 6 9 15 17 0.162606 100/100

NonOverlappingTemplate

 13 8 9 10 11 8 12 11 10 8 0.971699 99/100

NonOverlappingTemplate

 10 9 8 12 12 10 9 12 6 12 0.924076 99/100

NonOverlappingTemplate

 6 12 8 11 17 10 8 13 7 8 0.350485 100/100

NonOverlappingTemplate

 11 11 14 8 8 10 10 10 6 12 0.867692 98/100

NonOverlappingTemplate

 7 7 16 15 9 10 10 12 4 10 0.213309 99/100

NonOverlappingTemplate

 6 8 19 16 6 17 7 9 4 8 0.002758 100/100

NonOverlappingTemplate

51

 11 10 11 6 7 11 14 9 10 11 0.867692 96/100

NonOverlappingTemplate

 17 8 4 10 15 9 5 8 10 14 0.066882 100/100

NonOverlappingTemplate

 10 13 5 11 6 13 11 14 9 8 0.514124 100/100

NonOverlappingTemplate

 13 13 14 9 6 9 7 11 11 7 0.616305 99/100

NonOverlappingTemplate

 14 15 9 9 7 5 10 6 10 15 0.224821 100/100

NonOverlappingTemplate

 3 6 8 11 15 9 9 14 13 12 0.181557 100/100

NonOverlappingTemplate

 11 5 14 8 7 9 18 11 4 13 0.055361 99/100

NonOverlappingTemplate

 8 6 7 12 9 17 13 7 5 16 0.062821 99/100

NonOverlappingTemplate

 7 15 11 8 16 6 8 10 7 12 0.289667 99/100

NonOverlappingTemplate

 8 12 10 13 13 8 12 6 9 9 0.816537 99/100

NonOverlappingTemplate

 7 6 7 14 9 13 10 17 10 7 0.224821 100/100

NonOverlappingTemplate

 10 7 9 15 11 11 10 9 9 9 0.911413 99/100

NonOverlappingTemplate

 7 11 8 9 11 14 11 11 10 8 0.924076 98/100

NonOverlappingTemplate

 8 6 13 11 5 13 12 11 16 5 0.162606 98/100

NonOverlappingTemplate

 11 5 6 15 15 8 12 9 8 11 0.304126 100/100

NonOverlappingTemplate

 8 9 8 6 11 13 13 5 15 12 0.366918 99/100

NonOverlappingTemplate

 8 8 5 17 8 8 13 10 12 11 0.319084 100/100

NonOverlappingTemplate

 11 10 13 14 9 6 9 14 7 7 0.554420 99/100

NonOverlappingTemplate

 11 11 9 6 9 5 15 12 8 14 0.401199 98/100

NonOverlappingTemplate

 8 9 10 14 9 10 10 11 13 6 0.851383 100/100

NonOverlappingTemplate

 11 6 11 13 12 15 13 6 7 6 0.304126 100/100

NonOverlappingTemplate

 5 11 7 14 12 16 8 8 12 7 0.262249 100/100

NonOverlappingTemplate

52

 6 7 8 12 16 12 14 5 8 12 0.202268 100/100

NonOverlappingTemplate

 14 12 5 7 8 8 12 11 14 9 0.494392 99/100

NonOverlappingTemplate

 10 12 10 13 16 5 10 10 9 5 0.350485 99/100

NonOverlappingTemplate

 6 8 4 9 9 10 12 19 10 13 0.085587 100/100

NonOverlappingTemplate

 14 11 8 11 4 9 9 14 9 11 0.554420 97/100

NonOverlappingTemplate

 12 13 8 9 11 14 5 13 2 13 0.115387 98/100

NonOverlappingTemplate

 9 15 7 12 7 13 7 12 7 11 0.534146 100/100

NonOverlappingTemplate

 13 11 9 6 12 6 10 8 12 13 0.699313 98/100

NonOverlappingTemplate

 6 7 7 10 8 12 12 13 12 13 0.657933 100/100

NonOverlappingTemplate

 12 10 12 6 17 4 13 7 11 8 0.153763 100/100

NonOverlappingTemplate

 10 10 12 10 7 9 6 13 12 11 0.883171 100/100

NonOverlappingTemplate

 6 9 10 14 7 14 11 11 8 10 0.699313 98/100

NonOverlappingTemplate

 5 9 13 20 7 9 7 7 11 12 0.051942 99/100

NonOverlappingTemplate

 8 12 8 10 12 11 8 7 12 12 0.924076 96/100

NonOverlappingTemplate

 6 12 15 13 11 13 7 10 5 8 0.334538 100/100

NonOverlappingTemplate

 11 5 12 8 14 12 7 8 13 10 0.574903 99/100

NonOverlappingTemplate

 9 7 11 9 9 11 11 5 16 12 0.534146 98/100

NonOverlappingTemplate

 11 10 7 5 8 7 10 12 14 16 0.319084 98/100

NonOverlappingTemplate

 13 13 14 9 8 6 6 13 12 6 0.350485 100/100

NonOverlappingTemplate

 12 9 11 10 8 10 11 9 13 7 0.964295 98/100

NonOverlappingTemplate

 11 11 5 10 11 9 11 12 9 11 0.935716 100/100

NonOverlappingTemplate

 9 5 13 12 10 7 9 10 13 12 0.719747 99/100

NonOverlappingTemplate

53

 8 13 9 7 10 8 13 14 10 8 0.779188 100/100

NonOverlappingTemplate

 7 9 8 12 6 10 15 11 13 9 0.637119 99/100

NonOverlappingTemplate

 16 7 11 8 11 15 4 12 10 6 0.153763 100/100

NonOverlappingTemplate

 4 12 9 6 15 13 11 9 11 10 0.401199 98/100

NonOverlappingTemplate

 7 6 8 9 10 13 13 13 14 7 0.514124 100/100

NonOverlappingTemplate

 10 8 7 10 7 10 13 11 11 13 0.897763 98/100

NonOverlappingTemplate

 9 5 9 9 5 14 12 10 15 12 0.334538 100/100

NonOverlappingTemplate

 13 4 8 9 9 16 14 10 7 10 0.262249 100/100

NonOverlappingTemplate

 14 4 8 14 10 8 9 8 14 11 0.366918 99/100

NonOverlappingTemplate

 7 12 11 6 8 10 12 15 14 5 0.319084 100/100

OverlappingTemplate

100 0 0 0 0 0 0 0 0 0 0.000000 * 0/100 *

Universal

 7 12 11 14 8 17 8 9 8 6 0.289667 100/100

ApproximateEntropy

 2 1 2 3 3 1 2 5 0 1 0.437274 20/20

RandomExcursions

 3 1 3 3 3 1 2 0 4 0 0.437274 20/20

RandomExcursions

 1 5 1 4 2 1 2 2 1 1 0.437274 20/20

RandomExcursions

 0 0 5 2 2 0 2 4 5 0 0.025193 20/20

RandomExcursions

 3 3 3 1 3 1 2 3 1 0 0.739918 19/20

RandomExcursions

 1 5 2 2 3 1 4 0 2 0 0.213309 20/20

RandomExcursions

 2 4 3 2 1 3 3 1 1 0 0.637119 19/20

RandomExcursions

 3 1 1 1 3 4 1 3 3 0 0.534146 20/20

RandomExcursions

 2 1 1 1 4 1 0 2 4 4 0.350485 20/20

RandomExcursionsVariant

 2 1 2 2 1 3 1 4 3 1 0.834308 20/20

RandomExcursionsVariant

54

 2 2 1 1 2 4 3 1 2 2 0.911413 20/20

RandomExcursionsVariant

 3 1 1 2 2 3 2 2 1 3 0.964295 20/20

RandomExcursionsVariant

 2 2 0 5 3 1 1 1 4 1 0.275709 20/20

RandomExcursionsVariant

 2 2 1 2 4 2 2 1 2 2 0.964295 20/20

RandomExcursionsVariant

 2 4 3 0 4 2 2 1 2 0 0.437274 20/20

RandomExcursionsVariant

 2 3 1 5 1 2 0 1 5 0 0.090936 20/20

RandomExcursionsVariant

 1 2 4 2 4 1 1 1 2 2 0.739918 20/20

RandomExcursionsVariant

 2 4 0 3 6 0 1 1 3 0 0.035174 20/20

RandomExcursionsVariant

 2 5 3 2 3 0 2 1 2 0 0.350485 20/20

RandomExcursionsVariant

 3 2 0 4 4 1 1 0 5 0 0.066882 20/20

RandomExcursionsVariant

 4 0 1 2 4 0 4 3 0 2 0.162606 20/20

RandomExcursionsVariant

 2 3 1 1 5 2 0 1 3 2 0.437274 20/20

RandomExcursionsVariant

 2 3 0 2 4 1 2 2 3 1 0.739918 20/20

RandomExcursionsVariant

 2 1 2 4 1 1 1 8 0 0 0.002043 20/20

RandomExcursionsVariant

 1 1 3 1 3 4 0 3 2 2 0.637119 20/20

RandomExcursionsVariant

 1 0 3 1 3 1 3 4 2 2 0.637119 20/20

RandomExcursionsVariant

 11 8 9 5 9 14 11 7 15 11 0.494392 100/100

Serial

 9 2 12 13 10 13 7 7 14 13 0.162606 98/100

Serial

 13 10 6 10 15 11 6 14 6 9 0.350485 100/100

LinearComplexity

-

- - - - - - - - -

The minimum pass rate for each statistical test with the

exception of the

random excursion (variant) test is approximately = 96 for a

55

sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test

is approximately = 18 for a sample size = 20 binary sequences.

For further guidelines construct a probability table using the

MAPLE program

provided in the addendum section of the documentation.

-

- - - - - - - - -

//Encryption Algorithm

#include <iostream>

#include <stdlib.h>

#include <time.h>

#include <fstream>

using namespace std;

int main()

 {

 int n;

 int t;

 int r;

 int c;

 int d;

 int o;

 int ave = 128;

 srand(time(NULL));

 cout << "What is the number of input bits? ";

 cin >> n;

 int data [n];

 int inbits [n];

 int outbits [n];

 ifstream myfile;

 ifstream myfile2;

 myfile.open("bin2dec06202017Diehard.txt");

 myfile2.open("inputBitsThesis.txt");

56

 cout << "The bits that will be converted " <<

endl << endl;

 for (int l=0; l <= n; l++)

 {

 myfile >> data[l]; //data is an

array that contains radioactive event times

 }

 myfile.close();

 for (int p=0; p <= n; p++)

 {

 myfile2 >> inbits [p]; //inbits is

an array that contains the input bits

 }

 cout << "The first bit is a " << inbits [0]

<< endl << endl;

 const char* output_file_name = "rand_bits.out";

 const char* output_file_name2 =

"Thesis10000encryptbits.out";

 ofstream my_out(output_file_name);

 ofstream my_out2(output_file_name2);

 if (my_out.fail()) {

 cerr << "Unable to open the file " << output_file_name

 << "for writing " << endl;

 }

 if (my_out2.fail()) {

 cerr << "Unable to open the file " << output_file_name

 << "for writing " << endl;

 }

c = data [rand()%8962];

 cout << "The first random time is: " << c << endl << endl;

 //This for loop converts the random bits into

random numbers depending on c.

 if (inbits [0] == 0 && c<=ave) {

for (int first =0; first <= n; first++) {

 if (inbits [first] == 0) {

 outbits [first] =rand()%449+100;

 }

 else {

 outbits [first] = rand()%449+550;

 }

57

}

 }

 if (inbits [0] == 0 && c>ave) {

for (int second = 0; second <= n; second++) {

 if (inbits [second] == 0) {

 outbits [second] = rand()%449+550;

 }

 else {

 outbits [second] = rand()%449+100;

 }

}

 }

 if (inbits [0] == 1 && c<=ave) {

for (int third = 0; third <= n; third++) {

 if (inbits [third] == 0) {

 outbits [third] = rand()%449+550;

 }

 else {

 outbits [third] = rand()%449+100;

 }

}

 }

 if (inbits [0] == 1 && c>ave){

for (int fourth = 0; fourth <= n; fourth++) {

 if (inbits [fourth] == 0) {

 outbits [fourth] = rand()%449+100;

 }

 else {

 outbits [fourth] = rand()%449+550;

 }

}

 }

 for (int m=0; m<= n; m++) { //This for loop

displays the converted bits to the screen.

 my_out2 << outbits [m] << endl;

58

 }

 cout << endl;

 return 0;

}

	St. Cloud State University
	theRepository at St. Cloud State
	8-2017

	Hybrid Quantum Encryption Device using Radioactive Decay
	Anthony B. Kunkel
	Recommended Citation

	tmp.1501692935.pdf.9I75O

