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Abstract 

The future in how computing is done is heading in the direction of quantum computing 
given that the space used to store information is finite. Data will eventually be encoded 
using particles that are on the atomic scale. Objects of these scales are governed by 
the laws of quantum mechanics. Computing can be done exponentially faster using the 
properties provided by quantum mechanics. Unfortunately, the increase in computing 
power creates a security risk for modern encryption standards. Thus, to continue the 
transfer of data securely one must look to innovative encryption methods that protect 
information from the speed of quantum computers. This paper is focused on a method 
that secures information using radioactive decay events in conjunction with an 
encryption algorithm. The main purpose of this method is the develop an encryption 
device that holds quantum properties and is interfaceable with a computer system.   
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Chapter I: Introduction 

Introduction  

 Security of personal information is a constant concern in everyday life. Without 

the secure transfer of this information, services like social media and online banking 

would not be possible. To reap the benefits of the internet one must accept the security 

risks of storing personal information (Wright, 2017). For the most part, current 

encryption algorithms have been effective at keeping sensitive information protected 

from potential malicious entities (Singh & Garg, 2005). However, recently limitations 

have been revealed in current encryption algorithms (Blumenthal, 2007). One specific 

algorithm that encrypts a significant amount of information, designed by Rivest, Shamir, 

and Adleman (RSA), has been shown to have issues. The algorithm has been 

extensively tested and continues to securely protect data, but due to the potential 

quantum computing future it may not remain secure (Bimpikis &Jaiswal, 2005; Lenstra, 

Lenstra Jr., Manasse, & Pollard, 1990; Mone, 2013; Oppliger, 2014; Sengupta & Das, 

2017). Progress being made in quantum physics, as it is related to encryption 

technology, is changing the way we currently use cryptography (Edwards, 2017). Albeit, 

quantum computers are still in their infancy it is imperative that new encryption methods 

are designed. Some of these encryption methods have been designed but are difficult to 

implement and expensive (Haw et al., 2016). A solution proposed herein is to bridge the 

gap between the quantum and classical world. The proposed method is in the design of 

an inexpensive encryption device that holds quantum properties and is easily 

implemented on classical computers. 
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Problem Statement 

 A new way to encrypt information must be designed as current encryption 

schemes are at risk of becoming obsolete. The design of a hybrid quantum encryption 

device is proposed to take the first steps in a future of new encryption techniques.   

Nature and Significance of the Problem 

 The secure transfer of data is of the utmost importance and a future that puts this 

process at risk must be addressed. With the progression of quantum computers and 

their threat to RSA encryption it is necessary that a hybrid encryption device be 

designed. The hybridization allows for the continued protection of information without 

changing the information transfer systems that we already have in place. The 

development of this device paves the way for new encryption algorithms to be designed 

that are resistant against quantum computer attacks.    

Objective of the Study 

 The creation of a device that utilizes the quantum properties of nature but is 

implemented on classical computer systems is the main objective. To further solidify the 

usefulness of this device some goals should be reached. The radioactive element must 

produce reliably random numbers as a seed to be used by the algorithm. The 

information encrypted must also be complex enough to protect from guessing.    

Study Questions/Hypotheses 

 The null hypothesis of this study is that the radioactive decay events generate 

random numbers. 
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Limitations of the Study 

 Limitations of the study is in part the vast data that was required to analyze the 

randomness of the generated numbers. The other issue comes from the length of time it 

takes to generate enough data points. The weak radioactive source outputs roughly 

5,000 bits per hour. Statistical tests require on the order of 106 to 107 bits to provide 

significant results. 

Summary 

 Personal information is constantly at risk of being obtained and now faces an 

even greater risk in the future of quantum computers. Current encryption methods work 

well but they will not work forever. As the quantum computing world continues to break 

ground it is now time to investigate new encryption techniques. The first step in this 

process is to transition to an area of cryptography that is between the quantum and 

classical worlds. It is proposed in this study that using a quantum random number 

generating source as a seed for an encryption algorithm, can be implemented on a 

classical computer. Moreover, the algorithm designed is not dependent on integer 

factorization and is strong against quantum computer attacks where RSA is weak. To 

further investigate this idea, it is useful to discuss the literature surrounding quantum 

computing, quantum key distribution, and the proposed encryption algorithm itself.   
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Chapter II: Background and Review of Literature 

Introduction  

 In this chapter, the background information and literature reviewed in this study. 

Topics that will be discussed are: quantum key distribution (QKD), quantum computing, 

RSA encryption, and radioactive decay detection. Along with this, the literature from the 

hybrid encryption algorithm is also discussed. 

Background and Literature Related to the Problem 

Quantum cryptography began by the ideas presented by Stephen Wiesner. In the 

1983 Wiesner published an article “Conjugate Coding” which argued that quantum 

systems isolated from the environment are irreproducible (Wiesner, 1983). Wiesner 

believed that a real-world application of this idea was to encode money on quantum 

systems. Therefore, if a quantum system is irreproducible then it would be impossible to 

make a counterfeit copy of the money. Charles Bennet brought this idea to Gilles 

Brassard and they developed the first quantum cryptography protocol called BB84 

(Bennett & Wiesner, 1992; Brassard, 2005; Svozil, 2006). Conjugate coding is still quite 

important and work has been done to enhance its basic process (Hamada, 2006). 

BB84 combined the ideas of public-key distribution and quantum mechanics to 

form QKD (Bennett & Brassard, 1984). The protocol transmits a quantum state |𝜓⟩ 

through an assumed secure quantum channel. The quantum state |𝜓⟩ is a two-state 

quantum particle known as a quantum bit (qubit) (Ballentine, 1970). A qubit, like a 

classical bit, hold values of a “0” or “1” but the quantum property of superposition allows 

both values to exist simultaneously. The property of superposition is only one of three 
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important quantum rules that BB84 utilizes. The second property exploited is that any 

observation on a quantum particle transforms the state of the particle (Nisticò & Sestito, 

2016). Last, quantum mechanics forbids the reproducibility of any quantum state known 

as the no-cloning theorem (Wootters & Zurek, 1982). The second and third property 

illustrates the usefulness of quantum mechanics in cryptography. As an example, if a 

communication channel is insecure and an eavesdropper tried to access information 

from the quantum state, the transformation of the state would alert the sender and 

receiver of the insecure channel (Anghel, 2011). Additionally, it would be impossible for 

the eavesdropper to record information from the quantum state, reproduce an exact 

copy, and hide its presence on the channel. If the quantum states transform the sender 

and receiver must stop their communication and establish a new channel.  

The theory of the BB84 protocol is very powerful but quantum physics makes it 

difficult and expensive to develop (Barde, Thakur, Bardapurkar, & Dalvi, 2012). Isolation 

of quantum systems from the environment is one of the greatest challenges faced in 

quantum cryptography. Quantum particle’s tendency to interact with the environment 

often requires the system to be placed in a vacuum and held at very low temperatures, 

only a few degrees Kelvin (Dressel, Malik, Miatto, Jordan, & Boyd, 2014). In addition to 

the difficulties of protecting the quantum states it is also very expensive to keep the 

systems cooled and in a vacuum.  

Ideas using QKD helped to facilitate the development of the first efficient 

quantum computer. It was Richard Feynman who suggested that the unique properties 

of quantum mechanics could allow for an extremely efficient computer (Feynman, 
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1986). He argued that the qubit would be faster than its classical counterpart, given the 

qubit inherently holds twice as many binary values. To provide a better illustration of this 

process a simple example is discussed. The example is designed to provide a quick 

review of the superposition properties.  

In this example, a qubit is represented by an electron and quantum state can be 

described by the following equation: 

|𝜓⟩ =
1

√2
|0⟩ +

1

√2
|1⟩, 

 

where |0⟩ and |1⟩ are the electron’s respective spin states. |0⟩ represents the electron in 

a spin up state and |1⟩ is the electron in the spin down state. The factors of 
1

√2
 are the 

square root probability of observing each state. In quantum computing unitary quantum 

operators act on the qubit states, the operators are known as quantum gates. Like 

classical computer logic gates that transform bits, quantum gates transform qubits. One 

or more qubits are sent through the quantum gates until the algorithm that was 

implemented is complete. The qubits final state is then observed to output a desired |0⟩ 

or |1⟩. Since each qubit contains two values simultaneously, each quantum gate 

completes two operations at once. Compared to classical computations on a single bit a 

qubit increases the computations by two.  

However, the number of qubits inside a quantum computer can be extended. In 

fact, as the number is extended to n-qubits, a quantum computer processes 2𝑛 times 

more information than its classical counterpart. Such a speed increase is the main 

reason why the idea of quantum computers is so tantalizing. Quantum computer’s 
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incredible computational power will allow for solving problems that are difficult and time 

consuming on classical computers.  

A difficult problem central to this work is the integer factorization problem. 

Classical computers take an extremely long time to factor integers. RSA encryption is 

based on the classical computers lengthy factoring issue. RSA uses the product of two 

large prime numbers to encrypt keys for public-key distribution. The problem for 

classical computers gets even more difficult as the number of digits in the prime 

numbers increase. According to Kirsch (2015), “factoring time grows exponentially with 

input length in bits”.  

 However, the issue that RSA faces is that it is only secure and reliable if the 

speeds of computers stays relatively slow. Peter Shor illustrated this potential 

vulnerability. Using a quantum algorithm, known as Shor’s Algorithm, he showed that 

integers could be factored much faster. Shor’s Algorithm utilized the computational 

speed of qubits to solve the integer factorization problem in polynomial time, as 

opposed to classical algorithms which require exponential time (Shor, 1999). If Shor’s 

Algorithm is implemented on a quantum computer with enough qubits, it poses a direct 

threat to RSA encryption. At this time, quantum computers are not large or stable 

enough to solve the 2048 binary digit semi-prime used currently in RSA encryption. 

However, the designs of quantum computers are progressing and they appear to have 

the potential to solving this problem in the near future (Nordrum, 2016). 
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Literature Related to the Methodology  

 To prepare for a future where the use of RSA encryption is no longer reliable, it is 

the purpose of this discussion to propose a hybrid approach. A hybrid approach helps 

bridge the gap between classical and quantum cryptography. The proposed solution 

suggests the design of an encryption device that uses quantum principles that is then 

implemented on classical computers. The non-deterministic time between two 

consecutive radioactive decay events acts as the quantum property in the hybrid 

scheme (Rohe, 2003).  

 A radioactive source is an unstable element that decays to a more stable 

element by α-decay, β-decay, or γ-decay. These decay reactions can then be detected 

using a Geiger-Mϋller (GM) detector which converts detections into electrical pulses that 

can then be recorded. The time between two decay events is probabilistic by nature and 

can therefore be treated as a random number source. The random numbers are 

generated by comparing the time difference between consecutive decay events. Table 1 

shows how each digit is represented. 

Table 1: Radioactive Decay Time Bit Value. Associated bit value based on the 
relationship of consecutive decay events.  
 

Relationship Between Decay 
Times 

Bit 
Value 

Δt1 < Δt2 0 

Δt1 > Δt2 1 

Δt1 = Δt2 Nothing 

 

Δt1 represents the time difference between the first and second recorded decay times, 

and Δt2 represents the time difference between the third and fourth recorded decay 
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times. Assigning a bit value to the time difference relationship allows to generate 

decimal integers by converting the base-2 binary form to the base-10 equivalent.     

The random numbers generated are used as a seed for the encryption algorithm 

developed by Paidi et al. (Paidi, Kunkel, Guster, Sultanov, & Rice, 2016). The original 

algorithm proposed used photon polarizations as the quantum source but it is far less 

expensive to use radioactive elements, as used in this study. Illustrating the 

randomness of radioactive decay will further validate the use of this algorithm. Further, 

when using the algorithm in conjunction with the random number generator it is critical 

to motivate the use of this method, rather than integer factorization, since it is not easily 

broken by quantum computers. 

Summary  

 The ideas presented in the literature show how quantum mechanics can be 

exploited and used in the field of cryptography. Not only does quantum mechanics aid in 

the secure transfer of information but it also plays a role in shaking the basis of current 

encryption schemes. The material presented, further motivates the need for a new 

encryption scheme to continue protecting transferred data. Given that a purely quantum 

encryption system is expensive and difficult to implement, developing a hybrid system is 

a suitable first step. The following chapter will present the design of such a hybrid 

system and attempt to further motivate its complexity and usefulness.  
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Chapter III: Methodology 

Introduction  

 To provide structure in presenting the methodology, this chapter will have three 

sections. The first section is focused on the design of the device used for the random 

number generator which will include several electronic components. The second section 

describes the encryption algorithm tailored for the use of the radioactive source device. 

The last section presents the randomness test suite that is used to analyze the numbers 

generated.  

Design of the Study 

 Several electronic components are utilized to design a quantum random number 

generator device which supports the encryption algorithm. These components include: a 

Cesium-137 source, a GM detector, an Arduino, an Arduino interface shield, and a 

Raspberry Pi. Additionally, the Raspberry Pi and Arduino have programs that were 

developed to initiate the detection process and to collect the data. A block diagram of 

the device is illustrated in Figure 1. 

 

 

 

  

 

 

Figure 1: Device Block Diagram. Block diagram of the components of the encryption 

device. 

GM Tube 

Arduino 
Interface 
Shield 

Arduino 
Raspberry 
Pi 

CS-137 
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The GM detector converts each decay event into a voltage signal that is then 

passed to the Arduino through the interface shield. After each detection, the detector is 

discharged for a finite period of time, which is known as the dead time. During this 

phase, no detections can be made. In the interest of efficiency, the selection of a 

detector with a relatively short dead time is ideal. The detector in the experiment had a 

dead time of 90 microseconds (μs) which is adequate for the data collection process. 

For the sake of device simplicity, the detector operates using a 5-volt (V) power source 

which is supplied by the Arduino. In fact, all the components, excluding the Raspberry 

Pi, run on 5V. The radioactive source chosen is a 1 microcurie Cesium-137 radioactive 

isotope. This radioactive isotope provides two advantages. First, the source is relatively 

weak so that it does not pose significant health concerns for extended exposure. 

Second, Cesium-137 has a longer half-life of 30.17 years and will therefore produce 

consistent decay events for several years.  

 The Arduino acts as a micro-controller that takes the signals from the GM 

detector and records the data. To generate the numbers the Arduino records the time 

difference between two consecutive decay events, following the program uploaded on 

the system. The program sends the recorded information to the serial port, which is 

subsequently extracted using a python program initiated on the Raspberry Pi. Each time 

difference is recorded in microseconds to allow for the highest accuracy in detection 

events.  

 Classical computing is done on the Raspberry Pi, which is a mobile computer 

interface that easily communicates with other computer systems. The extracted random 
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numbers from the Arduino’s serial port is stored and sent to the encryption algorithm, 

which is described in more detail in the next section. At this data collection stage, the 

numbers are manually extracted and passed to the encryption algorithm. However, the 

Raspberry Pi’s OS will allow the whole process to be automated on startup.  

 Given that the device is built with a Raspberry Pi and relatively small 

components, it can be effectively designed to be portable. The portability of the device 

allows it to act as a black box that could be connected to a computer system using a 

USB cable. A small amount of shielding could encase the system to protect users from 

the radiation source. However, merely distancing the user from the source may be 

enough, due to the considerable weakness of the source. The device may also be 

converted to a card that could be placed into a PCI Bus with limited change to the 

device configuration.  

 A second device could also be created for maximum efficiency. The second 

device acts as a receiver of the encrypted information sent by the first device. 

Advantages of a second device include the absence of the radioactive decay element. 

This greatly reduces cost and promotes greater safety to the user. The second device 

would only require that it includes the decryption algorithm. In a server-client setup, the 

first device would be housed on the server side while multiple second devices could be 

used on the client systems. 

Encryption Algorithm  

 The first step in the algorithm accepts a user specified set of bits to be encrypted. 

In an operational system, the set of bits would be analogous to a secret key that would 
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be sent to the receiver. The complexity of the algorithm is customized by the user to 

create a unique and more robust encryption process. However, for this initial 

demonstration the simplest case will be presented as to not impede the reader’s 

understanding. 

 Separating the randomly generated numbers, R, into two sections around an 

average number, N, four different cases arise for the encryption process.  

Table 2: Four Cases. Four possible case conditions utilized in the encryption process. 

 
Relation Between the Generated Number and 

the Average 
The First Bit 

Case 1 
 

0 

Case 2 
 

1 

Case 3 
 

0 

Case 4 
 

1 

 

To reiterate again, this is the simplest case but the number of cases can be expanded 

as the number of sections the random numbers are separated into increase.  

 Based on which case the algorithm finds true, a conversion of bits phase initiates 

to the bit string. 

 For Case 1 all bits are converted by a pseudo-randomly generated number 

between 100-549 if the bit is a 0, else a number between 550-999 is generated 

for a 1. 

𝑅 ≤ 𝑁 

𝑅 ≤ 𝑁 

𝑅 > 𝑁 

𝑅 > 𝑁 
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 For Case 2 all bits are converted by a pseudo-randomly generated number 

between 550-999 if the bit is a 0, else a number between 100-549 is generated 

for a 1. 

 For Case 3 all bits are converted by a pseudo-randomly generated number 

between 550-999 if the bit is a 0, else a number between 100-549 is generated 

for a 1. 

 For Case 4 all bits are converted by a pseudo-randomly generated number 

between 100-549 if the bit is a 0, else a number between 550-999 is generated 

for a 1. 

The range of the pseudo-randomly generated numbers is arbitrary, but for simplicity in 

the string processing the ranges are chosen to contain three digits. Each range contains 

equal amount of numbers so that no bias is introduced that favors a particular range. 

 The decryption of bits is done using the same cases presented before but the 

process is reversed. Knowing the generated time and the first bit in the string, one can 

convert back to the original bit string using the following set of instructions. 

 For Case 1 each converted bit is checked and if it lies in the range of 100-

549 then it becomes a 0, else it becomes a 1. 

 For Case 2 each converted bit is checked and if it lies in the range of 550-

999 then it becomes a 0, else it becomes a 1. 

 For Case 3 each converted bit is checked and if it lies in the range of 550-

999 then it becomes a 0, else it becomes a 1. 
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 For Case 4 each converted bit is checked and if it is lies in the range of 100-

549 then it becomes a 0, else it becomes a 1. 

This method holds advantages in that each random decay event could restart the 

process, further complicating the ability to guess which method was used. Moreover, 

the quantum source used to seed the algorithm is independent of the encryption 

process, eliminating the predictability of which cases were used. However, for each 

random number used in the algorithm subsequently increases the communication 

complexity, as it requires a greater volume of information sent to the receiver. 

Remembering that the receiver must have knowledge of both the generated time and 

first bit to properly decrypt the message.    

Data Analysis  

 To properly analyze the random numbers generated via the radioactive element 

it is important that they be subjected to a series of statistical tests. The way in which 

true- and pseudo-random number generators are tested is by test suites developed over 

the years. Some of the most widely used test suites include: Dieharder, NIST, ENT, and 

TESTU01 (Brown, Eddelbuettel, & Bauer, 2013; L’Ecuyer & Simard, 2007; Walker, 

2008). The test suites each have their own advantages and disadvantages, but they all 

contain numerous random number statistical evaluations. To focus the scope of this 

discussion the NIST test suite, which is the cryptography standard, will be utilized. The 

primary goal is to use the tests in the suite to evaluate the validity of using the random 

numbers in the encryption algorithm and further, using the device itself.   
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Summary 

The components used in the device design hold the advantage of being 

developed and implemented compactly and portable. Using the random numbers 

generated by the radioactive source as a seed in the algorithm, allows for the 

development of several cases that dictates the encryption process. Each radioactive 

decay has the potential to restart the encryption process further complexing the ability to 

predict the cases used. To be confident in the true randomness of the numbers 

generated, one must subject them to statistical test suites used in randomness testing. 

In the next chapter, the results from the encryption process, proposed complexities to 

the algorithm, and the analysis of the random numbers will be presented and discussed.    
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Chapter IV: Data Presentation and Analysis 

 Introduction 

 In this chapter, several aspects of the data collected are analyzed. An example of 

the previously described encryption algorithm is presented in its simplest working form. 

Complexities to the algorithm our introduced and investigated to further protect against 

decryption predictability. The radioactive decay events collected from the device are 

analyzed using the NIST randomness tests. 

 Data Presentation 

 As a demonstration of the algorithm’s encryption process, an example is 

presented on a subset of hypothetical secret key bits. Only a subset is presented for 

simplicity and readability. The conversion phase of the algorithm on the bits is displayed 

in Table 3. In these examples, the device generated several 8-bit stings which were 

then converted to decimal integers.    

 An R of 183 and an average N of 128 is used in the example. Based on the cases 

and given that the first bit is a 1, the bits are converted using Case 4. According to the 

algorithms instructions, all bits that are 0 are converted to a range between 100-549 and 

all that are 1 are converted 

between 550-999.  
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Table 3: Encrypted Bits Example. Table of encrypted bits with a random number of 
183. 
 

Bits 
Encrypted 

Value 
1 666 

1 557 

0 113 

1 767 

1 766 

0 432 

1 857 

0 541 

0 531 

1 554 

1 618 

1 650 

1 929 

1 911 

1 553 

1 558 

1 754 

1 730 

1 572 

1 808 

1 883 

1 620 

1 953 

0 243 

0 304 

0 389 

0 110 

0 392 

1 612 

0 496 

0 292 

1 566 
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With knowledge of which case was used in the conversion phase it is straightforward to 

decrypt back to the original bits. The decryption phase is processed in a similar manner 

as the conversion phase but in reverse. Therefore, all converted bits in the range of 

100-549 will be reverted to a 0 and all in the range of 550-999 will become a 1.  

 Extending the number of bits to the order of a several thousand, it is important to 

investigate the way the algorithm acts in a more complex situation. As it is not feasible 

or easily readable to present this information in tables, it is more useful to present the 

information graphically. The set of converted bits are displayed in Figure 2. The x- and 

y-axis represent the number of bits converted and the encrypted value, respectively.  

 

Figure 2: 10,000 Encrypted Bits. Graphical representation of 10,000 encrypted bits.  
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 Using the data plotted in Figure 2 it is important to investigate how the 

distribution of encrypted bits relates to one another. Specifically, the values that are 

encrypted must not favor a certain number. A number that appears more frequently 

could create a bias and an attacker could focus more on that number and possible 

obtain more information about the original bit string. Figure 3 displays the data of how 

frequently each encrypted value is used in the 10,000-bit conversion process.  

   

Figure 3: Frequency of encrypted 10,000-bit string. 

The data shows nearly uniform frequency for all bits converted. Uniform frequency is 

desirable in this case since each encrypted value is equally likely to appear. 

 Given that the encrypted values are uniform in frequency the next logical 

question to ask is if each case used is equally likely. Assume that there is a four-sided 

die with each case written on a respective side. Probability states that there is a 25% 

chance of rolling any one side. The following data was collected by testing the algorithm 

several times and recording the number of times each case was used. The cases 



28 
 

required that the algorithm used different random numbers in conjunction with a binary 

string. Two different binary strings were used in these tests. One string was generated 

by a C++ random bit generator. The other string was taken from the binary numbers 

generated by the device. Using the different strings probes the idea that the algorithm 

may be dependent on using a true random binary string. The bit lengths of each string 

were 168-, 256-, and 1024-bit to mimic the actual size of a key that would be used in the 

algorithm.  

 

Figure 4: C++ 168-bit String Cases. Percentage of cases used with a C++ generated 
168-bit string. 
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Figure 5: C++ 256-bit String Cases. Percentage of cases used with a C++ generated 
256-bit string. 
 

 

Figure 6: C++ 1024-bit String Cases. Percentage of cases used with a C++ generated 
1024-bit string. 
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Figure 7: Device 168-bit String Cases. Percentage of cases used with a device 
generated 168-bit string. 
 

 

Figure 8: Device 256-bit String Cases. Percentage of cases used with a device 
generated 256-bit string. 
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Figure 9: Device 1024-bit String Cases. Percentage of cases used with a device 
generated 1024-bit string. 
 
 The percentages displayed using the C++ generated bits are displayed in 

Figures 4-6. These percentages do not equate to each case being used 25% of the time 

as expected. Cases 2 and 4 are more prevalent in these figures as compared to cases 

1 and 3. All cases are above 21% and below 30% for each bit string, which is 

encouraging. Figures 7-9 also do not meet the 25% expectation. Interestingly, case 1 is 

most prevalent in all three figures. The case percentages were above 21% and below 

30% just as the C++ generated produced. The usefulness of these results indicate that 

the cases do not vary too strongly away from the ideal 25% case distribution. They also 

present little difference in the choice of bit strings used. Such results could indicate that 

the algorithm is more dependent on the random numbers generated, rather than the 

input binary strings. 

 A distribution of the cases used in the encryption process is an important step in 

increasing the complexity of the device. In the original example of showing the 

encryption process of the algorithm only one case was used for simplicity. Although, a 
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simplistic approach would not work in a real-world situation. If an attacker were to obtain 

or “guess” the case used, they would be able to obtain the whole original bit string 

through the decryption process. Since this is clearly undesirable, it would be more 

beneficial to use several cases, more specifically, use more random generated 

numbers. Such a feat can be achieved by dividing the bit string into several pieces and 

using a new random number for each piece.  

 In the following example, a binary string is divided up into several 8-bit sections 

and a new case is used at the start of each section. Table 4 displays a sample of 

original bits, their encrypted value, and the cases used in each section.     
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Table 4: Encrypted Bits Multiple Cases Example. Table of encrypted bits with 
multiple cases used. 
 

Original Bits Encrypted Value Case Number 

1 337 

Case 2 

1 138 

0 925 

1 474 

1 201 

0 552 

1 228 

0 378 

Case 1 

0 532 

1 893 

1 618 

1 639 

1 586 

1 602 

1 785 

1 594 

Case 4 

1 748 

1 911 

1 608 

1 883 

1 884 

1 777 

1 663 

 

The table illustrates three important ideas about a potential attacker obtaining the 

original bit string. First, with the correct guess of a case the attacker only uncovers a 

small section of the original data. Second, the attacker must continually guess a new 

case in order to obtain the exact original string. Finally, the 8-bit division suggested in 
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the example is completely arbitrary in nature. One could choose 2-, 6-, or 24-bit 

divisions if so desired. The number of sections also do not have to be constant and can 

change as the bit string progresses. The only requirement is that the information be 

hard-coded into the decryption algorithm.  

 Another step in a more complex and secure algorithm comes from expanding the 

number of cases used. Using only four cases would give an attacker a relatively easy 

trial-and-error problem that would not take too long to solve. Since the value of a bit is 

fixed, the next logical step in case expansion would be to split the average of the 

random numbers into more sections. Currently, the average is only split into two 

sections: either the random number is less than or equal to, or greater than the average. 

For simplicity, we will split the average in half to create a total of four new sections. On 

top of that, there are two values a bit can hold which translates to eight conditions in all. 

However, there is still an issue that must be addressed. In the original example, the 

encrypted value is placed into two sections, 100-549 and 550-999. Only two sections 

are not ideal since one can easily see that some cases will share the same ranges for 

both a zero or one bit value. A solution to this problem is to create four sections of 

encrypted values just as we split the average into.  Table 5 breaks down each possible 

condition and their respective encrypted values. Since each case does not extend the 

entire range from 100-999, multiple cases should be used to further hide original bits. 
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Table 5: Eight Cases. Eight conditions that can be used to increase security in the 
algorithm. 
 

 
Random Generated Number Bit 

Encrypted Value 
For 0 

Encrypted 
Value For 1 

Case 1 0 ↔  
𝑁

2
−1 0 100-324 

325-549 

Case 2 
𝑁

2
↔ 𝑁 − 1 0 325-549 

100-324 

Case 3 𝑁 ↔ 𝑁 +
𝑁

2
− 1 0 550-774 

775-999 

Case 4 𝑁 +
𝑁

2
↔ 2𝑁 − 1 0 775-999 

550-774 

Case 5 0 ↔  
𝑁

2
−1 1 775-999 

100-324 

Case 6 
𝑁

2
↔ 𝑁 − 1 1 550-774 

325-549 

Case 7 𝑁 ↔ 𝑁 +
𝑁

2
− 1 1 325-549 

550-774 

Case 8 𝑁 +
𝑁

2
↔ 2𝑁 − 1 1 100-324 

775-999 

 

Data Analysis 

 The data generated by the device was tested to determine if the information 

collected is random. 361 MB of data was collected over a five-month period. All the data 

was stored in a text file which contains several million 8-bit strings of ASCII 0’s and 1’s.  

As a preliminary test, the binary strings were converted to decimal integers between 0 

and 255. The integers were then plotted in a histogram as shown in Figure 10. 
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Figure 10: Histogram of Decimal Integers. Frequency counts of random decimal 
integers generated by the device. 
 
The histogram shows that the distribution of decimal numbers is nearly uniform for all 

the data in the file. Much like the encrypted bits graph, the uniform distribution is most 

desirable. If the data that seeds the algorithm has an equally likely chance to be 

selected, it makes it much more difficult for an attacker to guess the seed with high 

certainty.   

 Although, preliminary tests are encouraging the random numbers generated 

need to be subject to more robust tests. These tests are well established in the NIST 

randomness test suite. NIST includes fifteen different tests in the suite, each test 

investigating different types of non-randomness. A final report is given as a text file 

which contains several p-values for the sub-tests of each of the fifteen tests. The report 

also includes the proportions of the p-values that passed the significance level. The 

significance level, α, used in the tests was set at 0.01. Therefore, p-values that are 

greater than or equal to α accept the null hypothesis (the binary sequence is random). A 
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histogram of the p-values generated from the NIST test suites for all the tests and sub-

tests are shown in Figure 11.   

 

Figure 11: Histogram of NIST P-values. Frequency counts of the p-value calculations 
from the NIST randomness test suite. 
 
Only one test failed the p-value test which was the Maurer’s “Universal Statistical” Test 

with a p-value of 0. Such a distinct p-value indicates that the number of input bits was 

insufficient to compute a proper p-value. Therefore, for a correct p-value computation 

requires more data to be collected which is part of the limitations of the study.  

 The proportion of p-values that passed each test and sub-test was also given in 

the final analysis text file. Based on the input bits subjected to the tests required that 96 

out of the 100 binary sequences p-values must be greater than or equal to α. One test 

and one sub-test failed to meet the proportion requirement. The Maurer’s Test and a 

Non-Overlapping Template sub-test resulted in 0 and 95 p-values passed, respectively. 

The final analysis of the NIST test suite is given in the appendix. 
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Summary  

 The data collected in this study was used to illustrate an example of the 

encryption algorithms process. Two forms of the example were displayed, one being a 

simple example using only a few bits. The other was a more complex example with a 

large number of bits used. Complexities added to the algorithm were investigated to 

make it more difficult to break the encryption. Case frequency was tested to determine if 

each case had an equal chance of being chosen via the random numbers generated. 

The algorithm was shown to change cases multiple times within the same bit string to 

decrease the amount of information obtainable by a single case. Further expansion of 

the number of cases were developed to slow an attacker trying to obtain the original bit 

string. Using the NIST test suite to analyze the data presented the p-values computed 

from each test. In the next chapter, the data analysis will be discussed and conclusions 

will be made on the findings.  
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Chapter V: Results, Conclusion, and Future Work 

Introduction 

 In this chapter, the data that was analyzed will be discussed further. Conclusions 

will also be made on the findings from the collected data. Finally, work that still needs to 

be done in the future will be presented.   

Results 

 The initial example was simply an active implementation of the algorithm. It is 

quickly realized that as the encryption works as designed but it lacks complexity and 

could be easily broken. A plot and histogram of 10,000 bits encrypted using the initial 

algorithm shows that there is minimal bias in the values that the bits are encrypted to. 

Recording the cases used for several implementations of the algorithm on multiple bit 

strings motivated the use of several device generated random numbers to increase the 

encryption’s complexity. 

 The second step in raising the complexity of the algorithm was designed by 

creating more conditions and therefore more cases. The new algorithm would make it 

more difficult to crack and could translate to even more than eight cases if constructed 

properly. However, more cases required sectioning the encrypted value ranges and 

lead to each case only spanning a portion of the entire 100-999 possible values. 

Therefore, the algorithm should use the expanded cases and multiple random numbers 

to span all possible values between 100-999.     

The p-values computed from the final results of the NIST test suites are very 

encouraging but the data did fail in two areas. Maurer’s Test failed to produce a p-value 
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for any of its bit sequences and therefore also failed the proportion test. Further, the 

Non-Overlapping Template sub-test missed the proportion test by one p-value. 

Fortunately, the histogram of p-values, for the most part, was uniform as expected by 

the NIST test suite. Collecting a greater sample of data would lead to the passing of all 

tests if the analysis is correct.     

Conclusion 

 A key point in the discussion of this study is that the proposed device uses hybrid 

properties to combat the difficulty in the current state of quantum encryption 

implementation. The device has advantages in that the encryption process does not 

depend on the factorization of integers like RSA encryption. This fact alone makes it 

more powerful against quantum computer attacks. The size of the device is 

advantageous as it can be portable and interfaced easily with a computer system. With 

little change to the device configuration one can easily make the device include a plug-

and-play interface to simplify its use for a user. Moreover, the cost of the encryption 

device is extremely low and could be done for less than $300.  

 Increasing the complexity of the algorithm as proposed would further solidify its 

use in a real-world scenario. Although, the encryption process should be extensively 

tested against standard hacking attacks to be more conclusive. The results from the 

NIST test suite allows for the acceptance of the null hypothesis, except in two tests.   

 The security risk posed by quantum computers to current encryption schemes 

further motivates the idea that new algorithms must be pursued. Given the complex 
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nature of quantum encryption, it is apparent that the development of hybrid systems is 

the logical first step in securing personal information.    

Future Work 

 To improve this study more data must be collected to further analyze the 

randomness of the numbers generated. Using a larger sample of random numbers will 

produce a value for the Maurer’s Test and hopefully provide a passing p-value. It would 

also give a new proportion test for the Non-Overlapping Template sub-test. A useful 

next step would be to automate the device so that information can be encrypted just by 

providing power to the device. This step was not taken in the study as it was more 

focused on data collection rather than user simplicity. Further steps can also be taken to 

design a second device without the radioactive element or detector. The second device 

would act as a receiver and obtain information from the first device and decrypt what is 

received. Once developed, the two devices could create a local system that could be 

probed for potential holes in the encryption not currently investigated in this study.   
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Appendix A 

----------------------------------------------------------------

-------------- 

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF 

PASSING SEQUENCES 

----------------------------------------------------------------

-------------- 

   generator is </home/Quantum/RandomGen/8bit07102017ent.txt> 

----------------------------------------------------------------

-------------- 

 C1  C2  C3  C4  C5  C6  C7  C8  C9 C10  P-VALUE  PROPORTION  

STATISTICAL TEST 

----------------------------------------------------------------

-------------- 

  8   6  11  16   9   6  17   4  13  10  0.051942    100/100     

Frequency 

 13   7   8   8  10  14  13   9  11   7  0.719747     99/100     

BlockFrequency 

 10   6   9  15  14  12   9  11   9   5  0.437274    100/100     

CumulativeSums 

  9  10  11  11   9   9  12  12   7  10  0.987896    100/100     

CumulativeSums 

 10   7  12   7   9   6  11  11  13  14  0.678686    100/100     

Runs 

 11   6   8  11   9   9  14   9  12  11  0.867692     97/100     

LongestRun 

  8   7  11  13  13   9   9   9   9  12  0.911413     99/100     

Rank 

 12  13  11  10  11   8  10   6  12   7  0.851383     96/100     

FFT 

 14  12   5   9   8  13  10  12  12   5  0.419021     98/100     

NonOverlappingTemplate 

 15  11  11  15   9   7   9  10   9   4  0.350485     97/100     

NonOverlappingTemplate 

 15   9  11  11  11  11   5   9  10   8  0.739918    100/100     

NonOverlappingTemplate 

 17  13   8   4   6  13   7  12  14   6  0.051942     97/100     

NonOverlappingTemplate 

 10  10  16   6  13  12  10  10   9   4  0.334538     98/100     

NonOverlappingTemplate 

 10  14   7  14  10   7  10   7  12   9  0.699313     97/100     

NonOverlappingTemplate 

  9  11  12  12  14   9   9   5  12   7  0.678686     98/100     

NonOverlappingTemplate 
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 11  14  14  10   5  10   9  14   8   5  0.319084    100/100     

NonOverlappingTemplate 

 13  11   9  10   9   9   8   8   9  14  0.924076     98/100     

NonOverlappingTemplate 

 12  16  11   7   9  10   9   9   6  11  0.637119     98/100     

NonOverlappingTemplate 

 11  11   5   8   9  11  17   9   9  10  0.494392     99/100     

NonOverlappingTemplate 

 15   8  10  14  11   6   8  10   9   9  0.657933     99/100     

NonOverlappingTemplate 

 10  12   7   8   8   7  11  11  11  15  0.759756    100/100     

NonOverlappingTemplate 

  6  13  13   8   9   7  13  13   7  11  0.574903    100/100     

NonOverlappingTemplate 

 11   5  14  12  11   6   9   9   9  14  0.514124     98/100     

NonOverlappingTemplate 

 16  11  10  13   6   1   8  13   7  15  0.025193     97/100     

NonOverlappingTemplate 

  6  11  10  10  13  12   9   8  13   8  0.851383    100/100     

NonOverlappingTemplate 

 13  15   6  11   9  13   5   8   9  11  0.419021     98/100     

NonOverlappingTemplate 

  9   8  10  11   9   9  10  10   9  15  0.946308     98/100     

NonOverlappingTemplate 

  5   7  13  13   9  13   8  11  14   7  0.419021     99/100     

NonOverlappingTemplate 

  5  11  10   9   7  10  13  10  11  14  0.719747     98/100     

NonOverlappingTemplate 

  6  10  14  12   4  15  11   5  11  12  0.171867    100/100     

NonOverlappingTemplate 

  9   9  14   8  11  14   6   8  13   8  0.616305    100/100     

NonOverlappingTemplate 

  7  11   9  10  12  15  10   8  10   8  0.851383    100/100     

NonOverlappingTemplate 

 10  13  13   6  10   7  12  10  10   9  0.851383     99/100     

NonOverlappingTemplate 

  9   7  10  11   7   8   6  14  15  13  0.437274     99/100     

NonOverlappingTemplate 

 11   8  11   6   9  19   8   9   8  11  0.249284     95/100  *  

NonOverlappingTemplate 

 15   8   6  11   9  13   8   7  13  10  0.554420    100/100     

NonOverlappingTemplate 

 13   8  10  12  13   9   9  12   9   5  0.759756    100/100     

NonOverlappingTemplate 
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 10  12  11   9  10  10   8  10   9  11  0.998821     99/100     

NonOverlappingTemplate 

 12   6  10  10  17  10  10  11   5   9  0.383827     98/100     

NonOverlappingTemplate 

 12  10  11  10  10  14   6  11   9   7  0.851383     98/100     

NonOverlappingTemplate 

  9  11  12  12   8  11  12  11   9   5  0.867692     99/100     

NonOverlappingTemplate 

 18   7   7  16   7   9  12   5   9  10  0.071177     99/100     

NonOverlappingTemplate 

 13   8   7   9  13  11   8  12  12   7  0.798139     99/100     

NonOverlappingTemplate 

 10   9   7  16  11   9   8  10   9  11  0.798139     98/100     

NonOverlappingTemplate 

 15   9   9  14  11   9   3  13  11   6  0.213309    100/100     

NonOverlappingTemplate 

 10   8  15   9  11  11  14   7   6   9  0.595549     99/100     

NonOverlappingTemplate 

 10  12  12  13  10  14   5   8   9   7  0.616305     97/100     

NonOverlappingTemplate 

 15   8   7   8  13  15  10   6  12   6  0.262249     97/100     

NonOverlappingTemplate 

  7   5   9  13   7  10  18  11  10  10  0.224821    100/100     

NonOverlappingTemplate 

  9   8  12   7  10   9   5  15  12  13  0.514124     99/100     

NonOverlappingTemplate 

 10   9  11  10  11  10   8  12  11   8  0.996335    100/100     

NonOverlappingTemplate 

  6  12  15  11  15   7  11   6   7  10  0.304126     99/100     

NonOverlappingTemplate 

 13   2  13  12  17  14   4   6  13   6  0.006661     99/100     

NonOverlappingTemplate 

 13   2  11   9  15   8  12   7   7  16  0.062821    100/100     

NonOverlappingTemplate 

 11   8  10   4  10   8  15  11  11  12  0.574903    100/100     

NonOverlappingTemplate 

  8   7   8  16  10   8   9  13  12   9  0.616305     99/100     

NonOverlappingTemplate 

 14  10  10   6   8  14  10   9  10   9  0.798139    100/100     

NonOverlappingTemplate 

 11   5  12   7  13  14  10   7  14   7  0.366918     98/100     

NonOverlappingTemplate 

  8   6   8  24   6  10  12  11   8   7  0.002559     99/100     

NonOverlappingTemplate 
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  6  13  12  11  11   9  13   7  10   8  0.798139     98/100     

NonOverlappingTemplate 

  9  13  13  10   7  12   9  11  10   6  0.834308     98/100     

NonOverlappingTemplate 

  9  13   9   8  10   7  14  13   6  11  0.678686    100/100     

NonOverlappingTemplate 

  9   9   9  12  13   6   9  13   8  12  0.834308    100/100     

NonOverlappingTemplate 

 12   9  13  12   9   7   8   7  11  12  0.867692     99/100     

NonOverlappingTemplate 

  5  10  11   5   8   9  11  16  13  12  0.304126    100/100     

NonOverlappingTemplate 

  8  14   7  12   8  10   6  12  12  11  0.719747     98/100     

NonOverlappingTemplate 

 10  17   6   9   3  17   5  11   9  13  0.017912     98/100     

NonOverlappingTemplate 

  5  11  17   5   9  12  13  12   5  11  0.108791     98/100     

NonOverlappingTemplate 

 13  11  12   9  11   3  13  11   9   8  0.534146    100/100     

NonOverlappingTemplate 

 18  13  12   9  10   9  11   4  10   4  0.085587     97/100     

NonOverlappingTemplate 

 11  11   7   6  11   8  12  13   8  13  0.759756     99/100     

NonOverlappingTemplate 

  8   9   8   7   8  13  11  16  11   9  0.637119     99/100     

NonOverlappingTemplate 

 13   9  10   8  11   8   9  14   8  10  0.911413     97/100     

NonOverlappingTemplate 

  9   8  11  10  11   7   8  15  11  10  0.867692    100/100     

NonOverlappingTemplate 

 10   6   9  10  10  11  12   8  15   9  0.816537     99/100     

NonOverlappingTemplate 

  4  11   5  12  11  18  10  14  12   3  0.017912    100/100     

NonOverlappingTemplate 

 10   7  11  16   8   9   8  12   9  10  0.739918     99/100     

NonOverlappingTemplate 

 11  10  12  12   9   4  17  10  10   5  0.213309     99/100     

NonOverlappingTemplate 

 12  11   9  10   8   9   7  15  14   5  0.474986     99/100     

NonOverlappingTemplate 

  3  14   9  12  10  11  11   9  15   6  0.249284     99/100     

NonOverlappingTemplate 

  7  10  10  11  11  11   9   9  11  11  0.996335     97/100     

NonOverlappingTemplate 
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 14   3   9  14  10   8   9   8  14  11  0.289667     99/100     

NonOverlappingTemplate 

 14  12   5   9   8  13  10  12  12   5  0.419021     98/100     

NonOverlappingTemplate 

 10   9  14  11   7   8  13  12   6  10  0.739918    100/100     

NonOverlappingTemplate 

  8  14  12  14   9   7   8   6  12  10  0.595549     98/100     

NonOverlappingTemplate 

 17   6   9   8  17  11   4   7  11  10  0.055361     99/100     

NonOverlappingTemplate 

  6  12  13  18   7  10  11   6   9   8  0.191687    100/100     

NonOverlappingTemplate 

 11   6  11  13   6  11   9  10  11  12  0.834308    100/100     

NonOverlappingTemplate 

 12   8  13  10   9  18   6   9   6   9  0.236810    100/100     

NonOverlappingTemplate 

  5  11   8  10   8   7   9  15  11  16  0.304126    100/100     

NonOverlappingTemplate 

 11  13   8   8  10  14  13   8   6   9  0.699313     99/100     

NonOverlappingTemplate 

 11   9   8   8  12   9  11  10  11  11  0.994250     99/100     

NonOverlappingTemplate 

  6   8  11   9  11   6   7  15  14  13  0.366918     98/100     

NonOverlappingTemplate 

 10  10   6   8  12   9  13  10  10  12  0.924076     97/100     

NonOverlappingTemplate 

  7  11   5   9  10  12   5  15  11  15  0.236810     99/100     

NonOverlappingTemplate 

 11   5  12  10  10  12  12  10   8  10  0.897763    100/100     

NonOverlappingTemplate 

  7  10  12   7  11   6   6   9  15  17  0.162606    100/100     

NonOverlappingTemplate 

 13   8   9  10  11   8  12  11  10   8  0.971699     99/100     

NonOverlappingTemplate 

 10   9   8  12  12  10   9  12   6  12  0.924076     99/100     

NonOverlappingTemplate 

  6  12   8  11  17  10   8  13   7   8  0.350485    100/100     

NonOverlappingTemplate 

 11  11  14   8   8  10  10  10   6  12  0.867692     98/100     

NonOverlappingTemplate 

  7   7  16  15   9  10  10  12   4  10  0.213309     99/100     

NonOverlappingTemplate 

  6   8  19  16   6  17   7   9   4   8  0.002758    100/100     

NonOverlappingTemplate 
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 11  10  11   6   7  11  14   9  10  11  0.867692     96/100     

NonOverlappingTemplate 

 17   8   4  10  15   9   5   8  10  14  0.066882    100/100     

NonOverlappingTemplate 

 10  13   5  11   6  13  11  14   9   8  0.514124    100/100     

NonOverlappingTemplate 

 13  13  14   9   6   9   7  11  11   7  0.616305     99/100     

NonOverlappingTemplate 

 14  15   9   9   7   5  10   6  10  15  0.224821    100/100     

NonOverlappingTemplate 

  3   6   8  11  15   9   9  14  13  12  0.181557    100/100     

NonOverlappingTemplate 

 11   5  14   8   7   9  18  11   4  13  0.055361     99/100     

NonOverlappingTemplate 

  8   6   7  12   9  17  13   7   5  16  0.062821     99/100     

NonOverlappingTemplate 

  7  15  11   8  16   6   8  10   7  12  0.289667     99/100     

NonOverlappingTemplate 

  8  12  10  13  13   8  12   6   9   9  0.816537     99/100     

NonOverlappingTemplate 

  7   6   7  14   9  13  10  17  10   7  0.224821    100/100     

NonOverlappingTemplate 

 10   7   9  15  11  11  10   9   9   9  0.911413     99/100     

NonOverlappingTemplate 

  7  11   8   9  11  14  11  11  10   8  0.924076     98/100     

NonOverlappingTemplate 

  8   6  13  11   5  13  12  11  16   5  0.162606     98/100     

NonOverlappingTemplate 

 11   5   6  15  15   8  12   9   8  11  0.304126    100/100     

NonOverlappingTemplate 

  8   9   8   6  11  13  13   5  15  12  0.366918     99/100     

NonOverlappingTemplate 

  8   8   5  17   8   8  13  10  12  11  0.319084    100/100     

NonOverlappingTemplate 

 11  10  13  14   9   6   9  14   7   7  0.554420     99/100     

NonOverlappingTemplate 

 11  11   9   6   9   5  15  12   8  14  0.401199     98/100     

NonOverlappingTemplate 

  8   9  10  14   9  10  10  11  13   6  0.851383    100/100     

NonOverlappingTemplate 

 11   6  11  13  12  15  13   6   7   6  0.304126    100/100     

NonOverlappingTemplate 

  5  11   7  14  12  16   8   8  12   7  0.262249    100/100     

NonOverlappingTemplate 
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  6   7   8  12  16  12  14   5   8  12  0.202268    100/100     

NonOverlappingTemplate 

 14  12   5   7   8   8  12  11  14   9  0.494392     99/100     

NonOverlappingTemplate 

 10  12  10  13  16   5  10  10   9   5  0.350485     99/100     

NonOverlappingTemplate 

  6   8   4   9   9  10  12  19  10  13  0.085587    100/100     

NonOverlappingTemplate 

 14  11   8  11   4   9   9  14   9  11  0.554420     97/100     

NonOverlappingTemplate 

 12  13   8   9  11  14   5  13   2  13  0.115387     98/100     

NonOverlappingTemplate 

  9  15   7  12   7  13   7  12   7  11  0.534146    100/100     

NonOverlappingTemplate 

 13  11   9   6  12   6  10   8  12  13  0.699313     98/100     

NonOverlappingTemplate 

  6   7   7  10   8  12  12  13  12  13  0.657933    100/100     

NonOverlappingTemplate 

 12  10  12   6  17   4  13   7  11   8  0.153763    100/100     

NonOverlappingTemplate 

 10  10  12  10   7   9   6  13  12  11  0.883171    100/100     

NonOverlappingTemplate 

  6   9  10  14   7  14  11  11   8  10  0.699313     98/100     

NonOverlappingTemplate 

  5   9  13  20   7   9   7   7  11  12  0.051942     99/100     

NonOverlappingTemplate 

  8  12   8  10  12  11   8   7  12  12  0.924076     96/100     

NonOverlappingTemplate 

  6  12  15  13  11  13   7  10   5   8  0.334538    100/100     

NonOverlappingTemplate 

 11   5  12   8  14  12   7   8  13  10  0.574903     99/100     

NonOverlappingTemplate 

  9   7  11   9   9  11  11   5  16  12  0.534146     98/100     

NonOverlappingTemplate 

 11  10   7   5   8   7  10  12  14  16  0.319084     98/100     

NonOverlappingTemplate 

 13  13  14   9   8   6   6  13  12   6  0.350485    100/100     

NonOverlappingTemplate 

 12   9  11  10   8  10  11   9  13   7  0.964295     98/100     

NonOverlappingTemplate 

 11  11   5  10  11   9  11  12   9  11  0.935716    100/100     

NonOverlappingTemplate 

  9   5  13  12  10   7   9  10  13  12  0.719747     99/100     

NonOverlappingTemplate 
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  8  13   9   7  10   8  13  14  10   8  0.779188    100/100     

NonOverlappingTemplate 

  7   9   8  12   6  10  15  11  13   9  0.637119     99/100     

NonOverlappingTemplate 

 16   7  11   8  11  15   4  12  10   6  0.153763    100/100     

NonOverlappingTemplate 

  4  12   9   6  15  13  11   9  11  10  0.401199     98/100     

NonOverlappingTemplate 

  7   6   8   9  10  13  13  13  14   7  0.514124    100/100     

NonOverlappingTemplate 

 10   8   7  10   7  10  13  11  11  13  0.897763     98/100     

NonOverlappingTemplate 

  9   5   9   9   5  14  12  10  15  12  0.334538    100/100     

NonOverlappingTemplate 

 13   4   8   9   9  16  14  10   7  10  0.262249    100/100     

NonOverlappingTemplate 

 14   4   8  14  10   8   9   8  14  11  0.366918     99/100     

NonOverlappingTemplate 

  7  12  11   6   8  10  12  15  14   5  0.319084    100/100     

OverlappingTemplate 

100   0   0   0   0   0   0   0   0   0  0.000000 *    0/100  *  

Universal 

  7  12  11  14   8  17   8   9   8   6  0.289667    100/100     

ApproximateEntropy 

  2   1   2   3   3   1   2   5   0   1  0.437274     20/20      

RandomExcursions 

  3   1   3   3   3   1   2   0   4   0  0.437274     20/20      

RandomExcursions 

  1   5   1   4   2   1   2   2   1   1  0.437274     20/20      

RandomExcursions 

  0   0   5   2   2   0   2   4   5   0  0.025193     20/20      

RandomExcursions 

  3   3   3   1   3   1   2   3   1   0  0.739918     19/20      

RandomExcursions 

  1   5   2   2   3   1   4   0   2   0  0.213309     20/20      

RandomExcursions 

  2   4   3   2   1   3   3   1   1   0  0.637119     19/20      

RandomExcursions 

  3   1   1   1   3   4   1   3   3   0  0.534146     20/20      

RandomExcursions 

  2   1   1   1   4   1   0   2   4   4  0.350485     20/20      

RandomExcursionsVariant 

  2   1   2   2   1   3   1   4   3   1  0.834308     20/20      

RandomExcursionsVariant 
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  2   2   1   1   2   4   3   1   2   2  0.911413     20/20      

RandomExcursionsVariant 

  3   1   1   2   2   3   2   2   1   3  0.964295     20/20      

RandomExcursionsVariant 

  2   2   0   5   3   1   1   1   4   1  0.275709     20/20      

RandomExcursionsVariant 

  2   2   1   2   4   2   2   1   2   2  0.964295     20/20      

RandomExcursionsVariant 

  2   4   3   0   4   2   2   1   2   0  0.437274     20/20      

RandomExcursionsVariant 

  2   3   1   5   1   2   0   1   5   0  0.090936     20/20      

RandomExcursionsVariant 

  1   2   4   2   4   1   1   1   2   2  0.739918     20/20      

RandomExcursionsVariant 

  2   4   0   3   6   0   1   1   3   0  0.035174     20/20      

RandomExcursionsVariant 

  2   5   3   2   3   0   2   1   2   0  0.350485     20/20      

RandomExcursionsVariant 

  3   2   0   4   4   1   1   0   5   0  0.066882     20/20      

RandomExcursionsVariant 

  4   0   1   2   4   0   4   3   0   2  0.162606     20/20      

RandomExcursionsVariant 

  2   3   1   1   5   2   0   1   3   2  0.437274     20/20      

RandomExcursionsVariant 

  2   3   0   2   4   1   2   2   3   1  0.739918     20/20      

RandomExcursionsVariant 

  2   1   2   4   1   1   1   8   0   0  0.002043     20/20      

RandomExcursionsVariant 

  1   1   3   1   3   4   0   3   2   2  0.637119     20/20      

RandomExcursionsVariant 

  1   0   3   1   3   1   3   4   2   2  0.637119     20/20      

RandomExcursionsVariant 

 11   8   9   5   9  14  11   7  15  11  0.494392    100/100     

Serial 

  9   2  12  13  10  13   7   7  14  13  0.162606     98/100     

Serial 

 13  10   6  10  15  11   6  14   6   9  0.350485    100/100     

LinearComplexity 

 

 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - 

The minimum pass rate for each statistical test with the 

exception of the 

random excursion (variant) test is approximately = 96 for a 
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sample size = 100 binary sequences. 

 

The minimum pass rate for the random excursion (variant) test 

is approximately = 18 for a sample size = 20 binary sequences. 

 

For further guidelines construct a probability table using the 

MAPLE program 

provided in the addendum section of the documentation. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - 

 

 

 

//Encryption Algorithm 

#include <iostream> 

#include <stdlib.h> 

#include <time.h> 

#include <fstream> 

using namespace std; 

 

 

 

int main() 

 { 

  int n; 

  int t; 

  int r; 

  int c; 

  int d; 

  int o; 

  int ave = 128; 

  srand(time(NULL)); 

  cout << "What is the number of input bits? "; 

  cin >> n; 

  int data [n]; 

  int inbits [n]; 

  int outbits [n]; 

  ifstream myfile; 

  ifstream myfile2; 

  myfile.open("bin2dec06202017Diehard.txt"); 

  myfile2.open("inputBitsThesis.txt"); 
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   cout << "The bits that will be converted " << 

endl << endl; 

    for (int l=0; l <= n; l++) 

     { 

      myfile >> data[l]; //data is an 

array that contains radioactive event times 

     } 

  myfile.close(); 

    for (int p=0; p <= n; p++) 

     { 

      myfile2 >> inbits [p]; //inbits is 

an array that contains the input bits     

     } 

    cout << "The first bit is a " << inbits [0] 

<< endl << endl;    

     

  const char* output_file_name = "rand_bits.out"; 

  const char* output_file_name2 = 

"Thesis10000encryptbits.out"; 

   

  ofstream my_out(output_file_name); 

  ofstream my_out2(output_file_name2); 

  if  (my_out.fail()) { 

  cerr << "Unable to open the file " << output_file_name 

    <<  "for writing " << endl; 

  } 

  if  (my_out2.fail()) { 

  cerr << "Unable to open the file " << output_file_name 

    <<  "for writing " << endl; 

  } 

  

 

c = data [rand()%8962]; 

 cout << "The first random time is: " << c << endl << endl; 

   //This for loop converts the random bits into 

random numbers depending on c. 

   if ( inbits [0] == 0 && c<=ave) { 

       

for ( int first =0; first <= n; first++) { 

 if (inbits [first] == 0) { 

 outbits [first] =rand()%449+100; 

 } 

 else { 

 outbits [first] = rand()%449+550; 

  } 
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} 

   } 

   if ( inbits [0] == 0 && c>ave) { 

        

for ( int second = 0; second <= n; second++) { 

 

 if (inbits [second] == 0) { 

 outbits [second] = rand()%449+550; 

 }  

 else { 

 

 outbits [second] = rand()%449+100; 

  }   

} 

   }   

   if ( inbits [0] == 1 && c<=ave) { 

    

for ( int third = 0; third <= n; third++) { 

 

 if (inbits [third] == 0) { 

 outbits [third] = rand()%449+550; 

 } 

 else { 

 

 outbits [third] = rand()%449+100; 

  } 

}  

   } 

   if ( inbits [0] == 1 && c>ave){  

     

for ( int fourth = 0; fourth <= n; fourth++) { 

 if (inbits [fourth] == 0) { 

  

 outbits [fourth] = rand()%449+100; 

 } 

 else { 

 outbits [fourth] = rand()%449+550; 

  }  

} 

   } 

 

 

   for ( int m=0; m<= n; m++)  { //This for loop 

displays the converted bits to the screen. 

     my_out2 << outbits [m]  << endl; 
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   } 

  cout << endl; 

   

 return 0; 

} 
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