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Abstract 
 
In this paper, we explore the possibilities of structural breaks in the realized volatility 

with the observed long-memory property for the Deutschemark/Dollar, Yen/Dollar and 

Yen/Deutschemark spot exchange rate realized volatility. The paper finds the substantial 

reduction of persistence of realized volatility after removing the breaks. Our VAR-RV-Break 

model provides the superior predictive ability compared to most of the forecasting models when 

the future break is known. The VAR-RV-I(d) long memory model, however, is still the best 

forecasting model even when the true financial volatility series are created by structural breaks 

with unknown break dates and size. 
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1. Introduction  

Conditional volatility and correlation modeling has been one of the most important areas 

of research in empirical finance and time series econometrics for the past two decades. Asset 

return volatility and correlation, henceforth volatility, are especially central to finance, as they are 

key inputs for asset and derivatives pricing, portfolio allocation, and risk measurement. Although 

daily financial asset returns are approximately unpredictable, return volatility is time-varying but 

highly predicable with persistent dynamics. 1  Furthermore, the dynamics of volatility is well 

modeled as a long memory process. An inherent problem for measuring, modeling and 

forecasting conditional volatility is that the volatility is unobservable or latent, which implies 

modeling must be indirect. Typically, measurements of conditional volatility are from parametric 

methods, such as GARCH models or stochastic volatility models for the underlying returns. 

However, these parametric volatility models depend on specific distributional assumptions and 

are subject to misspecification problems.  

Given the availability of intraday ultra-high-frequency price and quote data on assets, 

Andersen, Bollerslev, Diebold, and Labys (2003), henceforth ABDL, and Barndorff-Nielsen and 

Shephard (2001, 2002, 2004) introduced a consistent nonparametric estimate of the price 

volatility that has transpired over a given discrete interval, called realized volatility. They 

computed daily Deutschemark/Dollar, Yen/Dollar, and Deutschemark/Yen spot exchange rates 

realized volatilities simply by summing high-frequency finely sampled intraday squared and 

cross-products returns. By sampling intraday returns sufficiently frequently, the model-free 

realized volatility can be made arbitrarily close to underlying integrated volatility, the integral of 

instantaneous volatility over the interval of interest, which is a natural volatility measure.  

 
1 The findings suggest that volatility persistence is highly significant in daily data but will weaken as the 
data frequency decreases.  
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  ABDL found logarithmic realized volatility could be modeled and accurately forecast 

using simple parametric fractionally integrated ARFIMA models. Their low-dimensional 

multivariate realized volatility model provided superior out-of-sample forecasts for both low-

frequency and high-frequency movements in the realized volatilities compared to GARCH and 

related approaches. Many studies, however, have pointed out that observed long memory may not 

only be generated by linearly fractional integrated process but also by: (1) cross-sectional 

aggregation of stationary series (Granger and Ding 1996); (2) mixture of numerous heterogeneous 

short-run information arrivals (Andersen and Bollerslev 1997); (3) non-linear models, such as 

structural breaks (changes) or regime switches (Granger and Hyung 2004; Choi and Zivot 2006; 

Diebold and Inoue 2001). In particular, it has been conjectured that persistence of asset return 

volatility may be overstated with the presence of structural change. 

In this paper, we focus on the possibilities of structural breaks in the realized volatility, 

with the observed long-memory property, for the Deutschemark/Dollar, Yen/Dollar and Yen/ 

Deutschemark spot exchange rate realized volatility from ABDL. First, we test for long memory 

and estimate long memory models for the realized volatility series. We find strong evidence of 

long memory property in exchange rate realized volatility. Second, we test for and estimate a 

multiple mean break model based on Bai and Perron (1998, 2003). We find several common 

structural breaks within the three series. Third, we exam the evidence for long memory in the 

break adjusted data. We find a substantial reduction of persistence in realized volatility after the 

removal of breaks. The evidence suggests that part of the long memory may be accounted for by 

the presence of structural breaks in the exchange rate volatility series.  

Finally, we find that our VAR-RV-Break model provides competitive forecasts compared 

to most of the forecasting models considered by ABDL if future break dates and sizes are known. 

The VAR-RV-I(d) model, however, is still the best forecasting model even when the true 
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financial volatility series are created by structural breaks and we have little knowledge about 

break dates and size. 

The rest of the paper is organized as follows. Section 2 presents the long memory model 

and estimations. Section 3 presents empirical results using structural breaks model and examines 

the long memory estimations after adjusted breaks series. Section 4 reports the evaluation for 

forecasting. Section 5 concludes.  

 

 

2. Realized Volatility and Long Memory Model  

2.1. Realized Variance 

ABDL utilized an empirical measure of daily return variability called realized volatility, 

which is easily computed from high-frequent intraday returns. By treating volatility as observed 

rather than latent, volatility modeling and forecasting using simple ARFIMA models is 

straightforward.   

We assume that an arbitrage-free logarithmic price log( )tp = process can be expressed 

as a continuous-time diffusion process in terms of the following stochastic differential equation 

without a jump term, 

t t tdp dt dWtμ σ= +         (1) 

where tμ  is the predictable drift coefficient, tσ  is the instantaneous volatility of the logarithmic 

price process, and  is a standard Brownian motion. We denote the daily continuously 

compounded return as 

tW

1 1 1

t t

t t t s st t
r p p ds dWμ σ− − −
= − = +∫ ∫ s       (2) 
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where 
1

t

s st
dWσ

−∫  is a local martingale, and we denote the corresponding integrated variance 

( tIV ) as  

  2

1

t

t st
IV σ

−
= ∫ ds          (3) 

This natural measure of the inherent return variability, however, is not directly observable. 

Realized variance ( tRV ) is computed by simply summing cross-products of intraday returns,  

  
1/

( ) ( ) '
1 1 , ,

1

h
h h

t t ih t ih t h t h
i

tRV r r R R I− + − +
=

′≡ ⋅ ≡ ≈∑ V

h

                                                

      (4) 

where  is the intraday return, , h is sample 

frequency

( )h
t t tr p p −≡ − ( ) ( ) ( )

, 1 1 2( , ,....., )h h h
t h t h t h tR r r r− + − +′ ≡

2  and 1/h is assumed to be an integer. ABDL showed that in the absence of 

measurement error in high frequency returns, realized variance is consistent for integrated 

variance as . In practice, however, there is a lower bound on the sampling frequency 

because of market microstructure frictions features such as, discrete price, transactions costs, and 

bid-ask spreads at the very highest frequency.   

0h →

 

2.2. Data 

 We use the same data as ABDL, which are spot exchange rates for the U.S. dollar, the 

Deutschemark, and the Japanese yen from December 1, 1986 through June 30, 1999.3 Following 

ABDL, we choose equally-spaced thirty-minute4 return to keep away from microstructure noise.5 

 
2 For example of the 30-minute intraday sample frequency from a 24-hour trading day (1440 minutes), h is 
30/1440=1/48. There are 48 intraday returns. 
3 The raw data include all interbank DM/$ and Yen/$ bid/ask quotes shown on the Reuters FX screen 
provided by Olsen & Associates.  These three currencies were the most actively traded in the foreign 
exchange market during the sample period. 
4 Bandi and Russell (2003) suggested that sample horizon range from 5-minute to 30 minute interval is 
optimal as the minimization of the conditional mean-squared error of the realized volatility estimator.   
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Their realized variance construction process is as follows. We get thirty-minute prices from the 

linearly interpolated logarithmic average of the bid and ask quotes for the two ticks immediately 

before and after the thirty-minute time stamps over the global 24-hour trading day. Thirty-minute 

returns are obtained from the first difference of the logarithmic prices. We exclude all the returns 

from Friday 21:00 Greenwich Mean Time (GMT) to Sunday 21:00 GMT and certain holiday 

periods to avoid weekend and holiday effects.  Our final data set consists of 3,045-days bivariate 

series of DM/$ and Yen/$ 30-minute returns over the sample period. The intraday return is 

denoted , where t = h, 2h, 3h, ..…47h, 1, 49h, ….., 3045, where h = 1/48 = 0.0208.  ( )h
tr

 As in equation (4), realized volatility for DM/$ and Yen/$ will be the diagonal elements 

of . By absence of triangular arbitrage, the Yen/DM returns can be calculated directly 

from the difference between the DM/$ and Yen/$. Therefore, we get 3,045 observations of 

realized variance for three exchange rate series, as shown in Figure1. Figure 2 shows the realized 

volatilities, also called realized standard deviations, which are calculated from the square root of 

the realized variance. Both series show strong persistence and occasional clustering as well as 

possible jump patterns. 

'
, ,t h t hR R

 

2.3. Realized Volatility Distributions 

 As shown in Table 1 and the left panel of Figure 3, the distributions of three realized 

volatility series are all right-skewed and fat-tailed. The distribution of logarithmic realized 

volatilities, however, are close to Gaussian as the logarithmic transformation reduces the impact 

of outliers. The kernel density estimates in the right panel of Figure 3 and the Q-Q plots in Figure 

 
5 The findings suggest that volatility measured at an interval shorter than 5-minute are cursed by spurious 
serial correlation due to nonsynchronous trading, discrete price observations, intraday periodic volatility 
pattern, and bid-ask spread. 
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4 provide strong evidence for the log-normality property for realized volatility. Last, the Ljung-

Box statistics indicate strong serial correlation in all of the series. 

 

2.4. Long Memory Model    

  Before conducting further modeling and forecasting, it is very important to determine 

whether the time series is stationary or not. However, the distinction between I(0) and I(1) for the 

conditional mean may be far too narrow. Long memory model that allows fractional orders of 

integration, I(d), provides more flexibility. For an I(0) process, shocks decay at an exponential 

rate; for an I(1) process, shocks have permanent effect; for an I(d) process, shocks dissipate at a 

slow hyperbolic rate. Long memory behavior in volatility has been well established, see for 

example, Ding, Granger, and Engle (1993), Baillie, Bollerslev and Mikkelsen (1996), and 

Andersen and Bollerslev (1997).  

  A time series process, ty , with autocorrelation function kρ  at lag k, is a long memory 

process when  

  lim
n

kn
k n

ρ
→∞

=−

→ ∞∑         (5) 

The spectral density ( )f ω  tends to infinity at zero frequencies. In contrast, for a stationary 

process with short memory, the autocorrelation function is geometrically bounded, i.e. 

k
k cmρ −≤  with 0 < m < 1. Granger and Joyeux (1980) and Hosking (1981) show that a long 

memory process for ty  can be modeled parametrically as a fractionally integrated process I(d), if 

  (1 ) ( )d
tL y tμ ε− − =         (6) 

where L denotes the lag operator, d is fractional difference parameter, μ  is the unconditional 

mean of , and ty tε  is independent and identically distributed with zero mean and finite variance. 
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The fractional difference filter (  is defined as the binominal expansion 

 

1 )dL−

2 3

0

( 1) ( 1)( 2) ( )(1 ) 1 ...
2! 3! ( 1) ( )

k
d

k

d d d d d k d LL dL L L
k d

∞

=

− − − Γ −
− = − + − + =

Γ + Γ −∑  (7)     

where is the Gamma function. A more flexible process called the ARFIMA (p, d, q) 

model

( 1)kΓ +

6 allows (1 ) ( )d
tL y μ− −  to be auto autocorrelated: 

  ( )(1 ) ( ) ( )d
tL L y L tφ μ θ ε− − =        (8) 

where ( )Lφ  and ( )Lθ  are autoregressive and moving average polynominals, respectively, with 

roots lie outside the unit circle. An ARFIMA process is non-stationary when d  > 0.5 and 

stationary when d  < 0.5. When 0 < d < 0.5,  is called stationary long memory. When ty

-0.5 < d < 0,  is called intermediate memory and antipersistent. When d = 0, it is simply short 

memory. 

ty

 

2.5. SEMIFAR Model    

  To allow for the data-driven distinction of long memory, short memory, stochastic trends, 

and deterministic trends without any prior knowledge, Beran and Ocker (2001) proposed a 

semiparametric fractional autoregressive (SEMIFAR) model  

  ( )(1 ) ((1 ) ( ))m
t tL L L y g iδ

tφ ε− − − =       (9) 

where δ  is the long memory parameter, and ( )tg i  is a smooth trend function on [0,1] with 

.  must be differenced to achieve stationarity by parameter d/ti t T= ty mδ= + . m determines 

whether the trend should be estimated from the original data (when m = 0) or the first difference 

                                                 
6 To obtain a stationary process,  must be differenced d times. The parameter d determines the long-term 
behavior, whereas p and q affect the short-term properties. 

ty
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(when m = 1). When δ  > 0,  is long memory. When ty δ  < 0,  is antipersistent. When ty δ  = 0, 

 has short memory.   ty

 

2.6. Long Memory Estimation    

  According to the slow decay of autocorrelations in Figure 5, it is evident that the 

logarithmic realized volatility for the exchange rate series appears to have long memory dynamics. 

To estimate the long memory parameter d, we use the method of Geweke and Porter-Hudak 

(1983), henceforth GPH, based on the simple linear regression of the log periodogram on a 

deterministic regression   

      (10) 2ln[ ( )] ln[4sin ( / 2)] ,      1,.....j j jI c d u jω ω= − + = n

where  
2

1
1( ) ( ) exp( )2

T
j ti

I yω π =
= ∑ ji tω  is the periodogram at frequency 2 /j j Tω π= . The 

window size n depends on the sample size T. The least squares estimator d will be asymptotically 

normal with variance . There are several other methods of testing long memory time 

series, and we also use them as a robustness check. For a detailed discussion of long memory 

testing methods, see Baillie (1996), and Robinson (1995).   

2 / 6nπ

  The estimates of d for realized volatility are reported in Table 2, and the estimates of d 

for logarithmic realized volatility are reported in Table 3. Whether used nonparametric, 

parametric, or semiparametric methods, all of the estimates of d are in the range between 0.34 and 

0.58, which confirms the long memory property in the (logarithmic) realized volatility. 

 

3. Structural Break Model  

3.1. Multiple Structural Break Model   
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j

 It is well known that structural change and unit roots are easily confused (see Perron 

1989; Zivot and Andrews 1992). Recently the confusion between long memory and structural 

change has been getting more and more attention. Granger and Ding (1996), Granger and Hyung 

(2004), and Choi and Zivot (2006) suggest that observed long memory property in the asset return 

volatility may be explained by the presence of structural breaks. To investigate this conjecture for 

realized volatility, we use the pure multiple mean break method proposed by Bai and Perron 

(1998, 2003), henceforth BP, to test this hypothesis. The m model (m + 1 regimes) is defined as 

       (11) 1 1,   1, 2,....,t j t j jy c u t T T T− −= + = + +

where j = 1, 2, …, m + 1,  is the logarithmic realized volatility, and ty jc  is the mean of the 

logarithmic realized volatility. The break points ( ) are treated as unknown. The error 

term  may be serial correlated and heteroskedastic. The estimation is based on the least-squares 

principle. The estimated break points ( ) are obtained by solving 

 where  

1 2, ,...., mT T T

tu

1 2
ˆ ˆ ˆ, ,...., mT T T

1

1 2
,...,

arg min ( , ,...., )
m

T m
T T

S T T T

        (12) 
1

1
2

1 2
1 1

( , ,...., ) ( )
i

m Ti

T m t
j t T

S T T T y c
−

+

= = +

=∑ ∑ j−

Given the estimated break points, the corresponding estimates 1 2
ˆ ˆ ˆˆ ( , ,...., )j mc T T T  are obtained for 

each regime. We used several tests for structural change proposed in BP. Let sup ( )TF l  denote 

the F statistic for the null of no structural breaks versus an alternative hypothesis containing an 

arbitrary number of breaks, and let M denote the maximum number of breaks allowed. We set M 

= 5. Define the double maximum statistic max 1max sup ( )l M TUD F l≤ ≤= , and the weighted double 

max statistic , where the marginal p-values are equal across values 

of . The null hypothesis of both tests is no structural breaks against the alternative of an 

max 1max sup ( )l M l TWD w F l≤ ≤=

l
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unknown number of breaks given some specific upper bound M.  Sequential sup ( 1| )TF l l+  tests 

the null of l  breaks versus the alternative 1l +  breaks. To determine the number of breaks, we 

first use the  and  to determine if at least one break occurred. If there is evidence for 

structural change, we select the number of structural breaks using the su

maxUD maxWD

p ( 1| )TF l l+ . To allow 

for a penalty factor for the increased dimension of a model, the above procedure may be 

complemented by selecting the number of breaks by minimizing a Bayesian Information Criterion 

(BIC) and a modified Schwarz Criterion (LWZ).         

 

3.2. Multiple Structural Break Estimation 

Table 4 displays the values of all the tests used to determine the number of breaks for the 

logarithmic realized volatility series. The UDmax and WDmax tests point to the presence of 

multiple breaks for all series. The sup ( )TF l  tests reject the null hypothesis of no breaks versus 

the alternative of an unknown number of breaks for the all series. For DM/$, the sup ( 1| )TF l l+  

is significant at 1% level when l = 4, which suggests 5 breaks. BIC suggests 5 breaks as well 

while LWZ suggests 2 breaks. Therefore, we choose 5 breaks for DM/$. For Yen/$, 

sup ( 1| )TF l l+  is significant when l = 3 but not significant when l = 4, which suggest 4 breaks. 

We follow BIC to choose the 5 breaks for Yen/$. For Yen/DM, sup ( 1| )TF l l+  suggest 4 breaks 

as well as BIC. Hence 4 breaks should be chosen for Yen/DM.   

In Table 4 we also report the estimates of the break dates with their respective 90% 

confidence intervals. The break dates estimated for DM/$ and Yen/$ are very similar, which 

suggests common break dates for the process: May 1989, March – May 1991, March 1993, 

June – August 1995, and May – July 1997. The estimates of the mean parameters ( ˆ jc ) for 

regimes (m + 1) are also provided on the bottom of Table 4. Figure 6 presents the graphs for the 
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j

logarithmic realized volatility and the estimated  value. The mean breaks are coincided with 

country specific or worldwide economics or financial crisis, i.e. Asian financial crisis occurred in 

July 1997. 

ĉ

 

3.3. Long Memory Estimation After Adjusting for Structural Breaks 

The sixth column in Table 3 shows the long memory parameter estimates for the three 

series after adjustment for the estimated structural breaks. The parameter d is estimated using the 

residual series . All estimates of d are lower than the estimates using non-break adjusted 

series. Although d is not reduced significantly by the Whittle, ARFIMA, and SEMIFAR methods 

(we will explain this in Section 3.4), d has dropped substantially by the GPH method. In addition, 

the test statistics (DM/$: 1.467, Yen/$: 1.472, and Yen/DM: 1.434) from the rescaled range (R/S) 

test show that we can not reject the null hypothesis for the absence of long memory. Figure 7 

displays the autocorrelation function for the adjusted volatility series. Compared to Figure 5 for 

the autocorrelation before adjustment for breaks, it is evident that the persistence of volatility has 

been reduced after removing the estimated breaks.  

ˆty c−

Furthermore, from Figure 2, there might be an upward trend in the volatility series, 

especially in Yen/DM series. We use the SEMIFA model with flexible trend by Beran and Ocker 

(2001) mentioned in Section 2.5 to test this possibility. The results for the estimated trend are 

shown in Figure 8. We see that the trend is not statistically significant. It is worth noting that 

Beran and Ocker’ (BO) method is an alternative to the BP model. The BP model gives abrupt 

change whereas the BO model admits a smoother flexible trend. Our results show that the 

realized volatility series fit the BP model better than the BO model.    

 

3.4. Monte Carlo Simulation for Long Memory Process 
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We discussed previously that structural change is easily confused with long memory. 

Granger and Hyung (2004) pointed out that there exists another perplexity: a long memory model 

without breaks may cause breaks to be detected spuriously by standard estimation methods. To 

illustrate this phenomenon, we generated six long memory series with d = 0.1, 0.2, 0.3, 0.35, 0.4, 

0.45, respectively, with mean: -0.5, standard deviation: 0.4, and sample size: 3,045. These series, 

which are similar to our sample logarithmic realized volatility, are shown in Figure 9. Table 5 

shows results for the structural break tests of BP for the different DGPs. The results suggest a 

positive relationship between the number of breaks and the value of d as found in Granger and 

Hyung (2004). This reveals the fact that a long memory/fractionally integrated process itself 

contains some portion of a permanent shock, which often appears as a break in some situations.7 

The above Monte Carlo evidence shows that long memory provide a good simple alternative of 

in-sample fit for the true structural-break DGP when we have little knowledge for the past break 

dates and size.8   

Next, as mentioned in Section 3.3, we notice that the Whittle, ARFIMA, and SEMIFAR 

methods gave very different estimates of d than the GPH method in the break adjusted data. We 

estimate the long memory parameters from the simulated data: ARFIMA (0, 0.45, 0), ARFIMA 

(1, 0.45, 1) with AR coefficient 0.3 and MA coefficient 0.5, and ARFIMA (1, 0.45, 0) with AR 

coefficient -0.1. We select the values for coefficients based on the estimation result in Table 3. 

These DGPs are also graphed on the bottom of Figure 9. From Table 6, we find the estimates, in 

particular, for ARFIMA (1, 0.45, 1) are distorted using the Whittle, ARFIMA and SEMIFA 

methods. The above simulation result presents the biased problems of these methods when the 

 
7 Currently there is no formal test available for multiple structural changes in the I(d) process with 
unknown number of breaks. It will be interesting for the future research. 
8 This property, which is trivial here, will become much more important when we discuss the long memory 
and structural breaks for out-of-sample forecasting in Section 5. 
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DGP includes moving average process and explains the reason for inconsistent estimates of d in 

Section 3.3. 

 

4. Forecast Evaluation and Simulation 

4.1. Forecast evaluation and comparison 

  Many models have been provided for forecasting asset return volatility and the success of 

a volatility model lies in its out-of-sample forecasting power. For example, ABDL propose a 

trivariate VAR-RV-I(d) (fractionally integrated Gaussian vector autoregressive-realized 

volatility), 

  ( )(1 ) ( )d
tL L Y μ εΦ − − =        (13)   

where  is ( 3 ) vector of logarithmic realized exchange rate volatilities; tY 1× μ is unconditional 

mean and tε  is a vector white noise process. They fix the value of d for each series at 0.401, 

which is also close to our long memory estimates in Table 3. They choose the orders of 5 for the 

lag polynomials in  to being equal to five days, or one week. They compare with the 

volatility forecasts from several popular models, and they find that their VAR-RV-I(d) model 

produces superior out-of-sample forecasts. 

( )LΦ

  Here we assess the forecasting performance from our VAR-RV-Break model, 

  *( )( )tL Y tμ εΦ − =         (14)  

where  is the vector of logarithmic realized exchange rate volatilities after mean break 

adjustment. Although the Bayesian information criteria select a fourth-order VAR, we use a  

fifth-order model to compare our result to those in ABDL.

*
tY

9 Forecasts are obtained by estimating 

rolling models. We estimate initially over the first 2449 observations, December 2, 1986 to 

                                                 
9 We also evaluate model by VAR(4). The results are similar to VAR(5).  
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December 1, 1996, and using the in-sample parameter estimates,10 one-day-ahead forecasts are 

made for the next day, say day 2450. The process is then rolled forward 1 day, deleting the first 

observation and adding on the 2450 observation, the model is re-estimated and the second 

forecast is made for 2451. The rolling method is repeated until 3045, the end of the out-of-sample 

forecast period. We get 596 one-step-ahead predictions in the out-of-sample period, which is 

from December 2, 1996 to June 30, 1999. If we assume that the future break dates and sizes are 

known, we then adjust them back based on the given out-of-sample mean breaks.   

  In Figure 11, we plot the DM/$, Yen/$, and DM/Yen realized volatility along with the 

corresponding one-day-ahead VAR-RV-Break forecasts. It appears that our forecasts capture 

movement of the realized volatilities well. Next, to determine which model provides more 

information about the future value, we use the encompassing regression 11  by Mincer and 

Zarnowitz (1969), 

  1, 0 1 1| , 2 1| ,vol vol volVAR RV Break Model
t i t t i t t i tβ β β− −
+ + += + + + ε     (15)        

where we denote our benchmark VAR-RV-Break model prediction of future volatility by 

, and future volatility prediction from other candidate methods by 1|volVAR RV Break
t t

− −
+ 1|volModel

t t+ . The 

alternative models are all selected by ABDL and described as follows. First, the VAR-RV-I(d) 

model (13) is the main model proposed by ABDL. Second, the VAR-ABS model is fractionally 

integrated vector autoregressive using daily absolute returns instead of realized volatility. Third, 

the GARCH model pioneered by Engle (1982) and Bollerslev (1986) describes short-memory 

conditional volatility via maximum likelihood procedure as a linear function of past squared 

forecast errors. Based on 2,449 daily in-sample returns, we get the GARCH (1,1) estimates with 

                                                 
10 We choose this in-sample period to compare our result to those in ABDL. 
11 This is a regression-based method where the prediction is unbiased only if 0β =0 and 1β =1. When there 
are more than one forecasting models, additional forecasts are added to the right-hand-side to check for 
incremental explanatory power. The first forecast is said to subsume information in other forecasts if these 
additional forecasts do not significantly increase the 2R .       
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AR polynomial for DM/$, Yen/$, and DM/Yen being 0.986, 0.968, and 0.99, respectively. Fourth, 

the RiskMetrics model from J. P. Morgan is widely used by practitioners. We get the RiskMetrics 

daily variances and covariances using exponentially weighted moving averages of the cross 

products of daily returns by a smoothing factor =0.94λ . 12  Fifth, the fractionally integrated 

exponential GARCH (FIEGARCH)13 (1,d,0) by Bollerslev and Mikkelsen (1996) is a variant of 

FIGARCH model by Baillie, Bollerslev, and Mikkelsen (1996). The last one is the high-

frequency FIEGARCH model using the “deseasonalized”14 and “filtered”15 30-minutes returns. 

  For the robustness check, we also present the popular out-of-sample forecast evaluation, 

relative mean squared error (MSE), 

   
2

1 1|
2

1 1|

( )
( )

Model
t t t

Break
t t t

vol vol
vol vol

+ +

+ +

−

−
∑
∑

        (16) 

where the denominator is the benchmark model mean squared forecast error and the numerator is 

the candidate methods mean squared forecast error. If the relative MSE is less than one, the 

candidate model forecast is determined to have performed better than the benchmark. The results 

are presented in Table 7. Our VAR-RV-Break model out-of-sample forecasts perform as well as 

ABDL’s VAR-RV-I(d) model, and outperform most of the rest of the models.  

                                                 
12 RiskMetrics is a special form of integrated GARCH (IGARCH) in which the intercept is fixed at zero 
and the coefficient for the squared returns (λ ) is 0.94. λ  could be interpreted as a persistence parameter. 
When λ  is closer to one, more weight is put on the previous period’s estimate relative to the current 
period’s observation, which means it is more persistent. 
13 FIEGARCH has volatility persistence shorter than IGARCH but longer than GARCH. Bollerslev and 
Mikkelsen (1996) found that FIGARCH outperforms GARCH and IGARCH and FIEGARCH is better than 
FIGARCH for S&P 500 returns.  
14 The deseasonalization is from the fact that the intraday volatility has obvious “seasonal” components 
related to the opening and closing hours of exchange worldwide. This intraday patterns damage the 
estimation of traditional volatility models from the raw high-frequency returns. Following ABDL, we get 
the seasonal factor by averaging the individual squared returns in the various intra-day intervals. And then 
we can construct the seasonal adjusted high frequency returns.  
15 To decrease the impact of the serial correlation in high frequency asset returns from different market 
microstructure frictions, following ABDL, we use simple first order AR “filter” to the high-frequency 
returns before estimating FIEGARCH model.  
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  First, the regression 2R  from VAR-RV-Break model is similar to that from VAR-RV-I(d) 

model and is higher than most of the rest models. Second, we can not reject the hypothesis that 

0β  = 0 and 1β  = 1 in the VAR-RV-Break model using t tests while we reject the hypothesis that 

0β  = 0 and/or 2β  = 1 for all the other models except the VAR-RV-I(d) model. Third, in the 

encompassing regression that includes both the break model and an alternative forecast, the 

estimates for 1β  are closer to unity and the estimates for 2β  are closer to zero. Fourth, including 

an alternative forecast method has little contribution to increasing 2R . Finally, most of the 

relative MSEs are bigger than one, which means that VAR-RV-Break model has the smaller MSE 

than that in other forecasts.  

  The results in Table 7 show the superior forecasting ability for the VAR-RV-Break 

model in which the future break dates and sizes are known in the out-of-sample period. This 

result is consistent with Hyung, Poon and Granger (2006). Without the additional information in 

detecting out-of-sample breaks, the prediction ability of the VAR-RV-Break would be lessened 

and its performance depends on the numbers and sizes of the out-of-sample breaks as shown in 

Table 8. For the DM/$ series, the VAR-RV-Break model still outperforms all the models except 

the VAR-RV-I(d) model because the out-of-sample break is not large as shown in Figure 6. But 

for the Yen/$ and Yen/DM, which show larger breaks, the VAR-RV-Break model’s prediction 

ability becomes inferior to the other models (except VAR-ABS). In this case, the VAR-RV-I(d) 

would be the best forecasting model.   

  

4.2. Forecast simulation for break and long memory models 

  For the robustness check about the comparison of the VAR-RV-Break and the VAR-RV-

I(d) out-of-sample forecasts, we simulate a DGP for an AR(1) process with 3000 observations, 

AR(1) coefficient: 0.41, unconditional variance: 0.16 and six periods divided by four ad hoc 
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breaks shown in Figure 12.A. Each period’s range and mean are as follows: P1[1:700; 0.5], 

P2[701:1500; -1.3], P3[1501:2000; -0.5], P4[ 2001:2300; -0.5], P5[2301:2700; -1.2], and 

P6[2701:3000, 0.7] where P1 to P3 are in-sample period and P4 to P6 are out-of-sample period.  

 

 For the AR-Break model, we perform one step ahead forecasts simply based on the true DGP 

with AR(1) coefficient: 0.41. When the out-of-sample breaks are known, we adjust the mean for 

the forecast evaluation. For the AR-I(d) model, we use in-sample data (Figure 12.A P1 to P3) to 

estimate the long memory parameter and the AR(1) coefficient. We get d = 0.2697 and AR(1) = 

0.2137. We perform one-step-ahead forecasts from the ARFIMA model. Figure 12.B shows the 

result for period 4 in which the out-of-sample break has not occurred. Whether breaks are known 

or not, the break model performs a little bid better than I(d) model. The relative MSE is 1.02. 

Surprisingly, in period 5 and 6 after breaks occurred, the I(d) model still accurately predicts while 

the break model deteriorates substantially when the breaks are unknown.   

  Note that even though the DGP is pure mean break series without any long memory, we 

still can get very good out-of-sample forecast performance using simple AR-I(d). This result 

shows that long memory/fractional integrated model will still be the best forecasting model when 

the true financial volatility series are created by structural breaks and we have little knowledge 

about break dates and size.   

 

5. Conclusions 

In this paper, we explore the existence and of structural changes in realized volatility for 

the DM/$, Yen/$ and Yen/ DM spot exchange rate realized volatility. First, our analysis has 

found strong evidence of long memory behavior in exchange rate realized volatility. Second, we 

test for and estimate a multiple mean breaks model; and we find several common structural 
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breaks within the three series. Third, after adjusting the realized volatility series for the estimated 

breaks, we find a substantial reduction of persistence in the realized volatility. The evidence 

suggests that long memory may be caused by the presence of structural breaks. Fourth, the Monte 

Carlo simulation reports that the long memory model could spuriously produce multiple structure 

breaks.  

Finally, VAR-RV-Break model is superior among most of the current forecasting 

methods if the future break dates and sizes are known. With little knowledge about break dates 

and size, the VAR-RV-I(d) model, however, is still the best forecasting model when the true 

financial volatility series are created by structural breaks. 
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Table 1.  Daily Realized Volatility Distributions 

 

 Mean S.D. Skewness Kurtosis Q(20) 
Volatility 

DM/$ 0.616 0.269 2.111 11.55 6095.6 
Yen/$ 0.661 0.331 3.323 33.72 6523.2 

Yen/DM 0.618 0.279 2.985 32.56 12443.9 
Logarithmic Volatility 

DM/$ -0.562 0.386 0.308 3.49 8627.2 
Yen/$ -0.51 0.43 0.217 3.65 9150.1 

Yen/DM -0.565 0.406 0.101 3.38 18402.3 
 

1. The sample is from Dec 1, 1986 to June 30, 1999. 
2. The top panel is the distribution of realized standard deviation, . 1/ 2(realized variance)
3. The bottom panel is the distribution of logarithmic realized standard deviation.  
4. Ljung-Box test statistics for twentieth order serial correlation, Q(20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 21

 

 
Table 2.  Realized Volatility Long Memory Parameters before Adjustment 

 

Tests Series d AR(1) MA(1) 
 DM/$ 0.3958 N/A N/A 
GPH Yen/$ 0.3812 N/A N/A 
  Yen/DM 0.5426 N/A N/A 
 DM/$ 0.3489 N/A N/A 
Whittle Yen/$ 0.3931 N/A N/A 
 Yen/DM 0.4160 N/A N/A 
 DM/$ 0.3489 0 0 
ARFIMA Yen/$ 0.39 0 0 
(p,d,q) Yen/DM 0.4143 0 0 
 DM/$ 0.3444 0 0 
SEMIFAR Yen/$ 0.3859 0 0 
(p,d,0) Yen/DM 0.4096 0 N/A 

 

1. GPH test is based on Geweke and Porter-Hudak (1983). 
2. Whittle’s method is based on a frequency domain maximum likelihood estimation of a process i.e. 

equation (8). 
3. ARFIMA model is based on Beran (1995). ( )(1 ) [(1 ) ] ( )m

t tL L L y Lδφ μ θ ε− − − =

d m

 where -0.5 < d < 0.5. 
The integer m is the number of times that y must be differenced to achieve stationarity, and the long 
memory parameter is given by δ= + . The method uses BIC to choose the short memory parameters 
p and q. When m = 0, μ  is the expectation of ; when m = 1, ty μ  is the slope of linear trend component 
in .     ty

( )(1 ) [(1 ) ( )]m
t t tL L L y g iδ

4. SEMIFAR (Semiparametric Fractional Autoregressive) model is based on Beran and Ocker (2001).  

 

 

 

 

 

φ ε− − − = . By using a nonparametric kernel estimate of ( )tg i  instead of 
constant term μ . The method uses BIC to choose the short memory parameter p.   



 d AR(1) MA(1) d AR(1) MA(1) Q(20) 

Table 3.  Estimations for Long and Short Memory Parameters 
 

   Log Realized Volatility Before Adjustment  Log Realized Volatility After Adjustment 

 DM/$ 0.4239 (0.0975) N/A N/A 0.021 (0.0975) N/A N/A 5438 
GPH Yen/$ 0.3571 (0.0975) N/A N/A 0.0823  (0.0975) N/A N/A 5309 
  Yen/DM 0.5867 (0.0975) N/A N/A 0.0576  (0.0975) N/A N/A 5610 
 DM/$ 0.3816 N/A N/A 0.3693 N/A N/A  
Whittle Yen/$ 0.4146 N/A N/A 0.3975 N/A N/A  
 Yen/DM 0.4229 N/A N/A 0.3852 N/A N/A  

 

 DM/$ 0.3817 (0.0142) 0 0 0.3671  (0.0142) 0 0  
ARFIMA Yen/$ 0.4107 (0.0142) 0 0 0.3945  (0.0142) 0 0  
(p,d,q) Yen/DM 0.5673 (0.0316) 0.28 (0.05) 0.49 (0.02) 0.3839  (0.0142) 0 0  
 DM/$ 0.3778  (0.0142) 0 N/A 0.367  (0.0142) 0 N/A  
SEMIFAR Yen/$ 0.4096  (0.0142) 0 N/A 0.3976  (0.0142) 0 N/A  
(p,d,0) Yen/DM 0.4685 (0.0212) -0.1018 (0.03) N/A 0.3833  (0.0142) 0 N/A  
 DM/$ test stat: 3.4712**          Reject the Null test stat: 1.4671 Do Not Reject the Null 
R/S Test Yen/$ test stat: 2.9046**          Reject the Null test stat: 1.4718 Do Not Reject the Null 
  Yen/DM test stat: 4.4041**          Reject the Null test stat: 1.4337 Do Not Reject the Null 

1. * indicates 5% significance level and ** indicates 1% significance level and the numbers in the parentheses indicate standard errors. 
2. GPH, Whittle, ARFIMA, and SEMIFAR models are explained in the detail below the Table 2.  

3. R/S Test is called rescaled range statistic defined as 
00

1 1

max [ ( )] min [ ( )]
T T

T j j jy−  and 
j Tj T

j j

R y jy y
≤ ≤≤ ≤

= =

= − −∑ ∑ 2 1/ 2[(1/ ) ( ) ]T ts T y y= −∑  where R is the 

range, Ts  is the sample standard deviation and y  is the sample mean. We actually use the modified rescaled range statistic )q/ (T T TQ R σ=  where 

jc , 2
0

1

( ) 2 ( )
q

T j
j

q c w qσ
=

= + ∑ jc  is the jth-order sample autocovariance and  is the Bartlett window weights.                          ( )jw q
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Table 4.  Multiple Structural Changes Test Results 
 

          \ Series 
Statistics DM/$ Yen/$ Yen/DM 

Tests 
sup (1)TF  52.58 133.36 305.13 
sup (2)TF  55.64 76.86 246.36 
sup (3)TF  42.37 54.06 188.79 
sup (4)TF  36.92 50.74 149.35 
sup (5)TF  33.94 42.29 110.46 
UDmax 55.64** 133.36** 305.13** 
WDmax 84.95** 133.36** 323.48** 

sup (2 |1)TF  36.23 17.88** 131.56 
sup (3 | 2)TF  12.83 7.19 71.95 
sup (4 | 3)TF  16.29 26.37 21.31 
sup (5 | 4)TF  16.29 8.57 0 

Numbers of Changes Selected 
BIC 5 5 4 

LWZ 2 2 2 
Sequential 4 2 4 

Multiple Structural Changes Dates Estimation 

1̂T  
1989.5.11 

[89.2.14-89.11.1] 
1989.5.11 

[88.12.21-89.9.6] 
1989.11.21 

[89.11.7-89.12.15] 

2̂T  
1991.3.18 

[90.9.24-91.8.20] 
1991.5.16 

[91.3.20-91.10.2] 
1992.6.10 

[92.3.4-92.10.20] 

3̂T  
1993.3.5 

[92.12.7-93.5.14] 
1993.3.30 

[92.11.25-93.5.21] 
1994.5.4 

[94.3.24-94.6.1] 

4̂T  
1995.8.24 

[95.6.15-95.11.29] 
1995.6.15 

[94.8.24-96.6.19] 
1997.5.8 

[97.4.17-97.5.28] 

5̂T  
1997.7.10 

[97.4.9-89.10.27] 
1997.5.7 

[97.4.3-97.6.17]  
Estimations of Mean for Each Regime 

1̂c  -0.662 (0.015) -0.686 (0.017) -0.924 (0.012) 
2ĉ  -0.472 (0.017) -0.457 (0.018) -0.5 (0.013) 
3ĉ  -0.334 (0.016) -0.687 (0.017) -0.342 (0.015) 
4ĉ  -0.553 (0.015) -0.446 (0.017) -0.659 (0.012)  
5ĉ  -0.770 (0.017) -0.580 (0.018) -0.205 (0.014) 
6ĉ  -0.585 (0.017) -0.205 (0.018)  

1. * indicates 5% significance level 
2. ** indicates 1% significance level 
3. In bracket are the 90% confidence intervals 
4. In parentheses are standard errors 
5. Number of Changes Selected From Sequential Method is based on 1% level 
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Table 5.  Estimated Spurious Breaks for Long Memory Simulation 
 

  Breaks exist or not Number of Breaks Selected 

d Udmax Wdmax sup ( 1| )TF l l+  BIC LWZ Sequential 

0.1 No  No 0 0 0 0 

0.2 Yes Yes 0 2 0 1 

0.3 Yes Yes 3 4 2 3 

0.35 Yes Yes 3 3 3 3 

0.4 Yes Yes 2 4 2 2 

0.45 Yes Yes 3 4 3 3 
 

1. Six different long memory parameters DGP based on Monte Carlo Simulation for 3045 
observations.  

2. Structural breaks tests are based on Bai and Perron (1998, 2003).   
3.  The tests are based on 1% significance level.  

 

 

Table 6.  Long Memory Tests for Long Memory Simulation 
 

d=0.45 GPH Whittle ARFIMA SEMIFA R/S Test 

ARMA (0,0) 
0.4061 

(0.0975) 0.4604 
0.4580  

(0.0142) 
0.4581 

 (0.0142) 3.3255** 

ARMA (1,1)  
0.4019 

(0.0975) 0.2756 
0.3593  

(0.0206) 
0.3270  
(0.021) 2.9011** 

AR: 0.3, 
MA: 0.5   

MA: 0.1419  
(0.026) 

AR: -0.1104  
(0.0267)  

ARMA (1,0)  
0.6022 

(0.0975) 0.4107 
0.4698  

(0.0210) 
0.4613  

(0.0211) 3.6268** 

AR: -0.1     
AR: -0.113 
 (0.0266) 

AR: -0.1060  
(0.0268)   

 

1. Long Memory Test based on long memory DGP with d = 0.45. 
2. In parentheses are standard errors. 
3. R/S Test results show the test statistics. **meaning significant at 1% level. 
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Table 7.  Out-of-Sample Forecast Evaluation When Future Breaks Are Known 
 

 0β  1β  2β  2R  
Rel 

MSE 
DM/$  
VAR-RV-Break 0.036 (0.048) 0.978 (0.091) -- 0.246 -- 
VAR-RV-I(d) 0.021 (0.049) -- 0.987 (0.092) 0.249 -- 
VAR-ABS 0.439 (0.028) -- 0.450 (0.089) 0.028 -- 
Daily GARCH 0.051 (0.063) -- 0.854 (0.105) 0.096 -- 
Daily RiskMetrics 0.219 (0.042) --  0.618 (0.075) 0.097 -- 
Daily FIEGARCH 0.305 (0.052) -- 0.436 (0.083) 0.037 -- 
Intraday FIEGARCH deseason/filter -0.069 (0.060) --  1.012 (0.099) 0.266 -- 
VAR-RV-Break + VAR-RV-I(d) 0.021 (0.049) 0.366 (0.332) 0.628 (0.327) 0.250 0.98 
VAR-RV-Break + VAR-ABS 0.037 (0.046) 0.980 (0.102) -0.009 (0.096) 0.246 3.86 
VAR-RV-Break + Daily GARCH -0.041 (0.060) 0.907 (0.120) 0.189 (0.137) 0.249 1.23 
VAR-RV-Break + Daily RiskMetrics -0.004 (0.047) 0.906 (0.119) 0.139 (0.098) 0.250 1.22 
VAR-RV-Break + Daily FIEGARCH 0.046 (0.052) 0.987 (0.109) -0.024 (0.100) 0.246 1.38 
VAR-RV-Break + Intraday 
FIEGARCH deseason/filter -0.066 (0.059) 0.369 (0.207) 0.689 (0.217) 0.274 1.08 
Yen/$  
VAR-RV-Break -0.030 (0.106) 1.090 (0.144) -- 0.330 -- 
VAR-RV-I(d) -0.006 (0.110) -- 1.085 (0.151) 0.329 -- 
VAR-ABS 0.349 (0.086) -- 1.256 (0.241) 0.115 -- 
Daily GARCH -0.002 (0.147) -- 1.020 (0.187) 0.297 -- 
Daily RiskMetrics 0.164 (0.108) -- 0.767 (0.131) 0.266 -- 
Daily FIEGARCH -0.289 (0.193) -- 1.336 (0.236) 0.373 -- 
Intraday FIEGARCH deseason/filter -0.394 (0189) -- 1.647 (0.263) 0.380 -- 
VAR-RV-Break + VAR-RV-I(d) -0.024 (0.101) 0.603 (0.564) 0.490 (0.662) 0.331 1.02 
VAR-RV-Break + VAR-ABS -0.058 (0.109) 1.044 (0.148) 0.166 (0.136) 0.331 3.01 
VAR-RV-Break + Daily GARCH -0.103 (0.141) 0.734 (0.131) 0.432 (0.263) 0.348 1.03 
VAR-RV-Break + Daily RiskMetrics -0.048 (0.112) 0.842 (0.102) 0.245 (0.134) 0.340 1.13 
VAR-RV-Break + Daily FIEGARCH -0.279 (0.209) 0.384 (0.260) 0.962 (0.484) 0.385 0.95 
VAR-RV-Break + Intraday  
FIEGARCH deseason/filter -0.395 (0.252) -0.007 (0.375) 1.656 (0.734) 0.380 1.06 
DM/Yen  
VAR-RV-Break -0.047 (0.096) 1.097 (0.132) -- 0.353 -- 
VAR-RV-I(d) -0.047 (0.101) -- 1.146(0.143) 0.355 -- 
VAR-ABS 0.405 (0.062) -- 1.063 (0.175) 0.119 -- 
Daily GARCH 0.243 (0.092) -- 0.692 (0.119) 0.300 -- 
Daily RiskMetrics 0.248 (0.084) -- 0.668 (0.107) 0.286 -- 
Daily FIEGARCH 0.101 (0.105) -- 0.918 (0.144) 0.263 -- 
Intraday FIEGARCH deseason/filter -0.231 (0.150) -- 1.455 (0.217) 0.404 -- 
VAR-RV-Break + VAR-RV-I(d) -0.054 (0.099) 0.483 (0.452) 0.650 (0.548) 0.357 1.04 
VAR-RV-Break + VAR-ABS -0.044 (0.094) 1.107 (0.148) -0.028 (0.140) 0.353 3.60 
VAR-RV-Break + Daily GARCH -0.021 (0.082) 0.816 (0.135) 0.235 (0.167) 0.365 1.16 
VAR-RV-Break + Daily RiskMetrics -0.029 (0.089) 0.860 (0.117) 0.199 (0.121) 0.362 1.21 
VAR-RV-Break + Daily FIEGARCH -0.063 (0.106) 0.978 (0.118) 0.141 (0.143) 0.355  1.01 
VAR-RV-Break + Intraday 
FIEGARCH deseason/filter -0.228 (0.156) 0.232 (0.294)  1.197 (0.530) 0.407 1.08 
1. In parentheses are standard errors.  
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    Table 8.  Out-of-8ample Forecast Evaluation When Future Breaks Are Unknown 
 

 0β  1β  2β  2R  
Rel 

MSE 
DM/$  
VAR-RV-Break 0.057 (0.050) 0.879 (0.088) -- 0.214 -- 
VAR-RV-I(d) 0.021 (0.049) -- 0.987 (0.092) 0.249 -- 
VAR-ABS 0.439 (0.028) -- 0.450 (0.089) 0.028 -- 
Daily GARCH 0.051 (0.063) -- 0.854 (0.105) 0.096 -- 
Daily RiskMetrics 0.219 (0.042) --  0.618 (0.075) 0.097 -- 
Daily FIEGARCH 0.305 (0.052) -- 0.436 (0.083) 0.037 -- 
Intraday FIEGARCH deseason/filter -0.069 (0.060) --  1.012 (0.099) 0.266 -- 
VAR-RV-Break + VAR-RV-I(d) 0.018 (0.050) 0.057 (0.179) 0.933 (0.196) 0.249 0.95 
VAR-RV-Break + VAR-ABS 0.065 (0.047) 0.895 (0.103) -0.056 (0.104) 0.214 3.73 
VAR-RV-Break + Daily GARCH -0.002 (0.060) 0.814 (0.131) 0.160 (0.161) 0.216 1.19 
VAR-RV-Break + Daily RiskMetrics 0.029 (0.046) 0.814 (0.131) 0.115 (0.116) 0.216 1.18 
VAR-RV-Break + Daily FIEGARCH 0.069 (0.051) 0.890 (0.111) -0.029 (0.108) 0.214 1.33 
VAR-RV-Break + Intraday 
FIEGARCH deseason/filter -0.072 (0.059) 0.140 (0.189) 0.888 (0.210) 0.267 1.05 
Yen/$  
VAR-RV-Break -0.040 (0.127) 1.419 (0.218) -- 0.262 -- 
VAR-RV-I(d) -0.006 (0.110) -- 1.085 (0.151) 0.329 -- 
VAR-ABS 0.349 (0.086) -- 1.256 (0.241) 0.115 -- 
Daily GARCH -0.002 (0.147) -- 1.020 (0.187) 0.297 -- 
Daily RiskMetrics 0.164 (0.108) -- 0.767 (0.131) 0.266 -- 
Daily FIEGARCH -0.289 (0.193) -- 1.336 (0.236) 0.373 -- 
Intraday FIEGARCH deseason/filter -0.394 (0189) -- 1.647 (0.263) 0.380 -- 
VAR-RV-Break + VAR-RV-I(d) -0.000 (0.120) -0.042 (0.151) 1.111 (0.146) 0.329 0.67 
VAR-RV-Break + VAR-ABS -0.156 (0.137) 1.242 (0.212) 0.577 (0.155) 0.282 1.98 
VAR-RV-Break + Daily GARCH -0.153 (0.147) 0.688 (0.129) 0.686 (0.203) 0.327 0.68 
VAR-RV-Break + Daily RiskMetrics -0.096 (0.132) 0.841 (0.137) 0.471 (0.108) 0.319 0.74 
VAR-RV-Break + Daily FIEGARCH -0.360 (0.185) 0.458 (0.146) 1.084 (0.295) 0.387 0.62 
VAR-RV-Break + Intraday  
FIEGARCH deseason/filter -0.399 (0.190) -0.371 (0.260) 1.961 (0.450) 0.384 0.70 
DM/Yen  
VAR-RV-Break -0.052 (0.138) 1.486 (0.248) -- 0.227 -- 
VAR-RV-I(d) -0.047 (0.101) -- 1.146(0.143) 0.355 -- 
VAR-ABS 0.405 (0.062) -- 1.063 (0.175) 0.119 -- 
Daily GARCH 0.243 (0.092) -- 0.692 (0.119) 0.300 -- 
Daily RiskMetrics 0.248 (0.084) -- 0.668 (0.107) 0.286 -- 
Daily FIEGARCH 0.101 (0.105) -- 0.918 (0.144) 0.263 -- 
Intraday FIEGARCH deseason/filter -0.231 (0.150) -- 1.455 (0.217) 0.404 -- 
VAR-RV-Break + VAR-RV-I(d) -0.030 (0.131) -0.087 (0.175) 1.190 (0.096) 0.355 0.56 
VAR-RV-Break + VAR-ABS -0.106 (0.142) 1.259 (0.269) 0.484 (0.143) 0.247 1.93 
VAR-RV-Break + Daily GARCH 0.004 (0.123) 0.655 (0.162) 0.519 (0.110) 0.325 0.62 
VAR-RV-Break + Daily RiskMetrics -0.041 (0.132) 0.762 (0.177) 0.485 (0.085) 0.324 0.65 
VAR-RV-Break + Daily FIEGARCH -0.140 (0.148) 0.795 (0.194) 0.631 (0.107) 0.303  0.54 
VAR-RV-Break + Intraday 
FIEGARCH deseason/filter -0.188 (0.133) -0.261 (0.192) 1.608 (0.295) 0.407 0.58 

      1.  In parentheses are standard errors. 
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Figure 1.  Daily Exchange Rate Realized Volatility 
(1986.12.2 – 1999.6.30; 3045 observations) 
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Figure 2.  Daily Exchange Rate Log Realized Volatility  
 (1986.12.2 – 1999.6.30) 
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Figure 3.  Realized Volatility Distributions 

Notes: The figure shows kernel estimates of the density of daily DM/$, Yen/$, and Yen/DM 
realized volatility. The sample extends from December 2, 1986 to June 30, 1999. 
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Figure 4.  QQ Plot for Realized Volatility 

Notes: Quantiles of daily realized volatilities and logarithmic realized volatility from extends from 
December 2, 1986 to June 30, 1999 against the corresponding quantiles from a standard normal 
distribution..  
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Figure 5.  Autocorrelations for Log Realized Volatility 
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Figure 6.  Estimated Structural Breaks Means and Dates 
                    for Daily Exchange Rate Log Realized Volatility  

           (1986.12.2 – 1999.6.30) 
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Figure 7.  Autocorrelations for Log Realized Volatility  

        After Adjusting for Structural Breaks 
 

 

 

 

 

 

 



 

 34

DM/$ Log Realized Volatility 
Original Series

s
e

ri
e

s

0 500 1000 1500 2000 2500 3000

-1
.5

-0
.5

0
.5

1
.0

Smoothed Trend

x
$

tr
e

n
d

0 500 1000 1500 2000 2500 3000

-
0

.8
-

0
.6

-
0

.4

Fitted Values

fi
tt

e
d

0 500 1000 1500 2000 2500 3000

-0
.5

0
.0

0
.5

Residuals

x
$

re
s

id
u

a
ls

0 500 1000 1500 2000 2500 3000

-
0

.5
0

.0
0

.5
1

.0
1

.5

 

Yen/$ Log Realized Volatility 
Original Series

s
e

ri
e

s

0 500 1000 1500 2000 2500 3000

-2
-1

0
1

Smoothed Trend

x
$

tr
e

n
d

0 500 1000 1500 2000 2500 3000

-1
.0

-0
.8

-0
.6

-0
.4

-0
.2

Fitted Values

fi
tt

e
d

0 500 1000 1500 2000 2500 3000

-1
.0

-0
.5

0
.0

0
.5

1
.0

Residuals

x
$

re
s

id
u

a
ls

0 500 1000 1500 2000 2500 3000

-1
.0

0
.0

0
.5

1
.0

1
.5

 

Yen/DM Log Realized Volatility 
Original Series

s
e

ri
e

s

0 500 1000 1500 2000 2500 3000

-1
0

1

Smoothed Trend

x
$

tr
e

n
d

0 500 1000 1500 2000 2500 3000

-1
.0

-0
.5

0
.0

Fitted Values

fi
tt

e
d

0 500 1000 1500 2000 2500 3000

-0
.5

0
.0

0
.5

1
.0

Residuals

x
$

re
s

id
u

a
ls

0 500 1000 1500 2000 2500 3000

-1
.0

0
.0

0
.5

1
.0

1
.5

 

Figure 8.  Semiparametric Fractional Autoregressive Model Decomposition 

Notes: Based on Beran, Feng and Ocker’s method (1998) 
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Figure 9.  Monte Carlo Simulation for Long Memory Processes 
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Figure 11.A. Realized Volatility and Out-of-Sample VAR-RV-Break Forecasts 
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Figure 11.B. (Continued) 
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Figure 11.C. (Continued) 
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A. Simulated Mean Breaks Series 
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Figure 12.  Out of Sample Forecast Evaluation from Simulation 
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