
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2016

Network Log Analysis Performance Comparison -
Java vs. MapReduce
Jonathan C. Munsch
jcmunsch@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Munsch, Jonathan C., "Network Log Analysis Performance Comparison - Java vs. MapReduce" (2016). Culminating Projects in
Information Assurance. 15.
https://repository.stcloudstate.edu/msia_etds/15

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/15?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Network Log Analysis Performance Comparison:

Clustered MapReduce Verses Custom Java

by

Jonathan Munsch

A Thesis

Submitted to the Graduate Faculty of

St Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

November, 2016

Thesis Committee:

Dr. Dennis Guster, Chairperson
Dr. Jim Chen

Dr. Mark Schmidt

2

Abstract

The goal of this thesis is to establish a benchmark comparison of custom Java based

code efficiency as it relates to similar MapReduce jobs. Four separate tasks were

completed with custom Java and MapReduce code to produce the identical output.

Network pcap data was analyzed with tshark, and the resulting text file used as input for

the programs to be run. Each code base was required to determine the following

information from the tshark data: a summation of the number of port access attempts by

source IP address, the total traffic volume by IP protocol, the average packet length by

source IP address, and the percentage of traffic volume by source IP address. All tests

were performed within an Amazon Web Services environment, and multiple test runs

were executed to ensure the overall efficiency was not affected by possible shared

resources. A cost-benefit analysis was performed to determine a point in which

MapReduce and Hadoop clusters are worth the extra cost of additional hardware based

upon the cost comparison of one AWS EC2 instance versus a four cluster HDFS

system.

3

Acknowledgments

 I would like to thank my wife, Andrea Munsch for all her support and guidance

during the entire thesis process. I could not have completed this without her love,

encouragement, and advice.

4

TABLE OF CONTENTS

 Page

List of Tables ...7

List of Figures ..8

Chapter Page

I. INTRODUCTION ..11

 Introduction ...11

 Problem Statement ...11

 Nature and Significance of the Problem ...12

 Objective of the Study ..12

 Research Questions/Hypotheses ...13

 Limitations of the Research ..13

 Definition of Terms ...14

 Summary ..16

II. BACKGROUND AND REVIEW OF LITERATURE ..17

 Introduction ...17

 Background Related to the Problem ...17

 Literature Related to the Problem ...21

 Literature Related to the Methodology ..24

 Summary ..25

III. METHODOLOGY ...27

5

 Introduction ...27

 Design of the Study ..27

 Data Collection ...41

 Tools and Technology ..43

 Summary ..44

IV. ANALYSIS OF RESULTS ..46

 Introduction ...46

 Data Presentation ...46

 Data Analysis ..69

 Summary ..74

V. CONCLUSIONS AND FUTURE WORK ...76

 Introduction ...76

 Results ...76

 Conclusions ..78

 Future work...78

REFERENCES ..80

6

Appendix

 Page

 A. Java TCP Port by Source IP Source Code...83

 B. Java Protocol Traffic Source Code ...85

 C. Java Average Packet Length by Source IP Source Code87

 D. Java Total Percentage of Traffic by IP Source Code89

 E. MapReduce TCP Port by Source IP Source Code91

 F. MapReduce Protocol Traffic Source Code ...93

 G. MapReduce Average Packet Length by Source IP Source Code95

 H. MapReduce Total Percentage of Traffic by IP Source Code97

 I. MapReduce TCP Port by Source IP Test Data..99

 J. MapReduce Total Traffic by IP Protocol Tests ..100

 K. MapReduce Average Packet Length by Source IP Test Data101

 L. MapReduce Percent of Traffic by Source IP Test Data102

 M. Java TCP Port by Source IP Test Data ...103

 N. Java Total Traffic by IP Protocol Test Data ..104

 O. Java Average Packet Length by Source IP Test Data105

 P. Java Percent of Traffic by Source IP Test Data106

 Q. Java Output Samples (All for 20MB File) ...107

 R. MapReduce Output Samples (All for 20MB File)108

 S. Cost Analysis Charts ..109

7

LIST OF TABLES

 Table Page

 1. Internet of Things Install Projections ...20

 2. Tshark Variables for PCAP Manipulation ...28

 3. Data Set File Size and Number of Records ..29

 4. Job Output Characteristics ...30

 5. Temp Array Relation to Tshark Input Data ...31

 6. AWS Hardware Costs ...41

 7. Test Recording Table for one Program at 19.98 MB Size42

 8. Final Analysis Categories ...44

 9. Input File Statistics ...47

 10. All Programs Average Run Times in Seconds ..48

 11. MB/sec Throughput Rate ..54

 12. Time to Process 50 TB in Days ..59

 13. AWS Cost Comparison ...64

 14. Total Cost to Process ...64

 15. Output Confirmation Example ...71

8

LIST OF FIGURES

 Figure Page

 1. High-Level Hadoop Architecture ..22

 2. MapReduce Diagram ...23

 3. Sample Input Data ...28

 4. Scripting for Data Set Creation ..29

 5. Map Function of TCP Port by Source IP ..32

 6. Reduce Function of TCP Port by Source IP ...32

 7. Map Function Total Traffic by IP Protocol ..32

 8. Reduce Function Total Traffic by IP Protocol ...33

 9. Map Function Average Packet Length by Source IP33

 10. Reduce Function Average Packet Length by Source IP33

 11. Map Function Percent of Traffic by Source IP..34

 12. Reduce Function Percent of Traffic by Source IP ..34

 13. Java TCP Port by Source IP Unique Key Value/Assignment36

 14. Java TCP Port by Source IP Java Arrays ..36

 15. Java TCP Port by Source IP Count of Unique IP/Ports36

 16. Java TCP Port by Source Output Generation ..36

 17. Java Total Traffic per IP Protocol Unique Key Value/Assignment37

 18. Java Total Traffic per IP Protocol Java Arrays ...37

 19. Java Total Traffic per IP Protocol Sum Traffic per Protocol37

 20. Java Total Traffic per IP Protocol Output Generation38

9

 21. Java Average Packet Length Unique Key Value/Assignment38

 22. Java Average Packet Length Java Arrays ...38

 23. Java Average Packet Length Traffic Summation and Packet Count38

 24. Java Average Packet Length Output Generation ...39

 25. Java Percentage of Traffic by IP Unique Key ..39

 26. Java Percentage of Traffic by IP Java Arrays ..39

 27. Java Percentage of Traffic by IP Traffic Calculations40

 28. Java Percentage of Traffic by IP ..40

 29. MapReduce Test Input Command ...42

 30. Java Test Input Command ...42

 31. MapReduce Output HTML ...43

 32. Java Time Recording Procedure ..44

 33. Average Run Time Comparison TCP Port by IP Run Time Removed49

 34. Average Run Time Comparison TCP Port by IP Run Time Only50

 35. MapReduce Programs Average Run Time in Seconds51

 36. Java Average Run Time in Seconds ..52

 37. Java Average Run Time in Seconds TCP Port by IP Source Removed53

 38. MB/Sec by Input File Size ..54

 39. MB/Sec by Input File Size TCP Port by Source IP55

 40. MB/Sec by Input File Size Total Traffic by IP Protocol56

 41. MB/Sec by Input File Size Average Packet Length by IP57

 42. MB/Sec by Input File Size Total Percentage of Traffic by IP58

10

 43. Time to process 50 TB in Days ..60

 44. Time to process 50 TB in Days TCP Port by Source Removed61

 45. Time to process 50 TB in Days Java TCP Port by Source Removed62

 46. Time to process 50 TB in Days TCP Port by Source IP Data Excluded63

 47. Cost to process 50 TB - All Programs ...65

 48. Cost to process 50 TB - Total Traffic by IP Protocol66

 49. Cost to process 50 TB - TCP Port by Source IP ..67

 50. Cost to process 50 TB -Average Packet Length by IP68

 51. Cost to process 50 TB -Percentage of Traffic by IP69

 52. MapReduce Container Failure ...71

11

Chapter I

INTRODUCTION

Introduction

 According to Cisco’s 2015 Global Cloud Index, by 2019 global data center traffic

will have reached 10.4 zettabytes per year, with 83 percent of the data center traffic

coming from the cloud (Global Cloud Index, 2015). TCP, UDP, FTP, SSH, and any new

protocols that are likely to be created in the next three years will be utilized by an influx

of new devices as the Internet of Things takes over homes and the “Bring Your Own

Device” movement takes over corporations. In order to keep up with the massive influx

of data, this paper has explored the utilization of custom java programing to provide an

alternative to existing Map Reduction processes within Hadoop-based Big Data

searches. In addition to a computational analysis discussing the benefits and limitations

of each method, a cost-benefit analysis was created to determine which size data set to

utilize a HDFS clustered environment verses a single system setup.

Problem Statement

As the traffic into networked information technology systems increases, the ability

to discern a valid user from one who has malicious intent is becoming impossible to

manage within current log-based intrusion detection methods. New ways to protect

12

systems must be discovered to separate valid and invalid access and rapidly analyze

log data.

Nature and Significance of the Problem

 As the use of cloud computing services grows, the personal information of

individuals worldwide will reside within a cloud-based system. In order to protect the

systems from attacks, external and internal, information security professionals will need

to quickly and accurately obtain information from every access point within their

networks. Intrusion Detection Systems (IDS) will need to advance their strengths in data

analysis in order to prevent attacks in real time or remove them from a system before

any damage can be done. This will include appropriately dealing with the multitude of

devices migrating into networks due to the Internet of Things, flooding bandwidth with

inexpressible possibilities for malicious intent to be carried out. Each innovation and

new cloud-based device brought to market forces security professionals to contend with

expanding access points for intrusion into their systems, creating an expanding volume

of data that needs to be analyzed expeditiously.

Objective of the Study

The initial objective of this study was to provide a comparison of Graphic

Processing Units versus Central Processing Units in relation to their performance ability

when analyzing network log data through MapReduce queries. Due to limitations with

the intended procedure, this process was modified to a comparison of custom Java

13

code against MapReduce processes run on network log data. The research performed

a side by side comparison to determine any benefits of processing the analysis of said

data without the use of clustered Hadoop-based systems and determined specific

scenarios for the usage of each technology.

Research Questions/Hypotheses

The following questions were proposed prior to the research being completed

within this project:

1) What is the performance increase in utilizing native Java versus clustered

MapReduce on varying sized data sets?

2) What is the specific data set size MapReduce provides enough benefit to

warrant the extra cost of the hardware?

3) Can cloud computing CPU clusters be utilized to offset the higher cost of

hardware-based clustered services?

Limitations of the Research

Initial difficulties emerged within this study due to two issues. The first was the

non-standard nature of PCAP files. Because packet sizes vary upon the information

being processed, the size of each one can be quite varied. This caused complications

when attempting to run parallel processes over the data as it needed to be structured

first. Initial attempts were made to utilize the Hadoop-pcap library to process the data.

14

This proved problematic, and to work around the issue tshark was utilized to move the

data out of pcap format and into a text format.

 The second issue that was discovered related to difficulties of Aparapi code

within a MapReduce function. Initial plans were to perform the actual map functionality

across a GPU to exponentially increase efficiency. However, due to the design of the

map class, this would have resulted in sending one process to the GPU at a time,

providing no gains. To counteract this, research was moved into a more direct

comparison of Hadoop MapReduce technology versus GPU based systems. The

intended results being that the parallel processing that is being done over multiple

clusters by a MapReduce job, can be performed on one GPU based system with a

lower hardware footprint, and increased efficiency. Difficulties emerged with this

process, as the current implementation of the Aparapi API used to quickly process Java

code through a GPU does not currently allow the use of certain primitive variable types,

most notably, the String type. The usage of String types within Aparapi is currently in

the process of being added to the API with version 8 of the Java SDK and could provide

a testbed for a future expansion on ideas within this paper in the future.

Definition of Terms

Graphical Processing Unit (GPU): Specially designed processor that is structured to

process information in a highly parallel structure. Excels at performing multiple similar

operations simultaneously.

15

Central Processing Unit (CPU): Specially designed circuit that performs the basic core

function of a computer system.

Big Data: Term utilized to describe data sets that have reached a size that makes them

unable to be processed by traditional techniques. The term focuses on the volume,

variety, and velocity of data, meaning that it deals with large data sets that contain

information from multiple sources that changes rapidly.

Bring Your Own Device (BYOD): Term that describes the current movement for

employees to be able to utilize their own personal phones, tablets, laptops and other

computing devices within the work environment.

Cloud Computing: Network-based systems that utilize pooled resources to provide

services (IaaS, SaaS, and PaaS) to be accessed and requested on demand.

Hadoop: Open source software that utilizes a parallel file system that disperses

processing and storage across multiple system clusters. It works heavily with

MapReduce and is utilized to combat the problems generated by Big Data.

Internet of Things (IOT): Term utilized to describe the network of physical devices that

contains network connectivity embedded within. Examples of such devices are WiFi

enabled vehicles, WiFi enabled lighting systems, doorbell cameras, and web cameras.

16

Intrusion Detection System: Hardware or software device intended to analyze network

activity for malicious intent.

MapReduce: Programming model utilized with Big Data related frameworks. In essence,

it utilizes two separate functions to first filter and sort data, or maps the data, and then

summarizes the findings or reduces the data.

Parallel Processing: A style of computational processing that converts large processes

into smaller parts that are executed simultaneously.

Zettabyte: A message of storage capacity. One zettabyte is approximately one billion

terabytes.

Summary

 The previous chapter established the danger that current systems will face in the

near future as a result of the inability to properly analyze network log information.

Recent advances in technological areas have produced a scenario where more data is

being generated and stored than ever before, and can easily be accessed at any given

moment from any location. The next chapter will further explore the areas of Big Data,

how the influx of network log information is pushing the current Intrusion detection

systems to their limits, and how the utilization of GPU processing could be the solution

to ensure any dataset can be analyzed.

17

Chapter II

BACKGROUND AND REVIEW OF LITERATURE

Introduction

 This chapter identified problems attributable to the growth in network activity

worldwide by providing an in-depth look at the services and systems responsible for the

massive influx of network traffic. Additionally, current research and experimentation

attempts to increase the functionality of current Intrusion Detection Systems and log

analysis were reviewed, pinpointing possible areas for future improvement. The chapter

will conclude with a discussion of how tools such as Hadoop, MapReduce, Aparapi and

GPU processing can be used in unison to create a scalable framework that will allow for

logs of any size to be quickly and accurately analyzed.

Background Related to the Problem

 In order to sift through the flood of information that is bombarding current

networks, it is imperative that network administrators understand the source. Recall that

Cisco (2015) in their GCI report for 2014 – 2019 stated that 83 percent of all data center

traffic will be coming from the cloud with the amount of cloud data increasing from 2.1

zettabytes to 8.6 zettabytes. The technology currently has a high impact on network

activity, but with this suggested growth, it can clearly be seen as the root of the data

problem. This massive amount of data stems from the very nature of the cloud

computing service. Mell and Grance (2011) defined cloud computing as a way to

18

provide on-demand network access, stating that broad network access is amongst one

of five essential characteristics to a cloud system. They establish that at its core, a

Cloud system is intended to provide systems that allow access from any standard

device over shared resources. Mell and Grance (2011) further discusses the specific

services provided by cloud systems into three categories, Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). All three

services utilize cloud computing to transport the usage of their functionality to a network

connection. The impact of these services is verified by their dominating presence in the

most visible applications and tools available within the information technology

landscape. Facebook, Gmail, One Drive, and Dropbox are all examples of SaaS that

are used on a daily basis by millions of individuals from their phones, tablets, and

personal computers, with each access point affecting network traffic. The increase in

network traffic grows exponentially when considering Infrastructure as a Service. IaaS is

now making it possible for businesses to place their entire enterprise infrastructure into

the cloud, creating a scenario where all employees are accessing systems through a

network connection.

 Cloud computing created the platform for two very big trends in the information

technology landscape that contribute heavily to the traffic being generated. The Bring

Your Own Device (BYOD) movement is the first trend that has risen parallel to cloud

computing technology. With the swarm of services now available from any network

access point, businesses have begun to raise employee productivity by provisioning

them access to company assets from their own mobile devices. The benefit of each

19

employee being constantly connected to their email can quickly cause problems for a

network. Employees that once were a single user on a network, generating information

only when accessing data that was not on their local machines, are now a source for

multiple points of access. A cell phone, tablet, and laptop are commonplace and an

employee could very easily be carrying all three at the same time. Each device, even

when not in direct use, may be attempting to access the network to receive updates or

patches. Applications on these devices could be running, causing congesting to the

network even further. In a discussion on how Big Data techniques can help in the BYOD

arena, Thor Olavsrud (2012) describes the impact BYOD had at the University of Texas.

The 350-acre campus could have at any one time up to 120,000 individual devices

connected to the network with the users representing the devices numbering in the tens

of thousands. This gap between users and devices will continue to grow as the second

trend Cloud Computing helped put on the map evolves. The Internet of Things (IoT)

describes the multitude of smart devices that communicate through a network

connection. IoT devices can be found in a massive amount of industries and systems,

such as smart lighting, thermostats, and other home safety devices. While making the

everyday lives of individuals more convenient, the impact that these devices have on

network traffic is dangerously high. Analysts at Gartner (2015) predict that by during the

year 2016 6.4 billion IoT devices will be connected to networks worldwide.

20

Table 1

Internet of Things Install Projections

Internet of Things Units Installed Base by Category (Millions of Units)

Category 2014 2015 2016 2020

Consumer 2,277 3,023 4,024 13,509

Business: Cross-Industry 632 815 1,092 4,408

Business: Vertical-Specific 898 1,065 1,276 2,880

Grand Total 3,807 4,902 6,392 20,797

Source: Gartner, 2015

 It is evident that network traffic will continue to grow as more devices are moved

to the cloud. This influx of data is potentially crippling for Intrusion Detection Systems

(IDS). An IDS must maintain reliable, precise and complete information in relation to the

system they are protecting (Pranggono, Mclaughlin, Yang, & Sezer, 2013). If IDSs do

not have the capability to be able to view all of the data within their scope, there is no

way to ensure all the possible threats have been viewed. Eugene Albin explores this

within his comparison of Snort and Suricata intrusion detection systems. Albin (2011)

found that both tools had bandwidth issues that directly affected each IDSs’ ability to

monitor live traffic over a 20Gbps network. The limitations of Intrusion Detection

Systems are also explained by Weirong Jiang and Viktor K. Prasanna in the context of

their use in discovering signature based attacks. A signature-based attack discovery

relies on a set of rules that the IDS can use to detect an intrusion pattern (Scarfone &

Mell, 2007). Jiang and Prasanna (2013) discuss that the signature-based detection

utilized today has a bottleneck effect in networks with heavy traffic in which Ethernet link

rates are pushed beyond the 100Gbps limits.

21

Literature Related to the Problem

 The volume of network traffic being generated by modern systems has quickly

been classified under the grouping of Big Data. It is within this field that many

innovations were made which provided solutions to only a small number of data

analysis problems. Big Data’s core components consist of the three v’s, volume,

velocity, and variety (El Jamiy, Daif, Azouazi, & Marzak, 2014). The volume focuses on

the size of data, velocity describes the speed that the data is created, and the variety of

the data relates to the unstructured nature. In El Jamiy et al. (2014) Big Data

framework, the team evaluates the challenges created by Big Data issues and focuses

on data analysis for a portion of the paper. The team claims current tools have become

outdated when examining unstructured data. In a Survey of Log Analysis and

management, Thosar, Mane, Raykar, Jain, Khude, and Guru (2015) directly address

this problem by providing several tools and techniques to combat these issues through

Big Data Analytics such as Hadoop and MapReduce frameworks. Both of these

technologies stemmed from research started at Google in order to solve their own big

data issues. The Hadoop Distributed File System (HDFS) is the storage component of

the two and creates a Master/Slave node framework that allows for multiple process

requests to be spread from the master across multiple slave nodes (Holmes 2012). The

system is optimized for high throughput and is configured to work best with large files of

at least the gigabyte range. HDFS provides data replication and fault tolerance as well,

duplicating files across multiple nodes based upon software configuration.

22

Figure 1. High-Level Hadoop Architecture from “An introduction to Apache Hadoop,”

2014

MapReduce is a programming technique that works on key pairs within two phases,

map and reduce. Pioneered by Jeffery Dean and Sanjay Ghemawat, (2004) the two

phases run sequentially with the Map phase output becoming the input of the Reduce

phase. The process works on determining key pairs, with the Map phase discovering all

of the value pairs and the reduce phase placing similar keys together to determine the

final output.

23

Figure 2. MapReduce Diagram from Dean & Ghemawat, 2004

This process provides a way for data sets that fall into the Big Data category to be

analyzed efficiently. The parallel nature of the MapReduce code allows the amount of

Hadoop nodes to be scaled up or down based upon the resource need of the system.

 Progress was made in processing large volumes of log information, when using

Hadoop, MapReduce, and other Big Data techniques. For example, Jeong Jin Cheon

and Tae-Young Choe proposed utilizing Hadoop to process logs from the well-known

open source IDS Snort. Cheon and Choe (2013) established an eight node Hadoop

cluster that processed Snort log information 4.2 times faster than a single system. The

distributed system was found to lack real-time scalability, as a result of Snort software

limitations. A large number of tests followed and numerous options were discovered.

The tests ranged from Pig and Hive as SQL based front ends for Hadoop to entirely

24

new Big Data platforms, such as Apache Spark, which reports providing 100 times the

performance of Hadoop in certain scenarios (“Apache Spark,” 2016).

 In light of current Intrusion Detection Systems in the previous examples,

hardware modifications were looked into as a possible source for speed increase.

Several instances of Snort performance being amplified by GPU implementations were

discovered. To offset Snorts poor performance with current multi-threaded processor,

Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P. Markatos,

and Sotiris Ioannidis (2008) attempted to utilize a GPU to perform the pattern matching

process. They were able to assign each individual packet to the multiprocessor of the

GPU, Snort output to be raised by a factor of 2. While a success, the experiment was

proved inadequate as the team needed to confront several complications of the GPU

hardware such as dealing with memory buffers, microprocessors, and learning a new

programming language in order to work with the GPU itself. The Snort experiment

shows the power of a GPU works well within a parallel system, such as MapReduce on

Hadoop, but the difficulties working directly with the GPU have prevented this technique

from being widely adopted.

Literature Related to the Methodology

 After establishing the benefits of both GPU processing and the MapReduce

platform, research was done to determine if there was an easier way to take advantage

of the parallel processing power of each system. The main difficulty in processing the

MapReduce queries resided in the complexity of porting Java code to a GPU

25

environment. The Hadoop framework is implemented in Java and, like MapReduce

often utilizes the language as well. This information, however, led to the creation of

Aparapi. Aparapi is a Java API that was designed by AMD to improve Java applications

by allowing them to be easily written for GPUs (Joshi, 2012). It allows programmers to

only send the code that performs a parallel action to the GPU. This is done by initiating

an Aparapi kernel that converts the intended java code to Open CL with no previous

Open Cl training required for the programmer (Joshi, 2012). The platform takes the

functionality one step further by still allowing the code to run in a CPU based system.

This way, the same code can be used to run jobs on any system regardless of the

hardware available within the system. In a discussion on the importance of outliers in

Intrusion Detection, Ahmed, Mahmood, and Hu (2013) discussed that modern outlier

detection techniques need to be computationally effective in order to handle the large

amounts of data that systems are now faced with. Due to limitations within the Aparapi

code base, it currently does not work in conjunction with many of the primitives

necessary to allow easy porting of native Java code, most notably the String type. The

code was created throughout this process, keeping possible future improvements to the

API that will allow for native Java containing such values to be easily ported to a GPU-

based system.

Summary

 The previous chapter provided an understanding of the problems faced by the

amount of network data generated from cloud computing and the services the

26

technology supports. As Intrusion Detection Systems have begun to suffer under the

weight of this data, new tools such as Hadoop, MapReduce, custom Java coding and

GPU processing have been brought to task to create new ways to analyze network

data. The following chapter will provide a multistep platform combining the previously

discussed hardware and software tools and will lay out a methodology for determining

at which point these systems will be needed. Custom java programs will be utilized in

the hopes that the Aparapi functionality improves in the future and that they can be

easily ported to a GPU-based system.

27

Chapter III

METHODOLOGY

Introduction

 In chapter three, a study design of the experiment will be discussed and a high-

level overview will be provided. This includes a detailed account of the pieces that

encompass the experiment as a whole such as MapReduce, Hadoop Clustering, and

Amazon Web Services. In addition, the process of data collection is explored, offering

insight on how and with which tools, the results were determined, collected, stored, and

analyzed.

Design of the Study

 A quantitative study design was completed that collected the CPU execution time

of MapReduce programs across a 4 node Hadoop cluster and native Java programs

across a single node. This form of research was done to obtain a one to one

comparison of each processor run time in relation to the code being executed on

various sizes of network traffic log information. The design of the study will be broken

down into the following categories: Sample Data, Data Analysis Goals, MapReduce

Code, Java Code, and Hardware Setup.

Sample Data

28

The data to be analyzed was obtained from the edge node of the St. Cloud State

University. Data was retrieved in PCAP format that, due to complications with the

Hadoop-Pcap library, was further manipulated using Tshark to pull specific fields from

each individual packet capture. The following fields were obtained and sent to an output

text file.

 Table 2

 Tshark Variables for PCAP Manipulation

Tshark field variable Description

frame.time Timestamp of packet capture

ip.proto Specific IP Protocol of the packet

ip.src Source IP Address

tcp.srcport Source Port

ip.dst Destination IP address

tcp.dstport Destination Port

ip.ttl Time To Live value

ip.len Total Packet Length

ip.flags IP Flags sent in hex value

This capture was performed by the following command line syntax:

tshark -T fields -n -r 20160822-1818-1828.cap -e frame.time -e ip.proto -e ip.src -e
tcp.srcport -e ip.dst -e tcp.dstport -e ip.ttl -e ip.len -e ip.flags > data.txt

This provides a uniform data sample that can be run easily through MapReduce jobs.

Figure 3. Sample Input Data

29

The final step in the source data manipulation was to create multiple size variations of

the data. This was done with a simple script to append original file text content twice to

a new file. This step created a new file that was twice the size of the previous. The initial

pcap data provided was 20 MBs and this process was repeated generating test sets all

with a maximum size of 2.6 GBs.

Figure 4. Scripting for Data Set Creation

Table 3

Data Set File Size and Number of Records

File Size (MB) File Size in Bytes Number of Records in file

19.9800005 20950549 224874

39.96000099 41901098 449748

79.92000198 83802196 899496

159.840004 167604392 1798992

319.6800079 335208784 3597984

639.3600159 670417568 7195968

1278.720032 1340835136 14391936

2557.440063 2681670272 28783872

5114.881260 5363340544 57567744

30

Upon creation, all data was stored on its respective EC2 instance and was placed within

the Hadoop File Structure (HDFS) of the Hadoop cluster used for testing.

Data Analysis Goals

 In order to test the efficiency of the two systems, four specific analytical outputs

were determined based upon the fields that were pulled from the pcap data: TCP Port

usage by Source IP, Total Traffic by Source IP, Average Packet Length by Source IP,

and Total Traffic by IP Protocol. Each output provided a different challenge in terms of

processing the output that MapReduce and Java handled differently. The initial

selection of this output was determined by the factors notated below.

Table 4

Job Output Characteristics

Desired Output Challenge in acquiring

TCP Port usage by Source IP High volume of unique keys

Total Traffic by IP Protocol Low number of unique keys

Average Packet Length by Source IP Mathematics with small variable values

Total Traffic By Source IP Mathematics with large variable values

MapReduce Code

 The MapReduce code for each program written can be broken down into two

main sections; Mapping and Reducing. During the Mapping phase, a specific key value

was obtained for each program from the input data and matched with an output value

that was used during the reduce phase. For the Map input, the tshark manipulated data

31

is tab delimited, so as each individual line is read in by the Map process, it was split into

a temp array of strings.

Ex. Input Split - String temp[] = value.toString().split("\t");

Table 5

Temp Array Relation to Tshark Input Data

Array Value Tshark Input Data

Temp[0] Timestamp

Temp[1] IP Protocol

Temp[2] Address Source IP

Temp[3] Source Port

Temp[4] Destination IP Address

Temp[5] Destination Port

Temp[6] Time To Lve (TTL)

Temp[7] Packet Length

Temp[8] IP Flags

Splitting each entry into an array provided the ability to easily select the value to be

used as the key value as well as access any additional packet information during the

mapping function. Once all the lines of the input have been processed, the values for all

related to the unique keys are summed. Each of the MapReduce programs used a

slightly different process to provide the intended results, with some simply counting

unique keys, and others associating the key to a value from the input stream.

MapReduce Program 1 - Volume of TCP Ports by Source IP

To map the Source IP and the Port together, the following mapping was utilized

to first determine if the packet data was sent using TCP. If TCP was used for this

packet, a unique key was created by creating a string combining the Source IP and the

32

Source Port. This Key was associated with a static 1 value. During the reduce phase,

each instance of the unique keys is counted, by summing the related static 1 value.

Figure 5. Map Function of TCP Port by Source IP

Figure 6. Reduce Function of TCP Port by Source IP

Map Reduce Program 2 - Total Traffic by IP Protocol

The total amount of traffic for each protocol was determined by using the IP

protocol number as the Key value and is mapped to the total length of the packet. With

the total length of each packet as the counter value to be summed for each mapped

instance, this provided a simple way to determine the total traffic for each protocol. Also,

during the reduce phase, basic mathematical manipulation is performed to convert the

packet length from bytes to megabytes in order to reduce the end value size.

Figure 7. Map Function Total Traffic by IP Protocol

33

Figure 8. Reduce Function Total Traffic by IP Protocol

MapReduce Program 3 - Average Packet Length by IP Source

Average Packet Length mapped data in the same manner as the IP protocol

code, substituting the Source IP for the Protocol in order to obtain the total amount of

traffic for each IP address. The Reduce function includes a counter that increments as

each instance of a key is processes. This count variable determined the total number of

packets and was then used to obtain the average packet length from the total packet

traffic per that specific IP address.

Figure 9. Map Function Average Packet Length by Source IP

Figure10. Reduce Function Average Packet Length by Source IP

34

Map Reduce Program 4 - Total Percentage of Traffic by IP Source

Data manipulation was performed during the Map phase instead of the Reduce

phase in order to obtain the total traffic percentage for each IP address. The packet

length is mapped to each source IP address, but prior to mapping is converted into

megabytes. This conversion is done in order to dramatically lower the variable footprint

of the total traffic static variable. During the mapping of each input line, the packet

length is added to this static value in order to provide an overall total traffic value used

to calculate the percentage during the reduction phase. The reduction performed basic

mathematical functions to determine the overall percentage based upon the total traffic

and the reduced sum for each mapped IP address.

Figure 11. Map Function Percent of Traffic by Source IP

Figure 12. Reduce Function Percent of Traffic by Source IP

35

Java Code

 In order to mimic the MapReduce functionality as much as possible, a similar

thought process was used to create the single node Java code. The idea of unique keys

was ported to the Java code in the form of a unique hash set. The hash set was used to

determine the unique values that would be used for mapping a value in order to

determine the desired output. For each program, a buffered file reader was used to read

in the data from the text input file. As data was read in, the same temp array process as

the MapReduce job was used to read each line. It is at this point the same key value

from the MapReduce job was used to assign the unique values to a hash set. The Hash

set allows each line to be analyzed, and if the value from the temp array chosen is not

within the set, it is added in. If the value has already been added, there is no action.

This hash set was then converted to an array of strings with any number of

corresponding arrays to store other key values such as counter values or sum values.

The input file was then scanned again for each individual unique value, and for each

instance of the unique key, an action is performed on the corresponding arrays. The

final step is to produce the desired output from the multiple arrays that have been used

to collect all necessary data. Each individual program’s unique hash and data collection

are discussed below.

Program 1 - Volume of TCP Source Ports by IP

The same Source IP and Source port are used in the Java program as in the

MapReduce to determine the unique keys. In addition to the unique IP address array, a

36

counter array was established to keep count of how many instances of each IP/Port

combination were discovered within the input file. The output is generated by printing

the output of the unique array in conjunction with the total count of each instance

collected during the multiple file read process.

Figure 13. Java TCP Port by Source IP Unique Key Value/Assignment

Figure 14. Java TCP Port by Source IP Java Arrays

Figure 15. Java TCP Ports by Source IP Count of Unique IP/Ports

Figure 16. Java TCP Ports by Source IP Output Generation

37

Java Program 2 - Total Traffic per IP Protocol

The same was used from the corresponding MapReduce program. One

additional array was created in order to track the total traffic volume for each unique

protocol in the uniqueProtocol Array. The total traffic was calculated by adding the

packet length of each input line to the array field corresponding to the unique protocol

value found within each input line.

Figure 17. Java Total Traffic per IP Protocol Unique Key Value/Assignment

Figure 18. Java Total Traffic per IP Protocol Java Arrays

Figure 19. Java Total Traffic per IP Protocol Sum Traffic per Protocol

38

Figure 20. Java Total Traffic per IP Protocol Output Generation

Java Program 3 - Average Packet Length by IP Source

The Source IP was used as the unique key in relation to the average packet

length. Three arrays are established to contain unique IPs, a sum of traffic for each

unique IP, and the total number of packets for each unique IP. The average calculation

was performed during the output creation while the file is being written to the buffered

writer.

Figure 21. Java Average Packet Length Unique Key Value/Assignment

Figure 22. Java Average Packet Length Java Arrays

Figure 23. Java Average Packet Length Traffic Summation and Packet Count

39

Figure 24. Java Average Packet Length Output Generation

Java Program 4 – Total Percentage of Traffic by Source IP Address

 Source IP was used as the unique key. A sumArray was created in addition to

the uniqueIP array to store the total traffic associated with each unique IP address.

Each unique IP processed through the input file, and incremented the associated sum

array location with the packet length when a match between the IP address temp array

field matched the unique IP. Also, when the traffic value is added to the sumArray, it is

also added to the totalTrafic variable for percentage calculation.

Figure 25. Java Percentage of Traffic by IP Unique Key

Figure 26. Java Percentage of Traffic by IP Java Arrays

40

Figure 27. Java Percentage of Traffic by IP Traffic Calculations

Figure 28. Java Percentage of Traffic by IP

Hardware Setup

 All systems used during testing and research were established within an Amazon

Web Services environment. T2.medium Elastic Cloud Compute (EC2) servers were

used as needed in an effort to keep costs to a minimum while processing. This server

was chosen as its specs relate the closest to a low-end system that could be used in a

production environment today.

41

Table 6

AWS Hardware Costs

 vCPU ECU Memory (GiB)
Instance

Storage (GB)
Linux/UNIX

Usage GB per month

General Purpose - Current Generation

t2.nano 1 Variable 0.5 EBS Only
$0.0065 per

Hour $0.10

t2.micro 1 Variable 1 EBS Only
$0.013 per

Hour $0.10

t2.small 1 Variable 2 EBS Only
$0.026 per

Hour $0.10

t2.medium 2 Variable 4 EBS Only
$0.052 per

Hour $0.10
Source – “EC2 Instance Types,”2016

The Hadoop cluster was established with four t2.medium servers, one acting as a name

node which controls the Hadoop cluster, and three data nodes that will take care of the

processing of data. Each server has a total of 20GBs of allocated storage space, to

allow for the all the testing files to be stored. Java tests were run on a single t2.medium

server with the same specs and storage as the Hadoop name node to create as close of

a parallel between the two hardware profiles as possible.

Data Collection

Each of the eight programs, four MapReduce and four single node Java, were

processed a total of five times for each sized data file. The below sample was used to

collect data for each of the five tests for each file size.

42

Table 7

Test Recording Table for one Program at 19.98 MB Size

 Date Start Time CPU Time File Size

Test 1 19.98

Test 2 19.98

Test 3 19.98

Test 4 19.98

Test 5 19.98

Average

A different date and start time was used for each test to check for any significant

differences in processing at different times due to possible resource sharing of the AWS

instances used. All code was initiated from the command line of the server using a

predefined input string to determine the input and output of each file.

Figure 29. MapReduce Test Input Command

Figure 30. Java Test Input Command

43

For each consecutive test run, MapReduce Output path was modified so that test data

could be preserved. To preserve the Java data, the output of each run was moved to a

new directory named to represent the day of the test.

Tools and Techniques

 For the MapReduce processes, execution times will be collected through

MapReduce log information that is generated by the Hadoop resource manager Yarn as

the jobs are processed. The output of each job run within the system can be viewed by

accessing the public DNS of the namenode on port 8088. The output will provide an

elapsed time for the MapReduce job.

Figure 31. MapReduce Output HTML

Output for the java based processes will be determined by recording functionality placed

within the code to determine run times that can be compared to the runtime. The

System.currentTimeMillis system variable will be used to determine a start time and end

time of the program. The difference of these two will be calculated and reported as

output to record the total execution time.

44

Figure 32. Java Time Recording Procedure

All data is to be stored within Microsoft Excel where basic mathematical functions will be

used to determine the following for each Java and MapReduce program.

Table 8

Final Analysis Categories

Process Analysis

Average Run time

Data processed in megabytes per second

Data processed in megabytes per Hour

Megabyte per hour cost

Summary

 This chapter has provided an extensive overview of the design of the experiment

to be performed. The steps taken to obtain the necessary data to evaluate a clustered

MapReduce job against the performance of a single node Java program were clearly

discussed. The inner workings of the individual Java and MapReduce programs have

been presented to allow others to repeat the process as is, or with modifications

deemed necessary. In the next chapter the information gathered by the above

45

methodology will be analyzed to determine how it relates to the hypotheses presented

within this paper.

46

Chapter IV

DATA PRESENTATION AND ANALYSIS

Introduction

 An abundant amount of data was collected from 360 separate program tests. The

information was condensed to specific charts, tables, and graphs to provide an outline

of how this information affects the costs and efficiencies of both MapReduce and Java

programs.

Data Presentation

File statistics

 Nine data files were used for testing each Java and MapReduce program. Each

data set doubled the previous files data size and record count.

47

Table 9

Input File Statistics

File Name Number of Records in file File Size (MB) File Size in Bytes

20MB_input.txt 224,874 19.98 20,950,549

40MB_input.txt 449,748 39.96 41,901,098

80MB_input.txt 899,496 79.92 83,802,196

160MB_input.txt 1,798,992 159.84 167,604,392

320MB_input.txt 3,597,984 319.68 335,208,784

640MB_input.txt 7,195,968 639.36 670,417,568

1.3GB_input.txt 14,391,936 1278.72 1,340,835,136

2.6GB_input.txt 28,783,872 2557.44 2,681,670,272

5.1GB_input.txt 57,567,744 5114.88 5,363,340,544

Full Test Data Collection

 Each MapReduce and Java program was tested a total of five times for the

previously discussed source files for a total of forty-five tests per program. Tests were

performed on different days and times to check for inconsistencies in run times due to

possible resource sharing limitations with Amazon Web Services. A full listing of each

program’s test runs can be found in Appendix I through Appendix P.

Average Run Times

 The average runtime of each MapReduce and Java program was calculated from

the five tests performed on each size input file. The TCP Port by IP Source Processes

have been removed from the overall comparison and the stand-alone Java comparison,

into their own charts as the extended runtime of the Java version of this code skews the

chart range. The runtimes of the MapReduce and Java programs are also presented

48

separate to show how they compare to each other based on the different calculations

being performed by each process.

Table 10

All Programs Average Run Times in Seconds

MR TCP
Port by
Source
IP

MR
Traffic by
IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java
TCP Port
by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB 17.20 16.00 16.40 16.20 23.00 0.52 0.93 1.02

40 MB 18.20 17.40 17.00 17.60 45.46 0.87 1.59 1.74

80 MB 18.80 18.20 19.40 19.20 90.64 1.45 3.20 3.24

160 MB 21.40 20.60 21.80 21.60 180.45 2.61 6.16 6.24

320 MB 28.00 26.60 27.80 27.60 361.07 5.06 12.28 13.61

640MB 48.40 42.20 44.00 49.40 723.74 7.96 23.49 27.94

1.3GB 66.60 59.60 67.20 62.40 1449.12 18.81 47.94 55.82

2.6 GB 107.80 73.80 87.60 85.80 2918.01 83.54 112.72 116.12

5.1 GB 206.20 127.00 144.20 146.60 9757.80 166.73 219.29 231.32

49

Figure 33. Average Run Time Comparison TCP Port by IP Run Time Removed

0.00 50.00 100.00 150.00 200.00 250.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

MR Percent of Traffic MR Average Packet Length MR Traffic by IP Protocol

50

Figure 34. Average Run Time Comparison TCP Port by IP Run Time Only

0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java TCP Port by Source MR TCP Port by Source

51

Figure 35. MapReduce Programs Average Run Time in Seconds

0.00 50.00 100.00 150.00 200.00 250.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

MR Percent of Traffic MR Average Packet Length

MR Traffic by IP Protocol MR TCP Port by Source

52

Figure 36. Java Average Run Time in Seconds

0.00 2000.00 4000.00 6000.00 8000.00 10000.00 12000.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length

Java Traffic by IP Protocol Java TCP Port by Source

53

Figure 37. Java Average Run Time in Seconds TCP Port by IP Source Removed

MB per Second Processing time

 The overall throughput of each program was affected by the file size that was

processed. This information was recorded to determine the most efficient file size for

each MapReduce and Java program. To compare the efficiency of each process, each

desired output was presented separately to clearly state which program processed data

more efficiently.

0.00 50.00 100.00 150.00 200.00 250.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

54

Table 11

 MB/sec Throughput Rate

MR TCP
Port by
Source

MR
Traffic by
IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java
TCP Port
by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB 1.16 1.25 1.22 1.23 0.87 38.18 21.46 19.62

40 MB 2.20 2.30 2.35 2.27 0.88 45.96 25.08 22.97

80 MB 4.25 4.39 4.12 4.16 0.88 55.17 24.99 24.64

160 MB 7.47 7.76 7.33 7.40 0.89 61.27 25.94 25.61

320 MB 11.42 12.02 11.50 11.58 0.89 63.14 26.04 23.48

640MB 13.21 15.15 14.53 12.94 0.88 80.34 27.22 22.88

1.3GB 19.20 21.46 19.03 20.49 0.88 67.98 26.67 22.91

2.6 GB 23.72 34.65 29.19 29.81 0.88 30.61 22.69 22.02

5.1 GB 24.81 40.27 35.47 34.89 0.52 30.68 23.32 22.11

Figure 38. MB/Sec by Input File Size

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

Java TCP Port by Source MR Percent of Traffic MR Average Packet Length

MR Traffic by IP Protocol MR TCP Port by Source

55

Figure 39. MB/Sec by Input File Size TCP Port by Source IP

0.00 5.00 10.00 15.00 20.00 25.00 30.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java TCP Port by Source MR TCP Port by Source

56

Figure 40. MB/Sec by Input File Size Total Traffic by IP Protocol

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Traffic by IP Protocol MR Traffic by IP Protocol

57

Figure 41. MB/Sec by Input File Size Average Packet Length by IP

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Average Packet length MR Average Packet Length

58

Figure 42. MB/Sec by Input File Size Total Percentage of Traffic by IP

Time to Process (50 Terabytes)

 To identify most cost and time efficient scenario a total data value of fifty

Terabytes was used when determining the below results. The previous MB/second

calculation for each process was used to calculate how long each program would take

to provide an output based upon 50 Terabytes of each file size. This overall time was

reported in days.

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic MR Percent of Traffic

59

Table 12

Time to Process 50 TB in Days

MR TCP
Port by
Source

MR
Traffic by
IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java
TCP Port
by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB

522.38

485.94

498.09

492.01

698.57

15.89

28.28

30.92

40 MB

276.38

264.23

258.15

267.27

690.30

13.20

24.20

26.42

80 MB

142.74

138.19

147.30

145.78

688.20

11.00

24.29

24.63

160 MB

81.24

78.21

82.76

82.00

685.07

9.90

23.39

23.70

320 MB

53.15

50.49

52.77

52.39

685.39

9.61

23.31

25.84

640MB

45.94

40.05

41.76

46.89

686.90

7.55

22.29

26.52

1.3GB

31.60

28.28

31.89

29.61

687.68

8.93

22.75

26.49

2.6 GB

25.58

17.51

20.79

20.36

692.37

19.82

26.74

27.55

5.1 GB 24.46 15.07 17.11 17.39 1,157.64 19.78 26.02

27.44

60

Figure 43. Time to process 50 TB in Days

 - 200.00 400.00 600.00 800.00 1,000.00 1,200.00 1,400.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

Java TCP Port by Source MR Percent of Traffic MR Average Packet Length

MR Traffic by IP Protocol MR TCP Port by Source

61

Figure 44. Time to process 50 TB in Days TCP Port by Source Removed

 - 100.00 200.00 300.00 400.00 500.00 600.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

MR Percent of Traffic MR Average Packet Length MR Traffic by IP Protocol

62

Figure 45. Time to process 50 TB in Days Java TCP Port by Source Removed

 - 5.00 10.00 15.00 20.00 25.00 30.00 35.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

63

Figure 46. Time to process 50 TB in Days TCP Port by Source IP Data Excluded

Cost to Process (50 Terabytes)

The below values were calculated to determine the overall cost associated with

each job using Amazon Web Services current pricing structure. The hourly CPU time

and hourly storage cost were considered in the single node and clustered systems.

 - 200.00 400.00 600.00 800.00 1,000.00 1,200.00 1,400.00

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java TCP Port by Source MR TCP Port by Source

64

Table 13

AWS Cost Comparison

 CPU Hourly CPU Monthly
Storage Hourly by
GB Provisioned

Storage Monthly
by GB Provisioned

Clustered $0.48 $345.60 $0.000556 $0.001668

Single Node $0.12 $86.40 $0.000139 $0.10

Source: AWS 2016

The below data represents the cost valuation for CPU and storage, in conjunction with

the overall time it would take each program to process 50 terabytes of data.

Table 14

Total Cost to Process

MR TCP
Port by
Source

MR
Traffic
by IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java
TCP
Port by
Source

Java
Traffic
by IP
Protocol

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB

$90,730

$84,400

$86,510

$85,455

$39,773

$904

$1,610 $1,760

40 MB

$48,002

$45,892

$44,837

$46,420

$39,303

$751

$1,377 $1,504

80 MB

$24,792

$24,001

$25,583

$25,320

$39,183

$626

$1,382 $1,402

160 MB

$14,110

$13,583

$14,374

$14,242

$39,005

$563

$1,331 $1,349

320 MB

$9,231

$8,769

$9,165.

$9,099

$39,023

$547

$1,327 $1,471

640MB

$7,978

$6,956

$7,253.

$8,143

$39,109

$430

$1,269 $1,509

1.3GB

$5,489

$4,912

$5,538

$5,143

$39,153

$508

$1,295 $1,508

2.6 GB

$4,442

$3,041

$3,610

$3,535

$39,420

$1,128

$1,522 $1,568

5.1 GB

$4,248

$2,616

$2,971

$3,020

$65,910

$1,126

$1,481 $1,562

Calculation: Total Cost = (Hourly CPU cost*Hours to Complete)+(Hourly Storage Cost*To Complete * 544055 GBs)

65

Figure 47. Cost to process 50 TB - All Programs

 $- $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000 $100,000

20 MB

40 MB

80 MB

160 MB

320 MB

640MB

1.3GB

2.6 GB

5.1 GB

Java Percent of Traffic Java Average Packet length Java Traffic by IP Protocol

Java TCP Port by Source MR Percent of Traffic MR Average Packet Length

MR Traffic by IP Protocol MR TCP Port by Source

66

Figue 48. Cost to process 50 TB - Total Traffic by IP Protocol

 $- $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000

20
MB

40
MB

80
MB

160
MB

320
MB

640
MB

1.3G
B

2.6
GB

5.1
GB

Java Traffic by IP Protocol MR Traffic by IP Protocol

67

Figure 49. Cost to process 50 TB - TCP Port by Source IP

 $- $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000 $100,000

20
MB

40
MB

80
MB

160
MB

320
MB

640
MB

1.3G
B

2.6
GB

5.1
GB

Java TCP Port by Source MR TCP Port by Source

68

Figure 50. Cost to process 50 TB - Average Packet Length by IP

 $- $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000 $100,000

20
MB

40
MB

80
MB

160
MB

320
MB

640
MB

1.3G
B

2.6
GB

5.1
GB

Java Average Packet length MR Average Packet Length

69

Figure 51. Cost to process 50 TB -Percentage of Traffic by IP

Data Analysis

 An analysis of the data will be broken down into several sub-sections. The

following sections will describe the specific behaviors and results of the Java and

MapReduce programs. Prior to discussing the programs, several key components that

lend to the integrity of the data acquired will be addressed.

AWS Resource Sharing

 No identifiable days or times proved any consistent time differences throughout

all 360 test runs. There were certain test runs that could be considered outliers due to a

 $- $10,000 $20,000 $30,000 $40,000 $50,000 $60,000 $70,000 $80,000 $90,000

20
MB

40
MB

80
MB

160
MB

320
MB

640
MB

1.3G
B

2.6
GB

5.1
GB

Java Percent of Traffic MR Percent of Traffic

70

difference of three or more seconds. These test did not correlate with any other program

run. No distinct pattern could be determined to establish one specific day and time as

negatively affecting the overall process. Any variations in time seem to fall on the overall

memory availability of the processes in general, as there are no correlations to specific

runs.

Hardware Limitations

 Both the Java and MapReduce programs had abnormalities during initial testing.

Java programs were set to collect packet length information in the form of bytes. This

lead to memory issues when larger files were analyzed, as the Long and Double

variables, reached their maximum values. This was corrected by mathematically

converting the packet length variable to megabytes. Process time impact was negligible,

and the Java programs ran with no further issues. MapReduce jobs proved problematic

with memory in regards to the larger input files. On initial test runs of large data files, the

overall process completed successfully, but specific map or reduce functions within

each job failed due to Java heap space issues.

71

Figure 52. MapReduce Container Failure

Errors of this nature were corrected by modifying the maximum memory value asocated

with containers within the hadoop configuration.

Job Process Output

 All output from the Java and MapReduce jobs provided the same results. Due to

the Java and MapReduce functions, output key values in different order, test runs for

each output were imported to excel, sorted by the key value and then compared. A

sample of the sorted data for the TCP Port to Source IP process is displayed below.

Table 15

Output Confirmation Example

MR Source IP MR Port MR Count JavaSource IP Java Port Java Count Match

10.101.21.172 55526 34624 10.101.21.172 55526 34624 YES

10.101.22.172 49452 1229152 10.101.22.172 49452 1229152 YES

104.107.22.19 80 2400 104.107.22.19 80 2400 YES

104.107.22.19 443 416 104.107.22.19 443 416 YES

104.107.38.239 443 640 104.107.38.239 443 640 YES

104.107.40.253 80 11488 104.107.40.253 80 11488 YES

72

Excel if statements were used to determine any inconsistencies between the two data

sets.

Java/MapReduce Analysis

 Analysis of test data results is broken down into two categories, number of

unique keys and variable sizes within mathematical functions. These categories were

the foundation when determining job output and must be revisited when performing data

analysis.

Number of Unique Keys

 The number of unique keys provided insight into how Java can be used to

outperform MapReduce when searching for specific information. The Total Traffic by IP

Protocol process had only two unique keys in the data that were used for testing. The

Java Program only had to cycle through the input file a total of three times, one for initial

input, and once for each unique key. The buffered reader input process outperformed

the MapReduce function in every file size combination. The Java program would

process the 50 terabytes of data faster with the 640MB files completing in 7.55 days.

When calculating the estimated time with a larger file, the numbers increased

dramatically, with the 5.1 GB file taking 19.72 days. The MapReduce function showed a

steady decrease in processing time, with the 5.1 GB taking 15.07 days, two times

slower than the Java Program.

73

 In contrast to a low unique key value, the TCP Port by Source IP program must

process through a high volume of unique keys because its need for an individual key for

each IP address and Port combination. The input files used had a total of 1474 unique

combinations. At no point could the Java process compete with the MapReduce. The

Java code’s best effort on 50 terabytes of data was an estimated 698 days, while the

MapReduce process could complete this in 24.46. When the output values rely on a

large quantity of unique keys, it is evident that MapReduce should be used.

Mathematical Functions

 The second factor being tested, focused on mathematical functions containing

different sized variables. In the Average Packet by Source IP and the Total Percentage

of Traffic by Source IP programs, the unique key is kept the same, and relatively low at

375 IP addresses. In both programs performance increases as the file size of the input

data grows larger. The change is notably larger when looking at the MapReduce code,

with an estimated speed increase of 481 and 471 days for the average packet length

and total percentage programs. The Java programs perform much better initially than

the MapReduce with an estimated completion time of 28 and 30 days when using the

file size at the 20 megabyte range for the average and percentage programs. The

increase in efficiency does not match that of the MapReduce programs, with the 640MB

file showing the best performance increase of only 6 and 4 days for the average and

percentage programs.

74

Overall Cost Benefit Analysis

 CPU and Storage cost were considered when determining which system would

provide the most affordable option. The estimated costs of processing the 50 terabytes

of information clearly shows the Java process as the superior method as long as the

unique keys needed to perform the analysis remain low. In every instance of the

Average Packet Length, Percentage of Traffic by IP, and Total Traffic by IP protocol

programs, the Java code produced a significantly more cost effective process, cutting

the cost by at least half compared to the same output obtained through MapReduce.

The major cause of this resides in storage costs. As the amount of traffic analyzed

increases, the MapReduce programs must replicate that data across at least three

machines, possibly four depending upon cluster setup. Therefore the MapReduce

process needs to makeup efficiency costs within the computational side in order to save

overall costs by spending less on CPU cycles. When facing an analysis that requires a

large number of unique keys, the MapReduce method offsets its data storage issue by

being able to process the data at an exponentially higher rate. In the case of the TCP

Port by Source IP program, we see the best run of the Java system costing $39005.19

while the MapReduce can provide the same output for $4248.85.

Summary

 A clear understanding of the data collected by this research has been provided.

A data set’s overall size, the input file size, and the number of unique values needed for

analysis impact the performance of both Java and MapReduce-based systems. In the

75

next chapter, the impact of these distinct variables and how they should be questioned

and analyized will be reviewed. The original hypothese from the beginning of this paper

will also be revisited.

76

Chapter V

RESULTS, CONCLUSION, AND RECOMMENDATIONS

Introduction

 The final section of this document will provide a summation of the work in its

entirety. A brief overview of the methodology and results will be provided. This

information will be used to revisit the initial hypotheses to explore if the initial questions

have been answered. Lastly, possible future work will be discussed as it relates to

opportunities created by the research discussed within this paper.

Results

 In an effort to determine the most effective and cost efficient option for network

log analysis, a comparison between MapReduce jobs running on a four cluster HDFS

AWS system and custom Java based jobs running on a single AWS server was

performed. Four separate outputs were intended to provide the proper test cases, with

MapReduce and Java jobs used to create identical output. Two possible components

were considered when creating the code, the number of unique keys and the use of

large values within mathematical functions. The unique key value deemed to be the

most important. Analysis that required a low volume of unique values provided a large

efficiency gain for the Java based code. A cost benefit analysis was done that

determined the Java code was more cost effective in all tests except those with a high

77

number of unique keys. In these tests, the MapReduce job performed the same task

twenty-nine times faster and with a cost $34,756 lower than the most efficient Java

version. With the information gathered from the above research, the original hypotheses

questions can be revisited.

1) What is the performance increase in utilizing native Java versus clustered

MapReduce on varying sized data sets?

The data provided by this research shows that Java-based programs outperform

the MapReduce processes when a small amount of data is being analyzed. This

conclusion is supported by the limited ability MapReduce has when handling small

files. In this instance MapReduce is more efficient with a small number of large files.

The overhead of dividing the job workload to several systems outperformed the Java

at the 2.6GB file mark.

2) What is the specific data set size MapReduce provides enough benefit to warrant

the extra cost of the hardware?

No specific data set size was found to provide a dramatic performance increase

within the MapReduce programs. Instead, each larger dataset saw improved

performance gains. This is in contrast to the Java-based code that could be seen

reaching its optimal processing times at the 640MB dataset. It should also be noted

that the Java-based programs outperformed the MapReduce on all datasets when a

small number of unique keys was required.

78

3) Can cloud computing CPU clusters be utilized to offset the higher cost of hardware-

based clustered services?

No definitive answer to this question was discovered within the research, but the

ability to customize a system to run based upon the number of unique keys could

provide a large amount cost savings. The research proves that a java program

intended to search for a small number of unique keys can greatly outperform a

MapReduce function of the same design. This would prove beneficial when

searching for a specific root cause of attacks when the source vector is known, and

a large volume of data is under examination.

Conclusion

 In conclusion, this report provides proof that custom Java code is more cost and

time efficient than MapReduce code, when performing with a volume of unique keys

below 400. MapReduce technology can greatly improve the efficiency of log analysis

but it is not the tool to be used in every scenario. As network traffic continues to

increase, the most efficient means of obtaining the necessary information within this

report proves it is not the newest technology.

Future work

 The research could be further expanded by testing larger datasets and utilizing

more powerful AWS cloud servers to establish a wider range of data sets. The number

of unique keys within the data could also be explored to establish efficiency of Java and

79

MapReduce over a more granular unique key metric. Lastly, as the Aparapi API

continues to evolve, MapReduce and Java implementation in this space should be

revisited.

80

REFERENCES

Ahmed, M., Mahmood, A., Hu, J. (2013). Outlier Detection. The State of the Art in

Intrusion Prevention and Detection, 3-22.

Albin, E., & Rowe, N. C. (2011). A Realistic Experimental Comparison of the Suricata

and Snort Intrusion-Detection Systems. 2012 26th International Conference on

Advanced Information Networking and Applications Workshops. Retrieved March

22, 2016, from http://www.dtic.mil/dtic/tr/fulltext/u2/a552115.pdf

Apache Spark - Lightning-Fast Cluster Computing. (2016). Retrieved March 24, 2016,

from http://spark.apache.org/

An introduction to Apache Hadoop for big data. (2014). Retrieved March 25, 2016, from

https://opensource.com/life/14/8/intro-apache-hadoop-big-data

Cheon, J., & Choe, T. (2013). Distributed Processing of Snort Alert Log using Hadoop.

International Journal of Engineering & Technology, 3(3), 2685. Retrieved March

23, 2016, from http://www.enggjournals.com/ijet/docs/IJET13-05-03-178.pdf

Dean, J., & Ghemawat, S. (2004). MapReduce. Communications of the ACM Commun.

ACM, 51(1), 107. Retrieved March 23, 2016, from

http://research.google.com/archive/mapreduce.html

EC2 Instance Types – Amazon Web Services (AWS). (2016). Retrieved March 24,

2016, from https://aws.amazon.com/ec2/instance-types/

El Jamiy, F., Daif, A., Azouazi, M., & Marzak, A. (2014). The potential and challenges of

Big data - Recommendation systems next level application. International Journal

http://www.dtic.mil/dtic/tr/fulltext/u2/a552115.pdf

81

of Computer Science Issues, 11(5), 21. Retrieved March 23, 2016, from

http://arxiv.org/ftp/arxiv/papers/1501/1501.03424.pdf

Global Cloud Index (GCI). (2015, October). Retrieved March 18, 2016, from

http://www.cisco.com/c/en/us/solutions/service-provider/global-cloud-index-

gci/index.html

Gartner. (2015, November). Gartner Says 6.4 Billion Connected "Things" Will Be in Use

in 2016, Up 30 Percent From 2015 [Press release]. Retrieved March 23, 2016,

from http://www.gartner.com/newsroom/id/3165317

Jiang, W., & Prasanna, V. (2013). Hardware Techniques for High-Performance Network

Intrusion Detection. The State of the Art in Intrusion Prevention and Detection,

233-256.

Joshi, S. (2012). Leveraging Aparapi to Help Improve Java Financial ... Retrieved March

22, 2016, from http://amd-dev.wpengine.netdna-

cdn.com/wordpress/media/2012/10/Leveraging_Aparapi_to_Improve_Java_Fina

ncial_Application_Performance_after_legal_review.pdf

Mell, P. M., & Grance, T. (2011). The NIST definition of cloud computing. Retrieved

March 22, 2016, from

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Olavsrud, T. (2012, July 31). Can Big Data Help Universities Tackle Security, BYOD?

Retrieved March 23, 2016, from

http://www.cio.com/article/2393636/education/can-big-data-help-universities-

tackle-security--byod-.html

http://www.cisco.com/c/en/us/solutions/service-provider/global-cloud-index-gci/index.html
http://www.cisco.com/c/en/us/solutions/service-provider/global-cloud-index-gci/index.html

82

Pranggono, B., Mclaughlin, K., Yang, Y., & Sezer, S. (2013). Intrusion Detection

Systems for Critical Infrastructure. The State of the Art in Intrusion Prevention

and Detection, 115-138.

Scarfone, K. A., & Mell, P. M. (2007). Guide to Intrusion Detection and Prevention

Systems (IDPS). Retrieved March 22, 2016, from

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf

Thosar, S., Mane, A., Raykar, S., Jain, R., Khude, P., & Guru, S. (2015). Survey on Log

Analysis and Management. International Journal of Computer Science Trends

and Technology (IJCST), 3(6), 9-14. Retrieved March 22, 2016, from

http://www.ijcstjournal.org/volume-3/issue-6/IJCST-V3I6P2.pdf

Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E. P., & Ioannidis, S. (2008).

Gnort: High Performance Network Intrusion Detection Using Graphics

Processors. Lecture Notes in Computer Science Recent Advances in Intrusion

Detection, 116-134. Retrieved March 22, 2016, from

http://users.ics.forth.gr/~sotiris/publications/conference/32raid2008.pdf

http://www.ijcstjournal.org/volume-3/issue-6/IJCST-V3I6P2.pdf

83

Appendix A: Java TCP Port by Source IP

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.text.DecimalFormat;
import java.util.HashSet;

public class JavaSourcePortMap{

 public static void main (String[] args) throws Throwable
 {
 long StartTime = System.currentTimeMillis();
 long StopTime;
 long elapsedTime;
 String line;

 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(4);

 File file=new File(args[1]);

 HashSet<String> uniqueLine = new HashSet<String>(); //Unique has to
obtain unique values

 //Reads each line from file into an array list
 BufferedReader reader = new BufferedReader(new FileReader(args[0]));

 while ((line = reader.readLine()) !=null)
 {
 String temp[] = line.toString().split("\t"); //Reads each line of
input file and splits it by tab into a temp array
 if (temp[1].contains("6"))
 uniqueLine.add(temp[2]+ " " + temp[3]); //adds IP source and Port
as a unique value to hash set
 }
 reader.close();

 String[] uniqueArray = uniqueLine.toArray(new
String[uniqueLine.size()]);
 int[] countArray = new int[uniqueLine.size()];

 //Collection function that acts as reducer phase for array list

 if(!file.exists())
 file.createNewFile();

 FileWriter fw = new FileWriter(file.getAbsoluteFile());

84

 BufferedWriter bw = new BufferedWriter(fw);

 BufferedReader input_reader = new BufferedReader(new
FileReader(args[0]));
 while ((line = input_reader.readLine()) !=null){
 String temp[] = line.toString().split("\t"); //Reads each line
of input file and splits it by tab into a temp array

 //For loop counts the number of instances of each unique value
and increments corresponding array location
 for(int j=0;j<uniqueArray.length;j++){
 if((temp[2]+ " " + temp[3]).equals(uniqueArray[j])){
 countArray[j]++;
 }
 }
 }
 input_reader.close();

 for(int i=0;i<uniqueArray.length;i++)
 bw.write(uniqueArray[i] + " " + countArray[i] + "\n");

 StopTime = System.currentTimeMillis();
 elapsedTime = StopTime - StartTime; //calculates program run time
 bw.write("Total elapsed time in milliseconds: " + elapsedTime + "\n");
 bw.close();
 }

}

85

Appendix B: Java Protocol Traffic Source Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.text.DecimalFormat;
import java.util.HashSet;

public class JavaProtocolThroughput{

 public static void main (String[] args) throws Throwable
 {
 long StartTime = System.currentTimeMillis();
 long StopTime;
 long elapsedTime;
 String line;

 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(4);

 File file=new File(args[1]);

 HashSet<String> uniqueProtocol = new HashSet<String>(); //Unique has to
obtain unique protocol values

 //Reads each line from file into an array list
 BufferedReader reader = new BufferedReader(new FileReader(args[0]));

 while ((line = reader.readLine()) !=null)
 {
 String temp[] = line.toString().split("\t"); //Reads each line of input
file and splits it by tab into atemp array
 uniqueProtocol.add(temp[1]); //Adds only unique protocol values into
the Unique HashSet uniqueIPs
 }
 reader.close();

 String[] ProtocolArray = uniqueProtocol.toArray(new
String[uniqueProtocol.size()]);
 float[] sumArray = new float[uniqueProtocol.size()];

 //Collection function that acts as reducer phase for array list

 if(!file.exists())
 file.createNewFile();

 FileWriter fw = new FileWriter(file.getAbsoluteFile());
 BufferedWriter bw = new BufferedWriter(fw);

86

 BufferedReader input_reader = new BufferedReader(new
FileReader(args[0]));
 while ((line = input_reader.readLine()) !=null){
 float k;
 String temp[] = line.toString().split("\t");

 //for loop searches for each unique protocol number and
increments traffic for the corresponding array
 for(int j=0;j<ProtocolArray.length;j++){
 if(temp[1].equals(ProtocolArray[j])){
 k= Float.parseFloat(temp[7]);
 sumArray[j]+=(k/1024)/1024;
 }
 }
 }
 input_reader.close();

 for(int i=0;i<ProtocolArray.length;i++)
 {
 bw.write("Protocol = " + ProtocolArray[i] + " Total = " +
sumArray[i] + " megabytes\n");
 }

 StopTime = System.currentTimeMillis();
 elapsedTime = StopTime - StartTime;
 bw.write("Total elapsed time in milliseconds: " + elapsedTime + "\n");
 bw.close();

}
}

87

Appendix C: Java Average Packet Length by Source IP Source Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.text.DecimalFormat;
import java.util.HashSet;

public class JavaAveragePacketLen{
 public static void main (String[] args) throws Throwable
 {

 long StartTime = System.currentTimeMillis();
 long StopTime;
 long elapsedTime;

 String line;

 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(4);

 File file=new File(args[1]);

 HashSet<String> uniqueIPs = new HashSet<String>();

 //Reads each line from file into an array list
 BufferedReader reader = new BufferedReader(new FileReader(args[0]));

 while ((line = reader.readLine()) !=null)
 {
 String temp[] = line.toString().split("\t"); //Reads each line of input
file and splits it by tab into a temp array
 uniqueIPs.add(temp[2]); //Adds only unique IP addresses into the Unique
HashSet uniqueIPs
 }
 reader.close();

 String[] IPArray = uniqueIPs.toArray(new String[uniqueIPs.size()]);
//Converts IPs to array of strings
 float[] sumArray = new float[uniqueIPs.size()]; //Array that will
correspond with IPArray for store total traffic per IP
 float[] countArray = new float[uniqueIPs.size()]; //Array that will
correspond with IPArray to store total number of packets per IP

 //Collection function that acts as reducer phase for array list

 if(!file.exists())
 file.createNewFile();

88

 FileWriter fw = new FileWriter(file.getAbsoluteFile());
 BufferedWriter bw = new BufferedWriter(fw);

 BufferedReader input_reader = new BufferedReader(new FileReader(args[0]));
 while ((line = input_reader.readLine()) !=null){
 float k=0;
 String temp[] = line.toString().split("\t");//Reads each line of
input file and splits it by tab into a temp array

 //For Loop below checks each input line for the matching IP from
the uniqueIP array and increments the corresponding sum and count arrays
 for(int j=0;j<uniqueIPs.size();j++){
 if(temp[2].equals(IPArray[j])){
 k= Float.parseFloat(temp[7]);
 sumArray[j]+=k;
 countArray[j]++;
 }
 }
 }
 input_reader.close();

 //For loop cycles through each array,and prints the total traffic from sum,
and calculates the average for each unique IP Addres
 for(int i=0;i<uniqueIPs.size();i++)
 {
 bw.write(IPArray[i] + "\tTotal =\t" + sumArray[i] + "\tAvg =\t" +
(sumArray[i]/countArray[i]) + "\n");
 }

 StopTime = System.currentTimeMillis();
 elapsedTime = StopTime - StartTime; //calculates runtime of program
 bw.write("Total elapsed time in milliseconds: " + elapsedTime + "\n");
//Prints output to file
 bw.close();
 }
}

89

Appendix D: Java Total Percentage of Traffic by IP Source Code

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.text.DecimalFormat;
import java.util.HashSet;

public class JavaPercentageOfTraffic{
 static float Total_traffic = 0; //Static value holds total traffic to be used
in percentage calculation
 public static void main (String[] args) throws Throwable
 {
 long StartTime = System.currentTimeMillis();
 long StopTime;
 long elapsedTime;
 String line;

 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(6);

 File file=new File(args[1]);

 HashSet<String> uniqueIPs = new HashSet<String>(); //Unique has to
obtain unique IP values

 //Reads each line from file into an array list
 BufferedReader reader = new BufferedReader(new FileReader(args[0]));

 while ((line = reader.readLine()) !=null)
 {
 String temp[] = line.toString().split("\t"); //Reads each line of
input file and splits it by tab into a temp array
 uniqueIPs.add(temp[2]); //Adds only unique IP addresses into the
Unique HashSet uniqueIPs
 }
 reader.close();

 String[] IPArray = uniqueIPs.toArray(new String[uniqueIPs.size()]);
//Converts IPs to array of strings
 float[] sumArray = new float[uniqueIPs.size()]; //Array that will
correspond with IPArray for store total traffic per IP

 if(!file.exists())
 file.createNewFile();

 FileWriter fw = new FileWriter(file.getAbsoluteFile());
 BufferedWriter bw = new BufferedWriter(fw);

90

 BufferedReader input_reader = new BufferedReader(new
FileReader(args[0]));
 while ((line = input_reader.readLine()) !=null)
 {
 String temp[] = line.toString().split("\t"); //Reads each line of
input file and splits it by tab into a temp array

 //For loop compares each input line to the unique IP and incrememnts
sum and total when applicatble
 for(int j=0;j<IPArray.length;j++)
 {
 if(temp[2].equals(IPArray[j]))
 {
 sumArray[j]+=(Float.parseFloat(temp[7])/1024)/1024; //adds to
sum of unique IPs traffic
 Total_traffic+=(Float.parseFloat(temp[7])/1024)/1024; //Adds
to total traffic
 }
 }
 }
 input_reader.close();

 for(int i=0;i<IPArray.length;i++)
 {
 float percent;
 percent = (((sumArray[i]/Total_traffic)*100));
 if(percent <.001)
 bw.write(IPArray[i] +"\t " + df.format(percent) + "\n"); //generates
output
 }

 StopTime = System.currentTimeMillis();
 elapsedTime = StopTime - StartTime; //calculates program run time
 bw.write("Total elapsed time in milliseconds: " + elapsedTime + "\n");
 bw.close();
 }
}

91

Appendix E: MapReduce TCP Port by Source IP Source Code

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class SourcePortMap {

 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable>
 {

 String out_map; //String to store unique key value for mapping

 public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException
 {
 String temp[] = value.toString().split("\t"); //Reads each line of input file
into an array split by tabs
 if (temp[1].contains("6"))
 out_map = temp[2] + " " + temp[3]; //Looks for only protocol 6 data and
sets each mapped value to SourceIP Port
 context.write(new Text(out_map),new IntWritable(1)); //Sets integer at 1
value for each output of the Source Port combination
 }
 }

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>
{

 public void reduce(Text key, Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values)
 {
 sum += val.get(); //stores total number of each individual key
incrementing off of the mapped integer of 1
 }
 context.write(key, new IntWritable(sum));
 }
 }

 public static void main(String[] args) throws Exception
 {
 Configuration conf = new Configuration();

92

 @SuppressWarnings("deprecation")
 Job job = new Job(conf, "SourcePortMap");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setJarByClass(SourcePortMap.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }

}

93

Appendix F: MapReduce Protocol Traffic Source Code

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class ProtocolThroughput {

 public static class Map extends Mapper<LongWritable, Text, Text, FloatWritable>
 {
 private FloatWritable output = new FloatWritable();

 public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException
 {
 String temp[] = value.toString().split("\t"); //Reads each line of input file
into an array split by tabs
 output.set(Float.parseFloat(temp[7])); //Sets the output value to the packet
length of the input line as an integer
 context.write(new Text(temp[1]),output); //Sets a mapping of the
protocol number to the the integer value of the packet length
 }
 }
 public static class Reduce extends Reducer<Text, FloatWritable, Text, FloatWritable>
{

 public void reduce(Text key, Iterable<FloatWritable> values, Context context)
 throws IOException, InterruptedException
 {
 float sum = 0;
 for (FloatWritable val : values)
 {
 sum += (val.get()/1024)/1024; //sums the total traffic in bytes for each
unique protocol number
 }
 context.write(key, new FloatWritable(sum)); //Writes output of protocol
number and total traffic
 }
 }

 public static void main(String[] args) throws Exception
 {
 Configuration conf = new Configuration();

 @SuppressWarnings("deprecation")

94

 Job job = new Job(conf, "ProtocolThroughput");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FloatWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setJarByClass(ProtocolThroughput.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }

}

95

Appendix G: MapReduce Average Packet Length by Source IP Source Code

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class AveragePacketLen {

 public static class Map extends Mapper<LongWritable, Text, Text, FloatWritable>
 {
 private FloatWritable output = new FloatWritable();

 public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException
 {
 String temp[] = value.toString().split("\t"); //Reads each line of input file
into an array split by tabs
 output.set(Float.parseFloat(temp[7])); //Sets the output value of the
map to the packet length
 context.write(new Text(temp[2]),output); //Outputs a mapping of the
source IP and the packet length
 }
 }

 public static class Reduce extends Reducer<Text, FloatWritable, Text, FloatWritable>
{
 public void reduce(Text key, Iterable<FloatWritable> values, Context context)
 throws IOException, InterruptedException
 {
 float sum = 0; // value to hold total traffic for each unique IP
 float avg = 0; // variable to hold average value
 float count = 0; // count variable to determine how many packets for each
unique IP
 for (FloatWritable val : values)
 {
 sum += val.get(); //sums the value of each unique IP
 count++;; //increments counter to be used in average
calculation
 }
 avg = sum/count; //calculates average
 context.write(key, new FloatWritable(avg)); //provides output mapping
 }
 }

 public static void main(String[] args) throws Exception
 {

96

 Configuration conf = new Configuration();

 @SuppressWarnings("deprecation")
 Job job = new Job(conf, "AveragePacketLen");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FloatWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setJarByClass(AveragePacketLen.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }
}

97

Appendix H: MapReduce Total Percentage of Traffic by IP Source Code

import java.io.IOException;
import java.text.DecimalFormat;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class PercentageOfTraffic {

static float Total_traffic = 0; //Stores total traffic for packets in input file

 public static class Map extends Mapper<LongWritable, Text, Text, FloatWritable>
 {
 //private FloatWritable output = new FloatWritable();

 public void map(LongWritable key, Text value, Context context) throws
IOException, InterruptedException
 {

 String temp[] = value.toString().split("\t"); //Reads each line of input file
into an array split by tabs
 float val_temp = Float.parseFloat(temp[7]);
 val_temp = (val_temp/1024)/1024;

 Total_traffic+=val_temp; //increments the total traffic value
 context.write(new Text(temp[2]),new FloatWritable(val_temp)); //maps
each source iP to a traffic value
 }
 }
 public static class Reduce extends Reducer<Text, FloatWritable, Text, FloatWritable>
{

 public void reduce(Text key, Iterable<FloatWritable> values, Context context)
 throws IOException, InterruptedException
 {
 DecimalFormat df = new DecimalFormat();
 df.setMaximumFractionDigits(6);
 float sum = 0;

 for (FloatWritable val : values)
 {
 sum += val.get(); //sums total traffic for each unique IP
 }

98

 context.write(key, new FloatWritable(((sum/Total_traffic)*100))); //returns
string format in order to limit number of decimals
 }
 }

 public static void main(String[] args) throws Exception
 {

 Configuration conf = new Configuration();

 @SuppressWarnings("deprecation")
 Job job = new Job(conf, "PercentageOfTraffic");

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(FloatWritable.class);

 job.setMapperClass(Map.class);
 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setJarByClass(PercentageOfTraffic.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 }

}

99

Appendix I – MapReduce TCP Port by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:45:00 AM 17 19.98 Test 1 4-Oct 1:45:00 AM 19 39.96

Test 2 5-Oct 3:24:00 PM 17 19.98 Test 2 5-Oct 3:24:00 PM 18 39.96

Test 3 6-Oct 10:16:00 AM 17 19.98 Test 3 6-Oct 10:15:00 AM 18 39.96

Test 4 9-Oct 1:44:00 PM 17 19.98 Test 4 9-Oct 1:43:00 PM 18 39.96

Test 5 15-Oct 10:53:00 PM 18 19.98 Test 5 15-Oct 10:53:00 PM 18 39.96

Avg 17.2 Avg 18.2

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:45:00 AM 19 79.92 Test 1 4-Oct 1:44:00 AM 21 159.84

Test 2 5-Oct 3:24:00 PM 19 79.92 Test 2 5-Oct 3:23:00 PM 22 159.84

Test 3 6-Oct 10:15:00 AM 19 79.92 Test 3 6-Oct 10:14:00 AM 22 159.84

Test 4 9-Oct 1:43:00 PM 19 79.92 Test 4 9-Oct 1:42:00 PM 22 159.84

Test 5 15-Oct 10:54:00 AM 18 79.92 Test 5 15-Oct 10:54:00 PM 20 159.84

Avg 18.8 Avg 21.4

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:44:00 AM 29 319.68 Test 1 4-Oct 1:43:00 AM 46 639.36

Test 2 5-Oct 3:23:00 PM 28 319.68 Test 2 5-Oct 3:22:00 PM 50 639.36

Test 3 6-Oct 10:14:00 AM 28 319.68 Test 3 6-Oct 10:13:00 AM 48 639.36

Test 4 9-Oct 1:42:00 PM 28 319.68 Test 4 9-Oct 1:41:00 PM 47 639.36

Test 5 15-Oct 10:55:00 PM 27 319.68 Test 5 15-Oct 10:56:00 AM 51 639.36

Avg 28 Avg 48.4

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:42:00 AM 70 1278.72 Test 1 4-Oct 1:39:00 AM 108 2557.44

Test 2 5-Oct 3:21:00 PM 58 1278.72 Test 2 5-Oct 3:19:00 PM 108 2557.44

Test 3 6-Oct 10:12:00 AM 69 1278.72 Test 3 6-Oct 10:09:00 AM 107 2557.44

Test 4 9-Oct 1:40:00 PM 69 1278.72 Test 4 9-Oct 1:38:00 PM 109 2557.44

Test 5 15-Oct 10:57:00 PM 67 1278.72 Test 5 15-Oct 10:59:00 AM 107 2557.44

Avg 66.6 Avg 107.8

Date Start Time CPU Time File Size

Test 1 4-Oct 1:35:00 AM 206 5115

Test 2 5-Oct 3:15:00 PM 208 5115

Test 3 6-Oct 10:05:00 AM 205 5115

Test 4 9-Oct 1:34:00 PM 206 5115

Test 5 15-Oct 11:00:00 PM 206 5115

Avg 206.2

100

Appendix J – MapReduce Total Traffic by IP Protocol Tests

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 30-Sep 1:52 AM 16 19.98 Test 1 30-Sep 1:52 AM 17 39.96

Test 2 1-Oct 3:31 PM 15 19.98 Test 2 1-Oct 3:30 PM 18 39.96

Test 3 2-Oct 10:24 AM 16 19.98 Test 3 2-Oct 10:24 AM 18 39.96

Test 4 3-Oct 1:51 PM 17 19.98 Test 4 3-Oct 1:51 PM 18 39.96

Test 5 15-Oct 11:32 PM 16 19.98 Test 5 15-Oct 11:32 PM 16 39.96

Avg 16 Avg 17.4

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:52 AM 20 79.92 Test 1 4-Oct 1:51 AM 22 159.84

Test 2 5-Oct 3:30 PM 19 79.92 Test 2 5-Oct 3:30 PM 21 159.84

Test 3 6-Oct 10:24 AM 17 79.92 Test 3 6-Oct 10:23 AM 21 159.84

Test 4 9-Oct 1:51 AM 18 79.92 Test 4 9-Oct 1:50 PM 20 159.84

Test 5 15-Oct 11:33 PM 17 79.92 Test 5 15-Oct 11:34 AM 19 159.84

Avg 18.2 Avg 20.6

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:51 AM 27 319.68 Test 1 4-Oct 1:50 AM 42 639.36

Test 2 5-Oct 3:29 PM 26 319.68 Test 2 5-Oct 3:29 PM 43 639.36

Test 3 6-Oct 10:23 AM 28 319.68 Test 3 6-Oct 10:22 AM 42 639.36

Test 4 9-Oct 1:50 PM 28 319.68 Test 4 9-Oct 1:49 PM 42 639.36

Test 5 15-Oct 11:34 AM 24 319.68 Test 5 15-Oct 11:35 AM 42 639.36

Avg 26.6 Avg 42.2

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:49 AM 61 1278.72 Test 1 4-Oct 1:48 AM 76 2557.44

Test 2 5-Oct 3:28 PM 59 1278.72 Test 2 5-Oct 3:27 PM 73 2557.44

Test 3 6-Oct 10:21 AM 60 1278.72 Test 3 6-Oct 10:18 AM 74 2557.44

Test 4 9-Oct 1:48 PM 61 1278.72 Test 4 9-Oct 1:46 PM 77 2557.44

Test 5 15-Oct 11:36 AM 57 1278.72 Test 5 15-Oct 11:37 AM 69 2557.44

Avg 59.6 Avg 73.8

Date Start Time CPU Time File Size

Test 1 4-Oct 1:46 AM 121 5115

Test 2 5-Oct 3:25 PM 126 5115

Test 3 6-Oct 10:16 AM 121 5115

Test 4 9-Oct 1:44 PM 136 5115

Test 5 15-Oct 11:39 AM 131 5115

Avg 127

101

Appendix K – MapReduce Average Packet Length by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:00:00 AM 17 19.98 Test 1 4-Oct 2:00:00 AM 17 39.96

Test 2 5-Oct 3:38:00 PM 17 19.98 Test 2 5-Oct 3:37:00 AM 17 39.96

Test 3 6-Oct 10:33:00 AM 16 19.98 Test 3 6-Oct 10:32:00 AM 18 39.96

Test 4 9-Oct 1:59:00 PM 17 19.98 Test 4 9-Oct 1:59:00 PM 17 39.96

Test 5 15-Oct 11:45:00 PM 15 19.98 Test 5 15-Oct 11:46:00 PM 16 39.96

Avg 16.4 Avg 17

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:00:00 AM 20 79.92 Test 1 4-Oct 1:59:00 AM 22 159.84

Test 2 5-Oct 3:37:00 AM 20 79.92 Test 2 5-Oct 3:37:00 AM 23 159.84

Test 3 6-Oct 10:32:00 AM 19 79.92 Test 3 6-Oct 10:31:00 AM 22 159.84

Test 4 9-Oct 1:59:00 PM 20 79.92 Test 4 9-Oct 1:58:00 PM 22 159.84

Test 5 15-Oct 11:46:00 PM 18 79.92 Test 5 15-Oct 11:47:00 PM 20 159.84

Avg 19.4 Avg 21.8

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:59:00 AM 29 319.68 Test 1 4-Oct 1:58:00 AM 43 639.36

Test 2 5-Oct 3:36:00 PM 27 319.68 Test 2 5-Oct 3:36:00 PM 42 639.36

Test 3 6-Oct 10:30:00 AM 28 319.68 Test 3 6-Oct 10:30:00 AM 45 639.36

Test 4 9-Oct 1:58:00 PM 29 319.68 Test 4 9-Oct 1:58:00 PM 48 639.36

Test 5 15-Oct 11:47:00 PM 26 319.68 Test 5 15-Oct 11:48:00 PM 42 639.36

Avg 27.8 Avg 44

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 1:56:00 AM 65 1278.72 Test 1 4-Oct 1:54:00 AM 81 2557.44

Test 2 5-Oct 3:34:00 PM 70 1278.72 Test 2 5-Oct 3:32:00 PM 87 2557.44

Test 3 6-Oct 10:28:00 AM 73 1278.72 Test 3 6-Oct 10:26:00 AM 90 2557.44

Test 4 9-Oct 1:56:00 PM 64 1278.72 Test 4 9-Oct 1:54:00 AM 89 2557.44

Test 5 15-Oct 11:50:00 PM 64 1278.72 Test 5 15-Oct 11:52:00 PM 91 2557.44

Avg 67.2 Avg 87.6

Date Start Time CPU Time File Size

Test 1 4-Oct 1:52 AM 154 5115

Test 2 5-Oct 3:31 PM 144 5115

Test 3 6-Oct 10:24:00 AM 133 5115

Test 4 9-Oct 1:52:00 AM 152 5115

Test 5 15-Oct 11:53:00 AM 138 5115

Avg 144.2

102

Appendix L – MapReduce Percent of Traffic by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:08 AM 17 19.98 Test 1 4-Oct 2:08 AM 18 39.96

Test 2 5-Oct 3:46 PM 16 19.98 Test 2 5-Oct 3:46 PM 18 39.96

Test 3 6-Oct 10:40 AM 18 19.98 Test 3 6-Oct 10:40 AM 18 39.96

Test 4 9-Oct 2:08 PM 16 19.98 Test 4 9-Oct 2:08 PM 18 39.96

Test 5 15-Oct 11:57 PM 14 19.98 Test 5 15-Oct 11:57 PM 16 39.96

Avg 16.2 Avg 17.6

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:08 AM 19 79.92 Test 1 4-Oct 2:07 AM 22 159.84

Test 2 5-Oct 3:45 PM 19 79.92 Test 2 5-Oct 3:45 PM 22 159.84

Test 3 6-Oct 10:39 AM 20 79.92 Test 3 6-Oct 10:39 AM 22 159.84

Test 4 9-Oct 2:07 PM 20 79.92 Test 4 9-Oct 2:07 PM 22 159.84

Test 5 15-Oct 11:58 PM 18 79.92 Test 5 15-Oct 1:58 PM 20 159.84

Avg 19.2 Avg 21.6

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:07 AM 28 319.68 Test 1 4-Oct 2:06 AM 57 639.36

Test 2 5-Oct 3:45 PM 28 319.68 Test 2 5-Oct 3:44 PM 45 639.36

Test 3 6-Oct 10:39 AM 28 319.68 Test 3 6-Oct 10:38 AM 48 639.36

Test 4 9-Oct 2:06 PM 29 319.68 Test 4 9-Oct 2:06 PM 53 639.36

Test 5 15-Oct 11:59 PM 25 319.68 Test 5 15-Oct 12:00 AM 44 639.36

Avg 27.6 Avg 49.4

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:05 AM 63 1278.72 Test 1 4-Oct 2:03 AM 80 2557.44

Test 2 5-Oct 3:43 PM 61 1278.72 Test 2 5-Oct 3:40 PM 81 2557.44

Test 3 6-Oct 10:38 AM 68 1278.72 Test 3 6-Oct 10:35 AM 81 2557.44

Test 4 9-Oct 12:05 PM 62 1278.72 Test 4 9-Oct 12:02 PM 96 2557.44

Test 5 15-Oct 12:00 AM 58 1278.72 Test 5 15-Oct 12:01 PM 91 2557.44

Avg 62.4 Avg 85.8

Date Start Time CPU Time File Size

Test 1 4-Oct 2:00 AM 156 5115

Test 2 5-Oct 3:38 PM 146 5115

Test 3 6-Oct 10:33 AM 139 5115

Test 4 9-Oct 2:00 PM 148 5115

Test 5 15-Oct 12:04 PM 144 5115

Avg 146.6

103

Appendix M – Java TCP Port by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:40:00 AM 23.204 19.98 Test 1 4-Oct 241 AM 45.744 39.96

Test 2 5-Oct 4:14:00 PM 22.784 19.98 Test 2 5-Oct 4:15:00 PM 45.363 39.96

Test 3 6-Oct 11:45:00 AM 23.01 19.98 Test 3 6-Oct 11:47:00 AM 45.508 39.96

Test 4 9-Oct 3:48:00 PM 22.984 19.98 Test 4 9-Oct 3:29:00 PM 45.178 39.96

Test 5 15-Oct 12:51:00 AM 23.024 19.98 Test 5 15-Oct 12:52:00 AM 45.497 39.96

Avg 23.0012 Avg 45.458

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:42:00 AM 90.903 79.92 Test 1 4-Oct 2:43:00 AM 180.74 159.84

Test 2 5-Oct 4:17:00 PM 90.301 79.92 Test 2 5-Oct 4:19:00 PM 178.6 159.84

Test 3 6-Oct 11:50:00 AM 91.103 79.92 Test 3 6-Oct 11:55:00 AM 181.36 159.84

Test 4 9-Oct 3:51:00 PM 90.299 79.92 Test 4 9-Oct 3:55:00 PM 180.601 159.84

Test 5 15-Oct 12:53:00 AM 90.588 79.92 Test 5 15-Oct 12:54:00 PM 180.969 159.84

Avg 90.6388 Avg 180.454

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 3:00:00 AM 361.5 319.68 Test 1 4-Oct 3:07:00 AM 730.87 639.36

Test 2 5-Oct 4:28:00 PM 360.28 319.68 Test 2 5-Oct 4:36:00 PM 720.04 639.36

Test 3 6-Oct 12:05:00 PM 361.2 319.68 Test 3 6-Oct 12:18:00 PM 724.5 639.36

Test 4 9-Oct 4:12:00 PM 361.916 319.68 Test 4 9-Oct 4:30:00 PM 720.865 639.36

Test 5 15-Oct 12:58:00 AM 360.468 319.68 Test 5 15-Oct 1:04:00 AM 722.428 639.36

Avg 361.0728 Avg 723.7406

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 3:32:00 AM 1450.642 1278.72 Test 1 4-Oct 4:03:00 AM 2918.271 2557.44

Test 2 5-Oct 4:02:00 PM 1452.707 1278.72 Test 2 5-Oct 5:35:00 PM 2920.347 2557.44

Test 3 6-Oct 12:31:00 PM 1453.184 1278.72 Test 3 6-Oct 12:56:00 PM 2919.759 2557.44

Test 4 9-Oct 4:45:00 PM 1443.568 1278.72 Test 4 9-Oct 5:16:00 PM 2920.287 2557.44

Test 5 15-Oct 1:16:00 AM 1445.482 1278.72 Test 5 15-Oct 1:40:00 AM 2911.392 2557.44

Avg 1449.1166 Avg 2918.0112

Date Start Time CPU Time File Size

Test 1 4-Oct 4:57:00 AM 9759.133 5115

Test 2 5-Oct 6:27:00 PM 9757.774 5115

Test 3 6-Oct 1:42:00 PM 9755.927 5115

Test 4 9-Oct 6:06:00 PM 9758.349 5115

Test 5 15-Oct 2:33:00 AM 9757.807 5115

Avg 9757.798

104

Appendix N – Java Total Traffic by IP Protocol Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:37:00 AM 0.577 19.98 Test 1 4-Oct 2:37:00 AM 0.937 39.96

Test 2 5-Oct 4:06:00 PM 0.4995 19.98 Test 2 5-Oct 4:06:00 PM 0.783 39.96

Test 3 6-Oct 11:37:00 AM 0.498 19.98 Test 3 6-Oct 11:37:00 AM 0.796 39.96

Test 4 9-Oct 3:41:00 PM 0.567 19.98 Test 4 9-Oct 3:41:00 PM 0.908 39.96

Test 5 15-Oct 12:20:00 AM 0.475 19.98 Test 5 15-Oct 12:20:00 AM 0.923 39.96

Avg 0.5233 Avg 0.8694

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:37:00 AM 1.569 79.92 Test 1 4-Oct 2:37:00 AM 2.783 159.84

Test 2 5-Oct 4:06:00 PM 1.261 79.92 Test 2 5-Oct 4:07:00 PM 2.246 159.84

Test 3 6-Oct 11:37:00 AM 1.238 79.92 Test 3 6-Oct 11:38:00 AM 2.202 159.84

Test 4 9-Oct 3:41:00 PM 1.51 79.92 Test 4 9-Oct 3:42:00 PM 2.91 159.84

Test 5 15-Oct 12:20:00 AM 1.665 79.92 Test 5 15-Oct 12:21:00 AM 2.902 159.84

Avg 1.4486 Avg 2.6086

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:37:00 AM 4.351 319.68 Test 1 4-Oct 2:37:00 AM 7.895 639.36

Test 2 5-Oct 4:07:00 PM 4.218 319.68 Test 2 5-Oct 4:07:00 PM 7.905 639.36

Test 3 6-Oct 11:38:00 AM 4.085 319.68 Test 3 6-Oct 11:38:00 AM 7.988 639.36

Test 4 9-Oct 3:42:00 PM 6.355 319.68 Test 4 9-Oct 3:42:00 PM 7.843 639.36

Test 5 15-Oct 12:21:00 AM 6.305 319.68 Test 5 15-Oct 12:21:00 AM 8.161 639.36

Avg 5.0628 Avg 7.9584

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:38:00 AM 20.146 1278.72 Test 1 4-Oct 2:38:00 AM 83.733 2557.44

Test 2 5-Oct 4:07:00 PM 16.358 1278.72 Test 2 5-Oct 4:08:00 PM 83.653 2557.44

Test 3 6-Oct 11:38:00 AM 23.304 1278.72 Test 3 6-Oct 11:39:00 AM 83.738 2557.44

Test 4 9-Oct 3:42:00 PM 17.609 1278.72 Test 4 9-Oct 3:43:00 PM 83.643 2557.44

Test 5 15-Oct 12:22:00 AM 16.634 1278.72 Test 5 15-Oct 12:23:00 AM 82.932 2557.44

Avg 18.8102 Avg 83.5398

Date Start Time CPU Time File Size

Test 1 4-Oct 2:38:00 AM 166.73 5115

Test 2 5-Oct 4:10:00 PM 166.75 5115

Test 3 6-Oct 11:39:00 AM 166.714 5115

Test 4 9-Oct 3:53:00 PM 166.733 5115

Test 5 15-Oct 12:25:00 AM 166.719 5115

Avg 166.7292

105

Appendix O – Java Average Packet Length by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:38:00 AM 0.937 19.98 Test 1 4-Oct 2:38:00 AM 1.542 39.96

Test 2 5-Oct 4:11:00 AM 0.931 19.98 Test 2 5-Oct 4:12:00 AM 1.577 39.96

Test 3 6-Oct 11:39:00 AM 0.897 19.98 Test 3 6-Oct 11:40:00 AM 1.621 39.96

Test 4 9-Oct 3:55:00 PM 0.934 19.98 Test 4 9-Oct 3:55:00 PM 1.533 39.96

Test 5 15-Oct 12:33:00 AM 0.957 19.98 Test 5 15-Oct 12:33:00 AM 1.695 39.96

Avg 0.9312 Avg 1.5936

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:38:00 AM 2.843 79.92 Test 1 4-Oct 2:38:00 AM 6.146 159.84

Test 2 5-Oct 4:07:00 PM 3.29 79.92 Test 2 5-Oct 4:07:00 PM 6.279 159.84

Test 3 6-Oct 11:40:00 AM 3.347 79.92 Test 3 6-Oct 11:40:00 AM 6.117 159.84

Test 4 9-Oct 3:55:00 PM 3.247 79.92 Test 4 9-Oct 3:55:00 PM 5.978 159.84

Test 5 15-Oct 12:33:00 AM 3.266 79.92 Test 5 15-Oct 12:33:00 AM 6.287 159.84

Avg 3.1986 Avg 6.1614

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:39:00 AM 13.102 319.68 Test 1 4-Oct 2:39:00 AM 22.933 639.36

Test 2 5-Oct 4:08:00 PM 10.782 319.68 Test 2 5-Oct 4:08:00 PM 21.59 639.36

Test 3 6-Oct 11:40:00 AM 12.352 319.68 Test 3 6-Oct 11:41:00 AM 21.641 639.36

Test 4 9-Oct 3:55:00 PM 12.134 319.68 Test 4 9-Oct 3:56:00 PM 21.667 639.36

Test 5 15-Oct 12:34:00 AM 13.023 319.68 Test 5 15-Oct 12:34:00 AM 21.613 639.36

Avg 12.2786 Avg 21.8888

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:40:00 AM 52.466 1278.72 Test 1 4-Oct 2:42:00 AM 112.6 2557.44

Test 2 5-Oct 4:09:00 PM 47.396 1278.72 Test 2 5-Oct 4:10:00 PM 112.696 2557.44

Test 3 6-Oct 11:41:00 AM 44.108 1278.72 Test 3 6-Oct 11:42:00 AM 112.589 2557.44

Test 4 9-Oct 3:45:00 PM 47.672 1278.72 Test 4 9-Oct 3:46:00 PM 113.664 2557.44

Test 5 15-Oct 12:35:00 AM 48.053 1278.72 Test 5 15-Oct 12:37: AM 112.031 2557.44

Avg 47.939 Avg 112.716

Date Start Time CPU Time File Size

Test 1 4-Oct 2:45:00 AM 215.907 5115

Test 2 5-Oct 4:12:00 PM 217.833 5115

Test 3 6-Oct 11:43:00 AM 217.734 5115

Test 4 9-Oct 3:47:00 PM 219.117 5115

Test 5 15-Oct 12:40 AM 225.87 5115

Avg 219.2922

106

Appendix P – Java Percent of Traffic by Source IP Test Data

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:34:00 AM 0.967 19.98 Test 1 4-Oct 2:35:00 AM 1.708 39.96

Test 2 5-Oct 4:02:00 PM 1.012 19.98 Test 2 5-Oct 4:02:00 PM 1.762 39.96

Test 3 6-Oct 11:31:00 AM 0.996 19.98 Test 3 6-Oct 11:31:00 AM 1.759 39.96

Test 4 9-Oct 3:36:00 PM 0.905 19.98 Test 4 9-Oct 3:36:00 PM 1.655 39.96

Test 5 15-Oct 12:09:00 AM 1.211 19.98 Test 5 15-Oct 12:09:00 AM 1.814 39.96

Avg 1.0182 Avg 1.7396

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:35:00 AM 3.094 79.92 Test 1 4-Oct 2:35:00 AM 5.898 159.84

Test 2 5-Oct 4:02:00 PM 3.258 79.92 Test 2 5-Oct 4:02:00 PM 6.292 159.84

Test 3 6-Oct 11:31:00 AM 3.268 79.92 Test 3 6-Oct 11:31:00 AM 6.363 159.84

Test 4 9-Oct 3:36:00 PM 3.148 79.92 Test 4 9-Oct 3:36:00 PM 6.178 159.84

Test 5 15-Oct 12:09:00 AM 3.449 79.92 Test 5 15-Oct 12:09:00 AM 6.479 159.84

Avg 3.2434 Avg 6.242

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:35:00 AM 13.538 319.68 Test 1 4-Oct 2:35:00 AM 28.258 639.36

Test 2 5-Oct 4:02:00 PM 13.441 319.68 Test 2 5-Oct 4:03:00 PM 27.728 639.36

Test 3 6-Oct 11:31:00 AM 13.622 319.68 Test 3 6-Oct 11:32:00 AM 27.833 639.36

Test 4 9-Oct 3:36:00 PM 14.024 319.68 Test 4 9-Oct 3:36:00 PM 28.178 639.36

Test 5 15-Oct 12:09:00 AM 13.441 319.68 Test 5 15-Oct 12:09:00 AM 27.709 639.36

Avg 13.6132 Avg 27.9412

Date Start Time CPU Time File Size Date Start Time CPU Time File Size

Test 1 4-Oct 2:35:00 AM 53.125 1278.72 Test 1 4-Oct 2:36:00 AM 116.431 2557.44

Test 2 5-Oct 4:03:00 PM 56.593 1278.72 Test 2 5-Oct 4:04:00 PM 115.773 2557.44

Test 3 6-Oct 11:32:00 AM 56.345 1278.72 Test 3 6-Oct 11:33:00 AM 115.258 2557.44

Test 4 9-Oct 3:37:00 PM 56.122 1278.72 Test 4 9-Oct 3:37:00 PM 117.741 2557.44

Test 5 15-Oct 12:10:00 AM 56.906 1278.72 Test 5 15-Oct 12:11:00 AM 115.419 2557.44

Avg 55.8182 Avg 116.1244

Date Start Time CPU Time File Size

Test 1 4-Oct 2:37:00 AM 230.477 5115

Test 2 5-Oct 4:06:00 AM 231.566 5115

Test 3 6-Oct 11:36:00 AM 232.477 5115

Test 4 9-Oct 3:38:00 PM 230.944 5115

Test 5 15-Oct 12:13:00 AM 231.111 5115

Avg 231.315

107

Appendix Q: Java Output Samples (All for 20MB File)

IP Address/Source Port Totals

199.17.18.73 57350 9
199.17.18.73 11262 1448
199.17.18.73 5612 11
199.17.18.73 34113 11
107.22.186.115 443 10
Total elapsed time in milliseconds: 23204

Protocol Traffic totals

Protocol = 6 Total = 179897257 bytes
Protocol = 17 Total = 135815 bytes
Total elapsed time in milliseconds: 515

Average Packet Length by Source IP

173.194.66.95 Total = 16361 Avg = 495
52.72.55.108 Total = 2441 Avg = 162
52.6.141.131 Total = 4539 Avg = 453
52.84.14.210 Total = 2002 Avg = 333
104.113.52.120 Total = 50801 Avg = 1154
Total elapsed time in milliseconds: 937

Total Percentage of Traffic by IP

173.194.66.95 0.0091
52.72.55.108 0.0014
52.6.141.131 0.0025
52.84.14.210 0.0011
104.113.52.120 0.0282
Total elapsed time in milliseconds: 967

108

Appendix R: MapReduce Output Samples (All for 20MB File)

IP Address/Source Port Totals

Protocol = 6 SRC_IP = 98.138.4.113 Port = 443 52
Protocol = 6 SRC_IP = 98.138.49.44 Port = 80 4
Protocol = 6 SRC_IP = 98.138.81.72 Port = 443 19
Protocol = 6 SRC_IP = 98.139.199.205 Port = 443 25

Protocol Traffic totals

17 135815
6 179897257

Average Packet Length by Source IP

98.137.201.232 534
98.138.243.53 534
98.138.4.113 510
98.138.49.44 155
98.138.81.72 451
98.139.199.205 402

Total Percentage of Traffic by IP

199.17.18.73 57350 9
199.17.18.73 11262 1448
199.17.18.73 5612 11
199.17.18.73 34113 11
107.22.186.115 443 10
Total elapsed time in milliseconds: 23204

109

Appendix S: Cost Analysis Charts

Table S1

Time to Process 50TB/Hour

MR TCP
Port by
Source

MR Traffic
by IP
Protocol

MR
Average
Packet
Length

MR
Percent of
Traffic

Java TCP
Port by
Source

Java
Traffic
by IP
Proto

Java
Avg
Packet
length

Java
Percent
of
Traffic

20 MB

12,537.19

11,662.51

11,954.07

11,808.29

16,765.73

381.44

678.76

742.17

40 MB

6,633.05

6,341.49

6,195.71

6,414.38

16,567.32

316.86

580.79

634.00

80 MB

3,425.86

3,316.53

3,535.20

3,498.75

16,516.81

263.97

582.87

591.03

160 MB

1,949.83

1,876.93

1,986.27

1,968.05

16,441.77

237.68

561.39

568.73

320 MB

1,275.59

1,211.81

1,266.48

1,257.36

16,449.27

230.64

559.37

620.17

640 MB

1,102.47

961.25

1,002.25

1,125.25

16,485.60

181.28

535.04

636.45

1.3 GB

758.52

678.79

765.35

710.68

16,504.23

214.23

545.99

635.72

2.6 GB

613.88

420.26

498.85

488.60

16,616.86

475.72

641.87

661.28

5.1 GB

587.11

361.61

410.58

417.41

27,783.30

474.73

624.39

658.62

110

Table S2

Time to Process 50TB/Day

MR TCP
Port by
Source

MR
Traffic by
IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java TCP
Port by
Source

Java
Traffic
by IP
Protoco
l

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB

522.38

485.94

498.09

492.01

698.57

15.89

28.28

30.92

40 MB

276.38

264.23

258.15

267.27

690.30

13.20

24.20

26.42

80 MB

142.74

138.19

147.30

145.78

688.20

11.00

24.29

24.63

160 MB

81.24

78.21

82.76

82.00

685.07

9.90

23.39

23.70

320 MB

53.15

50.49

52.77

52.39

685.39

9.61

23.31

25.84

640MB

45.94

40.05

41.76

46.89

686.90

7.55

22.29

26.52

1.3GB

31.60

28.28

31.89

29.61

687.68

8.93

22.75

26.49

2.6 GB

25.58

17.51

20.79

20.36

692.37

19.82

26.74

27.55

5.1 GB

24.46

15.07

17.11

17.39

1,157.64

19.78

26.02

27.44

111

Table S3

CPU Cost to Process 50TB/Hour

MR TCP
Port by
Source

MR Traffic
by IP
Protocol

MR
Average
Packet
Length

MR
Percent of
Traffic

Java TCP
Port by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent of
Traffic

20 MB 6017.85 3183.86 1644.41 935.92 612.28 529.19 364.09 294.66

40 MB 5598.00 3043.91 1591.93 900.93 581.67 461.40 325.82 201.72

80 MB 5737.95 2973.94 1696.89 953.41 607.91 481.08 367.37 239.45

160 MB 5667.98 3078.90 1679.40 944.66 603.53 540.12 341.13 234.53

320 MB 2011.89 1988.08 1982.02 1973.01 1973.91 1978.27 1980.51 1994.02

640 MB 45.77 38.02 31.68 28.52 27.68 21.75 25.71 57.09

1.3 GB 81.45 69.70 69.94 67.37 67.12 64.20 65.52 77.02

2.6 GB 89.06 76.08 70.92 68.25 74.42 76.37 76.29 79.35

5.1 GB 6017.85 3183.86 1644.41 935.92 612.28 529.19 364.09 294.66

112

Table S4

Storage Cost to Process 50TB/Hour

MR TCP
Port by
Source

MR Traffic
by IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java TCP
Port by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent of
Traffic

20 MB

84,712.26

44,818.69

23,148.12

13,174.73

8,618.98

7,449.26

5,125.21

4,147.88

40 MB

78,802.10

42,848.64

22,409.35

12,682.21

8,188.03

6,495.02

4,586.53

2,839.65

80 MB

80,772.15

41,863.62

23,886.89

13,420.98

8,557.42

6,772.06

5,171.39

3,370.64

160 MB

79,787.13

43,341.15

23,640.63

13,297.85

8,495.85

7,603.17

4,802.00

3,301.38

320 MB

37,761.84

37,314.96

37,201.19

37,032.17

37,049.08

37,130.91

37,172.87

37,426.54

640MB

859.12

713.66

594.55

535.33

519.49

408.30

482.52

1,071.49

1.3GB

1,528.78

1,308.13

1,312.81

1,264.42

1,259.89

1,205.07

1,229.74

1,445.70

2.6 GB

1,671.61

1,427.98

1,331.20

1,280.96

1,396.83

1,433.50

1,431.85

1,489.42

5.1 GB

84,712.26

44,818.69

23,148.12

13,174.73

8,618.98

7,449.26

5,125.21

4,147.88

113

Table S5

Total Cost to Process 50TB/Hour

MR TCP
Port by
Source

MR
Traffic by
IP
Protocol

MR
Average
Packet
Length

MR
Percent
of Traffic

Java
TCP Port
by
Source

Java
Traffic by
IP
Protocol

Java
Average
Packet
length

Java
Percent
of Traffic

20 MB 90730.11 48002.56 24792.53 14110.64 9231.26 7978.45 5489.30 4442.54

40 MB 84400.10 45892.56 24001.28 13583.14 8769.70 6956.41 4912.35 3041.37

80 MB 86510.11 44837.55 25583.78 14374.39 9165.32 7253.13 5538.76 3610.08

160 MB 85455.10 46420.06 25320.03 14242.52 9099.39 8143.29 5143.13 3535.90

320 MB 39773.73 39303.04 39183.21 39005.19 39023.00 39109.19 39153.37 39420.56

640MB 904.89 751.68 626.23 563.85 547.16 430.05 508.23 1128.57

1.3GB 1610.23 1377.83 1382.76 1331.79 1327.01 1269.28 1295.25 1522.72

2.6 GB 1760.67 1504.06 1402.12 1349.21 1471.25 1509.87 1508.14 1568.77

5.1 GB 90730.11 48002.56 24792.53 14110.64 9231.26 7978.45 5489.30 4442.54

	St. Cloud State University
	theRepository at St. Cloud State
	12-2016

	Network Log Analysis Performance Comparison - Java vs. MapReduce
	Jonathan C. Munsch
	Recommended Citation

	tmp.1478754846.pdf.T6Zfe

