St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Computer Science and Department of Computer Science and Information
Information Technology Technology
5-2017

Remote Health Service System based on Struts2
and Hibernate

Asma Saeed
asaeed@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit _etds

b Part of the Computer Sciences Commons

Recommended Citation

Saeed, Asma, "Remote Health Service System based on Struts2 and Hibernate" (2017). Culminating Projects in Computer Science and
Information Technology. 16.
https://repository.stcloudstate.edu/csit_etds/16

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized

administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/16?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Remote Health Service System Based on Struts2 and Hibernate

by

Asma Saeed

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in Computer Science

May, 2017

Starred Paper Committee:
Dr. Jie Hu Meichsner, Chairperson
Dr. Omar Al-Azzam
Dr. Susantha Herath

Abstract
Traditional web applications were developed using Servlets or Java Server Pages (JSP).
Maintainability and extensibility became a problem with this approach as the business logic and
presentation logic were mixed in a single file. Model View Controller (MVC) is a popular and
powerful design pattern for developing web applications as it clearly separates the main
responsibilities (business logic, presentation and request handling), which facilitates the scalability
and extensibility of the applications. Struts2 framework has gained popularity in the recent times
as it realized the MV C architecture. It is an elegant, extensible framework for developing enterprise
level Java web applications. Data persistence is a significant task in any web application. Many
persistence frameworks have gained importance recently. Hibernate is one such framework that
can be easily integrated with Struts2. In this project, a Remote Health Service System is
implemented that can be used by patients and medical experts for remote medical diagnosis.
Patient registration, medical query submission, query response and query search are the main
functionalities of this system. The application is modular, complete and flexible as its architecture
is based on the integration of Struts2 and Hibernate frameworks. It has a multi-layered architecture
with the Presentation, Controller and Service layers implemented using Struts2 and the Data

Access layer implemented using Hibernate.

Table of Contents

CHAPTER 1: INTRODUCTION ...ttt 10
CHAPTER 2: TECHNOLOGY OVERVIEW.......coiiiiiiii e 12
2.1 SEIULS2 FTAMEBWOTK ...ttt bbb 12
2.1.1 SErULS2 ATCRITECTUIE.......uiiieeiei et 12
2.1.2 Struts2 - Request Processing WOrkflOW..........cccccovviieiiii i 14
2.1.3 Advantages Of Struts2 frameWOrKccoiiiiiiieie e 16

2.2 HIDEIMALE ...ttt bbbttt 17
2.2.1 Hibernate ArChITECIUIEooviiieieiiee s 18
2.2.2 Advantages Of HIDEINALEcceiiiiiiie e 19
CHAPTER 3: REMOTE HEALTH SERVICE SYSTEMooiiiiiie e 21
3.1 SYStEmM FUNCLIONATITY ..ot ste e sneens 21
3.2 SYSEEIM DESIGN ...ttt st e e e et e et e et eeae e s be et e e ra e s beeteeneesreereenre e 23
3.2.1 USE CaSE DIAGIAMS.....ccueeiuiiieiiieiieeie st ete st este et e st e te e teesaesssesbeesteareesaeesesrsesraenans 23
3.2.2 SEALECNAITS. ...ttt 34
3.2.3 Use Case REAHZALIONcccoiiiiiiieiieiee s 38
I O - T B T - To = o LSRR ROPPR 68
3.2.5 Application ArChItECIUIEceeiiiiii e 75

3.3 APPLICALION SCIEENSNOLSviiiieiiii ettt be et re e srae s 77
CHAPTER 4: CONCLUSION ...ttt esnneennee 89

R B B B 0 ..ttt ettt ettt ettt ettt e e nnnnnnnnnnnnn 91

List of Tables
Table 1: Login use case description for the Remote Health Service Systemcccccvvevieennne. 24
Table 2: Create Account use case description for the Remote Health Service System................ 25

Table 3: View Medical Expert Information use case description for the Remote

HEAItN SEIVICE SYSTEIM ... b 26
Table 4: Edit Profile use case description for the Remote Health Service System 27
Table 5: Submit Query use case description for the Remote Health Service System 28
Table 6: View Response use case description for the Remote Health Service System................ 29

Table 7: View Past Medical Queries use case description for the Remote Health

SBIVICE SYSTEM ...ttt b bbbt bbbt et e et bbb b e reene s 30
Table 8: Respond to Query use case description for the Remote Health Service System............ 31
Table 9: Transfer Query use case description for the Remote Health Service System 32

Table 10: Manage Medical Experts use case description for the Remote Health Service System33

Table 11: ‘Admin Login — Login success’ scenario of Login Use Caseccceervvrrriieeriieenineens 40
Table 12: ‘Admin Login — Login failure’ scenario of Login use Case..........cccovvvrivervriieerineninnens 41
Table 13: ‘Patient Login — Login success’ scenario of Login Use Casecccvvvverrvieriieeriieens 42
Table 14: ‘Patient Login — Login failure’ scenario of Login use case........ccoccvvvvvveiiiieiiieeniienne 43
Table 15: ‘Medical Expert Login — Login success’ scenario of Login use casecceevvuvenne 44
Table 16: ‘Medical Expert Login — Login failure’ scenario of Login use case.........ccccovevvrrivernne 45
Table 17: ‘Create a new account’ scenario of Create ACCOUNE USE CASEvvervvrrveerieerreennrninens 47

Table 18: ‘View Medical Expert details’ scenario of View Medical Expert

INFOrMALION USE CASE ... oo, 48

Table 19: ‘Patient — Edit Profile Information’ scenario of Edit Profile use casecc.cceeeee 50
Table 20: ‘Medical Expert — Edit Profile Information’ scenario of Edit Profile use case............ 51
Table 21: ‘Submit query to Medical Expert’ scenario of Submit Query USe CaSe...........ccevrvveenne 53
Table 22: ‘View query response’ scenario of View Response use Caseccccvvvvvvirivveniiveesinnnnns 54
Table 23: ‘Patient — View past queries’ scenario of View Past Medical Queries use case........... 56
Table 24: ‘Medical Expert — View past queries’ scenario of View Past Medical

QUETTES USE CASE ...vvveeuveeiureeteeetteetee sttt ateesteeebaesaeeabeesaeeesteesseeanbeeaseeenseesaseenseeaseeensaesnneenreearnes 57
Table 25: ‘Respond to patient query’ scenario of Respond to Query use case..........ccevvveerverneene 59
Table 26: ‘Medical Expert — Transfer query’ scenario of Transfer Query use case...........ccceuue. 61
Table 27: ‘Admin — Transfer query’ scenario of Transfer QUEry uSe Casec.ccevvrriveerivrriunns 62
Table 28: ‘Add a medical expert’ scenario of Manage Medical Experts use casecoceenee. 64
Table 29: ‘Edit a medical expert’ scenario of Manage Medical Experts use caseccoco.... 65
Table 30: ‘Activate a medical expert’ scenario of Manage Medical Experts use case................. 66
Table 31: ‘Deactivate a medical expert’ scenario of Manage Medical Experts use case............. 68

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:

Figure 21.:

List of Figures

SEIUES2 ATCNITECTUNE ... 13
Request Processing Workflow in Struts2 Frameworkcccoocvveiieevi e veeieen, 15
Role of ORM in Java APPlICALIONccciiiiiiie e 17
HIbernate ArChITECIUIEoviiiiicicie e 18
Use Case diagram for the Remote Health Service Systemcccccoevveveivievieveennn, 23
Login use case for the Remote Health Service System.........cccccccvvieiicieicce e, 24
Create Account use case for the Remote Health Service Systemcccccceeevvieieennne 25

View Medical Expert Information use case for the Remote Health Service System.... 26

Edit Profile use case for the Remote Health Service System...........ccccceevviieivevecnnenn, 27
Submit Query use case for the Remote Health Service System..........c.ccccoeivevieennene 28
View Response use case for the Remote Health Service Systemccccccvvveveennnns 28
View Past Medical Queries use case for the Remote Health Service System 30
Respond to Query use case for the Remote Health Service Systemc..cccccvenee 31
Transfer Query use case for the Remote Health Service System...........ccccccevvevieenee. 32
Manage Medical Experts use case for the Remote Health Service System 33
Complete Statechart of the Remote Health Service Systemcccccoveivieivccieennen, 35
Statechart of the AdMIN SYStEMcoviiiieic e 36
Statechart of the Patient SYStEMccvoiiiiiicc e 37
Statechart of the Medical EXpert SYStEmMccccooiieie i 38
Classes for the Remote Health Service System........ccccoccveiiiiiicie e, 39

Interaction of classes for the realization of the Login use Case.........cccocevvevveciveennn. 40

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:

Figure 30:

Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

Sequence diagram for the ‘Admin Login — Login success’ SCenario.........ccvevverrvveenns 41
Sequence diagram for the ‘Admin Login — Login failure’ scenariocccocceevruvennne 42
Sequence diagram for the ‘Patient Login — Login success’ SCenario.........ccoveveerrvveenns 43
Sequence diagram for the ‘Patient Login — Login failure’ scenariocccocceevruveenne 44
Sequence diagram for the ‘Medical Expert Login — Login success’ scenario 45
Sequence diagram for the ‘Medical Expert Login — Login failure’ scenario.............. 46
Interaction of classes for the realization of the Create Account use Case 46
Sequence diagram for the ‘Create a new account’ SCENAriO...........cvervrivriveiisieseennes 47
Interaction of classes for the realization of the ‘View Medical Expert Information’ use

.. 48
Sequence diagram for the ‘View Medical Expert details’ scenarioc.cceevvenneene 49
Interaction of classes for the realization of the Edit Profile use case............cc.cccooene. 50
Sequence diagram for the ‘Patient — Edit Profile Information’ scenario 51
Sequence diagram for the ‘Medical Expert — Edit Profile Information’ scenario....... 52
Interaction of classes for the realization of the Submit Query use case...................... 52
Sequence diagram for the ‘Submit query to Medical Expert’ scenario 53
Interaction of classes for the realization of the View Response use case 54
Sequence diagram for the ‘“View query response’ SCENArioccucvrverveereeriererennen. 55

Interaction of classes for the realization of the View Past Medical Queries use case 55
Sequence diagram for the ‘Patient — View past queries’ SCenariocccceveeverueenne. 57
Sequence diagram for the ‘Medical Expert — View past queries’ scenario................. 58

Interaction of classes for the realization of the Respond to Query use case 59

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61.:
Figure 62:
Figure 63:

Figure 64:

Sequence diagram for the ‘Respond to patient query’ SCENario.........cccvvvevverrversivennns 60
Interaction of classes for the realization of the Transfer Query use case.................... 61
Sequence diagram for the ‘Medical Expert — Transfer query’ scenario...........ccoove... 62
Sequence diagram for the ‘Admin — Transfer quUery’ SCENAriocccevvvverriversinenns 63
Interaction of classes for the realization of the Manage Medical Experts use case 64

Sequence diagram for the ‘Add a medical expert’ SCeNario..........cccevvvveriivvesiiviesiivnnnns 65
Sequence diagram for the ‘Edit a medical expert’ Scenario..........c.cceevvereerieenieenninnns 66
Sequence diagram for the ‘Activate a medical expert’ SCeNarioccevevervveerverieenns 67
Sequence diagram for the ‘Deactivate a medical expert’ SCenariococeeevvernenne 68
Complete Class diagram of the Remote Health Service System.............c.cccccevevenne. 69
Part of the Class diagram for Admin SYSteMccccvveieiieiecie e 70
Part of the Class diagram for Patient SYStemcccccvveveiieie i 71
Part of the Class diagram for Medical Expert SyStemccccovevveevivcvecieceece e 72
Part of the Class diagram showing Model CIasses..........ccccoueveevieiieiiese s 74
Architecture of Remote Health Service SyStem.........ccccoeiveiiiciecie e 75
Login Screen of the Remote Health Service Systemccccovevviie i 77
Create Account Screen of the Remote Health Service Systemccccccvcvevvevieenee, 78
Patient Screen of the Remote Health Service System.........ccccceveviciicvcicceece e, 78
Edit Profile — Patient SCIrEENceoiiiiiiei e 79
Edit Profile — Patient Screen (SUCCESS MESSAGE).....cuvverrerivreiieiieeiiesieesieesreeseeaeeens 79
View Medical Expert Information — Patient SCreenccccevvevviiiie e s, 80

Submit QUEry — PatieNt SCIEENc.eiiiiiiie et 80

Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:

Figure 80:

Submit Query — Patient Screen (SUCCESS MESSAPE).....ccveevereerreereerieireesreaeesreesseeeenns 81
Medical Expert Screen of the Remote Health Service Systemcccccevvvieiienne 81
Edit Profile — Medical EXPErt SCrEEN.........cccueiiiiiiiece e 82
Respond to Query — Medical EXPErt SCre€ncccevveveiieieiie e 82
Respond to Query — Medical Expert Screen (SUCCESS MESSATE)cvvvvvervrereerreerieanens 83
View ResSpoNnSse — Pati€Nt SCIEENcccviiieiiee e 83
View Past Medical Queries — Patient SCreeNoovevveeive it 84
View Past Medical Queries — Medical EXPert SCreenccccocevvveieiieiieiesieeseenens 84
Transfer Query — Medical EXPEI..........ccviiiiiiiie e 85
Transfer Query — Medical EXpert (SUCCESS MESSAGE)ccvververreerirerreireesieeresreesreeneens 85
Admin Screen of the Remote Health Service System..........cccccoevieieiiiiicve e 86
Manage Medical Experts (Add a new Medical Expert) — Admin Screen.................. 86
Manage Medical Experts (Edit a Medical Expert) — Admin Screen...........cccccccevenene 87
Manage Medical Experts (Deactivate a Medical Expert) — Admin Screen 87
Manage Medical Experts (Activate a Medical Expert) — Admin Screen.................... 88

Transfer QUEry — AdMIN SCIEENcviiiiieee et 88

10
Chapter 1: INTRODUCTION

A web application is an application program that can be hosted on a server and clients can request
the application services using web browsers. A web application can also be termed as an online
application. Initially, the web applications were developed using Servlets or Java Server Pages
which consisted of both the Java code (for business logic) and HTML code (for rendering the view
part) in a single program. This not only made them unappealing but also caused maintenance and
extensibility problems. As the complexity of enterprise level applications started to scale up, this
approach proved inefficient. So, the idea of Model View Controller (MVC) was proposed. MVC
stands for Model View Controller. MVC pattern is composed of the following three parts:

Model — The Model represents the application’s data.

View — The View is a visual representation of the Model data.

Controller — The Controller responds to the user input and handles the interactions
between the Model and the View. It controls the flow of data into the Model object and updates
the View whenever the data changes.

MVC supports the separation of concerns as it isolates the business logic from the presentation
layer. It promotes better code organization, extensibility, scalability and code re-use. Whenever a
user makes a request, the controller receives this request, processes it and prepares the Model data.
The View then renders this data and the result (HTML, JSP page) is displayed in the browser.

Struts2 framework gained popularity as it implements the MVC design pattern. Struts2 is an
elegant framework that can be used to build enterprise level Java web applications. It can be easily

integrated with other frameworks like Spring, Hibernate and Tiles. It is flexible and has support

11
for multiple view technologies like JSP, Velocity and Freemarker. The theme based User Interface
(UI) tags help the developers create appealing interfaces with minimum effort.

As databases are used to store data in almost all the web applications, efficiency during the
database interaction was a critical factor to improve the overall application performance. To
optimize the database interactions, the Object Relational Mapping (ORM) tools were introduced.
ORM tools introduce a direct mapping between the Java code objects and the relational database
tables. Hibernate is one such ORM tool. It provides Hibernate Query Language (HQL) which is
database independent, thus eliminating the need to write database specific queries.

In this project, a Remote Health Service system is implemented based on the ideas presented in
the IEEE paper ‘Design of Java EE-Based Remote Health Service System’ [1]. The system consists
of three main modules: Patient system, Medical Expert system and Admin system. Profile
management, medical expert information lookup, medical expert selection, query submission,
view response and query search are different functionalities available in the Patient system. Profile
management, query reply, query transfer (to another medical expert) are the functionalities
available in the Medical Expert system. Medical expert management and query transfer
functionality is available in the Admin system.

The contents of this document are organized as follows: Chapter 2 gives an overview of the Struts2
and Hibernate frameworks. Chapter 3 presents the system design and functionalities of the Remote
Health Service System along with the application screenshots. Chapter 4 concludes the project and

provides possible future enhancements. Finally, the project references are listed.

12
Chapter 2: TECHNOLOGY OVERVIEW

This chapter presents detailed information about the Struts2 and Hibernate frameworks — their
overview, architecture and advantages. The first section of this chapter explains the Struts2
framework and the second section explains the Hibernate framework.
2.1 Struts2 Framework
A software framework is a platform for developing software applications that uses the design
patterns that are commonly agreed in the industry. It introduces an elegant architectural solution
to automate all tedious tasks of application development. Struts2 is an elegant and flexible web
application framework based on the MVC (Model View Controller) design pattern. It is used for
developing enterprise-level Java web applications. The power of Struts2 lies in its model
component by which it can be integrated with other frameworks like Spring, Hibernate etc. Struts2
makes web application development easier and faster by providing an extensible and flexible
architecture. The core component of Struts2 is ‘Action’, which is responsible for handling user
requests and executing the business logic. The result returned by the Action class helps the
framework determine the view page (HTML or JSP page) that will be sent as a response to the
user.
2.1.1 Struts2 Architecture
Struts2 framework implements the MVC architecture which divides the application into three
components: Model, View and Controller. In Struts2, the Model is implemented by Action, the
View is implemented by Result and the Controller is implemented by Filter Dispatcher. The

architecture of Struts2 is shown in Figure 1. This figure is adapted from ‘Struts 2 Architecture’

[2].

13

-

Struts 2 Architecture (HitpServietRequest) .,

| ActionContextCleanUp |
| Other Filters (SiteMesh, etc) |
| FilterDispatcher |

Action Intemeplor 2

invocation terceptor 3 Tag Subsystem
HTML, Dojo, Fomms, etc

:i Hupswemesponse)_

() serviet Fitters () struts core () Interceptors () User Created

Figure 1: Struts2 Architecture
Struts2 framework consists of the following components [3]:
ActionContextCleanUp filter: This filter is optional and is useful when integrating Struts2
application with other technologies like SiteMash Plugin, Tiles Plugin etc.
ActionMapper: This class contains the action mapping information used to invoke a Struts2
action corresponding to a given request. It helps the FilterDispatcher determine whether to invoke
an Action or not. When a request comes, the ActionMapper tries to match an appropriate action
invocation request. If no action invocation request matches, it returns null otherwise it returns an
ActionMapping that contains details such as the Action class and method to execute.
FilterDispatcher: FilterDispatcher plays the role of controller in Struts2. It maps the incoming
requests to actions. It uses the ActionMapper to determine which Struts2 Action should be
invoked. If the ActionMapper finds an action corresponding to that request, the FilterDispatcher

transfers the control to the ActionProxy.

14
ActionProxy: This uses the Configuration manager, which is initialized from the struts.xml file to
get the information of action and interceptor stack. The ActionProxy creates
an Actionlnvocation, which processes and invokes the Interceptors (if configured) for the
execution of pre-processing logic and finally invokes the Action.
Interceptor: Most of the request processing in Struts2 is done by interceptors. They are called
both before and after the Action is invoked and are responsible for executing the pre-processing
and post-processing logic. Interceptors perform tasks such as validation, file upload, exception
handling, logging etc.
Struts.xml: This is the configuration file of struts2 that contains user defined mappings for actions,
interceptors and results.
Actionlnvocation: This invokes any interceptors before invoking the Action itself. When the
Action executes the business logic, the Actionlnvocation determines the appropriate result (JSP or
HTML page) associated with the Action result code using the mapping defined in struts.xml file.
Action: The model component of MVC is implemented by Struts2 Action. It generates the result
by executing the business logic. The Interceptors are executed again in reverse order to perform
any post-processing logic. Once the result is generated, it is responsible to match the view page
(JSP or FreeMarker template) which will render the response.
Result: It translates the application data into the JSP code that can be sent to the user’s browser as
response.
2.1.2 Struts2 - Request Processing Workflow
The request processing workflow in Struts2 is shown in Figure 2. This figure is adapted from

‘Struts 2 Architecture’ [4].

15

Interceptors 3
. 4
1 HTTP Request Action
I ti || | “| Action
—» FilterDispatcher nvacaxton »
— — Result
. 5
7 6
HTTP
Response

Figure 2: Request Processing Workflow in Struts2 Framework

A request from the user is handled in Struts2 as follows [4]:

1.

User sends an HTTP request to the server for a resource (i.e. web page). This request is
handled by the FilterDispatcher.

FilterDispatcher looks at this request and determines the appropriate Action.

Configured interceptors are applied one by one before calling the Action. Interceptors
perform functionalities such as validation, file upload, exception handling etc.

The selected Action is executed to perform the requested operation and the Result is
generated.

The interceptors are again applied in the reverse order on the generated result to perform
any post-processing logic if required.

The result is then rendered in the view to generate the response for the user.

This response is sent back to the user.

16

2.1.3 Advantages of Struts2 framework

Struts2 framework has many advantages which makes web development easier for programmers.

Some of these advantages are mentioned below [5]:

Simplified Design: Code is not tightly coupled as Struts2 framework Action is
implemented using interfaces and their implementation classes.

Plugin support: Readymade plugins are available for JQuery, JSF, Junit, Spring and
Hibernate which can be used to enhance the functionality of Struts2.

Lightweight: ActionForms can be implemented using Plain Old Java Objects (POJO).
Adaptability and Flexibility: Actions can be configured using annotations like @Action,
which reduces the code complexity.

Easy Integration: Struts2 can be easily integrated with other frameworks like Spring,
Hibernate and Tiles etc.

Multiple View Options: Different view technologies like JSP, Velocity and FreeMarker
are supported in Struts2 web application.

Simplified Testability: Struts2 Actions can be tested by instantiating the Action and
setting the properties using Dependency Injection features.

Tag support: Struts2 provides theme based and Ajax enabled tags which saves time for
the developers as they do not need to write lengthy code.

AJAX support: AJAX stands for Asynchronous JavaScript and XML. Struts2 taglib
includes several AJAX tags using which a part of the page can be changed without

reloading the entire page. This enhances the application performance.

17
2.2 Hibernate
In high level languages like C# or Java, the information is represented in the form of Objects
(instances of Classes). The information in relational databases is represented in the form of tables,
so there is a need for direct mapping between the classes and the tables to enhance the application
performance. This task is done by Object Relational Mapping (ORM) tools. The role played by an
ORM tool is shown in Figure 3. This figure is adapted from ‘Introduction to hibernate framework’
[6]. ORM maps Java classes to database tables and class member variables to table columns. Each
row in the table represents a class object. This mapping allows the developers to perform database
operations such as create, update and delete using model objects instead of writing raw SQL

queries. Hibernate is one such ORM tool which integrates well with the Struts2 applications.

Object

Java Application

ORM(e.g. - -
Hibemate) * | Database

Figure 3: Role of ORM in Java Application
Hibernate is an open source, high-performance object-relational mapping (ORM) and persistence
framework for Java applications. It not only maps Java classes to relational database tables and
Java data types to SQL data types, but also facilitates the storage and retrieval of data from the
database. The main goal of hibernate is to relieve the developers from common data persistence
related programming tasks. Hibernate solves the object-relational impedance mismatch problems
by replacing direct persistence-related database accesses with high-level object handling functions.
Hibernate allows developers to focus more on the business logic by eliminating the need to write

complex SQL or JDBC code for data persistence.

18
2.2.1 Hibernate Architecture
Hibernate acts like a bridge between java application and relational database. Figure 4 shows the

architecture of Hibernate framework. This figure is adapted from ‘Hibernate Architecture’ [7].

Java Application

Persistent Object

Hibernate

[emtorsion] [omsonron] [oo],
oo] oo | o |

ITA JDBC INDI

Figure 4: Hibernate Architecture
Hibernate framework consists of the following elements [7][8]:

- Configuration: The Configuration object is the first object created in any Hibernate
application. It represents the properties file required by Hibernate. The database connection
properties and the class mapping setup are defined in the configuration files. The class
mapping setup component is responsible for creating the connection between Java classes
and database tables.

- Session Factory: It is the factory class through which sessions are obtained to perform

database operations. The different databases used in an application are mapped in the

19
Session Factory objects. It is a heavyweight object and is usually built at the time of
application start up. One SessionFactory object is required per database. So, an application
using multiple databases will have a SessionFactory object for each database.

- Session: This object provides an interface between the Java application and the database
tables. When the session object is created, a connection is made to the database. It provides
methods to insert, update and delete an object.

- Transaction: This represents the amount of work that should be committed to the database
or rolled back completely to keep the database in a consistent state. This object is optional.
Transaction is available under ‘org.hibernate.Transaction’ package, which provides
methods for managing transactions.

- Query: This object uses SQL or Hibernate Query Language (HQL) to fetch data from the
database.

- Criteria: This object is used to execute object oriented queries to retrieve the data from
database.

2.2.2 Advantages of Hibernate
The important advantages of Hibernate are mentioned below [9]:

- HQL: Hibernate has its own query language ‘Hibernate Query Language’ which is
database independent. This eliminates the need to write database specific queries.

- Automatic table creation: Hibernate creates the database tables automatically if they do
not exist.

- Primary Key Generation: Hibernate can generate the primary keys automatically while

storing the data in the database.

20
High Performance: Hibernate has two levels of cache which results in high performance
during the database interactions.
Easy Data Fetching: Hibernate simplifies the fetching of data from multiple tables as there
is no need to write complex SQL queries manually.
XML Mapping: The Java classes are mapped to the database tables using XML files. So,

any changes in the database can be handled just by changing the XML file properties.

21
Chapter 3: REMOTE HEALTH SERVICE SYSTEM

This chapter gives a detailed description of the Remote Health Service System. The first section
explains the different functionalities of the system. The second section presents the system design
— Use Case diagrams, Statecharts, Use Case realization, Sequence diagrams, Class diagrams and
Application architecture. The third section presents the application screenshots.
3.1 System Functionality
The Remote Health Service System can be used by patients and medical experts for remote medical
diagnosis. This system provides an interactive platform where patients can send queries to medical
experts regarding their health symptoms. The medical experts can review their symptoms to
diagnose the symptoms and respond to the patients.
A Patient can login into the system and view the specialization and educational background of
different medical experts. The Patient can then select a medical expert for treatment, write down
the symptoms and submit the query. This query is then sent to the medical expert selected by the
patient. The Medical Expert can login into the system and search for any open medical queries
assigned to him/her. If there is any open query, he can respond to that query. This response is sent
back to the Patient who had sent the query. The Medical Expert can also assign the patient query
to another medical expert. The Admin can manage the information of medical experts and can also
transfer a patient query from one medical expert to another. The system consists of three main
modules — Patient system, Medical Expert system and Admin system.
The Patient system provides the following functionalities:
Patient Registration: The Patient can create an account to be able to request the medical services.

Patient Login: The Patient can login into the system using the registered username and password.

22
Viewing Medical Expert Information: The Patient can select a specialization and view the list
of different medical experts in that medical field. The patient can also view the educational
background of the medical experts.
Personal Information Management: The Patient can edit his/her profile information like name,
address, email, phone number, username and password.
Query Submission: The Patient can write down his/her symptoms and submit the data. This query
is then sent to the medical expert selected by the patient.
Viewing Response: The Patient can view the response from a medical expert regarding his/her
medical query.
Searching Past Medical Queries: The Patient can search his/her past medical queries. The search
can be performed by date range, query type and query status. The patient can then view the query
details.
The Medical Expert system provides the following functionalities:
Personal Information Management: The Medical Expert can edit his/her profile information
like name, address, email, phone number, username and password.
Responding to Query: The Medical Expert can search for open queries assigned to him/her and
respond to those queries. This response is sent back to the patient who had sent the query.
Viewing and Reassigning Queries: The Medical Expert can view the past queries of the patients.
Also, transfer the query to another medical expert if needed.
The Administrator system provides the following functionalities:
Medical Experts Management: The Admin can add or update the information of medical experts.

Also, the Admin can activate or deactivate a medical expert in case if that medical expert is on

23
leave or not available for some reason. The Admin can also transfer a patient query from one
medical expert to another.

3.2 System Design

3.2.1 Use Case Diagrams

A use case is a graphic representation of the interactions between a user (actor) and the system to
achieve a particular goal. The Use Case diagram for the Remote Health Service System is shown

in Figure 5. The system has three actors — Admin, Patient and Medical Expert.

Remote Health Service System

View Medical Expert Information

Edit Profile

View Response

Patient

Create Account

Medical Expert

Transfer Query

View Past Medical Queries

Respond to Query

Manage Medical Experts

Figure 5: Use Case diagram for the Remote Health Service System

The different Use Cases of the Remote Health Service System are described below:

24

Login Usecase:

Use Case Login is shown in Figure 6.

w Remote Health Service System
Patient
o -

o Medical Expert

Admin

Figure 6: Login use case for the Remote Health Service System

Table 1: Login use case description for the Remote Health Service System

Brief Description

The Login use case enables the Remote Health Service System Admin/Patient/Medical Expert

to login into the system.

Step-by-Step Description
1. Enter the Username and Password at the login screen.

2. Validate the Username and Password entered by the user to display Admin/Patient/

Medical Expert screen based on the user type.

Create Account Usecase:

Use Case Create Account is shown in Figure 7.

25

Remote Health Service System

w - Create Account
Patient

Figure 7: Create Account use case for the Remote Health Service System

Table 2: Create Account use case description for the Remote Health Service System

Brief Description
The Create Account use case enables the Remote Health Service System user to create an

account (as Patient) to be able to request the medical services.

Step-by-Step Description
1. Enter the below details to create an account:

e First Name
e Last Name
e Email
e Address
e Phone Number
e Username

e Password

26

View Medical Expert Information Usecase:

Use Case View Medical Expert Information is shown in Figure 8.

Remote Health Service System

w BN View Medical Expert Information
Patient

Figure 8: View Medical Expert Information use case for the Remote Health Service System

Table 3: View Medical Expert Information use case description for the Remote Health Service

System

Brief Description

The View Medical Expert Information use case enables the Remote Health Service System

Patient to view the list of medical experts along with their specialization and education

background.

Step-by-Step Description
1. A list of medical experts must appear based on the selected medical specialization.
2. For the selected medical expert, information must be displayed with the following
attributes:
e Education Details

e Years of Experience

Edit Profile Usecase:

Use Case Edit Profile is shown in Figure 9.

27

Remote Health Service System

@
w Edit Profile w
Patient

Medical Expert

Figure 9: Edit Profile use case for the Remote Health Service System

Table 4: Edit Profile use case description for the Remote Health Service System

Brief Description
The Edit Profile use case enables the Remote Health Service System Patient/Medical Expert to

update his/her profile information.

Step-by-Step Description
1. Allow updates to the following attributes:

e First Name

e Last Name
e Email
e Address

e Phone Number

e Username

e Password

Submit Query Usecase:

Use Case Submit Query is shown in Figure 10.

28

Remote Health Service System

Patient m

Figure 10: Submit Query use case for the Remote Health Service System

Table 5: Submit Query use case description for the Remote Health Service System

Brief Description

The Submit Query use case enables the Remote Health Service System Patient to write down

his/her symptoms and submit the query to a Medical Expert.

Step-by-Step Description
1. Enter the medical query and submit it.

2. The submitted query is sent to the Medical Expert selected by the Patient.

View Response Usecase:

Use Case View Response is shown in Figure 11.

Remote Health Service System

“ View Response
Patient

Figure 11: View Response use case for the Remote Health Service System

29

Table 6: View Response use case description for the Remote Health Service System

Brief Description
The View Response use case enables the Remote Health Service System Patient to view the

response from a medical expert regarding his/her query.

Step-by-Step Description
1. Search for medical queries using date range, query type or query status. For each query,
the following attributes are displayed:
e Short Description
e Assigned to
e Query Status
e Query Type
o Created Date
e Last Updated by
e Last Updated Date
2. Select the query to view the response. The query details must be displayed with the
following attributes:
e Assigned To
e Query Type
e Created Date
e Last Updated Date
e Last Updated by

e Assigned by

30

e Comments

View Past Medical Queries Usecase:

Use Case View Past Medical Queries is shown in Figure 12.

Remote Health Service System

®
@
w View Past Medical Queries | w

Patient

Medical Expert

Figure 12: View Past Medical Queries use case for the Remote Health Service System

Table 7: View Past Medical Queries use case description for the Remote Health Service System

Brief Description

The View Past Medical Queries use case enables the Remote Health Service System
Patient/Medical Expert to view the past medical queries. The Patient can view the queries

created by him/her and the Medical Expert can view the queries that were assigned to him/her.

Step-by-Step Description
1. Search for medical queries using date range, query type or query status.
2. The list of queries must be displayed based on the search criteria. For each query, the
following attributes are displayed:
e Short Description
e Assigned to

e Query Status

31

o Query Type

e Created Date

e Last Updated by

e Last Updated Date

3. Selecting a query from the above list should print the detailed information of that query.

Respond to Query Usecase:

Use Case Respond to Query is shown in Figure 13.

Remote Health Service System

Medical Expert

7 Respond to Query

Figure 13: Respond to Query use case for the Remote Health Service System

Table 8: Respond to Query use case description for the Remote Health Service System

Brief Description

The Respond to Query use case enables the Remote Health Service System Medical Expert to

respond to the query sent by the Patient.

Step-by-Step Description
1. Select a query from the list of queries with the query status as “Open”.

2. Write aresponse and submit the reply. This reply is sent to the Patient who had submitted

the query.

32

Transfer Query Usecase:

Use Case Transfer Query is shown in Figure 14.

Remote Health Service System

@ Transfer Query ﬁ
At Medical Expert

Figure 14: Transfer Query use case for the Remote Health Service System

Table 9: Transfer Query use case description for the Remote Health Service System

Brief Description

The Transfer Query use case enables the Remote Health Service System Medical Expert/Admin

to transfer the patient query from one Medical Expert to another.

Step-by-Step Description
1. Select the medical query to be assigned to another Medical Expert.

2. Select the medical expert to whom the query should be transferred and save the

information.

3. The system transfers the query to the selected medical expert.

Manage Medical Experts Usecase:

Use Case Manage Medical Experts is shown in Figure 15.

33

Remote Health Service System

w e Manage Medical Experts
Admin

Figure 15: Manage Medical Experts use case for the Remote Health Service System

Table 10: Manage Medical Experts use case description for the Remote Health Service System

Brief Description
The Manage Medical Experts use case enables the Remote Health Service System Admin to

create a new Medical Expert and manage the existing Medical Experts.

Step-by-Step Description
1. Create a new Medical Expert.
2. Search for the existing Medical Experts using first name, last name, username,

specialization or status. For each Medical Expert, the following attributes are displayed:

3. For the existing Medical Experts, the following information can be updated:

First Name
Last Name
Username
Specialization

Active

First Name

34

e Last Name

e Email Id

e Address

e Phone Number

e User Name

e Password

e Specialty

e Years of Experience

e Graduation Credentials

e Active or Inactive

3.2.2 Statecharts

A Statechart is used to describe the behavior of a system. It shows the flow of control from one
state to another. It reflects all the operations performed by or to that system, indicating the events
that cause the transition from state to state. The Statechart of the complete Remote Health Service
System is shown in Figure 16. The system is represented as a combination of three modules —
Admin system, Patient system and Medical Expert system.

The solid circle on the top left represents the initial state of the Statechart. The arrow from the
initial state leads to the state labeled Remote Health Service System Event Loop. From this state,
the user can login into the system, create a new account or quit the system. The trigger
‘application’s main screen displayed’ takes the Remote Health Service System Event Loop to the
state ‘Providing Login Details’. In this state, the user can login into the system by entering his/her

username and password. The trigger ‘application’s main screen displayed and new user signup

35
selected’ takes the Remote Health Service System Event Loop to the state ‘Creating an Account’
where the user can create a new account. The trigger ‘admin credentials entered’ leads to the state
‘Performing Admin Events’. In this state, user can perform events like Manage Medical Experts
and Transfer Query. The trigger ‘patient credentials entered’ leads to the state ‘Performing Patient
Events’ where operations like View Medical Expert Information, Edit Profile, Submit Query, View
Response and View Past Medical Queries can be performed. The trigger ‘medical expert
credentials entered’ leads to the state ‘Performing Medical Expert Events’ where user can perform

operations like Edit Profile, View Past Medical Queries, Respond to Query and Transfer Query.

/a \
{)
quit selected

I
[Remote Health Service System Event Loop]

application’s main screen displayed

application’s main screen displayed
and new user signup

Enter Admin or Patient or selected
Medical Expert login credentials

admin credentials entered patient credentials entered medical expert credentials entered

Performing Admin Events Performing Patient Events Performing Medical Expert Creating an Account
Events

Providing Login Details

Manage medical experts, View medical expert Create account
transfer query information, edit profile, Edit profile, view past

submit query, view response, medical queries, respond to

view past medical queries query, transfer query

Figure 16: Complete Statechart of the Remote Health Service System

The Statechart for the Admin system is shown in Figure 17. The trigger ‘manage user selected’

leads the system to the state ‘Managing Medical Experts’. In this state, the Admin can

36
add/edit/activate/deactivate a medical expert. The trigger ‘reassign query selected’ leads the
system to the state ‘Transferring Query’ where the Admin can transfer a patient query from one
medical expert to another.

3

logout selected

[Remote Health Service System Admin Event Loop j

|

manage user
selected reassign query selected

Managing Medical Experts Transferring Query

Add/Edit/Activate/ Transfer query to another
Deactivate medical expert medical expert

Figure 17: Statechart of the Admin System
The Statechart for the Patient System is shown in Figure 18. The trigger ‘medical specialization
selected’ leads the system to the state ‘Viewing Medical Expert Information’. In this state, the
Patient can view the list of medical experts and their educational background based on the selected
specialization. The trigger ‘profile management selected’ leads to the state ‘Editing Profile’ where
the Patient can edit his/her profile information. The trigger ‘submit query selected’ takes the
system to the state ‘Submitting Query’ where the Patient can submit a query to a medical expert.
The trigger ‘view query response selected’ leads to the state ‘Viewing Response’ where the Patient

can view the response sent by the medical expert regarding the query. The trigger ‘query search

37
selected’ leads the system to the state ‘Viewing Past Medical Queries’ where the Patient can search

for past medical queries and view details of the queries.

logout selected

[Remote Health Service System Patient Event Loop j

medical specialization profile management selected

submit query selected view query response selected
selected query query resp query search selected

|

Viewing Medical Expert Editing Profile Submitting Query Viewing Response Viewing Past Medical
Information

" =P ; ; . uerie
Edit profile information Submit query to medical View response from Susties
View list of medical expert medical expert regarding | | Search past medical
experts and their the query queries and view details

educational background

Figure 18: Statechart of the Patient System
The Statechart for the Medical Expert System is shown in Figure 19. The trigger ‘profile
management selected’ leads the system to the state ‘Editing Profile’. In this state, the Medical
Expert can edit his/her profile information. The trigger ‘reassign query selected’ leads to the state
‘Transferring Query’ where the Medical Expert can transfer a patient query to another Medical
Expert. The trigger ‘respond to query selected’ leads the system to the state ‘Responding to Query’
where the Medical Expert can respond to a patient query. The trigger ‘query search selected’ leads
the system to the state ‘Viewing Past Medical Queries’ where the Medical Expert can search for

past medical queries and view details of the queries.

38

(8]
C

logout selected

[Remote Health Service System Medical Expert Event Loop]
' A

profile management selected reassign query respond to query query search

l selected selected selected

Editing Profile Transferring Query Responding to Query Viewing Past Medical

Edit profile information Transfer query to another Respond to patient query
medical expert Search past medical
queries and view details

Queries

Figure 19: Statechart of the Medical Expert System

3.2.3 Use Case Realization

Use Case realization is the process of extending and refining use cases. It describes how a
particular use case is accomplished in terms of classes and collaborating objects. The use case
realization of each use case in the Remote Health Service System is done using class diagram and
sequence diagram. A class diagram shows the interrelationships and interaction between the
classes. A sequence diagram depicts the objects and the messages sent between them in the
realization of a specific scenario of the use case. The different classes for the Remote Health
Service System are shown in Figure 20. These consist of Control Classes, Boundary Classes and
Entity Classes. A Control Class models complex computations and algorithms. A Boundary Class
models the interaction between the system and its actors. An Entity Class models long lived

information.

39

Control Classes

LoginAction UserRegistrationSubmitAction UserQueryEntryAction

UserProfileUpdateSubmitAction UserQuerySubmitAction UserQueryEditAction

UserQueryViewAction UserQuerySearchAction UserQueryForwardAction

ExpertRegistrationSubmitAction

ExpertProfileUpdateSubmitAction

Boundary Classes

—O —0O O —O

Login Interface Admin Interface Patient Interface Medical Expert Interface

Entity Classes

O o O

UserDetails UserQuery UserQueryDetails UserType
O O 0 0O O
ExpertCredentials ExpertDetails QueryType SkillMaster StatusDetails
o O 0O O
UserService UserServicelmpl UserQueryService UserQueryServicelmpl

o 0 O 0O

UserDao UserDaolmpl UserQueryDao UserQueryDaolmpl

Figure 20: Classes for the Remote Health Service System

40
Use Case Realization for the Login use case
The classes that participate in the realization of the Login use case and their relationships are shown

in Figure 21.

% " Admin Interface .
Admin "~ g:

~" UserService Class UserDao Class
UserDetails Class

”Login Interface T

7 LéginAcﬁon Class

Patient Interface UserType Class

Medical Expert\“ — UserServicelmpl Class UserDaolmpl Class

Medical Expert Interface

Figure 21: Interaction of classes for the realization of the Login use case
Scenarios and Sequence diagrams for the Login use case:
Scenario 1 (Admin Login — Login success)
The scenario ‘Admin Login — Login success’ of Login use case is shown in Table 11.

Table 11: ‘Admin Login — Login success’ scenario of Login use case

The Remote Health Service System Admin wants to login into the system.
1. The Admin enters the username and password at the login screen.
2. The system validates the username and password entered by the user.

3. The system displays the Admin screen options after successful authentication.

The sequence diagram of the realization of the ‘Admin Login — Login success’ scenario of the

Login use case is shown in Figure 22.

000 0 0 06 0 0

Admin Admin In!erface Login Interface LugInAchon Class UserSemue Class UserSemcelmpIClass UserDaoCIass

| 1:Entervalid |

| Usemame | 2: Transfer

I and Password I Usomeme
and Password

|
|
|
|
L

T
" | 15: Display Admin Screen

1% | options

Admin | '

|
Screen | |
options : :
o ae I

displayed

3: Validate
Username
and Password

——»

44—

I
|
|
|
|
|
L

i
|
|
|
|
|
|
|
I

14: Retun
user
information for
given
Username and
Password

4: Transfer
Request

—M

.‘7

I
|
|
|
|
|
L

T
|
|
|
|
|
|
|
|
|

13: Return user

|

I |

| |

| |

| |

5: Transfer | |
| |

. |

)

41

T: Fetch user
details for given
Username and

Password

8: Return user details Ij

for given Username
and Password

9: Fetch user type
for given Username

[
I
I
I
I
| andPassword
l
|
|

<

I
10: Return user type for given Usemname and

Request 6: Transfer
—p Request
—»
|
‘7 T
L 11; Return user :
12: Retum user | information for |

T
|

informationfor | given Usemame |

information for
information for | givenUsemame | and Password

given Username
and Password

and Password

|
| |
| |
| |
| |
| |
| |
| I

Password
1
|

Figure 22: Sequence diagram for the ‘Admin Login — Login success’ scenario

Scenario 2 (Admin Login — Login failure)

The scenario ‘Admin Login — Login failure’ of Login use case is shown in Table 12.

Table 12: ‘Admin Login — Login failure’ scenario of Login use case

!

UserDaolmpl Class UserDetails Class UserType Class
|

Liion §

The Remote Health Service System Admin wants to login into the system.

1. The Admin enters the username and password at the login screen.

2. The system validates the username and password entered by the user.

3. The system displays an error message after authentication failure.

The sequence diagram of the realization of the ‘Admin Login — Login failure’ scenario of the Login

use case is shown in Figure 23.

42

k000 O 0 O 0 O

Admin Admin Interface Login Interface LogmAcﬂon Class UserSerwce Class UserSerwceImpI Class UserDao Class UserDaolmpl Class UserDelalls Class
M | | |
: 1 Enter invalid ‘ : : } : : 7: Fetch user }
| Usemama and | 2 Transfer | 8:Validate | ‘ ' ' deiails for given ‘
| Password | Usemame | spmame | 4:Transfer | 5 Transfer | 6 Transfer | ‘
| | and Password | I Request \ | | Username and |
| | and Password I | Request | Request | Password |
| !) . |
| bm
I I
| I
| I
| I
| I 8: Return I
I } 9: Retum I error }
| [l 10:Retun | error | message [
l ! ¢ 11: Return | message | after validation |
\ L 12 L arror \ error | | \
13: Display eror message |) | | message ' [‘
I | Return | message I | | I
t4:Emor | | | emor | | | : |
LI message | I | message | I | I I
is
displayed

Figure 23: Sequence diagram for the ‘Admin Login — Login failure’ scenario
Scenario 3 (Patient Login — Login success)
The scenario ‘Patient Login — Login success’ of Login use case is shown in Table 13.

Table 13: “Patient Login — Login success’ scenario of Login use case

The Remote Health Service System Patient wants to login into the system.
1. The Patient enters the username and password at the login screen.
2. The system validates the username and password entered by the user.

3. The system displays the Patient screen options after successful authentication.

The sequence diagram of the realization of the ‘Patient Login — Login success’ scenario of the

Login use case is shown in Figure 24.

43

—01-0 0 0 @ O @ O

Patient Patient Interface Login Interface LoginAction Class UserService Class UserServicelmpl Class ~ UserDao Class UserDaolmpl Class UserDetails Class UserType Class
: | 2 Transfer : | : : : } |
1: Enter valid Username and : Usemame : 3: Validate : : : : } :
Password | e | Username | | | | | |
1 »L Password | | 4 Transfer | | | | |
and Password 7 ;
k	Request	5: Transfer	.	7:Fetch user details	
"	Request	6: Transfer	:		
I equi	Request	for given Username			
		and Password			
8: Return user details for					
	b ;	9:Fetchusertype			
[given Username and	3			
		forgiven Username			
Password

| | | and Password |

| | | »

| | 1 Ld

| | |
: { L 4 I— 10: Return user type for given Username and :
P | — U 12:Retumuser | 11:Remuser | Password |
! 14:Retum | . f eurn ufser : information for | information for | | |
15: Display Patient Screen options T user : jEIOTEIOn K | given Username : given Usemame I } :
16 Patient | | I iformabontr J o ot | andPassword | andPassword | | |
Screen options | | | . | andPassword | | | | I
I I T I I I I [I
are displayed | I | Usermame | | | | I |
I | ! | angpasswos | ! ! ! powedy s P oy oin @

Figure 24: Sequence diagram for the ‘Patient Login — Login success’ scenario
Scenario 4 (Patient Login — Login failure)
The scenario ‘Patient Login — Login failure’ of Login use case is shown in Table 14.

Table 14: ‘Patient Login — Login failure’ scenario of Login use case

The Remote Health Service System Patient wants to login into the system.
1. The Patient enters the username and password at the login screen.
2. The system validates the username and password entered by the user.

3. The system displays an error message after authentication failure.

The sequence diagram of the realization of the ‘Patient Login — Login failure’ scenario of the Login

use case is shown in Figure 25.

o906 0 06 06 0 O

44

Patient Patient Interface ~ Login Interface LoginAction Class UserSerwce Class UserSerwceImpI Class UserDao Class UserDaolmpl Class
: : 2: Transfer : |] | :
1: Enter invalid Usemame : Use;::me I 3 Validate : : : :
and Password | | Usemame | I I I
! Password | sidpsmu | K Transfer | | |
| '—’L | Request | STanser | | 7: Fetch user details
: | ’ L—’.I. Request : GhTransfter : for given Usemame
| | —" i | andPassword
| |
| |
| |
| |
| |
| |
| |
| | — |
| | W 9Reumemor | 8: Return error
l l 1‘7 ¢ | message | messageafter
: : 11' 10: Return error : : validation
13: Display error message | 12Reum | 11:Rememor | Messag |
W:Emor | : : error : message : : :
= messageis ' i « message !
displayed ered By Visual mm

Figure 25: Sequence diagram for the ‘Patient Login — Login failure’ scenario

Scenario 5 (Medical Expert Login — Login success)

The scenario ‘“Medical Expert Login — Login success’ of Login use case is shown in Table 15.

Table 15: ‘Medical Expert Login — Login success’ scenario of Login use case

UserDetanIs Class

2. The system validates the username and password entered by the user.

The Remote Health Service System Medical Expert wants to login into the system.

1. The Medical Expert enters the username and password at the login screen.

3. The system displays the Medical Expert screen options after successful authentication.

The sequence diagram of the realization of the ‘Medical Expert Login — Login success’ scenario

of the Login use case is shown in Figure 26.

45

—0 06 0 0 06 0 0 O

Medical Expert Medical Expert Interface Login Interface ~ LoginAction Class UserService Class UserServlceImpl Class UserDao Class UserDaolmpl Class UserDetails Class UserType Class
| : 2: Transfer : : | ‘ } : :
1: Enter valid Usemname and I Usear:zme : 3: Validate I : } } : I
Password | | Username | | | | | |
i > Password | | 4 Transfer | I I | |
§: Transfer - Fetch user details for

| VLI andPassword | Request | i | | T:Feich user details ft | |
! | Request | 6 Transfer | given Username and | |
: : » Request } Password : :
I)		
	8: Return user details for	
: : given Usemame and : 9: Fetch user type I		
	Password	for given
		Usemameand
: : : Password :
I I t b

| | |

| | |
: : 10: Return user type for given Usemname and i
| | T Password |

11: Return user
! ! 12: Return user i 2 o ! ! !
	1 .)	information for			
	13:Returnuser	informationfor	given Username		
	I g				
i	information for i given Username i and Password				
	given Usemame	and Password			
	and Password				
.	. T				
< T 14: Return		1			
15: Display Medical Expert screen r uset I ! ‘ : I I					
16: Medical Foapay P	information		I I I		
edica	options I for given				
Expert screen			g		
options are : : : Usemame : : } } : :					
displayed I i 0 and Password I i ‘	1				
U | | I | I | | | | e

Figure 26: Sequence diagram for the ‘Medical Expert Login — Login success’ scenario
Scenario 6 (Medical Expert Login — Login failure)
The scenario ‘Medical Expert Login — Login failure’ of Login use case is shown in Table 16.

Table 16: ‘Medical Expert Login — Login failure” scenario of Login use case

The Remote Health Service System Medical Expert wants to login into the system.
1. The Medical Expert enters the username and password at the login screen.
2. The system validates the username and password entered by the user.

3. The system displays an error message after authentication failure.

The sequence diagram of the realization of the ‘Medical Expert Login — Login failure’ scenario of

the Login use case is shown in Figure 27.

46

00 6 & 06 0 0 0

Medical Expert Medical Experl Interface Login Interface LoginAction Class UserService Class UserSerwceImpl Class UserDao Class UserDaolmpl Class UserDetalils Class
| : 2: Transfer : :] : : :
1: Enter invalid Usemname : Usemame : 3: Validate : : : { :
and Password | and | Usemame | | | | |
| Password | andPassword | 4 Transfer | | | |
| ’D—’L | Request | 5 Transfer | | 7:Fetch user details |
l qn | Request [BeTianske I for given Username !
| | —P | Request | o I
| | | and Password |
| |
| |
| |
| |
| |
| |
| | [
| | | 8: Return error |
: : ¢ : 9: Return error } message after :
| +— T 10:Retunerror | message | validation |
! T T 11:Retumerror | | | |
1—[]‘ 13: Display error message | 12Retum | message | [:
message
| | error | | | | |
L 14: Error ! I I message ! I ! | !
message is
displayed Powered By Visual Paradigm Community Edition €3

Figure 27: Sequence diagram for the ‘Medical Expert Login — Login failure’ scenario
Use Case Realization for the Create Account use case
The classes that participate in the realization of the Create Account use case and their relationships

are shown in Figure 28.

UserService Class _UserDao Class
UserDetails Class

—1—@

Patient Login Interface UserRegistrationSubmitAction Class

o @&

UserServicelmpl Class UserDaolmpl Class

Figure 28: Interaction of classes for the realization of the Create Account use case

Scenario and Sequence diagram for the Create Account’ use case:
Scenario 1 (Create a new account)

The scenario ‘Create a new account’ of Create Account use case is shown in Table 17.

Table 17: ‘Create a new account’ scenario of Create Account use case

47

The Remote Health Service System Patient wants to create a user account.

1. The Patient selects ‘New User Signup’ option at the application screen.

2. The Patient enters his/her details in the registration form and submits the data.

3. The system creates the user account and displays the success message to the user.

The sequence diagram of the realization of the ‘Create a new account’ scenario of the Create

Account use case is shown in Figure 29.

@ 0 0

@)

r 0 @0 @

Patient Login Inlerface UserReglstrallonSubmltActlon Class UserService Class
1: Select 'New ' |
| |
User Signup' | |
option and enter : 2: Transfer :
data

| request |
L I

) 3: Create user

account

-

——| 13 Display success : 12: Retumn

Az success message
messa

14: Success : i :
message is | |
displayed | |

4: Transfer
Request

11: Return
success message

UserServicelmpl Class

5: Transfer
Request

10: Return

success
message

UserDao Class

6: Transfer
Request

9: Return
success
message

UserDaolmpl Class

7: Save user
information

8: Return
success message

Figure 29: Sequence diagram for the ‘Create a new account’ scenario

Use Case Realization for the ‘View Medical Expert Information’ use case

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

I

UserDetails Class
|

The classes that participate in the realization of the View Medical Expert Information use case and

their relationships are shown in Figure 30.

48

P i UserQuerySerwce Class gserQuerao Class

e ExperlDetalls Class

\
N

% : __— GetMedicalExpertsAction Class : A :

Patient Patient Interface ™. UserQueryServicelmpl Class UserQueryDaolmpl Class

=

S

TR UserDetails Class

Ge!ExpertCredenualsActm Class S O O / 2
UserService Class A UserDao Class : :
& ; : = ExpenCredenllals Class

UserServicelmpl Class ~ UserDaolmpl Class

Figure 30: Interaction of classes for the realization of the ‘View Medical Expert Information’ use
case

Scenario and Sequence diagram for the ‘View Medical Expert Information’ use case:

Scenario 1 (View Medical Expert details)

The scenario ‘View Medical Expert details’ of View Medical Expert Information use case is shown

in Table 18.

Table 18: ‘View Medical Expert details’ scenario of View Medical Expert Information use case

The Remote Health Service System Patient wants to view the different medical experts in the
system and their specializations.

1. The Patient selects the desired medical specialization at the Patient screen.

2. The system provides the list of medical experts based on the selected specialization.

3. The Patient selects a medical expert from the list to view the educational background of

that medical expert.

49
The sequence diagram of the realization of the ‘View Medical Expert details’ scenario of the View

Medical Expert Information use case is shown in Figure 31.

e 0 0 0 00 0 00 00

Patient Patient Interface GelMedicalExperisAction GetExperiCredentatsAction UserQueryService UserQuerySenvicelmpl UserQueryDao UserQuenyDacimpl ExperiDelalls UserService UserServicelmpl UserDao UserDaolmpl UserDetails ExpentCredentials
fl I [] | | | i | | | | | 1]
I I I | | | I I | | | | | |
I | I I | I | | | | | | | I
I I I | | | I | | | } | | |
I |] | | | | | | | | | |
1 ERT'T::' |3 Fen e st of macical epersbasedon | | | I TFelh | I \ [I I \
- ! the selected specialization } fansier } } } experts for : : } } : : }
1: Seleet a : | Request i 5 Transfer | B Transher | the selacted | | | | | | i
specialization I » Request | Requsst | specialization | | | | | | |
v e 1 ‘ ' | 1 1 | | |
ligt of I I | I I I I
medical | | | | | | |
axperts } 8; Retun H : } } : : }
I expertsfor | I I I | | I
| the selected | | | [| | |
| specialzation | | Fetoh detasfor the above experts ! | |
1 1 L I I B
I t + + t |
I 4 + + + + 1 |
I LU T | | 10: Retum list of experts | | | |
" L . bl 12Retum | T1:Retum | I | | | | | |
14: Retum lisl of experts i 13: Retum T list of } listof } : : } } : : }
15:Retum 1 | listof | experts | experis | | | | | | |
16: List of st ol experts | I I experts | I I | I I } | | I
| I I I I | | | | | | I
experts s I I I I I I [| I I | | I
shown | I | | I | | | | | | | I
| I | | | | I | | | | | |
I I | | | | | | | | | | |
| I | | | | 1 | | | | | I
I I | | | | I | | | | | |
| I | | | | I | | | | | |
| I | | | | | | | | | | |
| I | | I | | | | | | | I
I I | | | I I | | | | | |
|] | | I | | | | | | | I
18- Transler Request | ! | | I 1 | | | | | |
17: Select o ‘ } } } | foTanserRoquest | 20 Transler | 21: Trans I m | o | }
\ I I } L 4 1 Request TSN ransfer | detailsofthe | I
axpert from | | i | | H | Request | ansfer | | ‘
the above | | | | | H | Request | selected | i
list to view 1 I I I | I | et I
| I :
educational I | | | | I |
background : | | | | | 2 }
of expert | I I I I I Rewn | I
I | | | I I | |
| | | | | | detailsof | |
I | | | I I 8 | !
| | | I | | selecy | 25 Felch educatonal
I I I I I 1 | nd details for
| | | | | | axpert | DACKGTOUN detals o
| | | | | I | the selected expert
I | | | | I
| | | I | | |
I | | | | I |
| | | | | |
| | | | | I 26: Return educational
[| l | ! [background detalsfor |
I | | | I | "1 I |
| | | | | I 27 Retum the selected expert |
| | | | | I L "F educational I | |
| < l | l ! ! mran | Eon Ll
T | 30: Retum educational background detals for the selected expert | F educatonal | “:” Ll details for | | I
3: Display educational background details ‘T } } } } : : background } n:c:[g;'auf; } the I I }
32 H for the selected expert 1 | | | | | | detailsfor | meau‘surd | seleded | |
Educalional | | | | | | I I | theselected | esear‘e | expet | | |
g | | : : D e
detailsare | I I I | I | | | | | | | I
sl I I I | | | I | | | | | | |
ti;payed I |] | | I | | | | | | | I
rte I I I I I I | I I ! | | I
U oo h]] i] H H H i H H
axpert Powersd By Visual Paradigm Communty Edlion €

Figure 31: Sequence diagram for the ‘View Medical Expert details’ scenario
Use Case Realization for the Edit Profile use case
The classes that participate in the realization of the Edit Profile use case and their relationships are

shown in Figure 32.

50

Patient P P i - UserService Class UserDao Class
aten! atient Interface ~ s /
‘~\\ P

UserDetails Class

e

UserProfileUpdateSubmitAction Class

UserServicelmpl Class UserDaolmpl Class

Medical Expert Medical Expert Interface

Figure 32: Interaction of classes for the realization of the Edit Profile use case
Scenarios and Sequence diagrams for the Edit Profile use case:
Scenario 1 (Patient — Edit Profile Information)
The scenario ‘Patient — Edit Profile Information’ of Edit Profile use case is shown in Table 19.

Table 19: ‘Patient — Edit Profile Information’ scenario of Edit Profile use case

The Remote Health Service System Patient wants to edit his/her profile information.
1. The Patient selects the ‘Profile Management’ option at the patient screen.
2. The Patient edits and submits the information.

3. The system updates the changes and displays the success message.

The sequence diagram of the realization of the ‘Patient — Edit Profile Information’ scenario of the

Edit Profile use case is shown in Figure 33.

1 0O

Patient Patient Interface

1: Select 'Profile
Management'
option and edit
profile data

2: Transfer request

UserProfileUpdateSubmitAction Class
|

|
|
|
|
|
L

O

@

3: Update
profile
information

UserService Class

|
|
|
|
|
|
|
.

4: Transfer
Request

UserServicelmpl Class

e e

O

O

O

o1

5: Transfer
Request

UserDao Class

6: Transfer
Request

UserDaolmpl Class

7: Save updated
information

14: Success
message is
displayed

-

al

13: Display success
message

L
|
|
|

12: Return success
message

11: Return
success
message

—

10: Return success
message

R

9: Return success
message

————————e

8: Return
success message

Figure 33: Sequence diagram for the ‘Patient — Edit Profile Information’ scenario

Scenario 2 (Medical Expert — Edit Profile Information)

|

UserDetails Class

The scenario ‘Medical Expert — Edit Profile Information” of Edit Profile use case is shown in Table

20.

Table 20: ‘Medical Expert — Edit Profile Information’ scenario of Edit Profile use case

screen.

2. The Medical Expert edits and submits the information.

3. The system updates the changes and displays the success message.

The Remote Health Service System Medical Expert wants to edit his/her profile information.

1. The Medical Expert selects the ‘Profile Management’ option at the medical expert

The sequence diagram of the realization of the ‘Medical Expert — Edit Profile Information’

scenario of the Edit Profile use case is shown in Figure 34.

52

r 9 606 0 0 0 0 ¢

Medical Expert Medical Expert Interface ~ UserProfiUpdateSubmitAction Class UserService Class UserServmeImplClass UserDao Class UserDaolmpl Class ~ UserDetails Class
|

[| | | |

1: Select Profie | | ' ' ' ! !

Management' : : : : : : :

optionandedt | | 3 Udele | | | | |

profle data | ' ' I l !]

2 Tanslerequest | ; proﬁlg : 4: Transfr : : : :

RN T T L e |

4 IR I e

| L informaton :

. [

9 Retun success | 4 o |

| | success message |

¢— | Mmessage | |

4 . T 10:Retum success | | |

l(— 13: Displaysuccess | 12: Return success : SUCCESS : s : : :

was | F] ™ mee | | |

message is

displayed Powered By_ Visual Paradigm Community Edition 0

Figure 34: Sequence diagram for the ‘Medical Expert — Edit Profile Information’ scenario
Use Case Realization for the Submit Query use case
The classes that participate in the realization of the Submit Query use case and their relationships

are shown in Figure 35.

UserDetails Class ; :
g 2 g 2 // UserQueryDetlails Class
__—UserQueryService Class UserQueryDao Clas’; 7
% V . ﬂ I
Patient Patient Interface UserQuerySubmitAction Class e / P -

_— UserQuery Class

UserQueryDaolmpl Class T

QueryType Class

UserQueryServicelmpl Class

Figure 35: Interaction of classes for the realization of the Submit Query use case

Scenario and Sequence diagram for the Submit Query use case:

53
Scenario 1 (Submit query to Medical Expert)
The scenario ‘Submit query to Medical Expert’ of Submit Query use case is shown in Table 21.

Table 21: ‘Submit query to Medical Expert” scenario of Submit Query use case

The Remote Health Service System Patient wants to submit a new query to a medical expert.
1. The Patient selects the ‘Submit Query’ option and picks a medical expert.
2. The Patient enters the query and submits it.
3. The system sends the query to the selected medical expert and displays a success

message.

The sequence diagram of the realization of the ‘Submit query to Medical Expert’ scenario of the

Submit Query use case is shown in Figure 36.

Patient Patient Interface UserQ Class UserQuery Class UserQ pl Class UserQueryDao Class UserQueryDaolmpl Class ~ UserDetails Class UserQuery Class UserQueryDetails Class QueryType Class
n 1 | 1 1 i I I 1 1 1
1:Select | | | I I I | 1 [|
2 =) | | | | | | 1 1 |
‘Submit Query' | | i i i [| 1 [|
oponand | | | | | I | | [|
submitthe query ! | | | | I | 1 [|
L 2 Transf g | | | | | | 1 [|
ransierrequest | 3.Sendquerytothe | 1 1 | | | | |
| | I I | 1 [|
selected medical expert | & Tranafor 1 | H | H \ \
| request | 5 Transfer I | | | \ |
| st : & et } 7'Felchde|anls : : : :
Request i of the selected | i | i
St | i I |
1 [1
1 [|
1 [|
8: Retum I 1 [|
details of the : : : :
selected expert | | 1 |
: 9: Fetch query type for medical query :
. . >
T T T L}
T T T
i 1 10: Return query type for medical query
11: Save user query for medical expert | 1 |
. ». [|
| g 1 |
| [|
T [|
12: Retum success] |
confirmation . | |
| 13: Save query description | |
| h L |
| 1 VIlJ |
il 14: Return success message I :
tReum W SRewm o i i i i
17: Return success x success ! success ! ! | ! !
18:Retum success | ! ! message | | | | |
U 19: Display success T | message 1 message I] I | I |
20: Success i | message | | | [| 1 [1
age
messageis | | | | | I | 1 [| PS
u displayed ! ! ! ! ! ! ' ! ! f

Figure 36: Sequence diagram for the ‘Submit query to Medical Expert’ scenario

54

Use Case Realization for the View Response use case

The classes that participate in the realization of the View Response use case and their relationships

are shown in Figure 37.

X

Patient

@ @

5 'UserQueryService Class UserQueryDao Class

Patient Interface UserQueryViewAction Class

E 2 <) . UserQuery Class

UserQueryDaolmpl Clas:
UserQueryServicelmpl Class ke it f ,,\

UserQueryDetails Class

Figure 37: Interaction of classes for the realization of the View Response use case

Scenario and Sequence diagram for the View Response use case:

Scenario 1 (View query response)

The scenario “View query response’ of View Response use case is shown in Table 22.

Table 22: “View query response’ scenario of View Response use case

The Remote Health Service System Patient wants to view the response for his/her query from
the medical expert.

1.

The Patient selects the ‘Query Search’ option and searches for a previously submitted
query.
The Patient selects the query to view the response from the medical expert.

The system displays the response sent by the medical expert.

The sequence diagram of the realization of the ‘View query response’ scenario of the View

Response use case is shown in Figure 38.

55

0 0 0 0 06 0 0 0

Palent Patnenllmadaoe UserCQueryViewAction Class UserQuerySenvice Class UsarQuarySawwelmplC\ass UserQueryDaoClass UserOueryDao\mpIClass UserQueryC\ass UserQueryDetais Class
| | |
1: Select view query : } } } : } : :
response opion for | ‘ | | | | | |
TR PR DR R R A -
—'J_ Z: Transler Request | 3 Showresponse | . \ | \ | |
4". formedcal query | 4 Tranglr I 5Tner | | | |
'_ Request J‘_ Request : : Transfer } : :
I | TFechqueydelals | |
|
|
|
8: Refum query detalls G Fechquey
TESponse |

{

10: Refur query response

11: Retum query 7 |
L \ |
2Retm | eme | |
< 13:Retum T queryresponse | \ |
y J‘ir 14; Retum query " qy s } : } :
; 1sponse
R~ ol E R A R |
. esponse
TESpOnse is | | | | | | | |
- displayed : : ‘ ‘ ! ! owered By Visual Parai mutly Ed He

Figure 38: Sequence diagram for the ‘View query response’ scenario
Use Case Realization for the View Past Medical Queries use case
The classes that participate in the realization of the View Past Medical Queries use case and their

relationships are shown in Figure 39.

‘ (> e UserQueryDetails Class
\ N o /

Patient Patient Interface /

B s '
\\\ //’ UserQueryService Class U/s/erQueryDao Class /

/

i 4 o

- 3 //
/)\/UserﬁuerySearchAction Claﬁ/ / /// ‘ / e (?

@ e Qme
\ o
— Medical Expert Interfaoe\ \ e

N P UserQueryDaoImpI Class ™ __

Medical Expert \\ j / UserQueryServicelmpl Class : :

UserQueryViewAction Class UserDetails Class
StatusDetails Class

Figure 39: Interaction of classes for the realization of the View Past Medical Queries use case

56
Scenarios and Sequence diagrams for the View Past Medical Queries use case:
Scenario 1 (Patient — View past queries)
The scenario ‘Patient — View past queries’ of View Past Medical Queries use case is shown in
Table 23.

Table 23: ‘Patient — View past queries’ scenario of View Past Medical Queries use case

The Remote Health Service System Patient wants to view a previously submitted query.
1. The Patient selects the ‘Query Search’ option and enters the search criteria.
2. The system displays the medical queries matching the search criteria.

3. The Patient can now select the query to see its details.

The sequence diagram of the realization of the ‘Patient — View past queries’ scenario of the View

Past Medical Queries use case is shown in Figure 40.

r 0

Patient Patient Interface UserQuerySearchAction Class
|

1: Enler search !
crileria fo view
past queries

2 Transfer Request

N
»

UserQuenyViewAction Class
1

57

o 06 06 6 06 6 06 0

3: Transfer Request

Usermer,Semce Class

I 17: Display list of

18:List o queries queies
5 displayed

19: Select query
from the above
list to view details

20: Transfer Request

3: Display query details
- Query ;. P iWI Y
detaisare | |

displayed ! |

16: Retum list of queries created by the user
1

21: Transfer Request

4: Transfer Request

p 1 J:Transfer Request

= 32:Return query details T

15: Retum st of
queries created
by the user

22: Transfer Request
»

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|

14; Return list of
queries created
by the user

»
23: Transfer Request

8: Transfer Request

Userﬁueryﬁemae\mplclaw UserQueryDao Class UserOueryDao\mplClass

7. Fetch user details

&: Retun user defails

|

9: Fetch status details

31: Relum
query detals

30: Relum
query detals

13: Retum st
of quenes
crealed by the
user

24: Transfer Request

1 Fech query detas

12:Retur query details
]

]
25: Feteh query details

|
]
26; Retum query detals
H

: 10: Retum status details

27: Fetch query description
L

29: Retum query
detals

28: Return query description

1

Figure 40: Sequence diagram for the ‘Patient — View past queries’ scenario

Scenario 2 (Medical Expert — View past queries)

ﬁer

UserDerallsC\ass UserOW\ Class UselGueryDeLalsCJass StaluaDestCIass

icsion §

The scenario ‘Medical Expert — View past queries’ of View Past Medical Queries use case is

shown in Table 24.

Table 24: ‘Medical Expert — View past queries’ scenario of View Past Medical Queries use case

list of queries assigned to him/her.

3. The Medical Expert can now select the query to see its details.

2. The system displays the medical queries matching the search criteria.

1. The Medical Expert selects the ‘Query Search’ option and enters the search criteria.

The Remote Health Service System Medical Expert wants to view a particular query from the

58
The sequence diagram of the realization of the ‘Medical Expert — View past queries’ scenario of

the View Past Medical Queries use case is shown in Figure 41.

0 0 ¢ 6 0 06 6 06 0 0 0

Medical Expert - Medical Exuerl Interface UserQuerySearchAction Class UserQueryViewAction Class Uselﬁ.lerySeMce Class UserQh Class Class UserDeLals Class UsecOuew Class UserQueryDetals Class StafusDetails Class
| | I I | | |
1: Enter search I | [} I I | | I I | |
| I | | I | | | | I |
crieratoves | | I I I I I I I I
past queries | | I | I | I | | I |
| | ! | I | | | | | |
v Z Transfer Request
| 3 Transfer Rlewem > | & Transfer Request ‘I 5 Transfor Request I I I : : :
H > ;6 Transfer Request | T Feichuser detals | | | |
| L | | I |
| | I |
] | I |
| 8: Refumn user defails | I |
| ! I |
1 9: Fetch status details | |
I + P
i : : ’ﬂ
: : Fetch querydess : 10: Retum status dzIIauls 0
I I |
1 | |
i N 12 Retun qerydes i | I
o U isRewmigot 7 MRS T I I | I
T:Dispyltel 18: Retum it l queris assigned I Qe assined I assigred o he I I : : :
18 Listof queries queres | of queries i i I fo the user | . | | | | |
is Gisplayed I assgned o | I I I I I I I
| theuser | | | | | | | |
| | | | | | | | | |
from the above: |] | I | | | | | |
ist o view detals I ! I ! ‘ ! I ! ! !
: 20: Transfer Request : : I I I I : : I
t 20 Transfer Reguest | | | | | | | |
| | I | | | | |
| 22: Transfer Request N | | I | I |
I L | I | | I |
| 23: Transfer Request | I | | | |
| | 24:Transfer Request | | | | |
\ 25: Fetch query details | I |
I I |
| I |
| | | |
| 26 Retum query details | |
I | I |
| | | | |
: I 27 Felch query descriplion : :
| I : H] |
| |
| | ZB Refum query desmplm] |
| U 2Reumquery | | | | |
; I S B I | I |
ey T 3 Dply query tals | RRemaplal gy o MYEEE I | I | I
| I I | I I I | | I |
detdleam | I 1 | I I I I | . -
displayed ! 1 1 I I | | | I d By (Visua y Editios Q

Figure 41: Sequence diagram for the ‘Medical Expert — View past queries’ scenario
Use Case Realization for the Respond to Query use case
The classes that participate in the realization of the Respond to Query use case and their

relationships are shown in Figure 42,

59

UserQueryDetails Class
— () (J e
~ ’—O \‘\ Uo g

P ~_ o — UserQueryService Class UserQueryDao Class ’//
" Medical Expert Interface ~— - / g pd
- ‘\\ ~ / ~ e

A g //// ‘ //
Medical Expert \\ UserQuerySearchAction Cl?sﬁ/ P e ///,, t '
. - -
\\ _/ (!/ __ UserQuery Class
N yd n
N /

~
- UserQueryDaolmpl Class ™.
A 4 UserQueryServicelmpl Class Y g ™~

‘\Ox'/ \, T g }
N \ -
UserQueryEditAction Class g 2

UserDetails Class

StatusDetails Class

Figure 42: Interaction of classes for the realization of the Respond to Query use case
Scenario and Sequence diagram for the Respond to Query use case:
Scenario 1 (Respond to patient query)
The scenario ‘Respond to patient query’ of Respond to Query use case is shown in Table 25.

Table 25: ‘Respond to patient query’ scenario of Respond to Query use case

The Remote Health Service System Medical Expert wants to respond to a patient query.
1. The Medical Expert selects the ‘Query Search’ option and searches for queries with
‘Open’ status.
2. The Medical Expert selects the query, writes the response and saves it. Also, the query
status can be changed.

3. The system sends the response to the patient and displays a success message.

The sequence diagram of the realization of the ‘Respond to patient query’ scenario of the Respond

to Query use case is shown in Figure 43.

.

16: List of quenias i
dspiyed

19: Select respond to
query option for a cuery
and wite he response

32 Suceess
messages dspleyed |

Use Case Realization for the Transfer Query use case

0

0

|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

17:Dispiay st of
queries

20: Transfer Requast

I
16: Redum list of open queres assigned o the user

T
|
|
|
|
|
|
|
|
|
T
|
|
|
|
|
|
|
|
|
|
|
|

31: Display success message
|

4
1:Retmigtel T
| 15: Retum st of 1 pen qQueries
| omgeis | sspediobewsy
: assigned o e user :
| |
| |
| |
| |
| |
| |
A:Sendresponse | |
topatnt ! !
|2 Tineler Request |
2 Transfer Request
29: Retum suocess 26: Relum suocess
3 Retm essage essage
SU0CESS Message

Wedical Expert Wedical Expertinteface UserCuenySearchchion Class UserQuenyEditAcion Class UserQuerySenios Class UserQuerySeniogimpl Class UserQuenyDao Ciass UserCuenyDaoimpl Class UserDetals Class
I I | | | | | |
| | | ! | | |
IedqEy | I I I [I I
status as Open'to | | | | | | |
68 09N Quiies | | | | | | |
B 2TanserReges | 3 Transfer Request : 4 Transr Request : : : :
§ TrsfrReqst 6 Trangler Request | | |
L e ol | |
|
|

S—

8 Retum user detais

|
9 Felch status details

Userluery Class UserueryDea

60

0 0 06 0 0 0 0 0

is Class StafusDetals Class
|

I
11: Felch query detals |
i)

10: Retum status detads

13: Retum it of
0pen queries
assgned b the user

24: Transfer Request

NI

12 Retum query detals

5 Save quer esponse o gl

77-Retum
SUCCess Message

% Retum suwsss'n'!ssag!

\
|
|
|
|
|
|
|
|
\
|
|
|
\
-
T
|
|
|
|
|
|
|
|
|
\
\
|
|
|
\
|
|
|
|
\
|
|
\
|
|
|
|
|

=ﬂ
\
|
|
|
|
|
|
|

_—

Fowaned oy
|

Figure 43: Sequence diagram for the ‘Respond to patient query’ scenario

TJ

¢

The classes that participate in the realization of the Transfer Query use case and their relationships

are shown in Figure 44.

61

: (? ; z UserQueryDetails Class

B - sk UserQueryServnce Class UserQueryDao Class P
% " Medical Expert Interface et j /,/"‘ b%

Medical Expert UserQueryForwardAction Class v Q
s ; ; ’ () UserQuery Class
H) UserQueryDaolmpl Class ™~
% i UserQueryServicelmpl Class serdienylacimg s g 2

Admin Interface
Admin UserDetails Class

Figure 44: Interaction of classes for the realization of the Transfer Query use case
Scenarios and Sequence diagrams for the Transfer Query use case:
Scenario 1 (Medical Expert — Transfer query)
The scenario ‘Medical Expert — Transfer query’ of Transfer Query use case is shown in Table 26.

Table 26: ‘Medical Expert — Transfer query’ scenario of Transfer Query use case

The Remote Health Service System Medical Expert wants to transfer a patient query to another
Medical Expert.
1. The Medical Expert selects the ‘Query Search’ option and searches for queries with
‘Open’ status.
2. The Medical Expert selects the query, selects the medical expert to whom he/she wants
to transfer the query and saves the data.
3. The system sends the query to the selected medical expert and displays a success

message.

The sequence diagram of the realization of the ‘Medical Expert — Transfer query’ scenario of the

Transfer Query use case is shown in Figure 45.

62

P9 60 0 0 0 0 0 0 0

Medical Expert Medical Expert nlerface UsetOueryFomatdAdJonC\ass UserQuerySevice Class UsefOuerySemceImp\Crass UserQueryDao Class UserOuefyDaolmpmass UserDetawsClass UserQuery Class UserQueryDetails Class

| | |
1: Select reassign | | | | | | ‘ |
opton for query : : : : : : } :
fonteletol | | & Trangferqueryto | | | | | |
searched open.. | | Iy | | [| |
| 2 Transfer Request | Ih:se:ededn | RL:J::’ | 5 Transfer | 6 Transler | T:Fetchuser delals | |
| medical expe | | | | | |
{ Request | Reques! i for the selected] i
medical exper | |
|
|
) |
8: Retum user detalls | & Sov uey |
fortesceced | oot forthe |
medica e } selected medical :
| expert &
‘ 1
10: Retum success confimation |
|
| 11: Save query comments kx the kransferred query
¢ 1" 12: Retum sucoess messa
13; Retum success | ¥
J‘i ! fRam | 1*Remswoss : message : : :
M Doplysuress | DROMMSWES | mesae | | | |
16 Success | eSS | Mmessage [| | | | [
8 message
message s : : . : : : i :
displayed

Figure 45: Sequence diagram for the ‘Medical Expert — Transfer query’ scenario

Scenario 2 (Admin — Transfer query)

The scenario ‘Admin — Transfer query’ of Transfer Query use case is shown in Table 27.

Table 27: ‘Admin — Transfer query’ scenario of Transfer Query use case

The Remote Health Service System Admin wants to transfer a patient query from one Medical

Expert to another.

1. The Admin selects the ‘Query Search’ option and searches for queries with ‘Open’

status.

2. The Admin selects the ‘Reassign Query’ option for a query and then selects the medical

expert to whom he/she wants to transfer the query and saves the data.

63

message.

3. The system sends the query to the selected medical expert and displays a success

The sequence diagram of the realization of the ‘Admin — Transfer query’ scenario of the Transfer

Query use case is shown in Figure 46.

9 0 0 0 @

Admin Admin Interface ~ UserQueryForwardAcion Class - UserQuerySenvdce Class UserQuerySendcelmpl Class UserQueryDao Class UserCQueryDaolmpl Class UserDetawIsCLass LlselOueryC\ass
M | | | | | |
1: Selectreassign | | | | | | \ I I
dorbresy | | | | | | | | |
fomtelidof | | % Tanslrqueylo | | | | | | |
searched open .. | | | & Trangh | | I | | |
| - 2 Transfer Request | . | Rrans:r | 6 Transfer L 6 Tanser | T:Felchuser detals | | |
Mmédicd erpe | e | Request : Reques } for the slacled } : :
v medicalexpert | | |
| |
| |
' | [
B Retum user detalls | 9 Save quay | |
for e seeced } e r o : |
nescdegel | selected medical | :
‘ expert | |
L |
10: Return sucoess confirmation | I
| | |
| 11: Save quary comments for he transferred query N
J‘ :, | d
. 12: Retum success messa
13: Rebum success \ ¥ |
4 J{i 5 15 Relum | 14: Retum sucoess : message } } : :
1T: Display success | 16:Reb seess I SUCCEss | message | | | | |
message
18 Succe.ss ! Message ! Y ! mossage ! ! 1 1 | !
message s
displayed

Figure 46: Sequence diagram for the ‘Admin — Transfer query’ scenario

Use Case Realization for the Manage Medical Experts use case

0o 0 0 0

UserQueryDelans Class

The classes that participate in the realization of the Manage Medical Experts use case and their

relationships are shown in Figure 47.

64

< "E';p;é;tRegistralionSubmi!Action Class UserService Class _UserDao Class ; :
r,—O T s UserDetails Class
Y W i ’ / /

Admin Admin Interface &

y .=
™G P

ExpertProfileUpdateSubmitAction Class ; 2//‘\\ EparDatal Clas

UserServicelmpl Class UserDaolmpl Class .

ExpertCredentials Class

Figure 47: Interaction of classes for the realization of the Manage Medical Experts use case
Scenarios and Sequence diagrams for the Manage Medical Experts use case:
Scenario 1 (Add a medical expert)
The scenario ‘Add a medical expert’ of Manage Medical Experts use case is shown in Table 28.

Table 28: ‘Add a medical expert’ scenario of Manage Medical Experts use case

The Remote Health Service System Admin wants to add a new Medical Expert to the system.
1. The Admin selects the ‘Enroll Expert” option at the Admin screen.
2. The Admin enters the details of the new expert and saves the data.

3. The system creates a new medical expert and displays a success message to the user.

The sequence diagram of the realization of the ‘Add a medical expert’ scenario of the Manage

Medical Experts use case is shown in Figure 48.

.

1: Select enroll
expert option

and enter defals |
of the new exper '

| 2: Transfer Request

18: Success
message is
displayed

0

Admin Admmlnterrace ExpertReglsirahoﬂSubm\lAchonC\ass UserService Class

e 0 0 0 0

0 0

65

3: Add new expert

e

r 17: Display
|

SUCCEss message

Figure 48: Sequence diagram for the ‘Add a medical expert’ scenario

:
|
[

16: Refurn success
message

-

-
|
|
|

UserDao Class

6: Transler Request

UserDaDImp\ (Class UserDetans Class

UserSemceIm pl Class
|
\ |
| |
| |
| |
| |
4 Transfer Request } 5 Tanser :
Request
—’L |
14 Retum
15: Retum Blesd :
U088 message |
message :
|
|

Scenario 2 (Edit a medical expert)

13: Retum
5UCcess Message

I
|
|
|
|
|
T: Save expert :
information |
8 Retum
suocess

|
|
|
confirmation | 9: Save exper skils
|
|
T

10: Refurn sucoess confirmation
|

ExpertDela.\s Class

11: Save expert
credentials

L
T
]

{

12: Retumn success message

ExpertCredennals Class

The scenario ‘Edit a medical expert” of Manage Medical Experts use case is shown in Table 29.

Table 29: ‘Edit a medical expert’ scenario of Manage Medical Experts use case

The Remote Health Service System Admin wants to edit the details of an existing Medical

Expert.

1. The Admin selects the ‘Manage User’ option at the Admin screen.

2. The Admin selects the medical expert to be updated, edits the details and saves it.

66

3. The system updates the medical expert details and displays a success message to the

user.

The sequence diagram of the realization of the ‘Edit a medical expert’ scenario of the Manage

Medical Experts use case is shown in Figure 49.

0 0 0 0 0 0 0

Admin Admin \nterface ExpenProfleUpdaeSubmnAchon Class UserSerwceCIass UserSerwceImpI Class UserDao Class UserDaolmpl Class UserDelawlsC\ass

1: Select update
user option and
edit expert data 3: Update expert

| |
| |
| |
| |
| |
|L 2: Transfer Request |L information 4 Transer Request 5: Transfer

\
\
\
\
\
\
\
——) | | Request

6: Transfer Request

7. Save updated
information

8; Return success

\

9 Retun success | message }

‘ 10: Return message | \

11:Retum ~ * success | I |

— success } Message : : }

——| 12Remsucess | message | | | !

— 13: Display T message | \ | I \

4:Success T successmessage | | ‘ | l ‘

message is I I : } : : }
displayed | | | \ | Powered By Visual Paradigm Community Edition @

| | ! | | ! ' '

\
Figure 49: Sequence diagram for the ‘Edit a medical expert’ scenario

Scenario 3 (Activate a medical expert)

The scenario ‘Activate a medical expert’ of Manage Medical Experts use case is shown in Table

30.

Table 30: ‘Activate a medical expert’ scenario of Manage Medical Experts use case

The Remote Health Service System Admin wants to activate a previously deactivated medical

expert.

67

1. The Admin selects the ‘Manage User’ option at the Admin screen.
2. The Admin selects the medical expert to be activated in the system, selects the option to
activate and saves the data.

3. The system activates the medical expert and displays a success message to the user.

The sequence diagram of the realization of the ‘Activate a medical expert’ scenario of the Manage

Medical Experts use case is shown in Figure 50.

r 0 0 0 0 0 Q0 O

Admin Admin InIerIace ExpertProfilelpdat eSumeLI\chon Class UserSerwce Class UserSemoelmpl Class UserDao Class UserDaolmpl Class UserDetails Class
| I I
1: Select update : : : : : } }
user optionand | | | | | I I
select the option : : : : : } }

to activate expert)

P | 2 Transfer Request lL 3 Transfer Request I 4; Transfer Request I 5 Trander : , } }
| | Remest | 6: Transfer Request | TAdvaleepert |
l | andsavedaia I
8: Return success |
9: Return success ‘ message }
‘ 10: Return message I I
11: Return - success | | |
sUccess : message : } }
: 12:Retumsuccess | message | | I I
+— 13: Display I message I I | I I
14: Success successmessage | | | ' | |
message is : I I I I } }

dIspIayed | | | | | vered By Visual Paradiom Commun ity Editio @
I I I I I I 0 I

Figure 50: Sequence diagram for the ‘Activate a medical expert’ scenario

Scenario 4 (Deactivate a medical expert)
The scenario ‘Deactivate a medical expert’ of Manage Medical Experts use case is shown in Table

31.

Table 31: ‘Deactivate a medical expert’ scenario of Manage Medical Experts use case

68

The Remote Health Service System Admin wants to deactivate a medical expert.

1. The Admin selects the ‘Manage User’ option at the Admin screen.

2. The Admin selects the medical expert to be deactivated in the system, selects the option

to deactivate and saves the data.

3. The system deactivates the medical expert and displays a success message to the user.

The sequence diagram of the realization of the ‘Deactivate a medical expert’ scenario of the

Manage Medical Experts use case is shown in Figure 51.

r 0 06 0 0 0 0 0

Admin Admin Interface ExpertProﬂeUpdateSumec jon Class UserService Class UserServicelmpl Class UserDao Class UserDaolmpl Class UserDetails Class
| | | | I
1: Select update | I | | ‘ I |
user optionand | | | | | | |
select the option | | ‘ ' ! ' ‘
to deactivate : : } : } : }
expert | [\ | 5 Transf \ | \
| 2 TransferRequest | o Transfer Request | 4 Transfer Request | 5: Transfer | 6 TransferRequest | 7:Deaclivale expert |
EEE— " L | Request | | \
—’ | and save data |
8: Retun success |
9: Retur success | Mmessage }
10: Retumn message | |
11: Return success \ | \
1—_ SUCCESS : message } : }
. i 12:Return success | message | | | |
13: Display I message \ I [I [
14:Success T success message | | | ‘ | ‘
message is I : } I } I }
displayed : : } : } ered f figm C ‘k on §

Figure 51: Sequence diagram for the ‘Deactivate a medical expert’ scenario

3.2.4 Class Diagram:
Complete Class Diagram:

The complete class diagram of the Remote Health Service System is shown in Figure 52.

69

UserRegistrationSubmitAdtion Class UserQueryForwardAction Class/ [LoginAction lserQuerySearchAction Class UserQueryViewAction Class

j in Interfa, i Patient Interface i
ExpertProfileUpdateSubmitAction Class Admin Interface Login Interface \", Medical Expert | eﬂw\

ExpertRegistrationSubmitAction Class
(GetMedicalExpertsAction Class UserQueryEditAction Class

GelExperiCredentials Action Class

<@ _OF- Y

UserService Class UserServicelmpl Class UserQueryService Class UserQueryServicalmpl Class

UserType Class i i UserQuery Class

QueryType Class StalusDetails Class

SkilMaster Class ExperiDetails Class

Figure 52: Complete Class diagram of the Remote Health Service System
Part of the Overall Class Diagram with Attributes and Methods:
Part of the overall class diagram showing the Action, Service and Dao classes involved in

achieving the Admin system functionality is shown in Figure 53.

(3 UserQueryForwardAction

com.healthpro. web.actions

(3 ExpertRegistrationSubmitAction

com healthpro web.actions

5F serialersionUID: long

SFLOG: Logger

a userQuery: UserQuery

o guerykd Integer

o expertUserkt: integer
o queryComments: Strin
a skilld: Integer

o skills: List<SkillMaster=
o userList List<LableValue>

(3 ExpertProfileUpdate SubmitAction

com healthpro web actions

(3 LoginAction

com healthpro web. actions

5 serialversionUID: long
5FLOG: Logger

o userDetaiis: UserDetails

o expertCred: ExperiCredentials
o skilkd: Integerl]

g
& ExpertRegisirationSubmitA ction()

@ execute()-String
@ validate():void

&FUserQueryForw ardAction()

@ execute():String
& validate()-void

@ getService():UserQueryService

@ setService(UserQueryService):void
@ getUserQuery():UserQuery

@ setUserQuery(UserQuery)-void

@ getQueryld()-nteger

@ setQuerykd(integer):void

@ getExpertUserkd()-integer

@ sefExpertUsenid(integer)-void
@ getQueryComments():String

@ setQueryComments(String)-void

@ getSkilkd{) nteger

@ getUserDetails():Us erDetails

@ setUserDetails (Us erDetails)-vaid

© getService():UserService

@ setService(UserService)-void

@ getSkillid{)-integer(]

@ setSkilg(nteger[])-void

@ getExpertCred():ExpertCredentials

@ setbxpertCred(ExpertCredentials):void

iF sermiversionUD: lang
5FL0G: Logger

o skilld Integer[]

o userDetails: UserDetails

& ExpertProfileUpdateSubmitAction()
@ execute() String

@ validate():void

@ getUs erDetails():Us erDetails

@ setUs erDetails (s erDetails)-void
@ getService()-UserService

@ setService(UserService)vaid

@ geESkilld() integer]]

@ setSkillkd(integer(]) void

%FLOG: Logger

5 serialVersionUID: long

o useriame: String

o passw ord: String

o sessionAttributes: Map=String Object=

& Loginaction()

@ execute():-String

@ validate():void

@ getService():UserService

@ setService(UserService)vaoid

© getUserMame()-Siring

@ setUserName(String)-void

@ getPassw ord()-String

@ setPassw ord(String)-void

@ setSession{Map<Siring, Object=):void

-zer 0.1 -service\ 0.1 -service 0.1

@ UserQueryService

com.heslthpra. service

3 UserService
oom healthpro.service

@ getAllSkils () List<SkilMaster=

@ getUserByld{integer)-Us erDetails
@ loginUs er(String, String)-Us erDetails

© setSkilld{integer).void

@ getSkills()-List<SkilMaster=

@ setSkills(List<SkilMaster=)-void

@ getUserList() List<LableValue>

@ setUserList(List<LableValue=):void

@ getalQueryTypes().List<QueryType>

@ getAlExpertsForSelectedSkill(integer):List<Us erDetails >
@ saveUserQuery(UserQuery)-vaid

@ searchiUserQuery({UserQuerySearch) List<UserQuery=
@ gelQueryByld({integer)-UserCuery

@ getAllStatus es():List<StatusDetails >

@ getStatus esForUs er()-List<StatusDetails >

@ updateUserQueryData(Us erQuery)-vaid

S

@ registerNew User{Us erDetails) nteger

@ updateUserProfile{UserDetails)-void

@ searchUsersByFilter(UserDetails Search):List<Us erDetails >
@ updateProfile(UserDetails, Set<ExpertDetails >)-void

[N

(9 UserQueryServicelmpl

(3 UserServicelmpl

com. healthpro.service.impl com_healthpro.serv ice.impl
*/L0G: Logger FUserServiceiml)

&FUserQueryServicelmpi()

@ UserQueryDao

com _healthpro dao

@ getUserQueryDao()-UserQueryDao
@ setUserQueryDao(UserQueryDao):void
@ getAlSkills()-List<SkilMaster>

@ getAlSkils() List<Skilvasters

@ getAlQueryTypes().List=QueryType=
-userQueg

@ getUserDao()-UserDao

@ setUserDao(Us erDao)-void

@ getUserByld{integer):Us erDetails

@ logins er(String, String):Us erDetails
@ registerew Us er(Us erDetails)-Integer

@ getAlQueryTypes() List=QueryType=
@ getAlExpertsForSelectedshil{nteger) List<Us arDetalls>
@ saveUserQuery(Us erQuery)-void

@ searchUserQuery(UserQuery Search) List=Us erQuery=
@ getQueryByki(integer)-UserQuery

@ getAlStatus es(boolean)-List<StatusDetails =

@ updateUs erQueryData(UserQuery)-void

&%mna pertsForSelectedSkil{integer)-List<Us erDetails>
@ saveUserQuery(Us erQuery)-void

@ searchUserQuery(UserQuery Search) List=Us erQuery=
@ getQueryByki(integer)-UserCuery

@ getAllStatus es():List<StatusDetais>

@ getStatus esForlUs er()-List<StatusDetails>

@ upgateUserQueryData(UserQuery)-void

© updateUserProfile(Us erDetails)-void
© searchUsersByFiter{Us erDetails Searchy List<UserDetails>
@ updateFrofile({UserDetails Set<ExpertDetails=)-void

70

5

(® UserQueyDaolmpl

com.healthpro. dso.impl

o sessionFactory: SessionFactory

& Us erQueyDaoimpi()

@ getAlSkils() List<SkilMaster>

@ getAllQuery Types()List<Query Type=

@ getAlExpertsForSelectedSkil(nteger) List<Us srDatails>
@ getSessionFactory() SessionFactory

@ setSessionFactory{SessionFactory)-void

@ saveUserQuery(UserQuery):void

@ searchUserQuery(UserQuerySearch)-List<Us erCuery>
@ getQueryByld{integer) Us erQuery

@ getAliStatuses{boolean) List<StatusDetails=>

@ updateUserQueryData(Us erQuery)void

-userDao

@ UserDao

com healthpro. dao

@ gefUserByld(integer):UserDetails

@ loginUser(String, String):Us erDetails

@ registerNew Us er{Us erDetails)-integer

@ updateUs erProfile(Us erDetails)-vaid

@ searchUsersByFiter(UserDetails Search):List<Us erDetails >
@ updateProfile(UserDetalls Set<ExpertDetails>)-vaid

(@ UserDaoimpl

com. healthpro. dao. impl

o sessionFactory. SessionFactory

& UserDacimpl()

@ getUserByld(integer):Us erDetails

@ getSessionFactory():SessionFactory

@ setSessionFactory(SessionFactory)vaid

@ loginUser(String String)-UserDetails

@ registerNew User({Us erDetails): Integer

@ updateUs erProfile(Us erDetails):void

& searchisersByFiter(Us erDetails Search):-List<Us erDetails >
® gelLikeTypeValue(Siring) String

@ updateProfile(UserDetails. Set<ExpertDetails =):void

Figure 53: Part of the Class diagram for Admin System

achieving the Patient system functionality is shown in Figure 54.

Part of the overall class diagram showing the Action, Service and Dao classes involved in

=<Java Class>>
(@ LoginAction

com healthpro web_sctions

<<Java Class>>
(3 UserQuerySubmitAction
com_hesithpro

«<Java Class>>
(3 UserQuerySearchAction

ap—— com healthpro web sctions

SFLOG: Logger

o serialVersionUD: long

o userName: String

& passw ord: String

o sessionAltributes: Map<String, Object>

& Laginaction()
© execute():String

5 serialVersionUID: lang
57 LOG: Logger
a queryTypeld: Integer
o expertUserd: Integer
a skillid: Integer
a shortDescription: String
a queryComments: String

S serialversionUD: lang

o queryList: List<UserQuery>
o search: UserQuerySearch

o queryType: List<QueryType>

& UserQuerySearchAction()
® execute():String
© getService()-UserQueryService

@ validate():void

& UserQuery Submita ction()

@ setService(UserQueryService)-void

<=Java Class=>
(3 UserProfileUpdate SubmitAction

Gom healthpro weh actions.

S s eriaversionUD: long

5FLOG: Logger

a userDetails: UserDetails

0 sessionAttrioutes: Map<String,Cbject>

& UserProfileUpdateSubmita ction()
@ execute():String

@ validate()-void

@ getUserDetails()-UserDetails

71

@ getService() UserService

© setService(UserService) void
© getUseriame()-String

@ setUserName(String):vaid

® execute():String
@ validate()-void

 getService() UserQuery Service

© setService(UserQueryService) vaid

@ getQueryList{) List<UserQuery>

@ setQueryList{Lisi<UserQuery>)-void
© getSearchiyUserQuerySearch

@ setSearch{UserQuerySearch):vaid

@ getService():UserServic

@ setUserDetails(Us erDetails yvaid

@ setService(UserService)void
@ setSession{Map<String,Object=)-void

e

@ getPassw ord():String

<<lava Class==>

8 oetExpertUserkd():integer
© setPassw ord{String)-vaid @ set
@ setSession(Map=Siring Object=)void & getcuer

@ getSKilki(y integer
@ setSkillld{integer).v o
@ getShortDes cription(): Strin

@ setShoriDescription{String)-v ol
® getQueryGomments():String

@ setQueryComments(String)-void

© getQueryType()List<QueryTypex
@ setQuery Type{List<Query Type=)-void

(@ GetExpertCredentialsAction

com healthpro web actions

S serialVersionUD: lang
o exprild Integer
o credentials: BxpertCredentials

& GetBxpertCredentials A ction()

® execute():String

@ gelUserService()-UserService

@ setUserService(UserService)void
@ getExprik(}-integer

=service \-Bevice

0.1 -service

=<Java Class>>
(® UserQueryViewAction

com healthpro web_sctions

SF seralersionUD: lang
SFLOG: Logger

o queryld: integer

o userQuery: UserQuery

@ UserQueryView Action()

® execute()-String

@ getQueryhi():integer

@ setQueryki(inieger):vaid

@ getUserQuery()-UserQuery
stUserCuery(UserQuery) vaid

—service (0.1

® setExpriid(nteger) void
@ getCredentials () ExpertCredentials

o UserQueryM -
com healthpro service

@ UserService
com_healthpro_service

@ selCredentials (ExpertCredentials).void

<<Java Class>>
(& GetMedicalExpertsAction
‘com.healthpro.web.actions.

S s erialversionUD: long “ser}ice
5 userList: List<UserDetaiis>
a skilid: Integer

@ getAllSkils () List<SkillMaster>
® getAlQuery Types():List<Query Type>

@ getAlExpertsForSelectedSkil(integer)-List<UserDetails>

@ saveUserQuery{UserQuery yvaid

© searchUserQuery(UserQuerySearch) List<Us erQuery=

© getQuerySyld(integer) UserQuery

@ getAliStatuses() List=Status Detais>

@ getStatusesForUs er() List<Status Details>
@ updateUserQueryCata(UserQuery) void

1 7| @ getUserBylki{nteger):UserDetails

® leginUs er(Siring Siring)-Us erDetails

@ registerMew User(UserDetails) integer

@ updateUs erProfile(Us erDstails) void

@ searchUsersByFiter(UserDetails Search)

oid

ist<UserDetais>
© updateProfie(Us erDetails Set<ExpertDetails =

&

& GethedicaExpertsAction()

@ execute() Siring

@ getUserList() List<UserDetails>

© setUserList{List<UserDetails>)-void

© getService(): UserQueryService

@ setService(Us erQuery Service)void

@ getSkilld() nteger

@ setSkilld(integer) v oid

© convertUs erList{List<Us erDetails>):List<Us erDetaiis>

(& UserQueryServicelmpl

com_healthpro service impl

®UserServicelmpl
com healthpro_ser ice. impl

5fLOG: Logger

& UserServicelmpl()

& UserQueryServiceimpl()

@ getUserDao() UserDac

@ UserQueryDao

om healthpro dao

@ getUserQueryDao():UserQueryDao

@ setUserQueryDao{UserQueryDao)-vaid

@ getallSkils() List=SkilVaster>

® getAlQueryTypes()List<QueryType>

@ getAlExpertsForSelectedSkil(integer):List<Us erDetails >
@ saveUserQuery(UserQuery)-void

@ searchUserQuery(UserQuerySearch) List=Us erQuary>

@ setUserDao{Us erDac):-vaid

© getuserByl(intager) UserDetails

@ loginUs er{String, String):Us erDetails
@ registerNew User(UserDetails Sinteger
© updateUserProfile(UserDetails) void

© searchUsersByFiter(UserDetais Search) ListsUs erDetais>
© updateProfile(Us erDetails, Set<ExpertDetails=) void

us eryDa@ogetQueryByld(integer)y UserQuery
0.1 @ getAllStatus es()-List<Status Details>

© getAliSkils () List<SkilMaster=
@ getAlQuery Types():List<Query Type>

@ getAlExperisForSelectedSkil{nteger)-List<Us erDetails>
© saveUserQuery{UserQuery-vaid

© searchUserQuery(UserQuerySearch) List<Us erQuery=
© getQuerySyld(integer):UserQuery

© getAliStatuses(boolean):List<Status Details>

@ updateUserQueryData{Us erQueryj-void

@ getStatusesForUs er():List«<StatusDetails >
@ updateUserQueryData(UserQuery)-void

-uzerDao

3 UserDao

Gom healthpro dao

© getUserByld(integer) Us erDetais

b.

(® UserQueyDaolmpl

com heslthpro dso.impl

o sessionFactory” SessionFactory

@ UserQueyDaoimpl()

© getalSkils() List=SkilMasters

@ getAllQuery Types() List<Query Type>

@ getAllExpertsForSelectedSkil{nteger) List=UserDetails>
@ getSessionFactory():SessionFactory

@ setSessionFactory(SessionFactory)vold

@ saveUserQuery{UserQuery)void

@ searchUserQuery{UserQuerySearch) List<UserQuery>
@ getQueryByld{intager) UserQuery

© getalStatus es(boalean) List<StatusDetais>

@ updateUs erQueryData(UserQuery):void

@ lognUser{String, String)-Us erDefails

© registerNew User(UserDetails) integer

© updateUs erProfile(Us erDetails ;v aid

@ searchUsersByFiter(UserDetails Search)List<Us erDetaiis>
© updateProfile(Us erDetails, Set<ExpertDetails >):void

@ UserDaoclmpl

com_heaithpro dao impl

o sessionFactory. SessionFactory

& UserDacimpl()

@ getUserByld{integer) Us erDetails

@ getSessionFactory() SessionFactary

© setSessionFactory(SessionFactory)-void

@ loginUs er(String.String)-UserDetails

@ registeriew Us er(UserDetails) Integer

@ updateUserProfile{UserDetails)-void

@ searchUsersByFiter(UserDatallsSearch)-List<UserDetalls>
= getLkeType\Valus(String):String

© updatePrafiie(UserDetais. Set<ExperiDetais »)woid

0.1

Figure 54: Part of the Class diagram for Patient System

72

Part of the overall class diagram showing the Action, Service and Dao classes involved in

achieving the Medical Expert system functionality is shown in Figure 55.

<<Java Ciass=>
@LoginAction
«com. healthpro.web. actions.

<<Java Class>=
(& UserQueryForwardAction
o healthpro. web. setians

@ UserQuerySearchAction
«com. healthpro.web. actions

==Java Class==

*FLOG: Logger

5 s erialVersionUI long
@ userMame: String

o passw ord: String

@ sessionAfiributes: Map<Siring, Object>

5cF s erialVersionUD: long
% LOG: Logger

© userQuery: UserQuery
querykt: integer

5o s erialversionUD: lang

o queryList List<Us erCuery>
o search: UserQuerySearch
o queryType: List<QueryType>

<<Java Class>>
@ UserProfileUpdate SubmitAction
com. healthpro.web. sctions

5aF serialversionU long

% LOG: Logger

& userDetails: UserDetails

& sessionAtiributes: Map=String, Object>

expertUserid: Integer

& LoginAction{)

queryComments: String

& UserQuerySearchaction()

& UserProfileUpdate Submita ction()

@ execute()-String skillid: Integer
® validate()-void

@ getService():-UserService

oooaooao

skils: List<SkilVaster=
userList List=LableValue>

@ exscute()-String

@ getService()- UserQueryService

@ setService(Us erQueryService):void
@ getQueryList()List<UserQuery>

® setService(UserService)vaid

@ getUserName()-String

@ setUserName(String):void

® getPassw ord():String

@ setPassw ord{String):void

@ setSession(Map<String Object>) v aid

@ execute():String

=<Java Class>>
(3 UserQueryEditAction

com. healthpro.web. actions.

Sd serialVersionUiD: long

S LOG: Logger

o queryk: integer

userQuery- UserQuery
statusid integer

statusList: List<StatusDetails>
queryComments- String
submiiLabek: String
queryMessage: String

@ getskilk):integer

pooooe

&FUserQueryForw ardaction()

@ getExpertUserid():integer
@ setExpertUserki(integer)-void
@ getQueryComments{):String

@ serQueryGomments (String)-void

@ setSkilld(integer)-void

@ getskils()-List<SkilMaster:-

@ s =tSkils (List<SkilMaster=) void

@ getUserList() List<LableValue>

® setUserList{List<LableValue>)-void

® setQueryList{List<UserQuery=)-void
@ getSearchi) UserQuerySearch

@ setSearch{Us erQuerySearch)-void
® getQueryType(yList<QueryType=

@ setQueryType(List<Query Type=):void

@ execute():String

© validate()-void

@ getUserDetails() UserDetails

@ setUserDetails(Us erDetaiis):void

® getService() UserService

@ setService(UserService)void

© setSession(Map<Siring Object>) v oid

=<Java Class=>
(& UserQueryViewAction

com. healthpro.web. actions

% LOG: Logger
o guerykd: Integer

Scf s erialversionUD: long

= userQuery: UserQuery

® execute()String

& Us erQueryEdiaction()

@ execute():String

= initDependencies ():void

© validate()-vaid

@ getService(yUserQueryService

@ sctSer)

&FUserQueryView Action()

@ getQueryld() integer
@ setQueryld(integer)-void
® getUserQuery()-UserQuery
etUs erQuery(UserQuery):void
© getsgrvice() UserQueryService
e(Us erQueryService)-vaid

-service | Bervice (0.1 -service @1

rsarv\be\‘ﬂx T

—Serwice 0.1

@ setService(UserQueryService)-void

@ UserQueryService

com_healthpro. servics

D UserService
«com.healthpro.service

® getQueryld()-integer \E%i\)

@ setQueryld{integer)-void 0.1

@ getANSKils () List<SkilMaster>

@ getUserBylkd(integer):Us erDetails

@ getallQuery Types () List<Query Type>

@ loginUser(String, String) Us erDetails

® getUserQuery()-UserQuery
® setUserQuery(UserQuery)-void
@ getStatusList{)-List<StatusDetails>

@ getAlExpertsForSelectedSKil(nteger) List<Us erDetails >
@ saveUserQuery(UserQuery)-void

@ registerNew Us er(UserDstaiis) integer
@ updateUs erProfile(Us erDetails):v oid
@ searchUs ersByFiter(Us erDetalls Search)-List<Us erDetails >

© setStatusList(List<StatusDetalls>) v-oid

@ searchUserQuery(Us erQuery Search) List=UserCuery>

@ getStatuski{)-integer

@ setStatuskd(integer)-void

® getQueryGomments ()-String

@ setQueryComments(String)-void

@ getQueryByld(integer)-Us erQuery

@ getAlStatus es():List<Status Details >

@ getStatusesForUser () List<StatusDetails>
@ updateUs erQueryData(Us erQuery)-void

@ updateProfile{Us erDetails, Set<ExpertDetails=)-void

© getSubmitl abel():String

@ setSubmitl abekString) v.oid

@ getQueryMessage():String

® setQueryMessage(String)-void

@ UserQueryDao

com.healthpro. dae

@ getANSkils() List=Skilllaster>

© getAlQueryTypes()-List<QueryType>
© getAlExpertsForSelectedSkill(integeryList<Us erDetaiis> | 01
@ saveUserQuery(UserQuery)-void

© searchUserQuery(UserQuerySearch) ListsUs erQuery=
@ getQueryByld{integer)-Us erQuery

© getAliStatus es(boolean) List=Status Details>

@ updatsUs erQueryData(Us srQuery)-void

-userQuet

Y

(3 UserQueryServicelmpl
cam_healthpra service. impl

(@ Userservicelmpl
com.healthpro. serv ice. impl

SFLOG: Logger

& UserQueryServiceimpl()

@ getUserQueryDao():-UserQueryDac

® setUserQueryDao(Us erQueryDac)void

@ getANSkils() List=SkilMlaster>

® getAllQueryTypes() List<QueryType>
Y% ek pertsForSelecte oSkl nteger rList<Us erDetaiis>
@ saveUserQuery(UserQuery)-void

© searchUserQuery(UserQuerySearch) ListsUs erQuery=
@ getQueryBykd{integer) Us esQuery

@ getAllStatus es():List<StatusDetails>

© getStatusesForUs er() List<StatusDetaiis>

@ updateUs erQueryData(UserQuery) void

& Userserviceimpl()

@ getUserDao()UserDao

@ setUserDao(UserDac):void

® getUserByla(nteger) Us erDetaiis

@ logins er(String. String):Us erDetails

© registerMew Us er(Us erDetails) integer

® updateUs erProfile(Us erDetails v oid

@ searchUs ersByFiter(Us erDetaiis Search) Lisi<Us erDetails>
© updateProfile(Us erDetails Set<ExpertDatails=)-vaid

@ UserQueyDaolmpl
com.healthero.dao. impl

o sessionFactory: SessionFactory

& UserQueyDaoimpi()

@ gethNSkils() List=SkilVlaster>

® getalQueryTypes() List<QueryType>

@ getalExpertsForSelectedSkillinteger rList<Us erDetails>
® getSessionFactory():SessionFactory

® setSessionFactory (SessionFactary) vaid

@ saveUserQuery(UserQuery)-void

@ searchUs erQuery(UserCuerySearch) List<UserQuery=
® getQueryBykd(integer)-UserQuery

@ getaliStatus es(boolean) List=Status Details >

® updateUserQueryData(UserQuery) vaid

-userDao

@ UserDao

com._healthpro.dao

@ getUs erBylkd(integer)-UserDetails

@ loginUs er(String, String):Us erDetails

@ registerNew User(UserDetails) Integer

@ updateUserProfile(Us erDetails)-v oid

@ searchUsersByFiter(UserDefails Search) List<Us erDetails>
@ updateProfile{Us erDetails, Set<ExpertDetails »)void

& userDaolmpl
om heslthpro dao.impl

[

o sessionFactory: SessionFactory

& Us erDaocimpl()

@ getUserByki(integer)-UserDefails

© getSessionFactory():SessionFactory

@ setSessionFactory(SessionFactory):void

@ loginUs er(Siring, String)-Us erDetails

@ registerNew User(UserDetails) integer

@ updateUserProfile(Us erDetails):void

© searchUsersByFiter(UserDetails Search) List<Us erDetails>
& getlikeTypeValue(Siring)-String

© updateProfie(UserDetails Set<SxpertDetails=) void

Figure 55: Part of the Class diagram for Medical Expert System

73

Part of the overall class diagram showing the Model classes involved in the implementation of the

Remote Health Service System are shown in Figure 56.

<=Java Class=>
(3 ExpertCredentials

com.healthpro.model

5F s erialversionUD: kong

o id integer

a lastUpdatedBy: UserDetails
a createdBy: UserDetails

o expertUser: UserDefails

o creationDate: Date

o lastUpdatedDate: Date

o graduationCredentials: Siring
a yearsOfBxperience: Float

<<Java Class=>
(3 ExpertDetails

com.healthpro. madel

5F s erialversionUD: long

o ik integer

o lastUpdatedBy: UserDetails
o createdBy: UserDetails

o skilMaster: SkilMaster

a expertUser: UserDetails

o creationDate: Date

o lastUpdatedDate: Date

<<Java Class=>

(3 QueryType

com.healthpro. madel

5 s erialversionUD: long

o ik ink

a descriplion: Siring

o userCQueries: Set<UserQuery=

GcExpenQedentials(}

@ getid()-integer

@ setid{integer)-void

@ geflastUpdatedBy():Us erDetails

@ seflastUpdatedBy (Us erDetails):void
@ geiCreatedBy()-UserDetails

@ setCreatedBy{Us erDetails)-void

@ geibxpertUsern():UserDetails

@ seibxpertUser{Us erDetails)-void

@ gelCreationDate():Date

@ seiCreationDate{Date):void

@ getl astUpdatedDate():Date

@ sefl asiUpdatedDate{Date) v oid

@ getGraduationCredentials():String

@ sebGraduationCredentials (String):void
@ gebfyears OfExperience():Float

@ sefyears OfExperience{Float)-void

& ExpertDetails{)

@ getid{):integer

@ setid{integer):void

@ getlastUpdatedBy():UserDetails
@ sefl asiUpdatedBy(Us erDetails) v oid
@ gelCreatedBy():UserDetails

@ selCreatedBy{Us erDetails)-void
@ getSkilMaster():SkillMaster

@ setSkilMaster{ Skillvaster)-void
@ geibxpertUser():UserDetails

@ seibxpertUser{Us erDetails)-void
@ gelCreationDate():Date

@ sebCreationDate{Date):void

@ getl astUpdatedDate():Date

@ sefl asiUpdatedDate{Date)-void

GC(}.JBryTypB(}

@ getid{):int

@ setid(int)-void

@ getDescription()-Siring

@ setDescription{ Siring)-void

@ getUs erQueries()-Set=UserCuery=

@ setlUs erQueries|Set<Us erCuery=):void

=<Java Class>>
(= StatusDetails

com. healthpro.model

5F s erialVersionUID: long

o statuskt ink

a descriplion: String

a userClueries: Sef=UserQuery>

GcStatusDetails(}

@ getStatusid()-ink

@ setStatusid{ing)-void

@ getDescription():Siring

@ setDescription{String):void

@ getUserCueries():Set<UserQuery=

@ setUserCueries{Set<UserCuery=)-void

==lava Class==

(& SkillMaster

com.healthpro.model

==Java Class=»

(& UserQuery

com. healthpro.rmodel

74

5 serialversionUD: long

o skillkd integer

o description: Siring

v expertDetails es: Set<=BxpertDetails >

& SkilMaster()

& getSkilld(): integer

@ setSkilld{integer):vaoid

@ getDes cription():Siring

@ setDescription(Siring):void

@ getbExpertDetails es()-Set<BExpertDetails >

@ setbxpertDetails es{Set<BxpertDetails =) woid

5 serialersionUD: long

e guerykd integer

o lastUpdatedBy: UserDetails
o createdBy: UserDetails

o assignedTo: UserDetails

o guery Type: QueryType

o statusDetails: StatusDetails
o shartDescription: String

o creafionDate: Date

o lastUpdatedDate: Date

o gueryHistory: Set<UserQueryDetails>

==Java Class==
(& UserDetails

eomi.healthpro.model

=lava Classss
(3 UserQueryDetails

com. healthpro. model

5 s erialversionUD: long

o historyld: Integer

o lastUpdatedBy: UserDetails
o createdBy: UserDetails

o assignedBy: UserDetails

o queryComments: Siring

o creafionDate: Date

o lastUpdatedDate: Date

B userCuery: UserCuery

GCUS erCueryDetails ()

& getHistory kd{)-integer

@ setHistorykdi{integer)-void

@ getlastUpdatedBy (). UserDetails
@ setlastUpdatedBy(Us erDetails)-void
@ getCreatedBy():Us erDetails

@ setCreatedBy({UserDetails)-void
@ getAssignedBy():UserDetails

@ setAssignedBy(UserDetails)-void
@ getCueryComments ():Siring

@ setCuery Comments (Siring)-void
& getCreationDate():Date

@ setCreationDate(Date):vaoid

@ getlastUpdatedDate()-Date

@ sefLastUpdatedDate({Date)-void
@ getUserQuery():UserCuery

@ setUserCQuery{Us erQuery)-void

chserQuery(}

@ getQueryld{)-integer

@ setQueryld{integer):void

@ getlastUpdatedBy():UserDetails

@ setlastUpdatedBy{UserDetails)-void
@ getCreatedBy():UserDetails

@ setCreatedBy(UserDetails)-void

@ getAssignedTo():UserDetails

@ setAssignedTo{UserDetails):void

@ getCuery Type():Query Ty pe

@ setQuery Ty pe(Query Ty pe)-vaid

@ getStatusDetails{)-Status Details

@ setStatusDetails(Status Details)-v oid
& getShortDes cription():String

@ setShortDescriplion{Siring)-void

@ getCreationDate():Date

@ setCreationDate(Date):void

@ getlastUpdatedDate()-Date

@ setlastUpdatedDate{Date):void

@ getQueryHistory():Set<Us erCueryDetails >
@ setQueryHistory(Set<Us erQueryDetails=)-void

5o s erialVersionUD: long

o userkk integer
lastUpdatedBy: UserDetails
createdBy: UserDetails
userType: UserType

userMame: String
passw ord: Sfring
email String
active: boolean

firstName: Skring

lastiMame: String

addressLine1: String

addressLine2: Siring

creationDate: Date

lastUpdatedDate: Date
phoneMumber: Long

o expertCredentials: ExpertCredentials
o expertDetails: Set<ExpertDetails >

=<Java Class>=
(@ UserType

com. healthpro.model

5 s erialVersionUD: long

o userTypekt infeger

e description: Siring

o userDetails es: Set<UserDetails>

e-cUserType{}

@ getUserTy peld():integer

@ setUserTypeld{integer)-void

@ getDes cripion():String

@ s etDes criplion(Siring)-void

& getUserDetails es():Set<Us erDetails=

@ setUserDetails es(Set<UserDetails =) void

& UserDetails()

& getUserld):integer

@ setUserkd{integer):void

@ getlastUpdatedBy():UserDetails

@ setlastUpdatedBy(Us erDetails)-v oid
@ getCreatedBy():Us erDetails

@ setCreatedBy({UserDetails)-void

@ getUserType()UserType

@ setUserType({UserType):void

@ getUserMame():Siring

@ setUserMame(Siring)-void

@ getPassw ord():String

@ setPassw ord({Siring)-void

@ getEmail():String

@ setEmail{ String):void

@ isActive():boolean

@ setActve{boolean):void

& getFirstiMame():Siring

@ setfirstiName(Siring)-void

@ getlastMame():-Siring

@ setlastName(Siring)-void

@ getAddressLine():Siring

@ setAddressLine1{String):void

@ getAddressLine2():Siring

@ setAddressLine2({Siring)-void

@ getFhoneMumber():Long

@ setPhoneNumber{Long)-void

@ getCreationDate():Date

@ setCreationDate({Date):v oid

@ getlastUpdatedDate()-Date

@ sefLastUpdatedDate{Date):void

@ getbxpertDetails ()-Set<BxpertDetails >
@ setbxpertDetails {Set<BxpertDetails=)-v oid
@ isAdmin)-boolean

@ isBxpert():boolean

@ isPatientUs er{)-boolean

@ getbExpertCredentials ():ExpertCredentials
@ setbxpertCredentials (ExpertCredentials)-void

Figure 56: Part of the Class diagram showing Model Classes

75
3.2.5 Application Architecture
The Remote Health Service System has Multi Layered architecture. The system has four layers:
Presentation layer, Controller layer, Service layer and Data Access Layer.

The application architecture is shown in Figure 57.

T Response

Presentation Layer

Request

(JSP + Struts2 Tags)

Controller Layer

(Filter Dispatcher + Struts.xml
+ Struts2 Actions)

Service Layer

(Struts2 Service)

Data Access Layer

(Hibernate)

MySQL

(Database)

Figure 57: Architecture of Remote Health Service System
The different layers in the Remote Health Service System are described below:
- Presentation Layer: This layer is the View part in the MVC design pattern. It comprises

of the application screens that help user interact with the system. It is implemented using

76
JSP (Java Server Pages) and Struts2 tags. JSP is a technology that is used to create dynamic
web pages based on HTML (Hyper Text Markup Language) and XML (eXtensible Markup
Language). Struts2 offers powerful Ul (User Interface) tags to render complex application
data effectively. The request submitted by the user at this layer is passed to the controller
layer for further processing.
Controller Layer: This layer corresponds to the Controller section in the MVC pattern. It
controls the interaction between the presentation layer and the service layer. It handles the
user requests and forwards them to the responsible service. Also, invokes the appropriate
view resources based on the response returned from the service layer. In the current project,
this layer is implemented using Struts2 Filter Dispatcher and XML based configuration file
(struts.xml). In the ‘struts.xml’ file, the mapping between the URI’s (Uniform Resource
Identifier) and the Action classes is defined. The Filter Dispatcher verifies the request URI
and determines which action to invoke. The Action classes invoke the services to process

the user request.

Service Layer: This layer consists of the business logic of the application. It is invoked by
the controller layer to execute the business functionality. A service is the smallest amount
of work that needs to be completed in order to maintain the application database consistent.
The concept of Java interfaces and their implementation classes is used in this project to
implement this layer. This makes the application flexible as only a change in the
implementation class would be needed to modify the application behavior and no change
would be required in other layers consuming the services. This layer interacts with the Data

Access layer to complete the processing of user request.

77
- Data Access Layer: This layer is the Model layer of the MV C design pattern. It performs
the database operations. The logic for code persistence is written in this layer using
Hibernate API (Application Program Interface). The entity classes are written which are
mapped to the database tables. The data persistence is carried out using the entity class
objects. It interacts with the MySQL database to persist and retrieve the application data.
The DAO interfaces list the operations that can be performed on the data and their
implementation classes contain the execution logic for those operations.
3.3 Application Screenshots
The screenshots of the different functionalities of the Remote Health Service System are presented
below:

Login Screen:

User Login X T+

D localhost HealthPr ictions c B8 ¥ /& O

Remote Health Service System

Login

New User Signup

Figure 58: Login Screen of the Remote Health Service System

Create Account Screen:

78

User Registration X |+ — il X
€ (D localhost:8080/HealthPro/userRegistration.action ¢ Q Search w B 4 A =
—Remote Health Service System
Registration Form :
Firstiame : EEI
LastName :
Email :
AddressLine1 :
adaresstine2: [
Phone Number :
UserName :
—
[Submit
Figure 59: Create Account Screen of the Remote Health Service System
Patient Screen:
Hello Patient1! X+ = @ X
€ © localhost8080/HealthPro/login.action ¢ Q Search w“BE ¥ 409 =

Patient Options

- ol sy Remote Health Service System oo

% Submit Query
© Query Search

Figure 60: Patient Screen of the Remote Health Service System

79
Edit Profile — Patient Screen:

Hello Patient1! X "+

€ () localhost:8080/HealthPro/login.action

Patient Options

* ol e Remote Health Service System 2 Logout

© Query Search

¢ Q Search wBe ¥

First Name :
Last Name :

Email Id : patient@gmail.com

Address Linet: [geleE]
Address tine2: (VBT

L 26128454321
User Name :

Password :

Submit

Figure 61: Edit Profile — Patient Screen

Edit Profile — Patient Screen (Success message):

Hello Patient1! X+

(i) localhost:)/HealthPro/login.action earch \/
@ localhost:8080/HealthPro/logi ¢ Q Searct e 4+ 40

~
Patient Options

- B Remote Health Service System ~ : oo

© Query Search

* Your profile has been updated successfully.

Figure 62: Edit Profile — Patient Screen (Success message)

View Medical Expert Information — Patient Screen:

Hello Patient1! X T+

— o
€ @ localhost:8080/HealthPro/login.action @ Q Search T B 4+ A
& Pl Mamenen Remote Health Service System = tocou
® Query Search
Specialization Type of your Query Select your Advisor
P o
Short Descrpton + Years O Experence 12
Please enter your query here...
Figure 63: View Medical Expert Information — Patient Screen
Submit Query — Patient Screen:
Hello Patient1! X U = g
€ @ localhost:8080/HealthPro/login.action ¢ Q Search B ¥ A9
2 Profile Management X) \
o Remote Health Service System 2 Logout
@ Query Search
Specialization Type of your Query Select your Advisor
v o

ion-Midh
« Years Of Experience : 12

ko
B I US %X x* L= S| ¥ 2| e o
HE=Q
Stes - ff Normat - fIH)| ?
Hello Dr. Expert2,

| have been suffering from fever since yesterday. | also feel headache and shivering. What
should | do about it?

Thank you,

Patient1

body p

Figure 64: Submit Query — Patient Screen

Submit Query — Patient Screen (Success message):

Hello Patient1! X 4

X

= a
€ © localhost:8080/HealthPro/login.action ¢ Q Search B $§$ A9
& Bofis Banaosmscg Remote Health Service System i
@ Submit Query
@ Query Search
Specialization Type of your Query Select your Advisor
T —
Short Description
G ——
Your Query
[source 8| & L2
B I US X x I &= := E |9 | e (o
@ m=
Styles || Nomal - || 35| 2
Hello Dr. Expert2,
I have been suffering from fever since y . | also feel t and shivering. What
should | do about it?
Thank you,
Patient1
body p 4
Figure 65: Submit Query — Patient Screen (Success message)
Medical Expert Screen:
Hello Expert2! X 4 — il

(— @ localhost:8080/HealthPro/login.action c Q Search ﬁ E + @

Medical Expert Options

2 Pofle Mansgemen Remote Health Service System + Logout

£ Query Management

Figure 66: Medical Expert Screen of the Remote Health Service System

82

Edit Profile — Medical Expert Screen:

Hello Expert2! X S

€ @ localhost:8080/HealthPro/login.action ¢ Q Search w B 3

.
T Remote Health Service System # Logout

4 Query Management

First Name :

Last Name :

Email Id : user2@gmail.com|

UL SRR Plymouth
Address Line2:
LT A6124 568799
User Name :

Password :

Submit

Figure 67: Edit Profile — Medical Expert Screen

Respond to Query — Medical Expert Screen:

Hello Expert2! x4+ = [=] X
€ (O localhost:8080/HealthPro/login.actions# ¢ Q Search T e ¥ # =
Medical Expert Options 1

2 Pufl Managemen; Remote Health Service System * Logout

£ Query Management

Assigned To Last Updated by Assigned By

ST 3/3117 ©:20:40 PM.000 Patient1

Hello Dr. Expert2,

@ source - | - | have been suffering from fever since yesterday. | also feel headache and shivering. What should | do
about it?

u x* | T, = = E 2

B LM S% =X - = ~ Thank you,

HE=Q Patient1

Styles ~ || Normal - :c ? |

~
Hello Patient1,

Take DayQuil for two days, one during day time and second at night before sleeping. |
would recommend at least two days rest for you. Take care and let me know if you have
any other questions.

Thank you,

Expert2

body p A

Reply to Query

Figure 68: Respond to Query — Medical Expert Screen

83
Respond to Query — Medical Expert Screen (Success message):

Hello Expert2! X 4+

(- ® localhost:8080/HealthPro/login.action#

Medical Expert Options

Py e— Remote Health Service System 2 Logout

A Query Management

¢ Q Search wBa $ -

¢ Your reply has been updated successfully.

Figure 69: Respond to Query — Medical Expert Screen (Success message)

View Response — Patient Screen:

Hello Patient1! X+ -
€ @ localhost8080/HealthPro/login.action#

o
@ Q Search T B ¢ A& Q

Cm X

Patient Options

2 fofks anssemeny Remote Health Service System * Logout

Query Search
o =
Expert2 Medical 33117 9:20:40 33117 9:38:00
consultation PM.O00 PM.000 | Eomti=e

Last Updated Last Updated by

Comments

3/31/17 9:38:09 PM.000 Expert2

Hello Patient1,

Take DayQuil for two days, one during day time and second at night before sleeping. | would
recommend at least two days rest for you. Take care and let me know if you have any other questions.

Thank you,
Expert2

3/31/17 9:20:40 PM.000 Patient1 H

Hello Dr. Expert2,

| have been suffering from fever since yesterday. | also feel headache and shivering. What should | do
about it?

Thank you,

Patient1

Figure 70: View Response — Patient Screen
View Past Medical Queries — Patient and Medical Expert:
The Patient and Medical Expert can search for past medical queries using this screen. They can

also view the query details by clicking on the ‘View’ icon as shown in Figures 71 and 72.

Hello Patient1! X BE - a
€ © localhost8080/HealthPro/login.action ¢ Q Search wE ¥ A9

Patient Options

Gl Remote Health Service System ~ : ooou

2
% Submit Query
®

Query Search

03/01/2017 03/31/2017 03/14/2017 03/31/2017
. : -

Copy CSV Print Show| 10 entries
Your Queries
Short Description AssignedTo » Status ~ Query Type a Created On - LastUpdatedby ~ Last Updated date -
Throat pain © Expert2 Closed Clarification 2017-03-31 21:53:34 Expert2 2017-03-31 22:01:33
Fever & Expert2 Closed Medical consultation 2017-03-31 21:20:40 Expert2 2017-03-31 21:59:32
Showing 1 to 2 of 2 entries Previous 1 Next

Figure 71: View Past Medical Queries — Patient Screen

Hello Expert2! X T4 _
€ O locahost8080/HealthPro/login action ¢ Q Search tE ¥+ A0

Hedical Expert Options
s Remote Health Service System ~ +toon

£ Query Management

0372972017 041012017

. Selectaqu v
E B query fype
Copy CSV Print Show| 10 v | entries

Your Queries
Short Description ~ ~ CreatedBy ~ Status =~ Query Type a Created On a LastUpdatedby - LastUpdated date ~ ~
Throat pain & Patient1 Closed Clarification 2017-03-31 21:53:34 Expert2 201703-31 22:01:33
Fever & Patient1 Closed Medical consuitation 2017-03-31 21:20:40 Expert2 2017-03-31 21:58:32
Showing 1to 2 of 2 entries Previous 1 Next

Figure 72: View Past Medical Queries — Medical Expert Screen

Transfer Query — Medical Expert:

85

Hello Expert2! X+ -
€ ® localhost:8080/HealthPro/login.action# & Q Search w B ¥ 4
T Remote Health Service System + Logout
5 Query Management
Assigned To Query Type Specialization
Short Description Status Reassign To
(Bsore](x & @ @ @]+ »][%]
/B I US % x|L|i:= €|« m
m@m=Q
Patient1, .
After reading your query, it looks like you are having some muscle problem. I would
recommend that you talk to an orthopedic doctor about this|as he might have a good
treatment for you. | am transferring this query to Dr. Expert1.
Hope you get well soon.
Expert2
body p 4
Figure 73: Transfer Query — Medical Expert
Transfer Query — Medical Expert (Success message):
Hello Expert2! X L+ -
€ ® localhost:8080/HealthPro/login.action# ¢ Q Search T B 3 A
T Remote Health Service System + Logout

£ Query Management

® Query reassigned to new advisor successfully.

Figure 74: Transfer Query — Medical Expert (Success message)

Admin Screen:

Hello Admin! X

€ @ localhost:8080/HealthPro/login.action

Admin Options

o Enroll Expert

e Q Search

we & A9

86

@ Eanl et Remote Health Service System = 1ooon
® Query Management
Figure 75: Admin Screen of the Remote Health Service System
Manage Medical Experts (Add a new Medical Expert) — Admin Screen:
Hello Admin! X 4+ == a
€ @ localhost8080/HealthPro/login.action ¢ Q Search B 3 A
 EuslEes Remote Health Service System 2 Logout

Manage User
® Query Management

=

Registration Form :

Speciality :
years Of Experience :

Graduation Credentials :

[Submit

——
eeee |

Dentist
Surgeo
General Physician

~

v

Louisville Hospital A
Education- Medical v

College of Wisconsin

Figure 76: Manage Medical Experts (Add a new Medical Expert) — Admin Screen

Manage Medical Experts (Edit a Medical Expert) — Admin Screen:

Hello Admin!

€ @ localhost:8080/HealthPro/login.action#

3 ENroil Expert
Manage User

@ Query Management

x Uk

¢ Q Search

Kemote redalin service sysiem

T BE A
2 Logout

87

m x

Manage Medical Experts (Deactivate a Medical Expert) — Admin Screen:

Edit Medical Expert Profile

First Name :
Last Name :
Email Id :

Address Line1 :
Address Line2:

Phone Number :
User Name :

Password :
Speciality :
years Of Experience :

‘Graduation Credentials :

Submit

N
——

Gynecology
Dentist

Surgeon
Residency-
University of

Louisville Hospital

O Active ® Inactive

~

v

Figure 77: Manage Medical Experts (Edit a Medical Expert) — Admin Screen

The Admin can deactivate a Medical Expert by selecting ‘Inactive’ option and clicking ‘Submit’.

Hello Admin! =3

€« O

A

localhost:8080/HealthPro/login.action;jsessionid =6CFEED96CBDEO95D8D525AA70493CI96#

(o]

Are you sure you want to deactivate this user?

Cancel

Figure 78: Manage Medical Experts (Deactivate a Medical Expert) — Admin Screen

88

Manage Medical Experts (Activate a Medical Expert) — Admin Screen:

The Admin can activate a Medical Expert by selecting ‘Active’ option and clicking ‘Submit’.

Hello Admin! X & a

X

a
€ @ localhost:8080/HealthPro/login.action# ¢ Q Search wB $§ 409

> Encolison Remote Health Service System + Logout

Manage User
@ Query Management

Edit Medical Expert Profile

574532100

T ——

% aaaia
Dentist i
Speciality : Surgeon
General Physician v

years Of Experience :

Residency-Kalamazoo A
Center for Medical v
Studies

O Active @ inactive

Figure 79: Manage Medical Experts (Activate a Medical Expert) — Admin Screen

Transfer Query — Admin Screen:

& Hello Admin! x =

€ @ localhost:8080/HealthPro/login.action# I Q, Search e & A

Admin Options

o Encoll Expert Remote Health Service System 2 Logout

Manage User
@ Query Management

Assigned To Speciatization
Dentist ~
Short Description Reassign To
|B I U & % x*| | i= := HE |93 || = |
| mm=E o
| stytes - || Normal B Ed E

Transferring this query to Dr. Expert4

Figure 80: Transfer Query — Admin Screen

89
Chapter 4: CONCLUSION

Struts2 is an open-source web application framework for creating enterprise-level Java
applications. It is elegant and extensible framework based on the Model View Controller (MVC)
design pattern. It can be easily integrated with other application frameworks like Spring and
Hibernate to create multi-layered web applications. The Struts2 User Interface (Ul) tags help the
developers create appealing interfaces with minimum effort. Hibernate is an Object Relational
Mapping (ORM) tool used to create relational mapping between the object oriented classes and
the database tables. It generates database independent code eliminating the need for the
programmer to write database specific queries. Its inbuilt caching mechanism helps to improve
performance in the persistence layer of the application.
The objective of this project is to develop a Remote Health Service System by integrating Struts2
and Hibernate frameworks. The application is flexible, modular and complete due to its multi-
layered architecture. This system provides an interactive platform for the patients and medical
experts to communicate remotely. The patients can send queries to medical experts regarding their
health symptoms and the medical experts can respond to the received queries. The main
functionalities of the system are patient registration, medical query submission, query reply and
past medical query search. This project would be a good reference for anyone trying to integrate
Struts2 and Hibernate frameworks and build a web application using them.
The known constraints of the Remote Health Service System are not so appealing layout in the
Internet Explorer browser and the limitation of having only one Admin user. This system can be
extended by implementing additional features such as email notifications for patients when a

response for their query has been received, mechanism to alert the medical experts about the

90
pending queries to ensure proper tracking of open queries and option to upload medical reports
like lab reports and X-ray images while submitting a medical query. Encrypting passwords while
saving to the database and option for the medical expert to view the history of past medical records

for a selected patient would be other useful enhancements.

91
References

[1] Huo, Yanming, et al. "Design of Java EE-Based Remote Health Service System.” Intelligent
Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on. Vol.
1. IEEE, 2014.

[2] "Struts2 Architecture — Vinaytechs Blog",
http://vinaytechs.blogspot.com/2009/12/developing-struts2-application-step-by.html

[3] "Struts 2 Architecture and Fundamentals — Anitech Blog", http://www.anitechcs.com/struts-2-
architecture-and-fundamentals/

[4] "'Struts 2 Tutorial — Javatpoint", http://www.javatpoint.com/struts-2-tutorial

[5] "Introduction to Struts 2 framework — CodeJava",
http://www.codejava.net/frameworks/struts/introduction-to-struts-2-framework

[6] "Introduction to hibernate framework — java2blog",
http://www.java2blog.com/2013/01/introduction-to-hibernate-framework.html

[7] "Hibernate Tutorial — TutorialsPoint", https://www.tutorialspoint.com/hibernate/

[8] "Hibernate Architecture — Javatpoint™, http://www.javatpoint.com/hibernate-architecture

[9] "Top 10 Advantages of Hibernate — OnlineTutorialsPoint™,
http://www.onlinetutorialspoint.com/hibernate/top-10-advantages-of-hibernate.html

http://vinaytechs.blogspot.com/2009/12/developing-struts2-application-step-by.html
http://www.anitechcs.com/struts-2-architecture-and-fundamentals/
http://www.anitechcs.com/struts-2-architecture-and-fundamentals/
http://www.javatpoint.com/struts-2-tutorial
http://www.codejava.net/frameworks/struts/introduction-to-struts-2-framework
http://www.java2blog.com/2013/01/introduction-to-hibernate-framework.html
https://www.tutorialspoint.com/hibernate/
http://www.javatpoint.com/hibernate-architecture
http://www.onlinetutorialspoint.com/hibernate/top-10-advantages-of-hibernate.html

	St. Cloud State University
	theRepository at St. Cloud State
	5-2017

	Remote Health Service System based on Struts2 and Hibernate
	Asma Saeed
	Recommended Citation

	tmp.1494359686.pdf.KCu4Q

