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.. 1 Systems of Linear Equations and Matrices

1.1 Systems of Linear Equations

Definition 1.1. A linear equation in the variables (or unknowns) x1, x2,⋯, xn is
an equation that can be written in the form

a1x1 + a2x2 +⋯ + anxn = b

where b and the coefficients a1, a2,⋯, an are (usually) real or complex numbers that
are known.

Equations like 3(x1 − x3) = 4(x2 + x3 + 2) are linear because they can be algebraically
rearranged into the above form (called standard form). For example,

3x1 − 3x3 = 4x2 + 4x3 + 8

can be rewritten in the standard form as

3x1 − 4x2 − 7x3 = 8.

Equations involving powers (other than one) of variables, products of variables, variables
in exponents or under radicals are usually not linear equations and are not studied here
unless there is some related linear equation involved.

..Example 1.1

The following equations are not linear.

x1x2 + x3 = 5, x21 + x22 = 5, ex1 + ex2 = 5,
√
x1 +

√
x2 = 1, x1 + sinx2 = 3

..

When only two variables are involved, we usually use x and y rather than x1 and x2 as
variables. When three variables are used, we use x, y, and z. With four variables, we
use x1, x2, x3, and x4. Of course these are not hard and fast rules.

Definition 1.2. A solution to a linear equation a1x1 +⋯ + anxn = b is an ordered
n-tuple (s1,⋯, sn) of numbers with the property that if the number s1 replaces the
variable x1 and s2 replaces x2 and so on in the equation, then the equation becomes
a true statement. When this happens, we say the n-tuple satisfies the equation.

2
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..Example 1.2

The ordered pairs (1,1), (−3,4), (0, 74), (
7
3 ,0) are solutions to the equation 3x+4y = 7 (see

Figure 1.1). That is, they all satisfy this equation. The ordered pairs (0,0), (−1,2), (1,−1)
are not solutions to this equation.

..

.. x.

y

...

3x + 4y = 7

.

(1,1)

.

(-3,4)

.

(0,74)

. (73 ,0).

(-1,2)

.
(0,0)

.

(1,-1)

Figure 1.1 The use of the term linear comes from the two-dimensional case.

The name linear comes from the two-variable case because, as you know, the set of all
solutions of a linear equation in two variables line up when graphed on the xy-plane
(see Figure 1.1). We call this the graph of the equation. As we shall see, the graphs in
3-space of linear equations in three variables are planes. We simply don’t have enough
geometric dimensions to view graphs of linear equations in four or more variables. We
use the phrase linear equations to apply to these equations regardless of the number of
variables.

A system of linear equations is a collection of one or more linear equations. A
solution to a system is an ordered n-tuple that satisfies all the equations in the
system. A system is in standard form if each equation in the system is in standard
form and like variables line up in columns. We call a system of m equation in n variables
(as shown below) an m × n system. The numbers m and n are called the dimensions
of the system.

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮ = ⋮
am1x1 + am2x2 +⋯ + amnxn = bm

We use double subscripts to describe the coefficients. In the above system, aij is the
coefficient in the ith equation of the jth variable xj .



4 Chapter 1. Systems of Linear Equations and Matrices

.. x.

y

...

3x − y = 8

.

2x + 3y = 9

.

(3,1)

(a) The ordered pair (3,1) satisfies
the 2×2 linear system: 3x−y = 8,2x+
3y = 9.

.. x.

y

...

y = 1

.

2x + 3y = 9

.

9x − 3y = 24

.

(3,1)

(b) A 3 × 2 linear system with a
unique solution.

Figure 1.2

..Example 1.3

In the 3 × 3 system
3x − 2y + 4z = 3
x + y − 2z = 1
2x + y + z = 5

we see that a1,3 = 4 and b3 = 5.
..

..Example 1.4

Because of the geometry of lines in a plane (see Figure 1.2a), we know that the 2 × 2
system

2x + 3y = 9
3x − y = 8

has exactly one solution. You have likely solved many systems like this using the method
of elimination. By multiplying the second equation by 3, and adding it to the first, we
get 11x = 33, or x = 3. By substituting x = 3 into the first equation and solving we get
y = 1. That is, (3,1) is the only solution.

The system found in Example 1.3 is a little more difficult to solve using elimination.
..

The linear systems found in Example 1.3 and Example 1.4 are called square systems
because they have the same number of variables as equations. Square systems play an
important role in linear algebra and deserve special study, but square systems are not
the only linear systems.

..Example 1.5

There are tall skinny systems (more equations than variables) like the 3 × 2 system

x + y = 5
2x + y = 8
x − 2y = −1
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.. x.

y

...

x + y = 3

.

x + y = 3
2

(a)

.. x.

y

...

y = 3

.

2x + 3y = 9

.

9x − 3y = 24

.

(3,1)

(b)

Figure 1.3 Linear systems with no solution.

and short fat systems (more variables than equations) like the 2 × 4 system

x1 + 2x2 − x3 + x4 = 3
2x1 − x2 + x4 = 4.

..

..Example 1.6

There are systems with one unique solution as illustrated in Figures 1.2a and 1.2b,
systems with no solutions (inconsistent systems) as shown in Figures 1.3a and 1.3b, and
systems with infinitely many solutions as shown in Figure 1.4 where one line lies on top
of the other. One such example having infinitely many solutions is

x + y = 3

2x + 2y = 6.

..

.. x.

y

...

x + y = 3

.

2x + 2y = 6

Figure 1.4 A linear system with infinitely many solutions: x + y = 3,2x + 2y = 6.

There is one type of system that is easy to spot and always has at least one solution
(never inconsistent). A homogeneous system is a system in which all equations have
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a constant term (right-hand side) of 0.

a11x1 + a12x2 + ⋯ + a1nxn = 0
a21x1 + a22x2 + ⋯ + a2nxn = 0

⋮ = ⋮
am1x1 + am2x2 + ⋯ + amnxn = 0

Homogeneous systems play a key role in linear algebra theory and always have the trivial
solution x1 = ⋯ = xn = 0.

One of our early goals is to develop a systematic procedure for solving systems of linear
equations that is carefully designed so as not to drop any solutions nor pick up any
extraneous ones. You have already used the elimination process to solve small systems
where you multiply equations by constants and add them to other equations to eliminate
variables. This is the backbone of the process we are about to learn. Simple elimination
gets unwieldy when the number of variables is more than two or three. The new pro-
cess uses rectangular arrays called matrices to keep everything in order. To close the
discussion in this section, we give an example showing two types of matrices we use to
solve linear systems.

..Example 1.7

The 3 × 3 system
2x1 + x2 − 2x3 = −5
x1 + x2 − x3 = −2
3x1 + x2 − 2x3 = −3

has associated with it a coefficient matrix

⎡⎢⎢⎢⎢⎢⎣

2 1 −2
1 1 −1
3 1 −2

⎤⎥⎥⎥⎥⎥⎦

and an augmented matrix
⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
.

Note that the augmented matrix contains all of the information we really need from the
underlying system without the clutter of variable names to slow us down. In the next
section, we learn to manipulate the augmented matrix in a way that is equivalent to
eliminating variables in the underlying sytem until the solution set is apparent.

..
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.... Problem Set 1.1

1. Which of the following are linear equations? Put those that are linear in standard
form.

(a) 3(x1 − 2x2 + 1) = 4x3 + 7x2 − 8 (b) x2 + y2 = 1

(c) xy + 4z = 3 (d)
√
3x1 − (sinπ/5)x2 = e2

(e) e2xe3y = 5

2. Determine the dimensions of each of the following systems and state which of the
given ordered n-tuples are solutions to the linear system.

(a) (6,2), (5,1)
3x + 4y = 26
2x − 5y = 2

(b) (1,−2,2), (16,−11,5)
x + 2y + z = −1
2x + 5y + 5z = 2
3x + 7y + 7z = 6

(c) (0,0,0,0), (11,4,1,1),
(3,2,1,−1), (4,1,0,2)
x1 −2x2 −x3 −2x4 = 0
2x1 −3x2 −5x3 −5x4 = 0

(d) (4,1,0), (−2,−1,2), (1,1,1)
x − y + 2z = 3
3x − 2y + 7z = 10
x + 4z = 6
x + 2y + 6z = 8

3. Solve the linear systems using the method of elimination of variables. Though it is
possible to solve all of these systems using elimination of variables, the point of this
exercise is to introduce you to some of the difficulties and frustrations involved in
using this method to solve linear systems. Our hope is that solving these systems
by simply eliminating variables will show you why it is important to develop matrix
techniques to streamline this process. Those matrix techniques are discussed over
the next three sections.

(a) 3x + 4y = 10
2x + 5y = 12

(b) x + 2y − 5z = 11
2x + 3y − 8z = 18
x − 2y + 3z = −5

(c) x + 3y + z = 1
2x + 5y = 1
3x + 7y − z = 0

(d) x1 + x2 + 2x3 − 3x4 = 1
2x1 + x2 + 5x3 − 7x4 = 0
x1 + 3x2 + x3 − 3x4 = 4
x1 + 4x2 − x4 = 11

4. Write the coefficient matrix and the augmented matrix for each of the following linear
systems. Do not solve the systems.

(a) 3(2x − 5y + 1) = 2(x + 4z)
z + 2y − 3 = 2x + y + z
3z + 7y − x = 0

(b) 3x1 + 4x3 = 5x4 − 7x2
2x1 + x2 = 6x3 − 8x4 + 3x5

5. Write the underlying linear system of equations in standard form for each of the
following augmented matrices. Do not solve the systems.
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(a)

⎡⎢⎢⎢⎢⎢⎣

4 −15 −6
−2 1 0
−1 7 3

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

1 0 2 0 3
0 4 0 5 0
6 0 7 0 8

⎤⎥⎥⎥⎥⎥⎦

6. The general form for the equation of a parabola in the xy-plane is y = ax2 + bx + c,
and for a circle it is x2 + y2 + ax + by = c, where x and y are variables and a, b, and c
are known constants (some restrictions apply). Notice that neither equation is linear
in the variables x and y, but both are linear if x and y are considered as known
constants and a, b, and c are considered to be the variables. Use systems of linear
equations to answer each of the following questions.

(a) Find the equation of the parabola in the xy-plane that passes through the points
(−2,2), (2,4), and (5,3).

(b) Find the equation of the circle in the xy-plane that passes through the points
(−2,2), (2,4), and (5,3).

(c) Repeat parts (a) and (b) with the points (1,5), (3,4), and (7,2). What is
happening geometrically that explains why these systems behave so differently?

.

1.2 Elementary Row Operations

The primary method that we discuss for solving systems of linear equations is called
Gauss-Jordan elimination. Theoretically, it amounts to the method of elimination
you have used for years to solve simple 2 × 2 systems. One problem with the method
of elimination is that when applied to larger systems is that it gets very messy and
unwieldy when solving with pencil and paper. Gauss-Jordan streamlines the elimination
process by retaining all the important information but nothing extra. It is a routine
mechanical process. That is both a bad and a good thing. It is bad because it is very
tedious and boring to perform by hand. It is a good thing because computing devices
can and have been programmed to do the tedious calculations. Later we demonstrate
how to use Maple, a computer algebra system, to carry out this process. You should also
consider learning how to perform Gauss-Jordan elimination on your graphing calculator.
Until you master the concept, you should perform the process by hand to make sure you
understand it thoroughly. Use a calculator or Maple only to check your work. After you
become fluent in performing the process, you should turn these calculations over to a
computing device.

As we learn how Gauss-Jordan elimination works, we also are led to understand why it
works. The process starts by putting a system of linear equations in standard form and
constructing its augmented matrix as shown below.

2x + y − 2z = −5
x + y − z = −2
3x + y − 2z = −3

⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
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Notice that the system can be recovered from the augmented matrix (up to the variable
names used), so it contains all the necessary information held in the system.

The next step in Gauss-Jordan elimination is to manipulate the augmented matrix by
performing a sequence of what are called elementary row operations. These elemen-
tary row operations change the augmented matrix, and hence the underlying system, in
such a way that the solution set remains unchanged but the underlying system becomes
so simple that you can discern the solution by inspection.

Augmented matrix:

⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
→ New Augmented Matrix:

⎡⎢⎢⎢⎢⎢⎣

1 0 0 2
0 1 0 1
0 0 1 5

⎤⎥⎥⎥⎥⎥⎦

This new augmented matrix represents a new system of equations

x = 2
y = 1

z = 5

It is obvious that (2,1,5) is the only solution to this system.

The following elementary row operations constitute legal ways we can manipulate an
augmented matrix so as not to change the solution set of the underlying system.

Elementary Row Operations

1. (Scaling) Multiply a row by a nonzero constant. (ri → cri)

2. (Interchange) Swap positions of two rows. (ri ↔ rj)

3. (Replacement) Replace a row by the sum of itself plus a constant multiple of another
row. (ri → ri + crj)

These row operations correspond to changing the underlying system (as in the method
of elimination) as follows.

1. Multiply an equation in the system on both sides by a nonzero constant.

2. Interchange two equations in the system.

3. Add one equation to a constant multiple of another.

We now explain why elementary row operations do not change the solution sets of the
underlying systems. The use of a little basic set theory will help us do this with less
mess. To that end, suppose we have two sets A and B. When we write A ⊆ B we mean
that every element of A is also in B (i.e. A ⊆ B means x ∈ A implies x ∈ B). Think of
A ⊆ B as meaning A is a subset of B. Then A = B means A ⊆ B and B ⊆ A. That is,
each set contains the other.
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Solutions of a system are ordered n-tuples (s1,⋯, sn) that satisfy all the equations in
the system. The solution set of a system is just the collection of all the solutions of that
system. To show that elementary row operations do not change the solution set, we let
A represent the solution set of the underlying system before the row operations and we
let B represent the solution set of the underlying system after the row operations. We
show A = B by showing A ⊆ B and B ⊆ A.

Consider the first elementary row operation (scaling).

⎡⎢⎢⎢⎢⎢⎣

∗ ∗
a1⋯an b
∗ ∗

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

∗ ∗
ca1⋯can cb
∗ ∗

⎤⎥⎥⎥⎥⎥⎦

This corresponds to changing the equation a1x1 +⋯+ anxx = b to ca1x1 +⋯+ canxn = cb
(via multiplication by c ≠ 0). To show that A ⊆ B, we let (s1,⋯, sn) ∈ A and show
that (s1,⋯, sn) ∈ B. Remember that (s1,⋯, sn) ∈ A means that (s1,⋯, sn) satisfies the
original system before scaling. Since only the one row changes, the solutions of all other
equations in the system remain unchanged, so (s1,⋯, sn) satifies all other equations in
the new system. We focus on the equation that changed. But,

ca1s1 +⋯ + cansn = c(a1s1 +⋯ + ansn)
= cb

since (s1,⋯, sn) satisfies a1x1 + ⋯ + anxn = b. So (s1,⋯, sn) ∈ B. It follows that A ⊆ B.
We show B ⊆ A later.

Consider now the second elementary row operation (interchange). Swapping two rows
only changes the order in which the equations are listed. It doesn’t change the equations
at all. Because of that, it doesn’t change the solution sets at all. It follows that if the
interchange row operation is applied, we have A = B.

Lastly, consider the third elementary row operation (replacement).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
a1⋯an b
∗ ∗

c1⋯cn d
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗
a1⋯an b
∗ ∗

(c1 + ea1)⋯(cn + ean) (d + eb)
∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We suppose (s1,⋯, sn) ∈ A and proceed to show (s1,⋯, sn) ∈ B (i.e. we show A ⊆ B).
Again, our only real concern is the underlying equation of the row that changes to
(c1 + ea1)x1 +⋯ + (cn + ean)xn = d + eb. But,

(c1 + ea1)s1 +⋯ + (cn + ean)sn = (c1s1 + ea1s1) +⋯ + (cnsn + eansn)
= (c1s1 +⋯ + cnsn) + e(a1s1 +⋯ + ansn)
= d + eb

Therefore (s1,⋯, sn) ∈ B and so A ⊆ B. Again, we show B ⊆ A later.

So far we’ve shown that no solutions are lost through elementary row operations (A ⊆ B),
but we have not yet shown that extraneous solutions are not picked up. This part is
easy when we realize that all three elementary row operations are reversible.
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Reversing Row Operations

1. Multiplying a row by a number c ≠ 0 is reversed by multiplying the row again by 1
c .

2. Swapping two rows is reversed by swapping the same two rows back.

3. Replacment ri → ri + crj is reversed by ri → ri − crj .

Let’s look at an example of reversing replacement.

..Example 1.8

⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
r1 → r1 − 2r2ÐÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

0 −1 0 −1
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
r1 → r1 + 2r2ÐÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
..

Let

A = solution set of the original underlying system,

B = solution set after one elementary row operation,and

C = solution set after a second elementary row operation to reverse the first.

Because solutions are not lost through elementary row operations, A ⊆ B and B ⊆
C. But since the second elementary row operation reversed the first, the first and
third augmented matrices are identical making the underlying systems identical and the
solutions sets A and C are equal (i.e. A = C). So A ⊆ B and B ⊆ A giving A = B. This
gives us our first theorem.

Theorem 1.1. Elementary row operations do not change the solution sets to their
underlying systems.

Before starting the exercises, we review again the notation we’ve introduced to describe
elementary row operations.

ri → cri means: Multiply row i by the nonzero constant c.
ri ↔ rj means: Swap rows i and j.
ri → ri + crj means: Replace row i with itself plus the constant c times row j.

To perform a sequence of elementary row operation on a matrix, perform the first oper-
ation on the given matrix, the second operation on the matrix resulting from the first
operation, the third operation on the result of the second operation, etc.
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.... Problem Set 1.2

1. Perform the following sequence of elementary row operations on the given matrix:
r1 ↔ r2, r2 → r2 − 2r1, r3 → r3 − 3r1, r2 → −1

5r2, r3 → r3 + 10r2, r1 → r1 − 3r2.

⎡⎢⎢⎢⎢⎢⎣

2 1 4
1 3 2
3 −1 6

⎤⎥⎥⎥⎥⎥⎦

2. (a) Form the augmented matrix of the following linear system.

3x − y + z = 6
2x + y + 5z = 8
x − y − 2z = 1

(b) Perform the following sequence of elementary row operations on the augmented
matrix from (a): r1 ↔ r3, r2 → r2 − 2r1, r3 → r3 − 3r1, r2 → 1

3r2, r3 → r3 − 2r2,
r1 → r1 + 2r3, r2 → r2 − 3r3, r1 → r1 + r2.

(c) Determine the underlying linear system associated with the final augmented
matrix resulting from (b).

(d) What is the solution to the system in (c)?

(e) Check to see that the solution in (d) is also a solution to the linear system in
(a).

3. The first elementary row operation requires that the constant c is nonzero, but in the
third elementary row operation the constant c is not restricted. Explain the effect
c = 0 would have on the the underlying system and its solution set under the first
and third elementary row operations.

.

1.3 Row Reduction and Reduced Row-Echelon Form

There are several reasons for performing elementary row operations on a matrix. First
among these is that of solving systems of linear equations using Gauss-Jordan elimina-
tion. To begin, we recall an example from the previous section.

..Example 1.9

Consider a linear system that has already been put in standard form.

2x + y − 2z = −5
x + y − z = −2
3x + y − 2z = −3
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From here, we form an associated augmented matrix and then perform a sequence of
elementary row operations on that matrix.

⎡⎢⎢⎢⎢⎢⎣

2 1 −2 −5
1 1 −1 −2
3 1 −2 −3

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯ Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 2
0 1 0 1
0 0 1 5

⎤⎥⎥⎥⎥⎥⎦

From the new (improved!) augmented matrix, we recover a new but equivalent system
of equations.

x = 2
y = 1

z = 5

From this point, the unique solution (2,1,5) is obvious.
..

Not all systems reduce to systems that are this simple, so we want to develop a more
general form that allows us to recognize the solution set of a system. Since this form
is useful for other purposes as well, it is presented without reference to an underlying
system.

Definition 1.3 (Reduced Row-Echelon Form (RREF)). A matrix is said to
be in reduced row-echelon form (RREF) if it has the following four properties.

• All zero rows (rows of all zeroes) are below the nonzero rows.

• The first nonzero entry of a nonzero row is a one (leading one) and lies to the
right of all leading ones above it.

• The entries below a leading one are all zero.

• The entries above a leading one are all zero.

..Example 1.10

The following matrices are in reduced row-echelon form.

⎡⎢⎢⎢⎢⎢⎣

1 0 0 5
0 1 0 3
0 0 1 −7

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 4 8
0 1 6 −5
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 5 0
0 1 2 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, [ 1 4 0 9

0 0 1 2
] ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 4 6
0 1 3 5 7
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0
0 0 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

These matrices are not in reduced row-echelon form.

⎡⎢⎢⎢⎢⎢⎣

1 2 3 6
0 1 2 5
0 0 1 4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 0 0 2
0 3 0 1
0 0 4 5

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 3 0 2
0 0 1 1
0 0 0 5

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
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Which of these matrices is in reduced row-echelon form?

⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 2 0 3
0 0 1 2
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
, [ 1 0 2 5 1

0 1 3 7 6
]

..

Recall that our goal is to perform elementary row operations on the augmented ma-
trix formed from a system of linear equations in order to get the augmented matrix
into reduced row-echelon form so that the solution of the system can be readily deter-
mined. Any sequence of elementary row operations that achieves this goal is fine, but
the systematic process for achieving that goal is called Gauss-Jordan elimination. It is
designed to transform a matrix into reduced row-echelon form with a minimum number
of arithmetic operations. Matrices found at each stage of the Gauss-Jordan elimination
process are related to each other through these elementary row operations. We give this
relationship a name.

Definition 1.4. If one matrix A can be transformed into another B through a
sequence of elementary row operations, we say that A and B are row equivalent.

From the discussion in section 1.2 it is clear that row-equivalent augmented matrices
represent underlying systems of linear equations with identical solution sets. This fact
is the key to the proof of the following theorem. The proof is in the appendix.

Theorem 1.2. Each matrix is row equivalent to exactly one matrix in reduced
row-echelon form.

Though one generally can’t initially tell where the leading ones will end up, the above
theorem guarantees that for any given matrix, the positions of the leading ones are
determined right from the start. That is, if Abe performed one sequence of elementary
row operations on matrix A to get it into reduced row-echelon form and then Betty used
another sequence to get it into reduced row-echelon form, Abe and Betty must end up
with the same (reduced) matrix. The leading ones will be in exactly the same places for
Abe and Betty and the other corresponding entries will match exactly as well.

Definition 1.5. Let A be a matrix and R its reduced row-echelon form. The
positions in which the leading one of R appear are called the pivot positions of A.
A column of A that contains a pivot position is called a pivot column of A.

..Example 1.11

The pivot positions of the matrix

[ 1 4 0 9
0 0 1 2

]
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are (1,1) and (2,3). The pivot columns are column 1 and column 3. The pivot positions
and pivot columns are the same for all matrices that are row equivalent to this matrix.

..

We now illustrate Gauss-Jordan elimination with the following annotated example.

..Example 1.12

Unless the first column is all 0, the first pivot position is (1,1) so we need to get any 0
out of that position.

⎡⎢⎢⎢⎢⎢⎣

0 1 1 4
−2 5 −3 −8
1 −1 2 7

⎤⎥⎥⎥⎥⎥⎦

We could swap for the 1 or -2 in the first
column. We want a leading 1 in (1,1) so we
swap rows 1 and 3 (r1 ↔ r3).

r1↔r3Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
−2 5 −3 −8
0 1 1 4

⎤⎥⎥⎥⎥⎥⎦

Now we need all 0’s below the leading 1
in (1,1) so we perform row operation r2 →
r2 + 2r1.

r2→r2+2r1Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
0 3 1 6
0 1 1 4

⎤⎥⎥⎥⎥⎥⎦

Next, ignore row 1 and column 1. Unless
entries (2,2) and (3,2) in column 2 are both
0, (2,2) is a pivot position, so we need a
leading 1 there. We can accomplish it in
this example by swapping rows 2 and 3
(r2 ↔ r3).

r2↔r3Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
0 1 1 4
0 3 1 6

⎤⎥⎥⎥⎥⎥⎦

We now work to get a 0 below the second
leading 1 (pivot position). We can do that
by performing row operation r3 → r3 − 3r2.

r3→r3−3r2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
0 1 1 4
0 0 −2 −6

⎤⎥⎥⎥⎥⎥⎦

The (3,3) position is the last pivot position.
This location must hold a leading 1. To do
that, we scale. That is, we perform row op-
eration r3 → −1

2r3. Note: r3 → r3 + 3r2 or
r2 ↔ r3 would get a 1 in the right position
but would destroy some carefully placed 0’s
from our earlier work that we must pre-
serve.

r3→− 1
2
r3

Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
0 1 1 4
0 0 1 3

⎤⎥⎥⎥⎥⎥⎦

So far working from left to right we have
put the leading 1’s in place and have 0’s be-
low them. Next we work from right to left
to place 0’s above the leading 1’s. To start,
we perform row operations r1 → r1 − 2r3
and r2 → r2 − r3.

r1→r1−2r3, r2→r2−r3Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 0 1
0 1 0 1
0 0 1 3

⎤⎥⎥⎥⎥⎥⎦

Finally, we place a 0 above the leading 1 in
the pivot position (2,2). To do so, perform
row operation r1 → r1 + r2.
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r1→r1+r2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 2
0 1 0 1
0 0 1 3

⎤⎥⎥⎥⎥⎥⎦

This matrix is in reduced row-echelon form
and thus completes the Gauss-Jordan elim-
ination process.

..

We now do another example to see what else might happen in practice.

..Example 1.13

Our goal in this example is perform Gauss-Jordan elimination on

⎡⎢⎢⎢⎢⎢⎣

3 9 −1 9
2 6 0 5
1 3 −1 4

⎤⎥⎥⎥⎥⎥⎦
.

To obtain a leading 1 in (1,1), we swap rows 1 and 3 (r1 ↔ r3). Row operations
r1 → r1 − r2 or r1 → r1 − 2r3 would also work, but the row swap seems easier.

r1↔r3Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −1 4
2 6 0 5
3 9 −1 9

⎤⎥⎥⎥⎥⎥⎦

To get 0’s below the leading 1 in posi-
tion (1,1), we perform row operations r2 →
r2 − 2r1 and r3 → r3 − 3r1.

r2→r2−2r1, r3→r3−3r1Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −1 4
0 0 2 −3
0 0 2 −3

⎤⎥⎥⎥⎥⎥⎦

This time since both the (2,2) and (3,2)
entries are 0, there is no pivot position in
the second column. We move our atten-
tion to the third column where (2,3) is a
pivot position. We could do r2 → 1

2r2 to get
a leading 1 in position (2,3), but that in-
troduces fractions unnescessarily early. In-
stead, r3 → r3−r2 places a 0 below the (2,3)
pivot position.

r3→r3−r2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −1 4
0 0 2 −3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

Now scale the second row.

r2→ 1
2
r2

Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −1 4

0 0 1 −3
2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

To get a 0 above the second leading 1 (pivot
position), perform r1 → r1 + r2.

r1→r1+r2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 0 5
2

0 0 1 −3
2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

This matrix is in reduced row-echelon
form.

..
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.... Problem Set 1.3

1. Find the reduced row echelon form of each of the following matrices.

(a) [ 3 −5 −9
1 −2 −4 ] (b) [ 3 −9 −7

2 −6 −3 ]

(c) [ 3 9 7 11
1 3 2 3

] (d) [ 2 5 14
4 3 15

]

(e)

⎡⎢⎢⎢⎢⎢⎣

1 −1 −2 −3
3 −2 −3 −7
2 0 3 −3

⎤⎥⎥⎥⎥⎥⎦
(f)

⎡⎢⎢⎢⎢⎢⎣

4 8 −11
1 2 −3
−2 −4 2

⎤⎥⎥⎥⎥⎥⎦

(g)

⎡⎢⎢⎢⎢⎢⎣

1 2 5 0
−1 0 1 2
2 1 1 −3

⎤⎥⎥⎥⎥⎥⎦
(h)

⎡⎢⎢⎢⎢⎢⎣

1 2 3 4
4 −3 2 1
1 5 2 3

⎤⎥⎥⎥⎥⎥⎦

(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −2
−2 −3 1
2 6 −10
−1 1 −7

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(j)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 2
1 2 1 3
2 3 1 6
−1 1 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2. Each 2×2 matrix is row equivalent to a matrix in reduced row echelon form that falls
into one of the following four categories by the number and location of the leading
1’s:

[ 0 0
0 0

] , [ 1 ∗
0 0

] , [ 0 1
0 0

] , [ 1 0
0 1

]

The astrix (∗) indicates an arbitrary number.

(a) List all such categories of 3 × 3 matrices in reduced row-echelon form.

(b) Do the same for 4 × 4 matrices.

(c) Based on these three examples, there seems to be a clear pattern as to how
many such categories there are for n × n matrices in reduced row-echelon form.
What is that pattern?

(d) Explain why this pattern holds in general.

.

1.4 Solutions of Systems of Linear Equations

Since the underlying systems of row-equivalent augmented matrices have the same solu-
tion sets, we can find the solution to our original system by reading off the solution to
the underlying system of the reduced row-echelon form of its augmented matrix.
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..Example 1.14

The system
y + z = 4

−2x + 5y − 3z = −8
x − y + 2z = 7

corresponds to an augmented matrix that can be reduced through a sequence of elemen-
tary row operations.

⎡⎢⎢⎢⎢⎢⎣

0 1 1 4
−2 5 −3 −8
1 −1 2 7

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯ Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 2
0 1 0 1
0 0 1 3

⎤⎥⎥⎥⎥⎥⎦

From the reduced row-echelon form of the augmented matrix, we recover the equivalent
system of equations

x = 2
y = 1

z = 3

having (obvious) unique solution (2,1,3).
..

..Example 1.15

The system
x − y − z = −1
2x − y + z = 3
4x − 3y − z = 1

corresponds to an augmented matrix that can be reduced through a sequence of elemen-
tary row operations.

⎡⎢⎢⎢⎢⎢⎣

1 −1 −1 −1
2 −1 1 3
4 −3 −1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯ Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 2 4
0 1 3 5
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

From the reduced row-echelon form of the augmented matrix, we recover the equivalent
system of equations

x + 2z = 4
y + 3z = 5

0 = 0.

Notice the last equation 0x + 0y + 0z = 0 is true for all ordered triples. It places no
restrictions on the solution set at all, so we can simply ignore it. Any ordered triple that
satisfies the first two equations satisfies the whole system.

Note too that in this example the x and y columns are pivot columns (the reduced
row-echelon form contains a leading 1) but the z column is not. That allows us to easily
solve for x and y in terms of z. Now we see that z could be any number at all and x
and y can be easily adjusted to produce a solution.

x = 4 − 2z
y = 5 − 3z
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That is, if z = 0, then x = 4 and y = 5 so that (4,5,0) is a solution. If z = 1, then x = 3
and y = 2 and (3,2,1) is a solution. Etc.

Since z is seen as a free choice we illustrate that fact by setting it equal to a parameter
t (i.e. we let z = t). What results is called a general solution to this system. A one-
parameter family of solutions is given by

x = 4 − 2t
y = 5 − 3t
z = t.

..

..Example 1.16

The system
3x + 9y − z = 9
2x + 6y = 5
x + 3y − z = 4

has augmented matrix
⎡⎢⎢⎢⎢⎢⎣

3 9 −1 9
2 6 0 5
1 3 −1 4

⎤⎥⎥⎥⎥⎥⎦
.

This can be row reduced to ⎡⎢⎢⎢⎢⎢⎣

1 3 0 5
2

0 0 1 −3
2

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
which represents the system

x + 3y = 5
2

z = −3
2

0 = 0.

This time the x and z columns are pivot columns and the y column is not, so y is a free
choice. The general solution comes from setting y equal to a free parameter t.

x = 5
2 − 3t

y = t

z = −3
2

Note that z never changes but x and y depend on the parameter t.
..

..Example 1.17

The system
x + 2y − z = −2
x + 3y + 2z = −1
x + 4y + 5z = 4

has augmented matrix
⎡⎢⎢⎢⎢⎢⎣

1 2 −1 −2
1 3 2 −1
1 4 5 4

⎤⎥⎥⎥⎥⎥⎦
.
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A few elementary row operations yield the matrix

⎡⎢⎢⎢⎢⎢⎣

1 2 −1 −2
0 1 3 1
0 0 0 4

⎤⎥⎥⎥⎥⎥⎦

which represents the system

x + 2y − z = −2
y + 3z = 1

0 = 4.

Though it wouldn’t hurt to continue Gauss-Jordan elimination there is no need since the
solution set is already clear. The last equation 0x + 0y + 0z = 4 is not satisfied by any
ordered triple. This system has no solution because the third equation has no solution.
Because the original system has the same solution set as this final one, the original
system has no solution. It is an inconsistent system.

..

The lesson to be learned from this last example is that we can stop the row reduction
process as soon as we realize that the last column - the column that represents the right
hand side of the system of linear equations - is a pivot column of the augmented matrix.

Together, the last four examples illustrate the possible outcomes of Gauss-Jordan elim-
ination quite well though not all systems are square and sometimes more than one pa-
rameter (free choice) is needed to describe the solution set. One last example illustrates
this situation.

..Example 1.18

Imagine that you are given a system that has the following matrix as its reduced row-
echelon form.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 0 4 0 7 11
0 1 3 0 5 0 8 12
0 0 0 1 6 0 9 13
0 0 0 0 0 1 10 14

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Since the last column is not a pivot column, the system is consistent. Since columns 3,
5, and 7 are not pivot columns, we let x3 = r, x5 = s, and x7 = t be three parameters
we use to describe the solution set to the system. To that end, we solve each variable
x1, . . . , x7 in terms of r, s, and t.

We write the general solution

x1 = 11 − 2r − 4s − 7t
x2 = 12 − 3r − 5s − 8t
x3 = r
x4 = 13 − 6s − 9t
x5 = s
x6 = 14 − 10t
x7 = t

..
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To summarize,

• A system is inconsistent if and only if the last column of its augmented matrix is a
pivot column.

• A system has one unique solution if and only if every column but the last of its
augmented matrix is a pivot column.

• A system has a k-parameter family of solutions if and only if the last column of
its augmented matrix is not a pivot column and there are k other columns that are
not pivot columns.

The process you have just learned is Gauss-Jordan elimination. Though it is easier to
write the solution from the reduced row-echelon form (RREF), there is another generally
accepted method for solving systems that requires fewer elementary row operations. It
is called Gaussian elimination with back substitution. The trade off is fewer row
operations but the back substitution requires some work too.

Definition 1.6. A matrix is in row-echelon form (REF) if it satisfies the first
three of the four properties that define reduced row-echelon form (RREF).

• All zero rows (rows of all zeroes) are below the nonzero rows.

• The first nonzero entry of a nonzero row is a one (leading one) and lies to the
right of all leading ones above it.

• The entries below a leading one are all zero.

In row-echelon form, there must be zeroes below the leading ones (pivots) but not nec-
essarily above.

..Example 1.19

The system
y + z = 4

−2x + 5y − 3z = −8
x − y + 2z = 7

has augmented matrix
⎡⎢⎢⎢⎢⎢⎣

0 1 1 4
−2 5 −3 −8
1 −1 2 7

⎤⎥⎥⎥⎥⎥⎦
.

This can be put in the row-echelon form (REF)

⎡⎢⎢⎢⎢⎢⎣

1 −1 2 7
0 1 1 4
0 0 1 3

⎤⎥⎥⎥⎥⎥⎦
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which represents the system

x − y + 2z = 7

y + z = 4

z = 3.

We now perform the back substitution. First, we see z = 3 so we substitute 3 for z in
the second equation above and solve for y. With y and z known, we substitute those
values into the top equation and solve for x.

z = 3
y = 4 − (3) = 1
x = 7 + (1) − 2(3) = 2

giving solution (2,1,3). Back substitution can be used with parameters too. Just
substitute the parameters in and solve algebraically.

..

It should be noted that a system has a unique solution if and only if every column but
the last of the augmented matrix is a pivot column. For square systems, this means that
the reduced row-echelon form of the coefficient matrix has 1’s down the main diagonal
and 0’s elsewhere.

Definition 1.7. Let A be an m×n matrix. The rank of A, denoted rank A, equals
the number of leading ones in its reduced row-echelon form (RREF). This is equal
to the number of nonzero rows in a row-echelon form (REF) of A.

Many properties of matrices can be described in terms of rank so we will use this term
often. For now we note that rank gives us a nice way to characterize consistent and incon-
sistent systems of linear equations. The following theorem is merely a reinterpretation
of what we already know about solutions of systems of linear equations.

Theorem 1.3. A system of linear equations is consistent if and only if the rank of
its augmented matrix equals the rank of its coefficient matrix.

Definition 1.8. Let A be an m×n matrix. The nullity of A, denoted nullity A, is
n − rank A.

As noted in section 1.1, all homogeneous systems are consistent. The nullity of the coef-
ficient matrix equals the number of free parameters in the solution set of a homogeneous
system. The next theorem extends this idea to nonhomogeneous linear systems.
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Theorem 1.4. If the ranks of the coefficient matrix and the augmented matrix of a
linear system are equal, then the nullity of the coefficient matrix equals the number
of free parameters in the system’s solution.

.... Problem Set 1.4

Find the general solution of the underlying system of the augmented matrices in 1 - 8
in reduced row-echelon form.

1.

⎡⎢⎢⎢⎢⎢⎣

1 0 0 3
0 1 0 2
0 0 1 4

⎤⎥⎥⎥⎥⎥⎦
2.

⎡⎢⎢⎢⎢⎢⎣

1 0 4 2
0 1 5 3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

3.

⎡⎢⎢⎢⎢⎢⎣

1 3 0 5
0 0 1 2
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
4.

⎡⎢⎢⎢⎢⎢⎣

1 6 5 2
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

5.

⎡⎢⎢⎢⎢⎢⎣

1 0 3 0
0 1 2 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

6. [ 1 0 2 5 4
0 1 3 1 6

]

7.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 4
0 1 2
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

8.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 0 4 8 0 9
0 1 3 0 5 1 0 7
0 0 0 1 6 0 0 5
0 0 0 0 0 0 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Solve the systems in 9 - 13 using Gauss-Jordan elimination.

9. x − y = 1
3x − 2y = 7

10. x + 2y + 3z = 7
x − y − 6z = −8
x + y − z = 0

11. x − y + 3z = −2
2x − y + 5z = −1
3x − y + 7z = 0

12. x1 − x2 + 3x3 + 3x4 = −3
3x1 − 2x2 + 4x3 + 3x4 = −5

13. x1 + x2 + 2x3 + 2x4 = −5
2x1 + 3x2 + 3x3 + 3x4 = −4
x1 − x2 + 5x3 + 2x4 = −8
2x1 + x2 + 6x3 + 4x4 = −11

Solve the homogeneous systems in 14 - 16 using Gauss-Jordan elimination.

14. 3x + 4y = 0
5x + 8y = 0

15. 2x − y − 6z = 0
3x + 7y − 9z = 0
x + 2y − 3z = 0

16. 3x1 − 4x2 − 5x3 − 6x4 = 0
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Solve the systems in 17 and 18 using Gaussian elimination with back substitution.

17. x + 3y + z = 2
2x + 5y − 2z = −1
x + y − z = −2

18. x + 3y + 2z = 4
2x + 7y + 5z = 11
x + 2y + z = 1

19. A cubic curve in the x, y plane is the graph of an equation of the form y = ax3 + bx2 +
cx + d, where a, b, c, and d are constants and a /= 0. Find the equation of the cubic
curve that passes through the points (−1,−10), (0,−4), (1,−2), and (2,2).

Solve the systems in 20 and 21 for x and y in terms of a, and b.

20. x + y = a
x + 2y = b

21. x + 2y = a
2x + 4y = b

.

1.5 Matrix Operations

Matrices are used throughout mathematics and its applications in many ways other
than representing systems of linear equations. Matrices can be added, subtracted, and
multiplied (this is called matrix arithmetic). These matrix operations have many
properties (like associativity and distributivity) that are similar to, though sometimes
more complicated than, their counterparts in the real number system. We study matrix
operations and their properties in the next two sections.

We have already seen several matrices. They consist of numbers lined up in rows and
columns (an array). In some settings, we want to put other objects, like polynomials, in
matrices rather than numbers. The objects that populate matrices in linear algebra are
called scalars. From here on, assume that a scalar is a real number unless suggested
otherwise. Later, we will briefly discuss scalars consisting of complex numbers.

Definition 1.9. A matrix is a rectangular array of scalars. A matrix with m rows
and n columns is called an m×n matrix (m and n are called the dimensions of the
matrix). A matrix with just one row is called a row vector and a matrix with just
one column is called a column vector. Matrices with the same number of rows
and columns are called square matrices.

Upper case letters like A, B, M , and P are usually used to indicate a matrix except
when they are row or column vectors. In that case, bold-faced lowercase letters (e.g. v
or w) are used in print. When handwritten, arrows are usually placed over the top to
indicate a vector (e.g. v⃗ or w⃗).
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..Example 1.20

In this example, A is a 2×3 matrix, u is a column vector called a 2-vector because it has
two entries, v is a row vector (a 4-vector), and B is a 2 × 2 (and hence square) matrix.

A = [ 1 2 3
4 5 6

] , u = [ 3
−5 ] , v = [ 1 0 5 −2 ] , B = [ 1 2

5 −3 ]

..

Double subscripts are used to indicate the position (row and column) of a scalar within
a matrix. The entry in row i and column j of the matrix A is indicated by ai,j or (A)i,j .
Only one subscript is used to indicate the position of a scalar in a row or column vector
because the other subscript is known to be 1. In the example above, a2,1 = 4, u1 = 3,
v2 = 0, and (B)1,2 = 2.

Matrix Arithmetic

Definitions 1.10 and 1.11 indicate when and how we may compare or combine (add)
matrices.

Definition 1.10 (Equality of Matrices). Two matrices A and B are equal if they
have the same dimensions and ai,j = bi,j for all i and j. That is, A = B if they have
the same shape and corresponding entries are equal.

If two matrices have the same dimensions, they can be added and subtracted.

..Example 1.21

Addition is performed by simply adding corresponding entries together.

[ 2 1
4 −3 ] + [

3 −4
0 1

] = [ 5 −3
4 −2 ]

Subtraction is similar.

[ 2 1
4 −3 ] − [

3 −4
0 1

] = [ −1 5
4 −4 ]

..

Definition 1.11 (Matrix Addition). If A and B are both m×n matrices, then A+B
is m × n and (A +B)i,j = ai,j + bi,j .
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..Example 1.22

A matrix A can also be multiplied by a scalar. To do this, each entry of A gets multiplied
by the scalar.

3 [ 2 1
4 −3 ] = [

6 3
12 −9 ]

..

Definition 1.12 (Scalar Multiplication). If A is an m × n matrix and c is a scalar,
then cA is m × n and (cA)i,j = cai,j .

If we have a collection of matrices of the same dimensions, we can form a linear com-
bination of them by multiplying each one by some scalar and adding them together.

..Example 1.23

Since

2 [ 1 0
2 1

] + (−1) [ 3 1
−1 0

] + 3 [ 0 1
1 0

] = [ 2 0
4 2

] + [ −3 −1
1 0

] + [ 0 3
3 0

]

= [ −1 2
8 2

]

we say that

[ −1 2
8 2

]

is a linear combination of

[ 1 0
2 1

] , [ 3 1
−1 0

] , and [ 0 1
1 0

] .

Of course, these three matrices have many other linear combinations formed by choosing
different scalar multipliers.

..

We will frequently have opportunities to find linear combinations of sets of column
vectors.

Vector Equations

..Example 1.24

To determine whether

⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦
is a linear combination of

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
, we look for

scalars x and y such that x

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
+ y
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦
. To solve this vector equation, the
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top component on the left side of the equation 2x+1y must equal 5. Likewise, the middle
and bottom components must equal 1 and 8 respectively. That is, there must be scalars
x and y that satisfy this system of equations.

2x + y = 5
x + 2y = 1
3x + y = 8

Row reduction leads to the following sequence of augmented matrices.

⎡⎢⎢⎢⎢⎢⎣

2 1 5
1 2 1
3 1 8

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 2 1
0 −3 3
0 −5 5

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 2 1
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 0 3
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦

The solution to the underlying system is thus x = 3, y = −1. So the answer is yes,

⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦

is a linear combination of

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
. The vector equation below demonstrates

this fact.

3

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
+ (−1)

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦
..

We see in this last example that solving a vector equation for unknown scalars x and y is
equivalent to solving a system of linear equations. We will do this type of thing so often
that we will skip over the middle step of writing down the system of linear equations as
this next example illustrates.

..Example 1.25

Is

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
is a linear combination of

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
?

⎡⎢⎢⎢⎢⎢⎣

2 1 3
1 2 1
3 1 2

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 2 1
0 −3 1
0 −5 1

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 2 1
0 −3 1
0 15 −3

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 2 1
0 −3 1
0 0 2

⎤⎥⎥⎥⎥⎥⎦
Since the third column is a pivot column, we see that the underlying system is inconsis-

tent. This means that

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
is not a linear combination of

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
.

..

Matrix multiplication is the most complicated of the matrix operations. It distinguishes
itself from addition and subtraction in that in order to multiply two matrices, they need
not have the same dimensions. Strangely, in order to multiply two matrices, we require
that the number of columns of the first matrix (on the left) equals the number of rows
of the second matrix (on the right). We begin by considering the special case in which
the second matrix is a column vector.
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Definition 1.13. Suppose A is an m × n matrix and v is an n × 1 column vector.
The product Av is the m × 1 column vector defined by

(Av)i =
n

∑
j=1

aijvj .

..Example 1.26

Let

A = [ 4 −2 0
0 −4 2

] and v =
⎡⎢⎢⎢⎢⎢⎣

1
−3
5

⎤⎥⎥⎥⎥⎥⎦
.

Since A has three columns and v has three rows, they can be multiplied. The result is
a 2 × 1 column vector. Following the definition, we get

[ 4 −2 0
0 −4 2

]
⎡⎢⎢⎢⎢⎢⎣

1
−3
5

⎤⎥⎥⎥⎥⎥⎦
= [ 4 ⋅ 1 + (−2) ⋅ (−3) + 0 ⋅ 5

0 ⋅ 1 + (−4) ⋅ (−3) + 2 ⋅ 5 ] = [
10
22
] .

To compute the first entry (Av)1 in the product we take the first row of the matrix on the
left and line it up with the column vector on the right. We then multiply componentwise
and add. The second entry is calculated in the same way except that the second row of
A was used instead of the first.

..

This process of multiplying componentwise and adding is called a dot product and will
be studied in more detail later. We find the first entry of the product Av by finding the
dot product by ‘dotting’ the first row of A with v. The second entry of the product is
the second row of A ‘dotted’ with v.

..Example 1.27

There is another important way of viewing matrix multiplication that involves linear
combinations. It is illustrated well in Example 1.26 except we take a detour through
linear combinations of column vectors before we finish.

[ 4 −2 0
0 −4 2

]
⎡⎢⎢⎢⎢⎢⎣

1
−3
5

⎤⎥⎥⎥⎥⎥⎦
= [ 4 ⋅ 1 + (−2) ⋅ (−3) + 0 ⋅ 5

0 ⋅ 1 + (−4) ⋅ (−3) + 2 ⋅ 5 ]

= 1 [ 4
0
] + (−3) [ −2−4 ] + 5 [

0
2
]

= [ 10
22
] .

Notice that the three column vectors in the linear combination come from the columns
of A, and the scalar multipliers are the entries of v. This is not an accident. As long as
the matrix A can be multiplied by the vector v, the result is a linear combination of the
columns of A with the scalar multipliers coming from the entries of v.

..
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Matrix Equations

Is there a column vector [ x
y
] that satisfies the matrix equation

⎡⎢⎢⎢⎢⎢⎣

2 1
1 2
3 1

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦
?

We can view this question in three different ways. The first is the matrix equation itself.

Solutions are 2 × 1 column vectors that if substituted in for [ x
y
] would satisfy the

matrix equation. But, if we carry out the matrix multiplication, we see that we seek x
and y such that

⎡⎢⎢⎢⎢⎢⎣

2x + y
x + 2y
3x + y

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦
.

That is, we seek a solution to the system

2x + y = 5
x + 2y = 1
3x + y = 8.

This system of linear equations is the second interpretation of the matrix equation. We

could recognize A =
⎡⎢⎢⎢⎢⎢⎣

2 1
1 2
3 1

⎤⎥⎥⎥⎥⎥⎦
as the coefficient matrix of the system. Since solving a

system of linear equations is equivalent to solving a matrix equation, we use convenient
matrix notation Ax = b to discuss this particular system. Here A represents the coef-
ficient matrix, the entries of vector b constitute the right-hand side of the system and
the vector x contains the unknowns as entries.

A third way to view this problem is by taking a vector equation detour.

Matrix Equation

⎡⎢⎢⎢⎢⎢⎣

2 1
1 2
3 1

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦

System of Linear Equations

2x + y = 5
x + 2y = 1
3x + y = 8

Vector Equation

x

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
+ y
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
1
8

⎤⎥⎥⎥⎥⎥⎦

These are three equivalent ways of looking at the same thing. We solve all three with
the same augmented matrix and using Gauss-Jordan elimination.

⎡⎢⎢⎢⎢⎢⎣

2 1 5
1 2 1
3 1 8

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 3
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦

The reduced row-echelon form on the right above gives values of x and y (namely x = 3

and y = −1) so the column vector [ 3
−1 ] satisfies the matrix equation.



30 Chapter 1. Systems of Linear Equations and Matrices

In the matrix form Ax = b of a system of linear equations, the vector x is a column
vector of unknowns. In light of this, it is natural to think of a solution to such a system
as a column vector rather than an n-tuple. We introduce the vector form for the
solution of a linear system here. If, for example, (3,−1) is the only solution to a
particular system, then the vector form for that solution is

[ x
y
] = [ 3

−1 ] .

If, on the other hand, a linear system has a general solution of

x = 2 + 3s + 4t
y = s
z = t

then the vector form of the solution is

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
0
0

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

3
1
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

4
0
1

⎤⎥⎥⎥⎥⎥⎦
.

The vector form is not the only acceptable way to describe the solution to a linear
system, but it is used frequently.

We now move on to define matrix multiplication where the matrix on the right has more
than one column.

Definition 1.14. If A is an m× p matrix and B is a p×n matrix, then the product
AB is defined as an m × n matrix in which

(AB)ij =
p

∑
k=1

aikbkj .

Chasing the double subscripts around can be very confusing so we do it as seldom as
possible, but note that this formula tells us that the first column of the product AB
(when j = 1) is obtained by dotting each row of A with the first column of B, just as
earlier when B was just a column vector. Now that we consider B with more columns,
we note that the second column of AB is obtained by dotting each row of A with the
second column of B, etc. So, to find the product AB, we multiply A by the first column
of B to get the first column of AB, then we repeat this process with each column of B
to get the remaining columns of AB.

Thinking of B = [b1,⋯,bn] as columns augmented together, then AB = A [b1,⋯,bn] =
[Ab1,⋯,Abn]. Keep this thought in mind as it will be helpful to think this way later.

We can take this last idea one step further by breaking A =
⎡⎢⎢⎢⎢⎢⎣

a1
⋮

am

⎤⎥⎥⎥⎥⎥⎦
into m row vectors

and B = [b1,⋯,bn] into n column vectors. Then, (AB)ij = ai ⋅bj (vector ai dotted with



1.5. Matrix Operations 31

vector bj). Visually,

AB =
⎡⎢⎢⎢⎢⎢⎣

a1
⋮

am

⎤⎥⎥⎥⎥⎥⎦
[b1,⋯,bn] =

⎡⎢⎢⎢⎢⎢⎣

a1 ⋅ b1 ⋯ a1 ⋅ bn

⋮ ⋮
am ⋅ b1 ⋯ am ⋅ bn

⎤⎥⎥⎥⎥⎥⎦
.

..Example 1.28

Can we find a 3 × 3 matrix X such that AX = B where

A =
⎡⎢⎢⎢⎢⎢⎣

2 1 0
1 2 1
3 1 1

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

3 5 2
1 7 3
6 6 5

⎤⎥⎥⎥⎥⎥⎦
?

Solution We can find each column of X as a solution to each of these matrix equations
respectively.

⎡⎢⎢⎢⎢⎢⎣

2 1 0
1 2 1
3 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

3
1
6

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2 1 0
1 2 1
3 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
7
6

⎤⎥⎥⎥⎥⎥⎦
,

and ⎡⎢⎢⎢⎢⎢⎣

2 1 0
1 2 1
3 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
3
5

⎤⎥⎥⎥⎥⎥⎦
We could solve all three with Gauss-Jordan elimination. Since all three have A as the
coefficient matrix, there would be a great deal of redundant calculation by solving each
one separately. In fact, the calculations would only differ in the last column. To save
work, we solve all three at once by augmenting all three last columns to A at once. We
separate the three solutions once Gauss-Jordan elimination is complete.

⎡⎢⎢⎢⎢⎢⎣

2 1 0 3 5 2
1 2 1 1 7 3
3 1 1 6 6 5

⎤⎥⎥⎥⎥⎥⎦

r1↔r2Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 7 3
2 1 0 3 5 2
3 1 1 6 6 5

⎤⎥⎥⎥⎥⎥⎦

r2→r2−2r1,r3→r3−3r1Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 7 3
0 −3 −2 1 −9 −4
0 −5 −2 3 −15 −4

⎤⎥⎥⎥⎥⎥⎦

⋯Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 2 1 1
0 1 0 −1 3 0
0 0 1 1 0 2

⎤⎥⎥⎥⎥⎥⎦
This shows that if done separately, the final augmented matrices would be

⎡⎢⎢⎢⎢⎢⎣

1 0 0 2
0 1 0 −1
0 0 1 1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 0 3
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 1 2

⎤⎥⎥⎥⎥⎥⎦
.

The three columns of X are thus

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
3
0

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
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making

X =
⎡⎢⎢⎢⎢⎢⎣

2 1 1
−1 3 0
1 0 2

⎤⎥⎥⎥⎥⎥⎦
.

..

In Example 1.28, it turned out that there was just one possibility for each column of X
resulting in one unique X that satisfied the equation AX = B. Other matrix equations
could result in different kinds of solutions.

Definition 1.15 (Transpose of a Matrix). The transpose of an m×n matrix A is
the n ×m matrix AT formed by interchanging the rows and columns of A. That is
(AT )ij = aji.

..Example 1.29

[ 1 2
3 4

]
T

= [ 1 3
2 4

] , [ 1 2 3
4 5 6

]
T

=
⎡⎢⎢⎢⎢⎢⎣

1 4
2 5
3 6

⎤⎥⎥⎥⎥⎥⎦
, and [ a b c ]T =

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
.

..

Definition 1.16 (Zero Matrix). For each pair of dimensions m and n, there is an
m × n zero matrix, denoted 0m,n, that has 0 for all of its entries.

When the dimensions are clear or unimportant the zero matrix may be denoted by 0.

..Example 1.30

02,2 = [
0 0
0 0

] and 02,3 = [
0 0 0
0 0 0

] .

..

The zero matrices serve as the additive identities for matrices because if A is m×n, then
A + 0m,n = 0m,n +A = A.

Definition 1.17 (Negative of a Matrix). If A is m × n, the negative of A, denoted
−A, is m × n and (−A)ij = −aij .

Definition 1.18 (Identity Matrix). For each positive integer n, there is an n × n
identity matrix, denoted In, that has 1’s in the diagonal entries and 0’s elsewhere.
That is,

(In)ij = {
1 if i = j
0 if i ≠ j .
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..Example 1.31

I2 = [
1 0
0 1

] and I3 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

..

The identity matrices serve as the multiplicative identities for matrices because if A is
m × n, then AIn = A and ImA = A. The reader is invited to verify these facts in the
exercises.

Matrix operations enjoy many algebraic properties. The following theorem lists many
of them.

Theorem 1.5. Let A,B, and C represent matrices and a, b, and c scalars. Assuming
the dimensions of the matrices allow the indicated operations, we have the following.

(a) A +B = B +A

(b) A + (B +C) = (A +B) +C

(c) a(B +C) = aB + aC

(d) a(B −C) = aB − aC

(e) (a + b)C = aC + bC

(f) (a − b)C = aC − bC

(g) A(B +C) = AB +AC

(h) (A +B)C = AC +BC

(i) A(B −C) = AB −AC

(j) (A −B)C = AC −BC

(k) a(bC) = (ab)C

(l) a(BC) = (aB)C = B(aC)

(m) A(BC) = (AB)C

(n) A0 = 0 and 0A = 0

(o) (−1)A = −A

(p) A + (−1)A = A −A = 0

(q) (A +B)T = AT +BT

(r) (AB)T = BTAT

(note the order switch)

It is clear that most of these properties are true because they correspond to properties
that you already know are true for real numbers and matrix operations are performed
componentwise. They can all be proved using the componentwise definitions provided
earlier. Two proofs of medium difficulty are shown below. Many are easier, but prop-
erty 1.5(m) is more challenging. You are asked to prove others in the exercises. You
should be familiar enough with these properties to recognize them when they are used
and for you to use them yourself when needed, but you need not memorize them.

Proof (g) Suppose A is m×p and B and C are p×n. Since B and C are p×n, the sum
B +C is also p × n. Since A is m × p and (B +C) is p × n, A(B +C) is m × n. Similarly,
since A is m × p and B and C are both p × n, we see that products AB and AC are
m × n. It follows that AB +AC is m × n. Therefore A(B + C) and AB +AC have the
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same dimensions. We need only show that their corresponding entries are equal. But

(A(B +C))ij =
p

∑
k=1
(A)ik(B +C)kj by the definition of matrix multiplication

=
p

∑
k=1
(A)ik [(B)kj + (C)kj] by the definition of matrix addition

=
p

∑
k=1
[(A)ik(B)kj + (A)ik(C)kj] by the distributive property of real numbers

=
p

∑
k=1
[(A)ik(B)kj] +

p

∑
k=1
[(A)ik(C)kj] by rearranging the terms

= (AB)ij + (AC)ij by the definition of matrix multiplication

= (AB +AC)ij by the definition of matrix addition.

But if the (i, j)th elements of two matrices are equal for all i and j, the matrices are
equal. That is, A(B +C) = AB +AC.

(r) We now show that (AB)T = BTAT . To that end, suppose A is m× p and B is p×n.
The product AB is then m×n so that (AB)T is n×m. Similarly, BT is n× p and AT is
p×m. It follows that BTAT is also n×m. So we need only show that the corresponding
entries of the matrices on each side are the same. But by the definition of a matrix
transpose,

((AB)T )
ij
= (AB)ji

=
p

∑
k=1
(A)jk(B)ki

by the definition of matrix multiplication. But these same two definitions together with
the commutative property of multiplication in the real numbers gives

(BTAT )i,j =
p

∑
k=1
(BT )ik(AT )kj

=
p

∑
k=1
(B)ki(A)jk

=
p

∑
k=1
(A)jk(B)ki.

Therefore, (AB)T = BTAT .

We have seen that if A = [a1,⋯,an] is m × n with columns a1,⋯,an and b =
⎡⎢⎢⎢⎢⎢⎣

b1
⋮
bn

⎤⎥⎥⎥⎥⎥⎦
is

n × 1, then the product Ab = b1a1 + ⋯ + bnan is a linear combination of the columns of

A. In the same manner, if A =
⎡⎢⎢⎢⎢⎢⎣

a1
⋮

am

⎤⎥⎥⎥⎥⎥⎦
is partitioned into rows and b = [b1⋯bn] is a row

vector then bA = b1a1 +⋯ + bnan is a linear combination of the rows of A.

From this, we see that every column of the product AB is a linear combination of the
columns of A. Similarly, every row of the product BA is a linear combination of the
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rows of A. This can be seen directly from the definition of matrix multiplication or as
an application of (AB)T = BTAT . This will be important in section 4.4.

Though the list of algebraic properties of matrices is long, there is one property that is
conspicuous by its absence. That property is the commutative property of multiplica-
tion. This property is missing because matrix multiplication is not commutative as the
following example illustrates.

..Example 1.32

[ 1 2
0 3

] [ 1 1
2 1

] = [ 5 3
6 3

]

but

[ 1 1
2 1

] [ 1 2
0 3

] = [ 1 5
2 7

] .

..

There are some other familiar properties of real numbers that do not carry over to
matrices. For example, to solve x2 − x − 2 = 0 we first factor to find (x + 1)(x − 2) = 0.
This suggests that either x + 1 = 0 or x − 2 = 0 giving x = −1 or x = 2. To solve this
equation, we used the fact that if a and b are real numbers such that ab = 0, then either
a = 0 or b = 0. We say that the real numbers do not have zero divisors. But there are
zero divisors among real matrices as the next example proves.

..Example 1.33

[ 1 1
1 1

] [ 2 3
−2 −3 ] = [

0 0
0 0

]

Neither of the matrices on the left-hand side of the equation is the 2× 2 zero matrix but
their product (on the right) is a zero matrix.

..

Another familiar property of the real number system R is the cancelling law. We know
that if ab = ac and a ≠ 0, we can ’cancel’ the a’s and conclude that b = c. Can the same
be said about matrices? That is, if matrices AB = AC and A is not a zero matrix, can
we conclude that B = C? No!

..Example 1.34

[ 1 1
1 1

] [ 3 1
2 2

] = [ 5 3
5 3

]

and

[ 1 1
1 1

] [ 4 2
1 1

] = [ 5 3
5 3

]

so that

[ 1 1
1 1

] [ 3 1
2 2

] = [ 1 1
1 1

] [ 4 2
1 1

] .
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But clearly we also have

[ 3 1
2 2

] ≠ [ 4 2
1 1

] .

..

.... Problem Set 1.5

In 1 - 6, perform the following matrix operations, compare results of the parts of each
problem, and explain.

1. (a) 3

⎡⎢⎢⎢⎢⎢⎣

1
2
5

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

3
−1
4

⎤⎥⎥⎥⎥⎥⎦
− 4
⎡⎢⎢⎢⎢⎢⎣

−1
2
−2

⎤⎥⎥⎥⎥⎥⎦

(b)

⎡⎢⎢⎢⎢⎢⎣

1 3 −1
2 −1 2
5 4 −2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

3
2
−4

⎤⎥⎥⎥⎥⎥⎦

2. (a) [ 1 2
3 −1 ]([

1 0
2 1

] + [ 2 3
1 4

])

(b) [ 1 2
3 −1 ] [

1 0
2 1

]+[ 1 2
3 −1 ] [

2 3
1 4

]

3. (a) [ 1 2
3 −1 ] [

1 0
2 1

]

(b) [ 1 0
2 1

] [ 1 2
3 −1 ]

4. (a) [ 2 1 4
−1 3 5

]
⎡⎢⎢⎢⎢⎢⎣

1 −1
2 3
5 −2

⎤⎥⎥⎥⎥⎥⎦

(b)

⎡⎢⎢⎢⎢⎢⎣

1 −1
2 3
5 −2

⎤⎥⎥⎥⎥⎥⎦
[ 2 1 4
−1 3 5

]

5. (a) [ 1 2
−1 0

] [ 3 1 −2
1 0 4

]

(b) [ 3 1 −2
1 0 4

] [ 1 2
−1 0

]

6. (a) ([ 4 1
5 2

] [ 1 0
2 3

])
T

(b) [ 4 1
5 2

]
T

[ 1 0
2 3

]
T

(c) [ 1 0
2 3

]
T

[ 4 1
5 2

]
T

Each system of linear equations in 7 - 9 can be rewritten as a vector equation or as a
matrix equation. Rewrite each of the following in the other two forms and solve.

7. x − y + 3z = 1
2x − y + 6z = 3
3x − y + 9z = 5

8. x

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ y
⎡⎢⎢⎢⎢⎢⎣

2
3
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−4
−5
2

⎤⎥⎥⎥⎥⎥⎦

9.

⎡⎢⎢⎢⎢⎢⎣

1 1 3 4
2 3 8 11
−1 1 1 2

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

3
7
2

⎤⎥⎥⎥⎥⎥⎦
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10. Determine whether either of the two vectors listed below is a linear combination of
the three vectors in the set. If so, write it as a linear combination of the three.
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−4
−1
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
−9
15
8

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
4
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
−3
7
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

11. Find the 3 × 3 matrix X that satisfies the matrix equation XA = B, where

A =
⎡⎢⎢⎢⎢⎢⎣

1 1 1
−1 0 −1
1 2 2

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

3 5 4
4 7 7
3 6 4

⎤⎥⎥⎥⎥⎥⎦
.

12. Describe all 2 × 2 matrices X that satisfy the matrix equation AX = B, where

A = [ 1 2
2 4

] and B = [ 5 3
10 6

].

13. Prove parts (e) and (h) of Theorem 1.5.

14. Prove that for all m × n matrices A, AIn = A and ImA = A.

15. A square matrix A is symmetric if AT = A and skew-symmetric if AT = −A. Let
B be a square matrix.

(a) Prove BBT is symmetric.

(b) Prove B +BT is symmetric.

(c) Prove B −BT is skew-symmetric.

(d) Prove that any square matrix is the sum of a symmetric matrix and a skew-
symmetric matrix. Hint: Write B as a linear combination of two of the three
matrices above.

16. A diagonal matrix is a square matrix in which all entries off the main diagonal
are 0. That is, a square matrix A is a diagonal matrix if ai,j = 0 whenever i /= j.
An upper triangular matrix is a square matrix in which all entries below the main
diagonal are 0. That is, A is an upper triangular matrix if ai,j = 0 whenever i > j.
A lower triangular matrix is a square matrix in which all entries above the main
diagonal are 0. That is, A is a lower triangular matrix if ai,j = 0 whenever i < j.

(a) Prove that the sum of two diagonal matrices is diagonal.

(b) Prove that the product of two diagonal matrices is diagonal.

(c) Prove that the product of two upper triangular matrices is upper triangular.

(d) Must the sum and product of two lower triangular matrices be lower triangular?

.
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1.6 Matrix Inverses

In the set of real numbers R we say that 5 and 1
5 are multiplicative inverses because

5(15) = (
1
5)5 = 1, the multiplicative identity. In section 1.5, we saw that square matrices

with 1’s down the main diagonal and 0’s elsewhere serve as the identities for matrix
multiplication.

Since

[ 3 5
1 2

] [ 2 −5
−1 3

] = [ 1 0
0 1

] ,

the two matrices on the left-hand side of the equation appear to be inverses of each other.
However, the situation with matrices is more complicated than with real numbers in part
because matrix multiplication is not commutative. So we must define multiplicative
inverses in matrix arithmetic carefully.

Definition 1.19. Suppose A is an m×n matrix. A matrix L is a left inverse of A
if LA = In. Similarly, a matrix R is a right inverse of A if AR = Im. If B is both
a left and a right inverse of A, then B is called a two-sided inverse of A.

..Example 1.35

The multiplication shown above demonstrates that [ 2 −5
−1 3

] is a right inverse of

[ 3 5
1 2

] . Reversing order and multiplying yields

[ 2 −5
−1 3

] [ 3 5
1 2

] = [ 1 0
0 1

]

so [ 2 −5
−1 3

] is a left inverse of [ 3 5
1 2

] too. Thus, [ 2 −5
−1 3

] is a two-sided inverse

of [ 3 5
1 2

].
..

Theorem 1.6. Suppose A is an m × n matrix that has both a left inverse L and a
right inverse R. Then L = R.

Proof Since LA = In and A is m×n, L is n×m. Similarly, AR = Im and R is n×m. So

L = LIm = L(AR) = (LA)R = InR = R.

If A has both a left and a right inverse, then, in fact, it has a two-sided inverse since
they are equal.
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Corollary 1.7. Two-sided inverses are unique.

Proof Suppose B and C are two-sided inverses of a matrix A. We show that B = C.
But, since B is a two-sided inverse of A, B is a left inverse of A. And, since C is a two-
sided inverse of A, C is a right inverse of A. By Theorem 1.6, B = C. Thus, two-sided
inverses are unique.

Matrices that are not square can have one-sided inverses. They are interesting and
important, but are not usually studied in an introductory linear algebra course. Rather,
when dealing with inverses, we restrict our consideration to square matrices where things
work out particularly nicely. This is primarily because of the following theorem which
we prove at the end of this section.

Theorem 1.8. If A is an n × n matrix and B is a left inverse of A, then B is a
two-sided inverse of A. Similarly, if B is a right inverse of A, then B is a two-sided
inverse of A.

Theorem 1.8 allows us to stop discussing left and right inverses when dealing with square
matrices except where necessary for clarity and only consider two-sided inverses. Since
this is the only type of inverse we consider, we refer to them simply as inverses rather
than as two-sided inverses. Since two-sided inverses are unique, we can talk about the
inverse of A rather than an inverse of A and we denote that inverse by A−1.

Every real number except 0 has a multiplicative inverse (its reciprocal). That is not
true, however, for every nonzero square matrix.

..Example 1.36

The matrix A = [ 1 1
1 1

] has no inverse. In order for it to have an inverse, there would

need to exist a matrix [ a b
c d

] such that

[ 1 1
1 1

] [ a b
c d

] = [ 1 0
0 1

] .

But,

[ 1 1
1 1

] [ a b
c d

] = [ a + c b + d
a + c b + d ] ,

so in order for A to have an inverse we must have two real numbers a and c satisfying
a + c = 1 and a + c = 0. Clearly that is impossible. So A has no inverse.

..

Definition 1.20. A square matrix that has an inverse is called an invertible ma-
trix or a nonsingular matrix. A square matrix that has no inverse is called a
singular matrix or a matrix that is not invertible.
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..Example 1.37

The matrix A = [ 1 1
1 1

] is not invertible (see Example 1.36). It is singular. On the

other hand, we see that B = [ 3 5
1 2

] does have an inverse so it is an invertible matrix.

That is, B is nonsingular and

B−1 = [ 3 5
1 2

]
−1

= [ 2 −5
−1 3

] .

..

Theorem 1.9 shows an important connection between solutions of square systems of
linear equations and the invertibility of their coefficient matrices.

Theorem 1.9. If A is an invertible n × n matrix and b is any n-vector, then the
system Ax = b has a unique solution x = A−1b.

Proof Substituting A−1b for x in the equation Ax = b we see

A(A−1)b = (AA−1)b = Inb = b.

So, A−1b satisfies the system and is a solution to the system. To show that it is the only
solution, we suppose u is any solution to the system and show that u = A−1b. Since u
is a solution to the system, it satisfies Ax = b. Thus, Au = b. Multiplying both sides of
this equation on the left by A−1 yields the following equalities which complete the proof.

A−1(Au) = A−1b

(A−1A)u = A−1b

Inu = A−1b

u = A−1b

Finding inverses is particularly simple for 2 × 2 matrices.

Theorem 1.10. Let A = [ a b
c d

]. If ad − bc ≠ 0, then A is invertible and

A−1 = 1

ad − bc
[ d −b
−c a

] .

If ad−bc = 0, then A is not invertible. The quantity ad−bc is called the determinant
of A.

Proof Suppose that ad − bc ≠ 0. Note that

( 1

ad − bc
[ d −b
−c a

])[ a b
c d

] = 1

ad − bc
[ ad − bc bd − bd
ac − ac ad − bc ] = [

1 0
0 1

] .
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It follows that 1
ad−bc [

d −b
−c a

] is a left inverse of A. Using Theorem 1.8 we conclude

that it is the inverse of A (i.e. a two-sided inverse of A) so

A−1 = 1

ad − bc
[ d −b
−c a

] .

Suppose now that ad− bc = 0. We prove that A is not invertible. We do this by showing
Ax = 0 has more than one solution and then we use Theorem 1.9 to conclude A is not
invertible. We consider three cases.
Case I. a = c = 0. Here, ad − bc = 0 and the system

[ 0 b
0 d

] [ x
y
] = [ 0

0
]

has distinct solutions [ 0
0
] and [ 1

0
].

Case II. a ≠ 0, but ad − bc = 0. The system

[ a b
c d

] [ x
y
] = [ 0

0
]

has distinct solutions [ 0
0
] and [ −b

a
] since

[ a b
c d

] [ 0
0
] = [ 0

0
] and [ a b

c d
] [ −b

a
] = [ ab − ab

ad − bc ] = [
0
0
] .

Case III. c ≠ 0, but ad − bc = 0. Here, the distinct solutions are [ 0
0
] and [ d

−c ].

From these three cases, it follows that if ad − bc = 0, A is not invertible.

Note that this proof referenced Theorem 1.8, a theorem we have not yet proved. We
use Theorem 1.8 in one more proof in this section. We must be careful that we do not
use either of these theorems in our proof of Theorem 1.8 so that our logic is sound. We
cannot assume what we want to prove. We present this material in this rather convoluted
order so that we can present the clearer, more applied results first and save the more
theoretical results for later.

..Example 1.38

For A = [ 1 2
3 4

], the determinant of A is (1)(4) − (2)(3) = −2 ≠ 0. So A is invertible

and

A−1 = 1

−2
[ 4 −2
−3 1

] = [ −2 1
3
2 −1

2

] .

It follows that the system
x + 2y = 5
3x + 4y = 6

has one unique solution

[ x
y
] = [ −2 1

3
2 −1

2

] [ 5
6
] = [ −49

2

] .
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For B = [ 2 5
6 15

], the determinant of B is (2)(15) − (5)(6) = 0. So B is singular.

..

Recall from the last section that if we have more than one system of equations with the
same coefficient matrix, we can solve them all at once as illustrated in Example 1.39.

..Example 1.39

To solve the three linear systems

x − y = 1
2x − y = 3 ,

x − y = 1
2x − y = 5 , and

x − y = 1
2x − y = 7 ,

form the augmented matrix

[ 1 −1 1 1 1
2 −1 3 5 7

]

which can be row reduced to

[ 1 0 2 4 6
0 1 1 3 5

] .

The solutions to the three systems in vector form are

[ 2
1
] , [ 4

3
] , and [ 6

5
]

respectively.
..

We use the method from Example 1.39 to find inverses of square matrices that are larger
than 2 × 2. But first a little notation.

Definition 1.21. For any positive integer n, define e1,e2,⋯,en to be the
1st,2nd,⋯, nth columns of the n × n identity matrix In.

..Example 1.40

I2 = [
1 0
0 1

] giving e1 = [
1
0
] and e2 = [

0
1
] .

I3 =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
giving e1 =

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
,e2 =

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
, and e3 =

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
.

In general the n × n identity can be partitioned into columns.
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In =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [e1,e2,⋯,en] giving e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,⋯,en =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

..

The vectors e1,⋯,en are sometimes called the standard basis elements or standard
unit n-vectors. This terminology will make more sense later.

To find the inverse of an n × n matrix A, we seek an n × n matrix X with the property
that AX = In. If we partition X and In into columns, the matrix equation AX = In
becomes

A [x1,⋯,xn] = [Ax1,⋯,Axn] = [e1,⋯,en] .

Thinking of the columns of this matrix equation separately, we get n different systems
of equations with the same coefficient matrix A:

Ax1 = e1,Ax2 = e2,⋯,Axn = en.

The solution to the first system give us the first column of A−1. The solution to the
second system gives us the second column of A−1, etc. But we can solve all of these at
once by augmenting the whole identity In to A and reducing. In summary, to find A−1

we do the following.

1. Augment In to A. That is, form matrix [A∣In].

2. Perform elementary row operations on the augmented matrix to get it into reduced
row-echelon form.

3. If In appears on the left-hand side of the reduced augmented matrix, then A−1 appears
on the right-hand side. That is,

[A∣In] Ð→ ⋯Ð→ [In∣A−1] .

..Example 1.41

If it exists, we find the inverse of

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3
1 3 −1
−2 −5 −1

⎤⎥⎥⎥⎥⎥⎦
.

To that end,

⎡⎢⎢⎢⎢⎢⎣

1 2 3 1 0 0
1 3 −1 0 1 0
−2 −5 −1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 3 1 0 0
0 1 −4 −1 1 0
0 −1 5 2 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 3 1 0 0
0 1 −4 −1 1 0
0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦

Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 0 −2 −3 −3
0 1 0 3 5 4
0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 −8 −13 −11
0 1 0 3 5 4
0 0 1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
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So,

A−1 =
⎡⎢⎢⎢⎢⎢⎣

−8 −13 −11
3 5 4
1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

It is easy to check this via matrix multiplication:

⎡⎢⎢⎢⎢⎢⎣

1 2 3
1 3 −1
−2 −5 −1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−8 −13 −11
3 5 4
1 1 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
..

What happens if A is not invertible? Then there is no matrix X such that AX = In.
In that case, at least one of the n systems we solve is inconsistent and that can only
happen if the reduced row-echelon form of A has a row of zeroes.

..Example 1.42

The matrix

B =
⎡⎢⎢⎢⎢⎢⎣

1 3 2
1 4 1
2 7 3

⎤⎥⎥⎥⎥⎥⎦
is not invertible. We can see this through row reduction:

⎡⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
1 4 1 0 1 0
2 7 3 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 1 −1 −1 1 0
0 1 −1 −2 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 2 1 0 0
0 1 −1 −1 1 0
0 0 0 −1 −1 1

⎤⎥⎥⎥⎥⎥⎦
..

We summarize this process with Theorem 1.11.

Theorem 1.11. Let A be an n × n matrix. To determine whether A is invertible
and if so to find A−1, augment the identity matrix In to A and reduce to reduced
row-echelon form.

• If the reduced row-echelon form of A is In, then we get

[A∣In] Ð→ ⋯Ð→ [In∣A−1]

where A−1 appears on the right.

• If the reduced row-echelon form of A is not In, then the reduced row-echelon
form of A has a row of zeroes and we get

[A∣In] Ð→ ⋯Ð→ [
∗ ∗

0⋯0 ∗ ]

so that A is singular.
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Of course when we can find a matrix X such that AX = In, we have really just found a
right inverse of A. We use Theorem 1.8 then to know the solution to the matrix equation
is indeed the two-sided inverse. The proof of Theorem 1.11 also depends on Theorem 1.8.
We must not use Theorem 1.11 in our proof of Theorem 1.8.

Theorem 1.12 (Properties of Inverses). If A and B are invertible square matrices,

(a) (A−1)−1 = A

(b) (AB)−1 = B−1A−1 (socks - shoes)

(c) (AT )−1 = (A−1)T

Proof

(a) Because A−1 is defined as the two-sided inverse of A we know that A−1A = In and
AA−1 = In. The first equation also tells us that A is a right inverse of A−1, and the
second equation tells us that A is a left inverse of A−1. Together this tells us that A
is the two-sided inverse of A−1. Therefore, (A−1)−1 = A.

(b) Using properties of matrix multiplication we see that

(AB)(B−1A−1) = A(BB−1)A−1

= AInA
−1

= AA−1

= In

and

(B−1A−1)(AB) = B−1(A−1A)B
= B−1InB

= B−1B

= In

This shows that B−1A−1 is the two-sided inverse of AB and (AB)−1 = B−1A−1.

(c) Using properties of matrix multiplication and transpose we see that

(AT )(A−1)T = (A−1A)T

= (In)T

= In

and

(A−1)T (AT ) = (AA−1)T

= (In)T

= In
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This shows that (A−1)T is the two-sided inverse of AT and (AT )−1 = (A−1)T .

The proofs of these parts of Theorem 1.12 could have been shortened by the use of
Theorem 1.8. Theorem 1.8 was purposely avoided in these proofs so that these properties
could be used in the proof of Theorem 1.8.

Corollary 1.13. If A1,⋯,Ak are invertible n × n matrices, then (A1 ⋅ ⋯ ⋅ Ak)−1 =
A−1k ⋅ ⋯ ⋅A

−1
1 .

Proof Repeatedly use the properties of inverses from Theorem 1.12. More precisely,
use induction on k and apply Theorem 1.12.

Elementary Matrices

Recall the elementary row operations:

1. (Scaling) Multiply a row by a nonzero scalar.

2. (Interchange) Swap positions of two rows.

3. (Replacement) Replace a row by the sum of itself plus a scalar multiple of another
row.

Recall also that the elementary row operations can be undone by other elementary row
operations.

..Example 1.43

If we scale row two by 5, we can undo that operation by scaling row two by 1
5 .

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
r2 → 5r2ÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
10 −5 15
3 1 2

⎤⎥⎥⎥⎥⎥⎦
r2 → (1/5)r2ÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
If we swap rows two and three, we can undo the operation by swapping rows two and
three again.

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
r2 ↔ r3ÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
3 1 2
2 −1 3

⎤⎥⎥⎥⎥⎥⎦
r3 ↔ r2ÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
If we replace row one with itself plus 2 times row two (i.e. r1 → r1 + 2r2), we can undo
this operation by replacing row one with itself plus -2 times row two (i.e. r1 → r1 − 2r2).

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
r1 → r1 + 2r2ÐÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

5 0 6
10 2 −1
3 1 2

⎤⎥⎥⎥⎥⎥⎦
r1 → r1 − 2r2ÐÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
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Notice too in each case above that not only does the second elementary row operation
undo the first, but the first also undoes the second.

..

Definition 1.22. An elementary matrix is a matrix that is obtained from an
identity matrix by performing a single elementary row operation.

..Example 1.44

Applying a single row operation (as below) to the identity matrix forms elementary
matrices. ⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
r2 → 5r2ÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
r2 ↔ r3ÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
r1 → r1 + 2r2ÐÐÐÐÐÐÐÐ→

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
The three muliplications below illustrate the fact that multiplication on the left by an
elementary matrix has the same effect as performing the corresponding elementary row
operation on the matrix. Thus, every time we perform an elementary row operation on
a matrix we can think of it as multiplication on the left by an elementary matrix.

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 2 0
10 −5 15
3 1 2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 2 0
3 1 2
2 −1 3

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 0
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5 0 6
2 −1 3
3 1 2

⎤⎥⎥⎥⎥⎥⎦
..

It should come as no surprise that all elementary matrices are invertible. In fact, the
inverse of one is the elementary matrix that corresponds to the elementary row operation
that undoes what the first does.

..Example 1.45

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 1
5 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 1
5 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
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So,
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1

5 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

Similarly,

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎣

1 −2 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦

−1

=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎦
.

..

Theorem 1.14. Elementary matrices are invertible and if E is an elementary matrix
obtained from In by performing a certain elementary row operation, then E−1 is
the elementary matrix obtained from In by performing the reverse elementary row
operation.

Proof Let E by an elementary matrix obtained from In by performing a certain elemen-
tary row operation and let F by the elementary matrix obtained from In by performing
the reverse elementary row operation. Start with the identity In and perform the first
elementary row operation followed by its reverse elementary row operation.

In Ð→ E Ð→ In

Performing elementary row operations are equivalent to multiplication on the left by the
corresponding elementary matrix, so the diagram above can be rewritten.

In Ð→ EIn Ð→ F (EIn)

So F (EIn) = In. But EIn = E tells us that FE = In. That is, F is a left inverse of E.
To show that F is a right inverse of E too we repeat the process but this time we start
with the reverse elementary row operation corresponding to F .

{ In Ð→ F Ð→ In
In Ð→ FIn Ð→ E(FIn)

} Ô⇒ EF = In

Therefore F is the (two-sided) inverse of E and E is invertible with E−1 = F .

Corollary 1.15. A product of elementary matrices is invertible and its inverse is
also a product of elementary matrices.

Proof Suppose E1,⋯,Ek are elementary matrices. By Theorem 1.14, each Ei (1 ≤ i ≤ k)
is invertible and each inverse is elementary. By Corollary 1.13, the product Ek ⋅ ⋯ ⋅E1 is
invertible and (Ek ⋅ ⋯ ⋅E1)−1 = E−11 ⋅ ⋯ ⋅E−1k , a product of elementary matrices.
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Theorem 1.16. Let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is the identity matrix In.

(d) A is a product of elementary matrices.

Proof ((a) Ô⇒ (b)) Since A is invertible, by Theorem 1.9 the only solution to Ax = 0
is A−1(0) = 0.
((b) Ô⇒ (c)) Since Ax = 0 has only the trivial solution, every column of A must be
a pivot column. This means that every column of the reduced row-echelon form of A
contains a leading 1. But since A is square, the reduced row-echelon form of A is In.
((c) Ô⇒ (d)) Since the reduced row-echelon form of A is In there is a sequence of
elementary row operations that transforms A into In.

AÐ→ ⋯Ð→ In

Since elementary row operations are reversible, there is a sequence of elementary row
operations that transforms In to A.

In Ð→ ⋯Ð→ A

But an elementary row operation has the same effect on a matrix as multiplication on the
left by an elementary matrix. So, there is a sequence E1,⋯,Ek of elementary matrices
such that Ek ⋅ ⋯ ⋅E1In = A. Therefore A = Ek ⋅ ⋯ ⋅E1, a product a elementary matrices.
((d) Ô⇒ (a)) This is Corollary 1.15.

Corollary 1.17. If A and B are n × n matrices and AB is invertible, then A and
B are both invertible.

Proof If the conclusions were false, then at least one of A or B would be singular.
Case I. We suppose B is singular and show that the product AB is singular. Now B
singular implies that there exists a nonzero vector v such that Bv = 0. But (AB)v =
A(Bv) = A(0) = 0 shows that the product AB is singular.
Case II. We suppose A is singular and show that AB is singular. If A is singular, there
exists w ≠ 0 such that Aw = 0. By case I, we can assume that B is not singular (i.e.
that B is invertible). But then B−1w ≠ 0 and (AB)(B−1w) = A(BB−1)w = Aw = 0. It
follows that AB is singular.

Theorem 1.8. If B is a left inverse of an n × n matrix A, then in fact B is a
two-sided inverse of A. Similarly, if B is a right inverse of A, then B is a two-sided
inverse of A.
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Proof Suppose B is a left inverse of A. We claim that Ax = 0 has only the trivial
solution. Clearly 0 is a solution since A(0) = 0. We now suppose that u is any solution
and attempt to show that u = 0. But, since u is a solution, we have Au = 0. Multiplying
both sides on the left by B, we see that B(Au) = B(0) = 0. On the other hand,
B(Au) = (BA)u = Inu = u. So u = 0 and Ax = 0 has only the trivial solution. By
Theorem 1.16, A is invertible and has a two-sided inverse A−1.

Since A−1 is a two-sided inverse of A, A−1 is a right inverse and B is a left inverse of A
so B = A−1 by Theorem 1.6 and B is in fact a two-sided inverse.

Suppose B is a right inverse of A. Then AB = In. So (AB)T = ITn and BTAT = In. This
says that BT is a left inverse of AT . By the first part of this proof, BT is in fact the two-
sided inverse of AT (i.e. (AT )−1 = BT ). This implies AT is invertible and so (AT )T = A
is invertible with A−1 = ((AT )T )−1 = ((AT )−1)T = (BT )T = B by Theorem 1.12(c).

This fills in the theoretical gap we introduced at the beginning of this section. We can be
sure now that for square matrices you cannot have a left inverse that is not also a right
inverse and vice-versa. Square matrices are either invertible and have unique two-sided
inverses or else they are singular and have no inverse (neither right nor left).

There are many equivalent ways of saying a square matrix is invertible. Theorem 1.16
gives four ways that are equivalent. Here is a list that we have already proved. We will
continue to add to this list in the future.

Theorem 1.18. Let A is an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A
is the identity matrix In.

(d) A is a product of elementary matri-
ces.

(e) A has n pivot columns.

(f) A has a left inverse.

(g) A has a right inverse.

(h) For all b, Ax = b has a unique solu-
tion.

(i) Every n-vector b is a linear combina-
tion of the columns of A.

(j) AT is invertible.

(k) rank A = n.

(l) nullity A = 0.
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.... Problem Set 1.6

Use Theorem 1.10 to determine which of the following matrices are invertible and to find
the inverse of those that are.

1. [ 3 7
2 5

] 2. [ 1 2
3 −1 ] 3. [ 4 6

10 15
]

4. [
√
6
√
3

1
√
2
] 5. [ cos θ − sin θ

sin θ cos θ
] 6. [ cosh t sinh t

sinh t cosh t
]

Use Theorem 1.11 to determine which of the following matrices are invertible and to find
the inverse of those that are.

7.

⎡⎢⎢⎢⎢⎢⎣

1 2 3
−1 −1 1
2 3 3

⎤⎥⎥⎥⎥⎥⎦
8.

⎡⎢⎢⎢⎢⎢⎣

1 −1 −1
2 −1 1
1 1 5

⎤⎥⎥⎥⎥⎥⎦
9.

⎡⎢⎢⎢⎢⎢⎣

2 1 3
5 4 1
1 6 0

⎤⎥⎥⎥⎥⎥⎦

10.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

11.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

12.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p 0 0 0
1 q 0 0
0 1 r 0
0 0 1 s

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, pqrs /= 0

13. Solve the following system for x and y in terms of b1 and b2. Use the inverse of the
coefficient matrix in the process.

4x − 7y = b1

x + 2y = b2

14. Consider the following sequence of matrices obtained by performing elementary row
operations.

⎡⎢⎢⎢⎢⎢⎣

3 2 1
2 5 2
1 1 −2

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 1 −2
2 5 2
3 2 1

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 1 −2
0 3 6
3 2 1

⎤⎥⎥⎥⎥⎥⎦
→
⎡⎢⎢⎢⎢⎢⎣

1 1 −2
0 1 2
3 2 1

⎤⎥⎥⎥⎥⎥⎦

From left to right label these four matrices A,B,C, and D.

(a) Find three elementary matrices E1,E2, and E3 such that
B = E1A, C = E2B, and D = E3C.

(b) Write D as a product of three elementary matrices times A.

(c) Write A as a product of three elementary matrices times D.

15. Let A = [ 2 1
1 −3 ].

(a) Find the reduced row-echelon form of A. Do this by hand.

(b) Write A as a product of elementary matrices.

(c) Write A−1 as a product of elementary matrices.

16. Let A be a square matrix with a row of zeros. Prove that A is singular.
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17. Suppose that A is invertible and AB = AC. Prove that B = C.

18. Suppose that A is an m × n matrix. Prove that there exists an invertible matrix C
such that CA is the reduced row-echelon form of A.

19. Suppose A is symmetric and invertible. Prove that A−1 is symmetric.

20. Suppose A is upper triangular. Prove that A is invertible if and only if all diagonal
entries of A are nonzero.

21. Suppose A is upper triangular and invertible. Prove A−1 is upper triangular.

.
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.. 2 Euclidean 2-Space and 3-Space

2.1 Vectors in the Plane and in Space

In chapter 2 we give geometric significance to vectors. The Cartesian (rectangular)
coordinate systems provide us with a connection between ordered pairs and points on
the plane and between ordered triples and points in space.

Definition 2.1. Let

R2 = {[ x
y
] ∶ x, y ∈ R} and R3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
∶ x, y, .z ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

In general, let

Rn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x1
⋮
xn

⎤⎥⎥⎥⎥⎥⎦
∶ xi ∈ R for i = 1,⋯, n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The above sets are read as “R-two,” “R-three,” and “R-n.” We now give three geometric
interpretations of vectors in R2 and R3.

..
x

.

y

.

(3,2)

(a)

.. y.

z

.

x

.

(2,2,4)

(b)

Figure 2.1 Vectors in R2 and R3 correspond with points in the plane and space.

1. It is clear that the same connection can be made between the vectors in R2 and R3

with the points in the plane and space respectively.

The vector sets R2 and R3 could be defined as row vectors rather than as column
vectors with the analogous connection with points in the plane and space. This is
oftentimes simply a matter of convenience. For our purposes column vectors are
usually more convenient so we defined R2 and R3 that way.

53
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2. Instead of thinking of a vector as representing just a point, think of a vector as
representing the directed line segment (arrow) that starts at the origin and ends at
that point (see Figures 2.2a and 2.2b).

..
x

.

y

(a) Vectors in R2 can
be thought of as arrows
starting at the origin.

.. y.

z

.

x

(b) Vectors in R3 can be
thought of as arrows start-
ing at the origin.

..
x

.

y

(c) Vectors in R2 and R3 can
be thought of as a number of
different arrows.

Figure 2.2

3. Instead of just one arrow out of the origin, we let any directed line segment that is the
same length and points in the same direction as the one in the previous interpretation
represent a given vector (see Figure 2.2c).

It is very important to know and work with all three of these geometric interpretations.
Sometimes we will use more than one interpretation in the same problem or even in the
same equation.

We know how to perform scalar multiplication and vector addition on column vectors.
Example 2.1 now illustrates how to interpret these notions geometrically.

Scalar Multiplication

..Example 2.1

In Figure 2.3, we illustrate three scalar multiplications:

2 [ 2
1
] = [ 4

2
] , (−1) [ 2

1
] = [ −2−1 ] , and

1

2
[ 2
1
] = [ 1

1
2

] .

..

It is both clear from Example 2.1 and easy to prove using similar triangles that the
scalar multiple cv of the vector v points in the same direction as v but is stretched by
a factor of c if c ≥ 1. It shrinks v by a factor of c if 0 ≤ c ≤ 1 and does the same if c < 0
except the direction is also reversed. Vectors that are scalar multiples of each other are
called parallel vectors.
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..
x

.

y

(a)

..
x

.

y

(b)

..
x

.

y

(c)

Figure 2.3 Scalar multiplication by 2, -1, and 1
2 .

Vector Addition

..Example 2.2

In the parallelogram rule for adding, the directed line segments are placed tail to tail
and a parallelogram is completed. The diagonal is the sum. Figure 2.4 illustrates the
sum

[ 4
1
] + [ 1

2
] = [ 5

3
] .

..

..
x

.

y

(a)

.. u.

v

.

v

.

u

.

u +
v

(b)

Figure 2.4 The parallelogram method of vector addition.

Another equivalent geometric interpretation is the tip-to-tail method. Here the arrow
for the second vector starts where the first vector ends. The sum starts where the first
one starts and ends where the second one ends.

.. u.

v

.

v

.

u +
v

Figure 2.5 The tip-to-tail method of vector addition.
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Vector subtraction can be broken down into scalar multiplication and vector addition
because u − v = u + (−1)v. This interpretation is clear (see Figure 2.6a) but a little
clumsy. Another way to view u − v is by adding it to v by using the parallelogram
method of vector addition to get u (see Figure 2.6b).

.. u − v.

v

.

v

.

u − v

.

u

.

−v

.

u

(a) Adding (−1)v to u.

.. u − v.

v

.

v

.

u − v

.

u

(b) Adding v and u − v gives u.

Figure 2.6 Vector subtraction.

Stripping away some of the excess information in these previous illustrations, we find
a good way to view the difference u − v. This is called the tip-to-tip interpretation of
vector subtraction and is illustrated in Figure 2.7a. Figure 2.7b shows u + v and u − v
to be the two diagonals in the parallelogram formed by u and v.

..

v

.

u − v

.

u

(a) Tip-to-tip interpretation of vec-
tor subtraction.

..

v

.

u − v

.

u

.

u + v

(b) u−v is the other diagonal of the par-
allelogram formed by u and v.

Figure 2.7

Linear Combinations

Linear combinations have interesting and very important geometric interpretations.

..Example 2.3

Suppose u and v are two nonzero, nonparallel vectors in R3. A linear combination of u
and v, au + bv, is just a sum of scaled versions of u and v (see Figure 2.8).

There are many possible linear combinations that can be made. To understand those
that are possible, look at the plane that contains the points 0, u, and v (see Figure 2.9).
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..
au

.
u

.

bv

.

v

.

au
+ b
v

Figure 2.8 A linear combination of u and v.

..
0
.

u
.

v

Figure 2.9 A plane containing points 0, u and v.

It is easy enough to see that any point on that plane is a linear combination of u and v
(see Figure 2.10).

..
0
.

u
.

bv

.
v

.
au

.

au + bv

Figure 2.10 Any point on this plane is a linear combination au + bv of u and v.

And any vector that does not lie on that plane through 0 is not a linear combination of
u and v because the parallelograms lie entirely on that plane (see Figure 2.11).

..

..Example 2.4

Do the points

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
5
4

⎤⎥⎥⎥⎥⎥⎦
lie on the plane that passes through the points

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

2
3
2

⎤⎥⎥⎥⎥⎥⎦
?



58 Chapter 2. Euclidean 2-Space and 3-Space

..
0
.

u
.

v

Figure 2.11 Any point not on this plane is not a linear combination of u and v.

Solution To determine whether

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
lies on the plane, we seek to determine whether

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
is a linear combination of

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

2
3
2

⎤⎥⎥⎥⎥⎥⎦
. That is, are there scalars x and y such

that

x

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ y
⎡⎢⎢⎢⎢⎢⎣

2
3
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
?

This is equivalent to solving the system

⎡⎢⎢⎢⎢⎢⎣

1 2
2 3
1 2

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
.

Similarly, for

⎡⎢⎢⎢⎢⎢⎣

3
5
4

⎤⎥⎥⎥⎥⎥⎦
we must solve

⎡⎢⎢⎢⎢⎢⎣

1 2
2 3
1 2

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

3
5
4

⎤⎥⎥⎥⎥⎥⎦
.

We can solve these together since they have the same coefficient matrix.

⎡⎢⎢⎢⎢⎢⎣

1 2 1 3
2 3 3 5
1 2 1 4

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 3
0 −1 1 −1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 3
0 1 −1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 3 1
0 1 −1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

So

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
lies in that plane through the origin but

⎡⎢⎢⎢⎢⎢⎣

3
5
4

⎤⎥⎥⎥⎥⎥⎦
doesn’t since

3

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
− 1
⎡⎢⎢⎢⎢⎢⎣

2
3
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
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and the second system is inconsistent.
..

In applications we often think of a vector as something with a magnitude and a direction
like wind velocity, which has magnitude (speed) and direction. In R2 and R3 we define
the magnitude of a vector as the length of its directed line segment. We call this the
norm of a vector.

Definition 2.2. If v = [ v1
v2
] ∈ R2, we define the norm of v to be ∥v∥ =

√
v21 + v22.

If v =
⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
∈ R3, then ∥v∥ =

√
v21 + v22 + v23. In general, if v =

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
∈ Rn, then

∥v∥ =
√
v21 +⋯ + v2n.

..Example 2.5

Let v = [ 3
−4 ] and w =

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
. Then, ∥v∥ =

√
32 + (−4)2 =

√
25 = 5 and ∥w∥ =

√
12 + 22 + 12 =

√
6.

..

Because multiplication of a vector by a scalar c changes the length of its directed line
segment by a factor of c, the following theorem is intuitively clear geometrically. The
proof is presented for a vector in R3. The proof in R2 or indeed in Rn in general is
analogous.

Theorem 2.1. For any vector v ∈ Rn and any scalar c ∈ R, ∥cv∥ = ∣c∣∥v∥.

Proof Suppose v =
⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
. Then cv =

⎡⎢⎢⎢⎢⎢⎣

cv1
cv2
cv3

⎤⎥⎥⎥⎥⎥⎦
so that

∥cv∥ =
√
(cv1)2 + (cv2)2 + (cv3)2

=
√

c2(v21 + v22 + v23)

=
√
c2
√

v21 + v22 + v23
= ∣c∣∥v∥.

Definition 2.3. A unit vector is a vector with a norm equal to 1.



60 Chapter 2. Euclidean 2-Space and 3-Space

In R2, the standard unit vectors e1 = [
1
0
] and e2 = [

0
1
] are unit vectors in this sense

because their norms equal 1. These vectors are usually called i and j respectively in
multivariable calculus and physics. Of course there are many other unit vectors.

In fact, geometrically we see that any vector represented by an arrow that starts at the
origin and ends on the unit circle x2 + y2 = 1 is a unit vector in R2 (see Figure 2.12).

.

Figure 2.12 Some unit vectors in R2.

In R3, the standard unit vectors are

e1 =
⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
,e2 =

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
, and e3 =

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦
.

These are also called i, j, and k in multivariable calculus and physics. Any vector that
starts at the origin and ends on the unit sphere x2 + y2 + z2 = 1 is a unit vector in R3.

If v is any nonzero vector, the unit vector in the direction of v is the vector that
points in the same direction as v but has a norm equal to 1.

Let u be the unit vector in the direction of a nonzero vector v. Since u points in the
same direction as v, u is a scalar multiple of v. So, there is a scalar c ∈ R such that
u = cv. To find u, we need only find this value of c.

From Theorem 2.1, 1 = ∥u∥ = ∥cv∥ = ∣c∣∥v∥. And, since v is nonzero, ∥v∥ ≠ 0, so we can
divide by ∥v∥ yielding ∣c∣ = 1

∥v∥ . Solving for c gives c = ± 1
∥v∥ . This gives two possible

solutions:

u = 1

∥v∥
v and u = − 1

∥v∥
v.

Since 1
∥v∥v points in the same direction as v and − 1

∥v∥v points in the opposite direction,

u = 1
∥v∥v is the unit vector in the direction of v.

..Example 2.6

To find the unit vector in the direction of v =
⎡⎢⎢⎢⎢⎢⎣

2
1
2

⎤⎥⎥⎥⎥⎥⎦
, we calculate ∥v∥ =

√
4 + 1 + 4 = 3

giving us u = 1
3

⎡⎢⎢⎢⎢⎢⎣

2
1
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2/3
1/3
2/3

⎤⎥⎥⎥⎥⎥⎦
.

..
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Distance Between Vectors

Since we are already familiar with the distance formula between points in the plane and
between points in space, we use these formulas to motivate the definition of distance
between two vectors. To that end, recall that if P and Q are points in the plane with
coordinates (x1, y1) and (x2, y2), then the distance between them is

d(P,Q) =
√
(x1 − x2)2 + (y1 − y2)2.

If P and Q are points in space with coordinates (x1, y1, z1) and (x2, y2, z2), then the
distance between them is

d(P,Q) =
√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Using points as our geometric interpretation of vectors in R2, it is natural to define the

distance between two vectors u = [ u1
u2
] and v = [ v1

v2
] as

d(u,v) =
√
(u1 − v1)2 + (u2 − v2)2.

If u =
⎡⎢⎢⎢⎢⎢⎣

u1
u2
u3

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
in R3, we define

d(u,v) =
√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2.

Note too that by using the tip-to-tip interpretation of vector subtraction, the directed
line segment that begins at the point v and ends at the point u represents the vector
u−v so the length of u−v equals the distance between u and v (see Figure 2.7a). That
is,

d(u,v) = ∥u − v∥

whether u,v ∈ R2 or u,v ∈ R3. This formula is verified in the exercises.

.... Problem Set 2.1

1. Let v be the vector in R3 represented by the directed line segment
Ð→
PQ that begins

at the point P and ends at the point Q, where P and Q have coordinates

⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
4
−3

⎤⎥⎥⎥⎥⎥⎦
respectively.

(a) Write v as a column vector.

(b) What is the norm of v?

(c) Write the vector represented by the directed line segment
Ð→
QP as a column vector.
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..

E

.

C

.

D

.

B

.A

Figure 2.13

2. Let the directed line segments from A to B and from A to C represent the vectors

u and v respectively (u =
Ð→
AB and v =

Ð→
AC) from Figure 2.13. Describe the vectors

Ð→
AD,

Ð→
AE,

Ð→
BC,

ÐÐ→
CD,

ÐÐ→
DE,

Ð→
EB in terms of u and v. Which of the vectors are parallel?

3. Do the points

⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

−1
4
5

⎤⎥⎥⎥⎥⎥⎦
lie on the plane in R3 that passes through the origin

and the points

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

2
1
−1

⎤⎥⎥⎥⎥⎥⎦
?

4. Write the following vectors from R3 as column vectors.

(a) 3e1 − 2e2 + 4e3 (b) 4k − i (c) rj + sk − ti

5. Write the following vectors from R3 as linear combinations of the standard unit
vectors.

(a)

⎡⎢⎢⎢⎢⎢⎣

5
3
−7

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

6
5
0

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦

6. Find the norms of the following vectors.

(a)

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

1
−2
3

⎤⎥⎥⎥⎥⎥⎦

(c) [ 3t
4t
]

7. Find the vectors in R2 with a norm of 2 that make an angle of π/6 with

(a) the positive x-axis (b) the positive y-axis

8. Find the unit vectors in the direction of each of the following vectors.

(a) [ 5
−12 ] (b)

⎡⎢⎢⎢⎢⎢⎣

−1
2
1

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

2t
−t
2t

⎤⎥⎥⎥⎥⎥⎦

9. Give a geometric description of the set of all vectors x in R2 that satisfy the equation
∥x∥ = 4. Interpret the vectors geometrically as points.
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10. Use the definition of norm of a vector and the definition of distance between two
vectors in R2 to prove that d(u,v) = ∥u − v∥.

11. Let x0 be a fixed point in R3. Give a geometric description of the set of all vectors
x in R3 that satisfy the equation ∥x −x0∥ = 3. Interpret the vectors geometrically as
points.

.

2.2 The Dot Product

To complete our geometric interpretation of vectors, we introduce the dot product. The
dot product provides us with a means for determining the angle between two vectors.

Definition 2.4. For u = [ u1
u2
] ,v = [ v1

v2
] ∈ R2, we define the dot product u ⋅ v

by
u ⋅ v = u1v1 + u2v2.

Similarly, for u =
⎡⎢⎢⎢⎢⎢⎣

u1
u2
u3

⎤⎥⎥⎥⎥⎥⎦
,v =

⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
∈ R3,

u ⋅ v = u1v1 + u2v2 + u3v3.

In general, for u =
⎡⎢⎢⎢⎢⎢⎣

u1
⋮
un

⎤⎥⎥⎥⎥⎥⎦
,v =

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
∈ Rn,

u ⋅ v = u1v1 +⋯ + unvn.

..Example 2.7

If u = [ 3
1
] and v = [ 2

−1 ], then u ⋅ v = (3)(2) + (1)(−1) = 5.
..

Observe that the dot product of two vectors is a scalar. It is not immediately clear how
the dot product can be used to answer geometric questions about vectors. However, as
we shall soon see, it provides us with a means for determining the angle between two
vectors.

It turns out that there are many different ways of defining angles and norms of vectors
using things called inner products. The dot product is one example of an inner product
and is sometimes called the Euclidean inner product. It is the most commonly used
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inner product and the one that matches our geometric intuition best. The vector sets R2

and R3 together with vector addition and scalar multiplication as defined earlier and this
dot product are called Euclidean 2-space E2 and Euclidean 3-space E3. Euclidean
n-space is defined analogously using vectors from Rn.

We begin with some obvious algebraic properties. The proofs of these are all relatively
simple. Some appear in the exercises.

Theorem 2.2. Let u,v,w ∈ Rn and c ∈ R.

(a). u ⋅ v = v ⋅ u

(b). (cu) ⋅ v = u ⋅ (cv) = c(u ⋅ v)

(c). u ⋅ (v ±w) = u ⋅ v ± u ⋅w

(d). (u ± v) ⋅w = u ⋅w ± v ⋅w

(e). ∥u∥ = (u ⋅ u)
1
2

(f). u ⋅ u = ∥u∥2

..
a

.

b

.

c

. θ

(a) c2 = a2 + b2 − 2ab cos θ

..
u

.

v

.

u − v

. θ

(b) ∥u − v∥2 = ∥u∥2 + ∥v∥2 −
2∥u∥∥v∥ cos θ

Figure 2.14 The law of cosines.

Recall the law of cosines illustrated in Figure 2.14a. Applying the law of cosines to the
vectors in Figure 2.14b, we obtain

∥u − v∥2 = ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cos θ.

But, the algebraic rules in Theorem 2.2 yield

∥u − v∥2 = (u − v) ⋅ (u − v)
= (u − v) ⋅ u − (u − v) ⋅ v
= u ⋅ u − v ⋅ u − u ⋅ v + v ⋅ v
= ∥u∥2 + ∥v∥2 − 2u ⋅ v

It follows that
∥u∥2 + ∥v∥2 − 2u ⋅ v = ∥u∥2 + ∥v∥2 − 2∥u∥∥v∥ cos θ
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which simplifies to the relationship between the dot product and angle θ between the
vectors that we seek.

u ⋅ v = ∥u∥∥v∥ cos θ

Definition 2.5. The angle between two nonzero vectors u and v is defined as the
smaller but positive angle θ (0 ≤ θ ≤ π) satisfying

cos θ = u ⋅ v
∥u∥∥v∥

.

..
u

.

v

.
θ

.

not

.

not

Figure 2.15 The angle θ between two vectors.

..Example 2.8

The angle between u =
⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

3
−3
1

⎤⎥⎥⎥⎥⎥⎦
is determined by

cos θ = (2)(3) + (1)(−3) + (3)(1)√
4 + 1 + 9

√
9 + 9 + 1

= 6√
14
√
19

.

So, θ = cos−1 ( 6√
14
√
19
) ≈ 68.41○ or 1.194 radians.

..

For u,v ≠ 0, we have that ∥u∥ > 0, ∥v∥ > 0 and u ⋅v = ∥u∥∥v∥ cos θ. So (as in Figure 2.16),

u ⋅ v > 0 ⇐⇒ cos θ > 0 ⇐⇒ θ is acute,

u ⋅ v < 0 ⇐⇒ cos θ < 0 ⇐⇒ θ is obtuse,

u ⋅ v = 0 ⇐⇒ cos θ = 0 ⇐⇒ θ = π

2
.

Definition 2.6. We say that u and v are orthogonal if u ⋅ v = 0.
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.. θ.

y

.
−π

4

.
π
4

.
π
2

.
3π
4

.
π

.

−1

.

1

Figure 2.16 y = cos θ for 0 ≤ θ ≤ π.

By the definition, 0 is orthogonal to every vector (including itself) and if u,v ≠ 0, then
u and v orthogonal means that u and v are perpendicular.

Definition 2.7. The direction angles α,β, γ of a vector u are the angles u makes
with the positive x, y, and z axes respectively (see Figures 2.17a, 2.17b, and 2.17c).

.. y.

z

.

x

.

u

.
α

(a)

.. y.

z

.

x

.

u

.
β

(b)

.. y.

z

.

x

.

u

.

γ

(c)

Figure 2.17 The direction angles α,β, and γ of a vector u.

For unit vector u =
⎡⎢⎢⎢⎢⎢⎣

u1
u2
u3

⎤⎥⎥⎥⎥⎥⎦
, the direction angle α is the angle between u and the standard

unit vector e1 =
⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
. So

cosα = u ⋅ e1
∥u∥∥e1∥

= (u1)(1) + (u2)(0) + (u3)(0)
(1)(1)

= u1.

Similarly, cosβ = u2 and cosγ = u3. These are called the direction cosines of u. If v
is any nonzero vector in R3, then by normalizing v (i.e. finding the unit vector in the
direction of v), we find its direction cosines

1

∥v∥
v =
⎡⎢⎢⎢⎢⎢⎣

cosα
cosβ
cosγ

⎤⎥⎥⎥⎥⎥⎦
.
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Orthogonal Projection

For a ≠ 0, the orthogonal projection of a vector v onto a is illustrated in Figure 2.18.
To calculate the orthogonal projection, note that it is a multiple of a so that projav = ka
and we just need to determine k.

..
a

.

v

.

projav

Figure 2.18 The orthogonal projection of v onto a.

Observe that v− projav is orthogonal to a so that a ⋅ (v−ka) = 0. This equation can be
solved for k:

a ⋅ v − k(a ⋅ a) = 0
a ⋅ v
a ⋅ a

= k

So,

projav = a⋅v
a⋅aa.

Figure 2.18 illustrates the orthogonal projection well when 0 < k < 1. There are sim-
ilar diagrams that illustrate the orthogonal projection for other values of k (see Fig-
ures 2.19a, 2.19b, and 2.19c).

..

projav

.
a

.

v

. θ

(a) k > 1

..
a

.

v

.

projav

(b) k < 0

..
a

.

v

.
0 = projav

(c) k = 0

Figure 2.19 Visualizing the orthogonal projection.

..Example 2.9

Find the orthogonal projection of v =
⎡⎢⎢⎢⎢⎢⎣

1
3
2

⎤⎥⎥⎥⎥⎥⎦
onto a =

⎡⎢⎢⎢⎢⎢⎣

2
−5
1

⎤⎥⎥⎥⎥⎥⎦
.

We compute:

projav =
a ⋅ v
a ⋅ a

a = (1)(2) − (3)(5) + (2)(1)
4 + 25 + 1

⎡⎢⎢⎢⎢⎢⎣

2
−5
1

⎤⎥⎥⎥⎥⎥⎦
= −11

30

⎡⎢⎢⎢⎢⎢⎣

2
−5
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−11/15
11/6
−11/30

⎤⎥⎥⎥⎥⎥⎦
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..

Given a vector v and a nonzero vector a, it is often desireable to write v as the sum
of two component vectors, one parallel to a and the other orthogonal to a (see Fig-
ure 2.20). Then, projav serves as the component parallel to a and v − projav serves as
the component orthogonal to a. In Example 2.9,

⎡⎢⎢⎢⎢⎢⎣

1
3
2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

−11/15
11/6
−11/30

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

26/15
7/6
71/30

⎤⎥⎥⎥⎥⎥⎦
so ⎡⎢⎢⎢⎢⎢⎣

1
3
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−11/15
11/6
−11/30

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

26/15
7/6
71/30

⎤⎥⎥⎥⎥⎥⎦
is the desired decomposition.

..
a

.

v

.

projav

.

v − projav

Figure 2.20 Orthogonal decomposition of v into vectors parallel and orthogonal to a.

.... Problem Set 2.2

1. In each case find u ⋅ v.

(a) u =
⎡⎢⎢⎢⎢⎢⎣

2
−3
1

⎤⎥⎥⎥⎥⎥⎦
, v =

⎡⎢⎢⎢⎢⎢⎣

4
5
3

⎤⎥⎥⎥⎥⎥⎦
(b) u = e1 + 3e2 − 5e3,

v = 3e1 − 2e2 − 4e3
(c) ∥u∥ = 3, ∥v∥ = 5, and the angle between them is θ = π/3.

2. Find the angle between the following pairs of vectors. Give an expression for the
exact angle and round to the nearest degree.

(a) [ 3
4
], [ −1

7
]

(b)

⎡⎢⎢⎢⎢⎢⎣

3
4
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
−2
7

⎤⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−14
−2
5

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

4
−6
10

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−6
9
−15

⎤⎥⎥⎥⎥⎥⎦
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3. In each case find the orthogonal projection of v onto a.

(a) v = [ 4
2
], a = [ 2

3
]

(b) v =
⎡⎢⎢⎢⎢⎢⎣

4
−2
3

⎤⎥⎥⎥⎥⎥⎦
, a =

⎡⎢⎢⎢⎢⎢⎣

1
3
−1

⎤⎥⎥⎥⎥⎥⎦

(c) v =
⎡⎢⎢⎢⎢⎢⎣

2
−1
3

⎤⎥⎥⎥⎥⎥⎦
, a =

⎡⎢⎢⎢⎢⎢⎣

−5
2
4

⎤⎥⎥⎥⎥⎥⎦
(d) v =

⎡⎢⎢⎢⎢⎢⎣

2
−2
4

⎤⎥⎥⎥⎥⎥⎦
, a =

⎡⎢⎢⎢⎢⎢⎣

3
−3
6

⎤⎥⎥⎥⎥⎥⎦

4. Let v =
⎡⎢⎢⎢⎢⎢⎣

2
−1
3

⎤⎥⎥⎥⎥⎥⎦
and a =

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
. Decompose v into the sum of two vectors, one parallel

to a and the other orthogonal to a.

5. Find the direction cosines and the direction angles of the vector

⎡⎢⎢⎢⎢⎢⎣

3
−1
2

⎤⎥⎥⎥⎥⎥⎦
. Give an

exact expressions for the angle and round to the nearest degree.

6. Find the unit vectors in R3 that are orthogonal to both i + j and i + k.

7. (a) Find the angle between an edge and a diagonal of a cube that emanate from the
same vertex of the cube.

(b) Find the angle between a diagonal of a cube and a diagonal of a face of a cube
that emanate from the same vertex of the cube.

8. Find the interior angles of the triangle with vertices at the points P , Q, and R with

coordinates

⎡⎢⎢⎢⎢⎢⎣

1
2
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
4
4

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

2
5
2

⎤⎥⎥⎥⎥⎥⎦
respectively.

9. Let u = [ 2
3
] and v = [ 1

t
]. Find the values of t that make the following statements

true.

(a) u and v are parallel.

(b) u and v are orthogonal.

(c) u and v form an angle of 45○.

10. Prove parts (b) and (c) of Theorem 2.2.

11. Draw two non-parallel directed line segments emanating from the same point and
label them u and v. Complete the parallelogram determined by u and v. Next, draw
and label the diagonals of the parallelogram (u+v) and u − v. The identity

∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2

is known as the parallelogram rule.

(a) Interpret the parallelogram rule geometrically.

(b) Prove the parallelogram rule. Hint: ∥u + v∥2 = (u + v) ⋅ (u + v) and use Theo-
rem 2.2.

12. Prove the identity u ⋅ v = 1
4∥u + v∥

2 − 1
4∥u − v∥

2.
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.

2.3 Cross Product

The cross product is a different vector product. It is similar to the dot product in
some regards, but it is different in some important ways.

• The dot product of two vectors is a scalar, but the cross product of two vectors is
another vector.

• Unlike the dot product, the cross product is not an example of an inner product.

• For any positive integer n, if u,v ∈ Rn we have u ⋅v defined. Unlike the dot product,
the cross product only applies to vectors in R3.

Definition 2.8. Let u =
⎡⎢⎢⎢⎢⎢⎣

u1
u2
u3

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
. We define the cross product u × v

by

u × v =
⎡⎢⎢⎢⎢⎢⎣

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎤⎥⎥⎥⎥⎥⎦
.

This definition can be difficult to remember. What follows is a mnemonic device that
involves determinants of 3 × 3 matrices. If you have seen such determinants before, this
should help you. If not, you might want to learn it anyway because the determinant is
the topic of the next chapter. First, recall that

RRRRRRRRRRRRRR

a1 a2 a3
b1 b2 b3
c1 c2 c3

RRRRRRRRRRRRRR
= ∣ b2 b3

c2 c3
∣a1 − ∣

b1 b3
c1 c3

∣a2 + ∣
b1 b2
c1 c2

∣a3.

Then, formally, we write

u × v =
RRRRRRRRRRRRRR

e1 e2 e3
u1 u2 u3
v1 v2 v3

RRRRRRRRRRRRRR

= ∣ u2 u3
v2 v3

∣e1 − ∣
u1 u3
v1 v3

∣e2 + ∣
u1 u2
v1 v2

∣e3

= (u2v3 − u3v2)
⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
− (u1v3 − u3v1)

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
+ (u1v2 − u2v1)

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1

⎤⎥⎥⎥⎥⎥⎦
.
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Theorem 2.3 tells us information about the geometry of the cross product.

Theorem 2.3. The vector u × v is orthogonal to both u and v.

Proof u ⋅ (u × v) = u1(u2v3 − u3v2) + u2(u3v1 − u1v3) + u3(u1v2 − u2v1)
= u1u2v3 − u1v2u3 + v1u2u3 − u1u2v3 + u1v2u3 − v1u2u3
= 0

Similarly, v ⋅ (u × v) = 0.

Some straightforward but messy algebraic properties are summarized in Theorem 2.4.

Theorem 2.4. Let u,v,w ∈ R3 and c ∈ R.

(a) v × u = −(u × v)

(b) u × (v ±w) = u × v ± u ×w

(c) (u ± v) ×w = u ×w ± v ×w

(d) (cu) × v = c(u × v) = u × (cv)

(e) u × 0 = 0 × u = 0

(f) u × u = 0

One property of the cross product that is helpful but not obvious is that for u,v ≠ 0,

∥u × v∥ =
√
∥u∥2∥v∥2 − (u ⋅ v)2 = ∥u∥∥v∥ sin θ

where θ is the angle between u and v.

Why? On the one hand, we know that u ⋅ v = ∥u∥∥v∥ cos θ so

(u ⋅ v)2 = ∥u∥2∥v∥2 cos2 θ
= ∥u∥2∥v∥2(1 − sin2 θ)

This tells us that
∥u∥2∥v∥2 sin2 θ = ∥u∥2∥v∥2 − (u ⋅ v)2

from which taking square roots gives

∥u∥∥v∥ sin θ = ±
√
∥u∥2∥v∥2 − (u ⋅ v)2.

But ∥u∥, ∥v∥ > 0 and sin θ ≥ 0 for 0 ≤ θ ≤ π. So

∥u∥∥v∥ sin θ =
√
∥u∥2∥v∥2 − (u ⋅ v)2.
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On the other hand,

∥u × v∥ =
√
(u2v3 − v2u3)2 + (u3v1 − u1v3)2 + (u1v2 − u2v1)2

=
√

u22v
2
3 − 2u2v3v2u3 + v22u23 +⋯

and

√
∥u∥2∥v∥2 − (u ⋅ v)2 =

√
(u21 + u22 + u23)(v21 + v22 + v23) − (u1v1 + u2v2 + u3v3)2

=
√

u21v
2
1 + u21v22 + u21v23 +⋯

Messy. But it turns out these two are the same. Therefore ∥u×v∥ =
√
∥u∥2∥v∥2 − (u ⋅ v)2

and, more importantly, we have Theorem 2.5.

Theorem 2.5. For u,v ≠ 0 in R3, ∥u × v∥ = ∥u∥∥v∥ sin θ.

Theorem 2.5 tells us the norm (length) of u × v but nothing about the direction. The-
orem 2.3 tells us the direction of u × v is orthogonal to both u and v. This leaves two
possibilities (see Figure 2.21). Theorem 2.4(a) tells us that one is u × v and the other
is v × u = −(u × v). The cross product is designed to obey a right-hand rule, so in
Figure 2.21 u × v is up and v × u is down.

..
u

.

v

.

u × v

.

v × u

Figure 2.21 u × v and v × u.

The parallelogram shown in Figure 2.22 gives us another interesting interpretation of
the cross product. It says that the area of the parallelogram formed by u and v is
∥u∥h = ∥u∥∥v∥ sin θ = ∥u × v∥.
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..
u

.

v

.

h

.
θ

Figure 2.22 ∥u × v∥ represents the area of a parallelogram determined by u and v.

..
Ð→
PQ

.

Ð→
PR

.
P
.

Q
.

R

Figure 2.23 Triangle PQR is half of a parallelogram.

..Example 2.10

Find the area of the triangle with vertices (corners) at the points P (1,2,2), Q(3,5,1),
and R(5,4,3).

Solution △PQR is half the parallelogram formed by vectors
Ð→
PQ and

Ð→
PR (see Fig-

ure 2.23). Since
Ð→
PQ =

⎡⎢⎢⎢⎢⎢⎣

3
5
1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
and

Ð→
PR =

⎡⎢⎢⎢⎢⎢⎣

5
4
3

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

4
2
1

⎤⎥⎥⎥⎥⎥⎦
, we

have

Ð→
PQ ×Ð→PR =

RRRRRRRRRRRRRR

e1 e2 e3
2 3 −1
4 2 1

RRRRRRRRRRRRRR
= (3 + 2)e1 − (2 + 4)e2 + (4 − 12)e3 =

⎡⎢⎢⎢⎢⎢⎣

5
−6
−8

⎤⎥⎥⎥⎥⎥⎦
.

The area of △PQR = 1
2∥
Ð→
PQ ×

Ð→
PR∥ = 1

2

√
25 + 36 + 64 = 1

2

√
125 = 5

√
5

2 .
..

The Scalar Triple Product

The volume V of the parallelepiped determined by u,v, and w can be found by
multiplying the area of the base and the height h (see Figure 2.24). But since the base
is a parallelogram determined by vectors u and v, we have

V = ∥u × v∥h
= ∥u × v∥∥w∥ cos θ
= (u × v) ⋅w.

The product (u×v) ⋅w is called a scalar triple product. If u and v swapped positions,
u×v would point in the opposite direction changing θ (the angle between u×v and w) to
its supplementary angle thus switching the sign of cos θ. That gives a negative V . Rather
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..
u

.

v

.

w

.

u × v

.

v × u

.

θ

.

θ

Figure 2.24 u × v and v × u.

than switching and recalculating, we just take the absolute value when determining the
volume:

V = ∣(u × v) ⋅w∣

..Example 2.11

Find the volume of the tetrahedron with vertices at the points P,Q,R, and S (see
Figure 2.25).

..
Q

.
P
.

R

.

S

Figure 2.25 Tetrahedron with vertices at P,Q,R, and S.

The tetrahedron is just one corner of a parallelepiped. In fact, it is a cone. You’ve
studied generalized cones before – objects having cross sections similar to a base that
shrink proportionately down to a point at a height h from the base. You learned that
the volume is given by

V = 1

3
(area of the base)(height).
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The base of our tetrahedron (△PQR) is half a parallelogram. So,

V = 1

3
(1
2
∥
Ð→
PQ ×

Ð→
PR∥) (height)

= 1

6
∥Ð→PQ ×Ð→PR∥h

= 1

6
∣∥
Ð→
PQ ×

Ð→
PR∥∥

Ð→
PS∥ cos θ∣

= 1

6
∣(Ð→PQ ×Ð→PR) ⋅Ð→PS∣ .

.... Problem Set 2.3

1. In each case find u × v.

(a) u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
v =
⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
(b) u = i + j − k, v = 2i − 3j.

2. Find two unit vectors that are orthogonal to both

⎡⎢⎢⎢⎢⎢⎣

2
1
4

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
.

3. Find the area of the parallelogram that has the vectors

⎡⎢⎢⎢⎢⎢⎣

−1
2
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
1
1

⎤⎥⎥⎥⎥⎥⎦
as two of

its sides.

4. Find the area of the triangle with vertices at the points

⎡⎢⎢⎢⎢⎢⎣

3
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
2
3

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

6
1
4

⎤⎥⎥⎥⎥⎥⎦
.

5. Find the volume of the parallelepiped that has the vectors

⎡⎢⎢⎢⎢⎢⎣

1
4
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
5

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

4
1
2

⎤⎥⎥⎥⎥⎥⎦
as three of its sides.

6. Find the volume of the tetrahedron with vertices at the four points listed below.
⎡⎢⎢⎢⎢⎢⎣

1
3
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4
1
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
2
0

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
.

7. Simplify (u + v) × (u − v).

8. Prove the identity (u + kv) × v = u × v.

9. Prove that if u and v are nonzero vectors in R3, u ⋅v /= 0, and θ is the angle between
u and v, then

tan θ = ∥u × v∥
u ⋅ v

.
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10. Prove that the cross product is not an associative operation by producing a coun-
terexample the demonstrates it is possible that (u × v) ×w /= u × (v ×w).

.

2.4 Lines in Space

Lines and planes in space are particular types of sets of points. In this section, we
develop equations of lines. To understand this development you must understand all
three geometric interpretations of vectors (see Section 2.1).

A line in space can be described by a point it passes through and a direction vector.
Suppose we wish to describe the line l that passes through the point with coordinates
(x0, y0, z0) and that moves in the direction of (i.e. is parallel to) the vector v ≠ 0. Our

line is thus described by vectors x0 =
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
.

..

l

.

x0

.

tv

.

v

.

0

Figure 2.26 Points on line l are described parametrically by x(t) = x0 + tv.

The three variables x, y, and z describe the coordinates of points in space, but a fourth
quantity (a parameter) t is also used to help describe a line in space. In addition to x0,
notice that by the parallelogram rule, the sum x0 + v takes us to another point on line
l (see Figure 2.26). In fact, any point on l can be reached by scaling v appropriately
with some value of the parameter t. That is, the various points on l are all described by
x(t) = x0 + tv for the various values of the parameter t.

Definition 2.9. Given a point x0 and a direction vector v ≠ 0, the line through the
point x0 and in the direction of v is described parametrically by the equation

x(t) = x0 + tv.

This equation of the line is said to be in vector form or in point-parallel form.
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..Example 2.12

An equation of the line that passes through the point (2,3,−1) and is parallel to the

vector v =
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦
in point-parallel form is given by

x(t) =
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦
. (2.1)

A nice physical way to interpret this equation is to think of t as representing time and
to think of x(t) as the position at time t of a particle that is moving along the line. In

Example 2.12, the particle is at point x(0) =
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
at time t = 0 and at time t = 1 the

particle is at position x(1) =
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5
7
−3

⎤⎥⎥⎥⎥⎥⎦
.

It is important to realize that different vector equations can describe the same line. For
example, the equation

x(t) =
⎡⎢⎢⎢⎢⎢⎣

5
7
−3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

6
8
−4

⎤⎥⎥⎥⎥⎥⎦
(2.2)

looks different but describes the same line as the equation in Example 2.12. To under-
stand this, note that (5,7,−3) is a different point on the same line. Also note that the
direction vectors in the two equations

⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

6
8
−4

⎤⎥⎥⎥⎥⎥⎦
= 2
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦

are parallel. So the second equation (2.2) describes a particle starting at a different point
on the line when t = 0 and the second particle moves in the same direction as the first,
but it moves twice as fast.

A single vector equation x(t) = x0 + tv has three component parts (one for each coordi-
nate). We can break that down to three separate scalar equations. For example,

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦

can be written as

x = 2 + 3t
y = 3 + 4t
z = −1 − 2t

(2.3)
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and more generally
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
can be written as

x = x0 + at
y = y0 + bt
z = z0 + ct

(2.4)

The above gives an example and the general form for parametric equations of a line.
The components of v, the scalars a, b, and c, are called the direction numbers of the
line l. We can eliminate the parameters t by solving all three equations in (2.3) and
(2.4) for t and equating them. For example, (2.3) gives

x − 2
3
= t, y − 3

4
= t, z + 1

−2
= t

or
x − 2
3
= y − 3

4
= z + 1
−2

.

More generally, (2.4) gives

x − x0
a
= t, y − y0

b
= t, z − z0

c
= t

or

x − x0
a
= y − y0

b
= z − z0

c
. (2.5)

Equation 2.5 gives another form for describing a line with equations called symmetric
equations. It is helpful for finding the other coordinates of a point on a line when you
only know one.

..Example 2.13

For a line l described by the vector equation

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
3
−1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
4
−2

⎤⎥⎥⎥⎥⎥⎦
,

find the other coordinates of the point on l that has an x-coordinate of 8.

Solution The symmetric equations

x − 2
3
= y − 3

4
= z + 1
−2

are really three equations. Substituting the value 8 for x and solving we get

8 − 2
3
= y − 3

4
and

8 − 2
3
= z + 1
−2

which give y = 11 and z = −5. So the point on l with an x-coordinate of 8 is (8,11,−5).
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..

Looking at the general form for symmetric equations in 2.5, it is easy to pick out a point
on the line (x0, y0, z0) and in the denominators the direction numbers a, b, and c. We
see that there is a problem with the symmetric equations we have presented if one of
the direction numbers is 0. Ths next example illustrates and resolves this issue.

..Example 2.14

Find symmetric equations for the line through the point (5,4,3) and parallel to the

vector

⎡⎢⎢⎢⎢⎢⎣

2
1
0

⎤⎥⎥⎥⎥⎥⎦
.

Solution Substituting into the form presented yields

x − 5
2
= y − 4

1
= z − 3

0

and a problem of division by 0. This is not a problem in the vector form

x(t) =
⎡⎢⎢⎢⎢⎢⎣

5
4
3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
1
0

⎤⎥⎥⎥⎥⎥⎦

and the parametric equations

x = 5 + 2t
y = 4 + t
z = 3

show that because the direction number c = 0, the line is horizontal. That is, the line
has no movement in the z-direction as z = 3 always. We describe this with symmetric
equations as

x − 5
2
= y − 4

1
; z = 3.

..

..Example 2.15

Find an equation of the line l through the points P (3,2,7) and Q(1,10,−2) in point-
parallel form.

Solution For the point-parallel form, we need a point on the line (we have two of

them) and we need a parallel vector. If we let p =
⎡⎢⎢⎢⎢⎢⎣

3
2
7

⎤⎥⎥⎥⎥⎥⎦
and q =

⎡⎢⎢⎢⎢⎢⎣

1
10
−2

⎤⎥⎥⎥⎥⎥⎦
, the tip-to-tip

interpretation of vector subtraction provides us with the parallel vector

Ð→
PQ = q − p =

⎡⎢⎢⎢⎢⎢⎣

1
10
−2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

3
2
7

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−2
8
−9

⎤⎥⎥⎥⎥⎥⎦
.
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..

l

.

Ð→
PQ

.

0

.

Q

.
P

(a)
Ð→
PQ is parallel to line l.

..

l

.

p

.

q

.

q − p

.

0

.

Q

.
P

(b) q − p is a vector parallel to
line l.

Figure 2.27 Finding the point-parallel form of a line through points P and Q.

So

x(t) =
⎡⎢⎢⎢⎢⎢⎣

3
2
7

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−2
8
−9

⎤⎥⎥⎥⎥⎥⎦
describes the line in point-parallel form.

..

There is another form to describe a line called the two-point form. Given two points p
and q, one can substitute right into this without the need to calculate a direction vector.
It is derived from the point-parallel form having direction vector q − p.

x(t) = p + t(q − p)
= p + tq − tp
= (p − tp) + tq
= (1 − t)p + tq

The two point form places a particle at p when t = 0 and at q when t = 1. For 0 < t < 1,
the particle moves in a straight line from p to q. For t > 1, the particle is beyond q and
for t < 0 the particle has not yet reached p.

..Example 2.16

In two-point form, the line from Example 2.15 is described by

x(t) = (1 − t)
⎡⎢⎢⎢⎢⎢⎣

3
2
7

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
10
−2

⎤⎥⎥⎥⎥⎥⎦
.

..

..Example 2.17

Do the lines

x(t) =
⎡⎢⎢⎢⎢⎢⎣

4
4
5

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
−1
4

⎤⎥⎥⎥⎥⎥⎦
and x(t) =

⎡⎢⎢⎢⎢⎢⎣

8
7
5

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
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intersect?

Solution The parametric equations of these lines are

x = 4 + 2t
y = 4 − t
z = 5 + 4t

and
x = 8 + 3t
y = 7 + t
z = 5 + 2t

For the lines to intersect, there has to be a point on the two lines that has the same
x-coordinate, y-coordinate, and z-coordinate. This suggests that we should equate the
x’s, equate the y’s, and equate the z’s and solve for t. Trying this we get

4 + 2t = 8 + 3t
−4 = t

4 − t = 7 + t
−3 = 2t

−3
2 = t

and
5 + 4t = 5 + 2t
2t = 0
t = 0

We see that the values of t do not agree, so we can’t have the x, y, and z coordinates on
these lines equal at the same time. Does this mean the lines do not intersect? It is clear
that the lines are not parallel because their direction vectors are not parallel. Perhaps
the lines are skew.

There is a problem with this reasoning, but it is presented here because it represents
a common error. To understand, think of the moving-particle interpretation of these
equations and realize that in order for the two lines to intersect it is not necessary for
the two particles to be at the same point at the same time. It’s just like two cars
need not crash just because they are driving on intersecting roads. They may cross the
intersection at different times.

To determine whether the lines intersect we seek two possibly different times s and t
when all three coordinates are equal. Changing the parameter to s in the first equation
(now labeled as y(s)) we get x = 4 + 2s, y = 4 − s, and z = 5 + 4s. The second equation
can still be described with parameter t as x = 8 + 3t, y = 7 + t, and z = 5 + 2t. Equating
these gives

4 + 2s = 8 + 3t
4 − s = 7 + t
5 + 4s = 5 + 2t.

The linear system with unknowns s and t in standard form is

2s − 3t = 4
−s − t = 3
4s − 2t = 0

.

Using Gauss-Jordan elimination, we get

⎡⎢⎢⎢⎢⎢⎣

2 −3 4
−1 −1 3
4 −2 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −3
2 −3 4
2 −1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −3
0 −5 10
0 −3 6

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −3
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

So s = −1 and t = −2. Checking, we see

y(−1) =
⎡⎢⎢⎢⎢⎢⎣

4
4
5

⎤⎥⎥⎥⎥⎥⎦
+ (−1)

⎡⎢⎢⎢⎢⎢⎣

2
−1
4

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
5
1

⎤⎥⎥⎥⎥⎥⎦
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and

x(−2) =
⎡⎢⎢⎢⎢⎢⎣

8
7
5

⎤⎥⎥⎥⎥⎥⎦
+ (−2)

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
5
1

⎤⎥⎥⎥⎥⎥⎦
.

So the two lines indeed do intersect at (2,5,1).
..

Distance Between a Point and a Line

The distance between a point and a line is the shortest distance between the point and
all of the points on the line. It is the perpendicular distance.

..

l

.
v
.

d

.θ .

P

.

Q

Figure 2.28 Distance between a point P and a line l.

Let x(t) = x0+ tv be a vector-form equation of a line l and P a point presumably not on
the line. Let Q be any point on l (for example, x0 would work) and let v be a direction
vector for l. We can determine the distance from P to l using simple trigonometry (see
Figure 2.28).

d = ∥
Ð→
QP ∥ sin θ

= ∥
Ð→
QP ∥∥v∥ sin θ
∥v∥

= ∥Ð→QP × v∥
∥v∥

..Example 2.18

Find the distance from the point P (1,−1,2) to the line

x(t) =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
.

Solution Let Q be the point (1,2,3). Then

Ð→
QP =

⎡⎢⎢⎢⎢⎢⎣

1
−1
2

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
−3
−1

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
.
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We calculate

Ð→
QP × v =

RRRRRRRRRRRRRR

e1 e2 e3
0 −3 −1
2 3 1

RRRRRRRRRRRRRR
= (−3 + 3)e1 − (0 + 2)e2 + (0 + 6)e3 =

⎡⎢⎢⎢⎢⎢⎣

0
−2
6

⎤⎥⎥⎥⎥⎥⎦
.

So

d = ∥
Ð→
QP × v∥
∥v∥

=
√
0 + 4 + 36√
4 + 9 + 1

=
√
40√
14
=
√

20

7
= 2
√
35

7
.

..

.... Problem Set 2.4

1. Describe each of the following lines in the following ways (i) by writing a vector
equation of the line in point-parallel form, (ii) by writing parametric equations for
the line, and (iii) by writing symmetric equations for the line.

(a) The line that passes through the point

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
and is parallel to the vector

⎡⎢⎢⎢⎢⎢⎣

4
5
6

⎤⎥⎥⎥⎥⎥⎦
.

(b) The line that passes through the points

⎡⎢⎢⎢⎢⎢⎣

2
4
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

5
3
4

⎤⎥⎥⎥⎥⎥⎦
.

(c) The line that passes through the points

⎡⎢⎢⎢⎢⎢⎣

3
4
−1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
5
4

⎤⎥⎥⎥⎥⎥⎦
.

(d) The line that passes through the point

⎡⎢⎢⎢⎢⎢⎣

4
1
2

⎤⎥⎥⎥⎥⎥⎦
and is parallel to the line

x(t) =
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
6
3

⎤⎥⎥⎥⎥⎥⎦
.

2. Determine whether the following pairs of lines intersect at a point, are skew, are
parallel, or are coincident (the same line). If they intersect, find their intersection.

(a) x(t) =
⎡⎢⎢⎢⎢⎢⎣

2
−3
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
−2
−1

⎤⎥⎥⎥⎥⎥⎦
, y(t) =

⎡⎢⎢⎢⎢⎢⎣

1
2
−2

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−1
1
2

⎤⎥⎥⎥⎥⎥⎦
.

(b)
x = 3 + t
y = 1 − t
z = 1 + 3t

, x−4
−2 = y − 2 =

z−3
−4

(c) x−1
2 =

y
−2 =

z−3
6 , x(t) = (1 − t)

⎡⎢⎢⎢⎢⎢⎣

2
1
4

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−1
4
−5

⎤⎥⎥⎥⎥⎥⎦
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(d) x(t) = (1 − t)
⎡⎢⎢⎢⎢⎢⎣

−2
−3
7

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
,

x = 2 − 6t
y = −1 − 3t
z = 1 + 9t

3. In each case find the distance from the point to the line.

(a)

⎡⎢⎢⎢⎢⎢⎣

3
2
−1

⎤⎥⎥⎥⎥⎥⎦
, x(t) =

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
−1
2

⎤⎥⎥⎥⎥⎥⎦
.

(b)

⎡⎢⎢⎢⎢⎢⎣

2
5
4

⎤⎥⎥⎥⎥⎥⎦
,

x = 5 + 3t
y = 3 + t
z = 4 + 2t

(c)

⎡⎢⎢⎢⎢⎢⎣

4
2
−7

⎤⎥⎥⎥⎥⎥⎦
, x−8

2 = y − 4 =
z−1
4

4. Write (a) a vector equation, (b) parametric equations, and (c) symmetric equations

of the line that passes through the point

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
and is parallel to the y axis.

5. Find an equation of the line that intersects and is perpendicular to both

x(s) =
⎡⎢⎢⎢⎢⎢⎣

4
1
−3

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

1
−1
1

⎤⎥⎥⎥⎥⎥⎦
and y(t) =

⎡⎢⎢⎢⎢⎢⎣

6
−3
5

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
.

.

2.5 Planes in Space

The basic information needed to write an equation of a line in space is a point on the line
and a nonzero direction vector (i.e. a vector parallel to the line). The basic information
for an equation of a plane in space is a point on the plane and a nonzero normal vector,
that is, a nonzero vector that is perpendicular to the plane.

..

n

.

Q

.
P

Figure 2.29 Vector n is perpendicular to a plane passing through P and Q.

Let P (x0, y0, z0) be the known point on the plane and Q(x, y, z) any point. Notice that

if Q is on the plane, then the vector
Ð→
PQ is orthogonal to n, so n ⋅Ð→PQ = 0 and if Q is
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not on the plane, then
Ð→
PQ is not orthogonal to n, so n ⋅

Ð→
PQ ≠ 0. Thus, by determining

whether n ⋅Ð→PQ = 0 tells us precisely whether Q is on the plane.

Let x0 =
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦
be the vector form of P , x =

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
the vector form of Q, and n =

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
a nonzero vector normal to the plane. The point-normal form for an equation of the
plane is

n ⋅ (x − x0) = 0.

..Example 2.19

Find an equation of the plane through P (3,1,5) and normal to n = (7,2,4).

Solution In point-normal form, we have

⎡⎢⎢⎢⎢⎢⎣

7
2
4

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

3
1
5

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0.

A bit of algebra leads to a linear equation

7(x − 3) + 2(y − 1) + 4(z − 5) = 0

describing the plane which can be rewritten as

7x + 2y − 4z = 43.
..

The same algebra that was performed in Example 2.19, can be done to a general plane
in point-normal form

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0.

Algebraically, we have

a(x − x0) + b(y − y0) + c(z − z0) = 0

which can be rewritten as

ax + by + cz − (ax0 + by0 + cz0) = 0.

If we define d = ax0 + by0 + cz0, we can describe this plane with the linear equation

ax + by + cz = d.

So the graph of a linear equation in three variables from chapter 1 is in fact a plane (not
a line) in space.

We have now developed enough machinery to allow us several ways to solve many prob-
lems. We present two different methods for solving each of the next two examples.
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..Example 2.20

Find an equation of the plane that passes through the points P (1,−3,2), Q(4,2,1), and
R(2,1,3).

Solution 1 We have

Ð→
PQ =

⎡⎢⎢⎢⎢⎢⎣

4
2
1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
−3
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

3
5
−1

⎤⎥⎥⎥⎥⎥⎦
and
Ð→
PR =

⎡⎢⎢⎢⎢⎢⎣

2
1
3

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
−3
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
4
1

⎤⎥⎥⎥⎥⎥⎦
.

The perpendicular vector n can be found from a cross product:

n =Ð→PQ ×Ð→PR =
RRRRRRRRRRRRRR

e1 e2 e3
3 5 −1
1 4 1

RRRRRRRRRRRRRR
= (5 + 4)e1 − (3 + 1)e2 + (12 − 5)e3 =

⎡⎢⎢⎢⎢⎢⎣

9
−4
7

⎤⎥⎥⎥⎥⎥⎦
.

..

n =Ð→PQ ×Ð→PR

.

R

.

Q

.
P

Figure 2.30 Using a cross product to find an equation of a plane passing through
points P , Q and R.

We then use P for a point x0 on the plane (though Q or R would work fine too). The
equation for this plane is then a simple calculation:

⎡⎢⎢⎢⎢⎢⎣

9
−4
7

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
−3
2

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0

9(x − 1) − 4(y + 3) + 7(z − 2) = 0

9x − 4y + 7z = 35

Solution 2 The plane has a standard form equation ax + by + cz = d. For the proper
a, b, c, and d, the three points satisfy the equation so we can bring d to the left-hand
side (writing ax+ by + cz − d = 0) and get three linear equations in a, b, c, and d. We can
then solve the system

a − 3b + 2c − d = 0
4a + 2b + c − d = 0
2a + b + 3c − d = 0

using Gauss-Jordan elimination:

⎡⎢⎢⎢⎢⎢⎣

1 −3 2 −1 0
4 2 1 −1 0
2 1 3 −1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0 0 −9/35 0
0 1 0 4/35 0
0 0 1 −1/5 0

⎤⎥⎥⎥⎥⎥⎦
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If we let d be represented by a parameter t, we get a = 9
35 t, b = −

4
35 t, c =

1
5 t, and d = t.

We have (and should expect) infinitely many solutions to this system since any nonzero
scalar multiple of an equation of that plane is another equation of the same plane. If
we choose t = 35 (to avoid fractions), we arrive at the equation 9x − 4y + 7z = 35 as in
solution 1.

..

..Example 2.21

Find an equation for the line of intersection of the two planes x+y+z = 10 and 2x+y−z = 6.

Solution 1 We need a point on the line of intersection and a direction vector for that
line. There are many points on that line, but we need only one. We simplify our search
by trying to find a point where the x-coordinate is 0. When x = 0, the equations simplify
to y + z = 10 and y − z = 6. Solving, we get y = 8 and z = 2, so (0,8,2) lies on the line of
intersection. Since a direction vector for the line of intersection is parallel to the line, it

is perpendicular to both normal vectors n1 =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
and n2 =

⎡⎢⎢⎢⎢⎢⎣

2
1
−1

⎤⎥⎥⎥⎥⎥⎦
. The cross product

n1 × n2 gives us one.

n1 × n2 =
RRRRRRRRRRRRRR

e1 e2 e3
1 1 1
2 1 −1

RRRRRRRRRRRRRR
= (−1 − 1)e1 − (−1 − 2)e2 + (1 − 2)e3 =

⎡⎢⎢⎢⎢⎢⎣

−2
3
−1

⎤⎥⎥⎥⎥⎥⎦

So,

x(t) =
⎡⎢⎢⎢⎢⎢⎣

0
8
2

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−2
3
−1

⎤⎥⎥⎥⎥⎥⎦
(2.6)

is the line we seek.

Solution 2 The points on the line of intersection are precisely the solution set to the
system

x + y + z = 10

2x + y − z = 6.

We solve this system through row reduction.

[ 1 1 1 10
2 1 −1 6

] Ð→ ⋯Ð→ [ 1 0 −2 −4
0 1 3 14

]

Setting z = t,
x = −4 + 2t
y = 14 − 3t
z = t

which can be written in parametric vector form as

x(t) =
⎡⎢⎢⎢⎢⎢⎣

−4
14
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
−3
1

⎤⎥⎥⎥⎥⎥⎦
. (2.7)
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The equations of the line from solutions 1 and 2 appear to be different but note that
their direction vectors are parallel and from equation 2.6

x(2) =
⎡⎢⎢⎢⎢⎢⎣

0
8
−2

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

−2
3
−1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−4
14
0

⎤⎥⎥⎥⎥⎥⎦
,

the base point in equation 2.7. So (2.6) and (2.7) both represent the same line.
..

In many ways lines in the plane and planes in space are comparable. There are many
different forms for equations of lines in the plane and a corresponding form for equations
of planes in space. The following chart shows the analogs.

Lines in the Plane Planes in Space

Standard Form ax + by = c ax + by + cz = d
(a, b not both 0) (a, b, c not all 0)

Slope-Intercept y =mx + b z =m1x +m2y + b
Form

Point-Slope Form y − y0 =m(x − x0) z − z0 =m1(x − x0) +m2(y − y0)
Parametric x = x0 + at x = x0 + a1s + a2t
Equations y = y0 + bt y = y0 + b1s + b2t

z = z0 + c1s + c2t
Vector-Form x(t) = x0 + tv x(s, t) = x0 + su + tv

v ≠ 0 u,v ≠ 0 and not parallel

Point-Parallel Form [ x
y
] = [ x0

y0
] + t [ a

b
]

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

a1
b1
c1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

a2
b2
c2

⎤⎥⎥⎥⎥⎥⎦
Point-Normal n ⋅ (x − x0) = 0 n ⋅ (x − x0) = 0
Form n ≠ 0 n ≠ 0

[ a
b
] ⋅ ([ x

y
] − [ x0

y0
]) = 0

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

x0
y0
z0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0

A few comments are in order.

1. All lines in the plane and all planes in space have equations in all of these forms
but for one type of exception. Vertical lines and vertical planes do not fit into the
slope-intercept and the point-slope forms because the slopes are undefined.

2. The slopes m1 and m2 represent
∆z
∆x while y is held fixed and ∆z

∆y while x is held fixed.

3. The vector form or point-parallel form for a plane in space was touched on in sec-
tion 2.1 where it was noted that the set of all linear combinations of two nonparallel
vectors in R3 is a plane through the origin. Thus, for any s and t, su + tv produces
a point on the plane through the origin determined by u and v (that u and v lie on)
adding fixed point x0 to these shifts the plane, so the plane passes through x0 rather
than the origin.
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4. To find a point-normal form if given the point-parallel form in R3, simply note that
we may let n = u × v.

5. To find a point-parallel form given a standard form, simply solve for one variable in
terms of the other two as Example 2.22 illustrates.

..Example 2.22

Write a point-parallel equation for the plane 2x + y − 3z = 5.

Solution In this example we solve for y: y = 5 − 2x + 3z. Since this is just a short
system with only one equation (and three unknowns), we let x = s and z = t to write the
solution as parametric equations

x = s
y = 5 − 2s + 3t
z = t

which can also be placed in the vector form

x(s, t) =
⎡⎢⎢⎢⎢⎢⎣

0
5
0

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

1
−2
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

0
3
1

⎤⎥⎥⎥⎥⎥⎦
. (2.8)

Now the vector form (2.8) and the standard form 2x + y − 3z = 5 are very different
descriptions of the same plane. They are each helpful in their own way. In order
to generate many different points on the plane, the vector form (2.8) is helpful. By
substituting in many different values for s and t, we generate different points. To check
whether a particular point of interest lies on the plane, use the equation 2x + y − 3z = 5
and substitute in the coordinates of the point to see whether the equation is satisfied.

..

Distance from a Point to a Plane

Let π be a plane and P a point presumably not on the plane. Let n be a vector normal
to π. We see from Figure 2.31 that given any point Q on π, the distance from P to π is

d = ∥projn
Ð→
PQ∥.

..

π

.Q .

P

Figure 2.31 The distance from point P to plane π is the length of a projection.



90 Chapter 2. Euclidean 2-Space and 3-Space

..Example 2.23

Find the distance from P (1,1,3) to the plane 2x − y + z = 7.

Solution Clearly the point (0,0,7) is on the plane, so we choose that for Q. This gives

Ð→
PQ =

⎡⎢⎢⎢⎢⎢⎣

0
0
7

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
1
3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−1
−1
4

⎤⎥⎥⎥⎥⎥⎦
and n =

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦

so that

projn
Ð→
PQ =

Ð→
PQ ⋅ n
n ⋅ n

n = (−1)(2) + (−1)(−1) + (4)(1)
4 + 1 + 1

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
= 3

6

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦

and

d = ∥projn
Ð→
PQ∥ =

XXXXXXXXXXXXXX

1

2

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦

XXXXXXXXXXXXXX
= 1

2

√
4 + 1 + 1 =

√
6

2
.

..

..Example 2.24

Determine whether the lines

x(t) =
⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
and x(t) =

⎡⎢⎢⎢⎢⎢⎣

2
3
4

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦

coincided, intersect at a point, are parallel, or are skew.

Solution Clearly, these lines do not coincide and are not parallel because their direction

vectors

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
are not parallel. We check to see whether they intersect as in

Example 2.17 by solving

1 + s = 2 + 3t
2 + 2s = 3 + t

s = 4 + 2t.

This linear system is put into standard form that can then be row reduced.

s − 3t = 1

2s − t = 1

s − 2t = 4.

⎡⎢⎢⎢⎢⎢⎣

1 −3 1
2 −1 1
1 −2 4

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −3 1
0 5 −1
0 3 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −3 1
0 1 3
0 0 −16

⎤⎥⎥⎥⎥⎥⎦

The system is inconsistent so the lines do not intersect. The lines are skew because they
do not intersect and are not parallel.
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.. v2.

v1

.

d

Figure 2.32 Skew lines are not parallel and do not intersect.

..

..Example 2.25

Find the distance between the skew lines in Example 2.24.

Solution Let

v1 =
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
and v2 =

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
,

the direction vectors of each of the lines. Then

v1 × v2 =
RRRRRRRRRRRRRR

e1 e2 e3
1 2 1
3 1 2

RRRRRRRRRRRRRR
= (4 − 1)e1 − (2 − 3)e2 + (1 − 6)e3 =

⎡⎢⎢⎢⎢⎢⎣

3
1
−5

⎤⎥⎥⎥⎥⎥⎦
is perpendicular to both v1 and v2, so the plane

⎡⎢⎢⎢⎢⎢⎣

3
1
−5

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0

contains the first line and is parallel to the second. Hence the distance between the
two lines equals the distance from P (2,3,4) to the plane. We choose (1,2,0) for Q and

n =
⎡⎢⎢⎢⎢⎢⎣

3
1
−5

⎤⎥⎥⎥⎥⎥⎦
. It follows that

Ð→
PQ =

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

2
3
4

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−1
−1
−4

⎤⎥⎥⎥⎥⎥⎦
and

projn
Ð→
PQ = (−1)(3) + (−1)(1) + (−4)(−5)

9 + 1 + 25

⎡⎢⎢⎢⎢⎢⎣

3
1
−5

⎤⎥⎥⎥⎥⎥⎦
= 16

35

⎡⎢⎢⎢⎢⎢⎣

3
1
−5

⎤⎥⎥⎥⎥⎥⎦
.

So the distance between the lines is

d = ∥projn
Ð→
PQ∥ = 16

35

√
35.

..
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.... Problem Set 2.5

1. Find the equations in standard form of the following planes:

(a) through the point (1,−3,0) with a normal vector of

⎡⎢⎢⎢⎢⎢⎣

2
5
−4

⎤⎥⎥⎥⎥⎥⎦
.

(b) through the points (1,4,3), (2,6,4), and (6,2,−1).

(c) that contains the two intersecting lines x(t) =
⎡⎢⎢⎢⎢⎢⎣

2
1
−3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
4
2

⎤⎥⎥⎥⎥⎥⎦
and

x(t) =
⎡⎢⎢⎢⎢⎢⎣

5
2
−2

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
1
1

⎤⎥⎥⎥⎥⎥⎦
. (Make sure the lines intersect.)

(d) through the point (2,1,−2) and perpendicular to the line x−1
3 =

y+2
4 =

z−3
5 .

(e) through the point (1,−1,3) and parallel to the plane 2x + 3y − z = 1.
(f) that contains the line

x = 1 + 3t
y = 2 − t
z = 4 + t

and is perpendicular to the plane x + 3y − 2z = 4. (Planes are perpendicular if
their normal vectors are perpendicular.)

(g) through the point (4,1,3) and perpendicular to the planes x + 2y − z = 4 and
3x − y + 2z = 1.

2. Write the equation of the plane from Exercise 1(a) in the following six forms:

(a) standard form (b) point-normal form (c) slope-intercept form

(d) point-slope form (e) parametric equations (f) point-parallel form

3. Find the equation of the line of intersection of the planes x+3y−2z = 1 and 2x+7y+z =
4.

4. Find the equation of the line on the plane x(s, t) =
⎡⎢⎢⎢⎢⎢⎣

0
4
0

⎤⎥⎥⎥⎥⎥⎦
+s
⎡⎢⎢⎢⎢⎢⎣

1
−2
0

⎤⎥⎥⎥⎥⎥⎦
+t
⎡⎢⎢⎢⎢⎢⎣

0
−3
1

⎤⎥⎥⎥⎥⎥⎦
, through

the point (2,6,−2) and perpendicular to the vector

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
.

5. Find the intersection of the planes x+ 3y + 2z = 4, 2x+ 7y + 3z = 9, and x+ 5y + z = 9.

6. Find the intersection of the plane 2x + 3y − z = 4 and the line

x(t) =
⎡⎢⎢⎢⎢⎢⎣

2
5
3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
−2
2

⎤⎥⎥⎥⎥⎥⎦
.

7. Find the distance between the point (5,1,4) and the plane 2x + 3y + 4z = 6.
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8. (a) Find the distance between the skew lines

x(s) =
⎡⎢⎢⎢⎢⎢⎣

6
−1
−1

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
and y(t) =

⎡⎢⎢⎢⎢⎢⎣

−7
−6
−1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
.

(b) Find the two points (one from each line in part (a)) such that the distance
between them equals the distance between the two lines.

9. (a) Show that the line x(t) =
⎡⎢⎢⎢⎢⎢⎣

2
1
4

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
2
4

⎤⎥⎥⎥⎥⎥⎦
and the plane 2x + 3y − 3z = 2 are

parallel.

(b) Find the distance between the line and the plane in part (a).

10. (a) Show that the lines x(t) =
⎡⎢⎢⎢⎢⎢⎣

3
1
4

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

3
−6
9

⎤⎥⎥⎥⎥⎥⎦
and x(t) =

⎡⎢⎢⎢⎢⎢⎣

1
3
−2

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−2
4
−6

⎤⎥⎥⎥⎥⎥⎦
are

parallel.

(b) Find the distance between the parallel lines in part (a).

11. The standard form for the equation of a plane is ax + by + cz = d (a, b, c not all 0).
In each part below write a sentence or two to describe geometrically the planes with
equations that have the following characteristics.

(a) a = b = 0 (b) b = c = 0 (c) c = 0 (d) d = 0

12. Recall the symmetric equations for a line, x−x0
a = y−y0

b =
z−z0
c , (a, b, c /= 0).

(a) Describe geometrically the set of points that satisfy the equation x−x0

a = y−y0
b ,

and describe the set of points that satisfy the equation y−y0
b =

z−z0
c .

(b) What is the connection between your answers in part (a) and the line described
by the symmetric equations above.



..

.. 3 Determinants

In section 1.6, we learned that a 2×2 matrix [ a b
c d

] is invertible if and only if ad−bc ≠ 0.

We called ad−bc the determinant of the matrix. In this chapter, we learn more properties
of the determinant and how the definition extends to larger square matrices.

3.1 The Definition of Determinant

There are several equivalent ways to define the determinant of an n × n matrix. We
take a standard (and probably the easiest) definition. It is a recursive definition, which
means that the definition of the determinant of an n × n matrix is given in terms of
determinants of (n−1)×(n−1) matrices. For example, the determinant of a 5×5 matrix
is given in terms of determinants of 4 × 4 matrices which, in turn, are defined in terms
of determinants of 3 × 3 matrices, etc. Of course, we already know how to calculate the
determinant of a 2 × 2 matrix, but we are going to start even smaller.

Definition 3.1. If A is a 1 × 1 matrix, then there is a real number a such that
A = [a]. We define the determinant of A to be detA = a.

Definition 3.2. Let A be an n × n matrix with n > 1. For each i and j between 1
and n, define Aij to be the (n− 1)× (n− 1) matrix obtained from A by deleting row
i and column j from A. The matrix Aij is called the (i, j) submatrix of A and its
determinant

Mij = detAij

is called the (i, j) minor of A.

..Example 3.1

Let

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 3
4 5 6
7 8 9

⎤⎥⎥⎥⎥⎥⎦
.

Then,

A11 = [
5 6
8 9

] and M11 = (5)(9) − (6)(8) = −3,

A12 = [
4 6
7 9

] and M12 = (4)(9) − (6)(7) = −6,

94
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and

A22 = [
1 3
7 9

] and M22 = (1)(9) − (3)(7) = −12.

..

Definition 3.3. Suppose A is an n×n matrix and n ≥ 2. Define the determinant
of A as

detA = a11M11 − a12M12 +⋯ + (−1)1+na1nM1n

= Σn
j=1(−1)1+ja1jM1j

The notation ∣A∣ is also used to denote the determinant of A.

..Example 3.2

Compute the determinant of

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 −3
5 0 1
−2 3 4

⎤⎥⎥⎥⎥⎥⎦
.

Solution

detA = (1)det [ 0 1
3 4

] − (2)det [ 5 1
−2 4

] + (−3)det [ 5 0
−2 3

]

= (1)(0 − 3) − (2)(20 + 2) + (−3)(15 − 0)
= −3 − 44 − 45
= −92

It is not clear at this point what this number, the determinant, indicates about the
matrix.

..

Using the recursive definition to calculate the determinant of a general 2 × 2 matrix, we
get

det [ a b
c d

] = adet[d] − bdet[c]

= ad − bc.

So this recursive definition agrees with the definition presented in section 1.6 for 2 × 2
matrices.

Definition 3.4. If A is an n × n matrix and i and j are between 1 and n, then we
define the (i, j) cofactor of A to be

Cij = (−1)i+j detAij = (−1)i+jMij .



96 Chapter 3. Determinants

Combining Definition 3.4 with the recursive definition of determinant, we get

detA = a11C11 + a12C12 +⋯ + a1nC1n = Σn
j=1a1jC1j .

This is called the cofactor expansion of detA across the first row.

It turns out that we obtain the same result by expanding across any row or down any
column of a matrix.

Theorem 3.1 (Laplace Expansion, Cofactor Expansion, or Expansion by Minors).
Let A be an n × n matrix. For any fixed i between 1 and n,

detA = ai1Ci1 + ai2Ci2 +⋯ + ainCin = Σn
j=1aijCij

and for any fixed j between 1 and n,

detA = a1jC1j + a2jC2j +⋯ + anjCnj = Σn
i=1aijCij .

The proof of Theorem 3.1 is too time consuming to present here, but we illustrate it
by expanding Example 3.2 across the second row and down the third column instead of
across the first row but with the same result.

..Example 3.3

RRRRRRRRRRRRRR

1 2 −3
5 0 1
−2 3 4

RRRRRRRRRRRRRR
= (−1)2+1(5) ∣ 2 −3

3 4
∣ + (−1)2+2(0) ∣ 1 −3

−2 4
∣ + (−1)2+3(1) ∣ 1 2

−2 3
∣

= −5(8 + 9) + 0(4 − 6) − 1(3 + 4)
= −85 + 0 − 7
= −92

and

RRRRRRRRRRRRRR

1 2 −3
5 0 1
−2 3 4

RRRRRRRRRRRRRR
= (−1)1+3(−3) ∣ 5 0

−2 3
∣ + (−1)2+3(1) ∣ 1 2

−2 3
∣ + (−1)3+3(4) ∣ 1 2

5 0
∣

= −3(15 − 0) − 1(3 + 4) + 4(0 − 10)
= −45 − 7 − 40
= −92

..

It follows immediately from Theorem 3.1 that if a square matrix has a row or column
of zeros, then its determinant equals zero. By expanding across the row or column of
zeros, a determinant of zero is produced regardless of the minors since the minors are
multiplied by zero.
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Corollary 3.2. If A is an n×n matrix with a row or column of zeros, then detA = 0.

Another corollary of Theorem 3.1 is that the determinant of a square matrix and its
transpose must be equal for clearly expansion across the first row of a matrix yields the
same result as expansion down the first column of its transpose.

Corollary 3.3. If A is an n × n matrix, then detA = detAT .

The sign of each term in the expansion depends on the factor (−1)i+j . These powers of
-1 form a ± checkerboard

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+ − + − +
− + − + −
+ − + − +
− + − + −
+ − + − +

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

that starts with + ((−1)1+1) in the upper left corner and alternates. Expansion across
the first row or down the first column begins with a +, but expansion across the second
row or down the second column begins with a −. Be sure to keep the signs straight when
expanding.

As we have seen, the × pattern works for finding the terms of determinants of 2 × 2
matrices

det [ a b
c d

] = ad − bc.

For 3 × 3 matrices a basket weave pattern works. Repeat the first two columns of A
to the right of the matrix. Then form the terms of the expansion by multiplying the
three entries that line up along the echelons (down-right and up-right). Multiply the
down-right terms by +1, the up-right terms by -1 and add.

..

⎡⎢⎢⎢⎢⎢⎣

a b c
d e f
g h i

⎤⎥⎥⎥⎥⎥⎦

.
a b
d e
g h

.

+

.

+

.

+

.

−

.

−

.

−

Figure 3.1 detA = aei + bfg + cdh − gec − hfa − idb.

These basket weave patterns do not generalize nicely to larger matrices.

Calculating a determinant by cofactor expansion can be a lot of work if the matrix is
large. For many applications a 25 × 25 matrix is small, but even a very large computer
that can calculate a trillion multiplications per second would require over 500,000 years
to calculate that determinant by cofactor expansion. We need (and have) a faster way
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that involves elementary row operations. For 2×2 and 3×3 matrices, we don’t bother with
the elementary row operations because cofactor expansion, the × or the basket weave
are at least as fast, but the elementary row operations help even with 4×4 matrices and
help is more pronounced with larger matrices.

The first thing to note is that the determinant of a triangular matrix is particularly
easy to calculate. When calculating the determinant of an upper triangular matrix by
expanding down the first column we notice that it is not necessary to calculate most of
the minors because they are multiplied by zero anyway. Example 3.4 illustrates.

..Example 3.4

RRRRRRRRRRRRRRRRRRRRRRRR

2 1 4 3 7
0 3 −1 2 5
0 0 4 6 2
0 0 0 −1 4
0 0 0 0 −2

RRRRRRRRRRRRRRRRRRRRRRRR

= (2)

RRRRRRRRRRRRRRRRRRR

3 −1 2 5
0 4 6 2
0 0 −1 4
0 0 0 −2

RRRRRRRRRRRRRRRRRRR

− 0(∗) + 0(∗) − 0(∗) + 0(∗)

= (2)(3)
RRRRRRRRRRRRRR

4 6 2
0 −1 4
0 0 −2

RRRRRRRRRRRRRR

= (2)(3)(4) ∣ −1 4
0 −2 ∣

= (2)(3)(4)(−1)(−2) = 48

..

Though this is only an example, it is clear that this process works for any square upper
triangular matrix. The determinant of an upper triangular matrix equals the product of
the diagonal entries. This also works for square lower triangular matrices by expanding
across the first row.

Theorem 3.4. If A is an n×n triangular matrix, then detA equals the product of
the diagonal entries. That is, detA = a11a22⋯ann.

We have used elementary row operations to reduce a matrix into triangular forms. If
we understood the effects of elementary row operations on the determinant, we could
reduce the matrix to a triangular form and account for the effects of the elementary row
operations as we go. Through this process we will be able to calculate determinants
much more quickly than through cofactor expansion.

In the next section we study the effects of elementary row operations on the determinant.
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.... Problem Set 3.1

1. Let A =
⎡⎢⎢⎢⎢⎢⎣

1 8 9
7 0 4
2 6 3

⎤⎥⎥⎥⎥⎥⎦
.

(a) Find all 9 submatrices Ai,j .

(b) Find all 9 minors Mi,j .

(c) Find all 9 cofactors Ci,j .

2. Calculate the determinant of each of the following using the definition of determinant.

(a) [ −7 ]
(b) [ 7 8

−3 2
]

(c)

⎡⎢⎢⎢⎢⎢⎣

1 −4 −2
4 −3 2
1 5 8

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 5
0 −2 4 0
−1 0 −3 −2
5 2 −3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

3. Use the basket-weave method to calculate the determinant of the following two ma-
trices.

(a)

⎡⎢⎢⎢⎢⎢⎣

−3 −2 2
3 2 1
1 −1 3

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

3 −2 0
2 4 −3
5 3 1

⎤⎥⎥⎥⎥⎥⎦

4. Verify that the determinants of the following matrix and its transpose are equal.

⎡⎢⎢⎢⎢⎢⎣

1 −2 0
2 3 −3
5 4 1

⎤⎥⎥⎥⎥⎥⎦

5. Evaluate the determinants of the following matrices by inspection.

(a)

⎡⎢⎢⎢⎢⎢⎣

−3 −2 2
0 0 0
1 −1 3

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

3 −2 0
2 4 0
5 3 0

⎤⎥⎥⎥⎥⎥⎦

6. Use any of the theorems or corollaries of this section to calculate the determinants of
the following. None of these should be very much work if calculated correctly.

(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 1
0 4 4 2
0 0 4 1
0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(b)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 1 2 2
0 −2 −1 1
0 0 0 −1
0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0
−2 −1 0 0
−2 −1 5 0
0 3 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(d)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 2
0 0 −1 −2
0 2 2 −1
3 3 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 5 0 3
0 −2 4 0 0 2
−1 0 −3 −2 0 −4
5 2 −3 −1 0 8
3 6 5 2 0 8
3 2 8 5 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(f)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 5 0 3
0 −2 4 0 3 0
−1 0 −3 −2 0 0
5 2 −3 0 0 0
3 6 0 0 0 0
1 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(g)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 3 −2 1 3 5
0 4 0 0 0 5
0 2 0 6 0 3
0 1 5 7 0 4
0 0 0 0 0 2
1 3 −2 3 −3 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

3.2 Elementary Row Operations and the Determinant

Below is a chart of the three elementary row operations with their effects on the deter-
minant.

Elementary Row Operation Effect on the Determinant

1. Multiply a row by a nonzero scalar r. 1. Changes the determinant by a factor of
r ≠ 0.

2. Swap two rows. 2. Switches the sign of the determinant.
3. Replace a row with itself plus a scalar
multiple of another row.

3. Does not change the determinant.

We start the explanation with the first elementary row operation. Let A be an n × n
matrix and let B be obtained from A by multiplying row i of A by a nonzero scalar r.

A =
⎡⎢⎢⎢⎢⎢⎣

∗
ai1⋯ain
∗

⎤⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎣

∗
rai1⋯rain
∗

⎤⎥⎥⎥⎥⎥⎦

By expanding both determinants across row i we get

detA =
n

∑
j=1
(−1)i+jaij detAij and detB =

n

∑
j=1
(−1)i+jbij detBij .
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But bij = raij , and since A and B differ only on row i, for each j, Aij = Bij because the
row where A and B differ is deleted. So

detB =
n

∑
j=1
(−1)i+j(raij)detAij

= r
⎛
⎝

n

∑
j=1
(−1)i+jaij detAij

⎞
⎠

= r detA.

It follows that the first elementary row operation (multiplication by a scalar r ≠ 0)
changes the determinant by a factor of r.

For the second elementary row operation, we begin by assuming that rows to be swapped
are adjacent to each other. Let A be the matrix before the swap and B the matrix after
the swap. Assume rows i and i + 1 are swapped.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗
ai1⋯ain

ai+1,1⋯ai+1,n
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∗
ai+1,1⋯ai+1,n

ai1⋯ain
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Expansion across row i for detA yields

detA =
n

∑
j=1
(−1)i+jaij detAij .

Expansion across row i + 1 for detB yields

detB =
n

∑
j=1
(−1)i+1+jbi+1,j detBi+1,j .

Though rows i and i+1 are different rows, because of the swap the ith row of A contains
the same entries as the i+1st row of B and the ith row of B contains the same entries as
the i + 1st row of A. We have aij = bi+1,j and the same entries are deleted when forming
the minors Ai,j and Bi+1,j . Also, the i + 1st row of A and the ith row of B (which are
identical) move into the same positions in Ai,j and Bi+1,j so Bi+1,j = Ai,j . Therefore,

detB =
n

∑
j=1
(−1)i+1+jbi+1,j detBi+1,j

=
n

∑
j=1
(−1)(−1)i+jaij detAi,j

= (−1)
⎛
⎝

n

∑
j=1
(−1)i+jaij detAi,j

⎞
⎠

= (−1)detA

So the second elementary row operation changes the sign of the determinant if the rows
swapped are adjacent.

Next, suppose the rows to be swapped are not adjacent. Suppose B is obtained by
swapping rows i and k with k > i+1. We can obtain B from A by doing several adjacent
swaps. We must count how many adjacent swaps are done.

1 2 ⋯ i ⋯ k ⋯ n
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Swap the entries in row i down 1 repeatedly until they get all the way down to row k.
This is done in k − i swaps. After that the entries originally in row i are down in row k
and the entries in each row between i and k (including k) have moved up one row. To
get the entries originally in row k up to row i we swap them with the row just above
until they get up to row i. This requires one fewer swap since the swaps that took row
i down left row k up one. So getting the row k entries up to row i requires k − i − 1
swaps. The rows above i and below k are unchanged. The rows i and k are swapped
and the rows between i and k moves up one and then down one back to their original
positions. The total number of swaps is (k − i) + (k − i − 1) = 2k − 2i − 1 = 2(k − i) − 1
which is an odd number. Each swap is an adjacent swap so each changes the sign of the
determinant. Changing the sign an odd number of times leaves the sign the opposite of
what it was originally. So, the second elementary row operation changes the sign of the
determinant.

Before proceeding to the third elementary row operation, we stop to collect two corol-
laries of this result regarding the second elementary row operation.

Corollary 3.5. If A is a square matrix with two identical rows or columns, then
detA = 0.

Proof Suppose rows i and k of A are identical with i ≠ k. Let d = detA. Swapping
rows i and k switches the sign of the determinant so after the switch the determiant is
−d. But, because the rows are identical the matrix, hence its determiant, is unchanged
by the swap so that d = −d. Since 0 is the only real number equal to its own negative,
d = 0. Therefore, detA = 0.

Corollary 3.6. If A is a square matrix in which one row is a scalar multiple of
another row, then detA = 0.

Proof Suppose A is an n × n matrix in which row k is a scalar, r, times row i of A.

detA =

RRRRRRRRRRRRRRRRRRRRRRRR

∗
ai1⋯ain
∗

rai1⋯rain
∗

RRRRRRRRRRRRRRRRRRRRRRRR

← row i

← row k

= r

RRRRRRRRRRRRRRRRRRRRRRRR

∗
ai1⋯ain
∗

ai1⋯ain
∗

RRRRRRRRRRRRRRRRRRRRRRRR

← row i

← row k

= (r)(0) by Corollary 3.5

= 0
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Now we move to the third elementary row operation. Suppose A is an n×n matrix and
B is obtained from A by replacing row i with itself plus a scalar multiple r of row k ≠ i.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
ai1⋯ain
∗

ak1⋯akn
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← row i

← row k

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
ai1 + rak1⋯ain + rakn

∗
ak1⋯akn
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← row i

← row k
C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
rak1⋯rakn

∗
ak1⋯akn
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← row i

← row k

Also, define C as shown above, just like A and B except in row i which is a multiple of
row k, so detC = 0. Expanding detB across row i we get

detB =
n

∑
j=1
(−1)i+jbij detBij .

Since A,B, and C differ only in row i, for all j we have Aij = Bij = Cij and bij = aij+rakj ,
so

detB =
n

∑
j=1
(−1)i+j (aij + rijakj)detAij

=
n

∑
j=1
(−1)i+jaij detAij +

n

∑
j=1
(−1)i+jrakj detAij

= detA + detC
= detA + 0
= detA

Therefore, the third elementary row operation has no effect on the determinant.

A convenient way of describing the effects of all three elementary row operations on the
determinant is as follows: If B is obtained from A by an elementary row operation, then
detB = αdetA where α ≠ 0 and α = r,−1,1 depending on the type of elementary row
operation.

Generally speaking, keep in mind that use of these properties is helpful in calculating the
determinant only when the matrices are 4 × 4 or larger. We show two different ways in
which these operations can be helpful in calculating a determinant. In Example 3.5, we
use elementary row operations to reduce a matrix into an upper triangular form keeping
track of the effect on the determinant as we go.

..Example 3.5

RRRRRRRRRRRRRRRRRRR

2 5 2 −1
1 1 0 −1
−1 2 0 8
1 4 1 2

RRRRRRRRRRRRRRRRRRR

= −

RRRRRRRRRRRRRRRRRRR

1 1 0 −1
2 5 2 −1
−1 2 0 8
1 4 1 2

RRRRRRRRRRRRRRRRRRR

= −

RRRRRRRRRRRRRRRRRRR

1 1 0 −1
0 3 2 1
0 3 0 7
0 3 1 3

RRRRRRRRRRRRRRRRRRR

= −

RRRRRRRRRRRRRRRRRRR

1 1 0 −1
0 3 2 1
0 0 −2 6
0 0 −1 2

RRRRRRRRRRRRRRRRRRR
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= −2

RRRRRRRRRRRRRRRRRRR

1 1 0 −1
0 3 2 1
0 0 −1 3
0 0 −1 2

RRRRRRRRRRRRRRRRRRR

= −2

RRRRRRRRRRRRRRRRRRR

1 1 0 −1
0 3 2 1
0 0 −1 3
0 0 0 −1

RRRRRRRRRRRRRRRRRRR

= (−2)(1)(3)(−1)(−1) = −6

..

Example 3.6 shows how to take advantage of naturally occurring zeros no matter where
they occur to make the job of calculating the determinant easier.

..Example 3.6

In this calculation, we take advantage of the 0’s originally found in the third column and
expand down that column after one elementary row operation.

RRRRRRRRRRRRRRRRRRR

2 5 2 −1
1 1 0 −1
−1 2 0 8
1 4 1 2

RRRRRRRRRRRRRRRRRRR

=

RRRRRRRRRRRRRRRRRRR

0 −3 0 −5
1 1 0 −1
−1 2 0 8
1 4 1 2

RRRRRRRRRRRRRRRRRRR

= −(1)
RRRRRRRRRRRRRR

0 −3 −5
1 1 −1
−1 2 8

RRRRRRRRRRRRRR
=

−(1)
RRRRRRRRRRRRRR

0 −3 −5
1 1 −1
0 3 7

RRRRRRRRRRRRRR
= (−1)(−1) ∣ −3 −5

3 7
∣ = −21 + 15 = −6

..

.... Problem Set 3.2

1. Evaluate the determinants of the following matrices by inspection.

(a)

⎡⎢⎢⎢⎢⎢⎣

3 −2 2
3 −2 2
1 −1 3

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

3 −2 −6
2 4 −4
−1 3 2

⎤⎥⎥⎥⎥⎥⎦

2. Evaluate the determinant of each of the following matrices by reducing each matrix
to an upper-triangular form through elementary row operations.

(a) [ 1 −2
5 3

] (b) [ 3 4
2 7

]
(c)

⎡⎢⎢⎢⎢⎢⎣

1 1 3
3 4 7
2 4 7

⎤⎥⎥⎥⎥⎥⎦

(d)

⎡⎢⎢⎢⎢⎢⎣

4 10 −3
2 11 4
3 7 0

⎤⎥⎥⎥⎥⎥⎦
(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1
2/3 1/3 1 0
1/2 1/2 0 1
1/5 0 1/5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(f)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 1 1 −1
1 1 −1 −1
1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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3. Given

RRRRRRRRRRRRRR

a b c
d e f
g h i

RRRRRRRRRRRRRR
= 7, find

(a)

RRRRRRRRRRRRRR

d e f
g h i
a b c

RRRRRRRRRRRRRR
(b)

RRRRRRRRRRRRRR

3a 3b 3c
−d −e −f
5g 5h 5i

RRRRRRRRRRRRRR
(c)

RRRRRRRRRRRRRR

a b c
a + 2d b + 2e c + 2f
g − 3a h − 3b i − 3c

RRRRRRRRRRRRRR

4. Use elementary row operations to show
RRRRRRRRRRRRRR

1 1 1
a b c
a2 b2 c2

RRRRRRRRRRRRRR
= (b − a)(c − a)(c − b).

5. Prove that if A is an n × n matrix and k is a scalar, then det(kA) = kn detA

.

3.3 Elementary Matrices and the Determinant

Now that we have learned the definition of determinant and how to calculate it efficiently,
we develop two important properties of the determinant.

1. A square matrix is invertible if and only if its determinant is not zero.

2. The determinant of a product of matrices equals the product of the determinants.

We begin this process by examining the determinants of elementary matrices.

The n×n identity matrix, being triangular with its main diagonal all 1’s, has a determi-
nant of det In = 1. Elementary matrices are obtained from the identity In by performing
a single elementary row operation and in Section 3.2 we learned the effect of elementary
row operations on the determinant. From this we see that if E is an elementary matrix,
then detE = α where

α =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

r ≠ 0 if the row operation multiplies a row by r ≠ 0
−1 if the row operation is a row swap
1 if the row operation is a replacement row operation

.

Lemma 3.7. Let B be an n × n matrix and E an n × n elementary matrix. Then

det(EB) = (detE)(detB).

Proof Let C be the n×n matrix obtained from B by performing the same elementary
row operation that transformed In to E. Let α = detE. From Section 3.2, we have
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detC = αdetB. Recall from Section 1.6 that multiplication on the left by E has the same
effect on B as performing the elementary row operation directly on B. It follows that
EB = C and detEB = detC = αdetB. But α = detE so that detEB = (detE)(detB).

Theorem 3.8. Let A be an n × n matrix. A is invertible if and only if detA ≠ 0.

Proof Let R be the reduced row-echelon form of A. There is a sequence of elementary
row operations that reduces A to R: A Ð→ ⋯ Ð→ R. Since performing an elementary
row operation on a matrix has the same effect on the matrix as multiplication on the
left by the corresponding elementary matrix, there is a sequence of elementary matrices
E1,⋯,Ek such that

R = E1⋯EkA.

Substituting for R and applying Lemma 3.7 k times, we peel the elementary matrices
away one at a time.

detR = det(E1⋯EkA)
= (detE1)(detE2⋯EkA)
⋮
= (detE1)⋯(detEk)(detA)

As mentioned above for each i = 1,⋯, k, detEi = 1,−1, or r (all nonzero) so that detA = 0
if and only if detR = 0. If A is invertible, then R = In, so detR = 1 ≠ 0 making detA ≠ 0.
If, on the other hand, A is singular, then R has a row of 0’s and detR = 0 making
detA = 0. Therefore, A is invertible if and only if detA ≠ 0.

We now add this result to Theorem 1.18 from Section 1.6 of statements equivalent to A
is invertible.

Theorem 3.9. Let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A
is the identity matrix In.

(d) A is a product of elementary matri-
ces.

(e) A has n pivot columns.

(f) A has a left inverse.

(g) A has a right inverse.

(h) For all b, Ax = b has a unique solu-
tion.

(i) Every n-vector b is a linear combina-
tion of the columns of A.

(j) AT is invertible.

(k) rankA = n.

(l) nullityA = 0.

(m) detA ≠ 0.
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Lemma 3.10. If A is an invertible n × n matrix and B is any n × n matrix, then

det(AB) = (detA)(detB).

Proof Since A is invertible, there is a sequence of elementary matrices E1,⋯,Ek such
that A = E1⋯Ek. Substituting for A and applying Lemma 3.7 k times we can again peel
away the elemenatary matrices one at a time

det(AB) = det(E1⋯EkB)
= (detE1)(detE2⋯EkB)
⋮
= (detE1)⋯(detEk)(detB)

Now we use Lemma 3.7 in the reverse direction k − 1 times to put all the elementary
matrices back together but leaving B out.

det(AB) = (detE1)⋯(detEk)(detB)
= (detE1)⋯(detEk−2)(detEk−1Ek)(detB)
⋮
= (detE1⋯Ek)(detB)
= (detA)(detB)

Theorem 3.11. If A and B are n × n matrices, then det(AB) = (detA)(detB).

Proof If A is invertible, then by Lemma 3.10 det(AB) = (detA)(detB). If A is singular,
then by Corollary 1.17 from Section 1.6 the product AB is singular also so that both
detA = 0 and det(AB) = 0. Therefore detAB = (detA)(detB).

..Example 3.7

Let A = [ 2 1
3 5

] and B = [ 1 −3
−2 0

]. Then AB = [ 0 −6
−7 −9 ] and A +B = [ 3 −2

1 5
].

Clearly detA = 7, detB = −6, detAB = −42, and det(A +B) = 17. Since (7)(−6) = −42,
this illustrates the general theorem that the determinant of a product of matrices equals
the product of their determinants. Is the determinant of a sum equal to the sum of the
determinants? Since 7 + (−6) ≠ 17, these matrices also serve as a counterexample to
disprove the false theorem det(A +B) = detA + detB.

..

Though in general it is not true that det(A +B) = detA + detB, there is a similar true
theorem concerning determinants and sums. A special case of this theorem was used
and proved in Section 3.2 to show that the replacement elementary row operation does
not change the determinant. The proof of the next theorem is left to the exercises, but
the key to the proof is found in Section 3.2.
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Theorem 3.12. Let A,B, and C be n×n matrices that differ only in a single row.
Suppose also that in the row where they differ, the entry in C equals the sum of the
corresponding entries in A and B. Then,

detC = detA + detB.

The same result holds for columns.

..Example 3.8

For 3 × 3 matrices that are identical except in row 2, this theorem guarantees that

RRRRRRRRRRRRRR

a b c
d + e f + g h + i
j k l

RRRRRRRRRRRRRR
=
RRRRRRRRRRRRRR

a b c
d f h
j k l

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

a b c
e g i
j k l

RRRRRRRRRRRRRR
.

..

.... Problem Set 3.3

1. Use determinants to determine whether the following matrices are invertible.

(a) [ 4 3
5 −2 ] (b)

⎡⎢⎢⎢⎢⎢⎣

3 5 4
2 3 1
2 5 11

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2. Let A and B be 3 × 3 matrices with detA = 5 and detB = 4. Find the following
determinants.

(a) detAB (b) det 3A (c) detA3 (d) detAAT (e) detB−1

3. Use determinants to find the values of x for which A is singular.

(a) A = [ 3 − x 2
1 2 − x ] (b) A =

⎡⎢⎢⎢⎢⎢⎣

1 3 x
4 1 2
5 2 1

⎤⎥⎥⎥⎥⎥⎦

4. Express the following determinants as sums of determinants of matrices with entries
that contain no sums.

(a)

RRRRRRRRRRRRRR

a b c + d
e f g + h
i j k + l

RRRRRRRRRRRRRR

(b) ∣ a + b c + d
e + f g + h ∣ (c)

RRRRRRRRRRRRRR

a + b c + d e + f
g + h i + j k + l
m + n p + q r + s

RRRRRRRRRRRRRR

5. Prove that for each positive integer n, detAn = (detA)n.

6. Prove that if A is invertible, then detA−1 = 1/detA.

7. Prove that for any n×n matrix A and for any invertible n×n matrix P , det(P−1AP ) =
detA.
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8. For n × n matrices A and B, you know that AB and BA need not be equal. Is the
same true for detAB and detBA? Explain.

9. Prove the following theorem: Let A, B, and C be n × n matrices that differ only in
a single row. Suppose also that in that row where they differ, the entries in C equal
the sum of the two corresponding entries from A and B. Then

detC = detA + detB.

The same result holds for columns. (Hint: Use LaPlace expansion by expanding detC
across the row where the matrices differ.)

.

3.4 Applications of the Determinant

Cramer’s Rule

You have learned how to solve a system of linear equations Ax = b by using Gauss-
Jordan elimination and Gaussian elimination with back substitution. Cramer’s Rule
provides us with another method for solving square systems that uses determinants.
Though helpful in some situations, Cramer’s Rule has some distinct disadvantages of
which you should be aware.

Disadvantages of Cramer’s Rule

1. Cramer’s Rule applies only to square systems in which the coefficient matrix is in-
vertible.

2. The computational complexity of Cramer’s Rule is greater than either of the above
mentioned methods for solving a system. So it tends to be more work unless the
system is a 2 × 2 system.

3. Cramer’s Rule tends to have more problems with computational stability of its solu-
tions than the other methods mentioned. That means that particularly with larger
systems, if calculations involve roundoff error, the approximations you obtain through
the other methods are likely to be better than those obtained via Cramer’s Rule.

So why use it? Well, Cramer’s Rule does have some advantages. The main advantage is
that whereas the other methods mentioned are algorithms that bring us to the solution to
a system, Cramer’s Rule provides us with a formula for the solution. This is particularly
helpful for theoretical results. Many statistics formulas, for example, are derived using
Cramer’s Rule.

It makes no practical sense to use Cramer’s Rule for simply solving a system of size
3 × 3 or larger, but it works really well for 2 × 2 invertible systems. In fact, no matter
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how messy the fractions are in the solution, using Cramer’s Rule yields quite simple
calculations.

Theorem 3.13 (Cramer’s Rule). Given an n × n invertible system Ax = b, for
j = 1,⋯, n, let Aj be the n × n matrix obtained from A by replacing column j of A

with the column vector b. For each j = 1,⋯, n, in the solution x =
⎡⎢⎢⎢⎢⎢⎣

x1
⋮
xn

⎤⎥⎥⎥⎥⎥⎦
to the

system,

xj =
detAj

detA
.

Before proving Cramer’s Rule, we present Example 3.9.

..Example 3.9

Solve
3x + 4y = 10
2x + 5y = 7

using Cramer’s Rule. In this case A = [ 3 4
2 5

], A1 = [
10 4
7 5

], and A2 = [
3 10
2 7

]. It

follows that

x1 =
∣ 10 4

7 5
∣

∣ 3 4
2 5

∣
= 50 − 28

15 − 8
= 22

7
, and x2 =

∣ 3 10
2 7

∣

∣ 3 4
2 5

∣
= 21 − 20

15 − 8
= 1

7
.

The solution is then [ 22/7
1/7 ].

..

Proof Let s =
⎡⎢⎢⎢⎢⎢⎣

s1
⋮
sn

⎤⎥⎥⎥⎥⎥⎦
represent the solution to Ax = b. Since A is square and invertible,

the solution s is unique. Let Sj be the n×n matrix obtained from In by replacing column
j of In with s for j = 1,⋯, n. Note that detSj = sj for j = 1,⋯, n by expansion across
row j. To solve Ax = b using Gauss-Jordan elimination we would apply elementary row
operations to the augmented matrix [A∣b] to place it into reduced row-echelon form.
Since A is invertible, the reduced row-echelon form of [A∣b] is [In∣s].

[A∣b] Ð→ ⋯Ð→ [In∣s]

Clearly, applying the same sequence of elementary row operations to A and Aj yields

AÐ→ ⋯Ð→ In and Aj Ð→ ⋯Ð→ Sj .

Undoing the elementary row operations with other elementary row operations yields
[In∣s] Ð→ ⋯ Ð→ [A∣b], In Ð→ ⋯ Ð→ A, and Sj Ð→ ⋯ Ð→ Aj . Applying an elementary
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row operation to a matrix has the same effect on the matrix as multiplying on the left
by an elementary matrix, so there is a sequence of elementary matrices E1,⋯,Ek such
that [A∣b] = E1⋯Ek [In∣s], A = E1⋯EkIn and Aj = E1⋯EkSj , so

detAj

detA
=
det(E1⋯EkSj)
det(E1⋯EkIn)

=
(detE1⋯Ek)(detSj)
(detE1⋯Ek)(det In)

=
sj

1
= sj .

Interpretation of the Determinant as Area and Volume

Let A = [ a b
c d

]. In the xy-plane, we graph the vectors u = [ a
b
] and v = [ c

d
] and

we wish to find the area of the parallelogram determined by these two vectors.

..
u

.

v

.
θ

Figure 3.2 A parallelogram determined by u and v. It’s area is given by ∥u∥∥v∥ sin θ.

In chapter 2, we then wrote this as the norm of a cross product. We run into a little
problem here because the cross product is only for vectors in R3 and these are vectors

in R2. We get around that problem by letting u′ =
⎡⎢⎢⎢⎢⎢⎣

a
b
0

⎤⎥⎥⎥⎥⎥⎦
and v′ =

⎡⎢⎢⎢⎢⎢⎣

c
d
0

⎤⎥⎥⎥⎥⎥⎦
. The area of

the parallelogram determined by these two vectors is the same, so

Area = ∥u∥∥v∥ sin θ
= ∥u′∥∥v′∥ sin θ
= ∥u′ × v′∥

But u′ × v′ =
RRRRRRRRRRRRRR

e1 e2 e3
a b 0
c d 0

RRRRRRRRRRRRRR
= 0e1 − 0e2 + (ad − bc)e3 =

⎡⎢⎢⎢⎢⎢⎣

0
0

ad − bc

⎤⎥⎥⎥⎥⎥⎦
. So,

Area = ∥u′ × v′∥
=
√
(ad − bc)2

= ∣ad − bc∣
= ∣detA∣.

This could just as well have been done with the column vectors of A instead of the row
vectors of A since detA = detAT . This gives us a nice geometric interpretation of the
determinant of 2 × 2 matrices. First, 2 × 2 matrices are singular if their determinant is
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0. Also, the area of a parallelogram being 0 means the parallelogram is flat (i.e. u and
v are parallel vectors).

Let A =
⎡⎢⎢⎢⎢⎢⎣

a b c
d e f
g h i

⎤⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
, v =

⎡⎢⎢⎢⎢⎢⎣

d
e
f

⎤⎥⎥⎥⎥⎥⎦
, and w =

⎡⎢⎢⎢⎢⎢⎣

g
h
i

⎤⎥⎥⎥⎥⎥⎦
. We start by finding the

volume of the parallelopiped determined by u, v, and w. In Section 2.3 we saw that

V olume = ∣(u × v) ⋅w∣.

Calculating gives

u × v =
RRRRRRRRRRRRRR

e1 e2 e3
a b c
d e f

RRRRRRRRRRRRRR
= (bf − ce)e1 − (af − cd)e2 + (ae − bd)e3

=
⎡⎢⎢⎢⎢⎢⎣

bf − ce
cd − af
ae − bd

⎤⎥⎥⎥⎥⎥⎦

so (u × v) ⋅w =w ⋅ (u × v) = g(bf − ce) − h(af − cd) + i(ae − bd). But expansion of detA
across the third row yields the same result. Thus,

detA = (u × v) ⋅w

and
V olume = ∣detA∣.

Here again we could have done this with column vectors of A as well as row vectors.

Singular matrices are the matrices that have a determinant of 0. So, for 3×3 matrices the
parallelopiped determined by their column vectors are flat. That is, the three column
vectors lie on the same plane through the origin.

.... Problem Set 3.4

1. Use Cramer’s rule to solve the following systems.

(a)
2x + 5y = 4
3x − 4y = 7 (b)

3x + 2y + 5z = 7
2x + 5y + 3z = 4
5x + 3y + 2z = 6

2. Use Cramer’s rule to solve for x2 without solving for x1, x3, and x4 in the following
system.

3x1 + x2 + 2x4 = 1
x1 + x2 + 4x3 = 2
2x1 + x3 + 3x4 = 1

x2 + 2x3 + x4 = 0
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3. Assuming ad − bc /= 0, use Cramer’s rule to find formulas for the values of x and y in
terms of a, b, c, d, e, and f that satisfy the 2 × 2 system below.

ax + by = e
cx + dy = f

4. Use determinants to find the areas of the parallelograms determined by the following
pairs of vectors in R2.

(a) [ 3
1
], [ 2

5
] (b) [ 2

3
], [ 5

2
]

5. Use the determinant to find the volume of the parallelepiped determined by the fol-
lowing three vectors in R3.

⎡⎢⎢⎢⎢⎢⎣

3
1
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦

6. Use the determinant to find the area of the triangle in the plane with vertices at the
points (2,1), (4,4), and (7,3).

7. Use the determinant to find the volume of the tetrahedron with vertices at the points
(1,2,1), (4,3,3), (2,5,1), and (3,2,4).

8. Suppose Ax = b is an n × n system of linear equations in which all the entries of
A and b are integers and detA = ±1. Prove that the solution to the system has all
integer entries.

9. The law of cosines can be proved using Cramer’s rule. Follow the outline below to
prove the law of cosines.

(a) Given a triangle △ABC with angle measures α, β, γ at the vertices A, B, C and
opposite sides of length a, b, c respectively. Using simple trigonometry, explain
why c cosβ + b cosγ = a.

(b) Using analogous reasoning, find similar expressions for b and c as found for a
above.

(c) Letting x = cosα, y = cosβ, and z = cosγ, write the three equations above as a
3 × 3 system of equations in x, y, and z.

(d) Use Cramer’s rule to solve for z.

(e) In this last equation, substitute cosγ back for z.

(f) Solve for c. This should be the law of cosines.

.



..

.. 4 Vector Spaces and Subspaces

4.1 Vector Spaces

Back in chapter 2, we defined for each n ≥ 1,

Rn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x1
⋮
xn

⎤⎥⎥⎥⎥⎥⎦
∶ xi ∈ R for i = 1,⋯, n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The set Rn (read “R-n”) is the set of all column vectors with n entries. We have geometric
interpretations for these sets for n = 1,2, and 3. They are the real line, the coordinate
plane, and three space respectively. We discussed the geometric interpretation of R2

and R3 in detail in chapter 2. For n > 3 we do not have enough spatial dimensions
to visualize these vectors in the same way but space-time provides us with a physical
interpretation of R4. Though visualizing these vectors geometrically may be impossible
for n ≥ 4, algebraically (vector addition, multiplication by scalars, linear combinations,
systems of linear equations, elementary row operations, etc.) they are handled in pretty
much the same way. Theorem 4.1 gives a list of several important properties of Rn.

Theorem 4.1. Suppose u, v, w ∈ Rn and c, d ∈ R.

1. u + v ∈ Rn

2. u + v = v + u

3. (u + v) +w = u + (v +w)

4. There is a zero vector 0 ∈ Rn such that u + 0 = u

5. There is a negative of u in Rn, denoted −u, such that u + (−u) = 0

6. cu ∈ Rn

7. c(u + v) = cu + cv

8. (c + d)u = cu + du

9. c(du) = (cd)u

10. 1u = u

Though this list does not contain every single algebraic property of Rn, it turns out that
this list is sufficient to prove practically every other algebraic property of Rn. That is,
in order to prove most all other algebraic properties on Rn, there is no need to go back
to the definition of Rn. One could simply go back to the properties on the list found in
Theorem 4.1.

114
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As an example, property 4 states that Rn has a zero vector (an additive identity).
Property 4 does not state that Rn has only one additive identity. We prove that Rn

has only one additive identity in Example 4.1 below, but notice that the proof makes
no mention of the definition of Rn. It uses only properties from the list of 10 given in
Theorem 4.1. After this example, we discuss why that is important.

..Example 4.1

Suppose 0 and 0′ behave as additive identities in Rn. We show that 0 = 0′. But

0 = 0 + 0′ ←Ð since 0′ is an additive identity

= 0′ + 0←Ð by property 2

= 0′ ←Ð since 0 is an additive identity

..

Why is it important to provide a proof that depends only on these 10 properties and
not on the definition of Rn? Because there are many other sets of mathematical objects
that also satisfy those 10 properties. For example, the set of all polynomials, P, satisfy
those 10 properties also (the sum of two polynomials is another polynomial, polynomial
addition is commutative and associative, etc. down the list). So the proof not only shows
that Rn has only one additive identity, it also shows that there is only one polynomial
additive identity (namely the constant zero polynomial p(x) = 0).

This example was chosen to be simple and easy to understand, and it may seem trivial
and insignificant, but it illustrates something that is very important and profound about
mathematics. The power of mathematics is in its abstraction. When abstracting we find
the underlying similarities between very different settings. That is why we can use the
same mathematics to answer questions in physics, economics, biology, and engineering.

In linear algebra, we abstract the idea of a vector. In various settings a vector may
represent the wind, gravity, a continuous function, or a list of raw materials for factory
production. Much of the mathematics is the same in each.

We define a vector space as a set of objects called vectors that satisfy these 10 properties.
There are many different vector spaces. They can differ in many regards, but they are
similar in many others. They are similar in that they all satisfy the 10 properties and
all the properties (like uniqueness of additive identity) that follow from those 10.

We have a geometric notion of dimension. From that we think of R1 (the real line) as
one dimensional, R2 as two dimensional, and R3 as three dimensional. In this chapter
we formalize the notion of dimension for all vector spaces. We see, as expected, that Rn

is n dimensional but also that some vector spaces, like the set of all polynomials, are
infinite dimensional.

Abstract mathematics can be very powerful, but its abstractions can be difficult. To
keep things easier, we focus most of our attention on Rn. One needs to be aware of the
existence of these other vector spaces, but we will not study them in as much detail here
as we study Rn. Theorems that apply to all vector spaces are presented and proved that
way, but virtually all the examples we consider are from Rn.
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Definition 4.1 (Vector Space). A (real) vector space is a nonempty set V of
objects called vectors, on which are defined two operations called addition and mul-
tiplication by scalars (real numbers) subject to the 10 axioms listed below. The
axioms must hold for all vectors u, v, w ∈ V and for all scalars c, d.

1. u + v ∈ V

2. u + v = v + u

3. (u + v) +w = u + (v +w)

4. There is a zero vector 0 ∈ V such that for all u ∈ V , u + 0 = u

5. For all u ∈ V , there exists a vector −u ∈ V , such that u + (−u) = 0

6. cu ∈ V

7. c(u + v) = cu + cv

8. (c + d)u = cu + du

9. c(du) = (cd)u

10. 1u = u

..Example 4.2

The following is a list of several vector spaces. While other vector spaces exist, we study
in detail only Rn for various n and their subspaces. This list is certainly not complete,
but one for which the reader should be aware.

1. Rn for n = 1,2,3,⋯

2. P = the set of all polynomials

3. Pn = the set of all polynomials of degree n or less for n = 1,2,3,⋯

4. C = the set of continuous functions over R

5. D = the set of all differentiable functions on R

6. C[a, b] = the set of all continuous functions on the interval [a, b]

7. D[a, b] = the set of all functions continous on [a, b] and differentiable on (a, b)

8. Any plane through the origin in R3

9. Any line through the origin in R3

10. Any line through the origin in R2

11. For each m,n ≥ 1, Mmn = the set of all m × n matrices.

..
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Theorem 4.2 lists six additional properties that all vector spaces share. They are not
included in the definition of vector space, but they follow logically from the 10 properties
in the definition.

Theorem 4.2. Let V be a vector space, u ∈ V , and c ∈ R.

1. The zero vector in V is unique.

2. For each u ∈ V , its negative is unique.

3. 0u = 0.

4. c0 = 0.

5. (−1)u = −u.

6. If cu = 0, then c = 0 or u = 0.

Proof

1. See Example 4.1.

2. Suppose v and w are negatives of u. We show v = w. But v = v + 0 = v + (u +w) =
(v + u) +w = (u + v) +w = 0 +w =w + 0 =w.

3. 0u = 0u+ 0 = 0u+ [u+ (−u)] = (0u+u)+ (−u) = (0u+ 1u)+ (−u) = (0+ 1)u+ (−u) =
1u + (−u) = u + (−u) = 0.

4. c0 = c0 + 0 = c0 + [c0 + (−c0)] = (c0 + c0) + (−c0) = c(0 + 0) + (−c0) = c0 + (−c0) = 0.

5. (−1)u = (−1)u + 0 = (−1)u + [u + (−u)] = [(−1)u + u] + (−u) = [(−1)u + 1u] + (−u) =
(−1 + 1)u + (−u) = 0u + (−u) = 0 + (−u) = −u.

6. Suppose cu = 0 and c ≠ 0. We show u = 0. But u = 1u = [(1c) c]u =
1
c (cu) =

1
c0 = 0.

These proofs are tricky and a bit tedious. They do not represent the types of proofs
students would be expected to develop in this course. Instead, go through these proofs
and try to justify each equal sign with an appropriate vector space axiom, theorem, or
property of R. This will help you become familiar with the definition of vector space.

Definition 4.2. Let V be a vector space. A subspace of V is a subset of V that
is itself a vector space.
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..Example 4.3

Many of the 11 examples listed in Example 4.2 are subspaces of other vector spaces.
In fact a line through the origin and a plane through the origin in R3 are examples of
subspaces of R3. If that line happened to fall on the plane then the line would be a
subspace of the plane which is itself a subspace of R3.

..

..Example 4.4

Since P1 ⊆ P2 ⊆ P3 ⊆ ⋯ ⊆ P ⊆ D ⊆ C and all are vector spaces, each vector space in this
chain is a subspace of vector spaces to its right.

..

To prove that a subset of a vector space is a subspace from the definition, we would have
to prove that the subset satisfies all 10 properties in the definition of a vector space.
That would be a lot of work. Fortunately, the fact that we are dealing with a subset of
a known vector space allows us to reduce the list of properties we must check from 10
down to 3.

The reason why we can get by without checking many of the properties is because all
subsets of a vector space satisfy some of the properties. For example, suppose V is a
vector space and W is any old subset of V . Property 2 in the definition of a vector space
states that vector addition is commutative. Since V is a vector space, we know that for
all v1,v2 ∈ V , v1 + v2 = v2 + v1. Now suppose w1,w2 ∈ W . To show vector addition is
commutative in W we must show that w1 +w2 =w2 +w1. But the fact that W ⊆ V tells
us that w1,w2 ∈ V . So w1 +w2 =w2 +w1.

Properties like the commutative property that are passed on to all of the subsets of V are
said to be inherited properties. In the definition of a vector space, properties 2,3,7,8,9,
and 10 are inherited by all subsets of a vector space. That leaves only properties 1,4,5,
and 6 to check.

Property 1 in the defintion of a vector space is called closure of vector addition.
Suppose V is a vector space, W ⊆ V , and w1,w2 ∈W . The fact that V is a vector space
and W ⊆ V tells us that w1+w2 ∈ V , but to show that W is a subspace we need to show
that W is closed under vector addition. So we need to show w1 +w2 ∈W . That is why
property 1 is not inherited by every subset of V . Properties 4,5, and 6 are similarly not
inherited properties.

Theorem 4.3 (The Subspace Test). Let V be a vector space and W a subset of V .
A subset W of V is a subspace of V if and only if W satisfies these three properties.

(a) W is nonempty.

(b) W is closed under vector addition.

(c) W is closed under scalar multiplication.

Proofs involving the subspace test are indeed the types of proofs linear algebra students
are expected to know how to do. You will see the subspace test used many times in the
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text and in class. You need to know it and how to use it. What follows is about how to
show each of the three properties (a), (b), and (c).

(a) W is nonempty. You must show that W contains at least one element. How you
do that depends on what information is known to you about W . It is often easy to
show 0 ∈W .

(b) W is closed under vector addition. The standard way to show W is closed under
vector addition is as follows: Suppose w1,w2 ∈W and show w1 +w2 ∈W .

(c) W is closed under scalar multiplication. The standard way to show this type of
closure is to suppose that w ∈W and c ∈ R. Then, show that cw ∈W .

Next, we prove the subspace test theorem. Because it is an if and only if theorem, we
have two directions to prove.

Proof (The Subspace Test)
First, suppose V is a vector space and W is a subset of V that satisfies properties (a),
(b), and (c). We show that W is a subspace of V . Since W ⊆ V , W inherits properties 2,
3, 7, 8, 9, and 10 in the definition of a vector space, so we need only show that properties
1, 4, 5, and 6 are satisfied. Property 1 and property (b) are the same, so W satisfies
property 1. Property 6 and property (c) are the same, so W satisfies property 6. For
property 4 note that by property (a), W ≠ ∅ so there exists w ∈W . Then, by property
(c), 0w ∈W . But 0w = 0 by part 3 of Theorem 4.2 so 0 ∈W and since 0 serves as the
identity for all of V , it serves as the identity for all of W . So W has an additive identity
and hence satisfies property 4. For property 5 assume w ∈ W . We show that −w ∈ W .
By property (c), (−1)w ∈W . But (−1)w = −w by part 5 of Theorem 4.2, so −w ∈W . So
the negative of every element of W is in W and hence W satisfies property 5. Therefore,
if W satisfies properties (a), (b), and (c), then W is a subspace of V .

For the other direction, suppose that W is a subspace of a vector space V . We show
that W is a subset of V that satisfies properties (a), (b), and (c). Now W a subspace
of V implies that W satisfies properties 1-10 of the definition of a vector space. Clearly,
we also see that property 4 implies property (a), property 1 implies property (b), and
property 6 implies property (c). Therefore W is a subspace of V if and only if W satisfies
(a), (b), and (c).

..Example 4.5

To see the subspace test at work in a concrete example, let W be the xy-plane in R3.
The equation describing this plane is z = 0 and

W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x
y
0

⎤⎥⎥⎥⎥⎥⎦
∶ x, y ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We show W is a subspace of R3.

(a) Since

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
∈W , W ≠ ∅.
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(b) Suppose w1,w2 ∈ W . We show that w1 +w2 ∈ W . But since w1,w2 ∈ W , there

exist x1, y1, x2, y2 ∈ R such that w1 =
⎡⎢⎢⎢⎢⎢⎣

x1
y1
0

⎤⎥⎥⎥⎥⎥⎦
and w2 =

⎡⎢⎢⎢⎢⎢⎣

x2
y2
0

⎤⎥⎥⎥⎥⎥⎦
. So w1 +w2 =

⎡⎢⎢⎢⎢⎢⎣

x1
y1
0

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

x2
y2
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x1 + x2
y1 + y2

0

⎤⎥⎥⎥⎥⎥⎦
∈W since its z coordinate is 0.

(c) Suppose w ∈W and c ∈ R. We show cw ∈W . Here w ∈W tells us that there exist

x, y ∈ R such that w =
⎡⎢⎢⎢⎢⎢⎣

x
y
0

⎤⎥⎥⎥⎥⎥⎦
. So cw = c

⎡⎢⎢⎢⎢⎢⎣

x
y
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

cx
cy
0

⎤⎥⎥⎥⎥⎥⎦
∈W since its z coordinate is

0.

By the subspace test, W is a subspace of R3.
..

.... Problem Set 4.1

1. Consider the set that contains a single element which is the symbol △. Is this set a
vector space under the operations of vector addition defined by △+△ = △ and scalar
multiplication defined by k△ = △? Provide justification if your answer is no.

2. Consider the set that contains only two elements which are the symbols △ and ◻. Is
the set a vector space under the operations of vector addition defined by △+△ = △,
◻ + ◻ = △, and △ + ◻ = ◻ + △ = ◻ and scalar multiplication defined by k△ = △ and
k◻ = ◻ for all real numbers k. Provide justification if your answer is no.

3. Provide the justification (i.e. axiom from Definition 4.1 or property of the real num-
bers, or given in the hypothesis of the theorem) for each equal sign in the proof of
Theorem 4.2.

4. For parts (a) - (d) below, let W be the given subset of R3. Use Theorem 4.3 to
determine whether each subset W is a subspace of R3. If W is a subspace of R3,
use Theorem 4.3 to prove W is a subspace of R3. If W is not a subspace of R3, find
an example to demonstrate that W does not satisfy one of the three properties in
Theorem 4.3.

(a) W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a
0
0

⎤⎥⎥⎥⎥⎥⎦
∶ a ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(b) W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a
b
1

⎤⎥⎥⎥⎥⎥⎦
∶ a, b ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c) W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
∶ a + b + c = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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(d) W =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a
b
c

⎤⎥⎥⎥⎥⎥⎦
∶ c = a + b

⎫⎪⎪⎪⎬⎪⎪⎪⎭

5. Use Theorem 4.3 to determine which of the following are subspaces of M2,2.

(a) The set of all upper triangular 2 × 2 matrices .

(b) The set of all 2 × 2 matrices such that the sum of the entries equal 0.

(c) The set of all 2 × 2 matrices with integer entries.

(d) The set of all 2 × 2 matrices A such that detA = 0.

6. Use Theorem 4.3 to determine which of the following are subspaces of P, the vector
space of all polynomials.

(a) The set of all polynomials of degree 3.

(b) The set of all polynomials of the form p(x) = ax3 where a is any real number.

(c) The set of all polynomials p(x) = anxn + ⋅ ⋅ ⋅ + a1x + a0 such that a3 = a0.
(d) The set of all polynomials, p(x), with derivatives at x = 3 equal to 0 (i.e. p′(3) =

0).

7. Use Theorem 4.3 to determine which of the following are subspaces of D, the vector
space of all differentiable functions on (−∞,∞).

(a) The set of all differentiable functions, f , such that f(0) = f(1).
(b) The set of all differentiable functions, f , such that f ′(x) = 3f(x).
(c) The set of all differentiable functions, f , such that f ′(3) = 0.
(d) The set of all differentiable functions, f , such that f ′(0) = 1.

8. Use the subspace test to prove that each of the following are subspaces.

(a) Let W1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
∈ R3 ∶ x + 2y + 3z = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. Prove W1 is a subspace of R3.

(b) Let D2 = {A ∈M2,2 ∶ A is a diagonal matrix}. For the definition of diagonal
matrix, see exercise 16 of problem set 1.5. Prove D2 is a subspace of M2,2.

(c) Let Z3 = {p(x) ∈ P ∶ p(3) = 0}. Prove Z3 is a subspace of P.
(d) Let A be a fixed n × n matrix and let E4 = {x ∈ Rn ∶ Ax = 4x}. Prove E4 is a

subspace of Rn.

9. Suppose V is a vector space and W1, and W2 are subspaces of V . Determine whether
the following three subsets of V must be subspaces of V . Use Theorem 4.3 to prove
the subset is a subspace or give a counterexample to demonstrate the subset need
not be a subspace.

(a) W1 ∩W2

(b) W1 ∪W2

(c) W1 +W2 = {w1 +w2 ∶w1 ∈W1,w2 ∈W2}

.
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4.2 Subspaces

Theorem 4.4. Let V be a vector space. The sets V and {0} are subspaces of V .

Proof Since every set is a subset of itself, V is a subset of a vector space (itself) that
is itself a vector space. So by the definition of subspace, V is a subspace of itself. To
prove that {0} is a subspace of V , we use the subspace test.

(a) Since 0 ∈ {0}, {0} ≠ ∅.

(b) Since 0 is the only element of {0}, the only possible vector sum in {0} is 0+0. But
0 + 0 = 0 ∈ {0}, so {0} is closed under vector addition.

(c) Let c ∈ R. Since {0} has 0 as its only element, any multiplication by scalars has the
form c0. But c0 = 0 ∈ {0}, so {0} is closed under multiplication by scalars. Therefore
{0} is a subspace of V .

Definition 4.3. Let V be a vector space. The subspaces V and {0} are called the
trivial subspaces of V .

What follows is an important way of generating a subspace of a vector space given any
finite set of vectors.

Definition 4.4. Let S = {v1,⋯,vn} be a finite but nonempty set of vectors from a
vector space V . Let the span of S, denoted span S, be the set of all possible linear
combinations of the vectors in S. That is,

span S = {c1v1 +⋯ + cnvn∣c1,⋯, cn ∈ R} .

We define span ∅ = {0}.

Theorem 4.5. If S is a finite set of vectors from a vector space V , then span S is
a subspace of V .

Proof We use the subspace test. Suppose S = {v1,⋯,vn}.

(a) Since 0 = 0v1 +⋯ + 0vn ∈ span S, span S ≠ ∅.
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(b) Let w1,w2 ∈ span S. We show w1+w2 ∈ span S. Since w1,w2 ∈ span S, there exist
scalars c1,⋯, cn, d1,⋯, dn such that w1 = c1v1⋯+ cnvn and w2 = d1v1 +⋯ + dnvn, so

w1 +w2 = (c1v1⋯+ cnvn) + (d1v1 +⋯ + dnvn)
= (c1 + d1)v1 +⋯ + (cn + dn)vn ∈ span S.

So span S is closed under vector addition.

(c) Let w ∈ span S and d ∈ R. We show that dw ∈ span S. Since w ∈ span S, there
exist scalars c1,⋯, cn such that w = c1v1 +⋯ + cnvn. So

dw = d(c1v1 +⋯ + cnvn)
= (dc1)v1 +⋯ + (dcn)vn ∈ span S.

So span S is closed under multiplication by scalars. By the subspace test, span S is
a subspace of V .

If S = ∅, then by definition span S = {0}, the trivial subspace of V . In either case,
span S is a subspace of V .

..Example 4.6

Let S =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in R3. Because the two vectors in S are not parallel, we learned

back in chapter 2 that the set of all linear combinations of those two vectors, i.e. span S,
is the plane through the origin and the two points (1,2,1) and (2,3,3). That plane can
be described in a variety of ways. The set S itself provides us with a good description
in that span S consists of all linear combinations of the form

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= s
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
3
3

⎤⎥⎥⎥⎥⎥⎦
.

With this we can crank out all kinds of vectors in span S by varying s and t. We
call this an explicit description of span S. This type of description is not so good,

however, if you want to check to see whether a particular vector like

⎡⎢⎢⎢⎢⎢⎣

2
5
1

⎤⎥⎥⎥⎥⎥⎦
or

⎡⎢⎢⎢⎢⎢⎣

1
3
2

⎤⎥⎥⎥⎥⎥⎦
is

in span S because that would involve solving a system of linear equations in each case.
What would be more helpful in that case would be the equation of the plane, because
checking to see whether they satisfy the equation would be a simple matter of plugging
in and checking. The equation of the plane would be called an implicit description of
span S.

We present two methods for finding the equation of this plane. The first one is more
what you learned in chapter 2 to focus on the geometrical aspects of this problem. The
second method is more algebraic. This method may be more helpful when dealing with
vectors in Rn where n > 3.

Solution 1 To find the equation of the plane span S, we need a point on the plane and
a vector normal to the plane. Since 0 ∈ span S, we use 0 as our point on the plane. To
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find a normal vector n, we let

n =
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎢⎣

2
3
3

⎤⎥⎥⎥⎥⎥⎦
=
RRRRRRRRRRRRRR

e1 e2 e3
1 2 1
2 3 3

RRRRRRRRRRRRRR
= (6 − 3)e1 − (3 − 2)e2 + (3 − 4)e3 =

⎡⎢⎢⎢⎢⎢⎣

3
−1
−1

⎤⎥⎥⎥⎥⎥⎦
so ⎡⎢⎢⎢⎢⎢⎣

3
−1
−1

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0

is a vector form of the equation. In standard form, we get 3x − y − z = 0.

Solution 2 A vector

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
is in span S if and only if there are scalars s and t such that

s

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
3
3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
.

That is,

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
∈ span S if and only if the system

⎡⎢⎢⎢⎢⎢⎣

1 2
2 3
1 3

⎤⎥⎥⎥⎥⎥⎦
[ s
t
] =
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦

is consistent. Forming the augmented matrix and reducing we see

⎡⎢⎢⎢⎢⎢⎣

1 2 x
2 3 y
1 3 z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 x
0 −1 y − 2x
0 0 −3x + y + z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 x
0 1 2x − y
0 0 −3x + y + z

⎤⎥⎥⎥⎥⎥⎦
.

At this point we see that the system is consistent if and only if −3x+ y + z = 0. Thus the

vectors

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
that are in span S are precisely those that satisfy 3x − y − z = 0.

..

When talking about the span of S, we are using the word “span” as a noun. It can also
be used as a verb as the next definition shows.

Definition 4.5. Let V be a vector space, W a subspace of V , and S a finite set of
vectors from W . We say S spans W or the vectors in S span W or W is spanned
by S or W is spanned by the vectors in S if span S =W .

Example 4.7 builds on Example 4.6 and illustrates an important point that is proved in
Theorem 4.7 that follows.
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..Example 4.7

Is R3 spanned by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
5
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
?

Solution Notice the first two vectors come from the set S of Example 4.6. Now, if the
answer to the question is yes, then the system

⎡⎢⎢⎢⎢⎢⎣

1 2 2
2 3 5
1 3 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

r
s
t

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦

would be consistent for all x, y and z. Solving as before,

⎡⎢⎢⎢⎢⎢⎣

1 2 2 x
2 3 5 y
1 3 1 z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 2 x
0 −1 1 −2x + y
0 1 −1 −x + z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 2 x
0 1 −1 2x − y
0 0 0 −3x + y + z

⎤⎥⎥⎥⎥⎥⎦
.

Again, we see that this set of vectors spans the plane 3x − y − z = 0, so the answer is
no, the set does not span R3. It might seem reasonable to expect the introduction of
the third vector would expand the span, but that is not the case this time. Why not?

We get a hint at why not by observing that the third vector

⎡⎢⎢⎢⎢⎢⎣

2
5
1

⎤⎥⎥⎥⎥⎥⎦
satisfies the equation

3x−y−z = 0, so it is in the span of the other two vectors. Since all three of these vectors
lie on the same plane through the origin, all linear combinations of those three vectors
lie on that plane also.

..

Lemma 4.6. If S is a finite set of vectors from a vector space V and T is a finite
set of vectors from span S, then span T ⊆ span S.

Proof Exercise.

Theorem 4.7. Let S be a finite set of vectors from a vector space V . If a vector
from S is a linear combination of the other vectors in S, then removing that vector
from S does not shrink span S.

Proof Let S = {v1,⋯,vn} be a finite set of vectors from a vector space V , and suppose a
vector in S is a linear combination of the other vectors in S. Without loss of generality,
let vn be this linear combination of the other vectors in S. That means there exist
scalars c1,⋯, cn−1 such that vn = c1v1 +⋯ + cn−1vn−1.

To show that span S does not shrink by removing vn from S, let T = {v1,⋯,vn−1}. We
show that span S = span T . To accomplish this, we let w ∈ span S and we show that
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w ∈ span T . Since w ∈ span S, there exist scalars d1,⋯, dn such that w = d1v1+⋯+dnvn.
Substituting c1v1 +⋯ + cn−1vn−1 for vn gives us

w = d1v1 +⋯ + dn−1vn−1 + dn(c1v1 +⋯ + cn−1vn−1)
= (d1 + dnc1)v1 +⋯ + (dn−1 + dncn−1)vn−1 ∈ span T .

Thus span S ⊆ span T . Of course, it is clear that since T ⊆ S ⊆ span S, we also have
span T ⊆ span S by Lemma 4.6. It follows that span S = span T .

For each matrix A we associate three different subspaces.

Definition 4.6. Let A be an m × n matrix.

1. The column space of A, denoted col A, is the span of the column vectors in A.

2. The row space of A, denoted row A, is the span of the row vectors of A.

3. The null space of A, denoted null A, is the solution set of the homogeneous
system Ax = 0.

Theorem 4.8. Let A be an m × n matrix. The column space of A is a subspace of
Rm, and the row space and null space of A are subspaces of Rn.

Proof Since A is an m × n matrix and because col A and row A are defined as spans
of finite sets of vectors, col A is a subspace of Rm and row A is a subspace of Rn. We
show that null A is a subspace of Rn by using the subspace test.

(a) Since A0 = 0, 0 ∈ null A so null A ≠ ∅.

(b) Suppose u,v ∈ null A. We show that u + v ∈ null A. But,

A(u + v) = Au +Av
= 0 + 0 since u,v ∈ nullA
= 0

so that u + v ∈ null A.

(c) Suppose u ∈ null A and c is a scalar. We show that cu ∈ null A. But

A(cu) = c(Au)
= c0 since u ∈ null A
= 0

so cu ∈ null A.

Therefore null A is a subspace of Rn.
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..Example 4.8

Let

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 1
1 1 2
0 1 −1

⎤⎥⎥⎥⎥⎥⎦
.

We would like to describe the column, row, and null spaces of A. To begin, we note that
the matrix A itself provides us with explicit descriptions of col A and row A since we
can generate all the elements of these two subspaces of R3 we want by taking different
linear combinations of the columns and rows of A.

We might wonder whether either of these subspaces are R3 or if not whether we can find
a way to describe them implicitly. We start with col A. Since col A is a span of a finite
set, we use a method we learned earlier.

⎡⎢⎢⎢⎢⎢⎣

1 2 1 x
1 1 2 y
0 1 −1 z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 x
0 −1 1 −x + y
0 1 −1 z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 x
0 1 −1 x − y
0 0 0 −x + y + z

⎤⎥⎥⎥⎥⎥⎦

We see that col A is the plane defined by x−y−z = 0 and we have our implicit description.

By ignoring the right-hand side of the matrices above, we see too that the third column
of A is a linear combination of the first two. It follows that we can simplify our explicit

description of col A from span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
to span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We will discuss the row space again later, but for now we note that the columns of AT

are the rows of A. So we can answer the same questions about row A by looking at
col AT .

⎡⎢⎢⎢⎢⎢⎣

1 1 0 x
2 1 1 y
1 2 −1 z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 x
0 −1 1 −2x + y
0 1 −1 −x + z

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 x
0 1 −1 2x − y
0 0 0 −3x + y + z

⎤⎥⎥⎥⎥⎥⎦

So row A is the plane 3x− y − z = 0 in R3 and again the third vector can be thrown out
to yield row A = span{[ 1 2 1 ] , [ 1 1 2 ]}.

For the null space we note that the matrix A really provides us with an implicit descrip-
tion because it is a simple matter to check whether a vector is in null A by checking to
see whether it satisfies Ax = 0 by plugging it in for x. To find an explicit description
of null A we simply solve the system Ax = 0 as in chapter 1, but that is particularly
easy because we did most of the work already when working on col A. We just need to
replace x, y, and z with zeros.

⎡⎢⎢⎢⎢⎢⎣

1 2 1 0
1 1 2 0
0 1 −1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 0
0 1 −1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 3 0
0 1 −1 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

If we let z = t, then x = −3t, y = t, and z = t parametrically describes the solution to
Ax = 0. We recognize this solution set as the parametric equations of a line through the
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origin. In vector form we have x(t) = t
⎡⎢⎢⎢⎢⎢⎣

−3
1
1

⎤⎥⎥⎥⎥⎥⎦
. We get a simpler, implicit description

of null A (simpler, at least, than the matrix equation Ax = 0) by writing symmetric
equations for this line: x

−3 = y = z.
..

Next, we describe the subspaces of R3 geometrically. We do this because they provide us
with opportunities to practice the subspace test and to provide some geometric intuition
of what a subspace is. The subspaces of R2 are developed in the exercises.

Subspaces of R3

The trivial subspaces of {0} and R3 are, of course, subspaces of R3.

Theorem 4.9. Planes through the origin of R3 are subspaces of R3.

Proof All planes in R3 can be described in point-normal form n ⋅ (x −x0) = 0 for some
n ≠ 0. For planes through the origin we take x0 = 0. Let π be a plane through the origin
in R3. Then, there exists a vector n ≠ 0 such that n ⋅ x = 0 is satisfied by precisely the
vectors in π. We show π is a subspace of R3 by using the subspace test.

(a) Since n ⋅ 0 = 0, 0 ∈ π so π ≠ ∅.

(b) Suppose u,v ∈ π. We show u + v ∈ π. But

n ⋅ (u + v) = n ⋅ u + n ⋅ v
= 0 + 0 since u,v ∈ π
= 0

So u + v ∈ π.

(c) Suppose u ∈ π and c is a scalar. We show that cu ∈ π. But,

n ⋅ (cu) = c(n ⋅ u)
= c(0) since u ∈ π
= 0

So cu ∈ π.

Therefore, π is a subspace of R3.

This brings up the natural question: What about planes that do not pass through the
origin?
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The answer is no. This is easily understood algebraically because all vector spaces (hence

all subspaces) must contain a zero vector. In R3 the zero vector is

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
. If the plane

does not go through the origin, it does not contain

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
.

Theorem 4.10. Lines through the origin of R3 are subspaces of R3.

Proof All lines in R3 can be written in point-parallel form x(t) = x0 + tv, where v ≠ 0.
For lines through the origin we take x0 = 0. Let L be a line through the origin in R3.
Then, there exists a vector v ≠ 0 such that x(t) = tv describes precisely the vectors in L
for various t. We show L is a subspace of R3 by using the subspace test.

(a) Since x(0) = 0v = 0, 0 ∈ L so L ≠ ∅.

(b) Suppose u,w ∈ L. We show u +w ∈ L. Now u,w ∈ L implies that there exist t1
and t2 such that u = t1v and w = t2v. But then u +w = t1v + t2v = (t1 + t2)v. So
u +w ∈ L.

(c) Suppose u ∈ L and c is a scalar. We show cu ∈ L. Now u ∈ L implies that there
exists t1 such that u = t1v. But then cu = c(t1v) = (ct1)v. So cu ∈ L.

Therefore L is a subspace of R3.

Of course, lines that do not pass through the origin are not subspaces either. Table 4.1
summarizes all subspaces of R3.

{0} 0-dimensional subspace

lines through 0 1-dimensional subspaces

planes through 0 2-dimensional subspaces

R3 3-dimensional subspace

Table 4.1 The subspaces of R3.

Next, we show two ways to generate new subspaces out of old.

Definition 4.7. Suppose U and W are subspaces of a vector space V . Define the
sum of U and W to be

U +W = {u +w∣u ∈ U and w ∈W} .
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Theorem 4.11. Suppose U and W are subspaces of a vector space V .

1. U ∩W is a subspace of V .

2. U +W is a subspace of V .

Proof

1. Exercise.

2. We use the subspace test.

(a) Since 0 ∈ U and 0 ∈W , 0 + 0 ∈ U +W , so U +W ≠ ∅.
(b) Suppose v1,v2 ∈ U +W . We show v1 + v2 ∈ U +W . Now since v1,v2 ∈ U +W ,

there exist u1,u2 ∈ U and w1,w2 ∈W such that v1 = u1 +w1 and v2 = u2 +w2.
So

v1 + v2 = (u1 +w1) + (u2 +w2) = (u1 + u2) + (w1 +w2).

But u1+u2 ∈ U andw1+w2 ∈W since U andW are subspaces. So v1+v2 ∈ U+W .

(c) Suppose v ∈ U +W and c is a scalar. We show that cv ∈ U +W . Now, since
v ∈ U +W , there exist u ∈ U and w ∈W such that v = u+w. So cv = c(u+w) =
cu+ cw. But cu ∈ U and cw ∈W since U and W are subspaces. So cv ∈ U +W .

Therefore, U +W is a subspace of V by the subspace test.

We now draw a few pictures to offer some geometric intuition about the intersection and
sum of subspaces in R3.

If U and W are two distinct lines through the origin, then U ∩W = {0} and U +W is
the plane through the origin on which U and W lie (see Figure 4.1a).

If U is a plane through the origin and W is a line through the origin that is not on the
plane, then U ∩W = {0} and U +W = R3 (see Figure 4.1b).

If U is a plane through the origin and W is a line through the origin that lies on U , then
U ∩W =W and U +W = U (see Figure 4.1c).

We end this section by relating rank and nullity to the column space.
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..

U +W
.

W

. U

(a) U +W is the plane through the origin
on which lines U and W lie.

..

U +W

.

W

.

U

(b) U +W is R3.

..
W

.

U

(c) U ∩W =W and U +W = U .

Figure 4.1

Theorem 4.12. Let A be an m × n matrix. The following are equivalent.

(a) The set of column vectors of A span Rm (col A = Rm).

(b) The system Ax = b is consistent for all b ∈ Rm.

(c) Every row of the reduced row-echelon form of A contains a leading 1.

(d) There are no zero rows in any row-echelon form of A.

(e) rank A = m

(f) nullity A = n −m
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.... Problem Set 4.2

1. Find an equation of the plane that equals span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. In this problem you

are given an explicit description of a subspace and are asked to find an implicit
description of the same subspace.

2. The plane through the origin that satisfies the equation 3x + 2y − z = 0 is a subspace
of R3. Describe this subspace explicitly as the span of a two-vector set. In this
problem you are given an implicit description of a subspace and asked for an explicit
description of the same subspace.

3. Find symmetric equations for the line that equals span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

4
3
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. In this problem

you are given an explicit description of a subspace and are asked to find an implicit
description of the same subspace.

4. The line through the origin that equals the intersection of the two planes x+3y+z = 0
and x+ 4y + 3z = 0 is a subspace of R3. Find an explicit description of this subspace.

5. Find an explicit description of the line 3x + 2y = 0 in R2 through the origin .

6. Find an implicit description of the subspace span{[ 5
3
]} in R2.

7. For each of the following matrices find the (i) column space, (ii) row space, and (iii)
null space. For subspaces other than the trivial subspaces find both explicit and
implicit descriptions. Use a minimum number of vectors in the spanning sets and a
minimum number of equations in the implicit descriptions.

(a)

⎡⎢⎢⎢⎢⎢⎣

1 2 5
1 3 8
1 0 −1

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

1 2 3
2 4 6
4 8 12

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

1 2 6
1 3 8
2 3 9

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

(e) [ 1 2 3
1 3 5

]
(f)

⎡⎢⎢⎢⎢⎢⎣

1 2
2 4
4 8

⎤⎥⎥⎥⎥⎥⎦
(g)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 2 3 2
−1 0 2 2
1 3 6 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

8. Suppose S is a finite set of vectors from a vector space V and T is a finite set of
vectors from span S. Prove span T ⊆ span S.

9. Recall the dot product for vectors in Rn (definition and algebraic properties in sec-
tion 2.2). For a fixed vector u ∈ Rn, let Wu = {v ∈ Rn ∶ u ⋅ v = 0}. Use the subspace
test and algebraic properties of the dot product to prove that Wu is a subspace of
Rn.

10. Let C be the space of continuous functions on (−∞,∞) and D the subset of C of
all differentiable functions on (−∞,∞). Use the subspace test along with well-known
properties of the derivative from calculus to prove that D is a subspace of C.
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11. Suppose U and W are subspaces of a vector space V . Use the subspace test to prove
that U ∩W , the intersection of U and W , is a subspace of V .

.

4.3 Linear Dependence and Independence

Definition 4.8. A finite nonempty set of vectors {v1,⋯,vn} in a vector space V is
linearly independent if the homogeneous vector equation

x1v1 +⋯ + xnvn = 0

has only the trivial solution x1 = ⋯ = xn = 0. We define the empty set as linearly
independent also. If a finite set of vectors is not linearly independent, we say the
set is linearly dependent.

It is important to realize that every homogeneous vector equation has a trivial solution.
The key to determining whether a set is linear independent is in determining whether
the trivial solution is the only solution.

Theorem 4.13. Let A be an m × n matrix. The following are equivalent.

(a) The set of column vectors of A is linearly independent.

(b) The homogeneous system Ax = 0 has only the trivial solution.

(c) Every column of the reduced row-echelon form of A contains a leading 1.

(d) Every column of A is a pivot column.

(e) rank A = n

(f) nullity A = 0

Proof Let {a1,⋯,an} be the set of column vectors of A (i.e. A = [a1⋯an]). We know
that the vector equation x1a1 +⋯ + xnan = 0 and the matrix equation Ax = 0 have the
same solutions, so the set of column vectors of A is linearly independent if and only if
Ax = 0 has only the trivial solution. But Ax = 0 has only the trivial solution precisely
when each column of the reduced row-echelon form of A has a leading 1 which is what
we mean when we say every column of A is a pivot column. It follows that (a), (b),
(c), and (d) are equivalent. By definition, the rank of A equals the number of pivot
columns of A, so rank A = n is equivalent to saying every column of A is a pivot column.
By definition, nullity A = n − rank A, so it is clear that rank A = n if and only if
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nullity A = 0. Thus, (a), (b), (c), (d), (e), and (f) are all equivalent.

..Example 4.9

Let

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

and T =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Determine whether S and T are linearly independent or dependent.

Solution For S:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
1 1 −3
−1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 −1 −2
0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the third column is not a pivot column, S is linearly dependent.

For T :

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
1 1 −2
−1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 −1 −1
0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

All three columns are pivot columns. T is linearly independent.

..

We leave the proof of the next two Theorems as exercises.

Theorem 4.14. Any finite set of vectors that contains the zero vector in a vector
space V is linearly dependent.

Theorem 4.15. In a vector space V , any set consisting of only a single nonzero
vector is linearly independent.

Many important theorems can be worded in terms of linear independence or in terms of
linear dependence. Because it is often important to be aware of both formulations, we
write them both ways. Since they are equivalent, we prove them only one way.

Theorem 4.16. A finite set of two or more vectors from a vector space V is linearly
dependent if and only if at least one of the vectors is a linear combination of the
others.
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Theorem 4.16 (restated). A finite set of two or more vectors from a vector space
V is linearly independent if and only if none of the vectors are linear combinations
of the others.

Proof Let S = {v1,⋯,vn} be a finite set of two or more vectors from a vector space V .
Suppose at least one of the vectors in S is a linear combination of the others. Without
loss of generality, suppose vn is a linear combination of the others. Then, there exists
scalars c1,⋯, cn−1 such that c1v1+⋯+cn−1vn−1 = vn. Bringing the vector vn to the other
side of the equation we see that

c1v1 +⋯ + cn−1vn−1 + (−1)vn = 0.

So the vector equation x1v1 + ⋯ + xnvn = 0 has a nontrivial solution. Therefore S is
linearly dependent.

To prove the other direction, suppose S is linearly dependent. This implies there exist
scalars c1,⋯, cn not all zero such that c1v1 + ⋯ + cnvn = 0. Without loss of generality,
suppose cn ≠ 0. Bringing everything else to the other side of the equation we get
cnvn = −c1v1 −⋯ − cn−1vn−1. Since cn ≠ 0 we can multiply both side by 1

cn
and obtain

vn = −
c1
cn

v1 −⋯ −
cn−1
cn

vn−1.

So, at least one vector is a linear combination of the others.

Theorem 4.16 provides us with a nice intuitive way of thinking about linear dependence
and independence. For the most part, linear dependence means a vector is a linear
combination of the others, and linear independence means none of the vectors are linear
combinations of the others. Special consideration must be made for the empty set and
sets with a single vector. A little more information can be gleaned from the last two
theorems. Though not as intuitive, Corollary 4.17 gets at the same idea but with a
wording that is helpful in Section 4.4.

Corollary 4.17. Let V be a vector space and S = {v1,⋯,vn} be a finite set of
vectors from V . The set S is linearly dependent if and only if v1 = 0 or at least one
of the vectors in S is a linear combination of its predecessors in the list v1,⋯,vn.

Proof In light of Theorem 4.16, one direction of this proof is simple. We do that
direction first.

Suppose v1 = 0 or one of the vectors in S is a linear combination of its predecessors.
Under these assumptions, Theorems 4.14 and 4.16 imply that S is linearly dependent.
Next, suppose S is linearly dependent. We show v1 = 0 or at least one of the vectors is
a linear combination of its predecessors.

Let S1 = {v1}, S2 = {v1,v2}, ⋯, Sn = {v1,⋯,vn} = S. Since Sn is linearly dependent,
there must be a first set, Sk, in this list that is linearly dependent. If k = 1, then



136 Chapter 4. Vector Spaces and Subspaces

v1 = 0 by Theorems 4.14 and 4.15. If 1 < k ≤ n, then there exist scalars c1,⋯, ck not
all zero such that c1v1 + ⋯ + ckvk = 0. If ck = 0, then the vector equation simplifies to
c1v1+⋯+ck−1vk−1 = 0 and c1,⋯, ck−1 are not all zero. That would imply Sk−1 is linearly
dependent contrary to the fact that Sk is the first. So ck ≠ 0. But then we can solve the
equation for vk,

vk = −
c1
ck

v1 −⋯ −
ck−1
ck

vk−1,

making vk a linear combination of its predecessor.

Referring back to Example 4.9, since S is linearly dependent, Theorem 4.16 implies that
at least one of the vectors in S is a linear combination of the others. By completing the
row reduction to reduced row-echelon form, we see

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
1 1 −3
−1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 −1 −2
0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1
0 1 2
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −5
0 1 2
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
showing

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
−3
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= −5

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

So the third vector is a linear combination of its predecessors. Corollary 4.17 tells us
that regardless of which order these three column vectors are entered into the matrix
one of the vectors will be a linear combination of its predecessors.

Next, we have two theorems. Each theorem has two wordings – one in terms of linear
independence, the other linear dependence. The proof of the first pair is left as an
exercise.

Theorem 4.18. Let S be a finite linearly independent set in a vector space V . Any
subset of S is linearly independent.

Theorem 4.18 (restated). Let S be a finite linearly dependent set in a vector
space V that is not in S. Any finite set of vectors in V that contains S is linearly
dependent.

Theorem 4.19. Let S be a finite linearly independent set of vectors from a vector
space V , and let v ∈ V that is not in S. The set S ∪ {v} is linearly dependent if and
only if v ∈ span S.

Theorem 4.19 (restated). Let S be a finite linearly independent set of vectors
from a vector space V , and let v ∈ V that is not in S. The set S ∪ {v} is linearly
independent if and only if v ∉ span S.
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Proof Suppose S ∪ {v} is linearly dependent. List the vectors in S ∪ {v} with v last.
By Corollary 4.17, at least one of the vectors in S ∪ {v} is a linear combination of its
predecessors. Since S is linearly independent and the predecessors of the vectors in S are
other vectors in S, none of the vectors in S are linear combinations of their predecessors.
Therefore v ∈ span S.

On the other hand, if v ∈ span S, then S ∪ {v} is linearly dependent by Theorem 4.16.

Let’s look at an example in R3 and discuss what is going on geometrically.

..Example 4.10

Determine whether the following sets are linearly dependent or independent. Describe
the spans of these sets.

S0 = ∅, S1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, S2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−4
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, S3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−4
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
4
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, T0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

T1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
0
6

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, T2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−4
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
4
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, T3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−4
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
4
5

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
0
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Solution S0 is linearly independent by definition. Its span is the trivial subspace {0}.
T0 is linearly dependent by Theorem 4.14. Its span is the trivial subspace {0}. S1 is
linearly independent by Theorem 4.15. Its span is the line through the origin of all

multiples of

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
.

T1 contains two vectors and the second one is a multiple (linear combination) of the
first. T1 is linearly dependent. Its span is the same as the span of S1, a line through the
origin.

S2 contains two nonparallel nonzero vectors and is linearly independent. Its span is the
plane through the origin on which the two vectors in S2 lie.

For T2, row reduction on the matrix having these column vectors is useful.

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 −4 4
2 1 3

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
0 −3 3

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 2
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Since the third column is not a pivot column, the third vector is a linear combination
of its predecessors, so it falls on the plane spanned by the first two making T2 linearly
dependent. Span T2 is the same as span S2.

For S3, we again row reduce a matrix having these column vectors.

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 −4 4
2 1 5

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
0 −3 5

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
0 0 2

⎤⎥⎥⎥⎥⎥⎦
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Because every column is a pivot column, S3 is linearly independent. Another way of
seeing it is that S2 is linearly independent and the third vector is not in the plane
spanned by the first two. Because a row echelon form of this matrix has no zero rows,
it is clear that S3 spans all of R3.

T3 contains four vectors from R3. Let A be the 3×4 matrix with vectors in T3 as columns.
It is clear that A cannot have four pivot columns since it has only three rows, so T3 is
linearly dependent. In fact, since S3 spans R3, the fourth vector in T3 must be in the
span of the other vectors in T3.

In this example, we see geometrically how the spatial dimension of the span grows from a
point to a line to a plane to all of three space as we include vectors that are not in the span
of the previous set in moving from S0 to S1 to S2 to S3. By including vectors from outside
the span of the previously included vectors, these sets stayed linearly independent. On
the other hand, when including vectors that are in the span of the previous sets (from
S0 to T0, from S1 to T1, from S2 to T2, and from S3 to T3) the spans did not grow and
linear independence was lost.

..

In Example 4.10 we see a strong connection between the linear algebraic notions of linear
independence and span with the spatial dimensions of the subspaces. In section 4.4 we
use linear independence and span to generalize the notion of dimension.

We have learned in this section that in order to determine whether a finite set of vectors
in Rn is linearly independent we place the vectors into a matrix as columns and reduce. If
we are working in a vector space different from Rn like some function space, for example,
or just an abstract vector space, then the vectors aren’t columns of any matrix. It’s not
so clear how we would determine linear dependence or independence in these cases. We
offer two examples to illustrate.

In Example 4.11 we see how even when we work in an abstract vector space, determining
linear independence or dependence can still boil down to solving homogeneous matrix
equations.

..Example 4.11 (1) Suppose S = {v1,v2,v3} is a linearly independent set of vec-
tors in a vector space V . Determine whether {v1 + v2,v2 + v3,v3 + v1} is linearly
independent or dependent.

To do this, we must determine whether

x1(v1 + v2) + x2(v2 + v3) + x3(v3 + v1) = 0

has nontrivial solutions. Rearranging the terms gives

(x1 + x3)v1 + (x1 + x2)v2 + (x2 + x3)v3 = 0.

Since this is a homogeneous vector equation involving the vectors of the linearly
independent set S we know

x1 + x3 = 0
x1 + x2 = 0

x2 + x3 = 0
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Using row reduction to solve this system gives x1 = 0, x2 = 0, and x3 = 0. Thus S is
linearly independent.

⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
1 1 0 0
0 1 1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 −1 0
0 1 1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 −1 0
0 0 2 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

(2) Similar to part (1), suppose T = {v1,v2,v3,v4} is linearly independent. Determine
whether {v1 + v2,v2 + v3,v3 + v4,v4 + v1} is linearly independent or dependent.

As before, set

x1(v1 + v2) + x2(v2 + v3) + x3(v3 + v4) + x4(v4 + v1) = 0.

Rearrange terms to obtain

(x1 + x4)v1 + (x1 + x2)v2 + (x2 + x3)v3 + (x3 + x4)v4 = 0.

Since T is linearly independent, we get

x1 + x4 = 0
x1 + x2 = 0

x2 + x3 = 0
x3 + x4 = 0

Row reducing this system yields

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 0 −1 0
0 1 1 0 0
0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0
0 0 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 0 −1 0
0 0 1 1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

At this point we see that there are nontrivial solutions, so T is linearly dependent.

..

Example 4.12 deals with the vector space of continuous functions.

..Example 4.12

Here we determine whether two given sets of functions are linearly dependent or linearly
independent.

1. Let f(t) = sin t, g(t) = cos t, h(t) = 1 (a constant function). Determine whether
{f ,g,h} is linearly dependent or independent.

To accomplish this, we determine whether x1f +x2g+x3h = 0 has nontrivial solutions.
Note that in this vector space, 0 is the constant function z(t) = 0. To this end, we
need to determine whether there are nontrivial values of x1, x2, x3 such that

x1 sin t + x2 cos t + x3(1) = 0 (4.1)
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for all t. Since this equation must be satisfied for all t, it must be satisfied in particular
for t = 0, t = π

2 , and t = π giving us

x1 sin 0 + x2 cos 0 + x3(1) = 0

x1 sin
π

2
+ x2 cos

π

2
+ x3(1) = 0

x1 sinπ + x2 cosπ + x3(1) = 0

or

x2 + x3 = 0
x1 + x3 = 0
− x2 + x3 = 0

.

Solving this system yields only the trivial solution x1 = x2 = x3 = 0.
⎡⎢⎢⎢⎢⎢⎣

0 1 1 0
1 0 1 0
0 −1 1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 1 0
0 −1 1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 1 0
0 0 2 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
Since no scalars except x1 = x2 = x3 = 0 satisfy equation 4.1 for those three values of
t simultaneously, there can be no other values of x1, x2, x3 that satisfy the equation
for all values of t. Therefore, {f ,g,h} is linearly independent.

2. Let f(t) = sin2 t, g(t) = cos2 t, and h(t) = 1. Determine whether {f ,g,h} is linearly
dependent or independent.

Because of the identity cos2 t + sin2 t = 1, we see that the third vector in the set
is a linear combination of the other two (h = 1f + 1g). Thus this set is linearly
dependent.

It is important to note that the technique used in part (a) worked for showing linear
independence, but it would not work to show linear dependence. If you happened to find
nontrivial values for the variables x1, x2, and x3 that work for a select few values of t,
perhaps you just haven’t checked enough values of t to rule out the nontrivial solutions.
You need to know some other information (like this identify from trigonometry) to show
linear dependence.

..

We turn now to intersections and sums of subspaces to see how they relate to linear
independence.

Theorem 4.20. Suppose U and W are subspaces of a vector space V with finite
linearly independent sets {u1,⋯,up} and {w1,⋯,wq} in U and W respectively. If
U ∩W = {0}, then {u1,⋯,up,w1,⋯,wq} is linearly independent also.

Proof Suppose c1u1 +⋯+ cpup + d1w1 +⋯+ dqwq = 0. We show that c1 = ⋯ = cp = d1 =
⋯ = dq = 0. Bringing the w’s to the other side of the equation gives

c1u1 +⋯ + cpup = −d1w1 −⋯ − dqwq.
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But c1u1 +⋯ + cpup ∈ U and −d1w1 −⋯ − dqwq ∈W . Since these are equal, they fall in
U ∩W = {0}, so c1u1+⋯+cpup = 0 and −d1w1−⋯−dqwq = 0. But since {u1,⋯,up} and
{w1,⋯,wq} are linearly independent, c1 = ⋯ = cp = 0 and −d1 = ⋯ = −dq = 0. Therefore
{u1,⋯,up,w1,⋯,wq} is linearly independent.

When U ∩W = {0}, U +W takes on some special qualities.

Definition 4.9. If U and W are subspaces of a vector space V and U ∩W = {0},
then the sum of U and W is called the direct sum of U and W , and is denoted
U ⊕W . A direct sum is a special case of a sum.

Theorem 4.21. If U and W are subspaces of a vector space V and U ∩W = {0},
then each vector v ∈ U ⊕W has exactly one pair of vectors u ∈ U and w ∈ W such
that v = u +w.

Proof Since a direct sum is a sum, v ∈ U ⊕W implies that there exist u ∈ U and w ∈W
such that v = u +w. To show that this u and w are unique, we suppose v = u′ +w′
where u′ ∈ U and w′ ∈ W and we show u′ = u and w′ = w. Now since v = u +w and
v = u′ +w′, we have u +w = u′ +w′. Taking the u’s to one side of the equation and the
v’s to the other, we have u − u′ = w′ −w ∈ U ∩W = {0}. So u − u′ = 0 and w′ −w = 0
which shows that u′ = u and w′ =w.

.... Problem Set 4.3

1. Determine which of the following sets of vectors from R3 are linearly dependent and
which are linearly independent. Whenever possible write one of the vectors in the
set as a linear combination of predecessors from the set.

(a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
7
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
6
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
4
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
3
6

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
6

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
2. Determine which of the following sets of vectors from R4 are linearly dependent and

which are linearly independent. Whenever possible write one of the vectors in the
set as a linear combination of predecessors from the set.

(a)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
3
0
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
3
4
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(b)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
−1
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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(c)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
3
1
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(d)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
5
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
4
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

3. Suppose V is a vector space and S = {v1,v2,v3} is a linearly independent set of
vectors from V . Which of the following sets of vectors are linearly independent
and which are linearly dependent in V . Use the definition of linear independence
(Definition 4.8) and follow example 4.11 as a model to prove your claim.

(a) {v1,v1 + v2,v1 + v2 + v3} (b) {v1 − v2,v2 − v3,v3 − v1}

(c) {v1 + 2v2 + v3,3v1 + 5v2 + 2v3,2v1 + 2v2 + v3}

In general, it is difficult to determine linear dependence or independence of a finite set
S = {f1, f2, . . . , fn} of functions from the vector space Cn−1(−∞,∞) of functions with
n − 1 continuous derivatives. It turns out that the determinant can be of assistance.
This gives us another application of the determinant.

Let fi = fi(t) for i = 1, . . . , n. The Wronskian of S is the determinant of the n × n
matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(t) f2(t) ⋯ fn(t)
f ′1(t) f ′2(t) ⋯ f ′n(t)
⋮ ⋮ ⋮

f
(n−1)
1 (t) f

(n−1)
2 (t) ⋯ f

(n−1)
n (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The Wronskian is, of course, a function of t. We show that if the Wronskian is not
uniformly equal to 0 for all values of t, then S is linearly independent.

Suppose S is linearly dependent. Then there exists scalars c1, c2, . . . , cn, not all 0,
such that

c1f1 + c2f2 +⋯ + cnfn = 0

That is, there are constants c1, . . . , cn, not all 0, such that

c1f1(t) + c2f2(t) +⋯ + cnfn(t) = 0

for all values of t.

Differentiating this equation with respect to t yields

c1f
′
1(t) + c2f ′2(t) +⋯ + cnf ′n(t) = 0.

Differentiating again and again a total of n−1 times shows that

⎡⎢⎢⎢⎢⎢⎣

c1
⋮
cn

⎤⎥⎥⎥⎥⎥⎦
is a nontrivial

solution to the homogeneous system
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1(t) f2(t) ⋯ fn(t)
f ′1(t) f ′2(t) ⋯ f ′n(t)
⋮ ⋮ ⋮

f
(n−1)
1 (t) f

(n−1)
2 (t) ⋯ f

(n−1)
n (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

for all values of t. But that implies the coefficient matrix is singular for all values of t,
which means its determinant, the Wronskian, equals 0 for all values of t. Therefore,
if the Wronskian is not uniformly 0 for all values of t, S must be linearly independent.

The converse of this theorem is false. That is, it is possible for S to be linearly
independent even though its Wronskian is uniformly 0. The set S = {t2, t∣t∣} serves
as a counterexample of this converse. There are other theorems that add extra
conditions beyond the Wronskian being uniformly 0 that do imply the set is linearly
dependent.

4. Determine whether the following sets of functions are linearly independent or depen-
dent.

(a) {1, et, e2t} (b) {6t2 + 4t + 3, t2 + t + 2,2t + 9}

(c) {sin 2t, sin t cos t} (d) {t, et, sin t}

5. Prove that any finite set of vectors from a vector space V that contains the zero
vector is linearly dependent.

6. Prove that in a vector space V , any set that consists of a single nonzero vector is
linearly independent.

7. Let S be a finite linearly independent set of vectors from a vector space V . Prove
that any subset of S is linearly independent.

.

4.4 Basis and Dimension

In this section we define what we mean by the dimension of a vector space. This definition
is consistent with our geometric understanding of dimension in R2 and R3, and it gives
meaning to the term dimension for other vector spaces. We start by defining basis, which
combines both span and linear independence.

Definition 4.10. Let V be a vector space and B a finite set of vectors from V . The
set B is a basis for V if B spans V and is linearly independent.

..Example 4.13

In the vector space Rn, let Sn = {e1,⋯,en} where the vectors e1,⋯,en defined earlier are
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the standard basis vectors e1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,⋯,en =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. The vector ej is the jth column of

the n×n identity matrix In. It is clear that Sn spans Rn since

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
= v1e1 +⋯+ vnen,

and Sn is linearly independent because every column of [e1⋯en] = In is a pivot column.
The set Sn is called the standard basis for Rn.

..

Since subspaces of vector spaces are themselves vector spaces, we can talk about bases
of subspaces too.

..Example 4.14

In a vector space V , the empty set, ∅, by definition is linearly independent and span ∅ =
{0}, so the empty set is a basis for the trivial subspace {0}.

..

..Example 4.15

If v is a nonzero vector in R2 or R3, then the line through the origin x(t) = tv is a
subspace of R2 or R3 and B = {v} is a basis for that subspace.

..

..Example 4.16

The plane x+2y−z = 0 passes through the origin. Therefore it is a subspace of R3. Find
a basis for that subspace.

Solution By solving for x we can find an explicit description for the plane. Since
x = −2y + z, if we let y = s and z = t, then

x = −2s + t
y = s
z = t

or ⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= s
⎡⎢⎢⎢⎢⎢⎣

−2
1
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
.

Clearly B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−2
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
spans the plane and is linearly independent. Hence B is

a basis for that plane. You can check to see that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
4

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is also a basis for

the same plane. In fact, any two nonparallel nonzero vectors that lie on that plane
through the origin form a basis for that subspace of R3. This points out an important
fact about bases. Every vector space and every subspace except the trivial subspace {0}
have infinitely many different bases.

..
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Though we focus on the vector spaces Rn for various n and their subspaces, we present
one example of a basis for a different vector space so you are aware of their existence.

..Example 4.17

Let P3 be the set of all polynomials with real coefficients of degree 3 or less. We show
that the set B = {1, t, t2, t3} is a basis for P3.

It is clear that B spans P3 because an arbitrary polynomial of degree 3 or less has the
form a3t

3 + a2t2 + a1t + a0 and

a3t
3 + a2t2 + a1t + a0 = a0(1) + a1(t) + a2(t2) + a3(t3).

To see that B is linearly independent we solve the homogeneous vector equation

x1(1) + x2(t) + x3(t2) + x4(t3) = 0.

We must realize that 0 is the constant function z(t) = 0, and we seek the values for
x1, x2, x3, x4 that make this homogeneous vector equation true for all t. So, in particular,
the homogeneous equation has to be true for t = 0,1,2,3. Each of those values of t gives
us a different linear equation in x1, x2, x3, and x4.

t = 0 ∶ x1 = 0
t = 1 ∶ x1 + x2 + x3 + x4 = 0
t = 2 ∶ x1 + 2x2 + 4x3 + 8x4 = 0
t = 3 ∶ x1 + 3x2 + 9x3 + 27x4 = 0

Solving simultaneously we get

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 1 1 0
1 2 4 8 0
1 3 9 27 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 1 1 0
0 1 2 4 0
0 1 3 9 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 1 1 0
0 0 1 3 0
0 0 1 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 1 1 0
0 0 1 3 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

so that x1 = x2 = x3 = x4 = 0. Thus B spans P3 and is linearly independent (linear
independence can also be shown using the Wronskian). Therefore B is a basis for P3.

..

Using a process similar to that in Example 4.17, it can be shown that two polynomials
are equal as vectors, that is, equal for all values of t, if and only if they have the same
degree and the coefficients of the same powers of t are equal. We use this fact in later
examples involving polynomials.

Theorem 4.22. Suppose S is a finite set of vectors from a vector space V and
W = span S. There is a subset of S that is a basis for W .

Proof The process of removing one vector at a time from the finite set S eventually
leads to a linearly independent set because if all the vectors were removed, the empty
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set, ∅, would be left which is linearly independent. If S is linearly independent, then by
definition, S is a basis for W . If S is linearly dependent, then S contains a vector v that
is in the span of S − v, and span (S − v) = span S. This process can continue without
shrinking the span as long as the set of remaining vectors is linearly dependent. At that
point the set of remaining vectors is linearly independent and spans W . Hence, it is a
basis for W .

..Example 4.18

Let

S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
2
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and W = span S. W is a subspace of R4. Find a basis for W .

Solution Let A be the matrix with the vectors of S as its columns. Reduce A.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
2 0 2 2 −2
0 1 −1 1 −1
1 2 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
0 −2 2 0 −2
0 1 −1 1 −1
0 1 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
0 1 −1 0 1
0 0 0 1 −2
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
At this point we see that the pivot columns of A are 1, 2, and 4. We claim that columns
1, 2, and 4 of A form a basis for W . To see what is happening, focus first on the first
three columns. The same elementary row operations on the first three columns yield

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
2 0 2
0 1 −1
1 2 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0
0 1 −1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the third column is not a pivot column, it is a linear combination of its predecessors.
Thus it can be removed without shrinking the span.

Now focus on the remaining columns 1,2, 4, and 5.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0
2 0 2 −2
0 1 1 −1
1 2 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0
0 1 0 1
0 0 1 −2
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
This shows that the last column is not a pivot column. It is a linear combination of
columns 1, 2, and 4 so it can be removed without shrinking the span. Finally, focus on
columns 1, 2, and 4.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 0 2
0 1 1
1 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
0 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Since all three are pivot columns, they form a linearly independent set. They still span

W so

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for W .
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..

Theorem 4.22 and Example 4.18 show how to shrink a spanning set down to a basis. The
next theorem and example show how to expand a linearly independent set to a basis.

Theorem 4.23. Suppose V is a vector space with a finite basis B = {v1,⋯,vn}. If
S = {u1,⋯,uk} is a finite linearly independent set of vectors from V , then S can be
expanded to a basis for V .

Proof Let T = {u1,⋯,uk,v1,⋯,vn}. It is clear that T spans V since it has a subset B
that does. If T is linearly independent, then T is a basis for V (this happens if S = ∅).
If T is linearly dependent, then at least one of the vectors in T is a linear combination of
its predecessors. Removing it from T does not shrink the span. Since the predecessors
in T of the vectors in S are all from S and since S is linearly independent, any vector
that is a linear combination of its predecessors in T must be from B. This process can
be repeated without shrinking the span so long as the remaining subset of T is linearly
dependent. Once it is no longer linearly dependent, it is linearly independent and spans
V , hence a basis for V . Since no vectors in S are removed in this process, this basis
contains S.

..Example 4.19

Let S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

. This set, S, is linearly independent as is demon-

strated below. Expand S to a basis for R4.

Solution We form a matrix A with the vectors in S as the first columns augmented
by I4 because its columns form the standard basis for R4. The columns of A span R4
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because the last four columns of A span R4.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1 0 0 0
1 0 1 0 1 0 0
−1 1 −1 0 0 1 0
0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1 0 0 0
0 1 −1 −1 1 0 0
0 0 1 1 0 1 0
0 1 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1 0 0 0
0 1 −1 −1 1 0 0
0 0 1 1 0 1 0
0 0 1 1 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 2 1 0 0 0
0 1 −1 −1 1 0 0
0 0 1 1 0 1 0
0 0 0 0 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

At this point we see that the columns 1, 2, 3, and 5 are the pivot columns of A. The fact
that columns 1, 2, and 3 are pivot columns verifies that S is indeed linearly independent
as claimed. Since columns 4, 6, and 7 are not pivot columns, they are linear combinations
of their predecessors that are pivot columns. Thus columns 1, 2, 3, and 5 form a basis
for R4. So

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

expands S to a basis for R4.
..

Let A be an m×n matrix. We have discussed the column space of A that is a subspace
of Rm and the row and null spaces of A that are subspaces of Rn. Next we show how to
find bases for these subspaces by reducing A.

Theorem 4.24. Let A be an m × n matrix. The pivot columns of A form a basis
for the column space of A.

Proof By definition, the columns of A span the column space of A. We know that
the non-pivot columns of A are linear combinations of their predecessor pivot columns,
so they can be removed without shrinking the span making the pivot columns of A
alone span the column space of A. In addition, the pivot columns of A form a linearly
independent set, so they form a basis for col A.
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Corollary 4.25. Let A be an m×n matrix. The pivot columns of AT form a basis
for the row space of A.

Proof Since the columns of AT are the rows of A, the span of the columns of AT equals
the span of the rows of A. By Theorem 4.24, the pivot columns of AT form a basis for
the row space of A.

Though theoretically clear, the practical problem with Corollary 4.25 is that it requires
reducing AT rather than A. Finding bases for col A and null A can be done by reducing
A. We could save work if we could find a basis for row A by reducing A. We take a
short diversion to accomplish this.

Lemma 4.26. Let A be an m × n matrix, and P a matrix compatible with A so
that the matrix product B = PA is defined. Then rowB ⊆ rowA.

Proof From the end of section 1.5, we know that each row of B is a linear combination
of the rows of A. By Lemma 4.6, rowB ⊆ rowA.

Theorem 4.27. If A is an m × n matrix and R a row-echelon form of A, then the
nonzero rows of R form a basis for the row space of A.

Proof Since R is a row-echelon form of A, there is a sequence of elementary matrices
E1,⋯,Ek such that R = Ek⋯E1A. Let P = Ek⋯E1. Lemma 4.26 shows row R ⊆ row A.
But since elementary matrices are invertible, so is P . Thus A = P −1R so row A ⊆ row R
also and we have row A = row R. So the rows of R span row A. The zero rows of
R add nothing to span A. It is also clear that the echelon form of R implies that the
nonzero rows of R are linearly independent too. So the nonzero rows of R form a basis
for row A.

Theorem 4.28. Let A be an m × n matrix. The general solution to Ax = 0 was
studied in chapter 1 and written in vector form as x = t1v1 + ⋯ + tkvk for some
nonzero vectors v1,⋯,vk. The set {v1,⋯,vk} is a basis for null A.

Proof Since x = t1v1 + ⋯ + tkvk is the general solution for Ax = 0, the set {v1,⋯,vk}
spans null A. Each parameter tj results from a column of A that is not a pivot column
and results in a 1 in an entry of vi such that all other vectors in {v1,⋯,vk} have 0 in
that entry. Each of those 1’s with corresponding zeros imply that the vector equation
t1v1 + ⋯ + tkvk = 0 has only the trivial solution. Therefore {v1,⋯,vk} is a basis for
null A.
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..Example 4.20

Let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
2 0 2 2 −2
0 1 −1 1 −1
1 2 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. Find bases for

(a) col A,

(b) row A, and

(c) null A.

Solution Start by putting A in reduced row-echelon form.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0
2 0 2 2 −2
0 1 −1 1 −1
1 2 −1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1
0 1 −1 0 1
0 0 0 1 −2
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(a) Since columns 1, 2, and 4 are the pivot columns of A, they form a basis for colA so
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for col A.

(b) Since the first three rows of the reduced row-echelon form of A are nonzero,

{[ 1 0 1 0 1 ] , [ 0 1 −1 0 1 ] , [ 0 0 0 1 −2 ]}

is a basis for row A.

(c) Solving Ax = 0 we let x3 = s and x5 = t to arrive at

x1 = −s − t
x2 = s − t
x3 = s
x4 = 2t
x5 = t

which can be written in vector form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
0
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
so ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
0
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
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forms a basis for null A. Note that because x3 = s and x5 = t, the two vectors that
generate the solutions to Ax = 0 have 1 and 0 in positions 3 and 5. This implies the
two vectors are linearly independent.

..

Finding bases for col A, row A, and null A are all done differently, but they can all be
done by reducing A to its reduced row-echelon form.

Here is another important property of bases.

Theorem 4.29. Let V be a vector space and B = {v1,⋯,vn} a basis for V . Every
vector in V has a unique representation as a linear combination of vectors from B
up to the order of the basis vectors.

Proof Since bases are spanning sets, span B = V so every vector in V has at least one
representation as a linear combination of the vectors in B. We show that because B is
linearly independent, that every vector in V has at most one such representation. To
that end, suppose w = a1v1 +⋯ + anvn and w = b1v1 +⋯ + bnvn. We show a1 = b1, a2 =
b2,⋯, an = bn. Now, since w = a1v1 +⋯ + anvn and w = b1v1 +⋯ + bnvn, we have

a1v1 +⋯anvn = b1v1 +⋯ + bnvn.

Combining like terms, we get

(a1 − b1)v1 +⋯ + (an − bn)vn = 0.

Since B is linearly independent, a1 − b1 = 0, a2 − b2 = 0, ⋯, an − bn = 0. Therefore, a1 = b1,
a2 = b2, ⋯, an = bn.

The next theorem is very important and the foundation of the notion of dimension of a
vector space.

Theorem 4.30. Let V be a vector space with a finite basis B = {v1,⋯,vn}. All
bases of V contain the same number of elements.

Proof Suppose C = {u1,⋯,um} is also a basis for V . We show m = n. Without loss
of generality, suppose that m ≤ n. We present a process whereby we generate a finite
sequence of sets C0,C1,⋯,Cm in which C0 = C and as we move from Ci to Ci+1 we add the
next element from B and remove one of the remaining elements from C. We do this in
such a way that each Ci spans V . Once we reach Cm all the vectors from C have been
removed.

Let D1 = {v1,u1,⋯,um}. This set is linearly dependent because v1 is a linear combi-
nation of the other vectors in D1. Since v1 ≠ 0, one of the vectors in D1 is a linear
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combination of the predecessors in D1. That must be one of the vectors u1,⋯,um.
Without loss of generality suppose it is u1 (renumber u1,⋯,um if necessary). Since u1

is a linear combination of other vectors in D1, it can be removed without shrinking the
span. Let C1 = {v1,u2,u3,⋯,um}. Then span C1 = V .

Suppose we have done this process i times (1 ≤ i < m) with Ci = {v1,⋯,vi,ui+1,⋯,um}
and span Ci = V . Let Di+1 = {v1,⋯,vi,vi+1,ui+1,⋯,um}. This set is linearly dependent
since vi+1 is a linear combination of the others. Since we know v1 ≠ 0, at least one of
these vectors is a linear combination of its predecessors. If it is one of the vectors vk, that
would imply B is linearly dependent since vk and all of its predecessors come from B.
But that is impossible since B is a basis, so it must be uj for some j where i+1 ≤ j ≤m.
Renumber if necessary so it is ui+1. Remove it to form Ci+1 = {v1,⋯,vi+1,ui+2,⋯,um}
and span Ci+1 = V . This process stops with Cm = {v1,⋯,vm} where span Cm = V . If
m < n, then vn ∈ span Cm implying B is linearly dependent. Again, that is impossible,
so m = n.

Definition 4.11. If V is a vector space and B is a basis for V containing n vectors,
we say that V is an n-dimensional vector space or that the dimension of V is n.

..Example 4.21

For each positive integer n, Rn is n dimensional because its standard basis Sn = {e1,⋯,en}
contains n vectors.

..

..Example 4.22

In a vector space V , the trivial subspace, {0}, is zero dimensional because its basis ∅
contains zero elements.

..

..Example 4.23

Any line through the origin in R2 or R3 has a point-parallel form of x(t) = tv where v ≠ 0.
The set {v} is a basis for the subspace so lines through the origin are one-dimensional
subspaces.

..

..Example 4.24

Any plane through the origin in R3 can be written in the form x(s, t) = su + tv where
u,v are nonzero and nonparallel. The set {u,v} is a basis for this subspace of R3. All
planes through the origin are two-dimensional subspaces of R3.

..

..Example 4.25

The space of polynomials of degree n or less, Pn, has {1, t, t2,⋯, tn} for a basis. The
dimension of Pn is n + 1.

..
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Theorem 4.31. Let A be an m × n matrix.

(a) The dimension of the column space of A equals rank A.

(b) The dimension of the row space of A equals rank A.

(c) The dimension of the null space of A equals nullity A = n − rank A.

(d) rank AT = rank A

Proof

(a) Because the pivot columns of A form a basis for col A, and the rank of A equals
the number of pivot columns of A, the dimension of col A equals the rank of A.

(b) Because the nonzero rows of a row-echelon form of A form a basis for row A, and
the number of nonzero rows in a row-echelon form of A equals the rank of A, the
dimension of rowA equals the rank of A.

(c) The homogeneous system Ax = 0 has a k-parameter family of solutions where k
equals the number of columns of A that are not pivot columns. That is, k = n −
rank A = nullity A. But if Ax = 0 has a k parameter family of solutions, we
know that null A has a dimension of k. Therefore the dimension of null A equals
nullity A = n − rank A.

(d) Exercise.

Definition 4.12. Let V be a vector space. If there is a nonnegative integer n such
that V is n-dimensional, then we say V is finite dimensional. If V is not finite
dimensional, then we say V is infinite dimensional.

Though it is important to be aware of the existence of infinite dimensional vector spaces,
they are not studied in detail in an introductory linear algebra class. We present one
example.

..Example 4.26

Let P be the set of all polynomials with real coefficients. P is an infinite dimensional
vector space. We saw that the vector space Pn of polynomials of degree n or less has
dimension n + 1, since {1, t, t2,⋯, tn} is a basis for Pn. But the vector space of all
polynomials has no finite set that forms a basis, so P is infinite dimensional. Though we
haven’t defined what an infinite basis would be, the infinite set {1, t, t2,⋯} is a basis for
P.

..
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A basis for a finite dimensional vector space V is a finite set that is linearly independent
and spans V . To show that a set is a basis by the definition, we show both linear
independence and spanning. Knowing the dimension of the vector space can make that
job easier.

Theorem 4.32. Let V be an n-dimensional vector space. Let B be a set of vectors
from V . Any two of the three criteria listed below imply the third and that B is a
basis for V .

(a) B is linearly independent.

(b) B spans V .

(c) B contains exactly n vectors.

Proof Suppose (a) and (b). By the definition of basis, B is a basis for V . Since V is
n-dimensional, all bases of V contain exactly n vectors, so B contains exactly n vectors.

Suppose (a) and (c). Since B is linearly independent, it can be expanded to a basis for
V . Since V is n-dimensional, that expansion must contain n vectors. Since B already
contains n vectors, no extra vectors are necessary, so B is a basis and B spans V .

Suppose (b) and (c). Since B spans V , B contains a subset that is a basis for V . That
basis must contain n vectors. Since B is the only subset of itself that contains n vectors,
B is a basis, hence linearly independent.

..Example 4.27

Suppose S = {v1,v2,v3} is a basis for a vector space V . Which of the following are bases
for V ?
A = {v1 + v2,v2 + v3}
B = {v1,v1 + v2,v1 + v2 + v3}
C = {v3,v1 + v2 + v3,v1 + v2 − v3}
D = {v1 + v2,v1 − v2,v2 + v3,v2 − v3}

Solution Since S has three vectors, V is three dimensional and all bases of V must
contain three vectors. That means A and D are not bases for V . Since B and C contain
the correct number of vectors, we need only check one additional criterion. Linear
independence is easier.

First, we check B. Now x1v1 +x2(v1 +v2)+x3(v1 +v2 +v3) = 0 if and only if (x1 +x2 +
x3)v1 + (x2 + x3)v2 + x3v3 = 0. Since S is a basis, we know

x1 + x2 + x3 = 0
x2 + x3 = 0

x3 = 0

which gives x1 = x2 = x3 = 0 using back substitution. Therefore, B is a basis for V .
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Next we check C. Here x1v3 + x2(v1 + v2 + v3) + x3(v1 + v2 − v3) = 0 if and only if
(x2 + x3)v1 + (x2 + x3)v2 + (x1 + x2 − x3)v3 = 0. Since S is a basis, we know

x2 + x3 = 0
x2 + x3 = 0

x1 + x2 − x3 = 0

Since nontrivial solutions like x1 = 2, x2 = −1, and x3 = 1 exist, C is linearly dependent
and not a basis (so it must not span V either).

..

We return now to direct sums.

Theorem 4.33. Suppose U and W are finite dimensional subspaces of a vector
space V such that U ∩W = {0}.

(a) If {u1,⋯,up} and {w1,⋯,wq} are bases of U and W respectively, then
{u1,⋯,up,w1,⋯,wq} is a basis for U ⊕W .

(b) dim(U ⊕W ) = (dim U) + (dim W )

Proof

(a) Since bases are linearly independent, {u1,⋯,up,w1,⋯,wq} is linearly independent
by Theorem 4.20. To show it spans U ⊕ V , suppose v ∈ U ⊕ V and show v is a
linear combination of {u1,⋯,up,w1,⋯,wq}. Since v ∈ U ⊕ V , there exist u ∈ U
and w ∈ W such that v = u + w. Since u ∈ U and w ∈ W , there exist scalars
c1,⋯, cp, d1,⋯, dq such that u = c1u1 + ⋯ + cpup and w = d1w1 + ⋯ + dqwq so v =
u+w = c1u1 +⋯+ cpup + d1w1 +⋯+ dqwq. Thus {u1,⋯,up,w1,⋯,wq} spans U ⊕W .
Since {u1,⋯,up,w1,⋯,wq} is linearly independent and spans U ⊕W , it is a basis for
U ⊕W .

(b) From part (a), dim(U⊕W ) = p+q, but dim U = p and dim W = q, so dim(U⊕W ) =
(dim U) + (dim W )

Theorem 4.34. Suppose U and W are subspaces of an n-dimensional vector space
V . Any two of the following implies the third and that V = U ⊕W .

(a) U ∩W = {0}

(b) U +W = V

(c) (dim U) + (dim W ) = n
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Proof ((a) and (b) Ô⇒ (c)) By the definition of direct sum, V = U⊕W . Theorem 4.33
implies (dim U) + (dim W ) = n.

((a) and (c) Ô⇒ (b)) Let {u1,⋯,up} and {w1,⋯,wq} be bases of U and W respectively.
Then dim U = p and dim W = q. By Theorem 4.33, {u1,⋯,up,w1,⋯,wq} is a basis for
U ⊕W . So U ⊕W is a subspace of V of dimension p + q = dim U + dim W = n. But V
is the only subspace of V of dimension n, so V = U ⊕W = U +W .

((b) and (c) Ô⇒ (a)) Again, let {u1,⋯,up} and {w1,⋯,wq} be bases of U and W
respectively. Since U +W = V , {u1,⋯,up,w1,⋯,wq} is a set of p + q = n vectors that
spans V , so it contains a basis of V as a subset. But all bases of V contain n vectors, so
it must be a basis for V . To show U ∩W = {0}, we suppose v ∈ U ∩W and show v = 0.
Since v ∈ U and v ∈W , there exist scalars c1,⋯, cp, d1,⋯, dq such that v = c1u1+⋯+cpup

and v = d1w1 +⋯ + dqwq. So,

c1u1 +⋯ + cpup = d1w1 +⋯ + dqwq

and
c1u1 +⋯ + cpup − d1w1 −⋯ − dqwq = 0.

But being a basis of V , {u1,⋯,up,w1,⋯,wq} is linearly independent hence c1 = ⋯ = cp =
d1 = ⋯ = dq = 0 and v = c1u1 +⋯ + cpup = 0. Therefore U ∩W = {0} and V = U ⊕W .

In Theorem 1.18 of section 1.6 we proved that there are many statements that are
equivalent to saying an n×n matrix is invertible. The list was expanded in Theorem 3.9
of section 3.3. We add several statements to that list now with more to come later.
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Theorem 4.35. Let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A is the identity matrix In.

(d) A is a product of elementary matrices.

(e) A has n pivot columns.

(f) A has a left inverse.

(g) A has a right inverse.

(h) For all b, Ax = b has a unique solution.

(i) Every n-vector b is a linear combination of the columns of A.

(j) AT is invertible.

(k) rank A = n.

(l) nullity A = 0.

(m) detA ≠ 0.

(n) The columns (or rows) of A span Rn.

(o) The columns (or rows) of A are linearly independent.

(p) The columns (or rows) of A form a basis for Rn.

(q) col A = Rn.

(r) row A = Rn.

(s) null A = {0}.

.... Problem Set 4.4

1. Find the dimension of the subspace of R3 spanned by each of the following sets of
vectors.

(a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
7
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
6
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
4
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

5
2
7

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
3
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4
6
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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(e)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2. Which of the following are bases for the plane 3x − 5y + 2z = 0?

(a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
0
−3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
3
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

3
−5
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
1
−5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
0
−3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
3
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
2
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
3. Find a basis for and the dimension of each of the following subspaces of R3.

(a) The solution set of the equation 2x + 3y − 4z = 0.

(b) The span of

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
3
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4
11
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(c) The line
x

2
= y

5
= z

7
.

(d) The set of all vectors that are orthogonal to

⎡⎢⎢⎢⎢⎢⎣

1
3
−1

⎤⎥⎥⎥⎥⎥⎦
.

(e) The set of all vectors that are orthogonal to both

⎡⎢⎢⎢⎢⎢⎣

1
−1
2

⎤⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎣

3
2
−1

⎤⎥⎥⎥⎥⎥⎦
.

4. Find a basis for and the dimension of (i) the column space, (ii) the row space, and
(iii) the null space for each of the following matrices.

(a) [ 2 4
3 6

] (b) [ 3 1
2 5

]

(c)

⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 2 5
−1 0 1

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

1 2 3 3
2 4 7 8
−1 −2 0 3

⎤⎥⎥⎥⎥⎥⎦
5. LetH be the subspace of R4 of vectors that satisfy the equation 3x1−4x2−5x3+6x4 = 0,

and let K be the subspace of R4 of vectors that satisfy the symmetric equations
x1 = x2 = x3 = x4.

(a) Find a basis for H.

(b) Find a basis for K.

(c) Extend your answer to (a) to a basis for R4.

(d) Extend your answer to (b) to a basis for R4.

(e) Verify that K is a subspace of H.

(f) Extend your answer to (b) to a basis for H.

6. Suppose {v1,v2,v3} is a basis for a vector space V . Determine whether each of the
following are bases for V .
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(a) {v1 + 2v2 + 3v3,2v1 + 5v2 + 5v3,2v1 + 8v2 + 3v3}
(b) {v1 + v2 − v3,v1 − 2v2 + v3}
(c) {v1 + v2 + 3v3,3v1 + 2v2 + 7v3,2v1 − v2}
(d) {v1 + v2,v1 + v3,v2 + v3,v1 − v3}

7. Suppose A is a 5 × 7 matrix and rank A = 3.

(a) The column space of A is a subspace of Rn for n = .

(b) What is the dimension of the column space of A?

(c) The row space of A is a subspace of Rn for n = .

(d) What is the dimension of the row space of A?

(e) The null space of A is a subspace of Rn for n = .

(f) What is the dimension of the null space of A?

(g) The null space of AT is a subspace of Rn for n = .

(h) What is the dimension of the null space of AT ?

8. Let U = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and W = span S where S might be any of the four

sets below. Which of those four choices of S would make R3 = U +W? For those

choices of S for which R3 = U +W , find u ∈ U and w ∈W such that

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
= u +w.

(a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
3
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(b)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

7
10
−8

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

8
13
−11

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−2
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(d)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

8
11
−9

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
9. Suppose that A is an m × n matrix. Prove that rank AT = rank A.

.
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.. 5 Linear Transformations

5.1 Definition of Linear Transformations

Now that we know what a vector space is, we are ready to begin studying functions
from one vector space (domain) to another (codomain). In calculus we study functions
that are differentiable, continuous, and integrable. In a linear algebra course, we study a
particular type of function, called a linear transformation, that “preserves” vector space
operations. What exactly do we mean by “preserves” in this context? Definition 5.1
explains.

Definition 5.1 (Linear Transformation). Let V and W be vector spaces and T ∶
V Ð→W a function from V to W . The function T is a linear transformation if
it has the following two properties: For all vectors u,v in V and for all scalars c,

(1) T (u + v) = T (u) + T (v)

(2) T (cu) = cT (u)

We say a function is linear if it is a linear transformation.

A linear transformation preserves the two vector space operations of vector addition and
scalar multiplication in the following sense:

(1) With linear transformations it doesn’t matter whether you add the vectors first and
then apply the function or apply the function first and then add the resulting vectors.
You get the same result either way.

(2) The same goes with scalar multiplication. You get the same result whether you
multiply by the scalar first and then apply the function or apply the function first
and then multiply by the scalar.

..Example 5.1

Let A be an m × n matrix. Define TA ∶ Rn Ð→ Rm by TA(x) = Ax. We show that TA is
a linear transformation by showing that it satisfies the two properties in the definition.
Let u,v ∈ Rn and c ∈ R.

(1) TA(u + v) = A(u + v) by the definition of TA

= Au +Av by the distributive property of multiplication over matrix addition
= TA(u) + TA(v) by the definition of TA

(2) TA(cu) = A(cu)
= c(Au)
= cTA(u)

Therefore TA is a linear transformation.
..

160
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Definition 5.2. For any matrix A, the linear transformation TA defined in Exam-
ple 5.1 is called a matrix transformation.

We begin the next example with a geometric description of a function and show that
the function is linear and, in fact, is a matrix transformation.

..Example 5.2

Define Tθ ∶ R2 Ð→ R2 as follows: The function Tθ takes a vector x in R2 and rotates it
counterclockwise by the angle θ about the origin.

.....

x

..

Tθ(x)

.

θ

Figure 5.1 Tθ rotates a vector counterclockwise by an angle of θ.

By examining Figure 5.2, it is easy to convince yourself by the geometry that Tθ is linear.

We can write Tθ in terms of matrix multiplication as follows: Suppose x is a nonzero
vector in R2 that makes an angle ϕ with the positive x-axis. Let r = ∥x∥. Then the unit

vector in the direction of x is [ cosϕ
sinϕ

] and x = r [ cosϕ
sinϕ

]. Since Tθ rotates x by an

.... u.

v

..

u + v

.

Tθ(u)

.

Tθ(v)

..

Tθ(u + v) = Tθ(u) + Tθ(v)

(a) Add first then rotate by θ. Compare to
rotate first then add.

....

cu

. u.

Tθ(cu) = cTθ(u)

.

Tθ(u)

.

θ

(b) Multiply first and then rotate by
θ. Compare to rotate first then mul-
tiply.

Figure 5.2 Geometric justification that Tθ is linear.
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angle θ and doesn’t change its norm,

Tθ(x) = r [ cos(ϕ + θ)
sin(ϕ + θ) ]

= r [ cosϕ cos θ − sinϕ sin θ
cosϕ sin θ + sinϕ cos θ ]

= r (cosϕ [ cos θ
sin θ

] + sinϕ [ − sin θ
cos θ

])

= r [ cos θ − sin θ
sin θ cos θ

] [ cosϕ
sinϕ

]

= [ cos θ − sin θ
sin θ cos θ

](r [ cosϕ
sinϕ

])

= Rθx

where Rθ is the matrix [ cos θ − sin θ
sin θ cos θ

]. So, we see that this rotation function Tθ is, in

fact, a matrix transformation, hence Tθ is a linear transformation.
..

Definition 5.3. The 2 × 2 matrix

Rθ = [
cos θ − sin θ
sin θ cos θ

]

is called the rotation matrix.

Know Definition 5.3. To rotate a vector v ∈ R2 by angle θ, simply multiply it on the left
by Rθ.

Definition 5.4. A linear transformation from a vector space V to itself is called
a linear operator. A linear functional is a linear transformation from a vector
space to R.

Since the domain and codomain of the rotation transformation Tθ ∶ R2 Ð→ R2 are the
same, Tθ is a linear operator. A matrix transformation TA is a linear operator if and
only if A is square, and TA is a linear functional if and only if A is a row vector.

Linear transformations in general and linear operators are found throughout mathemat-
ics. Example 5.3 shows that you worked with a linear operator back in calculus.

..Example 5.3

Let D∞ be the vector space of real-valued functions of a single variable that have deriva-
tives of all orders. Define D ∶ D∞ Ð→ D∞ by D(f) = f ′. That is, the function D maps
a function to its derivative. The following two rules of differentiation tell us that D is a
linear operator.
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1. The derivative of a sum equals the sum of the derivative

D(f + g) =D(f) +D(g).

2. The derivative of a constant (scalar) times a function equals the constant times the
derivative of the function

D(cf) = cD(f).
..

When we say a function is linear in linear algebra we almost always mean that the
function is a linear transformation. This can cause some confusion because the term
linear can have a different meaning in some other mathematical contexts. Example 5.4
illustrates.

..Example 5.4

The set of real numbers, R, is a one-dimensional vector space. The two functions f(t) =
3t + 1 and g(t) = 3t are two functions from R to R. Are these functions linear?

The answer really depends on what you mean by linear. As you know, both f and g
have graphs that are straight lines, so in that sense, both f and g are linear. But even
in the sense of being a linear transformation, the function g is linear because

g(s + t) = 3(s + t) and g(ct) = 3(ct)
= 3s + 3t = c(3t)
= g(s) + g(t) = cg(t).

But the function f is not linear in this sense since f(s+ t) = 3(s+ t)+1 but f(s)+f(t) =
(3s + 1) + (3t + 1) = 3(s + t) + 2. The function f can also be seen to be not linear in this
sense since f(2t) = 3(2t) + 1 = 6t + 1 and 2f(t) = 2(3t + 1) = 6t + 2. The only real-valued
functions of a single variable that are actual linear transformations are those with graphs
that are straight lines through the origin.

..

..Example 5.5

Let u0 be a fixed vector in Rn. Define F ∶ Rn Ð→ R by F (v) = u0 ⋅ v. It is easy to see
that F is a linear functional since

F (v +w) = u0 ⋅ (v +w) and F (cv) = u0 ⋅ (cv)
= u0 ⋅ v + u0 ⋅w = c(u0 ⋅ v)
= F (v) + F (w) = cF (v).

..

..Example 5.6

Let I[a, b] denote the space of all integrable functions on [a, b]. Define F ∶ I[a, b] Ð→ R
by

F (f) = ∫
b

a
f(t) dt.
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Properties of the definite integral imply that F is a linear functional because

F (f + g) = ∫
b
a (f(t) + g(t)) dt and F (cf) = ∫

b
a cf(t) dt

= ∫
b
a f(t) dt + ∫

b
a g(t) dt = c ∫

b
a f(t) dt

= F (f) + F (g) = cF (f).

..

The fact that a linear transformation preserves the operations of vector addition and
scalar multiplication tells us a good deal about the function. If we know how a linear
transformation acts on a basis of the domain, we know how it acts on the entire domain.

Theorem 5.1. Suppose V and W are vector spaces, T ∶ V Ð→ W is linear, and
B = {v1,⋯,vn} is a basis for V . If u ∈ V such that u = c1v1 + ⋯ + cnvn, then
T (u) = c1T (v1) +⋯ + cnT (vn).

Proof T (u) = T (c1v1 +⋯ + cnvn) by the definition of u
= T (c1v1) +⋯ + T (cnvn) by property (1) of linear transformations
= c1T (v1) +⋯ + cnT (vn) by property (2) of linear transformations.

Theorem 5.1 shows us just how restricted the class of linear transformations is. There are
infinitely many vectors in an n-dimensional vector space (n ≥ 1), but once we determine
how a linear transformation T acts on just n basis vectors of the domain, the rest of
T is completely determined. Beyond that, however, we have complete flexibility as
Theorem 5.2 shows.

Theorem 5.2. Suppose V and W are vector spaces with B = {v1,⋯,vn} a basis
for V . Let w1,⋯,wn be a collection of any n vectors from W (repeats allowed).
There exists a unique linear transformation T ∶ V Ð→ W such that T (vi) = wi for
i = 1,⋯, n.

Proof Define T ∶ V Ð→W as follows: Let u ∈ V . Since B is a basis for V , there exist
scalars c1,⋯, cn such that u = c1v1 + ⋯ + cnvn. Define T (u) = c1w1 + ⋯ + cnwn. Since
vi = 0v1+⋯+0vi−1+1vi+0vi+1+⋯+0vn we see that T (vi) = 0w1+⋯+0wi−1+1wi+0wi+1+
⋯ + 0wn = wi for i = 1,⋯, n. We show T is linear. Suppose u,v ∈ V and k is a scalar.
Since B is a basis, there exist unique c1,⋯, cn, d1,⋯, dn such that u = c1v1 + ⋯ + cnvn

and v = d1v1 +⋯ + dnvn. Now, u + v = (c1 + d1)v1 +⋯ + (cn + dn)vn, and thus

T (u + v) = (c1 + d1)w1 +⋯ + (cn + dn)wn

= (c1w1 +⋯ + cnwn) + (d1w1 +⋯ + dnwn)
= T (u) + T (v).
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And,

T (ku) = T (k(c1v1 +⋯ + cnvn))
= T ((kc1)v1 +⋯ + (kcn)vn)
= (kc1)w1 +⋯ + (kcn)wn

= k(c1w1 +⋯ + cnwn)
= kT (u).

Since T is determined on B, T is unique by Theorem 5.1.

Definition 5.5. When carrying out this process of defining a linear transformation
T on all of V by determining T on a basis only we say we extend T linearly to all
of V .

Theorems 5.1 and 5.2 make it particularly easy to describe a linear transformation from
Rn to Rm. In fact, they imply that all linear transformations from Rn to Rm are, indeed,
matrix transformations, and the matrix is very easy to find.

Theorem 5.3. Suppose T ∶ Rn Ð→ Rm is linear. There exists an m × n matrix
A such that T (x) = Ax for all x ∈ Rn and, in fact, A = [T (e1)⋯T (en)] where
Sn = {e1,⋯,en} is the standard basis for Rn.

Proof Define M ∶ Rn Ð→ Rm by M(x) = Ax where A is defined as above. We know
that M is a matrix transformation, hence M is linear. Note that

M(ej) =
⎡⎢⎢⎢⎢⎢⎣

a1j
∗ ⋮ ∗

amj

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
1
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

a1j
⋮

amj

⎤⎥⎥⎥⎥⎥⎦
= T (ej)

for j = 1,⋯, n. Since T and M are both linear and agree on the standard basis Sn, they
must agree on all of Rn. Therefore, T =M and T (x) = Ax for all x ∈ Rn.

Definition 5.6. Suppose T ∶ Rn Ð→ Rm is linear. The m × n matrix A =
[T (e1)⋯T (en)] is called the standard matrix representation of T .

Let u be a nonzero vector in R3. Recall that the orthogonal projection of a vector x onto
u is given by projux = u⋅x

u⋅uu. The function Pu ∶ R3 Ð→ R3 defined by Pu(x) = projux
can be shown to be a linear operator (exercise).
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....
θ

..
e1

..

Rθ(e1) = [
cos θ
sin θ

]

(a) The image of e1 under Rθ.

....

θ

.

π
2

..

e2

..

Rθ(e2) = [
− sin θ
cos θ

]

(b) The image of e2 under Rθ.

Figure 5.3 Defining the columns of the matrix Rθ.

..Example 5.7

Find the projection matrix A for u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
such that Pu(x) = Ax for all x ∈ R3.

Solution projue1 = 1
14

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, projue2 = 2

14

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, and projue3 = 3

14

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, so

A =
⎡⎢⎢⎢⎢⎢⎣

1
14

2
14

3
14

2
14

4
14

6
14

3
14

6
14

9
14

⎤⎥⎥⎥⎥⎥⎦
= 1

14

⎡⎢⎢⎢⎢⎢⎣

1 2 3
2 4 6
3 6 9

⎤⎥⎥⎥⎥⎥⎦
.

..

..Example 5.8

Theorem 5.3 makes it easier to remember the 2×2 rotation matrix Rθ. The two columns
of Rθ are the results after rotating e1 and e2 counterclockwise by an angle θ. But, as
shown in Figure 5.3,

Rθ(e1) = [
cos θ
sin θ

] and Rθ(e2) = [
cos(θ + π

2 )
sin(θ + π

2 )
] = [ − sin θ

cos θ
] .

So,

Rθ = [
cos θ − sin θ
sin θ cos θ

] .

..

There are several ways of building new functions from old that you have learned about
before. Many of them make sense in a linear algebra context.

Definition 5.7. The sum and difference of two functions: (f ± g)(x) = f(x)± g(x).
Scalar multiple of a function: (kf)(x) = k(f(x)).
Composition of two functions: (g ○ f)(x) = g(f(x)).
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If the old functions are linear, what about the new functions?

Theorem 5.4. Suppose U,V, and W are vector spaces where R ∶ U Ð→ V , S ∶ V Ð→
W , and T ∶ V Ð→W are linear, and k is a scalar.

(a) (S ± T ) ∶ V Ð→W is linear.

(b) (kT ) ∶ V Ð→W is linear.

(c) (S ○R) ∶ U Ð→W is linear.

Proof Exercises.

We can say more when the vector spaces are spaces of column vectors. Addition and
subtraction of linear transformations correspond to matrix addition and subtraction. A
scalar multiple of a linear transformation corresponds to a scalar multiple of a matrix.
And, the composition of two linear transformations corresponds to matrix multiplication.

Theorem 5.5. Suppose A and B are m × p matrices, C is a p × n matrix and k is
a scalar. Then TA ∶ Rp Ð→ Rm, TB ∶ Rp Ð→ Rm, and TC ∶ Rn Ð→ Rp are linear and

(a) TA ± TB = TA±B.

(b) kTA = TkA.

(c) TA ○ TC = TAC .

Proof

(a) (TA ± TB)(v) = TA(v) ± TB(v) = Av ±Bv = (A ±B)v = TA±B(v).

(b) kTA(v) = k (TA(v)) = k(Av) = (kA)v = TkA(v).

(c) (TA ○ TC) (v) = TA (TC(v)) = TA(Cv) = A(Cv) = (AC)v = TAC(v).
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.... Problem Set 5.1

1. Use the definition of linear transformation to determine whether the following func-
tions are linear transformations. If linear, find the standard matrix representation of
the linear transformation. If not linear, provide a counterexample to illustrates that
one or the other of the two properties in the definition of linear transformation is not
satisfied.

(a) T ([ x
y
]) = [ 2x + 3y

x − 4y ]

(b) T
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= [ y

z
]

(c) T ([ x
y
]) =

⎡⎢⎢⎢⎢⎢⎣

2x + 1
x + y
y − 1

⎤⎥⎥⎥⎥⎥⎦
(d) T ∶ R2 → R, where T (x) = x ⋅ x.
(e) T ∶ R2 → R, where T (x) = ∥x∥.

(f) T ∶ R3 → R3, where u0 =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
and T (x) = u0 × x.

2. Let B = {[ 1
2
] , [ 3

7
]}.

(a) Verify that B is a basis for R2.

(b) Let T be the linear transformation that maps [ 1
2
] to [ 2

−5 ] and maps [ 3
7
]

to [ 4
1
]. Find the image of [ 5

3
] under T .

(c) Find the standard matrix representation of the linear transformation T that is
defined in part (b).

3. Let A =
⎡⎢⎢⎢⎢⎢⎣

2 1 −1
1 3 1
3 0 4

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

1 1 3
2 3 −1
0 2 1

⎤⎥⎥⎥⎥⎥⎦
. Let TA and TB be the matrix transfor-

mations for A and B respectively. Find the standard matrix representation for each
of the following linear transformations.

(a) TA + TB (b) TA − TB (c) 3TA

(d) TA ○ TB (e) TB ○ TA

4. Similar to the rotation operator Rθ ∶ R2 → R2, for each angle θ there is a reflection
operator Fθ ∶ R2 → R2 that maps each vector in R2 to its reflection across the line
through the origin that makes an angle θ with the positive x axis. It can be shown
that Fθ is a linear operator (similar to the manner in which the text shows Rθ is
linear).
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(a) Find the standard matrix representation of Fθ.

(b) Using matrix multiplication and trigonometric identities, show that the compo-
sition of two reflections is a rotation by finding the angle θ in terms of the angles
α and β such that Fβ ○ Fα = Rθ.

(c) Show that the composition of a reflection followed be a rotation is a reflection
by finding the angle θ in terms of α and β such that Rβ ○ Fα = Fθ.

(d) By comparing standard matrix representations, show that R−1θ = R−θ and F−1θ =
Fθ.

(e) Show that the composition of a rotation followed be a reflection is a reflection
by finding the angle θ in terms of α and β such that Fα ○Rβ = Fθ.

(f) Show that the composition of three reflections is a reflection by finding the angle
θ in terms of α, β, and γ such that Fγ ○ Fβ ○ Fα = Fθ.

5. From chapter 2 we see that the orthogonal projection of a vector v onto a nonzero

vector a is given by projav =
v ⋅ a
a ⋅ a

a. For each nonzero vector u in R3, define the

orthogonal projection operator Pu ∶ R3 → R3 given by Pu(x) =
x ⋅ u
u ⋅ u

u. Prove that Pu

is linear.

6. Suppose that U , V , and W are vector spaces and that R ∶ U → V , S ∶ U → V , and
T ∶ V →W are linear transformations and c is a scalar. Prove the following:

(a) R + S is linear. (b) R − S is linear.

(c) cR is linear. (d) T ○R is linear.

7. The definition of linear transformation is broken down into two parts (i) linear trans-
formations preserve vector addition, and (ii) linear transformations preserve multipli-
cation by scalars. Putting the two parts together tells us that linear transformations
preserve linear combinations. In fact, an equivalent definition for linear transforma-
tion goes as follows:

Let V and W be vector spaces and T ∶ V →W a function. The function T is called
a linear transformation if for all vectors u and v in V and for all scalars c and d we
have T (cu + dv) = cT (u) + dT (v).
Prove that the two definitions are equivalent.

.

5.2 The Kernel and Range of a Linear Transformation

Let V and W be vector spaces and T ∶ V Ð→ W a linear transformation. The vector
space V is called the domain of T and W is called the codomain. There are subspaces
of V and W that are associated with the linear transformation T . We begin with two
of those subspaces and study more in the next two chapters.



170 Chapter 5. Linear Transformations

Definition 5.8. Suppose V and W are vector spaces and T ∶ V Ð→ W is a linear
transformation. The kernel of T , denoted ker T , is the set of all vectors in V that
are mapped by T to 0 in W . That is,

ker T = {v ∈ V ∶ T (v) = 0} .

Put another way, the kernel of T is the preimage of {0} under the linear transformation
T .

Lemma 5.6. If V and W are vector spaces and T ∶ V Ð→ W is a linear transfor-
mation, then T (0V ) = 0W .

Proof T (0V ) = T (00V ) = 0T (0V ) = 0W .

Theorem 5.7. If V and W are vector spaces and T ∶ V Ð→W is a linear transfor-
mation, then the kernel of T is a subspace of V .

Proof Use the subspace test.
▶ By Lemma 5.6, 0V ∈ ker T , so ker T ≠ ∅.
▶ Suppose u,v ∈ ker T and show u+v ∈ ker T . But T (u+v) = T (u)+T (v) = 0W +0W =
0W . So u + v ∈ ker T .
▶ Suppose u ∈ ker T and c is a scalar and show that cu ∈ ker T . But T (cu) = cT (u) =
c0W = 0W . So cu ∈ ker T .
Therefore, ker T is a subspace of V by the subspace test.

Definition 5.9. Suppose V and W are vector spaces and T ∶ V Ð→ W is a linear
transformation. The range of T , denoted range T , is the set of all vectors in W
that are images of vectors in V under the linear transformation T . That is,

range T = {w ∈W ∶ T (v) =w for some v ∈ V } .

Put another way, the range of T is the image of V under the linear transformation T .

Theorem 5.8. If V and W are vector spaces and T ∶ V Ð→W is a linear transfor-
mation, then the range of T is a subspace of W .

Proof Use the subspace test.
▶ By Lemma 5.6, T (0V ) = 0W , so 0W ∈ range T and range T ≠ ∅.
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▶ Suppose w1,w2 ∈ range T and show w1+w2 ∈ range T . Since w1,w2 ∈ range T , there
exist v1,v2 ∈ V such that T (v1) =w1 and T (v2) =w2. So T (v1 +v2) = T (v1)+T (v2) =
w1 +w2. Thus w1 +w2 ∈ range T .
▶ Suppose w ∈ range T and c is a scalar and show cw ∈ range T . Since w ∈ range T ,
there exists v ∈ V such that T (v) =w. So T (cv) = cT (v) = cw giving cw ∈ range T .
Therefore the range of T is a subspace of W by the subspace test.

You have already encountered the range and kernel in the case when V and W are Rn

and Rm respectively. In section 5.1 we showed that all linear transformations from Rn

to Rm are, in fact, matrix transformations. So if T ∶ Rn Ð→ Rm is linear, then there
exists an m × n matrix A such that T (x) = Ax. So, a vector b ∈ Rm is in the range of T
if and only if the system Ax = b is consistent. Thus, the range of T equals the column
space of A. Likewise, a vector v ∈ Rn is in the kernel of T if and only if v is a solution
to Ax = 0. Thus, the kernel of T equals the null space of A.

We also know the dimensions of these subspaces since the dimension of the column space
of A equals the rank of A, and the dimension of the null space of A equals the nullity of
A. We summarize these results in Theorem 5.9.

Theorem 5.9. Suppose A is an m × n matrix.

(a) range TA = col A and its dimension is rank A.

(b) ker TA = null A and its dimension is nullity A.

..Example 5.9

Find the dimensions of and bases for the range and kernel of TA ∶ R4 Ð→ R3 where

A =
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 1
1 0 3 2
2 −1 5 3

⎤⎥⎥⎥⎥⎥⎦
.

Solution Reduce A.
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 1
1 0 3 2
2 −1 5 3

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 1
0 1 1 1
0 1 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 2 1
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
At this point we see that the first two columns are the only two pivot columns, so
rank A = 2, nullity A = 4 − 2 = 2 and the first two columns of A form a basis for
range TA. By completing the reduction to reduced row-echelon form,

⎡⎢⎢⎢⎢⎢⎣

1 0 3 2
0 1 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
,

we can solve the homogeneous system Ax = 0 to find a basis for ker TA. Letting x3 = s
and x4 = t gives

x1 = −3s − 2t
x2 = −s − t
x3 = s
x4 = t
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so that
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a basis for range TA = col A and its dimension is 2. In addition,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3
−1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
−1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for ker TA = null A and its dimension is 2.

..

Two important properties of functions you have studied elsewhere are one-to-one and
onto. We define these properties here in case you don’t recall their precise definitions.

Definition 5.10. A function f ∶ AÐ→ B is said to be one-to-one or an injection
if f(a1) = f(a2) implies a1 = a2. A function f ∶ A Ð→ B is said to be onto or a
surjection if every element of B is in the range of f . If a function is both one-to-one
and onto, we call it a bijection.

Recall that it is the bijections that have inverse functions and that the inverse functions
are themselves bijections.

The kernels and ranges of linear transformations tell us which linear transformations are
one-to-one and onto.

Theorem 5.10. Suppose V and W are vector spaces and T ∶ V Ð→W is linear.

(a) T is one-to-one if and only if ker T = {0}.

(b) T is onto if and only if range T =W .

Proof Suppose T is one-to-one. Since the kernel of T is the preimage of {0}, T one-
to-one implies ker T contains at most one vector. But Lemma 5.6 tells us 0 ∈ ker T ,
so ker T = {0}. Suppose ker T = {0} and suppose T (v1) = T (v2). Show v1 = v2. But
T (v1) = T (v2) Ô⇒ T (v1) − T (v2) = 0 Ô⇒ T (v1 − v2) = 0 Ô⇒ v1 − v2 ∈ ker T . But
ker T = {0}, so v1 −v2 = 0, which implies v1 = v2. This completes the proof of part (a).

Part (b) is trivial since T onto means range T =W .

In the finite dimensional case, we can also determine whether a linear transformation is
one-to-one or onto by looking at the image of a basis for the domain.
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Theorem 5.11. Suppose V and W are vector spaces, {v1,⋯,vn} is a basis for V ,
and T ∶ V Ð→W is linear.

(a) T is one-to-one if and only if {T (v1),⋯, T (vn)} is linearly independent.

(b) T is onto if and only if {T (v1),⋯, T (vn)} spans W .

Proof (a) Suppose T is one-to-one. Show {T (v1),⋯, T (vn)} is linearly independent. To
show linear independence, suppose c1T (v1)+⋯+ cnT (vn) = 0 and show c1 = ⋯ = cn = 0.
Now c1T (v1) + ⋯ + cnT (vn) = 0 Ô⇒ T (c1v1 + ⋯ + cnvn) = 0 by linearity of T . So
c1v1 + ⋯ + cnvn ∈ ker T . By Theorem 5.10, T one-to-one implies ker T = {0}, so
c1v1 +⋯+ cnvn = 0, and since {v1,⋯,vn} is a basis for V (and so linearly independent),
c1 = ⋯ = cn = 0. Therefore, {T (v1),⋯, T (vn)} is linearly independent.

Suppose {T (v1),⋯, T (vn)} is linearly independent. Show T is one-to-one. We use
Theorem 5.10 and show ker T = {0} instead. Suppose u ∈ ker T . Show u = 0. Since
u ∈ ker T ⊆ V , there exists scalars c1,⋯, cn such that u = c1v1 + ⋯ + cnvn. Since T is
linear and u ∈ ker T ,

c1T (v1) +⋯ + cnT (vn) = T (c1v1 +⋯ + cnvn)
= T (u)
= 0.

But {T (v1),⋯, T (vn)} is linearly independent, so c1 = ⋯ = cn = 0. Thus, u = c1v1 +⋯ +
cnvn = 0v1 +⋯ = 0vn = 0, implying ker T = {0}. So T is one-to-one.

(b) Suppose T is onto. Show {T (v1),⋯, T (vn)} spans W . To do this, we suppose w ∈W
and show w is a linear combination of the vectors in {T (v1),⋯, T (vn)}. Now, since T
is onto, there exists u ∈ V such that T (u) = w, and since {v1,⋯,vn} is a basis for V ,
there exist scalars c1,⋯, cn such that u = c1v1 +⋯ + cnvn. So

w = T (u)
= T (c1v1 +⋯ + cnvn)
= c1T (v1) +⋯ + cnT (vn)

by the linearity of T . Thus {T (v1),⋯, T (vn)} spans W .

Suppose {T (v1),⋯, T (vn)} spans W . Show T is onto. We let w ∈ W and show there
exists u ∈ V such that T (u) = w. Since {T (v1),⋯, T (vn)} spans W , there exist scalars
c1,⋯, cn such that w = c1T (v1) + ⋯ + cnT (vn). Let u = c1v1 + ⋯ + cnvn ∈ V . Then
T (u) = T (c1v1 +⋯+ cnvn) = c1T (v1)+⋯+ cnT (vn) =w. So w ∈ range T and T is onto.

We have already used matrices for a variety of purposes. In this chapter we see that we
can use them to describe all linear transformations from Rn to Rm. We turn now to the
special case when m = n. In that case, the matrix A used to define the linear transforma-
tion TA ∶ Rn Ð→ Rn is square. Since the domain and codomain are the same we can think
of TA as moving the vectors around in the same vector space. This perspective is partic-
ularly evident with the rotation matrix Rθ. In addition, since nullity A = n−rank A, we
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see that when A is square, TA is onto precisely when TA is one-to-one. This gives us sev-
eral new ways to characterize invertible matrices. We continue from our last extension
in section 4.4 (Theorem 4.35).

Theorem 5.12. Let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A
is the identity matrix In.

(d) A is a product of elementary matri-
ces.

(e) A has n pivot columns.

(f) A has a left inverse.

(g) A has a right inverse.

(h) For all b, Ax = b has a unique solu-
tion.

(i) Every n-vector b is a linear combina-
tion of the columns of A.

(j) AT is invertible.

(k) rank A = n.

(l) nullity A = 0.

(m) detA ≠ 0.

(n) The columns (or rows) of A span Rn.

(o) The columns (or rows) of A are lin-
early independent.

(p) The columns (or rows) of A form a
basis for Rn.

(q) col A = Rn.

(r) row A = Rn.

(s) null A = {0}.

(t) range TA = Rn.

(u) ker TA = {0}.

(v) TA is a surjection.

(w) TA is an injection.

(x) TA is a bijection.

.... Problem Set 5.2

1. For each part (a) - (c) below, let T (x) = Ax. On an x,y coordinate plane, plot ker T
and the preimages of {u}, {v}, and {w}.

(a) A = [ 1 1
1 2

], u = [ −1
2
], v = [ 3

−1 ], w = [
1
1
].

(b) A = [ 1 3
2 6

], u = [ 5
10
], v = [ −3−6 ], w = [

1
1
].

(c) A = [ 0 0
0 0

], u = [ 1
2
], v = [ 2

3
], w = [ 1

0
].

2. For each part (a) - (c) in Exercise 1 plot the range of T and determine whether T is
injective and whether T is surjective. Also, for each part determine whether T has
an inverse.
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3. For each part (a) - (c) below, let T (x) = Ax. In each case find a basis for the kernel
of T and find a basis for the range of T .

(a) A =
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
1 0 3
1 1 5

⎤⎥⎥⎥⎥⎥⎦

(b) A = [ 1 2 1 3
1 3 2 5

]
(c) A =

⎡⎢⎢⎢⎢⎢⎣

1 3
1 4
2 5

⎤⎥⎥⎥⎥⎥⎦

4. For each part (a) - (c) in Exercise 3 determine whether T is injective and surjective,
and determine whether T has an inverse.

5. Check to see whether your answers to Exercise 3 match Theorem 5.9 regarding the
dimensions of the range and kernel of T .

6. Let T be the linear operator on R3 defined by T (x) = Ax where A =
⎡⎢⎢⎢⎢⎢⎣

1 3 4
3 4 7
−2 2 0

⎤⎥⎥⎥⎥⎥⎦
.

(a) Show that ker T is a line through the origin in R3 by finding parametric equa-
tions for it.

(b) Show that range T is a plane through the origin in R3 by finding an equation
for it.

7. Let A be a 5 × 7 matrix with rank A = 4 and T the linear transformation defined by
T (x) = Ax.

(a) What is the domain of T?

(b) What is the codomain of T?

(c) What is the dimension of ker T?

(d) What is the dimension of range T?

(e) Is T a one-to-one function?

(f) Is T an onto function?

(g) Does T have an inverse function?

8. Describe the kernel of the differential operator D described in Example 5.3. Hint:
Use your knowledge of calculus.

9. Describe the kernel of the linear functional in Example 5.5 in the case where n = 3

and u0 =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

.
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5.3 Isomorphisms and Coordinate Vectors

Functions between vector spaces that have all three properties of one-to-one, onto, and
linearity are very special indeed. We give them their own name.

Definition 5.11. Suppose V and W are vector spaces. A linear transformation
T ∶ V Ð→ W that is both onto and one-to-one is called an isomorphism. We say
that V and W are isomorphic if there is an isomorphism from one to the other.

We mentioned earlier that the bijections are the functions that have inverse functions.
In fact, those inverse functions are bijections too, so if T ∶ V Ð→W is an isomorphism,
then T−1 ∶W Ð→ V is at least a bijection. In fact, T−1 is an isomorphism too.

Theorem 5.13. Suppose V and W are vector spaces and T ∶ V Ð→ W is an
isomorphism. The isomorphism T has a unique inverse function T−1 and that inverse
function is an isomorphism.

Proof Since T ∶ V Ð→W is a bijection, we know that there is a unique inverse function
T−1 ∶ W Ð→ V and that T−1 is a bijection. To complete the proof, we need only show
T−1 is linear. Suppose w1,w2 ∈ W . Show T−1(w1 +w2) = T−1(w1) + T−1(w2). Since
T is onto, there exist v1,v2 ∈ V such that T (v1) = w1 and T (v2) = w2. Since T is a
bijection, T−1(w1) = v1 and T−1(w2) = v2. Thus

T−1(w1 +w2) = T−1(T (v1) + T (v2))
= T−1(T (v1 + v2)) by the linearity of T

= v1 + v2

= T−1(w1) + T−1(w2) by the definition of T−1.

Similarly, T−1(cw) = cT−1(w) so T−1 is an isomorphism.

Corollary 5.14. Let A be an n × n matrix. The linear transformation TA is an
isomorphism if and only if A is invertible. If A is invertible, then T−1A = TA−1 .

Proof Exercise.

A bijection is a one-to-one correspondence between two sets, so an isomorphism is a
one-to-one correspondence between to vector spaces that preserves the vector operations
of vector addition and scalar multiplication. The next theorems show that if two vector
spaces are isomorphic, then they are very, very similar indeed. It is as though the vector
spaces are parallel universes populated by vectors in one-to-one correspondence. Two
corresponding vectors might not look alike (one might be a polynomial and the other a
column vector) but they play the exact same role in their respective universes.
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Theorem 5.15. Suppose V and W are isomorphic vector spaces and T ∶ V Ð→W
is an isomorphism.

(a) {v1,⋯,vn} is linearly independent if and only if {T (v1),⋯, T (vn)} is linearly
independent.

(b) {v1,⋯,vn} spans V if and only if {T (v1),⋯, T (vn)} spans W .

(c) {v1,⋯,vn} is a basis for V if and only if {T (v1),⋯, T (vn)} is a basis for W .

(d) If V and W are finite dimensional, then they have the same dimension.

Proof Exercises.

Because we know how to extend linearly, it is easy enough to show that two finite
dimensional vector spaces are isomorphic if and only if they have the same dimension.

Theorem 5.16. Suppose V and W are finite dimensional vector spaces. These
vector spaces are isomorphic if and only if they have the same dimension.

Proof Theorem 5.15 gives us one direction of this proof. If V and W are isomorphic,
then they have the same dimension. For the other direction, suppose V and W are both
n-dimensional vector spaces. Show V and W are isomorphic. Since V and W are both
n-dimensional, they have bases {v1,⋯,vn} and {w1,⋯,wn} respectively containing n
vectors each. Define T ∶ V Ð→W by T (vi) =wi for i = 1,⋯, n and extend linearly. So T
is linear and Theorem 5.11 implies T is a bijection. Therefore, V and W are isomorphic.

For many purposes, the vector spaces Rn for various n are the nicest vector spaces with
which to work. That is because those vectors lend themselves to matrix manipulation.
Suppose, for example, we wished to determine whether a particular set of vectors from
some abstract n-dimensional vector space V is linearly independent. One approach to
answering that question would be to set up an isomorphism, T , between V and Rn, look
at the set of vectors in Rn that correspond to the set in question from V , and answer the
question in Rn using matrix techniques. By Theorem 5.15 the answer must be the same
for both sets. The vectors in Rn that represent the vectors in V are called coordinate
vectors. In order to define coordinate vectors precisely we need something called an
ordered basis.

Definition 5.12. Suppose V is an n-dimensional vector space. An ordered basis
for V is a basis for V with the added property that one of its elements is designated
as the first element, another is the second, etc. all the way to the nth.
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Definition 5.13. Let V be an n-dimensional vector space with an ordered basis
B = {v1,⋯,vn}. For each u ∈ V , there exist unique scalars c1,⋯, cn such that

u = c1v1 +⋯ + cnvn. The coordinate vector for u relative to B is [u]B =
⎡⎢⎢⎢⎢⎢⎣

c1
⋮
cn

⎤⎥⎥⎥⎥⎥⎦
.

Note that u ∈ V and [u]B ∈ Rn.

Theorem 5.17. Suppose V is an n-dimensional vector space with an ordered basis
B = {v1,⋯,vn}. The function TB ∶ V Ð→ Rn given by TB(u) = [u]B is an isomor-
phism.

Proof Note that TB is the linear transformation defined by setting TB(vj) = ej for
j = 1,⋯, n where ej is the jth vector in the standard ordered basis Sn = {e1,⋯,en} of
Rn and then extended linearly. Since B and Sn are bases of V and Rn respectively, TB
is an isomorphism.

..Example 5.10

Let p(t) = t2 + t + 1, q(t) = 2t2 + 4t + 3, and r(t) = 5t2 − t + 2. Is the set {p(t), q(t), r(t)}
linearly independent in P2?

Solution The set B = {1, t, t2} is an ordered basis for P2, and since p(t) = 1(1) + 1(t) +
1(t2), q(t) = 3(1) + 4(t) + 2(t2), and r(t) = 2(1) − 1(t) + 5(t2), we have

[p(t)]B =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
, [q(t)]B =

⎡⎢⎢⎢⎢⎢⎣

3
4
2

⎤⎥⎥⎥⎥⎥⎦
, and [r(t)]B =

⎡⎢⎢⎢⎢⎢⎣

2
−1
5

⎤⎥⎥⎥⎥⎥⎦
.

We check to see whether {[p(t)]B , [q(t)]B , [r(t)]B} is linearly independent in R3. The
answer for {p(t), q(t), r(t)} in P2 must be the same. Row reduction (below) shows that
there are only two pivot columns so that the set is linearly dependent.

⎡⎢⎢⎢⎢⎢⎣

1 3 2
1 4 −1
1 2 5

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 2
0 1 −3
0 −1 3

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 2
0 1 −3
0 0 0

⎤⎥⎥⎥⎥⎥⎦
..

We can find coordinate vectors for any finite-dimensional vector space V and ordered
basis B for V . Interestingly enough, we are most interested in finding coordinate vectors
for vectors in Rn (V = Rn). You may wonder what the point is because the vectors
already lend themselves to matrix manipulation. It turns out that depending on the
question we wish to answer, we can learn a great deal by looking at coordinate vectors
under ordered bases B different from Sn chosen especially for the question we wish to
answer. This will be made much clearer in the next chapter.
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Suppose B = {v1,⋯,vn} is an ordered basis for Rn. The function TB ∶ Rn Ð→ Rn given
by TB(u) = [u]B is an isomorphism, so there is an invertible n × n matrix A such that
[u]B = Au. We wish to find A.

Theorem 5.18 is very important. We provide two proofs to give you two different per-
spectives.

Theorem 5.18. Let B = {v1,⋯,vn} be an ordered basis for Rn and let PB =
[v1⋯vn]. For each u ∈ Rn, the coordinate vector [u]B = P −1B u and u = PB [u]B.

Proof (#1) Let u ∈ Rn. Since B is an ordered basis, there exist unique scalars c1,⋯, cn

such that u = c1v1 +⋯ + cnvn and [u]B =
⎡⎢⎢⎢⎢⎢⎣

c1
⋮
cn

⎤⎥⎥⎥⎥⎥⎦
. That is to say c1,⋯, cn is the solution

to the vector equation x1v1 + ⋯ + xnvn = u or equivalently, [u]B is the solution to the
matrix equation PBx = u. Thus PB [u]B = u.

Now PB is invertible since its columns form a basis for Rn. Multiplying both sides by
P −1B we get [u]B = P −1B u.

Proof (#2) Multiplying PB on the left of ej picks out the j
th column of PB, so PBej = vj

for j = 1,⋯, n. The matrix PB is invertible since its columns are a basis for Rn, so
P −1B vj = ej for j = 1,⋯, n. The coordinate vector transformation T ∶ Rn Ð→ Rn given by
T (u) = [u]B also maps vj to ej for j = 1,⋯, n. Since these two linear transformations
agree on the basis B, they agree on all of Rn, so [u]B = P −1B u for every u ∈ Rn.

Definition 5.14. Let B = {v1,⋯,vn} be an ordered basis for Rn. Let PB be the
n×n matrix with columns consisting of the vectors of B in order, PB = [v1⋯vn]. The
matrix PB is called the change of basis matrix from B to Sn where Sn = {e1,⋯,en}
is the standard ordered basis for Rn. Its inverse P −1B is called the change of basis
matrix from Sn to B.

..Example 5.11

Let

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−3
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
−1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

It is easily verified that B is an ordered basis for R3. Let u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
. Find the change of

bases matrices PB and P −1B , and find [u]B.
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Solution

PB =
⎡⎢⎢⎢⎢⎢⎣

1 2 1
−2 −3 −1
1 3 1

⎤⎥⎥⎥⎥⎥⎦
.

So

⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 0 0
−2 −3 −1 0 1 0
1 3 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 0 0
0 1 1 2 1 0
0 1 0 −1 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 2 1 1 0 0
0 1 1 2 1 0
0 0 1 3 1 −1

⎤⎥⎥⎥⎥⎥⎦
Ð→

⎡⎢⎢⎢⎢⎢⎣

1 2 0 −2 −1 1
0 1 0 −1 0 1
0 0 1 3 1 −1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 −1
0 1 0 −1 0 1
0 0 1 3 1 −1

⎤⎥⎥⎥⎥⎥⎦
gives us

P−1B =
⎡⎢⎢⎢⎢⎢⎣

0 −1 −1
−1 0 1
3 1 −1

⎤⎥⎥⎥⎥⎥⎦
and [u]B =

⎡⎢⎢⎢⎢⎢⎣

0 −1 −1
−1 0 1
3 1 −1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−5
2
2

⎤⎥⎥⎥⎥⎥⎦
.

To check this, note that

−5
⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

2
−3
2

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

1
−1
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

..

Theorem 5.19. Let Sn = {e1,⋯,en} be the standard ordered basis for Rn. For all
u ∈ Rn, [u]Sn = u.

Proof Exercise.

It is important to think about what is happening geometrically. You are very familiar
with the Cartesian coordinate system. We start with a point on the plane called the
origin. Then we draw two perpendicular lines through the origin called the x and y axes.
Finally, we mark off unit distances on these axes. It is sometimes helpful to make a grid
with lines parallel to the axes. In Figure 5.4, the ordered pair (2,3) identifies the point
on the plane located by moving two units to the right of the origin and then three units
up.

In linear algebra, we accomplish the same thing using different notation. We tend to
use column vectors instead of ordered pairs. We start with a point on the plane called
the origin. Then we take two unit vectors e1 and e2 that are perpendicular. We say the

column vector [ 2
3
] represents the point 2e1 + 3e2. The Cartesian coordinate system

describes all points (vectors) in terms of the standard ordered basis S2 = {e1,e2}.
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.. x.

y

.

(2,3)

Figure 5.4 The ordered pair (2,3) in the Cartesian plane.

...
e1

..

e2

..

2e1 + 3e2

Figure 5.5 [ 2
3
] = [ 2

0
] + [ 0

3
] = 2 [ 1

0
] + 3 [ 0

1
] = 2e1 + 3e2.

But R2 has many bases. For B = {v1,v2} to be a basis v1 and v2 need only to be nonzero
and nonparallel. They do not need to be perpendicular. They do not need to be of unit
length. They do not even need to be the same length. A coordinate vector [u]B simply

gives the coordinates of u relative to B rather than S2. If [u]B = [
a
b
], that means

u = av1 + bv2.

..Example 5.12 Rotation Matrices and Rotation of Axes

In section 5.1 we studied the rotation matrix

Rθ = [
cos θ − sin θ
sin θ cos θ

] .

This is a great illustration of the fact that what goes on in linear algebra depends heavily
on interpretation. Back in section 5.1 we were working with the standard basis S2. We
thought of the matrix Rθ as moving a vector u to a new position. That is, Rθu is a
different vector obtained by rotating u in a counterclockwise direction by an angle θ
around the origin. It is easy enough to show (an exercise) that

R−1θ = R−θ = [
cos θ sin θ
− sin θ cos θ

] .

The basis

B = {[ cos θ
− sin θ ] , [

sin θ
cos θ

]}
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...
v1

..

v2

Figure 5.6 A basis B = {v1,v2} for R2 need not have v1 and v2 perpendicular or even
of the same length.

can be obtained from S2 by rotating the vectors e1 and e2 by an angle −θ. So, the
change of basis matrices PB = R−θ and P −1B = R−1−θ = Rθ. This gives us two interpretations
of Rθu.

1. Rθu is the vector obtained by rotating u counterclockwise by an angle θ.

2. Rθu = [u]B is the coordinate vector of u relative to B.

In the second interpretation, u stays fixed but the reference points (the basis) are rotated
clockwise (not counterclockwise) by the angle θ. Though the interpretation is different,
the result is the same.

..

If A is an invertible matrix, we can think of TA(u) as u taking a trip by physically going
to a new location. We can almost imagine [u]B as u taking a trip on drugs. The vector
u never moves, but all points of reference change around u.

Let V be a vector space with ordered bases B = {v1,⋯,vn} and C = {w1,⋯,wn}. Since TB
and TC are isomorphisms their inverses are isomorphisms and the composition TC ○T−1B ∶
Rn Ð→ Rn is an isomorphism (see Figure 5.7). Since this composition is an isomorphism
from Rn to Rn, it is a matrix transformation, so there is an n × n matrix M such that
M [u]B = [u]C . We wish to find M . We consider two cases.

..

v

.

[v]B
.

[v]C
.

TB

.

TC

.

V

.

Rn

.

Rn

.

TC

.

TB

Figure 5.7 TB and TC isomorphisms Ô⇒ TC ○ T−1B is an isomorphism.
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The easy case occurs if V = Rn because then the isomorphisms TB and TC are themselves
matrix transformations. Let PB = [v1⋯vn] and PC = [w1⋯wn], so T−1B = TPB and
TC = TP−1C

, so the composition TC ○ T−1B = TP−1C
TPB . Thus,

[u]C = TC ○ T−1B ([u]B)
= TP−1C

○ TPB([u]B)

= P −1C PB [u]B .

This proves Theorem 5.20.

Theorem 5.20. Suppose B = {v1,⋯,vn} and C = {w1,⋯,wn} are ordered bases of
Rn and PB = [v1⋯vn] and PC = [w1⋯wn]. Then

[u]C = P
−1
C PB [u]B

for every u ∈ Rn.

The problem is a little more difficult if V ≠ Rn because then TB and TC are not matrix
transformations, but the composition TC ○ T−1B is still a matrix transformation. For
simplicity, let S = TC ○ T−1B . We know that S(u) = Qu for all u ∈ Rn where Q =
[S(e1)⋯S(en)].

For each j = 1,⋯, n, S(ej) = TC ○ T−1B (ej) = TC(vj) = [vj]C . Thus Q = [[v1]C⋯ [vn]C].
This proves Theorem 5.21.

Theorem 5.21. Let V be a vector space with ordered bases B = {v1,⋯,vn} and
C = {w1,⋯,wn}. Let the n × n matrix Q = [[v1]C⋯ [vn]C]. Then for all u ∈ V ,

[u]C = Q [u]B .

Of course, reversing the roles of B and C we obtain the inverse transformation defined
by the inverse matrix

Q−1 = [[w1]B⋯ [wn]B]

where [u]B = Q−1 [u]C .

Definition 5.15. Let B = {v1,⋯,vn} and C = {w1,⋯,wn} be ordered bases for a
vector space V . The n×n matrix Q = [[v1]C⋯ [vn]C] is called the change of basis
matrix from B to C. Its inverse Q−1 = [[w1]B⋯ [wn]B] is called the change of
basis matrix from C to B.

Usually one or the other of the two matrices Q and Q−1 is easier to calculate. Calculate
that one and use matrix techniques to find its inverse. Example 5.13 illustrates.
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..Example 5.13

The vector space P3 has ordered bases B = {1, t, t2, t3} and C = {1, t − 1, (t − 1)2, (t − 1)3}.
Calculate the change of bases matrices and use them to rewrite the following polynomials
in terms of powers of t − 1 rather than powers of t.

(a) t3 + 2t2 + t − 1 (b) t3 − 1 (c) t2 + 1

Solution By simply expanding the powers of t − 1, we easily write the basis vectors in
C in terms of B, so the matrix [[1]B [t − 1]B [(t − 1)2]B [(t − 1)

3]B] is easy to calculate:

1 = 1(1) + 0(t) + 0(t2) + 0(t3)
t − 1 = −1(1) + 1(t) + 0(t2) + 0(t3)

(t − 1)2 = t2 − 2t + 1 = 1(1) − 2(t) + 1(t2) + 0(t3)
(t − 1)3 = t3 − 3t2 + 3t − 1 = −1(1) + 3(t) − 3(t2) + 1(t3)

So,

[1]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, [t − 1]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, [(t − 1)2]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and [(t − 1)3]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
3
−3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1
0 1 −2 3
0 0 1 −3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the change of basis matrix from C to B. Augmenting this change of basis matrix to
the identity matrix and performing row reduction gives

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 −1 1 0 0 0
0 1 −2 3 0 1 0 0
0 0 1 −3 0 0 1 0
0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 1 0 1 0 0 1
0 1 −2 0 0 1 0 −3
0 0 1 0 0 0 1 3
0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 1 0 −1 2
0 1 0 0 0 1 2 3
0 0 1 0 0 0 1 3
0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 1 1 1
0 1 0 0 0 1 2 3
0 0 1 0 0 0 1 3
0 0 0 1 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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so that
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the change of basis matrix from B to C.

(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3
8
5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ô⇒ t3 + 2t2 + t − 1 =
(t − 1)3 + 5(t − 1)2 + 8(t − 1) + 3 .

(b)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
3
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ô⇒ t3 − 1 = (t − 1)3 + 3(t − 1)2 + 3(t − 1).

(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ô⇒ t2 + 1 = (t − 1)2 + 2(t − 1) + 2.

..

The method developed in Theorem 5.21 for finding change of bases matrices applies
equally well to the case where V = Rn. In fact, this case is particularly interesting and
the method is different from that in Theorem 5.20. This idea is developed below and
Example 5.14 illustrates both methods.

Let B = {v1,⋯,vn} and C = {w1,⋯,wn} be ordered bases for Rn. We wish to find the
change of basis matrix Q from B to C. By Theorem 5.21, Q = [[v1]C⋯ [vn]C]. We also
know that for all u ∈ Rn, PC [u]C = u so [u]C is the solution to the system PCx = u.
In particular then, for j = 1,⋯, n, [vj]C is the solution to the system PCx = vj . This
gives us n systems to solve to find each column of Q. We can do that all at once by
augmenting the right-hand side of all n systems to PC and reducing.

[PC ∣v1⋯vn] Ð→ ⋯Ð→ [In∣ [v1]C⋯ [vn]C]

But [v1⋯vn] = PB and [In∣ [v1]C⋯ [vn]C] = [In∣Q], so the reduction above can be rewrit-
ten

[PC ∣PB] Ð→ ⋯Ð→ [In∣Q] .

..Example 5.14

Let

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The sets B and C are ordered bases of R3. Find the change of basis matrix, Q, from B
to C.
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Solution Using the method of Theorem 5.20,

PB =
⎡⎢⎢⎢⎢⎢⎣

1 0 1
1 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎦
and PC =

⎡⎢⎢⎢⎢⎢⎣

1 1 1
0 1 1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
.

To find P −1C , row reduction gives

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 1 0 −1
0 1 0 0 1 −1
0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 1 −1 0
0 1 0 0 1 −1
0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
so

P −1C =
⎡⎢⎢⎢⎢⎢⎣

1 −1 0
0 1 −1
0 0 1

⎤⎥⎥⎥⎥⎥⎦
and

Q = P −1C PB =
⎡⎢⎢⎢⎢⎢⎣

1 −1 0
0 1 −1
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 1
1 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0 −1 1
1 0 −1
0 1 1

⎤⎥⎥⎥⎥⎥⎦
.

Now, using the method of Theorem 5.21, we have

⎡⎢⎢⎢⎢⎢⎣

1 1 1 1 0 1
0 1 1 1 1 0
0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 1 −1 0
0 1 0 1 0 −1
0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 −1 1
0 1 0 1 0 −1
0 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎦

so that

Q =
⎡⎢⎢⎢⎢⎢⎣

0 −1 1
1 0 −1
0 1 1

⎤⎥⎥⎥⎥⎥⎦
as before.

..

.... Problem Set 5.3

1. Let B = {[ 1
1
] , [ 1

2
]}.

(a) Find the change of basis matrix from B to S2.
(b) Find the change of basis matrix from S2 to B.

(c) Find the coordinate vector [u]B where u = [ 2
3
].

2. Let B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−2
−1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
3
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(a) Find the change of basis matrix from B to S3.
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(b) Find the change of basis matrix from S3 to B.

(c) Find the coordinate vector [u]B where u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

3. Let B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
3
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and u =

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
. Repeat Exercise 2 for this B and u if

possible. If impossible, explain why.

4. In the vector space P3 of all polynomials with real coefficients of degree less than or
equal to 3, let S = {1, t, t2, t3}, B = {1, t−2, (t−2)2, (t−2)3}, and C = {1, t, t(t−1), t(t−
1)(t − 2)}. These are three different ordered bases for P3.

(a) Find the change of basis matrix from B to S and use it to write p(t) = (t− 2)3 +
2(t − 2)2 + (t − 2) + 3 in terms of powers of t rather than powers of t − 2. Check
your answer through standard simplification.

(b) Find the change of basis matrix from S to B and use it to write q(t) = t3 + t + 1
in terms of powers of t−2 rather than powers of t. You may recall from calculus

II that this can also be done with Taylor polynomials (q(t) = q(a)
0! +

q′(a)
1! (t−a)+

q′′(a)
2! (t−a)

2+⋯+ q(n)(a)
n! (x−a)

n). Check your answer using Taylor polynomials.
If you have not yet taken calculus II, check your answer using standard algebraic
simplification.

(c) The basis C is called a factorial basis. Find the change of basis matrix from S
to C and use it to write r(t) = (t + 1)3 in terms of this factorial basis. Check
your answer through standard simplification.

(d) Find the change of basis matrix from B to C and use it to write p(t) = (t− 2)3 +
(t− 2)2 + (t− 2)+ 1 in terms of powers of the factorial basis. Check your answer
through standard simplification.

5. Let B = {[ 2
1
] , [ 3

2
]} and C = {[ 1

3
] , [ 1

2
]}.

(a) Use Theorem 5.20 to find the change of basis matrix from B to C and use it to

find [u]C if [u]B = [
3
4
].

(b) Use Theorem 5.21 to find the change of basis matrix from B to C. Check your
answer with part (a).

6. Repeat Exercise 5 with B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
4
4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4
6
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
5
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
1
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, and

[u]B =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

7. Prove Corollary 5.14.

8. Prove Theorem 5.15.

9. Prove Theorem 5.19.
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10. Given Rθ = [
cos θ − sin θ
sin θ cos θ

] from Definition 5.3 in Section 5.1, prove that R−1θ = R−θ
by showing that they both equal the same 2 × 2 matrix.

.

5.4 Similarity

Suppose V andW are finite dimensional vector spaces with ordered bases B = {v1,⋯,vn}
and C = {w1,⋯,wm} respectively. In addition, suppose T ∶ V Ð→ W is a linear trans-
formation. The linear transformation T ∶ V Ð→ W does not have a standard matrix
representation if V and W are different from Rn and Rm, but we see that the composi-
tion of linear transformations TC ○ T ○ T−1B (see Figure 5.8) maps coordinate vectors as
follows: T maps u to w if and only if TC ○ T ○ T−1B maps [u]B to [w]C .

..

T

.

Rn

.

Rm

.

W

.

V

.

T −1B

.

T −1C

.

TB

.

TC

Figure 5.8 Visualizing the composition TC ○ T ○ T−1B .

Since TC ○ T ○ T−1B is a linear transformation from Rn to Rm, there is an m × n matrix
M such that TC ○ T ○ T−1B = TM . Let S = TC ○ T ○ T−1B . Since M = [S(e1)⋯S(en)] and
through composition we see that for j = 1,⋯, n,

ej
T−1BÐ→ vj

TÐ→ T (vj)
TCÐ→ [T (vj)]C .

So M = [[T (v1)]C⋯ [T (vn)]C]. This proves Theorem 5.22.

Theorem 5.22. Suppose V and W are vector spaces with ordered bases B =
{v1,⋯,vn} and C = {w1,⋯,wm} respectively. If T ∶ V Ð→ W is a linear trans-
formation, then there exists an m × n matrix M such that M [u]B = [T (u)]C and,
in fact

M = [[T (v1)]C⋯ [T (vn)]C] .

Though the linear transformation T may not have a matrix representation, we find,
using Theorem 5.22, a matrix M acts on the coordinate vector surrogates just as T acts
on the vectors in V and W .
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Definition 5.16. Let T ∶ V Ð→ W be a linear transformation between finite di-
mensional vector spaces with ordered bases B = {v1,⋯,vn} and C = {w1,⋯,wm}
respectively. The m × n matrix M = [[T (v1)]C⋯ [T (vn)]C] is called the matrix
representation of T relative to B and C.

..Example 5.15

Because the derivative has the two properties

d

dt
(f(t) + g(t)) = d

dt
(f(t)) + d

dt
(g(t)) and

d

dt
(cf(t)) = c d

dt
(f(t)) ,

the function D ∶ P3 Ð→ P2 given by D(f(t)) = f ′(t) is a linear transformation. Since D
acts on polynomials rather than column vectors, D is not a matrix transformation, but
we can still find a matrix M to describe D through coordinate vectors.

..

D

.
M

.

R4

.

R3

.

P2

.

P3

.

T −1B

.

T −1C

.

TB

.

TC

Figure 5.9 Describing D with a matrix M through the use of coordinate vectors.

We know that B = {1, t, t2, t3} and C = {1, t, t2} are ordered bases for P3 and P2 respec-
tively. The matrix

M = [[D(1)]C [D(t)]C [D(t
2)]C [D(t

3)]C]

= [[0]C [1]C [2t]C [3t
2]C]

=
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3

⎤⎥⎥⎥⎥⎥⎦
.

Differentiating polynomials is quite simple, so the use of M is not necessary, but we
illustrate how M could be used to differentiate. Let p(t) = 2t3 − 4t2 + 5t + 7. Then

[p(t)]B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7
5
−4
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

so that

M [p(t)]B =
⎡⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7
5
−4
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

5
−8
6

⎤⎥⎥⎥⎥⎥⎦
= [6t2 − 8t + 5]C .

Thus, p′(t) = 6t2 − 8t + 5.
..
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..

T

.

Rn

.

Rn

.

Rn

.

Rn

.

T −1B

.

T −1B

.

TB

.

TB

(a) Taking vector spaces V and W to
be Rn and bases B and C to be the
same.

..

A

.

Rn

.

Rn

.

Rn

.

Rn

.
M

.

P

.

P

.

P −1

.

P −1

(b)MatricesM and A represent the same
linear transformation with respect to dif-
ferent ordered bases.

Figure 5.10

In Example 5.15 all four vector spaces in Figure 5.9 are different. That made things
easy to keep straight. We are most interested, however, in applying this theory when all
four vector spaces are Rn for some n. In addition, we want the two bases B and C to be
the same (see Figure 5.10a). That is to say T and the isomorphisms TB and T−1B are all
linear operators and, in fact, they are all matrix operators.

Let A be an n × n matrix and let B = {v1,⋯,vn} be an ordered basis for Rn. We wish
to find the matrix M with the property that

M [u]B = [w]B ⇐⇒ Au =w for all u ∈ Rn.

Let P = [v1⋯vn]. In Figure 5.10b, we fill in the diagram found in Figure 5.10a with the
matrices rather than the linear transformations. By chasing around the diagram we see
that M = P −1AP .

The matrices M and A represent the same linear transformation but with respect to
different ordered bases. As set up here, M is with respect to B and A is with respect to
the standard ordered basis Sn since [u]Sn = u.

..Example 5.16

Let

A =
⎡⎢⎢⎢⎢⎢⎣

11 −4 −4
−4 1 2
24 −8 −9

⎤⎥⎥⎥⎥⎥⎦
.

Then TA ∶ R3 Ð→ R3 given by TA(x) = Ax is a linear operator on R3. The set

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
4

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
−1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

is an ordered basis for R3. Find the matrix M that represents the same linear transfor-
mation TA as A but relative to the ordered basis B rather than S3.

Solution Let

P =
⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
2 4 1

⎤⎥⎥⎥⎥⎥⎦
.
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We identify P −1 through row reduction:

⎡⎢⎢⎢⎢⎢⎣

1 2 0 1 0 0
0 1 −1 0 1 0
2 4 1 0 0 1

⎤⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎣

1 2 0 1 0 0
0 1 −1 0 1 0
0 0 1 −2 0 1

⎤⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎣

1 2 0 1 0 0
0 1 0 −2 1 1
0 0 1 −2 0 1

⎤⎥⎥⎥⎥⎥⎦
↓

⎡⎢⎢⎢⎢⎢⎣

1 0 0 5 −2 −2
0 1 0 −2 1 1
0 0 1 −2 0 1

⎤⎥⎥⎥⎥⎥⎦

It follows that

M = P −1AP

=
⎡⎢⎢⎢⎢⎢⎣

5 −2 −2
−2 1 1
−2 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

11 −4 −4
−4 1 2
24 −8 −9

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
2 4 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

15 −6 −6
−2 1 1
2 0 −1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 2 0
0 1 −1
2 4 1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

3 0 0
0 1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
.

..

Notice how simple M looks compared to A in Example 5.16, yet they both describe the
same linear transformation but relative to different bases. It is much easier to determine
how the linear transformation behaves by examining M rather than A. This did not
happen by accident. The basis B was chosen especially to simplify the matrix A. In
this section we concern ourselves with performing these changes of bases. In the next
chapter we concern ourselves with choosing helpful bases.

Definition 5.17. Let A and B be n × n matrices. The matrix A is similar to B,
denoted A ∼ B, if there is an invertible matrix P such that B = P −1AP .

The similarity relation between n × n matrices is an equivalence relation. That is, the
similarity relation is reflexive, symmetric, and transitive.
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Theorem 5.23. Let A,B, and C be n × n matrices.

(a) A ∼ A. (similarity is reflexive)

(b) If A ∼ B, then B ∼ A. (similarity is symmetric)

(c) If A ∼ B and B ∼ C, then A ∼ C. (similarity is transitive)

Proof

(a) Since A = I−1n AIn, A ∼ A.

(b) Suppose A ∼ B. We show B ∼ A. Since A ∼ B, there exists an invertible matrix
P such that B = P −1AP . But multiplying both sides of this equation on the left
by P and on the right by P −1 yields PBP −1 = A. Let Q = P −1. Then Q−1 = P .
Substituting we get A = Q−1BQ so that B ∼ A.

(c) Suppose A ∼ B and B ∼ C. We show A ∼ C. Since A ∼ B and B ∼ C, there exist
invertible matrices P and Q such that B = P −1AP and C = Q−1BQ. Substituting
P −1AP for B in the second equation yields C = Q−1(P −1AP )Q = (Q−1P −1)A(PQ).
Let R = PQ. Then R−1 = (PQ)−1 = Q−1P −1 so that C = R−1AR and A ∼ C.

The fact that similarity is an equivalence relation tells us that the set of all n×n matrices
breaks up into similarity classes. All matrices in the same similarity class are similar to
each other and no matrix is similar to a matrix outside of its own similarity class.

If T is a linear operator on a finite dimensional vector space V , its matrix representation
depends on the ordered basis chosen for V . Change the ordered basis and the square
matrix that represents T must change accordingly. We have already seen how this is
done if V = Rn. In the remainder of this section we show how it is done if V ≠ Rn.

Suppose T is a linear operator on a finite-dimensional vector space V with ordered bases
B = {v1,⋯vn} and C = {w1,⋯,wn}. By Theorem 5.22, A = [[T (v1)]B⋯ [T (vn)]B]
and M = [[T (w1)]C⋯ [T (wn)]C] are the matrix representations of T relative to B and
relative to C respectively.

By Theorem 5.21, the matrix Q = [[w1]B⋯ [wn]B] is the change of basis matrix from C
to B and Q−1 = [[v1]C⋯ [vn]C] is the change of basis matrix from B to C.

So, for all u ∈ V ,
M [u]C = [T (u)]C

and

Q−1AQ [u]C = Q−1A [u]B
= Q−1 [T (u)]B
= [T (u)]C .

Thus M = Q−1AQ. This proves Theorem 5.24 and is illustrated in Example 5.17.
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Theorem 5.24. Suppose T is a linear operator on a finite-dimensional vector space
V with B and C ordered bases on V . Let A and M be the matrix representations of
T relative to B and C respectively. Then A is similar to M and, in fact, M = Q−1AQ
where Q is the change of basis matrix from C to B.

..Example 5.17

In the space of all real-valued differentiable functions of a single variable, let V =
span{sin t, cos t}, and let T ∶ V Ð→ V be defined by T (f(t)) = f(−t) − f ′(t). Let
B = {sin t, cos t} and C = {sin t + cos t, sin t − cos t}. Find the matrix representations A
and M of T relative to B and relative to C respectively plus the change of basis matrix
Q from C to B.

Solution T (sin t) = sin(−t) − cos t = − sin t − cos t, so

[T (sin t)]B = [
−1
−1 ] .

Similarly, T (cos t) = cos(−t) + sin t = sin t + cos t, so

[T (cos t)]B = [
1
1
] .

Thus,

A = [ −1 1
−1 1

] .

Next, we determine Q.

Q = [[sin t + cos t]B [sin t − cos t]B]

= [ 1 1
1 −1 ]

so

Q−1 = −1
2
[ −1 −1
−1 1

] .

Finally,

M = Q−1AQ

= −1
2
[ −1 −1
−1 1

] [ −1 1
−1 1

] [ 1 1
1 −1 ]

= −1
2
[ −1 −1
−1 1

] [ 0 −2
0 −2 ]

= [ 0 −2
0 0

] .

We can check our work by calculating M = [[T (sin t + cos t)]C [T (sin t − cos t)]C] directly.
Since

T (sin t + cos t) = (sin(−t) + cos(−t)) − (cos t − sin t)
= − sin t + cos t − cos t + sin t
= 0
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we see that

[T (sin t + cos t)]C = [
0
0
] .

And,

T (sin t − cos t) = (sin(−t) − cos(−t)) − (cos t + sin t)
= − sin t − cos t − cos t − sin t
= −2(sin t + cos t)

so

[T (sin t − cos t)]C = [
−2
0
]

and

M = [ 0 −2
0 0

] .

..

.... Problem Set 5.4

1. Let A = [ 1 0 −1
0 1 −1 ] and let T ∶ R3 → R2 be defined by T (x) = Ax. The sets

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and C = {[ 1

1
] , [ −1

1
]} are ordered bases for R3 and

R2 respectively. Find the matrix representation of T relative to B and C.

2. Let T ∶ P2 → P1 be defined by T (f(t)) = f(0) + tf(1). Find A, the matrix repre-
sentation of T relative to the ordered bases S2 = {1, t, t2} and S1 = {1, t}, and find

M , the matrix representation of T relative to the ordered bases B = {t2 − t, t,1} and
C = {t,1}

3. Let each n × n matrix be the standard matrix, A, for the linear operator T (x) = Ax.
In each case, find the matrix representation of T relative to the given ordered basis
B.

(a) A = [ 0 1
1 0

], B = {[ 1
1
] , [ −1

1
]}

(b) A = [ 3 −2
1 0

], B = {[ 2
1
] , [ 1

1
]}

(c) A = [ 3 −6
1 −2 ], B = {[

3
1
] , [ 2

1
]}

(d) A =
⎡⎢⎢⎢⎢⎢⎣

1 −2 2
0 −2 3
0 −2 3

⎤⎥⎥⎥⎥⎥⎦
, B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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(e) A =
⎡⎢⎢⎢⎢⎢⎣

−1 4 2
0 2 0
−1 1 2

⎤⎥⎥⎥⎥⎥⎦
, B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

4. Let T be the linear operator on P2 defined by T (f(t)) = (t+ 1)f ′(t). Let B and C be
the ordered bases {1, t, t2} and {1, t + 1, (t + 1)2} respectively. Let Q be the change
of basis matrix from C to B, let A be the matrix representation of T relative to B
and M the matrix representation of T relative to C. Find Q, A, and M .

5. Let V be the span of B = {et, e−t} in the space of continuous functions, and suppose

T (f(t)) = f(t + 1) + f(−t). Let C = {et − ee−t, eet + e−t}. Find Q, A, and M where Q
is the change of basis matrix from C to B, A is the matrix representation of T relative
to B, and M is the matrix representation of T relative to C.

6. Suppose A and B are similar n × n matrices. Prove each of the following:

(a) detA = detB.

(b) AT and BT are similar.

(c) For each positive integer k, Ak and Bk are similar.

(d) If A is invertible, then A−1 and B−1 are similar.

7. Suppose A = PQ where P and Q are square and P is invertible. Let B = QP . Prove
A and B are similar.

8. Suppose A and B are similar n×n matrices. Prove that there exist n×n matrices P
and Q in which P is invertible, A = PQ, and B = QP .

.



..

.. 6 Eigenvalues and Eigenvectors

6.1 Eigenvalues, Eigenvectors, and Eigenspaces

In this chapter we learn how to analyze operators xÐ→ Ax, that is, matrix transforma-
tions where A is a square matrix. This analysis has important applications all through
the sciences, engineering, and mathematics.

Let A be an n × n matrix. Though an operator xÐ→ Ax may move vectors in a variety
of directions, oftentimes it happens that the matrix operator acts on certain nonzero
vectors in very simple ways. Example 6.1 illustrates.

..Example 6.1

Let

A =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

1
0
−2

⎤⎥⎥⎥⎥⎥⎦
.

Notice that

Av =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
0
−2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
0
−4

⎤⎥⎥⎥⎥⎥⎦
= 2
⎡⎢⎢⎢⎢⎢⎣

1
0
−2

⎤⎥⎥⎥⎥⎥⎦
= 2v.

..

Definition 6.1. Let A be an n × n matrix. If there is a nonzero vector v and a
scalar λ such that Av = λv, then λ is called an eigenvalue of A and the nonzero
vector v is called an eigenvector of A associated with the eigenvalue λ.

Example 6.1 shows that 2 is an eigenvalue of A and

⎡⎢⎢⎢⎢⎢⎣

1
0
−2

⎤⎥⎥⎥⎥⎥⎦
is an eigenvector of A

associated with the eigenvalue 2. Are there any other eigenvectors of A associated with
the eigenvalue 2 in this example?

To answer this question we must simply solve a linear system

⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= 2
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦

which can also be written as

−4x + 3y − 3z = 2x
− y = 2y

6x − 6y + 5z = 2z.

196
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Putting this in standard form, we see it as a homogeneous system

(−4 − 2)x + 3y − 3z = 0
(−1 − 2)y = 0

6x − 6y + (5 − 2)z = 0.

Row reduction

⎡⎢⎢⎢⎢⎢⎣

−6 3 −3 0
0 −3 0 0
6 −6 3 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 −1 1 0
0 1 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 0 1 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
and setting z = t yields the parameterized solution x = −1/2t, y = 0, and z = t. That is,

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= t
⎡⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤⎥⎥⎥⎥⎥⎦
.

We see that, in fact, any nonzero multiple of

⎡⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤⎥⎥⎥⎥⎥⎦
is an eigenvector of A associated

with the eigenvalue λ = 2.

Note that even though

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
= 0
⎡⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤⎥⎥⎥⎥⎥⎦
is a solution to the system and A0 = 20 the zero

vector 0 is not an eigenvector because the definition of eigenvector excludes it.

Note too that the solution set

S = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−1
2
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a subspace. This is no accident because it is the solution set of a homogeneous system.
The system Ax = λx doesn’t look homogeneous at first, but once all variables are put
on the left-hand side in standard form we see it is. In general,

Ax = λx
⇕

Ax − λx = 0
⇕

Ax − λInx = 0
⇕

(A − λIn)x = 0.

Note that it is incorrect to write (A − λ)x = 0 since A is a matrix and λ is a scalar
making subtraction impossible in general. In this particular instance, the homogeneous
system (A − λIn)x = 0 can be written as

⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦
− 2
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

i.e.

⎡⎢⎢⎢⎢⎢⎣

−6 3 −3
0 −3 0
6 −6 3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
.
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In determining eigenvectors, you can skip right to the homogeneous equation (A−λIn)x =
0.

Definition 6.2. Let A be an n × n matrix. If λ is an eigenvalue of A, then the
solution set to the homogeneous system (A − λIn)x = 0 is called the eigenspace of
A associated with the eigenvalue λ and is denoted Eλ.

Put another way, the eigenspace of A associated with the eigenvalue λ is the null space
of A−λIn. It is the set of all eigenvectors of A associated with the eigenvalue λ plus the
zero vector.

It is easy to determine whether a vector v is an eigenvector of A - just check whether
Av is a multiple of v.

..Example 6.2

Let

A =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦
.

Is v1 =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
an eigenvector of A?

Solution

Av1 =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−4
−1
5

⎤⎥⎥⎥⎥⎥⎦
No! The product Av1 is not a multiple of v1.

How about v2 =
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
?

Av2 =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−1
−1
0

⎤⎥⎥⎥⎥⎥⎦
= −1

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
= −1v2

Yes! v2 is an eigenvector of A associated with λ = −1.

We can find the whole eigenspace associated with λ = −1 by solving (A − (−1)I3)x = 0.
⎡⎢⎢⎢⎢⎢⎣

−3 3 −3 0
0 0 0 0
6 −6 6 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
Letting y = s and z = t gives the parametric solution

x = s − t
y = s
z = t.
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That is,
⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= s
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦
.

So

E−1 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The eigenspace associated with λ = −1 is a 2-dimensional subspace of R3.

Is -5 an eigenvalue of A? We solve (A + 5I3)x = 0.

⎡⎢⎢⎢⎢⎢⎣

1 3 −3 0
0 4 0 0
6 −6 10 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −3 0
0 1 0 0
0 −24 28 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 3 −3 0
0 1 0 0
0 0 28 0

⎤⎥⎥⎥⎥⎥⎦

Each column of A + 5I3 is a pivot column making x = 0 the only solution. Thus −5 is
not an eigenvalue.

..

The moral of Example 6.2 is that it is easy to check whether a vector v is an eigenvector
of A. Simply check to see whether Av is a multiple of v. It is also easy to check whether
λ is an eigenvalue of A. Simply solve (A − λI)x = 0. If it has nontrivial solutions, then
λ is an eigenvalue. If it has only the trivial solution, then λ is not an eigenvalue of A.

So far it appears that we made some good guesses to find λ = 2,−1 in Example 6.2. But
we made some bad guesses too (like -5). Are there any other eigenvalues of A? We won’t
know until we find a process for determining all eigenvalues.

It turns out it is easy to find eigenvalues of triangular matrices.

Theorem 6.1. The eigenvalues of triangular matrices are the entries on the main
diagonal.

Proof We prove this theorem for upper triangular matrices. The same argument
works for lower triangular matrices. Suppose that A is upper triangular. Then λ is an
eigenvalue of A if and only if (A − λI)x = 0 has nontrivial solutions which occurs if and
only if A − λI is singular. But A − λI is upper triangular, so A − λI is singular if and
only if A − λI has a zero on the main diagonal.

A − λI =
⎡⎢⎢⎢⎢⎢⎣

a11 ∗
⋱

0 ann

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

(a11 − λ1) ∗
⋱

0 (ann − λn)

⎤⎥⎥⎥⎥⎥⎦

A − λI has a zero on the main diagonal if and only if λ = ajj for some j. Therefore, λ is
an eigenvalue of A if and only if λ = ajj for some j.
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..Example 6.3

Let

A =
⎡⎢⎢⎢⎢⎢⎣

1 1 4
0 0 2
0 0 3

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

5 0 0
3 5 0
1 −1 7

⎤⎥⎥⎥⎥⎥⎦
.

The eigenvalues of A are λ = 1,0,3. The eigenvalues of B are λ = 5,7. In each case we
could solve to find the eigenspaces as we did in Example 6.2.

..

In Example 6.3 the matrix A had an eigenvalue of 0. An eigenvalue of 0 is a case that
deserves some special attention.

Theorem 6.2. Let A be an n×n matrix. A has an eigenvalue of 0 if and only if A
is singular.

Proof

The matrix A has an eigenvalue of 0 ⇐⇒ (A − 0I)x = 0 has nontrivial solutions.

⇐⇒ Ax = 0 has nontrivial solutions.

⇐⇒ A is singular.

Reworded, Theorem 6.2 says A is invertible if and only if 0 is not an eigenvalue of A.
We add this to our list of equivalent descriptions of invertible matrices at the end of this
section. Here is one more theorem for later use.

Theorem 6.3. If v1,⋯,vr are eigenvectors that correspond to distinct eigenvalues
λ1,⋯, λr of an n × n matrix A, then {v1,⋯,vr} is linearly independent.

Proof We prove by contradiction and suppose not. That is, suppose {v1,⋯,vr} is
linearly dependent. Since v1 is an eigenvector, v1 ≠ 0, the set {v1} is linearly indepen-
dent. Let p be the smallest index such that vp+1 ∈ span{v1,⋯,vp}. Then {v1,⋯,vp}
is linearly independent and {v1,⋯,vp+1} is linearly dependent. So, there exist c1,⋯, cp
such that

vp+1 = c1v1 +⋯ + cpvp. (6.1)

Note that not all c1,⋯, cp are 0 since vp+1 is an eigenvector. Multiplying both sides
of (6.1) by λp+1 gives

λp+1vp+1 = λp+1c1v1 +⋯ + λp+1cpvp. (6.2)
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Now multiply both sides of (6.1) on the left by A.

Avp+1 = Ac1v1 +⋯ +Acpvp

= c1Av1 +⋯ + cpAvp

Since v1,⋯,vp+1 are eigenvectors and Avj = λjvj for j = 1,⋯, p + 1,

λp+1vp+1 = c1λ1v1 +⋯ + cpλpvp (6.3)

Equating (6.2) and (6.3) gives

c1λ1v1 +⋯ + cpλpvp = c1λp+1v1 +⋯ + cpλp+1vp.

Bring everything to the left-hand side and combine like terms.

c1(λ1 − λp+1)v1 +⋯ + cp(λp − λp+1)vp = 0

But, because the eigenvalues are all distinct, λj − λp+1 ≠ 0 for j = 1,⋯, p and because
not all c1,⋯, cp are 0, we know that the scalars c1(λ1 −λp+1),⋯, cp(λp −λp+1) are not all
0. Thus {v1,⋯,vp} is linearly dependent. This contradicts the fact that {v1,⋯,vp} is
linearly independent. So our assumption that {v1,⋯,vr} is linearly dependent must be
false. Therefore {v1,⋯,vr} is linearly independent.

We add now to Theorem 5.12 which was last extended in section 5.2.

Theorem 6.4. Let A be an n × n matrix. The following are equivalent.

(a) A is invertible.

(b) Ax = 0 has only the trivial solution.

(c) The reduced row-echelon form of A
is the identity matrix In.

(d) A is a product of elementary matri-
ces.

(e) A has n pivot columns.

(f) A has a left inverse.

(g) A has a right inverse.

(h) For all b, Ax = b has a unique solu-
tion.

(i) Every n-vector b is a linear combina-
tion of the columns of A.

(j) AT is invertible.

(k) rank A = n.

(l) nullity A = 0.

(m) detA ≠ 0.

(n) The columns (or rows) of A span Rn.

(o) The columns (or rows) of A are lin-
early independent.

(p) The columns (or rows) of A form a
basis for Rn.

(q) col A = Rn.

(r) row A = Rn.

(s) null A = {0}.

(t) range TA = Rn.

(u) ker TA = {0}.

(v) TA is a surjection.

(w) TA is an injection.

(x) TA is a bijection.

(y) TA is an isomorphism.

(z) 0 is not an eigenvalue of A.
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.... Problem Set 6.1

In each part of Exercises 1-4 determine whether the given vector is an eigenvector of the
given matrix A. If so, find the eigenvalue of A it is associated with and a basis for the
associated eigenspace.

1. A = [ 8 −18
3 −7 ].

(a) [ 3
1
] (b) [ 1

3
] (c) [ 2

1
]

2. A = [ −7 25
−4 13

].

(a) [ 1
1
] (b) [ 5

2
] (c) [ −1

1
]

3. A =
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
2 −3 2
2 −3 2

⎤⎥⎥⎥⎥⎥⎦
.

(a)

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦

4. A =
⎡⎢⎢⎢⎢⎢⎣

−1 4 −4
0 7 −8
0 4 −5

⎤⎥⎥⎥⎥⎥⎦
.

(a)

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

−1
1
1

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

1
−1
1

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

1
2
−1

⎤⎥⎥⎥⎥⎥⎦

In each part of Exercises 5 & 6 determine whether the given scalar is an eigenvalue
of the given matrix A. If so, find a basis for the associated eigenspace.

5. A = [ −11 18
−6 10

].

(a) -2 (b) 2 (c) 1

6. A =
⎡⎢⎢⎢⎢⎢⎣

2 1 1
1 2 1
1 1 2

⎤⎥⎥⎥⎥⎥⎦
.

(a) 1 (b) 2 (c) 3 (d) 4

7. Find the eigenvalues and bases for the associated eigenspaces of each of the following
triangular matrices.

(a) [ 4 1
0 3

] (b) [ 1 0
1 5

]
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(c)

⎡⎢⎢⎢⎢⎢⎣

−1 1 1
0 −1 1
0 0 2

⎤⎥⎥⎥⎥⎥⎦
(d)

⎡⎢⎢⎢⎢⎢⎣

−1 0 1
0 −1 0
0 0 2

⎤⎥⎥⎥⎥⎥⎦

8. True or false. Let A represent an n × n matrix.

(a) If Ax = λx for some vector x, then λ is an eigenvalue of A.

(b) A matrix A is invertible if and only if 0 is not an eigenvalue of A.

(c) A scalar t is an eigenvalue of A if and only if the homogeneous matrix equation
(A − tI)x = 0 has a nontrivial solution.

(d) If Ax = λx for some scalar λ, then x is an eigenvector of A.

(e) If v1 and v2 are linearly independent eigenvectors of A, then they are associated
with distinct eigenvalues.

(f) The eigenvalues of a matrix are on its main diagonal.

(g) An eigenspace of a matrix is the null space of a related matrix.

9. Let A be an n × n matrix in which the row sums all equal the same scalar s. Show
that s is an eigenvalue of A by finding an eigenvector associated with s.

10. Let u = [ 1
2
], and let A be the 2 × 2 projection matrix with the property that for

all x ∈ R2, Ax = projux where projux is the orthogonal projection of x onto u (see
section 2.2).

(a) What are the eigenvalues of A?

(b) Describe geometrically the eigenspaces of A associated with each of the eigen-
values.

11. Let B be the 2 × 2 reflection matrix with the property that for all x ∈ R2, Bx is the
reflection of x across the line y = 2x (see Problem Set 5.1, Exercise 4).

(a) What are the eigenvalues of B?

(b) Describe geometrically the eigenspaces of B associated with each of the eigen-
values.

12. There are only two values of θ, for 0 ≤ θ < 2π, for which there are real numbers λ that
are eigenvalues for the 2×2 rotation matrix Rθ (see Section 5.1). What are those two
values of θ and what are the corresponding eigenvalues for those values of θ? Give a
geometric argument for why Rθ does not have real eigenvalues for other values of θ.

13. Let A be the 3 × 3 projection matrix with the property that for all x ∈ R3, Ax is the
orthogonal projection of x onto the plane x + 2y + 3z = 0

(a) What are the eigenvalues of A?

(b) Describe geometrically the eigenspaces of A associated with each of the eigen-
values.

14. Let λ be an eigenvalue of a matrix A, and let v be an associated eigenvector. Show
that for each positive integer n, λn is an eigenvalue of An and v is an associated
eigenvector.
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15. Let λ be an eigenvalue of an invertible matrix A. Show that λ−1 is an eigenvalue of
A−1.

.

6.2 The Characteristic Polynomial

Let A be an n × n matrix. From section 6.1 we see that if we know or can guess
an eigenvalue or eigenvector, then it is easy to check and it is easy to find the entire
eigenspace by solving (A−λI)x = 0. If a guess of the eigenvalue is wrong, then (A−λI)x =
0 has only the trivial solution.

Also from section 6.1 we know that if A happens to be triangular then the eigenvalues
appear on the main diagonal and solving (A−λI)x = 0 for various λ along the diagonal
produces the eigenspaces.

For the moment then, if A is not a diagonal matrix, we are reduced to guess and check
because both λ and x are unknown in the equation (A−λI)x = 0. We need to eliminate
an unknown.

A correct eigenvalue ofA is chosen for λ if and only if the homogeneous system (A−λI)x =
0 has nontrivial solutions. But (A−λI)x = 0 has nontrivial solutions if and only if A−λI
is singular. In chapter 3 we learned that a matrix is singular if and only if its determinant
is 0. So λ is an eigenvalue of A if and only if det(A − λI) = 0.

The nice thing is that the equation det(A − λI) = 0 has only one unknown, λ. This
proves Theorem 6.5.

Theorem 6.5. Suppose A is an n × n matrix. The scalar λ is an eigenvalue of A if
and only if det(A − λI) = 0.

Let’s look at the matrix from Example 6.1 in section 6.1.

..Example 6.4

Let

A =
⎡⎢⎢⎢⎢⎢⎣

−4 3 −3
0 −1 0
6 −6 5

⎤⎥⎥⎥⎥⎥⎦
.

Find the eigenvalues of A.

Solution

A − λI =
⎡⎢⎢⎢⎢⎢⎣

−4 − λ 3 −3
0 −1 − λ 0
6 −6 5 − λ

⎤⎥⎥⎥⎥⎥⎦
.
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By expanding det(A − λI) across the second row,

det(A − λI) =
RRRRRRRRRRRRRR

−4 − λ 3 −3
0 −1 − λ 0
6 −6 5 − λ

RRRRRRRRRRRRRR

= (−1 − λ) ∣ −4 − λ −3
6 5 − λ ∣

= −(λ + 1) [(−4 − λ)(5 − λ) − (−3)(6)]
= −(λ + 1) [−20 − λ + λ2 + 18]
= −(λ + 1)(λ2 − λ − 2)
= −(λ + 1)(λ + 1)(λ − 2)
= −(λ + 1)2(λ − 2).

So, the eigenvalues of A are -1 and 2. This agrees with what we found in section 6.1
and it shows that A has no other eigenvalues because λ = −1,2 are the only roots of the
equation det(A − λI) = 0.

We could go on to find the eigenspaces of A by solving the systems (A − (−1)I)x = 0
and (A − 2I)x = 0, but that was done in section 6.1. There we found

E−1 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and E2 = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

..

Definition 6.3. Let A be an n×nmatrix. Then det(A−λI) is called the character-
istic polynomial of A. The equation det(A − λI) = 0 is called the characteristic
equation of A.

Theorem 6.5 tells us that the eigenvalues of a square matrix are the roots of its charac-
teristic equation or the zeros of its characteristic polynomial.

It is not immediately clear that det(A − λI) is a polynomial. It doesn’t look much like
a polynomial in that form, but by simply looking at Example 6.4 we see that indeed
det(A − λI) is a polynomial in the variable λ.

It is easy to see by induction that if A is an n×n matrix, then the degree of its character-
istic polynomial is n. This means that finding eigenvalues of 2 × 2 matrices is relatively
easy using the quadratic formula, but for n ≥ 3 it involves factoring the characteristic
polynomial. That can be difficult. In Example 6.4 we avoided the difficulty by expand-
ing the determinant across the second row. Some higher degree polynomials are easily
factored, but not all. Software like Maple can handle polynomial equations up to degree
4, but for degree 5 and higher, even software packages like Maple can fail to factor.



206 Chapter 6. Eigenvalues and Eigenvectors

..Example 6.5

Find the eigenvalues and eigenspaces of

A =
⎡⎢⎢⎢⎢⎢⎣

−1 3 −2
−6 8 −6
−6 6 −5

⎤⎥⎥⎥⎥⎥⎦
.

Solution First, we determine the eigenvalues. The basket weave technique for comput-
ing the determinant of a 3 × 3 matrix comes in handy here.

det(A − λI) =
RRRRRRRRRRRRRR

−1 − λ 3 −2
−6 8 − λ −6
−6 6 −5 − λ

RRRRRRRRRRRRRR
= (−1 − λ)(8 − λ)(−5 − λ) + 108 + 72 − 12(8 − λ) + 18(−5 − λ) + 36(−1 − λ)
= (λ + 1)(λ2 − 3λ − 40) + 180 − 96 + 12λ − 90 − 18λ − 36 − 36λ
= −λ3 + 3λ2 + 40λ − λ2 + 3λ + 40 − 42λ − 42
= −λ3 + 2λ2 + λ − 2
= −λ2(λ − 2) + 1(λ − 2) (factor by grouping)
= −(λ − 2)(λ2 − 1)
= −(λ − 2)(λ + 1)(λ − 1)

so that the eigenvalues are λ = 2,1, and −1.

Next, we determine the eigenspaces.
▶ For λ = 2, we solve (A − 2I)x = 0. To that end, we row reduce A − 2I:
⎡⎢⎢⎢⎢⎢⎣

−3 3 −2
−6 6 −6
−6 6 −7

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

−3 3 −2
0 0 −2
0 0 −3

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

−3 3 −2
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

−3 3 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Letting y = t gives x = t, y = t, and z = 0. That is, we can describe the solutions by

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= t
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
so that

E2 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

▶ For λ = 1, we solve (A − 1I)x = 0. Again, row reduce A − 1I:
⎡⎢⎢⎢⎢⎢⎣

−2 3 −2
−6 7 −6
−6 6 −6

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
−6 7 −6
−2 3 −2

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
0 1 0
0 1 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Letting z = t gives x = −t, y = 0, and z = t. So we can describe the solutions by

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= t
⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦
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so that

E1 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

▶ For λ = −1, we solve (A − (−1)I)x = 0. As before, row reduce A − (−1)I:
⎡⎢⎢⎢⎢⎢⎣

0 3 −2
−6 9 −6
−6 6 −4

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

6 −9 6
0 3 −2
−6 6 −4

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

6 −9 6
0 3 −2
0 −3 2

⎤⎥⎥⎥⎥⎥⎦
Ð→

⎡⎢⎢⎢⎢⎢⎣

2 −3 2
0 3 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 0 0
0 3 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 1 −2
3

0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Letting z = t gives x = 0, y = 2
3 t, and z = t. So we can describe the solutions by

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= t
⎡⎢⎢⎢⎢⎢⎣

0
2
3
1

⎤⎥⎥⎥⎥⎥⎦
so that

E−1 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
2
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

..

Factoring the characteristic polynomial by grouping made it easy to find the eigenval-
ues in Example 6.5, but factoring by grouping doesn’t work on all polynomials. You
learned several tricks for factoring polynomials in precalculus. They can all be employed
for finding eigenvalues. There are other methods for finding eigenvalues. Some are nu-
merical methods that approximate eigenvalues and eigenvectors. They are important in
applications but they are beyond the scope of an introductory linear algebra course.

As the next theorem demonstrates, square matrices that are similar (similar as defined in
section 5.4) have the same characteristic polynomial. This tells us that similar matrices
must have exactly the same eigenvalues.

Theorem 6.6. If A and B are similar n × n matrices, then they have the same
characteristic polynomial.

Proof Suppose A is similar to B. Then, there exists an invertible matrix P such that
B = P−1AP . The characteristic polynomial of B is det(B − λI) so

det(B − λI) = det(P −1AP − λP−1IP )
= det(P −1AP − P −1(λI)P )
= det [P −1(A − λI)P ]
= (detP −1)det(A − λI)(detP )
= det(A − λI)
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since detP−1 = 1
detP .

Corollary 6.7. If A and B are similar n × n matrices, then A and B have exactly
the same eigenvalues.

Proof Since A and B have the same characteristic polynomial, the zeros of their char-
acteristic polynomials must be the same. But the zeros of the characteristic polynomials
are the eigenvalues. So A and B must have the same eigenvalues.

.... Problem Set 6.2

1. Find the characteristic polynomial and eigenvalues of each of the following.

(a) [ 1 2
2 1

] (b) [ 3 3
−1 −1 ] (c) [ 0 4

−1 4
]

(d) [ 1 1
1 −1 ] (e) [ 0 −1

1 0
]

(f)

⎡⎢⎢⎢⎢⎢⎣

6 −8 −8
3 −5 −6
1 −1 0

⎤⎥⎥⎥⎥⎥⎦

(g)

⎡⎢⎢⎢⎢⎢⎣

−4 4 −4
1 −1 2
3 −3 4

⎤⎥⎥⎥⎥⎥⎦
(h)

⎡⎢⎢⎢⎢⎢⎣

4 −2 −1
7 −5 −1
−5 6 0

⎤⎥⎥⎥⎥⎥⎦
(i)

⎡⎢⎢⎢⎢⎢⎣

1 0 0
4 −3 0
−8 8 1

⎤⎥⎥⎥⎥⎥⎦
2. Find bases for the eigenspaces of the matrices in Exercise 1.

3. Use the definition of characteristic polynomial and properties of transpose to show
that a matrix and its transpose have the same characteristic polynomial.

4. Note that for any polynomial p(t) = ant
n + ⋅ ⋅ ⋅ + a1t + a0, the constant term of the

polynomial a0 = p(0). Use this fact and the definition of characteristic polynomial to
show that the constant term of the characteristic polynomial of a square matrix A
equals detA.

For an n × n matrix A, the trace of A equals the sum of its diagonal entries. That is,
tr(A) = a11 +⋯ + ann.

5. Let A be a 2 × 2 matrix. Show that the characteristic polynomial of A is p(λ) =
λ2 − tr(A)λ+ det(A) where tr(A) is the trace of A and det(A) is the determinant of
A. Use this to check your results in Exercise 1.

6. Let λ1 and λ2 be the eigenvalues of a 2×2 matrixA. (If A has just one eigenvalue take λ1 = λ2.)
Use Exercise 5 to show tr(A) = λ1 + λ2 and det(A) = λ1λ2.
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7. Let A = [ a b
c d

] and suppose λ1 is an eigenvalue of A. Use Exercise 6 to show that if

b ≠ 0 or λ1 ≠ a, then [
−b

a − λ1
] is an eigenvector of A associated with the eigenvalue

λ1. Find an eigenvector associated with λ1 if b = 0 and λ1 = a. (Consider two cases,
c ≠ 0 and c = 0.)

8. True or false.

(a) If λ + 3 is a factor of the characteristic polynomial of A, then 3 is an eigenvalue
of A.

(b) The row replacement elementary row operation does not change the determinant
of a square matrix.

(c) The row replacement elementary row operation does not change the character-
istic polynomial of a square matrix.

(d) The row replacement elementary row operation does not change the eigenvalues
of a square matrix.

(e) A square matrix and its transpose have the same eigenvalues.

(f) A square matrix and its transpose have the same eigenvectors.

9. Let A be an n×n matrix in which the column sums all equal the same scalar s. Use
Exercise 3 from this section and Exercise 9 from Section 6.1 to show that s is an
eigenvalue of A.

.

6.3 Diagonalization

Diagonal matrices are the easiest to analyze in terms of eigenvalues and eigenvectors.
Since diagonal matrices are triangular, the entries on their main diagonal are their
eigenvalues. If

D =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
,

then the eigenvectors of D are also easy to spot. Since Dej = λjej , ej is an eigenvector
of D corresponding to the eigenvalue λj . So for any n×n diagonal matrix, the standard
basis Sn = {e1,⋯,en} is a basis of eigenvectors.

Matrices that are similar to a diagonal matrix D have the same characteristic polynomial
and eigenvalues as D but Sn need not be a basis of eigenvectors. However, we will see
that the matrices that are similar to diagonal matrices are precisely those that have
some basis of eigenvectors.
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Definition 6.4. An n × n matrix A is diagonalizable if A is similar to a diagonal
matrix. That is, A is diagonalizable if there is a diagonal matrix D and an invertible
matrix P such that D = P −1AP . In this case we say P diagonalizes A to D.

Theorem 6.8. Let A be an n × n matrix. The matrix A is diagonalizable if and
only if Rn has a basis of eigenvectors of A.

Proof Throughout this proof, it is useful to reference the diagram in Figure 6.1a. It
will help you keep track of the location of each vector.

To begin, suppose Rn has a basis of eigenvectors of A. Call it B = {v1,⋯,vn}. Let λi be
the eigenvalue associated with the eigenvector vi. Note that the list λ1,⋯, λn may have
repeated values. Let P = [v1,⋯,vn]. We show that

P −1AP =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
.

Recall that P and P −1 are change of basis matrices and that P −1w = [w]B and P [w]B =
w for all w ∈ Rn so

(P −1AP )ej = (P −1A)(Pej)
= (P −1A)P [vj]B
= (P −1A)vj

= P −1(Avj)
= P −1(λjvj)
= λj(P −1vj)
= λj [vj]B
= λjej

for j = 1,⋯, n. But (P −1AP )e1,⋯, (P −1AP )en are the columns of P −1AP so that

P −1AP =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
.

To prove the other direction, suppose A is diagonalizable. We prove that Rn has a basis
of eigenvectors of A. Since A is diagonalizable, there exists a diagonal matrix

D =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦

and an invertible matrix P such that D = P −1AP . Since P is invertible, the columns of
P form a basis for Rn. Suppose P = [v1,⋯,vn] and let B = {v1,⋯,vn}. We show that
B is a basis of eigenvectors of A.
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..

A
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Rn
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Rn
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P −1

.

P −1

(a)
..
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.

ej = [vj]B
.

λj [vj]B = λjej

.

λjvj

.

vj

.
D

.

P

.

P

.

P −1

.

P −1

(b)

Figure 6.1 Diagrams useful in following the proof of Theorem 6.8.

Since D = P −1AP , we have PDP −1 = A so that

Avj = PDP −1vj

= (PD)(P −1vj)
= (PD)([vj]B)
= PDej

= P (Dej)
= P (λjej)
= λj(Pej)
= λj(P [vj]B)
= λjvj

for j = 1,⋯, n. So B is a basis of eigenvectors of A.

As this proof shows, an invertible matrix P diagonalizes A if and only if the columns of
P constitute a basis of Rn of eigenvectors of A.

Corollary 6.9. Let A be an n × n matrix. If A has n distinct eigenvalues, then A
is diagonalizable.

Proof Suppose λ1,⋯, λn are the n distinct eigenvalues of A. By the definition of eigen-
value, each eigenvalue λj has a corresponding eigenvector vj . Let B = {v1,⋯,vn}. By
Theorem 6.3 of section 6.1, B is linearly independent. Since B is linearly independent
and contains n vectors, B is a basis for Rn of eigenvectors of A. Therefore, A is diago-
nalizable by Theorem 6.8.

..Example 6.6

Determine whether A and B defined below are diagonalizable.

A =
⎡⎢⎢⎢⎢⎢⎣

5 2 −1
0 4 2
0 0 3

⎤⎥⎥⎥⎥⎥⎦
B =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
2 −1 2
1 −1 2

⎤⎥⎥⎥⎥⎥⎦
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Solution The matrix A is triangular, so its eigenvalues appear on its main diagonal.
Since A is 3 × 3 and has 3 distinct eigenvalues, A is diagonalizable. The matrix

D =
⎡⎢⎢⎢⎢⎢⎣

5 0 0
0 4 0
0 0 3

⎤⎥⎥⎥⎥⎥⎦
is a diagonal matrix that is similar to A.

Since B is not triangular, we use the characteristic polynomial to find the eigenvalues of
B.

det(B − λI) =
RRRRRRRRRRRRRR

1 − λ 0 0
2 −1 − λ 2
1 −1 2 − λ

RRRRRRRRRRRRRR

= (1 − λ) ∣ −1 − λ 2
−1 2 − λ ∣

= (1 − λ) [(−1 − λ)(2 − λ) + 2]
= −(λ − 1) [λ2 − λ − 2 + 2]
= −(λ − 1)(λ2 − λ)
= −λ(λ − 1)2.

The eigenvalues of B are λ = 0,1. Since B has only two eigenvalues we are not yet sure
whether B is diagonalizable. We need to know whether we have a basis of eigenvectors.

▶ For λ = 0, we solve (B − 0I)x = 0.
⎡⎢⎢⎢⎢⎢⎣

1 0 0
2 −1 2
1 −1 2

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 −2
0 1 −2

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 −2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Letting z = t gives x = 0, y = 2t, and z = t. We can describe the solutions by

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= t
⎡⎢⎢⎢⎢⎢⎣

0
2
1

⎤⎥⎥⎥⎥⎥⎦
so that

E0 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

▶ For λ = 1, we solve (B − 1I)x = 0.
⎡⎢⎢⎢⎢⎢⎣

0 0 0
2 −2 2
1 −1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −1 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Letting y = s and z = t gives x = s − t, y = s, and z = t. We can describe the solutions by

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= s
⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦
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so that

E1 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

It is easy to see that
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a linearly independent set by noting that there are three pivot columns in the matrix
they form after row reduction:

⎡⎢⎢⎢⎢⎢⎣

1 1 0
1 0 2
0 −1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0
0 −1 2
0 −1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0
0 1 2
0 0 −1

⎤⎥⎥⎥⎥⎥⎦

Thus R3 has a basis of eigenvectors of B and B is diagonalizable. In fact, B is similar
to the diagonal matrix

D =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Notice that the eigenvalue λ = 1 is a double root of the characteristic equation −λ(λ−1)2 =
0 and the eigenspace E1 is two dimensional. On the other hand, the eigenvalue λ = 0
is a single root of the characteristic equation and the eigenspace E0 is one dimensional.
This is not a coincidence, but the relationship is not as simple as this example suggests.

..

Definition 6.5. Let A be an n × n matrix and λ0 an eigenvalue of A. The alge-
braic multiplicity of λ0 is the number of times λ − λ0 appears as a factor in the
characteristic polynomial det(A − λI). The geometric multiplicity of λ0 is the
dimension of the eigenspace Eλ0 .

..Example 6.7

In Example 6.6, B has two eigenvalues 0 and 1. The eigenvalue 0 has both algebraic
and geometric multiplicity of 1. The eigenvalue 1 has both algebraic and geometric
multiplicity of 2.

..

Theorem 6.10 is not proved here, but you can use it to reduce the amount of work
required to answer many questions.

Theorem 6.10. Let A be an n×n matrix. The geometric multiplicity of an eigen-
value of A is always greater than or equal to 1 and less than or equal to its algebraic
multiplicity.
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Theorem 6.3 in section 6.1 is a special case of a more general result. We state that
result next but we do not prove it. Again, this theorem can be used to reduce the work
required to answer many questions.

Theorem 6.11. Let A be an n×n matrix. Suppose λ1,⋯, λr are distinct eigenvalues
of A and S1,⋯,Sr are linearly independent sets of eigenvectors corresponding to
λ1,⋯, λr respectively. Then S1 ∪⋯ ∪ Sr is linearly independent.

In Theorem 6.3 of section 6.1, each set Si contains a single eigenvector. We could have
used these theorems to avoid some work in determining whether B is diagonalizable
in Example 6.6. Since the characteristic polynomial of B is −λ(λ − 1)2, we know the
geometric multiplicity of λ = 0 must be 1 and the geometric multiplicity of λ = 1 is 1
or 2 by Theorem 6.10. Once we check to see that the eigenvalue λ = 1 has a geometric
multiplicity of 2, we know that we have 3 linearly independent eigenvectors, hence a
basis of eigenvectors. This tells us B is diagonalizable. We did four calculations for B:

1. We determined the characteristic polynomial.

2. We determined a basis for the eigenspace E0.

3. We determined a basis for the eigenspace E1.

4. We checked the union of these bases for linear independence.

In light of Theorems 6.10 and 6.11, only calculations (1) and (3) were necessary.

What can go wrong that prevents a matrix from being diagonalizable? There are a
couple of things. The following examples illustrate.

..Example 6.8

Is

A = [ 3 −2
5 −3 ]

diagonalizable?

Solution The characteristic polynomial of A is

det(A − λI) = ∣ 3 − λ −2
5 −3 − λ ∣

= (3 − λ)(−3 − λ) + 10
= λ2 + 1.

Solving the characteristic equation λ2 + 1 = 0 we get λ = ±i. This tells us that there
are no real numbers λ and nonzero x ∈ R2 such that Ax = λx. Hence A has no real
eigenvalues.

This problem goes away if we expand our horizons a bit. If we allow complex entries in
matrices and vectors, then there is no reason we can’t diagonalize A. We must realize,



6.3. Diagonalization 215

however, that in that case we are not working in the vector space R2. In that case we are
working in C2 (where C represents the set of complex numbers) and our set of scalars is
C rather than R.

Complex vector spaces are studied in great detail just as real vector spaces are. Much
of the theory is identical, but in a few places like here they differ. We will not study
complex vector spaces here, but you should be aware of their existence because they
come up in many applications. If we carried out the complex arithmetic necessary to
find eigenvectors of A we would find that

[ 2
3 − i ] and [ 2

3 + i ]

are eigenvectors of A corresponding to the eigenvalues of i and −i respectively, and the
matrix A is similar to

D = [ i 0
0 −i ] .

In this text, we simply say A is not diagonalizable over the real numbers because it has
imaginary eigenvalues.

..

You may have guessed the other problem that prevents some matrices from being diago-
nalized. There are times when the geometric multiplicity of an eigenvalue is strictly less
than its algebraic multiplicity. When that happens, there is no basis of eigenvectors so
the matrix is not diagonalizable. Example 6.9 illustrates.

..Example 6.9

Is

A = [ −1 4
−1 3

]

diagonalizable?

Solution The characteristic polynomial of A is

det(A − λI) = ∣ −1 − λ 4
−1 3 − λ ∣

= (−1 − λ)(3 − λ) + 4
= λ2 − 2λ + 1
= (λ − 1)2.

So A has one eigenvalue, namely λ = 1, and it has an algebraic multiplicity of 2. To
determine the eigenspace, we solve (A − 1I)x = 0. From row reduction,

[ −2 4
−1 2

] Ð→ [ 1 2
0 0

]

let y = t so that x = −2t. Then

E1 = span {[
−2
1
]} .
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The eigenvalue λ = 1 has a geometric multiplicity of 1. Since R2 does not have a basis
of eigenvectors of A, A is not diagonalizable.

..

Though complex vector spaces are not studied in this text, we prove the last theorem in
this section that can involve imaginary eigenvalues. To understand this result we must
realize that the eigenvalues (real and imaginary) are just the roots of the characteristic
equation.

The fundamental theorem of algebra tells us that all polynomials of degree n can be
factored into n linear factors, but those factors may contain imaginary numbers and
some of the factors may be repeated. So if A is an n × n matrix, then its characteristic
polynomial factors p(λ) = det(A − λI) = (λ1 − λ)⋯(λn − λ). Note that on the one hand,
p(0) = det(A − 0I) = detA, and on the other hand p(0) = (λ1 − 0)⋯(λn − 0) = λ1⋯λn.
Thus detA = λ1⋯λn. This proves the following theorem.

Theorem 6.12. Let A be an n × n matrix. The determinant of A equals the
product of its eigenvalues counting both real and imaginary eigenvalues and counting
algebraic multiplicity.

.... Problem Set 6.3

1. Determine whether the following matrices are diagonalizable, and if so, provide a
diagonal matrix similar to the given matrix.

(a) [ 3 1
0 4

] (b) [ 2 1
0 2

] (c) [ 1 1
4 1

]

(d)

⎡⎢⎢⎢⎢⎢⎣

3 0 0
1 2 0
1 5 −1

⎤⎥⎥⎥⎥⎥⎦
(e)

⎡⎢⎢⎢⎢⎢⎣

2 1 1
0 2 3
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(f)

⎡⎢⎢⎢⎢⎢⎣

2 0 1
0 2 3
0 0 1

⎤⎥⎥⎥⎥⎥⎦

(g)

⎡⎢⎢⎢⎢⎢⎣

−3 4 −4
0 −1 0
2 −4 3

⎤⎥⎥⎥⎥⎥⎦
(h)

⎡⎢⎢⎢⎢⎢⎣

−5 8 −6
−1 1 −1
2 −4 3

⎤⎥⎥⎥⎥⎥⎦
2. Suppose A, D, and P are square matrices and P is invertible. Prove D = P −1AP if

and only if AP = PD. (This result allows you to check whether D = P −1AP without
calculating P −1. You simply check to see whether AP = PD)

3. For each diagonalizable matrix A and the diagonal matrix D you found from Ex-
ercise 1, find a matrix P that diagonalizes A to D and use Exercise 2 to show
D = P −1AP .

4. Suppose A is an n × n matrix that an invertible matrix P diagonalizes to D. Prove
that A = PDP −1.



6.3. Diagonalization 217

5. Let D1 =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
and D2 =

⎡⎢⎢⎢⎢⎢⎣

µ1 0
⋱

0 µn

⎤⎥⎥⎥⎥⎥⎦
be diagonal n × n matrices.

(a) Express D1D2 as an n × n diagonal matrix.

(b) Let k be a positive integer. Express Dk
1 as an n × n diagonal matrix.

(c) If D1 is invertible, express D−11 as an n × n diagonal matrix.

(d) Prove D1D2 =D2D1.

6. Suppose A is an n × n matrix and that an invertible matrix P diagonalizes A to D.

(a) Prove that for k a positive integer, P diagonalizes Ak to Dk.

(b) Prove that if, in addition, A is invertible, then P diagonalizes A−1 to D−1.

7. Use Exercises 4, 5, and 6 to express [ 8 −18
3 −7 ]

k

as a 2 × 2 matrix.

8. Let B = [ −16 100
−5 29

]. Use Exercises 4, 5, and 6 to find a 2 × 2 matrix A such that

A2 = B.

9. Suppose A and B are n×n matrices that are both diagonalized by the same invertible
matrix P . Use Exercises 4 and 5 to prove that AB = BA.

10. True or False. A, P , and D are n × n matrices.

(a) A is diagonalizable if and only if there exists an invertible matrix P and a
diagonal matrix D such that A = PDP −1.

(b) If A is diagonalizable, then A has n distinct eigenvalues.

(c) If A has n distinct eigenvalues, then A is diagonalizable.

(d) If A has n distinct eigenvectors, then A is diagonalizable.

(e) If A has n linearly independent eigenvectors, then A is diagonalizable.

(f) If A is diagonalizable, then A has n linearly independent eigenvectors.

(g) If A has n eigenvalues counting algebraic multiplicity, then A is diagonalizable.

(h) If A has n eigenvalues counting geometric multiplicity, then A is diagonalizable.

(i) If A is invertible, then A is diagonalizable.

(j) If A is diagonalizable, then A is invertible.

11. For each of the following questions (a) through (g), give one of the following answers:
(i) A is diagonalizable.
(ii) A is not diagonalizable.
(iii) A may be diagonalizable, but it is not certain.
(iv) The situation described is impossible.

(a) A is a 6 × 6 matrix with 5 distinct eigenvalues.

(b) A is a 5×5 matrix with a 3-dimensional eigenspace and a 2-dimensional eigenspace.

(c) A is a 3 × 3 matrix with exactly two distinct eigenvalues and each one has an
algebraic multiplicity of 1.
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(d) A is a 3 × 3 matrix with exactly two distinct eigenvalues and each one has a
geometric multiplicity of 1.

(e) A is a 4× 4 matrix with exactly two distinct eigenvalues. Both eigenvalues have
an algebraic multiplicity of 2, but the geometric multiplicities are 1 and 2.

(f) A is a 4× 4 matrix with exactly two distinct eigenvalues. Both eigenvalues have
a geometric multiplicity of 2, but the algebraic multiplicities are 1 and 2.

(g) A is a 3 × 3 matrix with three distinct eigenvalues. Its eigenspaces have dimen-
sions 0, 1, and 2.

12. Let A be a diagonalizable n × n matrix and P an invertible matrix that diagonalizes
A. Prove that (P−1)T diagonalizes AT .

13. Let A be a diagonalizable n×n matrix, and suppose B is similar to A. Prove that B
is diagonalizable.

14. Let u,v ∈ Rn (n ≥ 2), and suppose u and v are nonzero and not orthogonal (see
Definition 2.6 in section 2.2). Let A = uvT . The matrix A is an n × n matrix.

(a) What is the rank and nullity of A?

(b) Is A invertible?

(c) Is 0 an eigenvalue of A? If so, what is the dimension of the eigenspace associated
with 0?

(d) Show that u is an eigenvector of A.

(e) What is the eigenvalue associated with u?

(f) Is A diagonalizable?

(g) What is the characteristic polynomial of A?

15. Repeat Exercise 14 replacing u and v with nonzero orthogonal vectors.

.

6.4 Eigenvalues and Linear Operators

In section 6.1 eigenvalues and eigenvectors are defined for n×n matrices A. They could
just as well be defined for a linear operator T ∶ V Ð→ V from a vector space V to itself.

Definition 6.6. Let V be a vector space and T ∶ V Ð→ V a linear operator on V .
If there exists a scalar λ and a nonzero vector v ∈ V such that T (v) = λv, then λ is
an eigenvalue of T and v is an eigenvector of T associated with the eigenvalue λ.

It should be clear that if A is an n × n matrix, then the eigenvalues and eigenvectors
of A are exactly the same as the eigenvalues and eigenvectors of the linear operator
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TA ∶ Rn → Rn given by TA(x) = Ax. But this linear operator definition of eigenvalues
and eigenvectors is more general because it applies to linear operators on vector spaces
in general (e.g. infinite dimensional ones) and not just on Rn. Example 6.10 illustrates.

..Example 6.10

Let V be the vector space of all real-valued functions of a single variable that have
derivatives of all orders. Define D ∶ V Ð→ V by D(f) = f ′. In Example 5.3, we showed
that the differential operator is linear.

If f(x) = e3x, then D(f(x)) = d
dx(e

3x) = 3e3x = 3f(x). So 3 is an eigenvalue of D and
f(x) = e3x is an associated eigenvector. Of course there is nothing special about 3 in
this example. For any real number λ, d

dx(e
λx) = λeλx making every single real number λ

an eigenvalue of the differential operator D with f(x) = eλx an associated eigenvector.
..

Since the vector space V in Example 6.10 is infinite dimensional, matrix techniques
cannot be employed to describe D completely. However, if V is a finite dimensional
vector space with a basis B and T is a linear operator on V , then T can be described
with a square matrix A via coordinate vectors and the isomorphism TB. The eigenvalues
and eigenvectors of T can then be analyzed through A.

..Example 6.11

Let P3 be the vector space of all polynomials of degree 3 or less and define T ∶ P3 Ð→ P3

by T (p(t)) = p(4 − t). Show that T is indeed a linear operator and find the eigenvalues
and corresponding eigenspaces of T .

Solution To show that T is linear observe that T ((p+ q)(t)) = (p+ q)(4− t) = p(4− t)+
q(4 − t) = T (p(t)) + T (q(t)) and T ((cp)(t)) = (cp)(4 − t) = cp(4 − t) = cT (p(t)). Since
the degree of a composition of two polynomials equals the product of their degrees, the
degree of p(4 − t) is the same as the degree of p(t) since the degree of r(t) = 4 − t is 1.
So T is indeed a linear operator on P3.

The set B = {1, t, t2, t3} is an ordered basis for P3 and

T (1) = 1 = 1
T (t) = 4 − t = 4 − t
T (t2) = (4 − t)2 = 16 − 8t + t2
T (t3) = (4 − t)3 = 64 − 48t + 12t2 − t3

So the matrix of this transformation can be described by coordinate vectors by

A = [[T (1)]B [T (t)]B [T (t
2)]B [T (t

3)]B]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 4 16 64
0 −1 −8 −48
0 0 1 12
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since A is triangular, we see right away that its characteristic polynomial is det(A−λI) =
(1−λ)2(−1−λ)2 = (λ−1)2(λ+1)2 so A has two eigenvalues λ = 1 and λ = −1 each having
algebraic multiplicity 2. We proceed to find the eigenspaces.
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▶ For λ = 1, we solve (A − 1I)x = 0.
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 4 16 64
0 −2 −8 −48
0 0 0 12
0 0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 4 0
0 1 4 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 4 0
0 0 0 1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Letting x1 = α and x3 = β gives x1 = α,x2 = −4β,x3 = β and x4 = 0. We can describe
these solutions by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= α

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ β

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−4
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
so that

E1 = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−4
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

▶ For λ = −1, we solve (A − (−1)I)x = 0.
⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 4 16 64
0 0 −8 −48
0 0 2 12
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 8 32
0 0 1 6
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 0 −16
0 0 1 6
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Letting x2 = α and x4 = β gives x1 = −2α + 16β,x2 = α,x3 = −6β and x4 = β. We can
describe these solutions by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= α

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ β

⎡⎢⎢⎢⎢⎢⎢⎢⎣

16
0
−6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
so that

E−1 = span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

16
0
−6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

So A is diagonalizable and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−4
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

16
0
−6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis of eigenvectors. Translating back to P3 and T we have p1(t) = 1 and p2(t) =
t2 − 4t form a basis for the eigenspace E1 of T and p3(t) = t − 2 and p4(t) = t3 − 6t2 + 16
form a basis for the eigenspace E−1 of T .

..
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.... Problem Set 6.4

1. In each part (a) - (c) below, you are given a linear operator T defined on P3.
(i) Find the matrix representation, A, of T relative to the ordered basis B = {1, t, t2, t3}.
(ii) Find the eigenvalues, λ, and bases, Bλ, for the associated eigenspaces of A.
(iii) Find the eigenvalues, λ, and bases, Cλ, for the associated eigenspaces of T .
(iv) Does P3 have a basis of eigenvectors of T?

(a) T (p(t)) = p′(t).
(b) T (p(t)) = (t2 − 1)p′(2).
(c) T (p(t)) = (t + 1)p′(t).

2. In each part (a) - (c) below, you are given an n × n matrix B and a vector space V .
In each case define the linear operator T ∶ V → V by T (X) = BX where X ∈ V .
(i) Find a matrix representation, A, of T .
(ii) Find the eigenvalues, λ, and bases, Bλ, for the associated eigenspaces of A.
(iii) Find the eigenvalues, λ, and bases, Cλ, for the associated eigenspaces of T .
(iv) Does V have a basis of eigenvectors of T?

(a) B = [ 4 −2
1 1

], V = M2,2, the vector space of all 2 × 2 matrices. (Hint: B =

{[ 1 0
0 0

] , [ 0 0
1 0

] , [ 0 1
0 0

] , [ 0 0
0 1

]} is an ordered basis of M2,2.)

(b) B =
⎡⎢⎢⎢⎢⎢⎣

4 9 −9
−1 −1 3
0 1 1

⎤⎥⎥⎥⎥⎥⎦
, V = span{I,B,B2}. (Hint: B3 = 2I − 5B + 4B2.)

(c) B =
⎡⎢⎢⎢⎢⎢⎣

5 −4 −4
0 1 0
2 −2 −1

⎤⎥⎥⎥⎥⎥⎦
, V = span{I,B}. (Hint: B2 = −3I + 4B.)

.
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.. 7 (Real) Inner Product Spaces

7.1 Introduction

In chapter 2 we found geometric interpretations of vectors. Important in those geometric
interpretations were the notions of length, distance, and angle. In chapter 2, when
we were dealing with just two and three dimensions, we found and proved that these
quantities are connected to the dot product. Now we want to extend these notions to
other vector spaces. It turns out that this can be done in many different ways that
produce different lengths, distances, and angles, but they all still conform to what are
considered basic properties that length, distance, and angle should have. For example,
some differences amount to nothing more than a change of scale. It is as though we are
measuring in inches rather than centimeters, but some differences are more drastic so
that what we consider perpendicular actually changes. We start with the most common
extension for vectors in Rn.

Definition 7.1. Let u,v ∈ Rn. Then u =
⎡⎢⎢⎢⎢⎢⎣

u1
⋮
un

⎤⎥⎥⎥⎥⎥⎦
and v =

⎡⎢⎢⎢⎢⎢⎣

v1
⋮
vn

⎤⎥⎥⎥⎥⎥⎦
for some

u1,⋯, un, v1,⋯, vn ∈ R. The dot product or Euclidean inner product of u
and v is

u ⋅ v = u1v1 +⋯ + unvn.

Other equivalent ways of expressing the dot product are

u ⋅ v =
n

∑
i=1

uivi

and
u ⋅ v = uTv

where uTv is matrix multiplication.

Definition 7.2. The vector space Rn together with the dot product is called Eu-
clidean n-space.

Theorem 7.1 contains some important properties of the dot product.

222
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Theorem 7.1. Suppose u,v,w ∈ Rn and c is a scalar.

(a) u ⋅ v = v ⋅ u

(b) (u + v) ⋅w = u ⋅w + v ⋅w

(c) (cu) ⋅ v = c(u ⋅ v)

(d) u ⋅ u ≥ 0 and u ⋅ u = 0 if and only if u = 0

Proof Exercises.

It turns out that these four properties are key to develop notions of length, distance,
and angle, so it is useful to define the more abstract notion of inner product.

Definition 7.3. Suppose V is a (real) vector space. A (real) inner product on
V is a function that assigns a real number ⟨u,v⟩ to each pair of vectors u,v ∈ V .
This function must have the following four properties to be an inner product.
For all u,v,w ∈ V and for all scalars c:

(a) ⟨u,v⟩ = ⟨v,u⟩

(b) ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩

(c) ⟨cu,v⟩ = c⟨u,v⟩

(d) ⟨u,u⟩ ≥ 0 and ⟨u,u⟩ = 0 if and only if u = 0

A (real) vector space together with a (real) inner product is called a (real) inner
product space.

At this point we drop the adjective real and assume that every time we mention a vector
space, an inner product, or an inner product space, we are talking about a real one.

In chapter 6 we mentioned complex vector spaces. Indeed there are complex inner
products and complex inner product spaces and even other types besides the real and
complex varieties. They are not studied here but only mentioned so that you are not
left with the false impression that the real ones are the only ones.

Theorem 7.1 proves that the dot product is an example of an inner product. In this
course you see examples of a variety of inner products, but most of the examples involve
the dot product in Rn. Theorems that hold for inner products in general are proved that
way, but our main focus is on the dot product on Rn.

..Example 7.1

Let A be an invertible n×n matrix. For u,v ∈ Rn, define ⟨u,v⟩ = (Au) ⋅ (Av). It is easy
to prove this is an inner product. Since it is defined in terms of matrix multiplication
and the familiar dot product, we have a lot with which to work. Properties (a), (b), and
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(c) follow very easily, in fact A need not even be invertible to satisfy these properties.
We focus on property (d) where the necessity of A being invertible becomes clear.

Since ⟨u,u⟩ = (Au) ⋅ (Au) is a dot product of Au with itself, ⟨u,u⟩ ≥ 0 by part (d) of
Theorem 7.1. Also by Theorem 7.1, ⟨u,u⟩ = (Au) ⋅ (Au) = 0 if and only if Au = 0. But
Au = 0 if and only if u = 0 since A is invertible, so ⟨u,u⟩ = 0 if and only if u = 0.

..

..Example 7.2

Let C[a, b] be the vector space of all continuous functions on [a, b]. For f, g ∈ C[a, b],
define

⟨f, g⟩ = ∫
b

a
f(x)g(x) dx.

Since the product of two continuous functions is continuous and all continuous functions
are integrable, this definition makes sense for all f, g ∈ C[a, b].

The fact that this satisfies the four axioms of inner product is really just the result of
familiar properties of the definite integral. For example,

⟨f + g, h⟩ = ∫
b

a
(f(x) + g(x))h(x) dx

= ∫
b

a
(f(x)h(x) + g(x)h(x)) dx

= ∫
b

a
f(x)h(x) dx + ∫

b

a
g(x)h(x) dx

= ⟨f, h⟩ + ⟨g, h⟩.

The others are handled similarly.
..

Here are some additional properties of inner product that follow quickly from the four
axioms and familiar properties of vectors and real numbers.

Theorem 7.2. If u,v, and w are vectors in an inner product space, and c is a
scalar, then

(a) ⟨0,u⟩ = ⟨u,0⟩ = 0

(b) ⟨u,v +w⟩ = ⟨u,v⟩ + ⟨u,w⟩

(c) ⟨u, cv⟩ = c⟨u,v⟩

(d) ⟨u − v,w⟩ = ⟨u,w⟩ − ⟨v,w⟩

(e) ⟨u,v −w⟩ = ⟨u,v⟩ − ⟨u,w⟩

Proof We prove part (e) as an example and leave the rest as exercises.
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Justify each equal sign below with the correct axiom or property of vectors or real
numbers:

⟨u,v −w⟩ = ⟨v −w,u⟩
= ⟨v + (−1)w,u⟩
= ⟨v,u⟩ + ⟨(−1)w,u⟩
= ⟨v,u⟩ + (−1)⟨w,u⟩
= ⟨v,u⟩ − ⟨w,u⟩
= ⟨u,v⟩ − ⟨u,w⟩

In chapter 2 we defined the norm of a vector v = [ v1
v2
] in R2 to be ∥v∥ =

√
v21 + v22. In

R3 we have v =
⎡⎢⎢⎢⎢⎢⎣

v1
v2
v3

⎤⎥⎥⎥⎥⎥⎦
and ∥v∥ =

√
v21 + v22 + v23.

This gives us the length of the directed line segment that starts at the origin and ends
at the point (v1, v2) in R2 and (v1, v2, v3) in R3. Similarly, in chapter 2 we defined the
distance between two vectors u and v as d(u,v) =

√
(u1 − v1)2 + (u2 − v2)2 in R2 and

d(u,v) =
√
(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2 in R3.

Note that the formula for norms can be rewritten in terms of the dot product and the
formula for distances can be rewritten in terms of norms by ∥v∥ =

√
v ⋅ v and d(u,v) =

∥u−v∥. Because the dimensions are too high, we don’t have the geometric interpretations
of vectors in Rn for n > 3 as we do in R2 and R3, but we can extend the definition
analogously to vectors in Rn for all n and thereby impose some geometric notions on
these otherwise algebraic entities.

Definition 7.4. Let u and v be vectors in Euclidean n-space (Rn with dot product).
Define the norm of v to be

∥v∥ =
√
v ⋅ v.

This is known as the 2-norm or the Euclidean norm in Rn. Define the distance
between u and v to be

d(u,v) = ∥u − v∥.

Moving to higher levels of abstraction we define norm and distance analogously for any
inner product space.
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Definition 7.5. Let u and v be vectors in an inner product space V . Define the
norm of v to be

∥v∥ =
√
⟨v,v⟩.

This is known as the norm of v relative to the given inner product. Define the
distance between u and v to be

d(u,v) = ∥u − v∥.

..Example 7.3

Let u = [ 2
3
], v = [ 5

−2 ], A = [
1 1
1 2

], f(x) = x3, and g(x) = x.

(a) The 2-norm is based on the dot product in R2 (Euclidean 2-space).

∥u∥ =
√
22 + 32 =

√
13

and

d(u,v) = ∥u − v∥ = ∥[ −3
5
]∥ =

¿
ÁÁÀ[ −3

5
] ⋅ [ −3

5
] =
√
34.

(b) Relative to the inner product ⟨u,v⟩ = (Au) ⋅ (Av),

∥u∥ =
√
⟨u,u⟩ =

√
(Au) ⋅ (Au) =

¿
ÁÁÀ[ 5

8
] ⋅ [ 5

8
] =
√
52 + 82 =

√
89

and

d(u,v) = ∥u − v∥ = ∥[ −3
5
]∥ =

¿
ÁÁÀ⟨[ −3

5
] , [ −3

5
]⟩ =

¿
ÁÁÀ(A [ −3

5
]) ⋅ (A [ −3

5
])

=

¿
ÁÁÀ[ 2

7
] ⋅ [ 2

7
] =
√
22 + 72 =

√
53.

(c) Relative to the inner product ⟨f, g⟩ = ∫
1
0 f(x)g(x) dx,

∥f∥ =
√
⟨f, f⟩ =

√

∫
1

0
x6 dx =

√
1

7

and

d(f, g) = ∥f − g∥ = ∥x3 − x∥ =
√

∫
1

0
(x3 − x)2 dx =

√
1

7
− 2

5
+ 1

3
=
√

8

105
.

..
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You can see that the two different inner products on R2 given in parts (a) and (b)
in Example 7.3 result in different norms and distances. This is common. Norms and
distances typically depend on the inner product. Though the answers are different, both
sets of norm and distance formulas are internally consistent. What do we mean by
internally consistent? We mean that both pairs of norm and distance formulas behave
the way we want norm and distance formulas to behave. How do we want norm and
distance formulas to behave? Well, over the years mathematicians have decided on the
properties all norms and distances should have. Definitions 7.6 and 7.7 spell these out.

Definition 7.6. let V be a vector space. A norm on V is a real-valued function
that assigns the real number ∥v∥ to the vector v. This function must have the
following properties to be a norm. If u,v ∈ V and c is a scalar, then

(a) ∥u∥ ≥ 0

(b) ∥u∥ = 0 if and only if u = 0

(c) ∥cu∥ = ∣c∣∥u∥

(d) ∥u + v∥ ≤ ∥u∥ + ∥v∥

Property (d) is called the triangle inequality.

Definition 7.7. Let V be a set. A distance function defined on V is a function
that assigns a real number d(u,v) to each ordered pair of elements of u,v ∈ V . This
function must have the following properties to be a distance function. If u,v,w ∈ V ,
then

(a) d(u,v) ≥ 0

(b) d(u,v) = 0 if and only if u = v

(c) d(u,v) = d(v,u)

(d) d(u,v) ≤ d(u,w) + d(w,v) (triangle inequality)

In section 7.2 we prove that all norms defined relative to an inner product (∥v∥ =
√
⟨v,v⟩)

satisfy the four properties of norms listed in Definition 7.6. We also prove that all dis-
tance formulas defined relative to a norm (d(u,v) = ∥u − v∥) satisfy the four properties
of distance formulas listed in Definition 7.7.

There are norms that do not come out of inner products in this way and there are
distance formulas that do not come out of norms. They are not studied here. But if you
have an inner product you get a norm and a distance formula that come along with it
(for free). An inner product gives you something else. It gives you a way to define the
angle between two vectors. This is examined in section 7.2 too.
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.... Problem Set 7.1

1. Let u = [ 2
1
], v = [ 1

−3 ], w = [
6
2
], and A = [ 1 −2

3 1
].

(a) Using the Euclidean inner product, find

(i) u ⋅ v . (ii) v ⋅w . (iii) ∥u∥ . (iv) d(u,v).

(b) Using the inner product ⟨u,v⟩ = (Au) ⋅ (Av), find

(i) ⟨u,v⟩. (ii) ⟨v,w⟩. (iii) ∥u∥. (iv) d(u,v).

2. Let u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−2
−3
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3
1
−1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) Using the Euclidean inner product, find

(i) u ⋅ v. (ii) v ⋅w. (iii) ∥u∥. (iv) d(u,v).

(b) Using the inner product ⟨u,v⟩ = (Au) ⋅ (Av), find

(i) ⟨u,v⟩. (ii) ⟨v,w⟩. (iii) ∥u∥. (iv) d(u,v).

3. In the inner product space C[0,2π] with inner product ⟨f, g⟩ = ∫
2π
0 f(x)g(x) dx, let

f(x) = sinx and g(x) = cosx. Calculate

(a) ⟨f, g⟩. (b) ∥f∥. (c) d(f, g).

(Hint: Use an integral table or a computer algebra system if necessary.)

4. Recall from chapter 2 the point-normal form n ⋅ (x−x0) = 0 for the equation of a line
in Euclidean 2-space. This generalizes to the equation ⟨n,x−x0⟩ = 0 in inner product
spaces. Find the slope-intercept form for the line that satisfies this equation under the
Euclidean inner product, and find the slope-intercept form for the line that satisfies

this equation under the inner product ⟨u,v⟩ = (Au) ⋅ (Av) with A = [ 1 −2
3 1

] for

n = [ 3
1
] and x0 = [

1
2
].

5. The weighted Euclidean inner product on Rn with weights w1,w2, . . . ,wn that
are positive scalars has the formula ⟨u,v⟩ = w1u1v1 + ⋅ ⋅ ⋅ + wnunvn. Show that the
weighted inner products form a special case of ⟨u,v⟩ = (Au) ⋅ (Av) by constructing
an invertible n × n matrix A that produces the weighted Euclidean inner product
formula.

6. Prove Theorem 7.1.

7. From Example 7.1, prove that ⟨u,v⟩ = (Au) ⋅ (Av) satisfies properties (a), (b), and
(c) in the definition of inner product (Definition 7.3).

8. From Example 7.2, prove that ⟨f, g⟩ = ∫
b
a f(x)g(x) dx satisfies properties (a) and (c)

in the definition of inner product (Definition 7.3). (Note: Part (d) requires an ϵ-δ
proof from calculus.)
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9. Prove parts (a), (b), (c), and (d) of Theorem 7.2.

10. Show that the following identity holds for vectors in any inner produce space.

⟨u,v⟩ = 1

4
∥u + v∥2 − 1

4
∥u − v∥2

11. (Parallelogram Law) Show that the following identity holds for vectors in any inner
product space.

∥u + v∥2 + ∥u − v∥2 = 2∥u∥2 + 2∥v∥2

.

7.2 Angle and Orthogonality

In chapter 2 we learned that u ⋅ v = ∥u∥∥v∥ cos θ for θ the angle between two nonzero
vectors u and v in R2 or R3. This was proved using algebraic properties of the dot
product and the geometric law of cosines. To calculate the angle between two nonzero
vectors, we simply divide both sides of the equation by ∥u∥∥v∥ yielding cos θ = u⋅v

∥u∥∥v∥ .
Finally,

θ = cos−1 ( u ⋅ v
∥u∥∥v∥

) .

We wish to generalize to all inner product spaces to impose a notion of angle that is
consistent with what we have with the dot product in R2 and R3.

The most natural extension would be for the angle between two nonzero vectors u and
v in an inner product space V to be the angle θ, 0 ≤ θ ≤ π, for which

cos θ = ⟨u,v⟩
∥u∥∥v∥

.

But in order for this to even make sense we need

−1 ≤ ⟨u,v⟩
∥u∥∥v∥

≤ 1

or equivalently ∣⟨u,v⟩∣ ≤ ∥u∥∥v∥. This would match our geometric intuition even better
if we could show for nonzero vectors u and v that ⟨u,v⟩ = ∥u∥∥v∥ if and only if v is a
positive multiple of u and ⟨u,v⟩ = −∥u∥∥v∥ if and only if v is a negative multiple of u
since cos 0 = 1 (positive multiple) and cosπ = −1 (negative multiple). This is precisely
what the Cauchy-Schwarz inequality gives us.

Before presenting the Cauchy-Schwarz inequality we remind you that the graph of an
equation of the form y = at2+ bt+ c, for a > 0 is a parabola that opens up. The quadratic
formula

t = −b ±
√
b2 − 4ac
2a
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.. t.

y

(a) b2 − 4ac > 0

.. t.

y

(b) b2 − 4ac < 0

.. t.

y

(c) b2 − 4ac = 0

Figure 7.1 The graph of y = at2 + bt + c.

tells us where the parabola crosses the t-axis. The expression under the radical, b2−4ac,
is called the discriminant. If the discriminant is positive, the parabola crosses the
t-axis in two places. If it is negative, the parabola stays above the t-axis. If it is zero,
the parabola comes down and touches the t-axis at just one point, the vertex of the
parabola (see Figure 7.1).

Theorem 7.3 (Cauchy-Schwarz Inequality). For all u,v in an inner product space
V ,

∣⟨u,v⟩∣ ≤ ∥u∥∥v∥.

In addition for nonzero u,v, ⟨u,v⟩ = ∥u∥∥v∥ if and only if one of the vectors is a
positive multiple of the other and ⟨u,v⟩ = −∥u∥∥v∥ if and only if one is a negative
multiple of the other.

Proof To begin, note that the theorem is true if u = 0 or v = 0. We may assume,
therefore, that u and v are nonzero.

Consider the norm squared of tu − v:

∥tu − v∥2 = ⟨tu − v, tu − v⟩
= ⟨tu, tu⟩ − 2⟨tu,v⟩ + ⟨v,v⟩
= t2⟨u,u⟩ − 2t⟨u,v⟩ + ⟨v,v⟩
= ∥u∥2t2 − 2⟨u,v⟩t + ∥v∥2

Since ∥u∥2 > 0, the graph of y = ∥tu−v∥2 is a parabola that opens up. Since ∥tu−v∥2 ≥ 0,
the parabola never dips below the t axis, so the discriminant 4⟨u,v⟩2 − 4∥u∥2∥v∥2 ≤ 0.
Simplifying we get ⟨u,v⟩2 ≤ ∥u∥2∥v∥2, and taking the positive square root of both sides
we get

∣⟨u,v⟩∣ ≤ ∥u∥∥v∥.

Next, suppose u and v are nonzero and ∣⟨u,v⟩∣ = ∥u∥∥v∥. We show that v is a multiple
of u.
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By expanding the following inner product (Definition 7.3, Theorem 7.2, and Defini-
tion 7.4) we see

⟨⟨u,v⟩
∥u∥2

u − v, ⟨u,v⟩
∥u∥2

u − v⟩ = ⟨u,v⟩2

∥u∥4
⟨u,u⟩ − 2⟨u,v⟩

∥u∥2
⟨u,v⟩ + ⟨v,v⟩2

= ⟨u,v⟩2

∥u∥4
∥u∥2 − 2⟨u,v⟩

2

∥u∥2
+ ∥v∥2.

And since ∣⟨u,v⟩∣ = ∥u∥∥v∥, ⟨u,v⟩2 = ∥u∥2∥v∥2. We continue simplifying.

= ∥u∥2∥v∥2

∥u∥4
∥u∥2 − 2∥u∥

2∥v∥2

∥u∥2
+ ∥v∥2

= ∥v∥2 − 2∥v∥2 + ∥v∥2

= 0.

By the definition of inner product (Definition 7.3(d)), therefore,
⟨u,v⟩
∥u∥2 u − v = 0. Thus,

v = ⟨u,v⟩∥u∥2 u, so v is a multiple of u.

Now, suppose v = cu. We show that ⟨u,v⟩ = ∥u∥∥v∥ if c ≥ 0 and that ⟨u,v⟩ = −∥u∥∥v∥ if
c < 0.

To begin, ⟨u,v⟩ = ⟨u, cu⟩ = c⟨u,u⟩ = c∥u∥2. If c ≥ 0, then ⟨u,v⟩ = c∥u∥2 = ∥u∥ (c∥u∥) =
∥u∥ (c

√
⟨u,u⟩) = ∥u∥

√
c2⟨u,u⟩ = ∥u∥

√
⟨cu, cu⟩ = ∥u∥

√
⟨v,v⟩ = ∥u∥∥v∥. If c < 0, then

c = −
√
c2 and so ⟨u,v⟩ = c∥u∥2 = −∥u∥ (

√
c2
√
⟨u,u⟩) = −∥u∥

√
c2⟨u,u⟩ = −∥u∥

√
⟨cu, cu⟩ =

−∥u∥
√
⟨v,v⟩ = −∥u∥∥v∥.

We can now show that the norm of an inner product space, ∥v∥ =
√
⟨v,v⟩, satisfies the

four properties we want all norms to have (see Definition 7.6).

Theorem 7.4. The norm of an inner product space V defined by ∥v∥ =
√
⟨v,v⟩

satisfies the following four properties. If u,v ∈ V and c is a scalar, then

(a) ∥u∥ ≥ 0

(b) ∥u∥ = 0 if and only if u = 0

(c) ∥cu∥ = ∣c∣∥u∥

(d) ∥u + v∥ ≤ ∥u∥ + ∥v∥ (triangle inequality)

Proof

(a) By property (d) of the definition of inner product, ⟨u,u⟩ ≥ 0, so ∥u∥ =
√
⟨u,u⟩ ≥ 0

also.
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(b) Also by property (d), ⟨u,u⟩ = 0 ⇐⇒ u = 0, so

∥u∥ = 0 ⇐⇒
√
⟨u,u⟩ = 0

⇐⇒ ⟨u,u⟩ = 0
⇐⇒ u = 0.

(c) ∥cu∥ =
√
⟨cu, cu⟩ =

√
c2⟨u,u⟩ =

√
c2
√
⟨u,u⟩ = ∣c∣∥u∥ by property (c) of the definition

of inner product.

(d) ∥u + v∥2 = ⟨u + v,u + v⟩
= ⟨u,u⟩ + 2⟨u,v⟩ + ⟨v,v⟩
= ∥u∥2 + 2⟨u,v⟩ + ∥v∥2
≤ ∥u∥2 + 2∣⟨u,v⟩∣ + ∥v∥2since ⟨u,v⟩ ≤ ∣⟨u,v⟩∣
≤ ∥u∥2 + 2∥u∥∥v∥ + ∥v∥2 by the Cauchy-Schwarz inequality

= (∥u∥ + ∥v∥)2

So ∥u + v∥2 ≤ (∥u∥ + ∥v∥)2. Taking the positive square root of both sides we get
∥u + v∥ ≤ ∥u∥ + ∥v∥.

Definition 7.8. As in R2 and R3, a unit vector in an inner product space is a
vector with a norm of 1.

Using property Theorem 7.4(c), it is easy to show that the unit vector that is a positive
multiple of a nonzero v is 1

∥v∥v. It is called the unit vector in the direction of v.

All normed vector spaces have an automatic distance function defined by d(u,v) =
∥u−v∥. We show that this distance function has the four propeties we want all distance
functions to have.

Theorem 7.5. The distance function of a normed vector space V , d(u,v) = ∥u−v∥,
satisfies the following four properties. If u,v,w ∈ V then

(a) d(u,v) ≥ 0

(b) d(u,v) = 0 if and only if u = v

(c) d(u,v) = d(v,u)

(d) d(u,v) ≤ d(u,w) + d(w,v)

Proof

(a) d(u,v) = ∥u − v∥ ≥ 0 by property (a) of a norm (Definition 7.6).
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(b) d(u,v) = ∥u − v∥ = 0 ⇐⇒ u − v = 0 ⇐⇒ u = v by property (b) of a norm.

(c) d(u,v) = ∥u − v∥ = ∥(−1)(v − u)∥ = ∣ − 1∣∥v − u∥ = ∥v − u∥ = d(v,u).

(d) d(u,v) = ∥u − v∥
= ∥(u −w) + (w − v)∥
≤ ∥u −w∥ + ∥w − v∥ by the triangle inequality of norms (Definition 7.6)
= d(u,w) + d(w,v).

The Cauchy-Schwarz inequality provides us with exactly what we need for the following
definition to make sense.

Definition 7.9. Let V be an inner product space. We define the angle between two
nonzero vectors u and v to be

θ = cos−1 ( ⟨u,v⟩
∥u∥∥v∥

) .

The angle between two nonzero vectors u,v ∈ V is that angle θ such that 0 ≤ θ ≤ π and

cos θ = ⟨u,v⟩
∥u∥∥v∥

.

Clearing the denominator we get

⟨u,v⟩ = ∥u∥∥v∥ cos θ.

We continue to define terms for inner product spaces in the way that is analogous to the
definitions from Euclidean 2 and 3 space.

Definition 7.10. Two vectors u and v are orthogonal in an inner product space
V if ⟨u,v⟩ = 0.

Since cos θ = 0 and 0 ≤ θ ≤ π if and only if θ = π
2 , nonzero vectors are orthogonal when

the angle between them is π
2 (that is, when the are perpendicular).

The zero vector is the only vector that is orthogonal to every other vector. It is the only
vector that is orthogonal to itself.

..Example 7.4

The angle between vectors

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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in Euclidean 4-space is

θ = cos−1 ( ⟨u,v⟩
∥u∥∥v∥

) = cos−1 ( u ⋅ v
∥u∥∥v∥

) = cos−1 ( 3√
3
√
6
) = cos−1 ( 1√

2
) = π

4
or 45○.

..

..Example 7.5

In Euclidean 2-space, the vectors e1 = [
1
0
] and e2 = [

0
1
] are orthogonal. The angle

between them is π
2 , but in the inner product space R2 with the inner product ⟨u,v⟩ =

(Au) ⋅ (Au) where

A = [ 1 1
1 2

] .

The angle between them is

θ = cos−1 ( ⟨e1,e2⟩
∥e1∥∥e2∥

)

where

⟨e1,e2⟩ = (Ae1) ⋅ (Ae2) = [
1
1
] ⋅ [ 1

2
] = 3,

∥e1∥ =
√
⟨e1,e1⟩ =

¿
ÁÁÀ[ 1

1
] ⋅ [ 1

1
] =
√
2,

and

∥e2∥ =
√
⟨e2,e2⟩ =

¿
ÁÁÀ[ 1

2
] ⋅ [ 1

2
] =
√
5

so

θ = cos−1 ( 3√
2
√
5
) ≈ 0.32175

or about 18.435○.
..

..Example 7.6

The functions f(t) = t2−t and g(t) = 2t−1 are in C[0,1]. The standard inner product for
this space is ⟨f, g⟩ = ∫

1
0 f(t)g(t) dt. Calculating the inner product of these two functions

we get

⟨f, g⟩ = ∫
1

0
(t2 − t)(2t − 1) dt

= ∫
1

0
(2t3 − 3t2 + t) dt

= t4

2
− t3 + t2

2
∣
1

0

= 1

2
− 1 + 1

2
= 0

So these functions are orthogonal in C[0,1].
..
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..
u

.

v

.

u + v

Figure 7.2 The Pythagorean Theorem in an inner product space:
∥u + v∥2 = ∥u∥2 + ∥v∥2.

Theorem 7.6 (Pythagorean Theorem). If u and v are orthogonal vectors in an
inner product space V , then

∥u + v∥2 = ∥u∥2 + ∥v∥2.

Proof ∥u + v∥2 = ⟨u + v,u + v⟩ by the definition of inner product norm
= ⟨u,u⟩ + 2⟨u,v⟩ + ⟨v,v⟩
= ∥u∥2 + ∥v∥2 since ⟨u,v⟩ = 0.

Next, we define what it means for a vector to be orthogonal to a set of vectors.

Definition 7.11. Let S be a nonempty set of vectors in an inner product space V .
A vector v ∈ V is orthogonal to S, written v ⊥ S, if ⟨v, s⟩ = 0 for every s ∈ S. The
orthogonal complement of S is S⊥ = {v ∈ V ∶ v ⊥ S}.

The above definition says that S⊥ (read S-perp) is the set of all vectors in V that are
orthogonal to all vectors in S.

Theorem 7.7. Let V be an inner product space, S a nonempty subset of V , S a
nonempty finite subset of V , and W a subspace of V .

(a) S⊥ is a subspace of V

(b) W ∩W ⊥ = {0}

(c) S⊥ = (span S)⊥

(d) S ⊆ (S⊥)⊥

(e) If W is finite dimensional, then W = (W ⊥)⊥.

Proof

(a) We use the subspace test.
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1. Show S⊥ ≠ ∅.
▶ Since ⟨0, s⟩ = 0 for all s ∈ S, we have 0 ∈ S⊥ so that S⊥ ≠ ∅.

2. Suppose u,v ∈ S⊥. Show u + v ∈ S⊥.
▶ For all s ∈ S, ⟨u + v, s⟩ = ⟨u, s⟩ + ⟨v, s⟩ = 0 + 0 = 0 since u,v ∈ S⊥. Thus
u + v ∈ S⊥.

3. Suppose v ∈ S⊥ and c is a scalar. Show cv ∈ S⊥.
▶ For all s ∈ S, ⟨cv, s⟩ = c⟨v, s⟩ = c(0) = 0 since v ∈ S⊥. So cv ∈ S⊥.

By the subspace test, S⊥ is a subspace of V .

(b) Since W and W ⊥ are subspaces of V , 0 ∈ W and 0 ∈ W ⊥, so 0 ∈ W ∩W ⊥. If
u ∈W ∩W ⊥, then ⟨u,u⟩ = 0 since u ∈W ⊥ and u ∈W . But ⟨u,u⟩ = 0 implies u = 0 so
that W ∩W ⊥ = {0}.

(c) Since S ⊆ span S, every vector in (span S)⊥ must be orthogonal to every vector
in S, so (span S)⊥ ⊆ S⊥. To see that S⊥ ⊆ (span S)⊥, let v ∈ S⊥ and show v ∈
(span S)⊥. To show v ∈ (span S)⊥, let w ∈ span S and show ⟨v,w⟩ = 0. Since S
is finite, let S = {s1,⋯, sn}. Since w ∈ span S, there exist scalars c1,⋯, cn such that
w = c1s1 +⋯ + cnsn. So

⟨v,w⟩ = ⟨v, c1s1 +⋯ + cnsn⟩
= c1⟨v, s1⟩ +⋯ + cn⟨v, sn⟩
= 0

since v ∈ S⊥. Therefore v ∈ (span S)⊥ and S⊥ = (span S)⊥.

(d) To show S ⊆ (S⊥)⊥, let s ∈ S and show s ∈ (S⊥)⊥. To show s ∈ (S⊥)⊥, let v ∈ S⊥ and
show ⟨s,v⟩ = 0. But, since v ∈ S⊥ and s ∈ S, ⟨v, s⟩ = 0, so ⟨s,v⟩ = ⟨v, s⟩ = 0. Thus
s ∈ (S⊥)⊥ and S ⊆ (S⊥)⊥.

(e) Proved later.

The proof of part (e) in Theorem 7.7 is delayed because we need results from the next
two sections. In fact, it is possible to have W ⫋ (W ⊥)⊥ if W is infinite dimensional.
By the end of this section we are able to show the special case that W = (W ⊥)⊥ in
Euclidean n-space. We step carefully through the development of this intricate topic.
For a clear understanding you must follow it carefully. Theorem 7.8 is the next step in
that development.

Theorem 7.8. Let V be an inner product space and W a subspace of V . If V =
W ⊕W ⊥, then W = (W ⊥)⊥.

Proof By Theorem 7.7(d), W ⊆ (W ⊥)⊥ so we need only show (W ⊥)⊥ ⊆ W . To show
(W ⊥)⊥ ⊆ W , let v ∈ (W ⊥)⊥ and show v ∈ W . Since v ∈ (W ⊥)⊥ ⊆ V = W ⊕W ⊥, there
exists w ∈W and u ∈W ⊥ such that v =w + u. We look at ⟨v,u⟩.
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Since v ∈ (W ⊥)⊥ and u ∈W ⊥, ⟨v,u⟩ = 0. On the other hand, since v =w + u,

⟨v,u⟩ = ⟨w + u,u⟩ = ⟨w,u⟩ + ⟨u,u⟩.

Since u ∈W ⊥ and w ∈W , ⟨w,u⟩ = 0 so ⟨v,u⟩ = ⟨u,u⟩. Equating we get ⟨u,u⟩ = 0 which
implies that u = 0. Thus v =w + u =w + 0 =w, so v ∈W . Therefore W = (W ⊥)⊥.

One wonders whether Theorem 7.8 could indeed be strengthened to “if and only if.”
Again, the answer is no because it is possible to have W = (W ⊥)⊥ but W ⊕W ⊥ ⫋ V if
W is infinite dimensional.

Let A be an m × n matrix. Throughout this text we have seen several different inter-
pretations of the solution set of a system Ax = b. In this section we introduce a new
interpretation of the solution set of the homogeneous system Ax = 0. That is, a new
interpretation of the null space of A.

Let a1,⋯,am be the rows (not columns) of the matrix A. We rewrite the system Ax = 0
to look like ⎡⎢⎢⎢⎢⎢⎣

a1
⋮

am

⎤⎥⎥⎥⎥⎥⎦
x =
⎡⎢⎢⎢⎢⎢⎣

0
⋮
0

⎤⎥⎥⎥⎥⎥⎦
.

Note that in the process of the matrix multiplication Ax we take the dot product of
each row of A with the vector x. So through the act of solving Ax = 0 we are finding all
vectors x such that

a1 ⋅ x = 0

⋮ ⋮
am ⋅ x = 0.

In other words, the null space of A is the orthogonal complement of S = {a1,⋯,am}.
But by Theorem 7.7(c), S⊥ = (span S)⊥, and since span S is the row space of A we have

null A = (row A)⊥

in Euclidean n-space. In addition, since rank A + nullity A = n (Definition 1.8) and
row A ∩ null A = {0} (Theorem 7.7(b))

Rn = row A⊕ null A by Theorem 4.34.

Next, we show that (null A)⊥ = row A. Again by Theorem 7.7(b), null A∩ (null A)⊥ =
{0}, so null A⊕(null A)⊥ is a subspace of Rn of dimension dim(null A)+dim(null A)⊥
(Theorem 4.33). Thus,

dim(null A) + dim(null A)⊥ ≤ n.

But, dim(null A) = nullity A = n − rank A, so

dim(null A)⊥ ≤ rank A.

Also, row A ⊆ ((row A)⊥)⊥ = (null A)⊥ and dim(row A) = rank A, so

rank A ≤ dim(null A)⊥.
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Therefore, dim(null A)⊥ = rank A. So row A is a subspace of (null A)⊥. But these
have the same dimension, so

(null A)⊥ = row A.

We summarize with Theorem 7.9.

Theorem 7.9. Let A be an m × n matrix, row A the row space of A, and null A
the null space of A in Euclidean n-space. Then, the following hold.

(a) null A = (row A)⊥

(b) row A = (null A)⊥

(c) Rn = row A⊕ null A

This shows us how to use matrix techniques to find orthogonal complements in Euclidean
n-space.

..Example 7.7

Let W be the span of
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
in Euclidean 5-space. Find a basis for W ⊥.

Solution We enter the spanning set as rows in the matrix A and solve Ax = 0 to find
a basis for the null space of A.

▶ Row reduce.

[ 1 1 1 2 2 0
1 0 2 1 0 0

] Ð→ [ 1 1 1 2 2 0
0 1 −1 1 2 0

] Ð→ [ 1 0 2 1 0 0
0 1 −1 1 2 0

]

▶ Assign free variables to nonpivot columns and state the parameterized solution.

Let x3 = r, x4 = s, and x5 = t. Then
x1 = −2r − s
x2 = r − s − 2t
x3 = r
x4 = s
x5 = t

So
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ s

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Thus ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
is a basis for W ⊥.

..

Recall that the dimension of the row space of A equals the rank of A and the dimension
of the null space equals the nullity of A which equals n− rank A. In Example 7.7, since
rank A = 2, the dimension of W ⊥ = 5 − 2 = 3.

We finish off this section with a proof of Theorem 7.7(e) in the case where V is Euclidean
n-space.

Theorem 7.10. Let W be a subspace of Euclidean n-space.

(a) Rn =W ⊕W ⊥

(b) W = (W ⊥)⊥

Proof

(a) Let {w1,⋯,wr} be a basis for W and let

A =
⎡⎢⎢⎢⎢⎢⎣

w1

⋮
wr

⎤⎥⎥⎥⎥⎥⎦

be the r×n matrix with rows the vectors w1,⋯,wr. Then W = row A so W ⊥ = null A
and Rn =W ⊕W ⊥ by Theorem 7.9.

(b) Part (a) above and Theorem 7.8 imply W = (W ⊥)⊥.

Later in this chapter we are able to show that this theorem holds for all finite dimensional
subspaces W and not just subspaces of Euclidean n-space. Examples exist, however, in
infinite dimensional vector spaces in which W is infinite dimensional and is a proper
subset of (W ⊥)⊥. These examples are not discussed in this text.
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..

W

.
0
.

W ⊥

(a)In R3, if W is a plane then W ⊥ is a line.

..

W ⊥

.

0

.

W

(b)In R3, if W is a line then W ⊥ is a
plane.

Figure 7.3 Some diagrams illustrating Theorem 7.10 in Euclidean 3-space. In
addition, we have (R3)⊥ = {0} and {0}⊥ = R3.

.... Problem Set 7.2

1. Determine whether the following pairs of vectors are orthogonal in the given inner
product space.

(a)

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−2
1
2

⎤⎥⎥⎥⎥⎥⎦
in Euclidean 3-space.

(b)

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−2
1
2

⎤⎥⎥⎥⎥⎥⎦
in R3 with inner product ⟨u,v⟩ = (Au)⋅(Av) whereA =

⎡⎢⎢⎢⎢⎢⎣

2 1 0
0 1 1
−1 0 1

⎤⎥⎥⎥⎥⎥⎦
.

(c)

⎡⎢⎢⎢⎢⎢⎣

2
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−2
1
2

⎤⎥⎥⎥⎥⎥⎦
in R3 with the weighted Euclidean inner product (see section 7.1,

Exercise 5) with weights w1 = 1, w2 = 2, w3 = 3.

(d) f(x) = x, g(x) = cosx in C[−π/2, π/2] with inner product ⟨f, g⟩ = ∫
π/2
−π/2 f(x)g(x)dx.

2. Find the unit vector in the direction of the given vector in the given inner product
space.

(a) [ 1
2
], in Euclidean 2-space.

(b)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, in Euclidean 4-space.
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(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, in R4 with inner product ⟨u,v⟩ = (Au)⋅(Av) whereA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 0 0
0 0 0 1
0 0 1 −1
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(d) f(x) = x2 in C[0,1] with inner product ⟨f, g⟩ = ∫
1
0 f(x)g(x)dx.

3. Find the angle between the two vectors in the given inner product space.

(a) [ 1√
3
], [ −

√
3

3
], in Euclidean 2-space.

(b)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, in Euclidean 4-space.

(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, in R4 with inner product ⟨u,v⟩ = (Au)⋅(Av) whereA =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 0 0
0 0 0 1
0 0 1 −1
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(d) f(x) = x, g(x) = x2 in C[0,1] with inner product ⟨f, g⟩ = ∫
1
0 f(x)g(x)dx.

4. Determine whether u is orthogonal to S in Euclidean 3-space.

(a) u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

5
2
−3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
4
−3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(b) u =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
, S = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

5
2
−3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
4
−3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(c) u =
⎡⎢⎢⎢⎢⎢⎣

4
−1
3

⎤⎥⎥⎥⎥⎥⎦
, S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
2
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

5. Find two vectors of norm 1 in Euclidean 4-space that are orthogonal to S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
2
5

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

6. Let W = span S. Find a basis for W ⊥ in Euclidean 4-space.

(a) S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
−1
4
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3
2
−7
−4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

(b) S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
3
5
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

7. Verify that dim W +dim W ⊥ = 4 in both parts of Exercise 6 by finding the dimensions
of W and W ⊥.
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8. Let W be the plane x + 2y − 3z = 0 in Euclidean 3-space. Find parametric equations
for W ⊥.

9. Let W be the line x
3 =

y
4 =

z
5 in Euclidean 3-space. Find the equation for W ⊥.

10. Let S =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and A =

⎡⎢⎢⎢⎢⎢⎣

2 0 −1
1 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎦
.

(a) Find a basis for the orthogonal complement of S in Euclidean 3-space.

(b) Find a basis for the orthogonal complement of S in the inner product space R3

with the inner product ⟨u,v⟩ = (Au) ⋅ (Av).

11. Suppose u and v are orthogonal with ∥u∥ = 2 and ∥v∥ = 3 in an inner product space
V . Find d(u,v) in V .

12. Use the Cauchy-Schwarz inequality to prove that for all real numbers a, b, θ we have

(a cos θ + b sin θ)2 ≤ a2 + b2.

13. Prove that for any positive integers m and n such that m ≠ n, the functions fm(x) =
cosmx and fn(x) = cosnx are orthogonal in the inner product space C[0, π] with
inner product ⟨f, g⟩ = ∫

π
0 f(x)g(x)dx. (Hint: cosα cosβ = 1

2[cos(α+β)+ cos(α−β)])

.

7.3 Orthogonal and Orthonormal Bases

Definition 7.12. A set of vectors in an inner product space is called an orthogonal
set if all pairs of distinct vectors from that set are orthogonal. An orthogonal set
in which each vector has a norm of 1 is called an orthonormal set.

..Example 7.8

Let

v1 =
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,v2 =

⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
,v3 =

⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦
,

and S = {v1,v2,v3} in Euclidean 3-space. Since v1 ⋅v2 = 0, v1 ⋅v3 = 0, and v2 ⋅v3 = 0, S
is an orthogonal set.

Each of these vectors has norm of 3. Normalizing each ( 1
∥vi∥vi), let u1 = 1

3v1, u2 = 1
3v2,

u3 = 1
3v3, and T = {u1,u2,u3}. Then T is an orthonormal set.

..

The first thing we observe is this natural generalization of the Pythagorean Theorem.
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Theorem 7.11. If u = v1 +⋯+ vn and {v1,⋯,vn} is an orthogonal set in an inner
product space V , then

∥u∥2 = ∥v1∥2 +⋯ + ∥vn∥2.

Proof ∥u∥2 = ⟨u,u⟩
= ⟨v1 +⋯ + vn,u⟩
= ⟨v1,u⟩ +⋯ + ⟨vn,u⟩
= ⟨v1,v1 +⋯ + vn⟩ +⋯ + ⟨vn,v1 +⋯ + vn⟩
= (⟨v1,v1⟩ + 0 +⋯ + 0) +⋯ + (0 +⋯ + 0 + ⟨vn,vn⟩)
= ∥v1∥2 +⋯ + ∥vn∥2

Next, we observe that a finite orthogonal set of nonzero vectors must be linearly inde-
pendent.

Theorem 7.12. If S = {v1,⋯,vr} is a finite orthogonal set of nonzero vectors in
an inner product space V , then S is linearly independent.

Proof Suppose c1v1 +⋯+ crvr = 0. We show c1 = ⋯ = cr = 0. Since c1v1 +⋯+ crvr = 0,
⟨v1, c1v1 +⋯ + crvr⟩ = ⟨v1,0⟩ = 0. But

⟨v1, c1v1 +⋯ + crvr⟩ = c1⟨v1,v1⟩ + c2⟨v1,v2⟩ +⋯ + cr⟨v1,vr⟩
= c1⟨v1,v1⟩ + 0 +⋯ + 0
= c1⟨v1,v1⟩

since ⟨v1,vk⟩ = 0 for all k ≠ 1.

Thus c1⟨v1,v1⟩ = 0 so that either c1 = 0 or ⟨v1,v1⟩ = 0. But v1 nonzero implies ⟨v1,v1⟩ ≠
0. Thus c1 = 0. Similarly, taking the inner product of both sides of c1v1 + ⋯ + crvr = 0
with vk for k = 2,3,⋯, r shows ck = 0 for k = 2,3,⋯, r. It follows that S is linearly
independent.

Definition 7.13. An orthogonal basis of an inner product space V is a basis for
V that is also an orthogonal set. An orthonormal basis is a basis that is also an
orthonormal set.

..Example 7.9

In Example 7.8, S is an orthogonal set of three nonzero vectors in Euclidean 3-space.
By Theorem 7.12, S is linearly independent, so S is an orthogonal basis for Euclidean
3-space. Similarly, T from Example 7.8 is an orthonormal basis for Euclidean 3-space.

..

..Example 7.10

The standard basis Sn = {e1,⋯,en} is an orthonormal basis for Euclidean n-space.
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..

Let B = {v1,⋯,vn} be a basis for a vector space V . Back in chapter 4 we learned that for
eachw ∈ V there exist unique scalars c1,⋯, cn such thatw = c1v1+⋯+cnvn. Determining
the values of these scalars c1,⋯, cn usually involved solving a system of linear equations.
But if B is an orthogonal basis, there is an easy way to find those scalars without the
need to solve a linear system.

Theorem 7.13. Let {v1,⋯,vn} be an orthogonal basis for an inner product space
V . For each w ∈ V the scalars c1,⋯, cn in

w = c1v1 +⋯ + cnvn

are given by

cj =
⟨w,vj⟩
⟨vj ,vj⟩

for j = 1,⋯, n. So,

w = ⟨w,v1⟩
⟨v1,v1⟩

v1 +⋯ +
⟨w,vn⟩
⟨vn,vn⟩

vn.

Proof ⟨w,vj⟩ = ⟨c1v1 +⋯ + cnvn,vj⟩
= c1⟨v1,vj⟩ +⋯ + cn⟨vn,vj⟩
= cj⟨vj ,vj⟩

since ⟨vi,vj⟩ = 0 for every i ≠ j. But since vj is a basis element, vj ≠ 0, so ⟨vj ,vj⟩ ≠ 0.
Dividing both sides of

⟨w,vj⟩ = cj⟨vj ,vj⟩

by ⟨vj ,vj⟩ we get

cj =
⟨w,vj⟩
⟨vj ,vj⟩

.

Thus,

wj =
⟨w,v1⟩
⟨v1,v1⟩

v1 +⋯ +
⟨w,vn⟩
⟨vn,vn⟩

vn.

..Example 7.11

In Examples 7.8 and 7.9, we saw that if

v1 =
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,v2 =

⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
,v3 =

⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦
,

and S = {v1,v2,v3}, then S is an orthogonal basis. Let w =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
. Find the coordinate

vector [w]S .
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Solution Theorem 7.13 tells us that we can write w as a linear combination of basis
vectors w = c1v1 + c2v2 + c3v3 where

c1 =
⟨w,v1⟩
⟨v1,v1⟩

=

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦

= 1 + 4 + 6
1 + 4 + 4

= 11

9
,

c2 =
⟨w,v2⟩
⟨v2,v2⟩

=

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦

= 2 + 2 − 6
4 + 1 + 4

= −2
9
,

c3 =
⟨w,v3⟩
⟨v3,v3⟩

=

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦

= 2 − 4 + 3
4 + 4 + 1

= 1

9
.

So, w = 11
9 v1 − 2

9v2 + 1
9v3 and

[w]S =
⎡⎢⎢⎢⎢⎢⎣

11/9
−2/9
1/9

⎤⎥⎥⎥⎥⎥⎦
.

..

When dealing with an orthonormal basis, things are even easier.

Theorem 7.14. Let {u1,⋯,un} be an orthonormal basis for an inner product space
V . For each w ∈ V the scalars c1,⋯, cn in

w = c1u1 +⋯ + cnun

are given by
cj = ⟨w,uj⟩

for j = 1,⋯, n. So,
w = ⟨w,u1⟩u1 +⋯ + ⟨w,un⟩vn.
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.. projvw.
v

.

w

Figure 7.4 Like Euclidean 2 and 3-space, projvw = ⟨w,v⟩
⟨v,v⟩ v in inner product spaces.

Proof By Theorem 7.13,

cj =
⟨w,uj⟩
⟨uj ,uj⟩

.

But since {u1,⋯,un} is an orthonormal set, ⟨uj ,uj⟩ = 1. So cj = ⟨w,uj⟩.

Recall from chapter 2 the orthogonal projection of w onto v ≠ 0 for vectors in R2 and
R3 (see Figure 7.4). Orthogonal projections can now be defined for all inner product
spaces and not just vectors in R2 and R3.

Theorem 7.15. Let w be a vector in an inner product space V and v a nonzero
vector in V . There is a unique decomposition of w into the sum of two vectors

w = ŵ + ̂̂w

where ŵ is a multiple of v and ̂̂w is orthogonal to v.

Proof We want to know whether there are such pairs ŵ and ̂̂w and if so, we want to
know how many such pairs.

Since ŵ must be a multiple of v, it has the form xv where x is a scalar. Since w = ŵ+ ̂̂w,
̂̂w =w - ŵ so that ̂̂w must have the form w − xv. Since ̂̂w must be orthogonal to v, we
need to find all values of x such that ⟨w − xv,v⟩ = 0. We solve:

⟨w − xv,v⟩ = 0

⟨w,v⟩ − x⟨v,v⟩ = 0

x = ⟨w,v⟩
⟨v,v⟩

since ⟨v,v⟩ ≠ 0. So there is only one such pair ŵ, ̂̂w, namely ŵ = ⟨w,v⟩
⟨v,v⟩ v and ̂̂w =

w − ⟨w,v⟩
⟨v,v⟩ v.



7.3. Orthogonal and Orthonormal Bases 247

Definition 7.14. If V is an inner product space, w ∈ V , and v is nonzero in V ,
then the orthogonal projection of w onto v is

projvw =
⟨w,v⟩
⟨v,v⟩

v

and the component of w orthogonal to v is w − projvw.

This gives us a nice rewording of Theorem 7.13 that provides some good geometric
intuition.

Theorem 7.13 (restated). Suppose {v1,⋯,vn} is an orthogonal basis for an inner
project space V . For each w ∈ V ,

w = projv1w +⋯ + projvnw.

Next we begin to extend the idea of orthogonal projections from onto a vector to onto
a subspace.

Theorem 7.16. Let W be a subspace of an inner product space V with B =
{w1,⋯,wr} an orthogonal basis for W . Then V =W ⊕W ⊥ and W = (W ⊥)⊥.

Proof Since W ∩W ⊥ = {0} (Theorem 7.7), the sum W +W ⊥ is, in fact, the direct sum
W ⊕W ⊥. So W ⊕W ⊥ is a subspace of V . To show that it equals all of V , let v ∈ V and
show that v ∈W ⊕W ⊥. Let

v̂ = ⟨v,w1⟩
⟨w1,w1⟩

w1 +⋯ +
⟨v,wr⟩
⟨wr,wr⟩

wr

and ̂̂v = v - v̂. Since v̂ is a linear combination of basis vectors of W , v̂ ∈W .

Next, we show that ̂̂v ∈W⊥. For each j = 1,⋯, r,

⟨̂̂v,wj⟩ = ⟨v − v̂,wj⟩
= ⟨v,wj⟩ − ⟨v̂,wj⟩

= ⟨v,wj⟩ − ⟨
⟨v,w1⟩
⟨w1,w1⟩

w1 +⋯ +
⟨v,wr⟩
⟨wr,wr⟩

wr,wj⟩

= ⟨v,wj⟩ −
⟨v,w1⟩
⟨w1,w1⟩

⟨w1,wj⟩ −⋯ −
⟨v,wr⟩
⟨wr,wr⟩

⟨wr,wj⟩

= ⟨v,wj⟩ −
⟨v,wj⟩
⟨wj ,wj⟩

⟨wj ,wj⟩ since ⟨wi,wj⟩ = 0 for all i ≠ j

= ⟨v,wj⟩ − ⟨v,wj⟩
= 0.
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So ̂̂v is orthogonal to w1,w2,⋯, and wr. Thus ̂̂v ∈ B⊥, and since span B =W , B⊥ =W ⊥

by Theorem 7.7(c). So ̂̂v ∈W⊥.

Since ̂̂v = v - v̂, we have v = v̂ + ̂̂v, and since v̂ ∈W and ̂̂v ∈W⊥, we know v ∈W ⊕W ⊥.
Thus V =W ⊕W ⊥. By Theorem 7.8, W = (W ⊥)⊥.

Let’s refresh our memories a bit about sums and direct sums of subspaces. Suppose V
is a vector space with U and W subspaces of V . If V = U +W , that means that every
vector in V can be written as a sum of a vector from U plus a vector from W . That
is, for every v ∈ V there exists u ∈ U and w ∈ W such that v = u +w. If we have a
direct sum V = U ⊕W , that means V = U +W and U ∩W = {0}. That added condition
(U ∩W = {0}) has some important implications. The implication that is most important
to us right now is that the representation v = u+w is unique. That is, there is only one
pair of vectors u ∈ U and w ∈W such that v = u +w (see Theorem 4.21).

Definition 7.15. If V is an inner product space and W is a subspace of V such
that V = W ⊕W ⊥, then each vector v ∈ V has a unique decomposition v = v̂ + ̂̂v
where v̂ ∈W and ̂̂v ∈W⊥. We define the orthogonal projection of v onto W as
projWv = v̂. The vector ̂̂v is called the component of v orthogonal to W .

If W has a finite orthogonal basis, then the proof of Theorem 7.16 tells us exactly how
to calculate v̂ and ̂̂v.

Corollary 7.17. If V is an inner product space and W is a subspace of V with an
orthogonal basis {w1,⋯,wr}, then for all v ∈ V ,

projWv = ⟨v,w1⟩
⟨w1,w1⟩

w1 +⋯ +
⟨v,wr⟩
⟨wr,wr⟩

wr

and the component of v orthogonal to W is

v − projWv.

..Example 7.12

Let

v =
⎡⎢⎢⎢⎢⎢⎣

3
2
1

⎤⎥⎥⎥⎥⎥⎦
,w1 =

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
,w2 =

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

B = {w1,w2} and W = span B. Note that w1 ⋅w2 = 0 so B is an orthogonal basis for the
plane W in Euclidean 3-space spanned by w1 and w2. Find the orthogonal projection
of v onto W and the component of v orthogonal to W .

Solution
v ⋅w1

w1 ⋅w1
= 7

6
and

v ⋅w2

w2 ⋅w2
= 4

3
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So

projWv = 7

6

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
+ 4

3

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

5/2
5/2
1

⎤⎥⎥⎥⎥⎥⎦
and

v − projWv =
⎡⎢⎢⎢⎢⎢⎣

3
2
1

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

5/2
5/2
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1/2
−1/2
0

⎤⎥⎥⎥⎥⎥⎦
.

..

.... Problem Set 7.3

1. For each part (a) - (d) complete the following:
(i) Verify that the set S is an orthogonal set in the given inner product space.
(ii) Construct an orthonormal set by normalizing the vectors in S.
(iii) Determine whether S is a basis for the given inner product space.
(Hint: Theorems 7.12 & 4.32 make this task easier.)

(a) S =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
−4
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in Euclidean 3-space.

(b) S = {[ 1
2
] , [ −7

11
]} in R2 with inner product ⟨u,v⟩ = (Au) ⋅ (Av) where A =

[ 1 1
2 1

].

(c) S =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

in Euclidean 4-space.

(d) S = {p(x), q(x)} where p(x) = x2 −x, and q(x) = 2x−1 in P2 with inner product
⟨f, g⟩ = ∫

1
0 f(x)g(x)dx.

2. Use Theorem 7.13 to find the coordinate vector [w]B for the vector w and the or-
thogonal basis B in the given inner product space.

(a) w =
⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
, B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in Euclidean 3-space.

(b) w =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

in Euclidean 4-space.

(c) w = [ 3
1
], B = {[ 1

2
] , [ −7

11
]} in R2 with inner product ⟨u,v⟩ = (Au) ⋅ (Av)

where A = [ 1 1
2 1

].
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(d) w = x2 + 1, B = {1,2x − 1,6x2 − 6x + 1} in P2 with inner product ⟨f, g⟩ =
∫
1
0 f(x)g(x)dx.

3. Let v =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, w1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, w2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, and let W1 = span{w1},

W2 = span{w1,w2}, and W3 = span{w1,w2,w3} in Euclidean 4-space.

(a) Find the orthogonal projection of v onto w1 and the component of v orthogonal
to w1.

(b) Find the orthogonal projection of v onto W1 and the component of v orthogonal
to W1.

(c) Find the orthogonal projection of v onto W2 and the component of v orthogonal
to W2.

(d) Find the orthogonal projection of v onto W3 and the component of v orthogonal
to W3.

4. Let W be a subspace of Rn. This exercise develops an interesting new way to find
the n×n orthogonal projection matrix P with the property that Px = projWx for all
x ∈ Rn if you have an orthogonal basis for W .

(a) For v,w ∈ Rn, note that vTw = v ⋅w is a scalar and vwT is an n×n matrix. Let
w be a nonzero vector in Rn and let P = ( 1

wTw
)wwT . Show that Px = projwx

for all x ∈ Rn.

(b) Let B = {w1, . . . ,wk} be an orthogonal basis for W , and let

P = ( 1

wT
1 w1
)w1w

T
1 + ⋅ ⋅ ⋅ + (

1

wT
k wk

)wkw
T
k .

Show that Px = projWx for all x ∈ Rn.

(c) Let w =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
. Using the method described in part (a), find the orthogonal

projection matrix P such that Px = projwx.

(d) Let B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and W = spanB. Using the method described in part

(b), find the orthogonal projection matrix P such that Px = projWx.

5. Let W be a subspace of Rn. For each x ∈ Rn we know that there exist unique vectors
x̂ and ˆ̂x such that x̂ is the orthogonal projection of x onto W and ˆ̂x is the component
of x orthogonal to W , so x = x̂ + ˆ̂x. We define the orthogonal transformation of
x across W to be otWx = x̂ − ˆ̂x. This exercise develops an interesting new way to
find R, the n×n orthogonal transformation matrix across W , with the property that
Rx = otWx for all x ∈ Rn if you have an orthogonal basis for W .

(a) Show that otW ⊥x = −otWx.

(b) Show that otWx = 2projWx − x as defined in Exercise 4.

(c) Show that R = 2P − In as defined in Exercise 4.
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(d) Suppose w is nonzero and W = span{w}. Show that the orthogonal transforma-
tion matrix across W is R = ( 2

wTw
)wwT −In. (Note that −R = In−( 2

wTw
)wwT

is the orthogonal transformation matrix across W ⊥. The matrix −R is known
as the Householder matrix.)

(e) Let W be the subspace of R3 from Exercise 4(d). Calculate the orthogonal
transformation matrix in two ways; first by applying part (c) of this exercise,

and second by noting that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
−2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a basis for W ⊥ and applying part (d).

6. Let B = {v1, . . . ,vn} is an orthonormal basis of an inner product space V , and suppose
u = c1v1 + ⋅ ⋅ ⋅ + cnvn. Prove that ∥u∥ =

√
c21 + ⋅ ⋅ ⋅ + c2n.

7. True or false.

(a) Every finite orthogonal set in an inner product space is linearly independent.

(b) Every finite orthonormal set in an inner product space is linearly independent.

(c) Every linearly independent set in an inner product space is an orthogonal set.

(d) If the vectors in an orthogonal set of nonzero vectors are normalized, the result-
ing vectors need not be orthogonal.

(e) The orthogonal projection of a given vector onto a nonzero vector v is the same
as the orthogonal projection of that vector onto a nonzero multiple of v.

(f) Every orthogonal set of n nonzero vectors in Rn is a basis for Rn.

(g) Every n × n matrix with nonzero orthogonal columns is invertible.

(h) Every n × n matrix with nonzero orthogonal rows is invertible.

.

7.4 Gram-Schmidt

In this section, we develop a process – the Gram-Schmidt process – that starts with an
arbitrary basis {w1,⋯,wn} for an n-dimensional inner product space V and generates
an orthogonal basis {v1,⋯,vn} for V . It does this in such a way so that the sets {v1},
{v1,v2} ,⋯,{v1,⋯,vn} are orthogonal sets and span{v1} = span{w1}, span{v1,v2} =
span{w1,w2} ,⋯, span{v1,⋯,vn} = span{w1,⋯,wn}.

The process is recursive. We start by simply letting v1 =w1 and note that trivially {v1}
is an orthogonal set and span{v1} = span{w1}.

Suppose we have defined v1,⋯,vj for j some integer with 1 ≤ j < n, with {v1,⋯,vj} an
orthogonal set, and with span{v1,⋯,vj} = span{w1,⋯,wj}. We show how to construct
vj+1.
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Let Wj = span{v1,⋯,vj}. Since {v1,⋯,vj} is an orthogonal basis for Wj , by Corol-
lary 7.17 we can construct the orthogonal projection of wj+1 onto Wj by

projWjwj+1 =
⟨wj+1,v1⟩
⟨v1,v1⟩

v1 +⋯ +
⟨wj+1,vj⟩
⟨vj ,vj⟩

vj .

We let
vj+1 =wj+1 − projWjwj+1.

We know that by this construction, vj+1 ∈W ⊥
j so that {v1,⋯,vj ,vj+1} is an orthogonal

set.

To show that span{v1,⋯,vj+1} = span{w1,⋯,wj+1}, we take an arbitrary element in
each span and show it is in the other.

▶ Suppose u ∈ span{w1,⋯,wj+1} and show u ∈ span{v1,⋯,vj+1}.

Since u ∈ span{w1,⋯,wj+1}, there exist scalars c1,⋯, cj+1 such that

u = c1w +⋯ + cjwj + cj+1wj+1

= (c1w1 +⋯ + cjwj) + cj+1wj+1.

Since vj+1 =wj+1 − projWjwj+1, we have wj+1 = vj+1 + projWjvj+1. Thus

u = (c1w1 +⋯ + cjwj) + cj+1 (projWjvj+1 + vj+1)
= (c1w1 +⋯ + cjwj + cj+1projWjvj+1) + cj+1vj+1.

Since both c1w1 + ⋯ + cjwj and cj+1projWjvj+1 are in Wj = span{v1,⋯,vj}, their
sum is too. So, there exist scalars d1,⋯, dj such that u = (d1v1 + ⋯djvj) + cj+1vj+1 ∈
span{v1,⋯,vj+1}. So span {w1,⋯,wj+1} ⊆ span{v1,⋯,vj+1}.

▶ Suppose u ∈ span{v1,⋯,vj+1} and show u ∈ span{w1,⋯,wj+1}.

Since u ∈ {v1,⋯,vj+1}, there exist scalars c1,⋯, cj+1 such that

u = c1v1 +⋯ + cjvj + cj+1vj+1.

Since vj+1 =wj+1 − projWjwj+1,

u = c1v1 +⋯ + cjvj + cj+1 (wj+1 − projWjwj+1)
= (c1v1 +⋯ + cjvj − cj+1projWjwj+1) + cj+1wj+1.

Since both c1v1 + ⋯ + cjvj and cj+1projWjwj+1 are in Wj = span{w1,⋯,wj}, their
difference is too. So there exist scalars d1,⋯, dj such that u = (d1w1 +⋯ + djwj) +
cj+1wj+1 ∈ span{w1,⋯,wj+1}.

It follows that span{v1,⋯,vj+1} = span{w1,⋯,wj+1}.

By induction, {v1,⋯,vj} is an orthogonal set and span{v1,⋯,vj} = span{w1,⋯,wj}
for j = 1,⋯, n. In particular, for j = n, {v1,⋯,vn} is an orthogonal basis for V . This
proves Theorem 7.18.
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Theorem 7.18 (Gram-Schmidt process). Suppose V is an n-dimensional in-
ner product space with {w1,⋯,wn} a basis for V . The following process
generates an orthogonal basis {v1,⋯,vn} for V in such a way that the sets
{v1}, {v1,v2} ,⋯,{v1,⋯,vn} are orthogonal sets and span{v1} = span{w1},
span {v1,v2} = span{w1,w2} ,⋯, span{v1,⋯,vn} = span{w1,⋯,wn}. Start by
letting v1 =w1. If v1,⋯,vj have been defined, define

vj+1 =wj+1 − (
⟨wj+1,v1⟩
⟨v1,v1⟩

v1 +⋯ +
⟨wj+1,vj⟩
⟨vj ,vj⟩

vj) .

The Gram-Schmidt process is quite tedious to carry out by hand. You should carry
out the process a small number of times for a relatively small value of n to see that
you understand the process. After that, software like Maple can carry out the tedious
calculations for you.

Part of the problem with the messy and tedious calculations is that they involve fractions.
When working by hand you can make the calculations easier by replacing each vj with
a nonzero multiple of vj that eliminates all fractions in the entries. We illustrate in the
following example.

..Example 7.13

Let

w1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,w2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
2
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,w3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and W = span{w1,w2,w3}. Use the Gram-Schmidt process to find an orthogonal basis
for the 3-dimensional subspace W in Euclidean 4-space.

Solution
▶ Let

v1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

▶ Compute

w2 −
w2 ⋅ v1

v1 ⋅ v1
v1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
2
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 3

6

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1/2
2
−1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
To avoid fractions (i.e. for simplicity) in our calculation, we define v2 by

v2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
4
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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▶ Compute

w3 −
w3 ⋅ v1

v1 ⋅ v1
v1 −

w3 ⋅ v2

v2 ⋅ v2
v2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− (−2)
6

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

− 6

18

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
4
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−6/3
3/3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2/3
1/3
0
−1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1/3
−4/3
1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2/3
−4/3
−1/3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Again, for simplicity, we avoid fractions by defining

v3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
−4
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

▶ An orthogonal basis for W is

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
4
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
−4
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

For an orthonormal basis, simply normalize each vector in the basis:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1√
6

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
1
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
1√
18

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
4
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
1√
21

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
−4
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

..

It is important to realize that the results of the Gram-Schmidt process depend on which
order you proceed through the original basis. A different orthogonal basis for W results
if we begin with w2 or w3.

The important theoretical result that comes from the Gram-Schmidt process is that
it shows us that all finite-dimensional subspaces W of an inner product space V have
orthogonal bases. We can, therefore, improve the wording of Theorem 7.16.

Theorem 7.19. If W is a finite-dimensional subspace of an inner product space V ,
then V =W ⊕W ⊥ and W = (W ⊥)⊥.
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Theorem 7.19 tells us that we can take the orthogonal projection of any vector in V onto
W if W is finite dimensional.

.... Problem Set 7.4

1. The set B = {[ 1
2
] , [ 4

1
]} is a basis for Euclidean 2-space.

(a) Apply the Gram-Schmidt process to B to obtain an orthogonal basis for Eu-
clidean 2-space.

(b) Normalize the vectors in the new basis obtained in (a) to form an orthonormal
basis for Euclidean 2-space.

(c) Apply the Gram-Schmidt process to B to obtain an orthogonal basis for Eu-
clidean 2-space but start the process with the vector you did not start with in
(a). Note that this results in a a different orthogonal basis of Euclidean 2-space.

2. Let B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

5
7
4

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, and let W = span{B} in Euclidean 3-space. Apply the

Gram-Schmidt process on B to construct an orthonormal basis for W .

3. B =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, and let W = span{B} in Euclidean 4-space. Apply the

Gram-Schmidt process on B to construct an orthogonal basis for W .

4. Let B = {x − 1, x2 + x + 1} in the inner product space P2 with inner product ⟨f, g⟩ =
∫
1
0 f(x)g(x)dx, and let W = spanB.

(a) Apply the Gram-Schmidt process to B to obtain an orthogonal basis for the
subspace W .

(b) Normalize the vectors in the new basis obtained in (a) to form an orthonormal
basis for W .

5. True or false.

(a) Every finite-dimensional subspace of inner product space has an orthonormal
basis.

(b) Depending on the order in which the Gram-Schmidt process is applied to the
vectors of a basis, the resulting vectors need not be linearly independent.

(c) Depending on the order in which the Gram-Schmidt process is applied to the
vectors of a basis, the resulting vectors need not be orthogonal.

(d) Depending on the order in which the Gram-Schmidt process is applied to the
vectors of a basis of a subspace, the resulting vectors need not span the same
subspace as the original basis.
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(e) Depending on the order in which the Gram-Schmidt process is applied to the
vectors of a basis, it can result in different orthogonal bases of the same inner
product space.

.

7.5 Least Squares

It frequently arises in applications that you need to find a “solution” to an inconsistent
system Ax = b. We place quotation marks around the word solution because, of course,
an inconsistent system has no solution. When a genuine solution isn’t possible we want
something that is close.

Recall from chapter 4 that the column space of a matrix A equals the set of all vectors
b such that Ax = b is consistent. Whenever we have an inconsistent system Ax = b, it is
because b is not in the column space of A. The idea behind the method of least squares
is to change the system Ax = b to Ax = b̂ where b̂ is chosen from the column space of
A to be as close to b as possible. Figure 7.5a illustrates the situation that arises when
A is a 3 × 2 matrix with a two-dimensional column space but b is not in col A.

..

col A

.
0
.

b̂

.

b

(a)

..

W

.
0
.

b̂

.

w

.

b

(b)

Figure 7.5 b̂ is chosen from the column space of A to be as close to b as possible.

It appears from this diagram that we wish to choose b̂ to be the orthogonal projection
of b onto col A, because b̂ looks like the vector in col A that is closest to b.

This is a good example to show how geometric intuition can point you in the right
direction and even suggest a good proof.
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Theorem 7.20. Let W be a finite dimensional subspace of an inner product space
V . For each b ∈ V , let b̂ be the orthogonal projection of b onto W . For all w ∈W
such that w ≠ b̂,

∥b − b̂∥ < ∥b −w∥.

That is, b̂ is the unique vector in W that is closest to b.

Proof Since b̂ = projWb, b − b̂ is the component of b orthogonal to W so b − b̂ ∈W ⊥.
Let w ∈W such that w ≠ b̂. Clearly

b −w = (b − b̂) + (b̂ −w).

Since b̂,w ∈W , their difference b̂ −w ∈W , and since b − b̂ ∈W ⊥, the two vectors b − b̂
and b̂ −w are orthogonal (see Figure 1.3b). By the Pythagorean theorem

∥b −w∥2 = ∥b − b̂∥2 + ∥b̂ −w∥2.

Since w ≠ b̂, ∥b̂ −w∥2 > 0. Thus

∥b̂ −w∥2 > ∥b − b̂∥2

which, in turn, implies
∥b − b̂∥ < ∥b −w∥.

Definition 7.16. Let Ax = b be an m × n system of equations. A least squares
solution to Ax = b is a solution to the system Ax = b̂ where b̂ is the orthogonal
projection of b onto the column space of A in Euclidean m-space.

If the columns of A form an orthgonal set, then the nonzero columns of A form an
orthogonal basis for col A. We could then find b̂ and solve Ax = b̂. If the columns of
A are not mutually orthogonal, we could still find a basis for col A in the columns of
A and use the Gram-Schmidt process to find an orthogonal basis for col A. Though
this approach works, the Gram-Schmidt process is very tedious. Fortunately, there is a
better way.

Recall that the column space of A equals the row space of AT (col A = row AT ),
and that the null space of AT is the orthogonal complement of the row space of AT

(null AT = (row AT )⊥), so null AT = (col A)⊥.

Theorem 7.21. Let Ax = b be an m×n system of equations. A vector x̂ is a least
squares solution to Ax = b if and only if x̂ is a solution to the system ATAx = ATb.
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Proof Let b̂ be the orthogonal projection of b onto col A.

The vector x̂ is a least

squares solution to Ax = b ⇐⇒ Ax̂ = b̂
⇐⇒ b −Ax̂ = b − b̂
⇐⇒ b −Ax̂ ∈ (col A)⊥ (since b − b̂ ∈ (col A)⊥)
⇐⇒ b −Ax̂ ∈ null AT (since null AT = (col A)⊥)
⇐⇒ AT (b −Ax̂) = 0
⇐⇒ ATAx̂ = ATb.

Definition 7.17. The system ATAx = ATb is called the normal system or the
normal equations of the system Ax = b.

..Example 7.14

Find the least squares solution to the system

x + 2y = 1
3x − y = 2
2x + y = 3

Solution The matrix form is

⎡⎢⎢⎢⎢⎢⎣

1 2
3 −1
2 1

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

The normal system is

[ 1 3 2
2 −1 1

]
⎡⎢⎢⎢⎢⎢⎣

1 2
3 −1
2 1

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] = [ 1 3 2

2 −1 1
]
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
which simplifies to

[ 14 1
1 6

] [ x
y
] = [ 13

3
] .

This normal system is probably most easily solved using Cramer’s rule.

x =
∣ 13 1

3 6
∣

∣ 14 1
1 6

∣
= 78 − 3
84 − 1

= 75

83

y =
∣ 14 13

1 3
∣

∣ 14 1
1 6

∣
= 42 − 13

84 − 1
= 29

83
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So the least squares solution to the system is x = 75
83 , y =

29
83 . We can check to see whether

it is a solution to the original system,

⎡⎢⎢⎢⎢⎢⎣

1 2
3 −1
2 −1

⎤⎥⎥⎥⎥⎥⎦
[ 75/83
29/83 ] =

1

83

⎡⎢⎢⎢⎢⎢⎣

75 + 58
225 − 29
150 + 29

⎤⎥⎥⎥⎥⎥⎦
= 1

83

⎡⎢⎢⎢⎢⎢⎣

133
196
179

⎤⎥⎥⎥⎥⎥⎦
,

and see that it is not. However, it can be checked that 1
83

⎡⎢⎢⎢⎢⎢⎣

133
196
179

⎤⎥⎥⎥⎥⎥⎦
is the projection of

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
onto the column space of

⎡⎢⎢⎢⎢⎢⎣

1 2
3 −1
2 −1

⎤⎥⎥⎥⎥⎥⎦
.

..

The term “least squares,” in the least squares solution to Ax = b, comes from the
fact that b̂ = projcol Ab is the closest vector in the column space of A to b under the
Euclidean inner product.

Suppose x̂ is a least squares solution to the system Ax = b. Then Ax̂ = b̂. For any
x ∈ Rn that is not a least squares solution, let w = Ax. By Theorem 7.20 we know that
∥b − b̂∥ < ∥b −w∥. Under the Euclidean inner product this translates to

√
(b1 − b̂1)2 +⋯ + (bm − b̂m)2 <

√
(b1 −w1)2 +⋯ + (bm −wm)2.

Squaring both sides gives

(b1 − b̂1)2 +⋯ + (bm − b̂m)2 < (b1 −w1)2 +⋯ + (bm −wm)2.

So the sum of these squared differences is least when x̂ is used as an approximate solution
to Ax = b, hence “least squares.”

Linear Regression and Least Squares

Imagine some scientific experiment that produces n ordered pairs (x1, y1),⋯, (xn, yn)
with the x coordinate independent and the y coordinate dependent. Suppose that when
graphed, the points tend to line up. Perhaps they don’t line up exactly due to some
round-off or other experimental error. Still, we wish to use this experimental data to
find m and b in an equation y = mx + b of a line that comes close to these data points.
Statisticians use the term linear regression to describe a variety of techniques for
finding such approximating lines, but the method of least squares is the method most
used to accomplish this task.

If the points lined up exactly in a nonvertical line then there are real numbers m and b
that would make each of the following equations true.

mx1 + b = y1

⋮
mxn + b = yn
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Since the ordered pairs (x1, y1),⋯, (xn, yn) are known but m and b are unknown in this
case, these equations form an n × 2 system of linear equations with matrix form

⎡⎢⎢⎢⎢⎢⎣

x1 1
⋮ ⋮
xn 1

⎤⎥⎥⎥⎥⎥⎦
[ m

b
] =
⎡⎢⎢⎢⎢⎢⎣

y1
⋮
yn

⎤⎥⎥⎥⎥⎥⎦
.

If the points truly do line up, then this system could be solved for m and b, though it
would be easier to find m and b using just two of the points. If, however, the points
do not exactly line up, then the system is inconsistent and if you just used two points
to determine m and b, your answers would vary depending on which pair of points you
choose.

You could, however, use the method of least squares to solve the above system. It
produces values form and b that minimize the sum of the squares of the vertical distances
between the line y = mx + b and the data points, as illustrated in Figure 7.6. This is
sometimes called the line of best fit.

.. x.

y

..

y =mx + b

.

(x2, y2)

.

(x6, y6)

.

(x1, y1)

Figure 7.6 Values of m and b in the line y =mx + b minimize the sum of the squared
vertical distances between the line and the data points (x1, y1),⋯, (x6, y6).

Let x and y be the column vectors of all n of the x and y coordinates from the n data
points and let 1 be the column vector of n 1’s. Let A be the n× 2 matrix [ x 1 ]. We
wish to find the least squares solution to the system

A [ m
b
] = y.

Its normal system is ATA [ m
b
] = ATy which can also be seen as

[ x ⋅ x x ⋅ 1
1 ⋅ x 1 ⋅ 1 ] [

m
b
] = [ x ⋅ y

1 ⋅ y ] .
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Using Cramer’s rule, we solve for m and b:

m =
∣ x ⋅ y x ⋅ 1
1 ⋅ y 1 ⋅ 1 ∣

∣ x ⋅ x x ⋅ 1
1 ⋅ x 1 ⋅ 1 ∣

= (x ⋅ y)(1 ⋅ 1) − (x ⋅ 1)(1 ⋅ y)
(x ⋅ x)(1 ⋅ 1) − (x ⋅ 1)(1 ⋅ x)

=
n

n

∑
i=1

xiyi − (
n

∑
i=1

xi)(
n

∑
i=1

yi)

n
n

∑
i=1

x2i − (
n

∑
i=1

xi)
2

b =
∣ x ⋅ x x ⋅ y
1 ⋅ x 1 ⋅ y ∣

∣ x ⋅ x x ⋅ 1
1 ⋅ x 1 ⋅ 1 ∣

= (x ⋅ x)(1 ⋅ y) − (x ⋅ y)(1 ⋅ x)
(x ⋅ x)(1 ⋅ 1) − (x ⋅ 1)(1 ⋅ x)

=
(

n

∑
i=1

x2i )(
n

∑
i=1

yi) − (
n

∑
i=1

xiyi)(
n

∑
i=1

xi)

n
n

∑
i=1

x2i − (
n

∑
i=1

xi)
2

Though the formulas get too messy for Cramer’s rule, this same idea can be used with
two independent variables and one dependent variable to find a plane of best fit. Indeed,
given data with k independent variables and one dependent variable, we can use the
method of least squares to find the hyperplane of best fit with the equation

y =m1x1 +⋯ +mkxk + b.

Though exceptions exist and are easily constructed, we have good reason to expect that
an m × n matrix A with entries that are somehow randomly selected has columns that
span Rm if m ≤ n and that are linearly independent if m ≥ n. This tends to produce
systems, Ax = b, with infinitely many solutions if the system is underdetermined (m < n,
i.e. A is short and fat), with one unique solution if the system is square (m = n), and
with no solution if the system is overdetermined (m > n, i.e. A is tall and skinny).

We do not go into those reasons here, but because of them it is most frequently the case
that the method of least squares is applied to overdetermined systems. It is frequently
the case, therefore, when seeking a least squares solution to a system Ax = b, that the
columns of A are linearly independent.

Theorem 7.22. Let A be an m × n matrix. The matrix ATA is invertible if and
only if the columns of A are linearly independent.

Proof Note that ATA is an n × n matrix. Note too that

ATAx = 0 ⇐⇒ Ax ∈ null AT

⇐⇒ Ax ∈ (row AT )⊥

⇐⇒ Ax ∈ (col A)⊥ .

But Ax ∈ col A and (col A) ∩ (col A)⊥ = {0}, so ATAx = 0 ⇐⇒ Ax = 0.

The matrix ATA is invertible ⇐⇒ ATAx = 0 has only the trivial solution

⇐⇒ Ax = 0 has only the trivial solution (from above)
⇐⇒ the columns of A are linearly independent.
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The implications of Theorem 7.22 on least squares solutions are immediate.

Corollary 7.23. Let A be an m × n matrix. The system Ax = b has one unique
least squares solution if and only if the columns of A are linearly independent.

Since all linear systems have at least one least squares solution, the system Ax = b
has infinitely many least squares solutions if and only if the columns of A are linearly
dependent. But because mostly we use the method of least squares on overdetermined
systems (m > n) we can reasonably expect to have one unique least squares solution
most of the time.

We end this section with a method for finding orthogonal projection matrices.

Definition 7.18. Let W be a subspace of Euclidean m space. An m×m matrix P is
an orthogonal projection matrix onto W if Pv equals the orthogonal projection
of v onto W for all v ∈ Rm.

Let x̂ be a least squares solution to the m × n system Ax = b. Recall that this means
x̂ is a solution to the system Ax = b̂ where b̂ = projcol Ab and x̂ is a solution to the
normal system ATAx = ATb.

Theorem 7.24. Let A be an m × n matrix. If the columns of A are linearly in-

dependent, then the matrix P = A (ATA)−1AT is an orthogonal projection matrix
onto the column space of A.

Proof Let v ∈ Rn. We show that Pv = projcol Av. Since the columns of A are linearly
independent, the system Ax = v has one unique least squares solution x̂ and Ax̂ = v̂
where v̂ = projcol Av and ATAx̂ = ATv. Since the columns of A are linearly independent,

ATA is invertible so x̂ = (ATA)−1ATv. Multiplying both sides by A, we get

Ax̂ = A (ATA)−1ATv,

and since Ax̂ = v̂ = projcol Av,

projcol Av = A (ATA)−1ATv.

Thus P = A (ATA)−1AT is an orthogonal projection matrix onto col A.
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..Example 7.15

Let W be the plane through the origin 3x + 2y + z = 0 in Euclidean three space. Find a
projection matrix onto W .

Solution Since z = −3x − 2y, we let x = s and y = t so

x = s
y = t
z = −3s − 2t

.

Let A =
⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
−3 −2

⎤⎥⎥⎥⎥⎥⎦
. The plane W is the column space of A, and

ATA = [ 1 0 −3
0 1 −2 ]

⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
−3 −2

⎤⎥⎥⎥⎥⎥⎦
= [ 10 6

6 5
] .

So

(ATA)−1 = 1

14
[ 5 −6
−6 10

] .

Thus

P =
⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
−3 −2

⎤⎥⎥⎥⎥⎥⎦
( 1

14
[ 5 −6
−6 10

])[ 1 0 −3
0 1 −2 ]

= 1

14

⎡⎢⎢⎢⎢⎢⎣

5 −6 −3
−6 10 −2
−3 −2 13

⎤⎥⎥⎥⎥⎥⎦
.

..

.... Problem Set 7.5

1. Find the normal system (in simplified matrix form) for each of the following systems.

(a)

⎡⎢⎢⎢⎢⎢⎣

1 1
2 3
4 0

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

1
−1
1

⎤⎥⎥⎥⎥⎥⎦ (b)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
0 −1
1 −1
−2 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[ x
y
] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c) x + y = 3

2x + y = 2
x + 2y = −1
x − y = 1

(d) x + y − z = 1
2x + z = 0
x − y + z = −1
x + 2y − z = 1
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2. Find the least squares solution to each system given in Exercise 1.

3. Find the least squares solution to the system Ax = b where A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
1 2 3
2 3 5
1 3 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (Hint: Use Maple to help solve the normal system.)

4. Find the line of best fit for each of the following lists of points (x, y).

(a) (1,2), (2,4), (3,5)
(b) (−1,4), (0,2), (2,1), (5,0)

5. Find the plane of best fit for the following list of points (x, y, z): (1,1,0), (1,0,1),
(0,1,2), (1,2,−1).

6. Let W = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in Euclidean 3-space. Find the orthogonal projection

matrix onto W .

7. Find the orthogonal projection matrix onto the plane x − y + 2z = 0 in Euclidean
3-space.

8. Use the orthogonal projection matrix from Exercise 7 to find the distance between
the point (1,2,3) and the plane x − y + 2z = 0.

9. True or false.

(a) The least squares solution to Ax = b is the vector x that is as close to b as
possible.

(b) The least squares solution to Ax = b is the vector x that makes Ax as close to
b as possible.

(c) Any solution to ATAx = ATb is a least squares solution to Ax = b.
(d) The vector x̂ is a least squares solution to Ax = b if and only if Ax̂ is the

orthogonal projection of b onto the column space of A.

(e) The normal system of the system Ax = b is inconsistent if the column of A are
linearly dependent.

(f) If the normal system of the system Ax = b has infinitely many solutions, then
the columns of A are linearly dependent.

(g) Normal systems are always consistent.

(h) If Ax = b is consistent then the solution set to the system and the set of least
squares solutions to the system are identical.

.
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7.6 Inner Product Space Isomorphisms and Orthogonal
Matrices

Recall that a linear transformation is a function between two vector spaces that preserves
vector addition and multiplication by scalars. An isomorphism is a linear transformation
that is both one to one and onto. Next, we define an inner product space isomorphism
as an isomorphism that also preserves inner products.

Definition 7.19. Let V and W be inner product spaces with inner products ⟨, ⟩V
and ⟨, ⟩W respectively. An inner product space isomorphism (IPSI) is a one-
to-one onto function T ∶ V Ð→W that satisfies the following three properties.
For all u,v ∈ V and for all scalars c,

1. T (u + v) = T (u) + T (v)

2. T (cu) = cT (u)

3. ⟨T (u), T (v)⟩W = ⟨u,v⟩V

Theorem 7.25. Let T ∶ V Ð→W be a linear transformation from one inner product
space V onto another W , and suppose {v1,⋯,vn} is an orthonormal basis for V .
The following are equivalent:

(a) T is an inner product space isomorphism.

(b) {T (v1),⋯, T (vn)} is an orthonormal basis for W .

(c) For all u ∈ V , ∥T (u)∥W = ∥u∥V .

Proof ((a) Ô⇒ (b)) If T is an IPSI, then T is an isomorphism, so {T (v1),⋯, T (vn)} is a
basis forW by Theorem 5.11. The following two calculations show that {T (v1),⋯, T (vn)}
is an orthonormal set.

(i). For each i = 1,⋯, n, ∥T (vi)∥W =
√
⟨T (vi), T (vi)⟩W =

√
⟨vi,vi⟩V = ∥vi∥V = 1.

(ii). For each i ≠ j, ⟨T (vi), T (vj)⟩W = ⟨vi,vj⟩V = 0.

Therefore, {T (v1),⋯, T (vn)} is an orthonormal basis for W .

((b) Ô⇒ (c)) Let u ∈ V . Since {v1,⋯,vn} is a basis for V , there exist scalars c1,⋯, cn
such that u = c1v1 +⋯ + cnvn, and since T is linear we also have T (u) = c1T (v1) +⋯ +
cnT (vn). Since both {c1v1,⋯, cnvn} and {c1T (v1),⋯, cnT (vn)} are orthogonal sets, by
Theorem 7.11, Theorem 7.4(c), and the definition of orthonormal set,

∥u∥2V = ∥c1v1∥2V +⋯ + ∥cnvn∥2V
= c21∥v1∥2V +⋯ + c2n∥vn∥2V
= c21 +⋯ + c2n
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and

∥T (u)∥2W = ∥c1T (v1)∥2W +⋯ + ∥cnT (vn)∥2W
= c21∥T (v1)∥2W +⋯ + c2n∥T (vn)∥2W
= c21 +⋯ + c2n.

So, ∥T (u)∥W = ∥u∥V .

((c) Ô⇒ (a)) Let u ∈ ker T . Then T (u) = 0 so ∥u∥V = ∥T (u)∥W = 0. Thus u = 0 and
ker T = {0}. This tells us that T is one-to-one by Theorem 5.10(a) and we are given
that T is onto, so T is an isomorphism. To see that T preserves inner product note that
in any inner product space, ⟨u,v⟩ = 1

4∥u + v∥
2 − 1

4∥u − v∥
2 (section 7.1, exercise 10) so

⟨u,v⟩V =
1

4
∥u + v∥2V −

1

4
∥u − v∥2V

and

⟨T (u), T (v)⟩W =
1

4
∥T (u) + T (v)∥2W −

1

4
∥T (u) − T (v)∥2W .

But since T is linear T (u) ± T (v) = T (u ± v) and since T preserves norm,

⟨T (u), T (v)⟩W = 1

4
∥T (u) + T (v)∥2W −

1

4
∥T (u) − T (v)∥2W

= 1

4
∥T (u + v)∥2W −

1

4
∥T (u − v)∥2W

= 1

4
∥u + v∥2V −

1

4
∥u − v∥2V

= ⟨u,v⟩V .

Thus T is an inner product space isomorphism.

Theorem 7.25 gives us three equivalent ways of thinking about inner product space
isomorphisms. That is, an inner product space isomorphism is a surjective linear trans-
formation between inner product spaces that

(a) preserves inner product,

(b) maps an orthonormal basis to an orthonormal basis, and

(c) preserves norm.

We recall that we can construct a linear transformation between two finite-dimensional
vector spaces by mapping a basis of the domain to elements in the codomain and then
extending linearly (Theorem 5.2, Definition 5.5). Part (b), therefore, tells us how to
construct an inner product space isomorphism between finite-dimensional inner product
spaces. Simply map an orthonormal basis of the domain onto an orthonormal basis of
the codomain in a one-to-one manner (they must be the same dimension to do this) and
then extend linearly.

We have discussed coordinate vectors earlier. The assignment of coordinate vectors to
an n-dimensional vector space V involves creating a mapping T ∶ V Ð→ Rn by taking
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an ordered basis B = {v1,⋯,vn} of V and assigning T (vi) = ei from the standard ba-
sis Sn = {e1,⋯,en} of Rn and then extending linearly. Thus, T ∶ V Ð→ Rn given by
T (u) = [u]B is an isomorphism from V to Rn. If, in addition, V is an inner product
space, then Theorem 7.25 implies that T is an inner product space isomorphism between
V and Euclidean n-space if and only if B is an orthonormal basis since Sn is an orthonor-
mal basis of Rn under the dot product. The following is an immediate consequence of
Theorem 7.25.

Theorem 7.26. Let V be an inner product space with B = {v1,⋯,vn} an ordered
orthonormal basis of V . For all u,v ∈ V ,

(a) ⟨u,v⟩V = [u]B ⋅ [v]B.

(b) ∥u∥V = ∥ [u]B ∥.

(c) ∥u − v∥V = ∥ [u]B − [v]B ∥.

Here we are most interested in the case where V is Euclidean n-space. In this case,
finding coordinate vectors amounts to performing a change of basis. Recall that if
B = {v1,⋯,vn} is an ordered basis of Rn and P is the n × n matrix P = [v1⋯vn], then
for all u ∈ Rn, P [u]B = u and P −1u = [u]B. the matrices P and P −1 are called change
of basis matrices from B to Sn and from Sn to B respectively.

Now if B is an orthonormal basis for Euclidean n-space, then P and P −1 are very special
matrices indeed.

Theorem 7.27. Suppose U is an n × n matrix. The following are equivalent.

(a) The columns of U form an orthonormal basis for Euclidean n-space.

(b) UT = U−1.

(c) The rows of U form an orthonormal basis for Euclidean n-space.

Proof Let u1,⋯,un be the columns of U , so U = [u1⋯un]. Note that

UTU =
⎡⎢⎢⎢⎢⎢⎣

u1 ⋅ u1 ⋯ u1 ⋅ un

⋮ ⋮
un ⋅ u1 ⋯ un ⋅ un

⎤⎥⎥⎥⎥⎥⎦
.

Clearly, the columns of U form an orthonormal basis for Euclidean n-space if and only if
UTU = In. To see that part (a) is equivalent to part (b), UT = U−1 ⇐⇒ UTU = In ⇐⇒
the columns of U form an orthonormal basis for Euclidean n-space. To see that part
(c) is equivalent to part (b), UT = U−1 ⇐⇒ UUT = In ⇐⇒ the rows of U form an
orthonormal basis for Euclidean n-space.

Definition 7.20. An n×n matrix U is called an orthogonal matrix if UT = U−1.



268 Chapter 7. (Real) Inner Product Spaces

In light of Theorem 7.27, it would seem to be more appropriate to name a matrix like
this an orthonormal matrix. Traditionally, these matrices are called orthogonal matrices,
so we stick with this tradition.

..Example 7.16

The following are all examples of orthogonal matrices:

[ 3/5 −4/5
4/5 3/5 ] ,

⎡⎢⎢⎢⎢⎣

1√
3

2√
3

2√
3
− 1√

3

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0 1 0
0 0 −1
1 0 0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 1/2 −1/2
1/2 1/2 −1/2 1/2
1/2 −1/2 1/2 1/2
−1/2 1/2 1/2 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

..

..Example 7.17 Rotations and Reflections in R2

It is easy enough to characterize all orthogonal 2 × 2 matrices. Let U be an arbitrary
orthogonal 2 × 2 matrix. The first column can be any unit vector. Since they all lie on

the unit circle, they all have the form [ cos θ
sin θ

] where θ represents the angle they make

with the positive x axis.

.. x.

y

..

[ cos θ
sin θ

]

..

[ − sin θ
cos θ

]

..

[ sin θ
− cos θ ]

.
θ

Figure 7.7 There are two unit vectors orthogonal to an arbitrary unit vector in R2.

Once that column of U is selected, there are only two choices left for the second column
since it too must be a unit vector and it must also be orthogonal to the first. One such

vector comes from rotating e2 by the angle θ, [ − sin θ
cos θ

] and the other is its negative.

So,

U = [ cos θ − sin θ
sin θ cos θ

] or U = [ cos θ sin θ
sin θ − cos θ ] .

The first you recognize as the rotation matrix Rθ. The second is a reflection matrix that
reflects a vector across the line through the origin that makes an angle of θ/2 with the
positive x axis.

..
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Theorem 7.28. Let A and B be orthogonal n × n matrices.

(a) A−1 is an orthogonal matrix.

(b) AB is an orthogonal matrix.

(c) detA = ±1.

Proof

(a) To prove A−1 is orthogonal from the definition we show (A−1)T = (A−1)−1. But

(A−1)T = (AT )−1 (Theorem 1.12(c))

= (A−1)−1 since A is orthogonal.

(b) Since inverse and transpose have the socks-shoes property, (AB)T = BTAT =
B−1A−1 = (AB)−1. Therefore, AB is orthogonal.

(c) Since detA = detAT and detATA = (detAT ) (detA), 1 = det I = det (ATA) =
(detAT ) (detA) = (detA)2. Since (detA)2 = 1, detA = ±1.

Since the mapping x ↦ Ax can be thought of as a change of basis mapping when A is
square and invertible, and change of basis mappings are isomorphisms, the next theorem
follows immediately from Theorem 7.25.

Theorem 7.29. The following are equivalent.

(a) Ax ⋅Ay = x ⋅ y for every x,y ∈ Rn.

(b) A is an orthogonal matrix.

(c) ∥Ax∥ = ∥x∥ under the Euclidean norm for every x ∈ Rn.

..Example 7.18

The sets

A =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2/3
2/3
−1/3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2/3
−1/3
2/3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1/3
2/3
2/3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1/
√
3

1/
√
3

1/
√
3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1/
√
2

0

−1/
√
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1/
√
6

−2/
√
6

1/
√
6

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
are orthonormal bases for Euclidean 3-space (verify!). Find the change of basis matrix
U such that U [v]B = [v]A for all v ∈ R3.

Solution We find U in two ways.
▶ Let

A =
⎡⎢⎢⎢⎢⎢⎣

2/3 2/3 −1/3
2/3 −1/3 2/3
−1/3 2/3 2/3

⎤⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎣

1/
√
3 1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6

1/
√
3 −1/

√
2 1/

√
6

⎤⎥⎥⎥⎥⎥⎦
.
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Then A and B are change of basis matrices such that A [v]A = v and B [v]B = v. So
ATv = [v]A and BTv = [v]B. Thus ATB [v]B = AT (B [v]B) = ATv = [v]A so ATB is
the change of basis matrix we seek.

U = ATB =
⎡⎢⎢⎢⎢⎢⎣

2/3 2/3 −1/3
2/3 −1/3 2/3
−1/3 2/3 2/3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/
√
3 1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6

1/
√
3 −1/

√
2 1/

√
6

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

1/
√
3 −1/

√
2 −1/

√
6

⎤⎥⎥⎥⎥⎥⎦
.

▶ Let a1,a2,a3 represent the first, second, and third vectors in A, so A = {a1,a2,a3}.
Similarly for B = {b1,b2,b3}. Using Theorem 5.21 we see that

U = [[b1]A , [b2]A , [b3]A] .

Since A is an orthonormal basis,

b1 = (b1 ⋅ a1)a1 + (b1 ⋅ a2)a2 + (b1 ⋅ a3)a3 = 1√
3
a1 +

1√
3
a2 +

1√
3
a3

b2 = (b2 ⋅ a1)a1 + (b2 ⋅ a2)a2 + (b2 ⋅ a3)a3 = 1√
2
a1 + 0a2 −

1√
2
a3

b3 = (b3 ⋅ a1)a1 + (b3 ⋅ a2)a2 + (b3 ⋅ a3)a3 = − 1√
6
a1 +

2√
6
a2 −

1√
6
a3

So,

[b1]A =
⎡⎢⎢⎢⎢⎢⎣

1/
√
3

1/
√
3

1/
√
3

⎤⎥⎥⎥⎥⎥⎦
, [b2]A =

⎡⎢⎢⎢⎢⎢⎣

1/
√
2

0

−1/
√
2

⎤⎥⎥⎥⎥⎥⎦
, [b3]A =

⎡⎢⎢⎢⎢⎢⎣

−1/
√
6

2/
√
6

−1/
√
6

⎤⎥⎥⎥⎥⎥⎦
yielding

U =
⎡⎢⎢⎢⎢⎢⎣

1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

1/
√
3 −1/

√
2 −1/

√
6

⎤⎥⎥⎥⎥⎥⎦
.

..

.... Problem Set 7.6

1. Let B = {[ 1/
√
2

1/
√
2
] , [ −1/

√
2

1/
√
2
]}, B′ = {[ 4/5

3/5 ] , [
−3/5
4/5 ]}, and S2 = {[

1
0
] , [ 0

1
]}

(a) Verify that B, B′, and S2 are orthonormal bases for Euclidean 2-space.

(b) Find the change of basis matrix from B to S2.
(c) Find the change of basis matrix from S2 to B.
(d) Find the change of basis matrix from B′ to S2.
(e) Find the change of basis matrix from S2 to B′.
(f) Find the change of basis matrix from B to B′.
(g) Find the change of basis matrix from B′ to B.
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2. Repeat Exercise 1 with the following three sets. Replace S2 with S3.

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

3

⎡⎢⎢⎢⎢⎢⎣

−1
2
2

⎤⎥⎥⎥⎥⎥⎦
,
1

15

⎡⎢⎢⎢⎢⎢⎣

2
11
−10

⎤⎥⎥⎥⎥⎥⎦
,
1

15

⎡⎢⎢⎢⎢⎢⎣

14
2
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, B′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

5

⎡⎢⎢⎢⎢⎢⎣

3
4
0

⎤⎥⎥⎥⎥⎥⎦
,
1

25

⎡⎢⎢⎢⎢⎢⎣

−12
9
20

⎤⎥⎥⎥⎥⎥⎦
,
1

25

⎡⎢⎢⎢⎢⎢⎣

−16
12
−15

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

and S3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Any ordered orthonormal basis B = {b1 . . .bn} of Euclidean n-space can be used to
generate a rectangular coordinate system in Rn. As noted earlier, the correspond-
ing n × n matrix U = [b1 . . .bn] is an orthogonal matrix, so det(U) = ±1 (Theo-
rem 7.28(c)). This tells us that the ordered orthonormal bases of Euclidean n-space
can be divided into two groups, those for which their corresponding orthogonal ma-
trix has a determinant of 1, and those for which this determinant is −1. An ordered
orthonormal basis from one group can easily be altered to form one from the other
group simply be swapping the positions of two vectors in the order of the ordered
basis or by replacing one vector in the basis with its negative.

In R3 this distinction manifests itself geometrically by producing right-handed and
left-handed rectangular coordinate systems. A right-handed coordinate system is
produced if the thumb of your right hand points in the direction of the third basis
vector when your curled fingers move from the tip of the first basis vector at the
knuckles 90○ to the tip of the second vector at the finger tips. The standard ordered
basis S3 = {e1,e2,e3} generates a right-handed coordinate system and det(I3) = 1,
but {e2,e1,e3} generates a left-handed coordinate system and det[e2e1e3] = −1.

3. Identify the following ordered orthonormal bases of Euclidean 3-space as generating
right-handed or left-handed coordinate systems.

(a) B1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

7

⎡⎢⎢⎢⎢⎢⎣

3
6
2

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

2
−3
6

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

−6
2
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(b) B2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

7

⎡⎢⎢⎢⎢⎢⎣

3
6
2

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

2
−3
6

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

6
−2
−3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c) B3 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

7

⎡⎢⎢⎢⎢⎢⎣

3
6
2

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

−6
2
3

⎤⎥⎥⎥⎥⎥⎦
,
1

7

⎡⎢⎢⎢⎢⎢⎣

2
−3
6

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

4. For a nonzero vector n in Euclidean 3-space, the Householder matrix, I3 − 2
n⋅nnn

T ,
is an easy way to construct a standard reflection matrix across the plane n ⋅ x = 0.
Let Q = I3 − 2

n⋅nnn
T .

(a) Show that Q is a symmetric matrix.

(b) Show that Q is an orthogonal matrix.

(c) Show that Qn = −n.
(d) Show that Qx = x for all x in the plane n ⋅ x = 0.
(e) Use parts (c) and (d) of this exercise to identify two of the eigenvalues of Q.
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(f) Fill in the blanks in the following statement:
The eigenvalue identified in part (c) must have geometric multiplicity of at least

, thus its algebraic multiplicity must be at least .

(g) Fill in the blanks in the following statement:
The eigenvalue identified in part (d) must have geometric multiplicity of at least

, thus its algebraic multiplicity must be at least .

(h) Counting algebraic multiplicities, what is the maximum number of eigenvalues
a 3 × 3 matrix can have, and how many of them have you identified above for
Q?

(i) What are the eigenvalues of Q, and what are their algebraic and geometric
multiplicities?

(j) What is the determinant of Q, and do the columns of Q generate a right-handed
or a left-handed coordinate system for Euclidean 3-space? (Hint: Use Theo-
rem 6.12.)

(k) Find the standard matrix that reflects a vector in Euclidean 3-space orthogonally
across the plane x + 2y + 3z = 0.

5. A rotation function on Euclidean 3-space is a function that maps each vector x to
the vector obtained by rotating x by a fixed angle θ about a fixed line through the
origin (called the axis of rotation). Building on Definition 5.3, the rotation function
that rotates each vector x counterclockwise (when looking toward the origin from a
perspective on the positive x axis) by an angle θ about the x axis is, in fact, a matrix
transformation, and its standard matrix is

Rθ =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎦
Rotation matrices that describe rotations around other axes can be obtained from
this one by performing a similarity transformation (change of basis) on Rθ. Special
care must be taken to accomplish this. Suppose you wish to find a rotation matrix A
that rotates each vector x counterclockwise by an angle θ around the axis span{v0}
for some v0 ≠ 0 from the perspective of looking towards the origin from a positive
multiple of v0. Choose an ordered orthonormal basis B = {b1,b2,b3} as follows:

(a) The vector b1 is a positive multiple of v0.

(b) The ordered orthonormal basis B must generate a right-handed coordinate sys-
tem.

(c) Let U = [b1b2b3].

Since U is an orthogonal matrix, UT = U−1, so UTAU = Rθ, thus A = URθU
T .

(a) Show that Rθ is an orthogonal matrix.

(b) Find the determinant of Rθ.

(c) Show that A is an orthogonal matrix.

(d) Find the determinant of A.

(e) Find the rotation matrix that rotates the vectors in Euclidean 3-space counter-
clockwise (when viewed from a perspective on the positive x axis looking toward
the origin) about the x axis by 120○.
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(f) Find the rotation matrix that rotates the vectors in Euclidean 3-space coun-
terclockwise (when viewed from a perspective on a positive multiple of v0 axis

looking toward the origin) about span{v0} by 120○ where v0 =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
. Hint:

Do the matrix multiplication on Maple. Finish by simplifying your answer on
Maple (Maple command: simplify(U.R.U%T )).

(g) Explain geometrically what is happening that makes this result from (f) so
simple.

.

7.7 Symmetric Matrices and Orthogonal Diagonalizability

Recall that if A is an n × n matrix, then A defines a linear operator, T ∶ Rn Ð→ Rn,
defined by T (x) = Ax relative to the standard basis Sn = {e1,⋯,en}. If B = {v1,⋯,vn} is
another basis for Rn, then P = [v1⋯vn] is the change of basis matrix from B to Sn, and
the matrix M = P −1AP is said to be similar to A and describes the same linear operator,
T , as A but relative to the new basis B. That is, Ax = y, if and only if M [x]B = [y]B.

Recall too that B is a basis of Rn of eigenvectors of A if and only if M is a diagonal
matrix. When such a basis B exists, we say A is diagonalizable.

In this section we are especially interested in when B is an orthonormal basis of eigen-
vectors of A. When this occurs, we say A is orthogonally diagonalizable. Though it may
seem that this situation is quite esoteric, it turns out that this has important applications
throughout the sciences and mathematics.

In a very striking result, we show that a matrix A is orthogonally diagonalizable if and
only if A is symmetric (AT = A). We develop this result in the remainder of this section.

Lemma 7.30. If v1 and v2 are eigenvectors associated with distinct eigenvalues of
a symmetric matrix A, then v1 is orthogonal to v2.

Proof Let λ1 and λ2 be distinct eigenvalues of A associated with eigenvectors v1 and
v2 respectively. Since the eigenvalues are distinct, λ1 ≠ λ2. Note that

vT
1 Av2 = vT

1 (Av2)
= vT

1 (λ2v2)
= λ2 (vT

1 v2)
= λ2 (v1 ⋅ v2)
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On the other hand,

vT
1 Av2 = (vT

1 A)v2

= (Av1)T v2

= (λ1v1)T v2

= λ1 (vT
1 v2)

= λ1 (v1 ⋅ v2)

Thus, λ2 (v1 ⋅ v2) = λ1 (v1 ⋅ v2). So

0 = λ2 (v1 ⋅ v2) − λ1 (v1 ⋅ v2)
= (λ2 − λ1) (v1 ⋅ v2)

Solving we get λ1 = λ2 or v1 ⋅ v2 = 0. Since λ1 ≠ λ2, v1 ⋅ v2 = 0 hence v1 is orthogonal to
v2.

Lemmas 7.31 and 7.32 are presented without proof. Their proofs require the development
of complex inner product spaces.

Lemma 7.31. The eigenvalues of a real symmetric matrix are all real numbers.

Lemma 7.32. The geometric multiplicity of each eigenvalue of a real symmetric
matrix equals its algebraic multiplicity.

Theorem 7.33. A real n × n matrix is orthogonally diagonalizable if and only if it
is symmetric.

Proof Suppose A is orthogonally diagonalizable. Then, there exists an orthogonal
matrix U such that UTAU = D where D is a diagonal matrix. Solving for A, we get
A = UDUT since U is orthogonal. Thus

AT = (UDUT )T = UDTUT = UDUT = A

since diagonal matrices are symmetric. Therefore A is symmetric.

Suppose A is symmetric. Since all the eigenvalues of A are real (Lemma 7.31), counting
algebraic multiplicities, A has n real eigenvalues. Since the geometric multiplicities equal
the algebraic multiplicities, A has n linearly independent eigenvectors (Lemma 7.32).
Thus A is diagonalizable (Theorem 6.8). Each eigenspace is a finite-dimensional sub-
space of Euclidean n-space, so by applying the Gram-Schmidt process if necessary,
each eigenspace has an orthonormal basis. Since eigenvectors associated with distinct
eigenvalues are orthogonal (Lemma 7.30), the union of the orthonormal bases for each
eigenspace forms an orthonormal basis for all of Euclidean n-space. Therefore, A is
orthogonally diagonalizable.
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..Example 7.19

Which of the following matrices are orthogonally diagonalizable? For those that are
orthogonally diagonalizable, find a diagonal matrix D and an orthogonal matrix U such
that D = UTAU .

(a)

⎡⎢⎢⎢⎢⎢⎣

−1 5 2
5 −1 2
2 2 2

⎤⎥⎥⎥⎥⎥⎦

(b)

⎡⎢⎢⎢⎢⎢⎣

11 2 10
2 14 −5
10 −5 −10

⎤⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎣

1 1 2
−1 2 4
2 4 3

⎤⎥⎥⎥⎥⎥⎦

Solution

(a) Since this matrix is symmetric, it is orthogonally diagonalizable. We start by cal-
culating its characteristic polynomial to find its eigenvalues.

det(A − λI) =
RRRRRRRRRRRRRR

−1 − λ 5 2
5 −1 − λ 2
2 2 2 − λ

RRRRRRRRRRRRRR
= (−1 − λ)(−1 − λ)(2 − λ) + 20 + 20 − 4(−1 − λ) − 25(2 − λ) − 4(−1 − λ)
= −λ3 + 36λ
= −λ(λ2 − 36)
= λ(λ + 6)(λ − 6)

There are three eigenvalues λ = 0,−6,6. Because A is symmetric we know it is orthog-
onally diagonalizable. A diagonal matrix D we seek has 0, -6, and 6 as its diagonal
entries in no particular order. To find an orthogonal matrix U that diagonalizes A,
we must find eigenvectors corresponding to each eigenvalue.
▶λ1 = 6
Row reduction

⎡⎢⎢⎢⎢⎢⎣

−7 5 2
5 −7 2
2 2 −4

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −2
5 −7 2
−7 5 2

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 −2
0 −12 12
0 12 −12

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
gives that

v1 =
⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
is an eigenvector associated with eigenvalue λ1 = 6.
▶λ2 = −6
Row reduction

⎡⎢⎢⎢⎢⎢⎣

5 5 2
5 5 2
2 2 8

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 4
5 5 2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 4
0 0 −18
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
gives that

v2 =
⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
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is an eigenvector associated with eigenvalue λ2 = −6.
▶λ3 = 0
Row reduction

⎡⎢⎢⎢⎢⎢⎣

−1 5 2
5 −1 2
2 2 2

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −5 −2
0 24 12
0 12 6

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −5 −2
0 2 1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 −5 −2
0 1 1/2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 0 1/2
0 1 1/2
0 0 0

⎤⎥⎥⎥⎥⎥⎦
gives that

v3 =
⎡⎢⎢⎢⎢⎢⎣

1
1
−2

⎤⎥⎥⎥⎥⎥⎦
is an eigenvector associated with eigenvalue λ3 = 0.
Notice that the three eigenvectors are orthogonal. This must occur because they
correspond to distinct eigenvalues of a symmtric matrix (Lemma 7.30). To find U we
need only normalize. The normalized eigenvectors are

u1 =
1√
3

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,u2 =

1√
2

⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
,u3 =

1√
6

⎡⎢⎢⎢⎢⎢⎣

1
1
−2

⎤⎥⎥⎥⎥⎥⎦
so

U =

⎡⎢⎢⎢⎢⎢⎢⎣

1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

⎤⎥⎥⎥⎥⎥⎥⎦

.

With the eigenvectors in this order in U we obtain

UTAU =
⎡⎢⎢⎢⎢⎢⎣

6 0 0
0 −6 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

(b) Again, with this symmetric matrix we find its eigenvalues

det(A − λI) =
RRRRRRRRRRRRRR

11 − λ 2 10
2 14 − λ −5
10 −5 −10 − λ

RRRRRRRRRRRRRR
= (11 − λ)(14 − λ)(−10 − λ) − 100 − 100 − 100(14 − λ) − 4(−10 − λ) − 25(11 − λ)
= −1540 + 250λ − 10λ2 − 154λ + 25λ2 − λ3 − 1835 + 129λ
= (−λ3 + 15λ2) + (225λ − 3375)
= −λ2(λ − 15) + 225(λ − 15)
= −(λ − 15)(λ2 − 225)
= −(λ − 15)2(λ + 15)

The eigenvalues are λ = 15,−15. The multiplicity of λ = 15 is two, so it has a two-
dimensional eigenspace (Lemma 7.32). We now find a basis of eigenvectors.
▶λ1 = −15
Row reduction

⎡⎢⎢⎢⎢⎢⎣

26 2 10
2 29 −5
10 −5 5

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 −1 1
2 29 −5
26 2 10

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 −1 1
0 30 −6
0 15 −3

⎤⎥⎥⎥⎥⎥⎦
Ð→
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⎡⎢⎢⎢⎢⎢⎣

2 −1 1
0 5 −1
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 −1 1
0 1 −1/5
0 0 0

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 0 4/5
0 1 −1/5
0 0 0

⎤⎥⎥⎥⎥⎥⎦
gives that

v1 =
⎡⎢⎢⎢⎢⎢⎣

−2
1
5

⎤⎥⎥⎥⎥⎥⎦
is an eigenvector associated with eigenvalue λ1 = −15.
▶λ2 = 15
Row reduction ⎡⎢⎢⎢⎢⎢⎣

−4 2 10
2 −1 −5
10 −5 −25

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

2 −1 −5
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
yields two free variables. Let x = s and z = t. Then,

x = s
y = 2s − 5t
z = t

so that

v2 =
⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
and v3 =

⎡⎢⎢⎢⎢⎢⎣

0
−5
1

⎤⎥⎥⎥⎥⎥⎦
are linearly independent eigenvectors associated with eigenvalue λ2 = 15.
Notice that both eigenvectors associated with λ2 = 15 are orthogonal to the eigen-
vector associated with λ1 = −15. Again, this must occur because they are associated
with distinct eigenvalues of a symmetric matrix. This time, however, we cannot get
by with simply normalizing the three vectors to form U . This is because the two
linearly independent eigenvectors we chose for a basis of the eigenspace for λ2 = 15
do not happen to be orthogonal. We use the Gram-Schmidt process to replace them
with an orthogonal basis for the same eigenspace.
▶ Let

v1 =
⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
,v2 =

⎡⎢⎢⎢⎢⎢⎣

0
−5
1

⎤⎥⎥⎥⎥⎥⎦
.

Gram-Schmidt gives

w1 = v1 =
⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
and w2 = v2 −

(v2 ⋅w1)
(w1 ⋅w1)

w1 =
⎡⎢⎢⎢⎢⎢⎣

0
−5
1

⎤⎥⎥⎥⎥⎥⎦
− −10

5

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
.

So we choose

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦
as an orthogonal basis for this eigenspace. This gives us

an orthogonal basis for Euclidean 3-space of eigenvectors of A:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−2
1
5

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
−1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.
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We normalize each and make the normalized vectors the columns of U .

U =

⎡⎢⎢⎢⎢⎢⎢⎣

− 2√
30

1√
5

2√
6

1√
30

2√
5
− 1√

6
5√
30

0 1√
6

⎤⎥⎥⎥⎥⎥⎥⎦

With this choice of U we get

UTAU =
⎡⎢⎢⎢⎢⎢⎣

−15 0 0
0 15 0
0 0 15

⎤⎥⎥⎥⎥⎥⎦
.

(c) This matrix is not symmetric, so it is not orthogonally diagonalizable.

..

.... Problem Set 7.7

1. For each of the following symmetric matrices A, find a diagonal matrix D and an
orthogonal matrix U such that D = UTAU .

(a) [ 1 2
2 4

] (b) [ 4 3
3 4

] (c) [ 4 3
3 −4 ] (d) [ 1 1

1 −1 ]

(e)

⎡⎢⎢⎢⎢⎢⎣

0 2 −2
2 −1 0
−2 0 1

⎤⎥⎥⎥⎥⎥⎦
(f)

⎡⎢⎢⎢⎢⎢⎣

3 −1 −1
−1 3 −1
−1 −1 3

⎤⎥⎥⎥⎥⎥⎦
(g)

⎡⎢⎢⎢⎢⎢⎣

2 2 −10
2 11 8
−10 8 5

⎤⎥⎥⎥⎥⎥⎦

(h)

⎡⎢⎢⎢⎢⎢⎣

3 0 −4
0 5 0
−4 0 −3

⎤⎥⎥⎥⎥⎥⎦
(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2. Let A be a symmetric n × n matrix, and let B be any m × n matrix. Prove that the
following matrices are symmetric: BTB, BBT , BABT .

3. Let u be a unit vector in Euclidean n-space and let P = uuT .

(a) Show that Px is the orthogonal projection of x onto u. (Hint: See Exercise 4(a)
in section 7.3.)

(b) Show that P is a symmertic matrix.

(c) Show that P 2 = P .

(d) Show that u is an eigenvector of P by finding its corresponding eigenvalue.

(e) Find the other eigenvalue of P , describe its eigenspace, and give the dimension
of that eigenspace.
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4. Let A be an n×n symmetric matrix. Prove that if x and y are in Euclidean n-space,
then (Ax) ⋅ y = x ⋅ (Ay).

5. True or false. Let A be an n × n matrix with real entries.

(a) If A is an orthogonally diagonalizable matrix, then A must be symmetric.

(b) If A is a symmetric matrix, then A must be orthogonally diagonalizable.

(c) If A is symmetric, then all of the eigenvalues of A are real numbers.

(d) If all the eigenvalues of A are real, then A is symmetric.

(e) If A is symmetric, then all the eigenvalues of A are distinct.

(f) If all the eigenvalues of A are distinct and real, then A is symmetric.

(g) If AT = A, Au = 2u, and Av = 3v, then u ⋅ v = 0.
(h) If A is symmetric, then A cannot have 0 as an eigenvalue.

(i) If A is orthogonal, then A cannot have 0 as an eigenvalue.

(j) If A is symmetric, then the sum of the dimensions of all the eigenspaces of A
must equal n.

.



..

.. 8 Applications

8.1 Quadratic Forms

An algebraic expression of the form

ax2 + by2 + cxy

where x and y are variables and a, b, and c are constants is called a quadratic form in
the variables x and y. Similarly, an expression of the form

ax2 + by2 + cz2 + dxy + exz + fyz

is a quadratic form in the variables x, y, and z. In general, a quadratic form in the
variables x1,⋯, xn is an algebraic expression that can be written as a sum of terms of
the form axixj where a is a constant and i ≤ j (when i = j the term is written ax2i ).

Quadratic forms have many applications in geometry (conic sections), engineering (de-
sign criteria, optimization, and signal processing), statistics, physics, and economics.

Quadratic forms in two variables can be used to define functions Q(x, y) = ax2+by2+cxy
with graphs z = Q(x, y) that can be viewed in three space. We shall see that the graphs
fall into three basic categories depending on the constants a, b, and c (see Figure 8.1).

(a) Elliptic paraboloid. (b) Hyperbolic paraboloid. (c) Parabolic cylinder.

Figure 8.1

For various constants a, b, and c, the graphs may be turned upside down and for a =
b = c = 0 the graph of z = Q(x, y) = 0 is the trivial (and uninteresting) xy−plane in R3.
We don’t have enough geometric dimensions to view graphs of quadratic forms in more
than two variables.

About the only place in this course where we have encountered variables squared is with
norms (∥u∥2 = x21 + ⋯ + x2n). But we shall see that matrices can be used to describe
quadratic forms and that an analysis involving the orthogonal diagonalization of sym-
metric matrices can be used to understand quadratic forms and their applications. The
following example introduces us to this inquiry.

280
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..Example 8.1

Let x = [ x
y
] and B = [ 6 3

1 5
]. The expression xTBx can be simplified as follows.

xTBx = [ x y ] [ 6 3
1 5

] [ x
y
]

= [ x y ] [ 6x + 3y
x + 5y ]

= x(6x + 3y) + y(x + 5y)
= 6x2 + 3xy + xy + 5y2

= 6x2 + 5y2 + 4xy

..

Notice that the expression xTBx in Example 8.1 simplifies to the quadratic form 6x2 +
5y2 + 4xy. We find it helpful to reverse this process. That is, to start with a quadratic
form and end with an expression of the form xTBx where B is a square matrix.

By following the calculations in Example 8.1, it is easy to see that the coefficients of x2

and y2 (i.e. 6 and 5) come from the diagonal entries of B, and the coefficient of xy (i.e.
4) comes from the off-diagonal entries (i.e. 3+1 = 4). With this in mind, it appears that

there are many matrices besides B = [ 6 3
1 5

] that result in the same quadratic form

6x2 + 5y2 + 4xy. The matrices

[ 6 0
4 5

] , [ 6 1
3 5

] , [ 6 2
2 5

] , and [ 6 7
−3 5

]

would all work. Notice too that of all the matrices that work, only [ 6 2
2 5

] is symmetric.

Because of the amazing property of orthogonal diagonalizability we choose the symmetric
matrix.

To express the quadratic form 6x2 + 5y2 + 4xy in matrix form xTAx with A symmetric,

let A = [ 6 2
2 5

].

..Example 8.2

Express the quadratic form x2 − 2y2 + 3z2 + 4xy + 5xz − 6yz in the form xTAx where A
is symmetric.

Solution Let

A =
⎡⎢⎢⎢⎢⎢⎣

1 2 5
2

2 −2 −3
5
2 −3 3

⎤⎥⎥⎥⎥⎥⎦
.

Note that the coefficients of x2, y2, and z2 (1, −2, and 3) are the diagonal entries of A.
The coefficient of xy is 4. Half of 4 is 2 and both the (1,2) and the (2,1) entries of A
are 2. Similarly, both the (1,3) and the (3,1) entries of A are 5

2 because the coefficient
of xz is 5, and both the (2,3) and (3,2) entries of A are -3 because the coefficient of yz
is -6. You can check to see that xTAx equals the given quadratic form.
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..

The terms of a quadratic form that involve two different variables are called cross-
product terms. To write a quadratic form xTAx, where A is symmetric, each diagonal
entry aii equals the coefficient of x2i in the quadratic form, and each off-diagonal aij and
aji (i < j) equals half of the coefficient of xixj in the quadratic form.

Because of the power that orthogonal diagonalizability brings to bear on our quadratic
forms, we always choose A symmetric when writing them as xTAx.

Quadratic forms in which all cross-product terms are 0 are particularly easy to under-
stand. For one thing, when written as xTAx, the cross-product terms are all 0 if and
only if A is, in fact, a diagonal matrix.

In the two-variable case it is easy to see that when the cross-product term is 0, the graph
of z = Q(x, y) where Q(x, y) = ax2 + by2 is

(a) an elliptical paraboloid if a and b have the same signs,

(b) a hyperbolic paraboloid if a and b have opposite signs, and

(c) a parabolic cylinder if either a or b (but not both) is 0.

The next example illustrates how orthogonal diagonalization can be used to determine
the graph of a quadratic form.

..Example 8.3

Determine the shape of the graph of Q(x, y) = 3x2 + 4xy.

Solution Rewriting,

Q(x, y) = [ x y ] [ 3 2
2 0

] [ x
y
] .

Let

A = [ 3 2
2 0

] .

Since A is symmetric (by design), A is orthogonally diagonalizable. To diagonalize A,
we find the eigenvalues and eigenvectors of A. The characteristic polynomial of A is

p(λ) = det(A − λI)

= ∣ 3 − λ 2
2 −λ ∣

= (3 − λ)(−λ) − 4
= λ2 − 3λ − 4
= (λ − 4)(λ + 1)

So, the eigenvalues are λ1 = 4 and λ2 = −1.
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We now find eigenvectors. For λ1 = 4, we solve (A − 4I)x = 0. By row reduction,

[ −1 2
2 −4 ] Ð→ [

1 −2
0 0

] .

Letting y = t gives x = 2t and the eigenspace

E4 = span{[
2
1
]} .

For λ2 = −1, since A is symmetric, the eigenvectors for λ2 = −1 must be orthogonal to

the eigenvector [ 2
1
] in the other eigenspace. Thus

E−1 = span{[
−1
2
]} .

The matrix

P = [ 2 −1
1 2

]

would diagonalize A, but for a matrix that orthogonally diagonalizes A, we must nor-
malize the eigenvectors. So let

U = 1√
5
[ 2 −1
1 2

] .

Then

UTAU =D = [ 4 0
0 −1 ] .

To use this information, we perform a change of basis. Let

u1 =
1√
5
[ 2
1
] and u2 =

1√
5
[ −1

2
]

form our new basis and let x′ = [ x′

y′
] be the new coordinates of x = [ x

y
] relative to

the new ordered orthonomal basis {u1,u2}. So x = Ux′ and x′ = UTx. This amounts to
a rotation of the original axes by θ = tan−1(1/2) ≈ 26.6○ (see Figure 8.2).

If z = Q(x, y) = 3x2 + 4xy, to write z in terms of the new coordinate system we have

z = 3x2 + 4xy

= [ x y ] [ 3 2
2 0

] [ x
y
]

= xTAx

= (Ux′)TA(Ux′) since x = Ux′

= (x′TUT )A(Ux′)

= x′
T (UTAU)x′

= x′
T
Dx′ since UTAU =D

= [ x′ y′ ] [ 4 0
0 −1 ] [

x′

y′
]

= 4(x′)2 − (y′)2
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.. x.

y

..

x′

.

y′

.. θ

Figure 8.2 A new coordinate system in which to view the quadratic form
Q(x, y) = 3x2 + 4xy.

Since this is a quadratic form with a cross-product term of 0, we see that the graph is a
hyperbolic paraboloid because the coefficients of (x′)2 and (y′)2 have opposite signs.

..

Example 8.3 is rather long and involved. It is presented that way in order to review
concepts developed earlier and to present a thorough step-by-step explanation as to how
each conclusion is obtained. Once that example is thoroughly studied and understood,
it should be noted that the conclusions of this example can be made with considerably
less work.

..Example 8.3 (stripped down version)

Determine the shape of the graph of Q(x, y) = 3x2 + 4xy.

Solution Since

Q(x, y) = [ x y ] [ 3 2
2 0

] [ x
y
] ,

let

A = [ 3 2
2 0

] .

Being symmetric, A must have real eigenvalues. Therefore, under a new coordinate
system that orthogonally diagonalizes A, z = xTAx can be rewritten z = λ1x

′2 + λ2y
′2

where λ1 and λ2 are the eigenvalues of A. Since detA = −4, λ1 and λ2 have opposite
sign, and the graph of z = xTAx is a hyperbolic paraboloid.

..

To state the result of Example 8.3 even more succintly: The graph of z = xTAx is
a hyperbolic paraboloid because detA < 0. Applying this reasoning to cases where
detA > 0 and detA = 0 as well we obtain Theorem 8.4.
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Theorem 8.1. Let A be a symmetric nonzero 2×2 matrix. The graph of z = xTAx
is

(a) an elliptic paraboloid if detA > 0,

(b) a hyperbolic paraboloid if detA < 0, and

(c) a parabolic cylinder if detA = 0.

Here is a subtle point that can cause some confusion if not understood: If {u1,u2} is
an orthonormal basis for R2 that diagonalizes the symmetric matrix A, then there are
eight different choices for the diagonalizing matrix U . They are

[ u1 u2 ] , [ u1 −u2 ] , [ −u1 u2 ] , [ −u1 −u2 ] ,

[ u2 u1 ] , [ u2 −u1 ] , [ −u2 u1 ] , and [ −u2 −u1 ] .

These generate eight different coordinate systems that result from the same coordinate
axes. The variations result from the eight different ways of choosing the x′ and y′ axes
and which direction is positive in each case. Figure 8.3 illustrates. The x′ and y′ labels
indicate the positive directions for the x′ and y′ axes respectively.

.. x.

y

..

x′

.

y′

.

(a)

.. x.

y

..

x′

..

y′

(b)

.. x.

y

.

x′
..

y′

.

(c)

.. x.

y

.

x′
...

y′

(d)

.. x.

y

..

y′

.

x′

.

(e)

.. x.

y

..

y′

..

x′

(f)

.. x.

y

.
y′

..

x′

.

(g)

.. x.

y

.
y′

...

x′

(h)

Figure 8.3

Four of the systems illustrated in Figure 8.3 represent rotations of the original coordinate
axes, and four represent reflections. If detU = 1 you have a rotation and if detU = −1
you have a reflection.
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.... Problem Set 8.1

1. Find the symmetric matrix A such that Q(x, y) = xTAx.

(a) Q(x, y) = 5x2 + 5y2 + 2xy
(b) Q(x, y) = 9x2 + y2 − 6xy
(c) Q(x, y) = 2x2 − 7y2 + 12xy
(d) Q(x, y) = x2 + 2xy

2. For (a) through (d) of exercise 1, describe the basic shape of the graph of z = Q(x, y).
(Hint: The basic shape in example 8.3 is hyperbolic paraboloid.)

3. For part (a) of exercise 1, write out all eight possible orthogonal matrices that or-
thogonally diagonalize the symmetric matrix A.

4. For parts (b) through (d) of exercise 1, find the orthogonal matrix that orthogonally
diagonalizes A and is also a rotation matrix Rθ for an acute angle θ.

5. For parts (a) through (d) of exercise 2, rewrite z in terms of new coordinates x′ and y′

that eliminates the cross-product term. In each case there are two possible answers.
Write both.

6. Rewrite w in terms of new coordinates x′, y′, and z′ that eliminates all cross-product
terms.

(a) w = 2x2 + 11y2 + 5z2 + 4xy − 20xz + 16yz
(b) w = 3x2 + 5y2 − 3z2 − 8xz

7. For both (a) and (b) from exercise 6, how many different correct answers are possible?

8. Suppose A is a 4 × 4 symmtric matrix and y = xTAx is a quadratic form in the
variables x1, x2, x3, and x4. In how many different ways can y be rewritten in terms
of a new coordinate system x′1, x

′
2, x
′
3, and x′4 if

(a) A has four distince eigenvalues?

(b) A has one eigenvalue with multiplicity 3 and one eigenvalue with multiplicity 1?

(c) A has two distinct eigenvalues each with mulitplicity 2?

(d) A has three distinct eigenvalues, one with multiplicity 2 and two of multiplicity
1?

9. Suppose A is an n × n symmetric matrix and y = xTAx is a quadratic form in the
variables x1,⋯, xn. In how many different ways can y be rewritten in terms of a new
coordinate system x′1,⋯, x′n if A has k distinct eigenvalues λ1,⋯, λk with multiplicities
m1,⋯,mk respectively? (m1 +⋯ +mk = n)

.
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8.2 Constrained Optimization of Quadratic Forms

Let Q(x) be a quadratic form in the variables x1,⋯, xn with x =
⎡⎢⎢⎢⎢⎢⎣

x1
⋮
xn

⎤⎥⎥⎥⎥⎥⎦
. We wish to

optimize (maximize and minimize) Q(x) subject to the constraint ∥x∥ = c > 0.

Since Q(x) is a quadratic form, there is a symmetric matrix A such that Q(x) = xTAx.
And since A is symmetric, it can be orthogonally diagonalized by an orthogonal matrix
U . The columns of U form an orthnormal basis for Rn of eigenvectors of A in some
order. Without loss of generality, suppose that U = [ u1 ⋯ un ] where each ui is an
eigenvector of A associated with the real eigenvalue λi such that λ1 ≥ λ2 ≥ ⋯ ≥ λn.

By convention, the eigenvalues of symmetric matrices, being all real numbers, are listed
in decreasing order. Eigenvalues with multiplicity great than one are repeated in a listing
in accordance to their multiplicity. We adopt this convention throughout the rest of this
text.

Let x ∈ Rn be such that ∥x∥ = c and let x′ = UTx =
⎡⎢⎢⎢⎢⎢⎣

x′1
⋮
x′n

⎤⎥⎥⎥⎥⎥⎦
. Then x = Ux′ and x′ is

the coordinate vector of x relative to the ordered orthonomal basis {u1,⋯,un}. Since
{u1,⋯,un} is an orthonomal basis, ∥x∥ = ∥x′∥ =

√
x21 +⋯ + x2n.

Diagonalizing A we get

Q(x) = xTAx

= (Ux′)T A (Ux′)
= (x′)T (UTAU)x′

= (x′)TDx′ where D =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
= λ1x

′
1
2 +⋯ + λnx

′
n
2
.

Note that since λ1 is the largest eigenvalue of A

Q(x) = λ1x
′2
1 +⋯ + λnx

′2
n

≤ λ1x
′2
1 +⋯ + λ1x

′2
n

= λ1(x′21 +⋯ + x′2n )
= λ1∥x′∥2

= λ1∥x∥2

= λ1c
2.

Similarly, since λn is the smallest eigenvalue of A, Q(x) ≥ λnc
2 so for all x subject to

the constraint ∥x∥ = c we have

λnc
2 ≤ Q(x) ≤ λ1c

2.
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Finally, note that if x is an eigenvector of A associated with the eigenvalue λi such that
∥x∥ = c, then

Q(x) = xTAx

= xT (Ax)
= xT (λix)
= λi(x ⋅ x)
= λi∥x∥2

= λic
2.

We put this all together in Theorem 8.2.

Theorem 8.2. Let Q(x) be a quadratic form and A a symmetric matrix such that
Q(x) = xTAx. Let λ1,⋯, λn be the eigenvalues of A (repeats to match multiplicity)
such that λ1 ≥ ⋯ ≥ λn. For all x such that ∥x∥ = c,

λnc
2 ≤ Q(x) ≤ λ1c

2.

Further, these upper and lower bounds for Q(x) are constrained maximums and
minimums for Q(x). The function Q(x) takes on these constrained maximum and
minimum values when ∥x∥ = c and x is an eigenvector of A associated with the
largest and smallest eigenvalues of A respectively.

..Example 8.4

Maximize and minimize Q(x, y) = 5x2 + 5y2 + 4xy subject to the constraint x2 + y2 = 4.

Solution Since

5x2 + 5y2 + 4xy = [ x y ] [ 5 2
2 5

] [ x
y
] ,

we let

A = [ 5 2
2 5

] .

It is easy to determine that the eigenvalues of A are λ1 = 7 and λ2 = 3 with associated

eigenvectors [ 1
1
] and [ 1

−1 ] respectively. The constraint x2 + y2 = 4 is equivalent to

saying ∥x∥ = 2, so Q has a maximum of 7⋅22 = 28 subject to this constraint. Q attains this

maximum at the mulitples of [ 1
1
] that have a norm of 2. There are two vectors that

satisfy these properties. They are [
√
2√
2
] and [ −

√
2

−
√
2
]. Similarly, Q has a minimum of

3 ⋅22 = 12 subject to this constraint when [ x
y
] = [ −

√
2√
2
] or [

√
2

−
√
2
]. See Figures 8.4a

and 8.4b.

..
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(a) The maximum of Q(x, y) occurs at z =
28. The circle defined by intersecting the
plane z = 28 and cylinder x2 + y2 = 4 just
touches the paraboloid from the inside.

(b) The minimum of Q(x, y) occurs at z =
12. The circle defined by intersecting the
plane z = 12 and cylinder x2 + y2 = 4 just
touches the paraboloid from the outside.

Figure 8.4 The maximum and minimum values of Q(x, y) = 5x2 + 5y2 + 4xy subject to
x2 + y2 = 4.

..Example 8.5

Maximize and minimize Q(x, y, z) = x2 + 4y2 + 4z2 − 4xy − 4xz + 8yz subject to the
constraint x2 + y2 + z2 = 1.

Solution Rewriting,

Q(x, y, z) = [ x y z ]
⎡⎢⎢⎢⎢⎢⎣

1 −2 −2
−2 4 4
−2 4 4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
.

So, we let

A =
⎡⎢⎢⎢⎢⎢⎣

1 −2 −2
−2 4 4
−2 4 4

⎤⎥⎥⎥⎥⎥⎦
.

The eigenspaces of A are

E9 = span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−2
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and E0 = span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Thus, Q takes on its constrained maximum of 9 at

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= ±1

3

⎡⎢⎢⎢⎢⎢⎣

1
−2
−2

⎤⎥⎥⎥⎥⎥⎦
.

Those two points are the intersection of the eigenspace E9 (a line) and the constraint
x2 + y2 + z2 = 1 (a sphere) in the domain of Q. Similarly, Q attains its constrained
minimum of 0 where the eigenspace E0 (a plane) intersects the constraint (a sphere) in
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the domain of Q. This gives us a circle of radius 1 centered at the origin and lying on
the plane x − 2y − 2z = 0. To describe these vectors explicitly, note that any vector in

the eigenspace E0 can be written as

⎡⎢⎢⎢⎢⎢⎣

2s + 2t
s
t

⎤⎥⎥⎥⎥⎥⎦
for some s and t. To get a vector on the

circle we simply normalize (s and t not both 0):

1√
(2s + 2t)2 + s2 + t2

⎡⎢⎢⎢⎢⎢⎣

2s + 2t
s
t

⎤⎥⎥⎥⎥⎥⎦
= 1√

5s2 + 5t2 + 8st

⎡⎢⎢⎢⎢⎢⎣

2s + 2t
s
t

⎤⎥⎥⎥⎥⎥⎦
.

..

.... Problem Set 8.2

Maximize and minimize each of the following functions subject to the given constraint
and find all points in the domain of each function where the constrained optimums occur.

1. Q(x, y) = 3x2 + 3y2 + 2xy subject to x2 + y2 = 9.

2. Q(x, y) = 3x2 − 5y2 + 6xy subject to x2 + y2 = 2.

3. Q(x, y) = 9x2 + 16y2 + 24xy subject to x2 + y2 = 1.

4. Q(x, y) = 3x2 − 2xy subject to x2 + y2 = 1.

5. Q(x, y, z) = −x2 − y2 + 2z2 + 10xy + 4xz + 4yz subject to ∥x∥ = 2.

6. Q(x, y, z) = z2 + 2xy subject to x2 + y2 + z2 = 3.

.

8.3 Conic Sections

Definition 8.1. A quadratic equation in the two variables x and y is an equation
that can be put in the form

ax2 + by2 + cxy + dx + ey = f

where a, b, c, d, e, and f are constants and we assume a, b, and c are not all 0.
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Notice that the left-hand side of the quadratic equation is the sum of a quadratic form
ax2 + by2 + cxy and a linear form dx+ ey, and the right-hand side is a constant. Using
section 8.1, we generally want to rewrite the quadratic form

ax2 + by2 + cxy = [ x y ] [ a c/2
c/2 b

] [ x
y
]

and the linear form

dx + ey = [ d e ] [ x
y
] .

So, the quadratic equation will generally be rewritten to look like

[ x y ] [ a c/2
c/2 b

] [ x
y
] + [ d e ] [ x

y
] = f.

Our main goal is to find the graphs of these equations.

Quadratic equations in which the cross-product term cxy is zero are often studied in
precalculus and/or calculus classes. Our main concern is when c ≠ 0, but we mention
what happens when c = 0 either as a review for you or as a brief introduction.

In this introduction, the roles of parameters like a, b, and c need not be the same as in
the quadratic equation at the beginning of this section.

Equations of the form y = ax2 (a ≠ 0) have graphs that look like those in Figures 8.5a
and 8.5b depending on whether a > 0 or a < 0. The roles of x and y can be switched
resulting in equations of the form x = ay2 and graphs that look like those in Figures 8.5c
and 8.5d. These graphs are called parabolas with vertex at the origin.

.. x.

y

(a) y = ax2, a > 0

.. x.

y

(b) y = ax2, a < 0

.. x.

y

(c) x = ay2, a > 0

.. x.

y

(d) x = ay2, a < 0

Figure 8.5

Equations of the form x2 + y2 = r2 (r > 0) have graphs that are circles centered at the
origin with a radius of r. The graph of a circle is as in Figure 8.6a.

Equations of the form x2

a2
+ y2

b2
= 1 (a, b > 0) have graphs that look like those found in

Figures 8.6b and 8.6c depending on which of a and b is larger. These graphs are called
ellipses centered at the origin. If a = b, the graph is a circle (a special case of an ellipse).

Equations of the form x2

a2
− y2

b2
= 1 or y2

a2
− x2

b2
= 1 have graphs that resemble those in

Figures 8.7a and 8.7b. These are called hyperbolas centered at the origin.

All of these equations either are or can be placed into the form of the general quadratic
equation with a cross-product term of 0 described at the beginning of this section.
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.. x.

y

.
r

(a) Graph of x2 + y2 = r2.

.. x.

y

.
a

.

b

(b) Graph of x2

a2 + y2

b2
= 1 (a > b)

.. x.

y

.
a

.

b

(c) Graph of x2

a2 + y2

b2
= 1 (a < b)

Figure 8.6

By substituting x−h for x and y − k for y in each of these equations we shift the graphs
so the vertex (in the case of a parabola) or its center is at the point (h, k) rather than
the origin. Many more quadratic equations with a cross-product term of 0 can be placed
into these substituted forms by completing squares.

..Example 8.6

Describe the graph of 2x2 − 4x − y = 3.

Solution

2x2 − 4x − y = 3

2x2 − 4x = y + 3
2(x2 − 2x + 1) = y + 3 + 2

2(x − 1)2 = y + 5

This is a parabola with a vertex at (1,−5) that opens up (see Figure 8.8a).

..

..Example 8.7

Describe the graph of 2x2 + 3y2 − 8x + 6y = −5.
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.. x.

y

.
a

(a) Graph of x2

a2 − y2

b2
= 1.

.. x.

y

.
a

(b) Graph of y2

a2 − x2

b2
= 1.

Figure 8.7

.. x.

y

.

(1,-5)

(a) Graph of 2x2 − 4x − y = 3.

.. x.

y

.

(2,-1)

(b) Graph of 2x2 +3y2 −8x+6y = −5.

Figure 8.8

Solution

2x2 + 3y2 − 8x + 6y = −5
2(x2 − 4x + 4) + 3(y2 + 2y + 1) = −5 + 8 + 3

2(x − 2)2 + 3(y + 1)2 = 6

(x − 2)2

3
+ (y + 1)

2

2
= 1

This can also be written as
(x − 2)2

(
√
3)2

+ (y + 1)
2

(
√
2)2

= 1.

This is an ellipse that opens wider horizontally (
√
3 >
√
2) and is centered at (2,−1) (see

Figure 8.8b).

..

In order to exhaust all possibilities we must consider a few degenerate cases.
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Equation Graph

(x−h)2
a2
+ (y−k)

2

b2
= 0 the single point (h, k)

(x−h)2
a2
+ (y−k)

2

b2
= −1 the solution set is empty; called an imaginary ellipse

(x−h)2
a2
− (y−k)

2

b2
= 0 two lines that intersect at (h, k)

(x−h)2
a2
= 1 or

(y−k)2
b2
= 1 two vertical or two horizontal lines

(x − h)2 = 0 or (y − k)2 = 0 a single vertical or a single horizontal line

(x−h)2
a2
= −1 or

(y−k)2
b2
= −1 the solution set is empty

For brevity, we call the first two degenerate cases degenerate ellipses. The third we
call a degenerate hyperbola, and the last three are called degenerate parabolas.
Between the nondegenerate and the degenerate cases, this covers all possible quadratic
equations with a cross-product term of 0.

In light of the last two sections the process we should follow when the cross-product
term is not zero should be fairly clear. Write the quadratic equation in the form

xTAx + bTx = f

where

x = [ x
y
] ,A = [ a c/2

c/2 b
] , and b = [ d

e
] .

Do a change of basis (substitute x = Ux′) where x′ = [ x′

y′
] and U is an orthogonal matrix

that orthogonally diagonalizes A. This transforms the original quadratic equation into
a new quadratic equation in the variables x′ and y′

(x′)TDx′ + (b′)Tx′ = f

where D is a diagonal matrix and (b′)T = bTU .

As mentioned in section 8.1, you have eight choices for U . The form of the resulting
quadratic equation can vary depending on your choice of U . Though any of the eight can
be used, we tend to choose U to be a rotation matrix by an angle θ where 0 < θ < π/2.
This occurs if the only negative entry of U is the top right entry.
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SinceD is a diagonal matrix, the resulting quadratic equation has a cross-product term of
0. You can then complete any squares necessary to determine the graph of the quadratic
equation relative to the new variables x′ and y′. Thus, the graphs of all quadratic
equations are conic sections or their degenerates. Some are rotated, and some are not.

..Example 8.8

Determine the shape of the graph of the quadratic equation 5x2 + 2y2 + 4xy = 6.

Solution Rewriting this equation we get

[ x y ] [ 5 2
2 2

] [ x
y
] = 6.

Let

A = [ 5 2
2 2

] and x = [ x
y
] .

Then xTAx = 6. The eigenvalues for A are λ1 = 6 and λ2 = 1 with associated eigenvectors

[ 2
1
] and [ −1

2
] respectively. Let

U = 1√
5
[ 2 −1
1 2

] .

U is an orthogonal matrix that diagonalizes A. Let x′ = UTx so x = Ux′. Now substitute
x = Ux′ in the equation xTAx = 6 and simplify:

(Ux′)T A(Ux′) = 6

(x′)T (UTAU)x′ = 6

[ x′ y′ ] [ 6 0
0 1

] [ x′

y′
] = 6

6(x′)2 + (y′)2 = 6

(x′)2

1
+ (y

′)2

(
√
6)2

= 1

The graph is an ellipse centered at the origin (see Figure 8.9). The axis is rotated by
θ = tan−1 (12) ≈ 26.6

○.

..

..Example 8.9

Determine the shape of the graph of x2 + y2 + 2xy + 3x + 2y = 0.

Solution Rewriting this equation we get

[ x y ] [ 1 1
1 1

] [ x
y
] + [ 3 2 ] [ x

y
] = 0.

Let

A = [ 1 1
1 1

] ,x = [ x
y
] and b = [ 3

2
] .
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.. x.

y

..

x′

..

y′

.
θ ≈ 26.6○

Figure 8.9 Graph of 5x2 + 2y2 + 4xy = 6.

Then xTAx + bTx = 0. The eigenvalues for A are λ1 = 2 and λ2 = 0 with associated

eigenvectors [ 1
1
] and [ −1

1
] respectively. Let

U = 1√
2
[ 1 −1
1 1

] .

U is an orthogonal matrix that diagonalizes A. Let x′ = UTx so x = Ux′. Now substitute
x = Ux′ into the equation xTAx + bTx = 0 and simplify.

(Ux′)TA(Ux′) + bT (Ux′) = 0

(x′)T (UTAU)(x′)T + bTUx′ = 0

[ x′ y′ ] [ 2 0
0 0

] [ x′

y′
] + 1√

2
[ 3 2 ] [ 1 −1

1 1
] [ x′

y′
] = 0

2(x′)2 + 1√
2
[ 5 −1 ] [ x′

y′
] = 0

2(x′)2 + 5√
2
x′ − 1√

2
y′ = 0

Completing the square:

2((x′)2 + 5

2
√
2
x′ + 25

32
) = 1√

2
y′ + 25

16

2(x′ + 5

4
√
2
)
2

= 1√
2
(y′ + 25

√
2

16
)

2
√
2(x′ + 5

√
2

8
)
2

= y′ + 25
√
2

16

This is a parabola with its vertex at (−5
√
2

8 ,−25
√
2

16 ) under the new coordinate system

that is rotated by θ = tan−1 (1/1) = 45○ (see Figure 8.10). Since x = Ux′, we can find the
coordinates of this vertex under the original coordinate system:

1√
2
[ 1 −1
1 1

] [ −5
√
2/8

−25
√
2/16 ] = [

15/16
−35/16 ] .
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.. x.

y

..

x′

..

y′

.
θ = 45○

.

(15/16,-35/16)

Figure 8.10 Graph of x2 + y2 + 2xy + 3x + 2y = 0.

..

..Example 8.10

Determine the shape of the graph of 3x2 − 3y2 + 8xy − 30x + 10y = 0.

Solution Rewriting this equation we get

[ x y ] [ 3 4
4 −3 ] [

x
y
] + [ −30 10 ] [ x

y
] = 0.

Let

A = [ 3 4
4 −3 ] and b = [ −30

10
] .

The eigenvalues for A are λ1 = 5 and λ2 = −5 with associated eigenvectors [ 2
1
] and

[ −1
2
] respectively. Let

U = 1√
5
[ 2 −1
1 2

] .

Let x′ = UTx so x = Ux′. Now substitute x = Ux′ into xTAx + bTx = 0 and simplify:

(x′)T (UTAU)x′ + (bTU)x′ = 0

[ x′ y′ ] [ 5 0
0 −5 ] [

x′

y′
] + 1√

5
[ −50 50 ] [ x′

y′
] = 0

5(x′)2 − 5(y′)2 + 10
√
5(−x′ + y′) = 0

5((x′)2 − 2
√
5x′ + 5) − 5((y′)2 − 2

√
5y′ + 5) = 0 + 25 − 25

5(x′ −
√
5)2 − 5(y′ −

√
5)2 = 0

The graph of this equation is a degenerate hyperbola - two intersecting lines:

(y′ −
√
5)2 = (x′ −

√
5)2

y′ −
√
5 = ±(x′ −

√
5)
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That is, either y′ = x′ or y′ = −x′ + 2
√
5 under the new coordinates. To translate back

into the old, substitute x′ = UTx. You obtain either

x′ − y′ = 0

[ 1 −1 ] [ x′

y′
] = 0

1√
5
[ 1 −1 ] [ 2 1

−1 2
] [ x

y
] = 0

[ 3 −1 ] [ x
y
] = 0

3x − y = 0

or

x′ + y′ = 2
√
5

[ 1 1 ] [ x′

y′
] = 2

√
5

1√
5
[ 1 1 ] [ 2 1

−1 2
] [ x

y
] = 2

√
5

[ 1 3 ] [ x
y
] = 10

x + 3y = 10

Figure 8.11 gives the graph.

..

.. x.

y

.

3x − y = 0

.

x + 3y = 10

Figure 8.11 Graph of 3x2 − 3y2 + 8xy − 30x + 10y = 0.

As noted earlier, the quadratic equation

ax2 + by2 + cxy + dx + ey = f

can be rewritten
xTAx + bTx = f
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where

A = [ a c/2
c/2 b

] ,x = [ x
y
] , and b = [ d

e
] .

We see that the basic shape of the graph of the quadratic equation depends on whether
the signs of the eigenvalues of A are the same, are different, or one is 0. Since the
determinant of A equals the product of its eigenvalues, detA = ab − 1

4c
2 can be used to

quickly determine the basic shape of the graph, though it does not determine whether
the graph is a degenerate.

Theorem 8.3. The shape of the graph of the quadratic equation ax2+by2+cxy+dx+
ey = f (a, b, c not all 0) or rewritten xTAx + bTx = f as shown above is determined
by the following chart:

Shape Eigenvalues of A det A Coefficients of
quadratic term

ellipse or same sign positive 4ab − c2 > 0
degenerate ellipse

hyperbola or opposite signs negative 4ab − c2 < 0
degenerate hyperbola

parabola or an eigenvalue of 0 zero 4ab − c2 = 0
degenerate parabola

.... Problem Set 8.3

1. Use Theorem 8.3 to identify the graphs of each of the following equations as an ellipse,
hyperbola, parabola, or a degenerate one of those three. Do not distinguish between
the degenerates and non-degenerates at this time.

(a) 2xy = 1
(b) 6x2 + 9y2 + 4xy = 10
(c) 18x2 + 2y2 + 12xy + 13x + y = −5
(d) 16x2 + y2 − 8xy + 8x − 2y = 0

2. For each equation (a) - (d) in exercise 1, rewrite the equation in the form xTAx+bTx =

f where A is 2 × 2 and symmetric, bT is 1 × 2, f is constant, and x = [ x
y
].

3. For each equation (a) - (d) in exercise 2 there is an orthogonal matrix U that orthog-
onally diagonalizes A and rotates the coordinate axes by an angle θ where 0 < θ < 90○.
Find U and θ.

4. For each equation in exercise 1, rewrite the equation in terms of a new coordinate
system x′ and y′ so that the equation has no cross-product term.



300 Chapter 8. Applications

5. For each equation (a) - (d) in exercise 1, find one of the following (i) - (iii) depending
on the results of exercise 4.

(i) If the graph is a parabola, find the coordinates of its vertex under the new coor-
dinate system x′ and y′.

(ii) If the graph is an ellipse or hyperbola, find the coordinates of its center under
the new coordinate system x′ and y′.

(iii) if the graph is a degenerate conic section, describe its point or line(s) in terms
of the new coordinate system x′ and y′.

6. For each answer (a) - (d) in exercise 5, describe that answer in terms of the original
coordinate system x and y.

7. Sketch the graph of each equation (a) - (d) in exercise 1.

.

8.4 Quadric Surfaces

The quadric surfaces are the three-dimensional analogs of the conic sections. They are
worthy of mention at this point because they are important geometric shapes and they
can be analyzed by applying to 3×3 matrices the same techniques applied in section 8.3
to 2 × 2 matrices.

The quadric surfaces are graphs of quadratic equations in three variables

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz = j

where not all a, b, c, d, e, and f are zero. In Figure 8.12 we list six basic quadric surfaces
in standard positions with their equations.

By interchanging the roles of x, y and z we change the orientation of the figures. The
surfaces matching these equations are either centered at the origin or have their vertices
at the origin. As with the conic sections, the quadric surfaces can be translated by
substituting x − h, y − k, and z − l for x, y, and z respectively.

There are several other surfaces that are graphs of quadratic equations in three vari-
ables including the parabolic cylinder mentioned in section 8.1 and several direct three-
dimensional analogs of the degenerate conic sections. Both the quadric surfaces and their
degenerates can be thought of as level surfaces of quadratic forms in three variables just
as the conic sections and their degenerates are the level curves of quadratic forms in two
variables.

The quadratic equation in three variables

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz = j
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(a) Ellipsoid.
x2

a2 + y2

b2
+ z2

c2
= 1

(b) Hyperboloid of one sheet.
x2

a2 + y2

b2
− z2

c2
= 1

(c) Hyperboloid of two
sheets.

z2

a2 − x2

b2
− y2

c2
= 1

(d) Elliptic paraboloid.

z = x2

a2 + y2

b2

(e) Hyperbolic paraboloid.

z = y2

a2 − x2

b2

(f) Elliptic cone.

z2 = x2

a2 + y2

b2

Figure 8.12

can be rewritten as xTAx + bTx = j where

A =
⎡⎢⎢⎢⎢⎢⎣

a d/2 e/2
d/2 b f/2
e/2 f/2 c

⎤⎥⎥⎥⎥⎥⎦
,x =

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
, and b =

⎡⎢⎢⎢⎢⎢⎣

f
g
h

⎤⎥⎥⎥⎥⎥⎦
.

The symmetric matrix A can be orthogonally diagonalized as in section 8.3.

..Example 8.11

Determine the shape of the surface 3x2 − y2 + 3z2 − 2xz = 4.

Solution Rewriting, we have

[ x y z ]
⎡⎢⎢⎢⎢⎢⎣

3 0 −1
0 −1 0
−1 0 3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
= 4.

Let

A =
⎡⎢⎢⎢⎢⎢⎣

3 0 −1
0 −1 0
−1 0 3

⎤⎥⎥⎥⎥⎥⎦
.

The characteristic polynomial of A is p(λ) = (3 − λ)(−1 − λ)(3 − λ) − (−1 − λ) = −(λ −
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4)(λ − 2)(λ + 1). So the eigenvalues are λ = 4,2,−1 with associated eigenvalues of

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦

respectively. Let

U = 1√
2

⎡⎢⎢⎢⎢⎢⎣

−1 1 0

0 0
√
2

1 1 0

⎤⎥⎥⎥⎥⎥⎦
.

Then xTAx = 4 simplifies to 4(x′)2 + 2(y′)2 − (z′)2 = 4 under the substitution x = Ux′ so
its graph is a hyperboloid of one sheet.

..

.... Problem Set 8.4

For each equation 1-3 below:

(a) Rewrite the equation in terms of new variables x′, y′, and z′ with no cross-product
terms.

(b) Describe the graph of the equations as a quadric surface as in Figure 8.12.

1. 2x2 + y2 + 2z2 − 2xz = 9

2. 5x2 + 2y2 + 8z2 − 8yz − 2
√
5y −

√
5z = 0

3. x2 + y2 + z2 + 2xy + 2xz + 2yz = 1

.

8.5 Positive Definite Matrices

As we have seen through the last five sections, symmetric matrices are very nice. Mostly,
what makes them so nice is that all of their eigenvalues are real and they are orthogonally
diagonalizable. We now focus our attention on a class of symmetric matrices that are
particularly nice and useful in applications.

We start by defining five classes of symmetric matrices.
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Definition 8.2. Let A be an n × n symmetric matrix.

• A is positive definite if all of its eigenvalues are positive.

• A is positive semidefinite if all of its eigenvalues are greater than or equal to
zero.

• A is negative definite if all of its eigenvalues are negative.

• A is negative semidefinite if all of its eigenvalues are less than or equal to zero.

• A is indefinite if it has both positive and negative eigenvalues.

A few facts that are clear from the definition:

• All positive definite matrices are positive semidefinite and all negative definite ma-
trices are negative semidefinite.

• A symmetric matrix is positive definite if and only if −A is negative definite. That
same relationship holds between positive semidefinite and negative semidefinite ma-
trices.

• A positive semidefinite matrix is positive definite if and only if it is invertible. The
same relationship holds between negative semidefinite and negative definite matrices.

• There is no overlap between the indefinite matrices and any of the other four classes
of symmetric matrices.

• The only matrix that is both positive semidefinite and negative semidefinite is the
zero matrix.

Definition 8.3. Let A be a symmetric matrix. A quadratic form xTAx is positive
definite if A is a positive definite matrix. Positive semidefinite, negative defi-
nite, negative semidefinite, and indefinite quadratic forms are defined similarly.

Theorem 8.4 follows immediately from Theorem 8.2 in section 8.2.

Theorem 8.4. Let A be an n × n symmetric matrix.

• For all x ∈ Rn such that x ≠ 0, xTAx > 0 if and only if A is positive definite.

• For all x ∈ Rn such that x ≠ 0, xTAx ≥ 0 if and only if A is positive semidefinite.

• For all x ∈ Rn such that x ≠ 0, xTAx < 0 if and only if A is negative definite.

• For all x ∈ Rn such that x ≠ 0, xTAx ≤ 0 if and only if A is negative semidefinite.

• A is indefinite if and only if there exists x1,x2 ∈ Rn such that xT
1 Ax1 > 0 and

xT
2 Ax2 < 0.



304 Chapter 8. Applications

In the case where A is a 2 × 2 nonzero, symmetric matrix (see section 8.1) the graph of
the function Q(x) = xTAx is a(n):

• elliptical paraboloid that opens up if A is positive definite.

• elliptical paraboloid that opens down if A is negative definite.

• parabolic cylinder that opens up if A is positive semidefinite, but not positive definite.

• parabolic cylinder that opens down if A is negative semidefinite, but not negative
definite.

• hyperbolic paraboloid if A is indefinite.

We focus mainly on positive definite and positive semidefinite matrices. One place where
positive semidefinite matrices arise naturally is by starting with an m×n matrix A (note
A need not be square) and then looking at the n × n matrix ATA.

Note that the quadratic form xT (ATA)x can be viewed as a dot product of a vector
with itself:

xT (ATA)x = (xTAT )(Ax) = (Ax)T (Ax) = (Ax) ⋅ (Ax).

The observation above is the key to understand the following theorems and corollaries.

Theorem 8.5. Let A be an m×n matrix. The matrix ATA is positive semidefinite.

Proof Since (ATA)T = AT (AT )T = ATA, ATA is symmetric. From the key observation
above, xT (ATA)x = (Ax) ⋅ (Ax) ≥ 0, so ATA is positive semidefinite by Theorem 8.4.

Theorem 8.6. Let A be an m×n matrix. The null space of A equals the eigenspace
of ATA associated with the eigenvalue λ = 0.

Proof Let null A be the null space of A, and let E0 be the eigenspace of A
TA associated

with the eigenvalue λ = 0. We show null A = E0.

Let v ∈ null A. Then Av = 0. Multiplying both sides on the left by AT yields ATAv =
AT0 = 0 = 0v. Thus v ∈ E0 so null A ⊆ E0.

Now let v ∈ E0. Then ATAv = 0v = 0. Multiplying through on the left by vT gives
vTATAv = vT0 = 0. Now, using the key observation above we have (Av) ⋅ (Av) = 0
which implies Av = 0, and so v ∈ null A. Thus E0 ⊆ null A. This, together with the
paragraph above gives us null A = E0.
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Since every m×n matrix A has a null space, Theorem 8.6 might lead one to believe that
λ = 0 is always an eigenvalue of ATA. This is not the case. Precisely when the null space
of A is the trivial subspace {0}, Theorem 8.6 tells us that 0 is not an eigenvalue of ATA
because by definition eigenspaces are never the trivial subspace {0}. We can go a step
further by noting that null A = {0} if and only if rank A = n. This proves Corollary 8.7.

Corollary 8.7. Let A be an m × n matrix. The matrix ATA is positive definite if
and only if rank A = n.

Corollary 8.8 is helpful in section 8.6 and follows quickly from Theorems 8.5 and 8.6.

Corollary 8.8. Let A be an m × n matrix. The rank of A is equal to r if and only
if ATA has exactly r positive eigenvalues (counting multiplicities).

Proof Since ATA is positive semidefinite, it has n nonnegative eigenvalues λ1,⋯, λn

(repeats match their multiplicity), and there is an orthonormal basis for Rn of eigen-
vectors of ATA, {u1,⋯,un}. Without loss of generality, suppose λ1 ≥ ⋯ ≥ λn ≥ 0 and
suppose ui is an eigenvector associated with λi for i = 1,⋯, n.

Theorem 8.6 tells us that the eigenvectors in {u1,⋯,un} associated with the eigenvalue
0 form an orthonormal basis for the null space of A. And since

dim(null A) = nullity A = n − rank A

we see that the first r eigenvalues λ1,⋯, λr are positive (r = rank A) because only the
last n − r eigenvalues λr+1,⋯, λn are 0 (this collection is empty if r = n).

Recall that we adopt the convention of listing eigenvalues of symmetric matrices in
decreasing order. Thus, the first eigenvalue is always the biggest, and the last is always
the smallest.

Not only is it true that ATA is positive semidefinite no matter what the matrix A is,
in fact, every positive semidefinite matrix has such a factorization. Thus, by examining
matrices of the form ATA we are studying all positive semidefinite matrices. We can
find this factorization by orthogonally diagonalizing the positive semidefinite matrix.

Let B be a positive semidefinite matrix. Since B is symmetric, B can be orthogonally
diagonalized, so there is a diagonal matrix D and an orthogonal matrix U such that

UTBU =D

which, in turn, implies
B = UDUT
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where the diagonal entries of

D =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦
are the eigenvalues λ1,⋯, λn of B. Since B is positive semidefinite, for each i, λi ≥ 0, so
λi = (

√
λi)(
√
λi). Let

S =
⎡⎢⎢⎢⎢⎢⎣

√
λ1 0
⋱

0
√
λn

⎤⎥⎥⎥⎥⎥⎦
.

It is clear that S = ST and that D = SST . Thus,

B = UDUT

= U(SST )UT

= (US)(STUT )
= (US)(US)T .

Let A = (US)T . Then AT = US, so B = ATA.

To this point, if we wish to determine whether a symmetric matrix A is positive definite,
we simply calculate the eigenvalues of A and look to see whether they are all positive.
That seems simple enough. By this time, we have calculated the eigenvalues of many
matrices, but we recognize that this can be difficult, particularly if A is large. For many
applications, it turns out to be important to know whether a matrix is positive definite
but not so important to know exactly what the eigenvalues are. We won’t be discussing
those applications in this text, but we briefly discuss a standard method for determining
whether a symmetric matrix is positive definite without going through all the work of
actually calculating its eigenvalues. This can be very helpful in applications of linear
algebra. We begin with 2 × 2 matrices.

Theorem 8.9. A 2 × 2 symmetric matrix

A = [ a b
b c

]

is positive definite if and only if a > 0 and ac − b2 > 0.

Proof Let λ1 and λ2 be the eigenvalues of A. Suppose A is positive definite. Then
λ1 > 0 and λ2 > 0. We show that a > 0 and ac − b2 > 0. Since λ1 > 0 and λ2 > 0, we know
ac − b2 = detA = λ1λ2 > 0, so ac − b2 > 0. In addition, ac − b2 > 0 implies ac > 0, which
implies a and c have the same sign. But a + c = trA = λ1 + λ2 > 0 implies a > 0.

For the other direction, suppose a > 0 and ac − b2 > 0. We show A is positive definite.
Since λ1λ2 = detA = ac − b2 > 0, λ1 and λ2 have the same sign. In addition, ac − b2 > 0
implies ac > 0 which implies a and c have the same sign. Since a > 0 we know c > 0 as
well. Therefore λ1 + λ2 = trA = a + c > 0. Since λ1 and λ2 must have the same sign and
their sum is positive, they are both positive and A is positive definite.
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This makes it easy to make up your own or check on whether a 2 × 2 symmetric matrix

A = [ a b
b c

]

is positive definite. Both a and c must be positive and b2 must be less than ac. So, for
example, both

[ 5 3
3 2

] and [ 5 −3
−3 2

]

are positive definite, but

[ 4 3
3 2

] , [ 5 4
4 2

] and [ −5 3
3 −2 ]

are not.

The way to think about Theorem 8.9 that generalizes to larger symmetric matrices, is
as follows. Let A be an n × n symmetric matrix. Let A1 be the 1 × 1 submatrix of A
taken from the upper left corner of A. Similarly let A2 be the 2×2 submatrix of A taken
from the upper left corner of A, and in general let Ai be the i × i submatrix of A taken
from the upper left corner of A for i = 1,2,⋯, n. It should be clear that A1 = [a11] and
An = A.

Theorem 8.9 tells us that a 2 × 2 symmetric matrix A is positive definite if and only
if detA1 > 0 and detA2 > 0. Though we do not prove it in this text, Theorem 8.9
generalizes to Theorem 8.10

Theorem 8.10. An n × n symmetric matrix A is positive definite if and only if
detAi > 0 (as defined above) for i = 1,⋯, n.

..Example 8.12

For which values of x are the following symmetric matrices positive definite?

A =
⎡⎢⎢⎢⎢⎢⎣

2 1 4
1 3 5
4 5 x

⎤⎥⎥⎥⎥⎥⎦
B =
⎡⎢⎢⎢⎢⎢⎣

1 3 4
3 2 5
4 5 x

⎤⎥⎥⎥⎥⎥⎦

Solution It is easy to see that detA1 = 2, detA2 = 5, and detA3 = 5x − 58, so A is
positive definite if and only if x > 58/5 = 11.6.

Since detB2 = −7, B is not positive definite for any value of x.

..
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.... Problem Set 8.5

1. Determine the definiteness of each of the following symmetric matrices.

(a) A = [ 3 4
4 5

] (b) A = [ −5 2
2 −2 ] (c) A = [ 4 2

2 1
]

(d) A =
⎡⎢⎢⎢⎢⎢⎣

2 1 −1
1 3 0
−1 0 1

⎤⎥⎥⎥⎥⎥⎦
(e) A =

⎡⎢⎢⎢⎢⎢⎣

−8 −2 −2
−2 −5 4
−2 4 −5

⎤⎥⎥⎥⎥⎥⎦
2. Determine the definiteness of each of the following quadratic forms.

(a) Q(x, y) = 6x2 + 3y2 + 4xy
(b) Q(x, y) = x2 + y2 + 4xy
(c) Q(x, y, z) = 3y2 + 4xz

3. (a) If A is a symmetric matrix, what can you say about the definiteness of A2?

(b) If A is a symmetric matrix, when is A2 positive definite?

4. Recall that a real square matrix A is skew symmetric if AT = −A.

(a) If A is skew symmetric, is A2 skew symmetric or symmetric?

(b) If A is skew symmetric, what can you say about the definiteness of A2?

5. If A is an invertible symmetric matrix, what is the relationship between the definite-
ness of A and A−1?

6. A permutation matrix P is a square matrix with entries of 0 and 1 only and has
exactly one 1 in each row and in each column.

(a) Explain why permutation matrices are orthogonal matrices.

(b) Permutation matrices rearrange the entries of a vector. That is, the entries of
Px are the same as the entries of x except in a different order (unless P = I).

Let x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. Find the permutation matrix P such that Px =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
1
5
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(c) Find the 5× 5 permutation matrix that swaps the top two entries of a vector in
R5 and leaves every other entry fixed. Also, find the 5 × 5 permutation matrix
that swaps the first and third entry leaving the others fixed.

(d) By looking at a few examples, describe how P TAP changes a square matrix A
where P is a permutation matrix.

(e) Use Definition 5.17, Corollary 6.7, Theorem 8.10, and what you have learned
about permutation matrices above to explain why all the diagonal entries of a
positive definite symmetric matrix must be positive.

7. For each positive semidefinite matrix B below, find a matrix A such that B = ATA.

(a) B = [ 4 2
2 1

]
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(b) B =
⎡⎢⎢⎢⎢⎢⎣

2 0 1
0 2 0
1 0 2

⎤⎥⎥⎥⎥⎥⎦
8. In parts (a) - (e) below, let Q be a quadratic form in the variables x, y, and z and

A the symmetric matrix such that Q(x, y, z) = xTAx. In each case suppose Q and A
have the stated properties. In each case describe the quadric surface with equation
Q(x, y, z) = 1.

(a) Q is positive definite.

(b) Q is positive semidefinite and rank A = 2.
(c) Q is positive semidefinite and rank A = 1.
(d) Q is indefinite and detA > 0.
(e) Q is indefinite and detA < 0.

.

8.6 Singular Value Decomposition

We know that there are several reasons why we may wish to diagonalize an n×n matrix
A. We also know that the process of diagonalizing A involves finding a basis for Rn of
vectors that get sent to multiples of themselves by the linear operator TA ∶ Rn Ð→ Rn

given by the formula TA(x) = Ax. Since A is square, Rn serves as both the domain
and codomain for TA, and the basis of eigenvectors proves to be the right basis for Rn

to help with the analysis. In the special case when A is symmetric we know that A is
orthogonally diagonalizable.

The singular value decomposition (SVD) gives us a similar way to analyze matrices that
need not be diagonalizable. These matrices need not be (and typically are not) square.

If A ism×n withm ≠ n, then the linear transformation TA ∶ Rn Ð→ Rm could not possibly
send a vector to a multiple of itself because its domain and codomain are completely
different vector spaces. The first thing we need to do to understand SVD is to choose
the right basis for the domain of TA and then choose the right basis for the codomain.

Let A be m × n. We have observed that ATA is a positive semidefinite symmetric
n×n matrix. Thus, there is an orthonormal basis for Rn that diagonalizes ATA and all
eigenvalues of ATA are nonnegative. It turns out that this orthonormal basis is exactly
the basis for the domain, Rn, we wish to choose for the SVD of A.

Let B = {v1,⋯,vn} be an orthonormal basis of eigenvectors of ATA with vi an eigenvec-
tor associated with the eigenvalue λi for i = 1,⋯, n with λ1 ≥ ⋯ ≥ λn ≥ 0. (Eigenvalues
are repeated to match their multiplicity.) Let’s take a close look at B.

Let r be the rank of A. By Corollary 8.8 in section 8.5, λ1,⋯, λr are positive. If r = n,
then all the eigenvalues are positive and if r < n, then λr+1,⋯, λn are all zero.
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Since {vr+1,⋯,vn} is a basis for the eigenspace of ATA associated with the eigenvalue 0,
{vr+1,⋯,vn} is an orthonormal basis for the null space of A by Theorem 8.6 of section 8.5
(the empty set ϕ is the basis for null A if r = n).

Since the vectors in {v1,⋯,vr} are orthogonal to the vectors in {vr+1,⋯,vn}, {v1,⋯,vr} ⊆
(null A)⊥ = row A. Also {v1,⋯,vr} is linearly independent and since dim(row A) =
rank A = r, {v1,⋯,vr} is an orthonormal basis for the row space of A.

In summary, B = {v1,⋯,vr,⋯,vn} is an orthonormal basis for Rn with {v1,⋯,vr} an
orthonormal basis for row A and {vr+1,⋯,vn} (or ϕ if r = n) an orthonormal basis for
null A. Now let’s turn to the codomain of TA, Rm.

The next lemma provides the key observation necessary to construct the right basis for
Rm, the codomain for TA.

Lemma 8.11. Let A be an m × n matrix. If v is an eigenvector of ATA and w is
orthogonal to v in Rn, then Aw is orthogonal to Av in Rm.

Proof Suppose v is an eigenvalue of ATA associated with the eigenvalue λ and w is
orthogonal to v. Then, (Aw) ⋅ (Av) = (Aw)T (Av) =wT (ATA)v =wT (λv) = λ(wTv) =
λ(w ⋅ v) = 0. Therefore Aw is orthogonal to Av in Rm.

By Lemma 8.11, {Av1,⋯,Avr} is an orthogonal set of vectors in Rm. The vectors in
that set are all nonzero because none of the vectors v1,⋯,vr are in the null space of
A. That tells us that {Av1,⋯,Avr} is linearly independent in the column space of A.
Finally, since the dimension of col A = rank A = r, {Av1,⋯,Avr} is an orthogonal basis
for col A in Rm. To get an orthonormal basis for col A, we normalize each of these
vectors, so we let ui = 1

∥Avi∥Avi for i = 1,⋯, r. Then {u1,⋯,ur} is an orthonormal basis

for col A, and Avi = ∥Avi∥ui for i = 1,⋯, r. Recall that the column space of A is the
range of TA in Rm.

To expand {u1,⋯,ur} to an orthonormal basis for Rm (it already is one if r =m) we note
that col A = row AT and just like null A = (row A)⊥ we have null AT = (row AT )⊥ =
(col A)⊥.

Back in chapter 4, we learned how to find a basis for the null space of a matrix, and, in
chapter 7 we learned how to use the Gram-Schmidt process to construct an orthonormal
basis from that. Since the dimension of null AT is m − r, we let {ur+1,⋯,um} be that
basis. (The basis for null AT is ϕ if r =m.)

Putting these together we get C = {u1,⋯,ur,⋯,um} is an orthonormal basis for Rm with
{u1,⋯,ur} an orthonormal basis for col A and {ur+1,⋯,um} an orthonormal basis for
null AT .

Observe that for i = 1,⋯, n,

∥Avi∥2 = (Avi) ⋅ (Avi) = vT
i (ATA)vi = λi(vi ⋅ vi) = λi(1) = λi ≥ 0
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so ∥Avi∥ =
√
λi.

Definition 8.4. Let A be an m × n matrix and let λ1,⋯, λn be the eigenvalues of
ATA with λ1 ≥ ⋯ ≥ λn ≥ 0 (repeats match multiplicity). For i = 1,⋯, n, let σi =

√
λi.

The real numbers σ1 ≥ ⋯ ≥ σn ≥ 0 are called the singular values of A.

Note that for i = 1,⋯, r, Avi = ∥Avi∥ui = σiui ≠ 0 and for i = r + 1,⋯, n, Avi = 0.

Let Σ be the matrix representation of TA relative to the orthonormal bases B = {v1,⋯,vn}
and C = {u1,⋯,um} and let

V = [ v1 ⋯ vn ] and U = [ u1 ⋯ um ] .

Then V and U are orthogonal change-of-basis matrices so

V Tx = [x]B, V [x]B = x, UTy = [y]C , and U[y]C = y.

To find the matrix representation of TA relative to B and C follow the diagram in Fig-
ure 8.13.

..

A

.
Σ

.

Rn

.

Rm

.

Rm

.

Rn

.

V T

.

UT

.

V

.

U

Figure 8.13 The matrix representation of TA relative to B and C is Σ = UTAV .

To find what Σ looks like, let TΣ ∶ Rn Ð→ Rm given by TΣ(x) = Σx. From chapter 5,
recall

Σ = [ TΣ(e1) ⋯ TΣ(en) ] .

For i = 1,⋯, r,

TΣ(ei) = Σei

= UTAV ei

= UTAvi since [vi]B = ei
= UT (σiui)
= σi(UTui)
= σiei since [ui]C = ei
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and for i = r + 1,⋯, n,

TΣ = Σei

= UTAV ei

= UTAvi

= UT0

= 0.

Thus,

..Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0

⋱ 0
0 σr

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1

.r .

m

.

1

.

r

.

m

Of course, solving Σ = UTAV for A yields

A = UΣV T .

This process is summarized in the Definition 8.5.

Definition 8.5. Let A be an m × n matrix and let B = {v1,⋯,vn} be an ordered
orthonormal basis for Rn of eigenvectors for ATA with vi associated with eigenvalue
λi such that λ1 ≥ ⋯ ≥ λn ≥ 0. Let σi =

√
λi for i = 1,⋯, n. Let r be the rank of A. For

i = 1,⋯, r, let ui = 1
∥Avi∥Avi. If r <m, let {ur+1,⋯,um} be an orthonormal basis for

the null space of AT (if r =m, u1,⋯,um are defined above) and let C = {u1,⋯,um}.
Let V = [v1⋯vn] and U = [u1⋯um]. Finally, let Σ be the m × n matrix defined by

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0
⋱ 0

0 σr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

The factorization A = UΣV T is called the singular value decomposition of A.

..Example 8.13

Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Find the singular value decomposition of A.
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Solution First,

ATA =
⎡⎢⎢⎢⎢⎢⎣

2 0 2
0 2 2
2 2 4

⎤⎥⎥⎥⎥⎥⎦
.

Familiar calculations show that the characteristic polynomial for ATA is p(λ) = −λ3 +
8λ2 − 12λ = λ(λ− 2)(λ− 6), so the eigenvalues for ATA are λ1 = 6, λ2 = 2, and λ3 = 0 (in
decreasing order). Equally familiar calculations show that

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
1
0

⎤⎥⎥⎥⎥⎥⎦
, and

⎡⎢⎢⎢⎢⎢⎣

−1
−1
1

⎤⎥⎥⎥⎥⎥⎦

are associated eigenvectors for ATA respectively. Thus, the singular values of A are
σ1 =

√
6, σ2 =

√
2, and σ3 = 0 so

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
6 0 0

0
√
2 0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

By normalizing the three orthogonal eigenvectors above we get vectors

v1 =
⎡⎢⎢⎢⎢⎢⎣

1/
√
6

1/
√
6

2/
√
6

⎤⎥⎥⎥⎥⎥⎦
,v2 =

⎡⎢⎢⎢⎢⎢⎣

−1/
√
2

1/
√
2

0

⎤⎥⎥⎥⎥⎥⎦
, and v3 =

⎡⎢⎢⎢⎢⎢⎣

−1/
√
3

−1/
√
3

1/
√
3

⎤⎥⎥⎥⎥⎥⎦
,

the orthonormal basis B = {v1,v2,v3}, and the orthogonal matrix

V =
⎡⎢⎢⎢⎢⎢⎣

1/
√
6 −1/

√
2 −1/

√
3

1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 1/

√
3

⎤⎥⎥⎥⎥⎥⎦
.

Turning to the codomain of A, we get

Av1 =
1√
6

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3
3
3
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and Av2 =
1√
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Normalizing, we get

u1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2
1/2
1/2
1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and u2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/2
−1/2
1/2
1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

To complete the orthonormal basis for R4, the codomain of TA, we find a basis for the
null space of AT . Row reducing AT yields

⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.
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Let x2 = s and x4 = t. Then

x1 = −s
x2 = s

x3 = −t
x4 = t

yielding a basis for the null space of AT consisting of

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since these vectors are already orthogonal, we need not perform Gram-Schmidt. We
just normalize to get

u3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/
√
2

1/
√
2

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,u4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−1/
√
2

1/
√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

the orthonormal basis C = {u1,u2,u3,u4}, and the orthogonal matrix

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 −1/2 −1/
√
2 0

1/2 −1/2 1/
√
2 0

1/2 1/2 0 −1/
√
2

1/2 1/2 0 1/
√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The singular value decomposition of A is

A = UΣV T

or

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 −1/2 −1/
√
2 0

1/2 −1/2 1/
√
2 0

1/2 1/2 0 −1/
√
2

1/2 1/2 0 1/
√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
6 0 0

0
√
2 0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/
√
6 1/

√
6 2/

√
6

−1/
√
2 1/

√
2 0

−1/
√
3 −1

√
3 1/

√
3

⎤⎥⎥⎥⎥⎥⎦
.

..

The example above was chosen because it is relatively simple but illustrates all the as-
pects of calculating the singular value decomposition except the Gram-Schmidt process.

Though simple compared to other matrices, you probably agree that even this simple
example is quite involved. It is important to calculate a small number of realtively
“simple” singular value decompositions so you have a clear understanding of how the
SVD fits together.

The SVD has many applications. You see two in the next section. As you shall see,
it is not always necessary to calculate all of the SVD. We use the ideas made clear
by understanding the SVD and minimize the calculations. When the actual SVD is
necessary, we can use a software package like Maple for the calculations.
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.... Problem Set 8.6

For each m × n matrix A in exercises 1 through 4:

(a) Find the singular values σ1 ≥ ⋯ ≥ σn ≥ 0 of A and the m × n matrix Σ described in
Definition 8.5.

(b) Find the n × n orthogonal matrix V described in Definition 8.5.

(c) Find the m ×m orthogonal matrix U described in Definition 8.5.

(d) Verify that UΣV T = A for the matrices Σ, V , and U you calculated.

1. A = [ 2 2
−1 1

]

2. A =
⎡⎢⎢⎢⎢⎢⎣

1 0
1 1
1 1

⎤⎥⎥⎥⎥⎥⎦

3. A = [ 1 0 1
2 −1 0

]

4. A =
⎡⎢⎢⎢⎢⎢⎣

1 1 2
1 0 1
0 −1 −1

⎤⎥⎥⎥⎥⎥⎦
5. Suppose A is an n×n orthogonal matrix. Find a SVD of A by using the same process

described in this section and practiced in the previous four exercises. (Hint: The
standard basis {e1,⋯,en} is a basis of eigenvectors for a diagonal matrix.) What are
the singular values?

6. Suppose A is an n×n symmetric matrix. What is the relation between the eigenvalues
of A and the singular values of A? (Hint: A symmetric implies ATA = A2. Use
exercise 14 in section 6.1.)

7. Use the matrix A = [ 1 1
0 0

] to show that the answer for exercise 6 need not hold if

A is not symmetric.

8. (a) Show how any square matrix A can be written as

A = QS

where Q is orthogonal and S is symmetric positive semidefinite. This is called
the polar decomposition of A. (Hint: A = UΣV T = UV TV ΣV T .)

(b) Is it possible to write A = S1Q1 where S1 is symmetric and Q1 is orthogonal?

9. Find the polar decomposition of A = [ 2 2
−1 1

] and AT .

10. Let A be an n × n matrix. Prove that ATA and AAT are similar.
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.

8.7 Matrix Norms

In a general intuitive way, a vector norm is a means for measuring the length of a vector.
As mentioned earlier, this can be done in many ways depending on the vector space,
but probably the most natural vector norm and certainly the vector norm that we have
focused on in this text is the 2-norm or the Euclidean norm defined for vectors in Rn.

If x =
⎡⎢⎢⎢⎢⎢⎣

x1
⋮
xn

⎤⎥⎥⎥⎥⎥⎦
, then the Euclidean norm of x is defined by

∥x∥ =
√

x21 +⋯ + x2n =
√
x ⋅ x.

We have yet to define what we mean by a matrix norm. Like vector norms, matrix
norms can be defined in a variety of ways. Again, we focus on the most common and
natural matrix norm and one that is compatible with the Euclidean vector norm.

The idea behind a matrix norm is to measure the amount that the matrix can stretch

or shrink a nonzero vector. For example, let A = [ 3 −1
4 0

] and v = [ 3
4
] . Then

Av = [ 3 −1
4 0

] [ 3
4
] = [ 5

12
] .

We have ∥v∥ =
√
9 + 16 = 5 and ∥Av∥ =

√
25 + 144 = 13, so the matrix A stretches this

vector v by a factor of
∥Av∥
∥v∥

= 13

5
= 2.6.

Unfortunately, if we choose another vector like e1 = [
1
0
] and look at how much A

stretches it we get a different result.

Since

Ae1 = [
3 −1
4 0

] [ 1
0
] = [ 3

4
] ,

we get
∥Ae1∥
∥e1∥

= 5

1
= 5.

The norm of a matrix A is defined to be the maximum that ratio can be over all nonzero
vectors.
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Definition 8.6. Let A be an m×n matrix. The matrix norm of A, denoted ∥A∥,
is defined by

∥A∥ =max
x≠0

∥Ax∥
∥x∥

.

In the example above, we know that ∥A∥ is at least 5 because it stretches at least one
vector by a factor of 5, but indeed there may be another vector that it stretches even
more.

In a text that describes different kinds of matrix norms, Definition 8.6 might be called
the spectral norm or the matrix norm induced by the Euclidean vector norm.
Since this is the only matrix norm we study, as long as there is no confusion, we refer
to it as the matrix norm. If there could be confusion we call it the spectral norm.

Lemma 8.12 provides some useful observations that follow quickly from the definition of
matrix norm.

Lemma 8.12. Let A be an m × n matrix, x in Euclidean n-space, and c ∈ R.

(a) ∥A∥ =max∥x∥=1 ∥Ax∥

(b) For all x ∈ Rn, ∥Ax∥ ≤ ∥A∥∥x∥.

(c) ∥A∥ ≥ 0 and ∥A∥ = 0 if and only if A is a zero matrix.

(d) ∥cA∥ = ∣c∣∥A∥

(e) For B an m × n matrix, ∥A +B∥ ≤ ∥A∥ + ∥B∥. (triangle inequality)

(f) For B an n × p matrix, ∥AB∥ ≤ ∥A∥∥B∥.

Proof

(a) For x ≠ 0, 1
∥x∥x is the unit vector in the direction of x, so

∥A∥ = max
x≠0

1

∥x∥
∥Ax∥

= max
x≠0
∥ 1

∥x∥
Ax∥

= max
x≠0
∥A( 1

∥x∥
x)∥

= max
∥x∥=1

∥Ax∥.
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(b) Note that the inequality holds if x = 0, and if x ≠ 0,

∥Ax∥ = ∥Ax∥
∥x∥
∥x∥

≤ (max
x≠0

∥Ax∥
∥x∥
) ∥x∥

= ∥A∥∥x∥.

(c) Since ∥Ax∥ ≥ 0 for all x, ∥A∥ = max∥x∥=1 ∥Ax∥ ≥ 0. If A = 0, then ∥Ax∥ = ∥0∥ = 0
for all x, so ∥A∥ = max∥x∥=1 0 = 0. If A ≠ 0, then A has at least one nonzero entry.
Suppose aij ≠ 0. Then Aej ≠ 0, so ∥Aej∥ > 0 which implies ∥A∥ =max∥x∥=1 ∥Ax∥ > 0.

(d) Since (cA)x = c(Ax), ∥(cA)x∥ = ∥c(Ax)∥ = ∣c∣∥Ax∥ by Theorem 7.4(c) in section 7.2,
so

∥cA∥ = max
∥x∥=1

∥(cA)x∥

= max
∥x∥=1

∣c∣∥Ax∥

= ∣c∣ ⋅ max
∥x∥=1

∥Ax∥

= ∣c∣∥A∥.

(e) ∥(A +B)x∥ = ∥Ax +Bx∥ ≤ ∥Ax∥ + ∥Bx∥ by Theorem 7.4(d). So,

∥A +B∥ = max
∥x∥=1

∥(A +B)x∥

≤ max
∥x∥=1

(∥Ax∥ + ∥Bx∥)

≤ max
∥x∥=1

∥Ax∥ + max
∥x∥=1

∥Bx∥

= ∥A∥ + ∥B∥.

(f) By repeated use of property (b),

∥ABx∥ ≤ ∥A∥∥Bx∥
≤ ∥A∥∥B∥∥x∥

for all x ∈ Rp. So if in addition ∥x∥ = 1,

∥ABx∥ ≤ ∥A∥∥B∥.

Thus,
∥AB∥ = max

∥x∥=1
∥ABx∥ ≤ ∥A∥∥B∥.

In Lemma 8.12, part (a) is an alternate definition of this matrix norm. Part (b) is a
“compatibility” property. We say that this matrix norm is compatible with the Euclidean
vector norm.
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Parts (c), (d), and (e) taken together show that this matrix norm qualifies as a vector
space norm (see Definition 7.6 in section 7.1) for the vector space, Mmn, of all m × n
matrices (see Definition 4.1 and Example 4.2 of part 11). And since a vector space norm
gives us a vector space distance function (Definition 7.7 of section 7.1 and Theorem 7.5
of section 7.2) we now have a way of measuring the distance between two matrices A
and B:

d(A,B) = ∥A −B∥.

This opens a whole new way of looking at matrices!

Neither the definition nor Lemma 8.12 tell us how to actually calculate a matrix norm.
The singular value decomposition tells us that.

Theorem 8.13. Let A be an m × n matrix with singular values σ1 ≥ ⋯ ≥ σn ≥ 0.
The norm of A equals the largest singular value of A. That is, ∥A∥ = σ1.

Proof Note that ∥Ax∥2 = (Ax) ⋅ (Ax) = xT (ATA)x, so max∥x∥=1 ∥Ax∥2 = λ1 where λ1

is the largest eigenvalue of the symmetric matrix ATA by Theorem 8.2 of section 8.2.
Thus,

∥A∥ = max
∥x∥=1

∥Ax∥ =
√
λ1 = σ1,

the largest singular value of A by Definition 8.4 of section 8.6.

..Example 8.14

From Example 8.13 of section 8.6, if

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

then ∥A∥ =
√
6. Further, the eigenvector x =

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
of ATA associated with the eigenvalue

λ1 = 6 gets that maximal stretch by A. We can check that:

Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3
3
3
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

so
∥Ax∥
∥x∥

=
√
36√
6
=
√
6.

..
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..Example 8.15

We saw earlier in this section that if A = [ 3 −1
4 0

], then ∥A∥ ≥ 5 but we don’t know the

exact value of ∥A∥. We can calculate it now. Since

ATA = [ 3 4
−1 0

] [ 3 −1
4 0

] = [ 25 −3
−3 1

] ,

the characteristic polynomial of ATA is p(λ) = λ2−26λ+16. Thus, the largest eigenvalue
of ATA is λ1 = 26+

√
262−4⋅16
2 = 13 + 3

√
17. So

∥A∥ = σ1 =
√
λ1 =

√
13 + 3

√
17 ≈ 5.04.

..

Matrix norms are used for a variety of purposes. We illustrate by using matrix norms to
prove that a linear transformation T ∶ Rn Ð→ Rm is continuous on its entire domain Rn.

Recall from calculus that a function f being continuous at x0 means limx→x0 f(x) =
f(x0). Intuitively, this says “we can force f(x) to be arbitrarily close to f(x0) by taking
x close enough to x0.”

Let d(x, y) represent the distance between x and y. The definition of continuity is made
rigorous by using ϵ and δ.

Definition 8.7. Let f be a function. We say f is continuous at x0 if for all ϵ > 0
there exists a δ > 0 such that

d(x,x0) < δ Ô⇒ d(f(x), f(x0)) < ϵ.

For a linear transformation T ∶ Rn Ð→ Rm, the domain and codomain are vector spaces
and the distance between two vectors u and v is defined to be ∥u − v∥. Further, from
chapter 5 we learned that if T ∶ Rn Ð→ Rm is a linear transformation, then there is an
m × n matrix A such that T (x) = Ax for all x ∈ Rn.

To show, therefore, that a linear transformation T ∶ Rn Ð→ Rm given by T (x) = Ax is
continuous at x0 we must show:

For all ϵ > 0, there exists δ > 0 such that ∥x − x0∥ < δ Ô⇒ ∥Ax −Ax0∥ < ϵ.

Though understanding the intracacies of ϵ, δ proofs is not easy, the use of matrix norms
makes the proof that such a linear transformation is continuous as easy as the easiest
ϵ, δ proofs convered in calculus.
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Theorem 8.14. All linear transformations T ∶ Rn Ð→ Rm are continuous at every
point in their domain Rn.

Proof Let A be the m×n matrix such that T (x) = Ax for all x ∈ Rn. Let x0 ∈ Rn. We
show T is continuous at x0.

Suppose A is not a zero matrix. Then ∥A∥ > 0. Fix ϵ > 0. Choose δ = ϵ/∥A∥. Note that

∥Ax −Ax0∥ = ∥A(x − x0)∥ ≤ ∥A∥∥x − x0∥.

So

∥x − x0∥ < δ Ô⇒ ∥x − x0∥ < ϵ/∥A∥
Ô⇒ ∥A∥∥x − x0∥ < ϵ
Ô⇒ ∥Ax −Ax0∥ < ϵ

from the note above. Therefore T is continuous at x0 if A is not a zero matrix.

If A is a zero matrix then

∥Ax −Ax0∥ = ∥0 − 0∥ = 0 < ϵ

for all x. Thus, any value of δ > 0 would work for any given ϵ > 0. Therefore, T is
continuous at x0 in this case too.

.... Problem Set 8.7

1. Find the norms of the following matrices.

(a) [ 3 0
0 5

] (b) [ 3 0
0 −5 ] (c) [ 4 1

1 4
]

(d) [ 1 2
0 0

] (e) [ 1 1
0 1

]

(f)

⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎦
(g)

⎡⎢⎢⎢⎢⎢⎣

2 0 1
0 1 0
−1 0 0

⎤⎥⎥⎥⎥⎥⎦
2. Let U be an orthogonal n × n matrix. Prove that ∥U∥ = 1.

3. Let A be an m×n matrix and U an m×m orthogonal matrix. Prove that ∥UA∥ = ∥A∥.
(Hint: Use Lemma 8.12(a) and Theorem 7.28 from section 7.6).

4. Use exercise 6 of section 8.6 to show that if A is symmetric with eigenvalues λ1,⋯, λn,
then ∥A∥ =max{∣λ1∣,⋯, ∣λn∣}.

5. Use exercise 7 of section 8.6 to show that ∥A∥ = max{∣λ1∣,⋯, ∣λn∣} need not be true
if A is not symmetric.
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6. Show that the spectral norm for 2×2 matrices does not satisfy the parallelogram law
(exercise 11 in section 7.1). (Hint: Keep things simple. Construct a counterexample
using matrices A and B that are easy to calculate with entries of just 0 and 1.)

7. Since the parallelogram law holds for all inner product spaces (exercise 11 in sec-
tion 7.1), what does the counterexample in exercise 6 tell us about the normed vector
space of all 2 × 2 matrices under the spectral norm?

8. Show that the spectral norm on the space of 2×1 matrices is the same as the Euclidean
norm on R2.

9. Use the singular value decomposition to show that for any singular n × n matrix A
and any ϵ > 0, there is an invertible matrix B such that ∥B −A∥ = ϵ. This tells us we
can find invertible matrices as close to any given singular matrix as we wish. (Hint:
If A = UΣV T is the SVD of A with

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0

⋱ 0
0 σr

0

0 ⋱
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

let B = UΓV T with

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0

⋱ 0
0 σr

ϵ

0 ⋱
ϵ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
10. Let A be a singular n × n matrix and In the n × n identity matrix. Prove that
∥In − A∥ ≥ 1. Problem 9 tells us that all singular matrices have invertible matrices
that are arbitrarily close, but the roles of singular and invertible cannot be reversed
in this respect. The invertible identity matrix has no singular matrices close to it.

.

8.8 The Pseudoinverse

In this section we develop the pseudoinverse or Moore-Penrose inverse of a matrix. All
matrices have a unique pseudoinverse. If a square matrix is invertible, its pseudoinverse
is its inverse. If a matrix has one-sided inverses, its pseudoinverse is one of its one-sided
inverses. But even matrices that have neither (two-sided) inverses nor one-sided inverses
have unique pseudoinverses.
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One big use of matrices is to describe linear transformations. As you recall, an m × n
matrix A is used to describe a linear transformation TA ∶ Rn Ð→ Rm by TA(x) = Ax.
Recall that the function TA has a unique inverse if and only if A is square and invertible.
In that case, T−1A = TA−1 . For functions in general (not just linear transformations) it is
often helpful to construct partial inverses for those functions that do not have inverses.
This is a good way to think of the pseudoinverse. If A is not invertible and B is its
pseudoinverse, then TB is a partial inverse of TA.

Suppose A and B are two sets. Recall that functions f ∶ A Ð→ B and g ∶ B Ð→ A are
inverses means g ○ f(a) = a for all a ∈ A and f ○ g(b) = b for all b ∈ B.

Recall too that a function f ∶ A Ð→ B has a unique inverse, denoted f−1, if and only if
f is both one to one and onto.

..Example 8.16

The function f ∶ R Ð→ R given by f(x) = x3 is a good example of a function that has a
unique inverse f−1 ∶ RÐ→ R. It is f−1(x) = 3

√
x.

..

..Example 8.17

Another well-known invertible function f ∶ RÐ→ R is the exponential function f(x) = ex.
Even this function has a little problem in that we must restrict the codomain of f to
just (0,∞) rather than all of R because f is not onto R. That is, f ∶ RÐ→ (0,∞). Then
f−1 ∶ (0,∞) Ð→ R is f−1(x) = lnx.

..

Any function that is one to one but not onto will have a unique inverse by simply
restricting the codomain of the function to be the range of the function.

Functions that are not one to one, of course, do not have true inverses. However, we can
construct partial inverses by restricting the domain of the function to a subset of the
entire domain on which the function is one to one.

..Example 8.18

The sine function f(x) = sinx is a periodic function and so, of course, is not one to one.
However, if we define a restricted sine function f ∶ [−π

2 ,
π
2
] Ð→ [−1,1] by f(x) = sinx,

then this resricted sine function does have an inverse. We call that inverse the arcsine
function f−1(x) = sin−1 x. We say that the arcsine function is a partial inverse of the sine
function. It is not a true inverse of the sine function because sin−1(sinπ) = sin−1 0 = 0
and 0 ≠ π. But for x ∈ [−π

2 ,
π
2
], sin−1(sinx) = x.

In the same way, the square root function is a partial inverse of the squaring function.
..

Let A be an m × n matrix. Since the range of TA is the column space of A, we start by
restricting the codomain from Rm to col A. If TA is an onto function then col A = Rm

and the codomain of TA need not be restricted at all. We recognize that this occurs if
and only if rank A =m.



324 Chapter 8. Applications

.. x.

y

.

y = sinx

.

y = sin−1 x

Figure 8.14 The restricted sine function has an inverse.

To determine whether the domain needs to be restricted, we again look at the rank of
A. Recall that TA is one to one if and only if the null space of A is {0}. So TA is one to
one if and only if the nullity of A is 0. Since nullity A = n − rank A, TA is one to one if
and only if rank A = n.

If rank A < n, then TA is not one to one and the domain of TA needs to be restricted to
a subset of Rn on which TA is one to one. When rank A < n, this can be done in several
ways. This situation is similar to the sine function. We restrict the domain of the sine
function to [−π

2 ,
π
2
] because the sine function is one to one on that interval. This allows

us to define the arcsine function as a partial inverse of the sine function. If a different
interval like [π2 ,

3π
2
] were chosen, the result would be a different partial inverse of the

sine function. The interval [−π
2 ,

π
2
] was chosen long ago because it seemed to be the

most natural choice.

If rank A < n, we wish to make a similar natural choice for the restricted domain on
which TA is one to one. Lemma 8.15 shows that the row space of A is a good choice
because TA is both one to one and onto when the domain of TA is restricted to the row
space of A and the codomain of TA is restricted to the column space of A. It seems
to be a natural choice because the row space of A is one of the fundamental subspaces
associated with A.

Lemma 8.15. Let A be an m×n matrix, let row A be the row space of A, and let
col A be the column space of A. The function TA given by TA(x) = Ax but with
domain restricted to row A, is one to one and onto col A.

Proof To show that this restricted function is onto col A, let y ∈ col A. Since col A is
the range of the unrestricted TA, there is a vector w ∈ Rn such that TA(w) = y. Since
Rn = row A⊕ null A, there exists u ∈ row A and v ∈ null A such that w = u + v. So

TA(u) = TA(u) + 0 = TA(u) + TA(v) = TA(u + v) = TA(w) = y.

Therefore the restricted TA function is onto col A.

To show that the restricted TA is one to one, suppose u,v ∈ row A and TA(u) = TA(v).
We show u = v. Since TA(u) = TA(v), TA(u − v) = TA(u) − TA(v) = 0. Thus, u − v ∈
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null A. But since row A is a subspace of Rn, u−v ∈ row A too. But row A ∩ null A = {0},
so u − v = 0. Thus, u = v. Therefore, the restricted TA is one to one.

Thus for any m × n matrix A, the linear transformation TA ∶ Rn Ð→ Rm provides a
one-to-one onto function when the domain of TA is restricted to the row space of A and
the codomain is restricted to the column space of A.

Next, we wish to construct an n×m matrix A+ with the property that TA+ ∶ Rm Ð→ Rn

is a particular partial inverse of TA in that TA+ ○ TA(x) = x for all x ∈ row A and
TA ○ TA+(y) = y for all y ∈ col A. The singular value decomposition of A can help.

As we know from section 8.6,
A = UΣV T

with

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0

⋱ 0
0 σr

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where r = rank A and σ1 ≥ ⋯ ≥ σr > 0 are the positive singular values of A. The matrix

V = [v1⋯vr⋯vn]

is an orthogonal matrix with {v1,⋯,vr} an orthonormal basis for the row space of A
and {vr+1,⋯,vn} an orthonormal basis for the null space of A (this basis is ϕ if r = n).
The matrix

U = [u1⋯ur⋯um]

is an m ×m orthogonal matrix with {u1,⋯,ur} an orthonormal basis for the column
space of A and TA(vi) = Avi = σiui for i = 1,⋯, r and {ur+1,⋯,um} is an orthonormal
basis for null AT (this basis is ϕ if r =m).

Since TA(vi) = Avi = σiui for i = 1,⋯, r, we want to construct A+ so that TA+(ui) =
A+ui = (1/σi)vi for i = 1,⋯, r. That is, in order for TA+ to act as an inverse of TA

between col A and row A, we want ui ↦ 1
σi
vi by TA+ since vi ↦ σiui by TA.
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Definition 8.8. Let A be an m × n matrix with singular value decomposition

A = UΣV T .

Define A+ as the n ×m (note the dimensions) matrix

A+ = V Σ+UT

where U and V come from the SVD of A and the n ×m matrix

Σ+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/σ1 0
⋱ 0

0 1/σr
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

where σ1,⋯, σr are the positive singular values of A. The matrix A+ is called the
pseudoinverse or the Moore-Penrose inverse of A.

Note that since U and V are orthogonal matrices and

Σ+Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

we have that

A+A = V

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

V T .

Thus, TA+ ○ TA acts as an identity on row A, and

AA+ = U

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

UT

so TA ○ TA+ acts as an identity on col A.

..Example 8.19

From Example 8.13 of section 8.6, the SVD of A is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 −1/2 −1/
√
2 0

1/2 −1/2 1/
√
2 0

1/2 1/2 0 −1/
√
2

1/2 1/2 0 1/
√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
6 0 0

0
√
2 0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/
√
6 1/

√
6 2/

√
6

−1/
√
2 1/

√
2 0

−1/
√
3 −1/

√
3 1/

√
3

⎤⎥⎥⎥⎥⎥⎦
.
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So the pseudoinverse of A is

A+ =
⎡⎢⎢⎢⎢⎢⎣

1/
√
6 −1/

√
2 −1/

√
3

1/
√
6 1/

√
2 −1/

√
3

2/
√
6 0 1/

√
3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1/
√
6 0 0 0

0 1/
√
2 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 1/2
−1/
√
2 1/

√
2 0 0

0 0 −1/
√
2 1/

√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡⎢⎢⎢⎢⎢⎣

2 2 −1 −1
−1 −1 2 2
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

In the exercises you are asked to verify that TA+ ○ TA(x) = x for all x ∈ row A and
TA ○ TA+(y) = y for all y ∈ col A, for this example. So TA+ is a partial inverse of TA.
Also TA+ ○ TA(x) = 0 for all x ∈ null A and TA ○ TA+(y) = 0 for all y ∈ null AT for this
example.

..

Once the SVD of a matrix is calculated, probably the easiest way to calculate its pseu-
doinverse is to use the SVD, and in terms of theory the SVD is an easy way to explain
the pseudoinverse. It is not necessary, however, to calculate the SVD in order to find the
pseudoinverse. It may, in fact, be easier to calculate the pseudoinverse without going
through the SVD because of all the work involved in calculating those orthogonal ma-
trices V and U . Next, we recalculate the pseudoinverse of A from Example 8.19 without
the use of the SVD.

..Example 8.19 (redone)

We start by finding bases for row A and null A in the standard way.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Ð→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

So

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a basis for row A and

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−1
−1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is a basis for null A. Name these

three vectors v1,v2 and v3 respectively. Since R3 = row A⊕ null A,

B =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
−1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

is a basis for R3, though not an orthonormal basis, and

P =
⎡⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 −1
1 1 1

⎤⎥⎥⎥⎥⎥⎦

is the change-of-basis matrix from B to S3.
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Since TA restricted to row A is one to one and onto col A, the vectors u1 = Av1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and u2 = Av2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

form a basis for col A. We also need a basis null AT . Using the

standard procedure,

AT =
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
Ð→
⎡⎢⎢⎢⎢⎢⎣

1 1 0 0
0 0 1 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

So,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for null AT . Label these vectors u3 and u4 respectively.

Since row AT = col A and R4 = row AT ⊕ null AT , the set

C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for R4 and

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −1 0
2 1 1 0
1 2 0 1
1 2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is the change-of-basis matrix from C to S4. Let

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

By the actions of A on B and the diagram in Figure 8.15 it is clear that S = Q−1AP
(verify this).

..

A

.
S

.

R3

.

R4

.

R4

.

R3

.

P

.

Q

.

P −1

.

Q−1

Figure 8.15 S = Q−1AP
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Let A+ be the pseudoinverse of A. It is completely determined by its action on the basis
C of R4 and we need A+u1 = v1, A

+u2 = v2, A
+u3 = 0, and A+u4 = 0. By completing the

diagram in Figure 8.15, we see A+ = PSTQ−1 (see Figure 8.16).

..

A

.

A+

.

S

. ST

.

R3

.

R4

.

R4

.

R3

.

P

.

Q

.

P −1

.

Q−1

Figure 8.16 A+ = PSTQ−1

Thus,

A+ =
⎡⎢⎢⎢⎢⎢⎣

1 0 −1
0 1 −1
1 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(1
6
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2 2 −1 −1
−1 −1 2 2
−3 3 0 0
0 0 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 1

6

⎡⎢⎢⎢⎢⎢⎣

2 2 −1 −1
−1 −1 2 2
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦
.

In general, if A is anm×nmatrix, you need bases {v1,⋯,vr} for row A and {vr+1,⋯,vn}
for null A put together to form

B = {v1,⋯,vr,⋯,vn} ,

a basis for Rn. Then,
P = [v1⋯vn]

is the change-of-basis matrix from B to Sn.

We use {u1,⋯,ur} where ui = Avi for i = 1,⋯, r for a basis for col A = row AT . Then
find a basis {ur+1,⋯,um} for null AT . Put these together to form a basis

C = {u1,⋯,ur,⋯,um}

for Rm and
Q = [u1⋯um]

the change-of-basis matrix from C to Sm.

Next, consider the diagram in Figure 8.17. The matrix representation of TA with respect
to B and C is the m × n matrix

S = Q−1AP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ir 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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..

A

.
S

.

Rn

.

Rm

.

Rm

.

Rn

.

P

.

Q

.

P −1

.

Q−1

Figure 8.17 S = Q−1AP

Let A+ be the pseudoinverse of A. Then A+ is to undo the action of A on col A = row AT

and send everything in null AT to 0, so the matrix representation of TA with respect
to C and B is just ST . Completing the diagram in Figure 8.17, gives the diagram in
Figure 8.18. From this, we see that A+ = PSTQ−1.

..

A

.

A+

.

S

. ST

.

Rn

.

Rm

.

Rm

.

Rn

.

P

.

Q

.

P −1

.

Q−1

Figure 8.18 A+ = PSTQ−1

..Example 8.20

Find the pseudoinverse of

A = [ 1 0 1 0
1 1 2 1

] .

Solution Row reduction gives

[ 1 0 1 0
1 1 2 1

] Ð→ [ 1 0 1 0
0 1 1 1

] .

So

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for row A and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
−1
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
−1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

is a basis for null A. Name

these four vectors v1,v2,v3, and v4 respectively. Let

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0
0 1 −1 −1
1 1 1 0
0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.
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Let

u1 = Av1 = [
1 0 1 0
1 1 2 1

]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [ 2
3
] and u1 = Av1 = [

1 0 1 0
1 1 2 1

]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= [ 1
4
] .

Since rank AT = rank A = 2, we know col A = R2, so null AT = {0}. Let

S = [ 1 0 0 0
0 1 0 0

] .

Since rank AT = rank A = 2, col A = R2 and null AT = {0}. Let Q = [ 2 1
3 4

]. Then,

A+ = PSTQ−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0
0 1 −1 −1
1 1 1 0
0 1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

( 1

8 − 3
)[ 4 −1
−3 2

]

= 1

5

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4 −1
−3 2
1 1
−3 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

..

Least Squares and the Pseudoinverse

Suppose A is an m×n matrix of rank r and let TA ∶ Rn Ð→ Rm be the linear transforma-
tion defined by TA(x) = Ax. We know that both the row space of A in the domain of TA

(i.e. Rn), and the column space of A in the codomain of TA, (i.e. Rm) have dimension r
and that if the domain of TA is restricted to row A and the codomain of TA is resricted
to col A, then the restricted TA is a bijection from row A to col A. We also know that
TA+ , where A+ is the pseudoinverse of A, is the partial inverse of TA that undoes what
TA does between row A and col A. Thus, for all u ∈ row A and w ∈ col A,

Au =w if and only if A+w = u.

We wish to investigate how A acts on other vectors in Rn and how A+ acts on other
vectors in Rm.

To begin, recall that the null space of A is the orthogonal complement of the row space
of A (null A = (row A)⊥), and by the definition of null space if v ∈ null A, then Av = 0.
Also, by design, null A+ = null AT = (col A)⊥, so if z ∈ null AT , then A+z = 0.

Beyond that, since Rn = row A ⊕ null A, if x ∈ Rn, there exists unique u ∈ row A and
v ∈ null A such that x = u + v, and Ax = A(u + v) = Au + Av = Au + 0 = Au. See
Figure 8.19.
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..

row A

.

null A

.
v
. x.

u

. A.

col A

.

null AT

.

Ax = Au

Figure 8.19 Ax = Au

..

row A

.

null A

.

A+y = A+w

. A+.

col A

.

null AT

.
v

.

y

.

z

Figure 8.20 A+y = A+w

Similarly, if y ∈ Rm, then there exists unique w ∈ col A and z ∈ null AT such that
y =w + z and

A+y = A+(w + z) = A+w +A+z = A+w + 0 = A+w.

See Figure 8.20.

We know that if b ∈ col A, then the system Ax = b has at least one solution, and
because of the bijection discussed above, A+b is one of them. That is the only solution
if rank A = n (i.e. null A = {0}), but if rank A < n, there are other solutions. See
Figure 8.21.

..

row A

.

null A

.

A+b

.

solution set to Ax = b

.

A

.
A+

.

col A

.

null AT

.

b

Figure 8.21 A+b is one solution to Ax = b.

If b /∈ col A, then Ax = b has no solution, but it does have a least-squares solution. The
least-squares solution to Ax = b is exactly the same as the solution to Ax = b̂ where
b̂ is the orthogonal projection of b onto col A. As noted in Figure 8.22, A+b = A+b̂,
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so A+b is a least-squares solution to Ax = b. That is the only least-squares solution if
rank A = n, but if rank A < n, then it is the only least-squares solution that is in row A.
By the Pythagorean theorem, the other solutions have a larger norm. See Figure 8.22.

..

row A

.

null A

.

A+b

.

solution set to Ax = b

.

A

.
A+

.

col A

.

null AT

.

b

.

b̂

Figure 8.22 A+b is a least-squares solution to Ax = b.

We summarize with the following theorem that is proved in the exercises.

Theorem 8.16. Let A be an m×n matrix, A+ its pseudoinverse, and b ∈ Rm. The
vector A+b is the only least-squares solution to the system Ax = b that lies in the
row space of A. The system has more than one least-squares solution if and only if
rank A < n in which case A+b is the unique least-squares solution with minimum
Euclidean norm.

..Example 8.21

Find the least-squares solutions to the system

x + y = 2

x + 2y = 1

x − y = 1

using the method of section 7.5 and by calculating the pseudoinverse. Compare the
results.

Solution The system in matrix form is

⎡⎢⎢⎢⎢⎢⎣

1 1
1 2
1 −1

⎤⎥⎥⎥⎥⎥⎦
[ x
y
] =
⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦
.

Let A =
⎡⎢⎢⎢⎢⎢⎣

1 1
1 2
1 −1

⎤⎥⎥⎥⎥⎥⎦
and b =

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦
. The normal equation ATAx = ATb is

[ 3 2
2 6

] [ x
y
] = [ 4

3
] .
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Using Cramer’s rule to solve the normal system, we get

x =
∣ 4 2
3 6

∣

∣ 3 2
2 6

∣
= 18

14
= 9

7

and

y =
∣ 3 4
2 3

∣

∣ 3 2
2 6

∣
= 1

14
,

so

[ x
y
] = 1

14
[ 18

1
]

is the least-squares solution. Now the pseudoinverse.

Reduce A to find bases for row A and null A:
⎡⎢⎢⎢⎢⎢⎣

1 1
1 2
1 −1

⎤⎥⎥⎥⎥⎥⎦
Ð→ ⋯Ð→

⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
,

so v1 = [
1
0
] and v2 = [

0
1
] form a basis for row A. The null space of A is {0} since

rank A = 2. Let P = [ 1 0
0 1

] and S =
⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎥⎥⎥⎦
. The vectors u1 = Av1 =

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
and

u2 = Av2 =
⎡⎢⎢⎢⎢⎢⎣

1
2
−1

⎤⎥⎥⎥⎥⎥⎦
form a basis for col A.

Reduce AT to find a basis for null AT :

[ 1 1 1
1 2 −1 ] Ð→ ⋯Ð→ [

1 0 3
0 1 −2 ] ,

so u3 =
⎡⎢⎢⎢⎢⎢⎣

−3
2
1

⎤⎥⎥⎥⎥⎥⎦
forms a basis for null AT . Let Q =

⎡⎢⎢⎢⎢⎢⎣

1 1 −3
1 2 2
1 −1 1

⎤⎥⎥⎥⎥⎥⎦
. Then the pseudoin-

verse of A is

A+ = PSTQ−1 = [ 1 0
0 1

] [ 1 0 0
0 1 0

] 1

14

⎡⎢⎢⎢⎢⎢⎣

4 2 8
1 4 −5
−3 2 1

⎤⎥⎥⎥⎥⎥⎦
= 1

14
[ 4 2 8
1 4 −5 ] .

Finally,

A+b = 1

14
[ 4 2 8
1 4 −5 ]

⎡⎢⎢⎢⎢⎢⎣

2
1
1

⎤⎥⎥⎥⎥⎥⎦
= 1

14
[ 18

1
] ,

the same as above.
..
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.... Problem Set 8.8

1. For each matrix A below, find its pseudoinverse A+.

(a) [ 1 2
3 6

]

(b)

⎡⎢⎢⎢⎢⎢⎣

1 1
0 1
1 0

⎤⎥⎥⎥⎥⎥⎦

(c) [ 1 0 1
1 1 0

]

(d) [ 1 2 3
2 4 6

]

(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 −1 0
−1 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

2. For A the 4 × 3 matrix in Example 8.19, show the following:

(a) TA+ ○ TA(x) = x for all x ∈ row A.
(Hint: By Theorem 5.2 of section 5.1, you need only show that the composition
acts as the identity on a basis for the subspace to know it acts as the identity
on the whole subspace. The basis in Example 8.19 (redone) is easier to work
with.)

(b) TA ○ TA+(y) = y for all y ∈ col A.
(Hint: Similar to part (a) as are the last two parts.)

(c) TA+ ○ TA(x) = 0 for all x ∈ null A.

(d) TA ○ TA+(y) = 0 for all y ∈ null AT .

3. Let A be an m × n matrix and b be from the column space of A.

(a) Use Lemma 8.15 to prove that there exists a unique vector v from the row space
of A that is a solution to the system Ax = b.

(b) Prove that w is a solution to Ax = b if and only if there is a vector z from the
null space of A such that w = v+z where v is the solution to Ax = b from row A
(see part (a)).

(c) Use parts (a) and (b) and the Pythagorean theorem to prove that the solution
to Ax = b from the row space of A (the vector v in part (a)) is the unique
solution to Ax = b with a minimum norm.
(Hint: Recall that null A = (row A)⊥.)

4. Let A be an m × n matrix and b ∈ Rm. (Note that in exercise 3, b came from the
column space of A. This is different.) Prove that A+b is the least-squares solution
to Ax = b with the smallest norm.

5. Prove that A+A is the orthogonal projection matrix from Rn to row A.

6. Prove that AA+ is the orthogonal projection from Rm to col A.
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7. Let A =
⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 1
2 1 3

⎤⎥⎥⎥⎥⎥⎦
. Use exercises 5 and 6 to find the projection matrix:

(a) From R3 onto the row space of A.

(b) From R3 onto the column space of A.

8. Let A be an m × n matrix and A+ its pseudoinverse. Prove that (AT )+ = (A+)T .
(Hint: Start with the SVD of A and form both (AT )+ and (A+)T from it. Note that
(Σ+)T = (ΣT )+.)

.



..

.. Selected Answers

Problem Set 1.1

1. (a) 3x1 − 13x2 − 4x3 = −11

(c) not linear

(e) 2x + 3y = ln 5

2. (a) 2 × 2, yes, no

(c) 2 × 4, yes, yes, yes, yes, no

3. (a) (2/7,16/7)

(c) no solution

4. (a)

⎡⎢⎢⎢⎢⎢⎣

4 −15 −8
−2 1 0
−1 7 3

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

4 −15 −8 −3
−2 1 0 3
−1 7 3 0

⎤⎥⎥⎥⎥⎥⎦
5. (a) 4x − 15y = −6

−2x + y = 0
−x + 7y = 3

6. (a) y = − 5
42x

2 + 1
2x +

73
21 (b) x2 + y2 − 4x + 2y = 20

Problem Set 1.2

1.

⎡⎢⎢⎢⎢⎢⎣

1 0 2
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦

2. (a)

⎡⎢⎢⎢⎢⎢⎣

3 −1 1 6
2 1 5 8
1 −1 −2 1

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

1 0 0 4
0 1 0 5
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎦
(c)

x = 4
y = 5
z = −1

(d) (4,5,−1) (e) yes

3. If allowed to scale by 0, the row operation ri → 0ri results in the underlying equation
becoming 0 = 0. It is easy to construct examples of linear systems in which such
a row operation would expand the solution set since the equation 0 = 0 is always
true and thus is satisfied by any ordered n-tuple. Since ri + 0rj = ri, this elementary
row operation does not change the row at all, thus it changes neither the underlying
linear equation nor the solution set. Since it does not change the solution set it can

337
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be allowed for solving linear systems, but since it does not change the underlying
system, it is not helpful in solving the system.

Problem Set 1.3

1. (a) [ 1 0 2
0 1 3

]

(c) [ 1 3 0 −1
0 0 1 2

]

(e)

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 5
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎦

(g)

⎡⎢⎢⎢⎢⎢⎣

1 0 −1 −2
0 1 3 1
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 4
0 1 −3
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2. (a) 8 (c) 2n

(d) Each (n− 1)× (n− 1) category extends to two n×n categories bases on whether
the last column of the n × n matrix is a pivot column.

Problem Set 1.4

1. x = 3
y = 2
z = 4

or (3,2,4) 3. x = 5 − 3t
y = t
z = 2

5. inconsistent

7. x = 4
y = 2

or (4,2)

9. x = 5
y = 4

or (5,4) 11. x = 1 − 2t
y = 3 + t
z = t

13. x1 = −2
x2 = 3
x3 = 1
x4 = −4

or (−2,3,1,−4)
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15. x = 3t
y = 0
z = t

17. x = −2
y = 1
z = 1

or (−2,1,1)

19. y = x3 − 2x2 + 3x − 4

21. If b = 2a, x = a − 2t
y = t

If b /= 2a, inconsistent

Problem Set 1.5

1. (a)

⎡⎢⎢⎢⎢⎢⎣

13
−4
31

⎤⎥⎥⎥⎥⎥⎦
(b)

⎡⎢⎢⎢⎢⎢⎣

13
−4
31

⎤⎥⎥⎥⎥⎥⎦
,

equivalence of linear combinations
and matrix multiplication

3. (a) [ 5 2
1 −1 ] (b) [ 1 2

5 3
],

matrix multiplication is not commu-
tative

5. (a) [ 5 1 6
−3 −1 2

] (b) undefined, matrix multiplication is
not commutative

7. x

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
+ y
⎡⎢⎢⎢⎢⎢⎣

−1
−1
−1

⎤⎥⎥⎥⎥⎥⎦
+ z
⎡⎢⎢⎢⎢⎢⎣

3
6
9

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
3
5

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1 −1 3
2 −1 6
3 −1 9

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1
3
5

⎤⎥⎥⎥⎥⎥⎦
,

solution:

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

2
1
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−3
0
1

⎤⎥⎥⎥⎥⎥⎦

9. x1 + x2 + 3x3 + 4x4 = 3
2x1 + 3x2 + 8x3 + 11x4 = 7
−x1 + x2 + x3 + 2x4 = 2

x1

⎡⎢⎢⎢⎢⎢⎣

1
2
−1

⎤⎥⎥⎥⎥⎥⎦
+ x2

⎡⎢⎢⎢⎢⎢⎣

1
3
1

⎤⎥⎥⎥⎥⎥⎦
+ x3

⎡⎢⎢⎢⎢⎢⎣

3
8
1

⎤⎥⎥⎥⎥⎥⎦
+ x4

⎡⎢⎢⎢⎢⎢⎣

4
11
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

3
7
2

⎤⎥⎥⎥⎥⎥⎦
, inconsistent

11.

⎡⎢⎢⎢⎢⎢⎣

3 1 1
1 0 3
4 2 1

⎤⎥⎥⎥⎥⎥⎦
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Problem Set 1.6

1. [ 5 −7
−2 3

] 3. singular

5. [ cos θ sin θ
− sin θ cos θ

]

7.

⎡⎢⎢⎢⎢⎢⎣

−6 3 5
5 −3 −4
−1 1 1

⎤⎥⎥⎥⎥⎥⎦
9.

⎡⎢⎢⎢⎢⎢⎣

−6/67 18/67 −11/67
1/67 −3/67 13/67
26/67 −11/67 3/67

⎤⎥⎥⎥⎥⎥⎦

11.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 1
0 0 1 −1
−1 1 0 0
1 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

13. [ x
y
] = [ (2b1 + 7b2)/15(−b1 + 4b2)/15

]

14. (a) E1 =
⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦
, E2 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
−2 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, E3 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1/3 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

(b)

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1/3 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
−2 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

3 2 1
2 5 2
1 1 −2

⎤⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎣

0 0 1
0 1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
2 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 3 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 1 −2
0 1 2
3 2 1

⎤⎥⎥⎥⎥⎥⎦

15. (a) [ 2 1
1 −3 ] Ð→ [

1 −3
2 1

] Ð→ [ 1 −3
0 7

] Ð→ [ 1 −3
0 1

] Ð→ [ 1 0
0 1

]

(b) [ 2 1
1 −3 ] = [

0 1
1 0

] [ 1 0
2 1

] [ 1 0
0 7

] [ 1 −3
0 1

]

(c) [ 3/7 1/7
1/7 −2/7 ] = [

1 3
0 1

] [ 1 0
0 1/7 ] [

1 0
−2 1

] [ 0 1
1 0

]

Problem Set 2.1

1. (a)

⎡⎢⎢⎢⎢⎢⎣

2
5
−3

⎤⎥⎥⎥⎥⎥⎦
(b)

√
38

(c)

⎡⎢⎢⎢⎢⎢⎣

−2
−5
3

⎤⎥⎥⎥⎥⎥⎦
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3.

⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦
doesn’t, but

⎡⎢⎢⎢⎢⎢⎣

−1
4
5

⎤⎥⎥⎥⎥⎥⎦
does.

4. (a)

⎡⎢⎢⎢⎢⎢⎣

3
−2
4

⎤⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎣

−t
r
s

⎤⎥⎥⎥⎥⎥⎦
5. (a) 5e1 + 3e2 − 7e3

(c) xe1 + ye2 + ze3

6. (a) 3

(c) 5∣t∣

7. (a) [
√
3
1
] and [

√
3
−1 ]

8. (a) [ 5/13
−12/13 ]

(c)

⎡⎢⎢⎢⎢⎢⎣

2/3
−1/3
2/3

⎤⎥⎥⎥⎥⎥⎦
if t > 0,

⎡⎢⎢⎢⎢⎢⎣

−2/3
1/3
−2/3

⎤⎥⎥⎥⎥⎥⎦
if t < 0, and undefined if t = 0

10. Let u = [ u1
u2
] and v = [ v1

v2
]. Since u − v = [ u1 − v1

u2 − v2
], by the definition of norm

∥u − v∥ =
√
(u1 − v1)2 + (u2 − v2)2.

But, by the definition of distance between two vectors,

d(u,v) =
√
(u1 − v1)2 + (u2 − v2)2.

So,
d(u,v) = ∥u − v∥.

Problem Set 2.2

1. (a) -4

(c) 15/2

2. (a) 45○

(c) cos−1 3/5 ≈ 127○

3. (a) [ 28/13
42/13 ]
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(c)

⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦

5. cosα = 3/
√
14, cosβ = −1/

√
14, cosγ = 2/

√
14, α = cos−1(3/

√
14) ≈ 37○, β = cos−1(−1/

√
14) ≈

106○, γ = cos−1(2/
√
14) ≈ 58○.

7. (a) cos−1(1/
√
3) ≈ 55○

8. ∠QPR = cos−1(25/
√
45
√
19) ≈ 31○, ∠PQR = cos−1(20/

√
45
√
14) ≈ 37○,

∠PRQ = cos−1(−6/
√
19
√
14) ≈ 112○

9. (a) 3/2

(c) 1/5 (-5 is an extraneous root)

Problem Set 2.3

1. (a)

⎡⎢⎢⎢⎢⎢⎣

−7
8
−3

⎤⎥⎥⎥⎥⎥⎦
3.
√
66 5. 35

7. 2(v × u)

Problem Set 2.4

1. (a) i. x(t) =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

4
5
6

⎤⎥⎥⎥⎥⎥⎦
.

ii. x = 1 + 4t
y = 2 + 5t
z = 3 + 6t

iii. x−1
4 =

y−2
5 =

z−3
6

(c) i. x(t) =
⎡⎢⎢⎢⎢⎢⎣

3
4
−1

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

0
1
5

⎤⎥⎥⎥⎥⎥⎦
.

ii. x = 3
y = 4 + t
z = −1 + 5t

iii. y−4
1 =

z+1
5 ; x = 3

2. (a) intersect at the point

⎡⎢⎢⎢⎢⎢⎣

−2
5
4

⎤⎥⎥⎥⎥⎥⎦
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(c) parallel, no intersection

3. (a)
√
66/3

(c) 0

4. (a) x(t) =
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

0
1
0

⎤⎥⎥⎥⎥⎥⎦
.

(b) x = 1
y = 2 + t
z = 3

(c) x = 1; z = 3

Problem Set 2.5

1. (a) 2x + 5y − 4z = −13
(c) 2x + 5y − 11z = 42
(e) 2x + 3y − z = −4
(g) 3x − 5y − 7z = −14

2. (b)

⎡⎢⎢⎢⎢⎢⎣

2
5
−4

⎤⎥⎥⎥⎥⎥⎦
⋅
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎣

1
−3
0

⎤⎥⎥⎥⎥⎥⎦

⎞
⎟
⎠
= 0

(d) z − 0 = 1
2(x − 1) +

5
4(y + 3)

(f) x(s, t) =
⎡⎢⎢⎢⎢⎢⎣

1
−3
0

⎤⎥⎥⎥⎥⎥⎦
+ s
⎡⎢⎢⎢⎢⎢⎣

5
−2
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

2
0
1

⎤⎥⎥⎥⎥⎥⎦

3. x(t) =
⎡⎢⎢⎢⎢⎢⎣

−5
2
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

17
−5
1

⎤⎥⎥⎥⎥⎥⎦
5. (−14,4,3)

7. 23
√
29/29

8. (a) 2
√
30

9. (a) A plane and a line are parallel if they do not intersect. One way to show they are
parallel is to substitute the values of x, y, and z in terms of t from the parametric
equations for the line into the equation for the plane and show that the equation
has no solution. Another way is to start by showing that the direction vector
for the line is orthogonal to the normal vector of the plane. That implies that
the line and plane are parallel or the line lies on the plane. Then pick any fixed
point on the line and show that it does not satisfy the equation of the plane.

10. (a) Two lines are parallel if they have parallel direction vectors and they are not
coincident. Show the direction vectors are multiples of each other, and show
that one fixed point from one line is not on the other line.
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11. (a) It is a horizontal plane, that is, a plane perpendicular to the z axis.

(c) It is a vertical plane, that is, a plane that is parallel to or contains the z axis.

12. (a) A (vertical) plane with a normal vector

⎡⎢⎢⎢⎢⎢⎣

b
−a
0

⎤⎥⎥⎥⎥⎥⎦
that passes through the point

(x0, y0, z0). The second is a plane with a normal vector of

⎡⎢⎢⎢⎢⎢⎣

0
c
−b

⎤⎥⎥⎥⎥⎥⎦
that also

passes through the point (x0, y0, z0).

Problem Set 3.1

1. (a) A1,1 = [
0 4
6 3

], A1,2 = [
7 4
2 3

], A1,3 = [
7 0
2 6

],

A2,1 = [
8 9
6 3

], A2,2 = [
1 9
2 3

], A2,3 = [
1 8
2 6

],

A3,1 = [
8 9
0 4

], A3,2 = [
1 9
7 4

], A3,3 = [
1 8
7 0

].

(c) C1,1 = −24, C1,2 = −13, C1,3 = 42,
C2,1 = 30, C2,2 = −15, C2,3 = 10,
C3,1 = 32, C3,2 = 59, C3,3 = −56.

2. (a) -7

(c) 40

3. (a) -15

5. (a) 0

6. (a) 80

(c) 40

(e) 0

(g) −6! = −720

Problem Set 3.2

1. (a) 0

2. (a) 13 (c) 5 (e) 11/15

3. (a) 7 (c) 14
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Problem Set 3.3

1. (a) invertible (c) invertible

2. (a) 20 (c) 125 (e) 1/4

3. (a) x = 1,4

4. (a)

RRRRRRRRRRRRRR

a b c
e f g
i j k

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

a b d
e f h
i j l

RRRRRRRRRRRRRR

(c)

RRRRRRRRRRRRRR

a c e
g i k
m p r

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

a c f
g i l
m p s

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

a d e
g j k
m q r

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

a d f
g j l
m q s

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

b c e
h i k
n p r

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

b c f
h i l
n p s

RRRRRRRRRRRRRR
+

RRRRRRRRRRRRRR

b d e
h j k
n q r

RRRRRRRRRRRRRR
+
RRRRRRRRRRRRRR

b d f
h j l
n q s

RRRRRRRRRRRRRR

Problem Set 3.4

1. (a) [ 51/23
−2/23 ]

3. x = ed − bf
ad − bc

, y = af − ec
ad − bc

4. (a) 13

5. 3

7. 12

Problem Set 4.1

1. Yes

3. (a) done

(c) A4, A5, A3, A10, A8, property of R, A10, A5

(e) A4, A5, A3, A10, A8, property of R, Thm. 2c, A4

4. (a) yes (c) yes

5. (a) yes (c) no

6. (a) no (c) yes

7. (a) yes (c) yes

9. (a) yes (c) yes
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Problem Set 4.2

1. 2x + y − 5z = 0 3.
x

4
= y

3
= z

2

5. span{[ 2
−3 ]}

7. (a) i. implicit: 3x − 2y − z = 0, explicit: span
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
3
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ii. implicit: x − 3y + z = 0, explicit: span{[ 1 2 5 ] , [ 1 3 8 ]}

iii. implicit:
x

1
= y

−3
= z

1
, explicit: span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−3
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(c) i. R3

ii. R3

iii. {0}
(e) i. R2

ii. implicit: x − 2y + z = 0, explicit: span{[ 1 2 3 ] , [ 1 3 5 ]}

iii. implicit:
x

1
= y

−2
= z

1
, explicit: span

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(g) i. implicit: x1 + x2 + x3 − x4 = 0, explicit: span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ii. implicit: −2x1 + 3x2 − 2x3 + x4 = 0,

explicit: span{[ 1 1 1 1 ] , [ 1 2 3 2 ] , [ −1 0 2 2 ]}

iii. implicit:
x1
−2
= x2

3
= x3
−2
= x4

1
, explicit: span

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2
3
−2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Problem Set 4.3

1. (a) dependent,

⎡⎢⎢⎢⎢⎢⎣

2
6
0

⎤⎥⎥⎥⎥⎥⎦
= −4

⎡⎢⎢⎢⎢⎢⎣

1
2
1

⎤⎥⎥⎥⎥⎥⎦
+ 2
⎡⎢⎢⎢⎢⎢⎣

3
7
2

⎤⎥⎥⎥⎥⎥⎦
(c) independent

2. (a) independent

(d) dependent,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= −1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+ 1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
5
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦



ANSWERS 347

3. (a) independent

(b) dependent

4. (a) independent

(c) dependent

Problem Set 4.4

1. (a) 2 (c) 1 (e) 0

2. (a) yes (d) no

3. (a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

3
−2
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

2
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, 2 (c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
5
7

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, 1 (e)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−3
7
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, 1

4. (a) i. {[ 2
3
]}, 1 ii. {[ 1 2 ]}, 1

iii. {[ 2
−1 ]}, 1

(c) i.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
−1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

1
2
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, 2

ii. {[ 1 0 −1 ] , [ 0 1 3 ]}, 2

iii.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
3
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, 1

5. (a)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
0
3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
0
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(c)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

4
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
0
3
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2
0
0
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(e) 3t − 4t − 5t + 6t = 0

6. (a) yes (c) no

7. (a) 5 (c) 7 (e) 7 (g) 5

8. (a)

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

−5
−8
8

⎤⎥⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎢⎢⎣

6
9
−6

⎤⎥⎥⎥⎥⎥⎦
(c) no
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Problem Set 5.1

1. (a) yes, [ 2 3
1 −4 ]

(c) no, T (00) = T (0) =
⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦
but 0T (0) = 0

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
(e) no, T (−1i) = ∥(−1)i∥ = ∣ − 1∣∥i∥ = (1)(1) = 1 but (−1)T (i) = (−1)∥i∥ = (−1)(1) =
−1

2. (a) det[ 1 3
2 7

] = 1 /= 0 (c) [ 6 −2
−37 16

]

3. (a)

⎡⎢⎢⎢⎢⎢⎣

3 2 2
3 6 0
3 2 5

⎤⎥⎥⎥⎥⎥⎦
(c)

⎡⎢⎢⎢⎢⎢⎣

6 3 −3
3 9 3
9 0 12

⎤⎥⎥⎥⎥⎥⎦
(e)

⎡⎢⎢⎢⎢⎢⎣

12 4 12
4 11 −3
5 6 6

⎤⎥⎥⎥⎥⎥⎦

4. (a) [ cos 2θ sin 2θ
sin 2θ − cos 2θ ]

(c) Rβ ○ Fα = F2α + β
2

(e) Rβ ○ Fα = F2α − β
2

Problem Set 5.2

1. (a) The kernel of T is the trivial subspace {(0,0)}. The preimages of {u}, {v}, and
{w} are the single-element sets {(−4,3)}, {(7,−4)}, and {(1,0)} respectively.

(c) The kernel of T is all of R2. All three preimages are the empty set.

2. (a) The range of T is all of R2. T is both injective and surjective. T has an inverse.

(c) The range of T is the trivial subspace {(0,0)}. T is neither injective nor surjec-
tive. T does not have an inverse.

3. (a) Basis for range T =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, Basis for ker T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−3
−2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(c) Basis for range T =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

3
4
5

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, Basis for ker T = ∅.

4. (a) neither injective nor surjective, no inverse.

(c) injective but not surjective, no inverse.
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5. (a) yes, 1+2=3 (c) yes, 0+2=2

6. (a) x = −t, y = −t, z = t

7. (a) R7 (c) 3 (e) no (g) no

9. The kernel is the plane x + 2y + 3z = 0.

Problem Set 5.3

1. (a) PB = [
1 1
1 2

] (b) P −1B = [
2 −1
−1 1

] (c) [u]B = P −1B u = [ 1
1
]

3. Impossible because B is not a basis for R3.

4. (a)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 4 −8
0 1 −4 12
0 0 1 −6
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3
1
2
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
5
−4
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, p(t) = t3 − 4t2 + 5t + 1.

(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 1
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 1 1
0 0 1 3
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
7
6
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, r(t) = t(t − 1)(t − 2) + 6t(t − 1) +

7t + 1.

5. (a) PB = [
2 3
1 2

], PC = [
1 1
3 2

], M = P−1C PB = [
−3 −4
5 7

], [u]C = [
−25
43
]

(b) [PC ∣PB] = [
1 1 2 3
3 2 1 2

] → ⋯→ [ 1 0 −3 −4
0 1 5 7

], M = [ −3 −4
5 7

]

Problem Set 5.4

1. [ 1 0 0
0 1 0

]

3. (a) [ 1 0
0 −1 ]

(c) [ 1 0
0 0

]

(e)

⎡⎢⎢⎢⎢⎢⎣

1 0 1
0 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎦

5. Q = [ 1 e
−e 1

], A = [ e 1
1 e−1

], M = [ 0 0
0 e + e−1 ]
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Problem Set 6.1

1. (a) λ = 2,{[ 3
1
]}

(b) no

(c) λ = −1,{[ 2
1
]}

3. (a) no

(b) λ = 1,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(c) λ = −1,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(d) λ = 0,
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
−1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

5. (a) λ = −2,{[ 2
1
]}

(b) no

(c) λ = 1,{[ 3
2
]}

7. (a) for λ = 4{[ 1
0
]}, for λ = 3{[ −1

1
]}

(c) for λ = −1
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
0
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, for λ = 2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

4
3
9

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
8. (a) false (true if nonzero vector) (c) true

(e) false (converse is true) (g) true

9. eigenvector v =
⎡⎢⎢⎢⎢⎢⎣

1
⋮
1

⎤⎥⎥⎥⎥⎥⎦
11. (a) λ = 1,−1

(b) E1 is the line y = 2x, E−1 is the line y = −1
2x

13. (a) λ = 0,1

(b) E1 is the plane x + 2y + 3z = 0, E0 is the line x(t) = t
⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
.

15. Av = λv⇒ A−1Av = A−1(λv) ⇒ v = λA−1v⇒ A−1v = 1
λv.
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Problem Set 6.2

1. (a) p(λ) = λ2 − 2λ − 3, λ = 3,−1
(c) p(λ) = λ2 − 4λ + 4, λ = 2
(e) p(λ) = λ2 + 1, no real eigenvalues λ = ±i
(g) p(λ) = −λ3 −λ2 + 2λ = −λ(λ+ 2)(λ− 1) (factor out the common monomial factor
−λ), λ = 0,1,−2

(i) p(λ) = −(λ − 1)2(λ + 3), λ = 1,−3

2. For each of the following, let Bλ be a basis for the eigenspace associated with λ.

(a) B3 = {[
1
1
]}, B−1 = {[

−1
1
]}

(c) B2 = {[
2
1
]}

(e) no eigenvectors in R2, but in C2 Bi = {[
i
1
]}, B−i = {[

−i
1
]}

(g) B0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, B1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, B−2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−2
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(i) B1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

0
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, B−3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0
1
−2

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

3. Let p(λ) and q(λ) be the characteristic polynomials of A and AT respectively.
q(λ) = det(AT − λI) = det(AT − λIT ) = det(A − λI)T = det(A − λI) = p(λ).

5. Let A = [ a b
c d

], and let p(λ) be the characteristic polynomial of A.

p(λ) = ∣ a − λ b
c d − λ ∣ = (a−λ)(d−λ)−bc = λ

2−(a−d)λ+(ad−bc) = λ2−tr(A)λ+det(A).

8. (a) False, -3 is an eigenvalue of A.

(c) False. Counterexample, A = [ 1 1
0 1

] → [ 1 1
1 2

] = B. The characteristic

polynomial of A is p(λ) = λ2 − 2λ + 1, but the characteristic polynomial of B is
q(λ) = λ2 − 3λ + 1.

(e) True. Since the characteristic polynomials are the same (exercise 3), the eigen-
values are the same.

9. Let A be an n×n matrix with column sums all equal to s, then AT has all row sums
equal to s. By exercise 9 of section 6.1, AT has an eigenvalue of s, so λ−s is a factor of
the characteristic polynomial of AT . By exercise 3 of this section, the characteristic
polynomials of A and AT are the same, so λ − s is a factor of the characteristic
polynomial of A. Therefore, s is an eigenvalue of A.
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Problem Set 6.3

1. (a) [ 3 0
0 4

]

(c) [ 3 0
0 −1 ]

(e) not diagonalizable

(g)

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦

3. (a) P = [ 1 1
0 1

]

(c) P = [ 1 −1
2 2

]

(e) not diagonalizable

(g) P =
⎡⎢⎢⎢⎢⎢⎣

−1 2 −2
0 1 0
1 0 1

⎤⎥⎥⎥⎥⎥⎦

5. (a) D1D2 =
⎡⎢⎢⎢⎢⎢⎣

λ1 0
⋱

0 λn

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

µ1 0
⋱

0 µn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

λ1µ1 0
⋱

0 λnµn

⎤⎥⎥⎥⎥⎥⎦

(c) D−11 =
⎡⎢⎢⎢⎢⎢⎣

λ−11 0
⋱

0 λ−1n

⎤⎥⎥⎥⎥⎥⎦

6. (a) Dk =DD . . .DD = (P −1AP )(P −1AP ) . . . (P−1AP )(P −1AP ) = P −1A(PP −1)A. . .A(PP −1)AP =
P −1AkP .

7. [ 8 −18
3 −7 ]

k

= [ 3 ⋅ 2k − 2(−1)k −6 ⋅ 2k + 6(−1)k
2k − (−1)k −2 ⋅ 2k + 3(−1)k ]

8. A = [ −2 20
−1 7

]

10. (a) T (c) T (e) T (g) F (i) F

13. A diagonalizable ⇒ there exist an invertible P and a diagonal D such that P −1AP =
D. B similar to A ⇒ there exist an invertible Q such that A = Q−1BQ. So, D =
P −1AP = P−1(Q−1BQ)P = (QP )−1B(QP ). Therefore, B is diagonalizable.

14. (a) rank(A) = 1, nullity(A) = n − 1.
(c) Yes, dim(E0) = nullity(A) = n − 1.
(e) λ = v ⋅ u.
(g) p(λ) = (−1)nλn−1(λ − v ⋅ u).

15. (a) rank(A) = 1, nullity(A) = n − 1.
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(c) Yes, dim(E0) = nullity(A) = n − 1.
(e) λ = 0.
(g) p(λ) = (−1)nλn.

Problem Set 6.4

1. (a) (i) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(ii) λ = 0, B0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(iii) λ = 0, C0 = {1}
(iv) no

(c) (i) A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 1 2 0
0 0 2 3
0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(ii) λ = 0,1,2,3, B0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, B1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, B2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, B3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
3
3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(iii) λ = 0,1,2,3, C0 = {1}, C1 = {t + 1}, C2 = {t2 + 2t + 1}, C3 = {t3 + 3t2 + 3t + 1}
(iv) yes

2. (b) (i) A =
⎡⎢⎢⎢⎢⎢⎣

0 0 2
1 0 −5
0 1 4

⎤⎥⎥⎥⎥⎥⎦

(ii) λ = 1,2, B1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

2
−3
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, B2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

1
−2
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(iii) λ = 1,2, C1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−3 −9 9
0 0 0
−1 −3 3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, C2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

0 0 0
−1 −2 3
−1 −2 3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(iv) no

Problem Set 7.1

1. (a) (i) -1, (ii) 0, (iii)
√
5, (iv)

√
17

2. (b) (i) -6, (ii) 0, (iii)
√
43, (iv)

√
68



354 ANSWERS

3. (a) 0 (c)
√
2π

4. y = −3x + 5 and y = −31
8 x +

47
8

5. A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
w1 0 . . . 0
0

√
w2 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 . . . 0

√
wn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Problem Set 7.2

1. (a) yes (c) no

2. (a)
1√
5
[ 1
2
]

(c)
1√
3

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
3. (a) π/3 (c) π/2

4. (a) yes (c) no

5. ± 1√
39

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5
−2
−3
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

6. (a)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
7. (a) dim W = 3, dim W ⊥ = 1

9. 3x + 4y + 5z = 0

10. (a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

−1
1
0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

−1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

11.
√
13

Problem Set 7.3

1. (a) (i)

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

−1
−4
3

⎤⎥⎥⎥⎥⎥⎦
= −1 − 8 + 9 = 0, (ii)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1√
14

⎡⎢⎢⎢⎢⎢⎣

1
2
3

⎤⎥⎥⎥⎥⎥⎦
,

1√
26

⎡⎢⎢⎢⎢⎢⎣

−1
−4
3

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (iii) no
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(c) (i)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (ii)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
−1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

(iii)yes

2. (a)

⎡⎢⎢⎢⎢⎢⎣

7/9
2/9
−1/9

⎤⎥⎥⎥⎥⎥⎦

(c) [ 8/5
−1/5 ]

3. (a)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

7/4
7/4
7/4
7/4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−3/4
1/4
5/4
−3/4

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(c)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3/2
3/2
2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1/2
1/2
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

4. (a) Px = (( 1

wTw
)wwT)x = (( 1

wTw
)w) (wTx) = (w ⋅ x

w ⋅w
)w = projwx.

(c) P = 1

14

⎡⎢⎢⎢⎢⎢⎣

1 2 3
2 4 6
3 6 9

⎤⎥⎥⎥⎥⎥⎦

5. (a) Since W ⊥ is a subspace of Rn, there exists ŷ and ˆ̂y such that projW ⊥x = ŷ
and the component of x orthogonal to W ⊥ is ˆ̂y, so x = ŷ + ˆ̂y with ŷ ∈ W ⊥ and
ˆ̂y ∈ (W ⊥)⊥ = W . Since Rn = W ⊕W ⊥, ŷ = ˆ̂x and ˆ̂y = x̂. Thus, otW ⊥x = ŷ − ˆ̂y =
ˆ̂x − x̂ = −otWx.

(c) (2P − In)x = 2Px − Inx = 2projWx − x = otWx by part (b). Thus, R = 2P − In.

(e) R = 1

9

⎡⎢⎢⎢⎢⎢⎣

1 8 −4
8 1 4
−4 4 7

⎤⎥⎥⎥⎥⎥⎦
7. (a) F (b) T (c) F (d) F

(e) T (f) T (g) T (h) T

Problem Set 7.4

1. (a) {[ 1
2
] , [ 2
−1 ]} (c) {[ 4

1
] , [ −1

4
]}

3.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
−1
3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

4. (a) {x − 1,4x2 + 13x − 5}
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5. (a) T (c) F (e) T

Problem Set 7.5

1. (a) [ 21 7
7 10

] [ x
y
] = [ 3

−2 ]

(c) [ 7 4
4 7

] [ x
y
] = [ 7

2
]

2. (a) [ 44/161
−9/23 ]

(c) [ 41/33
−14/33 ]

3.

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

7/17
3/17
0

⎤⎥⎥⎥⎥⎥⎦
+ t
⎡⎢⎢⎢⎢⎢⎣

−1
−1
1

⎤⎥⎥⎥⎥⎥⎦

4. (a) y = 3

2
x + 2

3

5. z = −7
3
x − 3

2
y + 7

2

7. P = 1

6

⎡⎢⎢⎢⎢⎢⎣

5 1 −2
1 5 2
−2 2 2

⎤⎥⎥⎥⎥⎥⎦
9. (a) F (c) T (e) F (g) T

Problem Set 7.6

1. (a)
1√
2
[ 1 −1
1 1

] 1√
2
[ 1 1
−1 1

] = [ 1 0
0 1

];

1

5
[ 4 −3
3 4

] 1
5
[ 4 3
−3 4

] = [ 1 0
0 1

];

[ 1 0
0 1

] [ 1 0
0 1

] = [ 1 0
0 1

]

(c)
1√
2
[ 1 1
−1 1

]

(e)
1

5
[ 4 3
−3 4

]

(g)
1

5
√
2
[ 7 1
−1 7

]
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2. (a)
1

15

⎡⎢⎢⎢⎢⎢⎣

−5 2 14
10 11 2
10 −10 5

⎤⎥⎥⎥⎥⎥⎦

1

15

⎡⎢⎢⎢⎢⎢⎣

−5 10 10
2 11 −10
14 2 5

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
;

1

25

⎡⎢⎢⎢⎢⎢⎣

15 −12 −16
20 9 12
0 20 −15

⎤⎥⎥⎥⎥⎥⎦

1

25

⎡⎢⎢⎢⎢⎢⎣

15 20 0
−12 9 20
−16 12 −15

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
;

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦

(c)
1

15

⎡⎢⎢⎢⎢⎢⎣

−5 10 10
2 11 −10
14 2 5

⎤⎥⎥⎥⎥⎥⎦

(e)
1

25

⎡⎢⎢⎢⎢⎢⎣

15 20 0
−12 9 20
−16 12 −15

⎤⎥⎥⎥⎥⎥⎦

(g)
1

15

⎡⎢⎢⎢⎢⎢⎣

5 14 2
10 −5 10
10 −2 −11

⎤⎥⎥⎥⎥⎥⎦
3. (a) left-handed (c) right-handed

4. (a) QT = (I − 2
n⋅nnn

T )T = IT − 2
n⋅n(nn

T )T = I − 2
n⋅nnn

T = Q
(c) Qn = (I − 2

n⋅nnn
T )n = In − 2

n⋅nn(n
Tn) = n − 2n = −n

(e) λ = ±1
(g) 2,2

(i) λ = −1 with algebraic & geometric multiplicity 1, λ = 1 with algebraic & geo-
metric multiplicity 2.

(k)
1

7

⎡⎢⎢⎢⎢⎢⎣

6 −2 −3
−2 3 −6
−3 −6 −2

⎤⎥⎥⎥⎥⎥⎦

5. (a) RθR
T
θ =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
(c) AAT = (URθU

T )(URθU
T )T = URθ(UTU)RT

θ U
T = U(RθR

T
θ )U

T = UUT = I

(e) R 2π
3
=
⎡⎢⎢⎢⎢⎢⎣

1 0 0

0 −1/2 −
√
3/2

0
√
3/2 −1/2

⎤⎥⎥⎥⎥⎥⎦
(g) The positive x axis rotates to the positive y axis. The positive y axis rotates to

the positive z axis. The positive z axis rotates to the positive x axis.

Problem Set 7.7

1. (a) D = [ 0 0
0 5

], U = 1√
5
[ −2 1

1 2
]
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(c) D = [ 5 0
0 −5 ], U =

1√
10
[ 3 −1
1 3

]

(e) D =
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 3 0
0 0 −3

⎤⎥⎥⎥⎥⎥⎦
, U = 1

3

⎡⎢⎢⎢⎢⎢⎣

1 2 2
2 1 −2
2 −2 1

⎤⎥⎥⎥⎥⎥⎦

(g) D =
⎡⎢⎢⎢⎢⎢⎣

18 0 0
0 −9 0
0 0 9

⎤⎥⎥⎥⎥⎥⎦
, U = 1

3

⎡⎢⎢⎢⎢⎢⎣

−1 2 2
2 −1 2
2 2 −1

⎤⎥⎥⎥⎥⎥⎦

(i) D =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/
√
2 1/

√
6 1/

√
12

1/2 −1/
√
2 1/

√
6 1/

√
12

1/2 0 −2/
√
6 1/

√
12

1/2 0 0 −3/
√
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

3. (a) Px = (uuT )x = u(uTx) = u(u ⋅ x) = u⋅x
1 u = u⋅x

u⋅uu = projux
(c) P 2 = (uuT )(uuT ) = u(uTu)uT = u(u ⋅ u)uT = u(1)uT = uuT = P
(e) λ = 0, the eigenspace is the solution set of u ⋅ x = 0, its dimension is n − 1.

5. (a) T (c) T (e) F (g) T (i) T

Problem Set 8.1

1. (a) A = [ 5 1
1 5

] (c) A = [ 2 6
6 −7 ]

2. (a) elliptic paraboloid (c) hyperbolic paraboloid

3. 1√
2
[ 1 −1
1 1

], 1√
2
[ 1 1
1 −1 ],

1√
2
[ −1 −1
−1 1

], 1√
2
[ −1 1
−1 −1 ],

1√
2
[ −1 1

1 1
], 1√

2
[ −1 −1

1 −1 ],

1√
2
[ 1 1
−1 1

], 1√
2
[ 1 −1
−1 −1 ]

4. (c) 1√
5
[ 1 −2
2 1

]

5. (a) z = 6(x′)2 + 4(y′)2; z = 4(x′)2 + 6(y′)2

(c) z = 5(x′)2 − 10(y′)2; z = 5(y′)2 − 10(x′)2

6. (a) w = 18(x′)2 + 9(y′)2 − 9(z′)2

7. (a) 6

8. (a) 4! = 24 (c) 6

9.
n!

m1!⋯mk!



ANSWERS 359

Problem Set 8.2

1. max: 36 at ±( 3√
2
,
3√
2
); min: 18 at ±( 3√

2
,− 3√

2
)

3. max: 25 at ±(3
5
,
4

5
); min: 0 at ±(−4

5
,
3

5
)

5. max: 24 at ± 2√
3

⎡⎢⎢⎢⎢⎢⎣

1
1
1

⎤⎥⎥⎥⎥⎥⎦
; min: −24 at ±

√
2

⎡⎢⎢⎢⎢⎢⎣

1
−1
0

⎤⎥⎥⎥⎥⎥⎦

Problem Set 8.3

1. (a) Hyperbola or degenerate (c) Parabola or degenerate

2. (a) [ x y ] [ 0 1
1 0

] [ x
y
] = 1

(c) [ x y ] [ 18 6
6 2

] [ x
y
] + [ 13 1 ] [ x

y
] = −5

3. (a) U = 1√
2
[ 1 −1
1 1

] , θ = 45○

(c) U = 1√
10
[ 3 −1
1 3

] , θ = tan−1 (13) ≈ 18.4
○

4. (a) (x′)2 − (y′)2 = 1

(c) 2
√
10(x′ + 1√

10
)
2

= y′ − 3√
10

5. (a) (0,0)
(c) (− 1√

10
,

3√
10
)

6. (a) (0,0) (c) (−3
5
,
4

5
)

7. (a)

.. x.

y

.

x′

.

y′

.
2xy = 1

. 45○
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.. x.

y

.

x′

.

y′

.
18x2 + 2y2 + 12xy + 13x + y = −5

. θ ≈ 18.4○

(c)

Problem Set 8.4

1. (a)
(x′)2
√
3
2
+ (y

′)2

32
+ (z

′)2

32
= 1

(b) Ellipsoid

3. (a) 3(x′)2 = 1
(b) Degenerate quadric surface (two parallel planes: x + y + z = 1, x + y + z = −1)

Problem Set 8.5

1. (a) indefinite (c) positive semidefinite (e) negative semidefinite

2. (a) positive definite (c) negative definite

3. (a) A2 is positive semidefinite.

4. (a) A2 is symmetric.

5. They are the same.

6. (a) Since each column has all zeros except one 1, each column has a norm of 1.
Since each row has only one 1, the ones in two different columns don’t match
up, so the dot product of any two different columns is 0.

(b)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(e) If A is a symmetric matrix with a negative entry in position (i, i), let P be

the permutation matrix that swaps row and column 1 with row and column i.
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Then P TAP has a negative entry in position (1,1) and is, therefore, not positive
definite by Theorem 8.10. But by Corollary 6.7, P TAP and A have exactly the
same eigenvalues, so A is not positive definite either. Therefore, all diagonal
entries of a positive definite matrix must be positive.

7. (a) B = [ 2 0
1 0

] [ 2 1
0 0

]

8. (a) Ellipsoid

(c) Two parallel planes

(e) Hyperboloid of one sheet

Problem Set 8.6

1. σ1 = 2
√
2, σ2 =

√
2, Σ = [ 2

√
2 0

0
√
2
], V = 1√

2
[ 1 −1
1 1

], U = [ 1 0
0 1

]

3. σ1 =
√
6, σ2 = 1, σ3 = 0, Σ = [

√
6 0 0
0 1 0

], V =

⎡⎢⎢⎢⎢⎢⎢⎣

5√
30

0 − 1√
6

− 2√
30

1√
5
− 4√

6
1√
30

2√
5

1√
6

⎤⎥⎥⎥⎥⎥⎥⎦

, U = 1√
5
[ 1 2
2 −1 ]

5. A = AInIn, U = A, Σ = In, and V = In. The singular values are all 1.

6. The singular values equal the absolute value of the eigenvalues.

8. (a) From the hint, A = (UV T ) (V ΣV T ). Let Q = UV T and S = V ΣV T . Q is the
product of two orthogonal matrices, hence orthogonal. Since Σ is diagonal with
nonnegative entries and V is orthogonal, S is symmetric positive semidefinite.

9. A = ( 1√
2
[ 1 1
−1 1

])(1
2
[ 3
√
2
√
2√

2 3
√
2
]) and AT = ( 1√

2
[ 1 −1
1 1

])([ 2
√
2 0

0
√
2
])

Problem Set 8.7

1. (a) 5

(c) 5

(e)

√
3 +
√
5

2

(g)
√
3 +
√
6

3. By Theorem 7.28, for x ∈ Rn, ∥UAx∥ = ∥U(Ax)∥ = ∥Ax∥, so ∥UA∥ = max
∥x∥=1

∥AUx∥ =

max
∥x∥=1

∥Ax∥ = ∥A∥ by Lemma 8.12(a).
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4. By exercise 6 of section 8.6, since A is symmetric, the singular values of A are
∣λ1∣,⋯, ∣λn∣. By Theorem 8.13, ∥A∥ equals the largest singular value of A, so ∥A∥ =
max{∣λ1∣,⋯, ∣λn∣}.

6. Let A = [ 1 0
0 1

] and B = [ 1 0
0 0

]. Then A +B = [ 2 0
0 1

] and A −B = [ 0 0
0 1

].

So ∥A∥ = 1, ∥B∥ = 1, ∥A+B∥ = 2, and ∥A−B∥ = 1. But ∥A+B∥2 + ∥A−B∥2 = 4+1 = 5
and 2∥A∥2 + 2∥B∥2 = 2 + 2 = 4 and 5 ≠ 4. Other examples may be used.

8. Let A = [ a
b
] and x ∈ R1 be such that ∥x∥ = 1, thus x = ±1. Then,

Ax = [ a
b
]x = [ a

b
] or [ −a−b ] ,

so

∥A∥ = max
∥x∥=1

∥Ax∥ =
√
a2 + b2 = Euclidean norm of [ a

b
] .

Thus, there is an inner product (namely, the dot product) on the vector space of 2×1
matrices that generates the spectral norm.

9. B −A = UΓV T −UΣV T = U(Γ −Σ)V T = U

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

⋱ 0
0 0

ϵ

0 ⋱
ϵ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V T .

So the singular values of B −A are 0 and ϵ and thus ∥B −A∥ = ϵ.

Problem Set 8.8

1. (a) 1
50 [

1 3
2 6

]

(c) 1
3

⎡⎢⎢⎢⎢⎢⎣

1 1
−1 2
2 −1

⎤⎥⎥⎥⎥⎥⎦

(e) 1
6

⎡⎢⎢⎢⎢⎢⎣

1 1 −1 1
1 −2 2 1
2 −1 1 2

⎤⎥⎥⎥⎥⎥⎦
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2. (a) Note that

TA+ ○ TA(v1) =
1

6

⎡⎢⎢⎢⎢⎢⎣

2 2 −1 −1
−1 −1 2 2
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦

= 1

6

⎡⎢⎢⎢⎢⎢⎣

4 −2 2
−2 4 2
2 2 4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

1
0
1

⎤⎥⎥⎥⎥⎥⎦
= v1

and

TA+ ○ TA(v2) =
1

6

⎡⎢⎢⎢⎢⎢⎣

2 2 −1 −1
−1 −1 2 2
1 1 1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1
1 0 1
0 1 1
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦

= 1

6

⎡⎢⎢⎢⎢⎢⎣

4 −2 2
−2 4 2
2 2 4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎣

0
1
1

⎤⎥⎥⎥⎥⎥⎦
= v2.

Since TA+ ○ TA acts as the identity on the basis {v1,v2} for row A, it acts as
the identity on all of row A.

(c) TA+ ○ TA(v3) = 1
6

⎡⎢⎢⎢⎢⎢⎣

4 −2 2
−2 4 2
2 2 4

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

−1
−1
1

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

0
0
0

⎤⎥⎥⎥⎥⎥⎦
= 0.

Since TA ○ TA+ acts as the zero transformation on the basis {v3} for null A, it
acts as the zero transformation on all of null A.

3. (a) Since TA restricted to row A is onto col A, there is a unique v ∈ row A such
that TA(v) = Av = b. Thus Ax = b has exactly one solution v that comes from
row A.

(b) Suppose w is a solution to Ax = b. Then both Av = b and Aw = b (from part
(a)), so

Aw = Av Ô⇒ Aw −Av = 0
Ô⇒ A(w − v) = 0
Ô⇒ w − v ∈ null A.

Let z =w − v. Then w = v + z.
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Suppose w = v + z where z ∈ null A. Then

Aw = A(v + z)
= Av +Az
= b + 0 since v is a solution to Ax = b and z ∈ null A
= b

Thus w is a solution to Ax = b.

4. The least-squares solutions to Ax = b are the solutions to Ax = b̂, where b̂ is the
orthogonal projection of b onto col A by Definition 7.16. Since b̂ ∈ col A, exercise 3
implies that the solution to Ax = b̂ with the smallest norm is the unique solution v
to Ax = b̂ that lies in row A. Thus TA(v) = b. But TA and TA+ undo each other
between row A and col A. So

TA(v) = b Ô⇒ TA+(b) = v Ô⇒ A+b = v.

Therefore A+b is a solution to Ax = b̂ with the smallest norm. Thus A+b is the
least-squares solution to Ax = b with the smallest norm.

5. Let w ∈ Rn and b = Aw. Then b ∈ col A and w is a solution to Ax = b. By
exercise 3(b) there exists unique vectors v ∈ row A and z ∈ null A such that Av = b
and w = v + z. Since null A = (row A)⊥, v is the orthogonal projection of w onto
row A. We show A+Aw = v. But

A+Aw = A+(Aw) = A+b = TA+(b).

Also, TA and TA+ undo each other on row A and col A. Since Av = b we know
A+b = v. Therefore A+Aw = v.

7. (a) 1
3

⎡⎢⎢⎢⎢⎢⎣

2 −1 1
−1 2 1
1 1 2

⎤⎥⎥⎥⎥⎥⎦
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(i, j) minor of A, 94
(i, j) submatrix of A, 94
k-parameter family of solutions, 21
m × n system, 3
n-dimensional, 152

algebraic multiplicity, 213
augmented matrix, 6

basis, 143
bijection, 172

change of basis matrix, 179, 183
characteristic equation, 205
characteristic polynomial, 205
circles, 291
closure of vector addition, 118
coefficient matrix, 6
cofactor, 95
cofactor expansion of detA, 96
column space, 126
column vector, 24
component of vector, 247
continuous, 320
Cramer’s Rule, 109
cross product, 70
cross-product terms, 282

degenerate ellipse, 294
degenerate hyperbola, 294
degenerate parabolas, 294
determinant, 40, 95
determinant (of a matrix), 94
diagonal matrix, 37
diagonalizable, 210
dimension, 152
dimensions (of system), 3
direct sum (of vector spaces), 141
direction angles, 66
direction cosines, 66
direction numbers, 78
discriminant, 230
distance (in an inner product space), 226
distance (in Euclidean n-space), 225
distance between two vectors, 61
dot product, 28, 63, 222

eigenspace, 198
eigenvalue, 196
eigenvalue (of a linear operator), 218

eigenvector, 196
eigenvector (of a linear operator), 218
elementary matrix, 47
elementary row operations, 9
ellipse, 291
equality of matrices, 25
Euclidean n-space, 222
Euclidean 2-space, 64
Euclidean 3-space, 64
Euclidean inner product, 63, 222
Euclidean norm, 225
explicit description of span S, 123

finite dimensional (vector space), 153

Gauss-Jordan elimination, 8
Gaussian elimination with back substitu-

tion, 21
geometric multiplicity, 213
graph (of the equation), 3

homogeneous (system), 5
hyperbola, 291

identity matrix, 32
implicit description of span S, 123
inconsistent, 21
indefinite (matrix), 303
indefinite (quadratic form), 303
infinite dimensional (vector space), 153
inherited, 118
injection, 172
inner product, 63
inner product on a vector space, 223
inner product space, 223
inner product space isomorphism, 265
interchange, 9, 46
invertible matrix, 39
isomorphic, 176
isomorphism, 176

kernel (of a linear transformation), 170

least squares solution, 257
left inverse, 38
line of best fit, 260
linear, 3
linear (function), 160
linear equation, 2
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linear extension (of a linear transformation),
165

linear form, 291
linear functional, 162
linear operator, 162
linear regression, 259
linear transformation, 160
linearly dependent, 133
linearly independent, 133
lower triangular matrix, 37

matrices, 6
matrix representation of T relative to B and

C, 189
matrix transformation, 161
Moore-Penrose inverse, 322, 326
multiplicative identity, 38
multiplicative inverses, 38

negative definite (matrix), 303
negative definite (quadratic form), 303
negative semidefinite (matrix), 303
negative semidefinite (quadratic form), 303
nonsingular matrix, 39
norm (in an inner product space), 226
norm (in Euclidean n-space), 225
norm (on a vector space V ), 227
norm of (a matrix), 317
norm of a vector, 59
normal equations, 258
normal system, 258
null space, 126
nullity, 22

one-to-one function, 172
onto function, 172
ordered basis, 177
orthogonal, 65, 233
orthogonal basis, 243
orthogonal complement, 235
orthogonal matrix, 267
orthogonal projection, 67, 248
orthogonal projection (in an inner product

space), 247
orthogonal set (of vectors), 242
orthonormal basis, 243
orthonormal set (of vectors), 242

parabolas, 291
parallel vectors, 54

parallelepiped, 73
parametric equations, 78
pivot column, 14
pivot positions, 14
point-normal form (of a plane), 85
point-parallel form, 76
polar decomposition (of a matrix), 315
positive definite (matrix), 303
positive definite (quadratic form), 303
positive semidefinite (matrix), 303
positive semidefinite (quadratic form), 303
product of matrix and a vector, 28
projection matrix (orthogonal), 262
pseudoinverse (of a matrix), 326

quadratic equation, 290
quadratic form, 280

range (of a linear transformation), 170
rank, 22
reduced row-echelon form, 13
relexive, 191
replacement, 9, 46
right inverse, 38
rotation matrix, 162
row echelon form, 21
row equivalent, 14
row space, 126
row vector, 24
RREF, 13

satisfies, 2
scalar triple product, 73
scalars, 24
scaling, 9, 46
similar (matrices), 191
singular matrix, 39
singular value, 311
singular value decomposition, 312
skew-symmetric matrix, 37
solution, 2
solution to a system, 3
span, 122
spectral norm (of a matrix), 317
square matrix, 24
square systems, 4
standard basis elements, 43
standard basis for Rn, 144
standard form, 2, 3
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standard matrix representation of a linear
transformation, 165

standard unit vectors, 43
subspace, 117
sum (of subspaces), 129
symmetric, 191
symmetric matrix, 37
system of linear equations, 3

to a set
orthogonal, 235

trace, 208
transitive, 191
transpose, 32
triangle inequality, 227
trivial solution, 6
trivial subspace, 122
two-point form (of a line), 80
two-sided inverse, 38

unique solution, 21
unit vector, 59, 232
unit vector in the direction of v, 232
upper triangular matrix, 37

vector form, 30, 76
vector space, 116

zero divisors, 35
zero matrix, 32
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