
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

5-2017

Virtual Teaching Assistant: A Web Tool (for C++)
Santosh Basnet
St. Cloud State University, basa0801@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at St.
Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Basnet, Santosh, "Virtual Teaching Assistant: A Web Tool (for C++)" (2017). Culminating Projects in Computer Science and Information
Technology. 17.
https://repository.stcloudstate.edu/csit_etds/17

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/17?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

VIRTUAL TEACHING ASSISTANT:

A WEB TOOL (FOR C++)

by

Santosh Basnet

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

In Partial Fulfilment of the Requirements

for the Degree of

Master of Science

in Computer Science

March 2017

Thesis Committee:

Dr. Jie Hu Meichsner

Dr. Omar Al-Azzam

Dr. Qingjun Jim Chen

2

ABSTRACT

With the advancements in technology and popularity of online education, the need for virtual

teaching assistance has suddenly risen. Students prefer to get virtual help from teachers and

tutors at their convenience and time. A virtual tutor – web tool is an effective way to meet

this requirement, which is convenient for both students and teachers.

The students at St. Cloud State University expect to have more one-on-one human tutoring,

which is hard in regular classroom settings. Especially, this expectation seems more serious

for students who take CSCI 201 – Computer Science I (C++). To solve this problem, a

virtual tutor - web tool has been proposed to help the students. The virtual tutor is emotive,

which can help distant students enhance their understanding of C++. Although this is a

blueprint which is used to learn CSCI 201 at St. Cloud State University, this can be applied

to any other classes. The tool allows the user to use speech recognition to ask questions to the

tool which returns useful answers; to work online with others; and to interact with teachers.

In addition, a screen sharing option is also offered to allow users to share the work with each

other. Additional services are offered.

This tool introduces an easy and better approach to offer extra help to the students in need

instead of relying 100% on the traditional approach. In addition, this might reach wider target

audiences including senior students who are ready to offer help to the junior students without

setting up any traditional face-to-face meetings. This could be a great tool for students with

low self-esteem as well.

In this document, overall tool design is explained in details, and the major steps in building

the tool are outlined. The steps include motivation, background, problem descriptions, scope,

research and analysis, design and implementation and testing carried out to develop the

virtual tool – web tool.

3

ACKNOWLEDGEMENT

I would first like to thank my thesis committee: Dr. Jie Hu. Meichsner, Dr. Qingjun Jim Chen

and Dr. Omar Al-Azzam of the Department of Computer Science at St. Cloud State

University. The constructive feedbacks and suggestions were abundant whenever I ran into a

trouble spot or had a question about my research or writing. I am thankful for their guidance,

constructive criticism and advices during the project.

I would also like to thank all the students who were involved in the initial survey for this

research project. Without their enthusiastic cooperation and input, the survey couldn't have

been effectively conducted.

I would also like to use this opportunity to express my gratitude to all my lecturers at the St.

Cloud State University (SCSU), Minnesota, USA for providing me the best of practical

knowledge such that I was able to use them while developing this tool.

I would also like to acknowledge Mr. Muaz Khan whose tutorials and online notes have

assisted me successfully completing the project, and I am gratefully indebted to his valuable

support to the overall virtual engineer committee in GitHub.

Finally, I must express my exceptionally significant appreciation to my friend Ritu Tamang

for furnishing me with constant support and encouragement during my time of study and

through the process toward researching, developing, and writing this theory. This

achievement would not have been conceivable without her. Thank you.

Author

Santosh Basnet

4

Table of Contents

Page

Abstract ..2

Acknowledgement ...3

List of Figures ..10

List of Tables ...13

List of Abbreviations ...15

Chapter 1: Introduction ..16

1.1.Chapter Overview ..16

1.2.Motivation ..16

1.2.1. Popularity of Online Education ...16

1.2.2. Student’s Issues and Lack of Services to Acknowledge Them17

1.3.Problem Statement ...17

1.4.Project Scope ...17

1.5.Main Objectives ...17

1.6.Approach ..20

1.6.1. Current Solution ..20

1.6.2. Proposed Solution ...21

Chapter 2: Literature Evaluation...23

2.1.Chapter Overview ..23

2.2.System Analysis ...23

2.3.Similar Tool with Similar Feature Analysis ..24

2.3.1. Speech Recognition Tools ..24

2.3.2. Screen Sharing Tools ..26

2.3.3. Online Communication Tools ...28

2.4.Similar Tool Analysis ..30

2.4.1. Treehouse ..30

2.4.2. Udemy ...30

2.5.Technical Analysis ...31

5

2.5.1. Speech Recognition...31

2.5.2. Screen Sharing ..32

2.5.3. Online Chat Communication ..33

2.5.4. Other Features ...34

Chapter 3: Requirements and Specifications ..35

3.1.Chapter Overview ..35

3.2.Web Tool User Roles ...35

3.3.Functional Requirements ...35

3.4.Non-Functional Requirements ...37

3.5.Resource Requirements ...37

3.5.1. Software Requirements ...37

3.5.2. Hardware Requirements ..38

3.5.3. Web Server Requirements ..38

3.5.4. Database Requirements ...38

3.6.Language Requirements for Building the Tool ...38

3.6.1. Scripting Language ...38

3.6.2. Markup Languages ..38

Chapter 4: System Design ...39

4.1.Chapter Overview ..39

4.2.System Architecture Design ..39

4.2.1. High-level Architecture Design Diagram ...39

4.3.Site Map ...41

4.3.1. Student Site Map ...41

4.3.2. Teacher Site Map ..42

4.4.Use Case Diagrams ..42

4.4.1. Overall Complete Use Case Diagram ...42

4.4.2. Use Case Diagram for Student ..44

4.4.3. Use Case Diagram for Teacher ...44

4.4.4. Use Case Diagram for Guest ...45

4.5.Extracting Interfaces, Controllers and Services Scripts ...46

4.5.1. Interface Designing ...46

6

4.5.2. Extracting Controllers and Services ..73

4.5.3. Extracting Database Tables and File Storage Necessity80

4.6.Use Cases Realization ..82

4.6.1. Log in ..83

4.6.2. Go to FAQ Page ..86

4.6.3. View Lab Assistant Hours ..89

4.6.4. Contact Admin or Teacher ..92

4.6.5. Ask a Question ..94

4.6.6. View Chapters ...98

4.6.7. Go to Online Chat ...100

4.6.8. Start Share Screen ...109

4.6.9. Join Room ...113

4.6.10. Manage Members ..115

4.6.11. Manage Messages ...121

4.6.12. Manage Lab Assistant Hours ..126

4.6.13. Manage Content in the Website ..131

4.6.14. Log Out ...133

4.6.15. Search Term in the Page ...134

Chapter 5: System Implementation ...136

5.1.Chapter Overview ..136

5.2.Design Decisions ...136

5.3.Development Environment ..136

5.3.1. Installation and Configuration of Tools ..136

5.3.2. Language Environment ...137

5.4.Code Implementations and Major Source Codes...138

5.4.1. Login Feature Implementation ..138

5.4.2. Ask a Tutor Page Implementation Using Speech Recognition140

5.4.3. Online Chat Implementation ...143

5.4.4. Status Controller ...147

5.4.5. Screen Sharing Implementation ..148

5.4.6. Manage Members Implementation ...155

7

5.4.7. Displaying and Modifying Lab Assistant Hours’ Table Implementation161

5.4.8. Search Controller (for FAQ and Chapters Page) ..164

5.4.9. Contact Message Sending Implementation ...164

5.4.10. Contact Message Management Implementation ...166

5.4.11. Resume Session Controller ...169

5.4.12. Additional Services ...170

Chapter 6: Testing ...173

6.1.Chapter Overview ..173

6.2.Unit Testing ...173

6.2.1. User Verification ...173

6.2.2. Speech Recognition Activation ...174

6.2.3. Speech Recognition...174

6.2.4. Database Search for Answer ...175

6.2.5. Change Status ..177

6.2.6. Send Message in Online Chat ...177

6.2.7. Receive Messages Sent in Online Chat ...178

6.2.8. Save Online User Details ..178

6.2.9. Open Screen Sharing room ...179

6.2.10. Sending Invitation ...180

6.2.11. Lab Assistant Hours’ Update Verification ..181

6.2.12. Send Contact Message ..181

6.2.13. Add a New Member to the System ...182

6.2.14. Edit a Member to the System ..183

6.2.15. Delete a Member from the System ...183

6.2.16. Delete a Contact Message from the System ..184

6.2.17. Search Content in the Page ...184

6.3.Integration Testing ...185

6.3.1. ‘Searching the Database’ Integrated with ‘Speech Recognition’185

6.3.2. ‘Send/Receive Messages’ Integrated with ‘Status Changing Mechanism’186

6.3.3. ‘Open Screen Sharing Room’ Integrated with ‘Send Invitation’187

6.3.4. User Verification Integrated with Save Online User’s Details188

8

6.4.Overall System Testing ..189

6.4.1. System URL Validation ..189

6.4.2. Home page – Guest (After launching the System in the Browser)190

6.4.3. Log in ..192

6.4.4. Contact ..198

6.4.5. Logout ...201

6.4.6. Home Page – Student ..202

6.4.7. Ask a Question Page – Student ...204

6.4.8. Online Chat Page – Student ..209

6.4.9. Screen Sharing Page – Student ...217

6.4.10. Chapters Page – Student ...235

6.4.11. Lab Assistant Hours Page – Student ...239

6.4.12. FAQ Page – Student ..240

6.4.13. Contact Page – Student ...243

6.4.14. Home Page –Teacher ..244

6.4.15. Ask a Question Page – Teacher ..245

6.4.16. Online Chat Page – Teacher..245

6.4.17. Screen Sharing Page – Teacher ...245

6.4.18. Chapters Page – Teacher ...246

6.4.19. Lab Assistant Hours Page – Teacher ..246

6.4.20. FAQ Page – Teacher ...247

6.4.21. Manage Page – Teacher ..248

6.4.22. Message Page – Teacher ...260

Chapter 7: Deployment ...264

7.1.Chapter Overview ..264

7.1.1. Deployment Settings ...264

Chapter 8: Evaluation ...265

8.1.Chapter Overview ..265

8.2.Accomplishments ...265

8.3.Limitations ...265

8.4.Future Enhancements ...266

9

8.5.Maintenance ...267

8.6.Conclusion ...268

References ..270

Appendix A – Source Codes ..273

10

List of Figures

Figure 1: MS Bing API Speech Recognition trial ...25

Figure 2: Google Web Speech API Speech Recognition trial ...26

Figure 3: Google Hangouts Chat UI ..29

Figure 4: Google Hangouts Video call UI ...29

Figure 5: High –Level System Architecture Diagram ...40

Figure 6: Site Map for Student...41

Figure 7: Site Map for Teacher ..42

Figure 8: Overall Use Case diagram ..43

Figure 9: Student Use Case diagram ..44

Figure 10: Teacher Use Case diagram ...45

Figure 11: Guest Use Case diagram...46

Figure 12: Home page for Guest ..47

Figure 13: Home page for Student ...49

Figure 14: Drop down menu for Ask a Tutor menu ...51

Figure 15: Drop down menu for Study Materials menu ..51

Figure 16: Home page for Teacher ..52

Figure 17: Ask a Question interface ..54

Figure 18: Mic design when listening to the user ..55

Figure 19: Online Chat interface: online users box on left, chat messages box on right.........56

Figure 20: Different status available for users ...56

Figure 21: Status of message sent as Message sent in circle ...58

Figure 22: Screen Sharing interface final design (before screen share starts) 59

Figure 23: Screen Sharing interface final design (after screen share starts) 59

Figure 24: Chapters interface with collapsible titles..61

Figure 25: Lab Assistant Hours interface designed for students/guests63

Figure 26: Lab Assistant Hours interface designed for teachers/admins64

Figure 27: FAQ interface with a complete question set ..65

Figure 28: Manage interface ..67

Figure 29: Add a new member form ..68

11

Figure 30: Edit a member form ..69

Figure 31: Login screen Interface design ...70

Figure 32: Log out interface ..71

Figure 33: Contact interface (Only available for student/guest) ...72

Figure 34: Message interface for Teachers ..73

Figure 35: Log in Use Case diagram ...83

Figure 36: Use login full action flow diagram ...85

Figure 37: Go to FAQ page Use Case diagram ...86

Figure 38: Go to FAQ page full action flow diagram ..88

Figure 39: View lab Assistant hours’ page Use Case diagram ..89

Figure 40: View lab assistant hours’ full action flow diagram ..91

Figure 41: Contact admin or teacher page Use Case diagram ...92

Figure 42: Ask a Question Full Use Case diagram ..94

Figure 43: Ask a Question full action flow diagram..97

Figure 44: View Chapters Full Use Case diagram...98

Figure 45: View Chapters full action flow diagram ..100

Figure 46: Go to Online Chat Full Use Case diagram ...100

Figure 47: Go to Online Chat full action flow diagram ...102

Figure 48: Send Message full action flow diagram ...105

Figure 49: Change Status full action flow diagram ...108

Figure 50: Share Screen Full Use Case diagram ...109

Figure 51: Start Screen Share and invite users full action flow diagram111

Figure 52: Join Room Full Use Case diagram ...113

Figure 53: Manage Members Full Use Case diagram ...115

Figure 54: Manage Members full action flow diagram ...117

Figure 55: Manage Members Full Use Case diagram ...121

Figure 56: Manage Messages full action flow diagram ...123

Figure 57: Manage Lab Assistant hours’ full Use Case diagram ..126

Figure 58: Manage Lab Assistant hours’ full action flow diagram128

Figure 59: Manage Content on the website full Use Case diagram131

Figure 60: Log Out Full Use Case diagram ...133

12

Figure 61: Communication between scripts ..138

Figure 62: Login mechanism full action flow..139

Figure 63: Ask a Tutor full action flow ...141

Figure 64: Sending a Message full action flow ...146

Figure 65: Screen Sharing full action flow ..149

Figure 66: Members Management full action flow ...156

Figure 67: Lab Assistant hours’ management full action flow ..162

Figure 68: Contact Message sending full action flow ...165

Figure 69: Manage Contact messages full action flow ..167

13

List of Tables

Table 1: Property matrix for the default Home page (without logging in)48

Table 2: Property matrix for the default Home page logged in as Student49

Table 3: Property matrix for the default Home page logged in as Teacher52

Table 4: Property matrix for Ask a Question interface ..55

Table 5: Property matrix for Online Chat interface ...57

Table 6: Property matrix for Screen Sharing interface ..60

Table 7: Property matrix for Chapters’ interface ...62

Table 8: Property matrix for Lab Assistant Hours’ interface for students/guests....................63

Table 9: Property matrix for Lab Assistant Hours’ interface for teachers/admins64

Table 10: Property matrix for FAQ interface ..66

Table 11: Property matrix for Manage interface ..67

Table 12: Property matrix for Adding a new member form ..68

Table 13: Property matrix for Editing a member form ..69

Table 14: Property matrix for Log in interface ..70

Table 15: Property matrix for Contact interface ..72

Table 16: Property matrix for Message interface for teacher ..73

Table 17: Log in Use Case realization table ..83

Table 18: Go to FAQ page Use Case realization table ..86

Table 19: View lab Assistant hours’ page Use Case realization table89

Table 20: Contact admin or teacher page use case realization table ..92

Table 21: Ask a Question Use Case realization table ..94

Table 22: Chapters Use Case realization table ..98

Table 23: Go to Online Chat Use Case realization table ...101

Table 24: Send Message (in chat) Use Case realization table ...103

Table 25: Change Online Status Use Case realization table ..106

Table 26: Start Screen Sharing Use Case realization table ..109

Table 27: Invite Users Use Case realization table ...112

Table 28: Join Room Use Case realization table ...114

Table 29: Manage Members Use Case realization table ..115

14

Table 30: Add Members Use Case realization table ..118

Table 31: Edit Members Use Case realization table ..119

Table 32: Delete Members Use Case realization table ..120

Table 33: Manage Messages Use Case realization table ...122

Table 34: Read Messages Use Case realization table ..124

Table 35: Delete Messages Use Case realization table ..125

Table 36: Manage Lab Assistant Hours Use Case realization table126

Table 37: Add new schedule Use Case realization table ...129

Table 38: Modify or Delete Scheduled Hours Use Case realization table130

Table 39: Manage Content in the website Use Case realization table132

Table 40: Log Out Use Case realization table ...133

Table 41: Search term in the page Use Case realization table ...134

15

List of Abbreviations

 API - Application Program Interface

 GUI - Graphical User Interface

 RTC - Real-Time Communication

 MVC - Model View Controller

 VNC - Virtual Network Computing

 SSH - Secure Socket Shell

 RDBMS - Relational Database Management System

 HTTP - Hyper Text Transfer Protocol

 JS - JavaScript

 HTML - HyperText Markup Language

 CSS - Cascading Style Sheets

 URL - Uniform Resource Locator

 SCSU - Saint Cloud State University

 CSCI - Computer Science

 FAQ - Frequently Asked Question

16

Chapter 1: INTRODUCTION

1.1 Chapter Overview

This chapter summarizes the motivation behind the research and implementation of the

project, the main objectives, and the methodology followed to complete the project. This

section highlights the need of virtual teaching assistant: a web tool that could potentially

enhance the performance of the students.

1.2 Motivation

This section is dedicated to describing the motivations behind the research and

implementation of the project.

1.2.1 Popularity of Online Education

Online communication tools have been increasingly popular in the modern world, and virtual

classrooms are becoming common [1][2]. Students can now interact with classmates and

faculty virtually and do various tasks of college life, such as turning in homework, discussing

classroom activities, or even taking quizzes through the internet [3]. There are many cases

where online tools and applications have helped students improve their academic

performance. This kind of virtual tools has improved students’ learning and has allowed both

students and faculty to use time more efficiently.

Of the many popular virtual tools, courses offered on YouTube and applications produced by

Udemy are some of the examples which have produced positive results. They are helping

students learn different programming languages and use of 3d tools like Unity. For example,

Udemy currently claims that it offers around 40,000+ courses, and there are over 10 million

+ students taking courses in everything from programming to yoga to photography to much

more [2]. For a college student, these resources might be helpful to boost grades as well.

However, these are the courses which have no link to the courses offered at colleges. The

order of the class contents may not synchronize with the class contents at a university. In

addition, these courses need a membership to use resources.

17

Nonetheless, virtual tools have a great deal more to offer students. Use of them can ideally

save time. There are chances of more interaction between students, which might not be

possible in a regular classroom setting. Therefore, it would be helpful if such kind of tool

could be built to help college students with their university.

1.2.2 Student’s Issues and Lack of Services to Acknowledge Them

It is common for students to lose attention in a classroom setting. Missing one or more

lecture classes may be a bigger issue. In this case, one-on-one human tutoring could be

effective, enabling higher success for students. However, providing this service to each

student would be an unrealistic goal. Lab assistant hours is another useful option. For

example, currently, the Computer Science Department at SCSU offers Lab consulting hours

for those who need help with assignments as well as labs with CSCI 201 class. Using this

service is proving to be helpful to students. However, not all students are able to benefit from

this service. For a working student, the lab hours may not be the best time. Also, some

students may have other classes during the Lab consulting hours. Another huge issue for

some students is low self-esteem, which may hinder one-on-one interaction with lab

assistants or even with a professor.

1.3 Problem Statement

To overcome various issues mentioned in section 1.2.2 and to add additional support to lab

assistants and professors for CSCI 201 course, a tool is proposed to develop as a teaching

assistant where students can ask questions on C++. It would also be able to answer all the

major topics and related questions listed in the course contents. Students will have access to

this tool at any time and at their convenience, potentially being helpful to all students.

Besides students, teachers would also benefit from this system. Online screen sharing and

virtual communication (online chat service) could be done to help students virtually and even

organize the class in need. The teacher can even post useful materials for students in the web

tool.

18

This tool, however, would not answer unrelated queries (strictly to CSCI 201 class), and it is

not meant to do students’ homework assignments. The tool’s only purpose is to help students

with some examples/samples and videos related to the labs and provide services such as

voice-driven technology to answer the related queries and provide screen sharing options to

share knowledge with other students or with teachers.

1.4 Project Scope

The proposed solution is limited to CSCI 201 class offered at Saint Cloud State University

(SCSU). This web tool has its own user interfaces for different actions such as asking a

question using voice recognition or by typing, screen sharing, looking at lab assistant

schedule, etc. The scope of web tool will be limited to following aspects:

 The web tool for students who are taking CSCI 201 (C++) class.

 Speech recognition recognizes voice input in English from the user when

microphone is allowed.

 Screen sharing when microphone (for speech) and camera (if video cam is to be

shared) are enabled.

o In order to use screen sharing, an extension is to be downloaded which is

currently available only for Google Chrome and Firefox. However, an

extension is not needed to view a shared screen.

 Online communication (chat service) when logged in.

 Platform: Desktop or Laptop computers (for optimum performance). However,

other devices are also useful to surf the web tool but may not give full service.

 Users of the tool: students and teachers (included tutors).

1.5 Main Objectives

The main objective to be accomplished is to build a web-tool (website) to assist CSCI 201

students to understand the basic concepts of C++, which will be an effort to boost the

academic performance of students in the class. To meet this objective, described below are

the sub-tasks that need to be completed:

19

 Development of a website interface that allows students and teachers to use

different functions offered by the tool.

The proposed tool will have its own user interface which is slightly different for

two kinds of users: students and teachers. The user should be able to easily

navigate around and make use of all the functions offered. The functions offered

are limited for this project, and each will have its own interface which will be

discussed more in detail later.

 Log in system

The tool will be able to offer login system for two different kinds of users: student

and teachers. Each will have their own interface to navigate around the tool. Only

partial services are offered if the user is not logged in.

 Speech recognition.

The tool will be able to offer the speech recognition system to be able to ask

questions and provide the answers. The system will be able to successfully

recognize the question asked by the user when enabled and perform the function

accordingly. The user can speak in a natural way, which should not be mandatory

and only be enabled when the user wants to make use of it.

 Screen sharing

The tool will offer screen sharing options wherein the user will be able to

organize their own room and invite other users to the room. As an audience, the

user will be able to join the room and attend the meeting without any issues.

While screen sharing, the user should have control over audio/video and only

enabled when the user wants to make use of it.

 Online communication – chat service

The tool will offer online chat service. Group communication will be available

where students can share the confusion with each other. Students will be able to

20

help each other in need. All the available students and teachers will be listed and

can start communication. A separate interface will be available solely for this

purpose.

 Real-time modifiable table for lab assistant hours

The tool will offer modifiable table to update lab assistant hours in the tool for

users logged in as a teacher.

 Contents of chapters, FAQ, and contact.

The tool will list chapter and sections required for the class. FAQ section will

include all the important C++ FAQs. A quick searching mechanism will be able

to search through the page making it easier for the user to navigate through the

chapters and FAQs. Contact page will allow the user to connect with

teacher/admin of the tool.

 User-friendly

The tool will be designed such that all the implementation complexities are

hidden from the user and will be very easy to navigate through the tool to make

use of all the important functionalities.

1.6 Approach

1.6.1 Current Solution

As mentioned earlier in section 1.2.1, there are multiple online tools and websites that are

offering similar kind of services to the students. YouTube lectures, Udemy, TreeHouse are

some of the examples. But, services like answering machine using speech recognition, online

communication tools and screen sharing may not be available in a single tool.

Yet, there are various other tools, software applications, and websites that already support

speech recognition. One such example is Google [4], which supports speech recognition for

21

searching. The goal of speech recognition could be quite different in other cases depending

on their primary goals.

Similarly, there are many other software applications currently available that offer screen

sharing. TeamViewer, Skype, Viber, WebEx are some of the examples. These services,

however, are only focused on the screen sharing aspect and may be only paid service.

Likewise, there are tools that offer online chat services but are only focused on online

chatting which is only a part of this project.

However, using these individual tools for some individual features may come up with some

extra costs. And so far, there are not any tools that are available with these many features

combined together and targeted only to CSCI 201 students at SCSU. Currently, SCSU has

D2L system to help students in many ways like accessing lecture notes, assignments, and

other things but D2L still lacks the features mentioned in this project.

1.6.2 Proposed Solution

Using different tools and software applications for different services might be painful, time-

consuming and expensive as well. The solution to this problem may be building a web tool

that supports all services mentioned above. Having a web tool with separated interfaces for

each functionality for CSCI 201 students and teachers could be time-saving, easier and

manageable.

So the ultimate solution is to build a website (also referred as web-tool) that would be

accessible to registered students at any given time. The web-tool will contain detailed

information on different topics in C++. In addition, each topic will be linked to the helpful

video(s) and the realated lecture. This tool will virtually provide helpful answers to student’s

questions, which could also be done using speech recognition technology.

As mentioned above, web-tool will also be facilitated with a voice recognition system where

a student can verbally ask questions. Students can also directly go to their desired content in

22

a new window, which will have a detailed description of the chosen content along with the

video demonstration of how that particular topic in C++ works. A separate page for the lab

assistant will also be available in the web tool which is editable for teachers.

The tool will also be facilitated with screen sharing option where teachers/students can have

a separate room and start sharing the screen. A separate window will be available for the

screen sharing. It can even be possible to organize a small class with organizer sharing the

screen from his endpoint.

The tool will also provide an online chatting service where students can ask questions to an

available tutor/lab assistant or other students. This can help students get the lab assistant’s

service from anywhere during lab assistants’ hours. This can highly improve the performance

of students because they will now have the flexibility to ask questions and gain optimum help

virtually. This can also be a great tool for those students who do not have enough confidence

and are fearful of raising questions when they have no clear concepts about contents.

23

Chapter 2: LITERATURE EVALUATION

2.1 Chapter Overview

This chapter is more focused on the literature review of the project dividing into three main

categories: system analysis, feature analysis and technical analysis.

2.2 System Analysis

System analysis plays a vital role in identifying and gathering the system requirements. This

is needed to successfully know the exact needs of the users and functionalities of the system.

The main source of gathering the requirements for this system was through the survey,

brainstorming, observation, user’s suggestions, and document analysis. The area of research

started with brainstorming a potential idea of making web tool to help the new students with

C++. The brainstorming was followed by a small survey which showed the positive results to

start with the project. In addition, observation from teachers and lab assistants suggesting

struggle of students helped in gathering the major requirements. The suggestions from the

thesis committee to include features like online communication tool and screen sharing also

helped in determining some of the major requirements of the project. Finally, document

analysis was done reviewing different projects which offered similar features and

functionalities which helped gathered and finalized more requirement for this project.

Survey Analysis

a. How often do you lose concentration in class?

 Never: 10%

 Sometimes: 40%

 Most of the time: 50%

b. What is the primary reason behind that?

 Missing class: 25%

 Unable to understand the concept: 40%

 Being late to the class and not enough practice after classes: 20%

24

 Not applicable: 15%

c. Do you think a tool (software or online) can help you with the class in order to

help you understand the basic concepts of CSCI 201 class?

 Yes: 73%

 No: -

 Maybe: 27%

2.3 Feature Analysis

Different features are offered by different tools. It is important to do the analysis of existing

tools that offer similar features that are intended to be included in this project. For example,

there are many applications that offer screen sharing but do not necessarily offers other

services that this project is offering. Analysis of those projects is necessary to know the

major motives behind building the project, identifying the best practices and features offered

by the project. Studying of similar kind of tools offering similar features also helps in

suggesting a better and fastest path in starting the project. Furthermore, finding flaws in those

projects will help in building the project with new technology free of those flaws. This will

ultimately help in building a more effective product with enhancements.

In correlation to this project, only some of the major features have been analyzed such as

speech recognition, online communication, and screen sharing.

2.3.1 Speech Recognition Tools

This section is dedicated to quickly analyze some popular speech recognition tools to know

important aspects while integrating the similar tools in the project.

2.3.1.1 Microsoft Bing Speech API

Microsoft has developed Bing Speech API that provides the service of speech recognition

converting spoken audio to text. The API can recognize audio and displays the converted text

in real-time. Once the audio is recognized, it is sent to the server, and the result is returned

25

and displayed [6]. Microsoft has provided a speech recognition demonstration page that

exhibits the power of the tool (https://www.microsoft.com/cognitive-services/en-us/speech-

api) [7]. A button with the microphone image, on-click, triggers the action of recording the

voice which is then sent to the server for converting and displaying the result in the text

format as shown in Figure 1.

Figure 1: MS Bing API Speech Recognition trial (adapted from [7])

However, this feature is not free to integrate and very complicated. Hence, this API may not

be of much help to this project. It is built for the commercial purpose. Nonetheless, this gives

an idea of how the feature can be designed and built. This could be a great help in starting to

design and write the speech recognition tool for the project.

2.3.1.2 Google Web Speech API

This API developed by Google provides the service of speech recognition capability in latest

google chrome versions. This is new web speech API which makes easier for a developer to

add speech recognition to the web page. This API claims to recognize the text as soon as the

user speaks and displays the recognized text [4].

https://www.microsoft.com/cognitive-services/en-us/speech-api
https://www.microsoft.com/cognitive-services/en-us/speech-api

26

Google has provided a sample web speech API demonstration page

(https://www.google.com/intl/en/chrome/demos/speech.html) [5] with simple user interface

to demonstrate the feature. The user can use the web speech feature by clicking on the

‘microphone icon’ which appears on the right top end of the textbox as shown in Figure 2.

Once the icon is clicked, speech recognizer activates which starts capturing audio. The final

audio is then sent to servers for transcription, and transcribed text is displayed in the text box.

It also can detect user input in multiple languages.

Figure 2: Google Web Speech API Speech Recognition trial (adapted from [5])

This feature seems to fit the speech recognition requirement of the project which is one of the

major components. Based on the UI requirement and technical complexity, implementation

of similar feature can be a good candidate to be included in this project. Especially, the demo

source code is available to use, and this could give a great head start on the project.

2.3.2 Screen Sharing Tools

This section is dedicated to analyzing some widely-used screen sharing tools. The features

that these tools offer could be very important. They may be the ‘must have’ feature to include

in the project while integrating similar screen sharing tools in the project.

https://www.google.com/intl/en/chrome/demos/speech.html

27

2.3.2.1 Show My PC API [8]

This API is developed by Show My PC group. It combines Virtual Network Computing

(VNC) remote access technology with an open-source Secure Socket Shell (SSH) forwarding

client to provide screen sharing option. The main goal of this API is to support the

integration of screen sharing into any kinds of custom applications or websites. In addition,

this API also supports following features:

a. System can send alerts to the users for a session by email or phone with no password

exchange required.

b. If the password is to be used, system can generate a password with a specific length.

c. Much like team viewer application, this API also supports the auto start of the

application with a predefined password.

This API claims to be one of the excellent providers of screen sharing solutions. For this

project, similar kind of API can be built and integrated into the main project. However, to use

this service, the user needs to download and install the application. Integrating this tool to

this project could also be a solution but, this API is not free to use and very complicated.

Nonetheless, this API gives an idea regarding interface designing and on what features the

screen sharing can offer.

2.3.2.2 screen leap API [9]

Screenleap is a very popular screen sharing tool which claims to be the fastest and simplest

way to share screen using any kinds of web-enabled devices. This offers services such that no

additional software must be downloaded. Screenleap also offers the service of chrome

extension. This extension can be installed in the web browser and the user can start sharing

screen. Although this tool is popular and offers a variety of services, it is very complicated

and may take a longer period to build similar tools and requiring more resources. This tool,

however, can give the basic idea of how screen sharing can be built, both from UI and tool’s

features perspective.

28

2.3.3 Online Communication Tools

There are various online chatting tools available to make the online communication better,

especially for team projects. This section is dedicated to analyzing some similar tools so that

some important features can be learned and possibly help in integrating to the project

depending on the requirements.

2.3.3.1 Google Chat/Hangouts

Google hangouts as shown in Figure 3 and Figure 4, have become very popular in terms of

online chatting and even in screen sharing/video calling aspect. This includes instant

messaging, video chat, SMS and VOIP features [10]. In addition, this is free to use. The only

criteria to use this service is to have a Gmail account. The tool, however, is heavy and

complex. The amount of manpower and technology used in the project is huge. Even though

web tool project is targeting to have similar feature as offered by Google hangouts, same

amount of manpower and technology is not available. Hence, integrating similar feature is

not feasible in web tool project. However, it is possible to have a simpler version of the

feature which does not require more manpower and is economical too.

In conclusion, a similar feature is good to have in the web tool project but with much

simplicity. Nonetheless, Google hangout can be a good reference when the similar feature is

to be integrated.

29

Figure 3: Google Hangouts Chat UI – Google Inc., n.d

Figure 4: Google Hangouts Video call UI – Google Inc., n.d

30

2.3.3.2 HipChat [11]

HipChat is another popular tool offering both online communication and screen sharing

features. HipChat also offers free services but is only limited to messaging services. This is

designed for more security communication targeted toward IT teams. The Hipchat team says

that it is persistent, searchable, and loaded with goodies such as group chat, video chat, and

screen sharing. However, all the services offered by this tool is not free to use. Hence, this

tool may not be of great interest to this project. This tool, however, like Google Hangouts,

can be a great reference since this tool offers the similar features the project is targeting to

integrate.

2.4 Similar Tool Analysis

Besides the important features mentioned in section 2.3, there are tools that offer the virtual

tutoring services such as Treehouse and Udemy. Similar tools can be analyzed to identify and

gather the best practices and requirements that could be crucial for this project. Features

offered by these tools can be studied and may be considered to involve in the current project.

2.4.1 Treehouse [1]

Treehouse is one of the famous online tools that is getting very popular among students. This

tool contains a numerous number of tutorial videos that cover many topics and areas from

web design, coding, business to much more. The tool also offers different quizzes and

interactive code challenges. These features can be very critical for students. However, these

services are only available for subscribed users and not free to the user for all. For the

project, integrating tutorial videos can be an important aspect like in Treehouse.

2.4.2 Udemy [2]

Udemy is another online tool that offers a variety of services virtually to the students. This

tool, similar to Treehouse offers tutorial videos and exercises related to different topics. In

addition, the tool offers different certification course packages. However, the features are

only available for subscribed users. Even though these services are very different and seem to

31

be out of scope for this project, most certainly, these features can be considered for future

enhancements.

Even though features listed in Treehouse and Udemy are important features to have, they are

unlikely to be included in the project. The goal of the project is to target students taking

CSCI 201 and achieve success in the class. Services offered in Treehouse and Udemy seems

to be targeted to self-learners who are interested in certain kind of study packages. Therefore,

all the features listed in these tools may not be considered to include in this project.

2.5 Technical Analysis

Features analysis has been done studying different tools offering major features. However,

there are many technical decisions to be made before the implementation of features like

speech recognition, online communication, and screen sharing.

2.5.1 Speech Recognition

After feature analysis, it is clear that speech recognition can offer different kinds of services

to the users. However, it is very important to have a deep technical understanding of how to

implement this feature.

There are libraries and APIs available which can offer the functionality of the speech

recognition. One of such libraries is Speech Recognition API, which is getting very popular

since speech recognition software’s are getting more and more important and becoming

major integral part in every software. The HTML Speech Recognition API allows JavaScript

to have access to a browser’s audio stream with the user’s permission and finally converts

them to the text [13]. Speech recognition can be implemented either continuous or discrete

way [12].

1. Discrete speech recognition is done when the user speaks slowly, and after each

word, there is some pause. This is relatively easy implementation approach since the

32

system is able to recognize each word at a time. However, from user’s point of view,

users should speak such that there is a pause after each word.

2. Continuous speech recognition allows the user to speak normally and the result is

displayed when the user stops talking. It lets the user fluently dictate words without

any pause between words/sentences. This, in turn, makes the implementation

somewhat complex since the user can speak at any pace and there are multiple

words/sentences to be recognized.

For this project, the speech recognition feature can be used extensively and therefore

continuous recognition is needed. Given the fact that user will be asking continuous question,

a continuous speech recognition is necessary. Discrete speech recognition can consume some

time in recognizing the user’s input which can be a negative aspect of the tool. Below is the

sample code implementation of continuous speech recognition using HTML Speech

Recognition API [13].

var recognition = new webkitSpeechRecognition();
recognition.continuous = true;
recognition.onresult = function(event) {
 console.log(event)
}
recognition.start();

2.5.2 Screen Sharing

Several libraries are available, which can be used when implementing the screen sharing.

This is the most complex feature that is to be implemented in the system. More technical

analysis and decisions are to be made before the implementation of this feature.

As mentioned in section 2.3.2.2, Screenleap [9] is one of the available tools that offer the

services of screen sharing. Screenleap offers the service of chrome extension which once it is

installed, it allows the user to start sharing screen using any web browser. A similar approach

can be implemented in this project. The goal is to use a web browser to start sharing the

screen. An extension can be developed for web browsers and make them available in

33

extension store. This lets the user to access the extension easily in extension store and not

make them download and install the standalone tool in the system which can be considered

serious security threat.

To implement this feature, a widely available open sourced RTCMulticonnection, which is a

WebRTC library, can be considered. This library in JavaScript allows sharing both screen

and audio with the help of a signaling server and an extension [14][15]. This tool allows to

capture the desktop windows, but given that other end user in the screen, sharing session is

also using the WebRTC capable browser. This library is easy to implement and need to be

considered to implement screen sharing portions of the tool.

2.5.3 Online Chat Communication

Like speech recognition, it is clear from the feature analysis on kinds of services that are

needed to be offered when online chat communication is implemented. During online chat

communication, multiple users are involved, and responses are live to each user. It is very

necessary to understand the involvement of web servers in processing the messages such that

it is visible to each user using the system. Implementing this feature, there are multiple

decisions to be made.

A server should be created which not only processes each sent messages but also stores the

messages for future purposes. All the sent messages can be saved in the file on the server

which can be retrieved whenever needed. A good interface design is needed, and code

implementation must be done such that there is good and fast communication between the

interfaces and the web servers processing the message. To meet this purpose, PHP or Perl

can be very helpful which can run the code in the server generating necessary HTML which

is eventually sent back to clients. A thorough understanding of PHP or Perl is therefore very

necessary since a lot of features in the tool will be communicating with servers. [17]

However, unlike in Perl or even C, PHP requires much less amount of codes and commands

to execute similar functions. A PHP page can contain HTML with embedded code to perform

34

server side jobs. The similar job can be very complex and time-consuming when written in

Perl or even in C. Hence, for this project, PHP can be very important in implementing almost

all the service side coding and implementation. Especially this can be very crucial in

implementing the online chat communication which requires a lot of file opening, writing,

saving and closing.

A sample PHP page implementation is shown below [18].

<!DOCTYPE HTML>
<html>
 <head>
 <title>Sample</title>
 </head>
 <body>
 <?php
 echo "Hello World !";
 ?>
 </body>
</html>

Sample PHP code for file content reading, opening, and writing [19].

// Reading the file content
$fileContent = file($filename);

// Opening a file for writing
$fp = fopen($filename, "w+");

// Writing the file
fwrite($fp, "Some text");

2.5.4 Other Features

To implement and integrate most of the features into the web tool, it requires the knowledge

of HTML, CSS, PHP, JavaScript including Bootstrap and Angular JS framework. jQuery is

another library which is hugely used in implementing different features in the web tool.

Client-side implementation could be done by using HTML, CSS, and JavaScript, and server-

side implementation could be handled by PHP.

35

Chapter 3: REQUIREMENTS AND SPECIFICATIONS

3.1 Chapter Overview

A full description of the requirements, intended purpose and the specifications for the web-

tool to develop are described in detail in this chapter. Other topic such as what services the

web-tool will offer, how it will interact with the users, and how it will be expected to perform

will be discussed in this chapter as well.

3.2 Web Tool User

There are two types of web tool users.

a. Admin/Teacher: They will be responsible for updates, management of contents and

other users.

b. Students: They are the actual user of the website’s functionalities. Invalid users do not

have a valid user-id and/or password. They will not be able to use major services

offered by the website such as online chat service, speech recognition equipped

searching mechanism and screen sharing.

3.3 Functional Requirements

Since there are two kinds of users who will be using the tool, there will be some similar and

some different interfaces depending on the type of user.

a. First, a logging in mechanism should be integrated so that tool can only be used by

dedicated users and to differentiate the kind of users. This should be Login page

which should ask for user’s credential to log into the system.

Once logged in, for both Student and Teacher, the website should provide the

following major functionalities with their own interfaces.

b. A home page describing the tool with the main menu bar that will help in navigating

around the tool.

c. Ask a question page that should allow the user to ask a course related question and

should be able to answer with related description and videos. The user should be

allowed to do this action by either manually typing question or using speech

recognition technology.

36

d. Ask a Tutor page that should allow the user to use two main services: online chat and

screen sharing. Each will have their own interfaces.

i. Online Chat page should allow student/teacher to post the queries and see all

the available online users. This will be a public chat room where everyone

should be able to see the communication and be able to react to them.

ii. Screen Sharing page should allow the user to start/open screen sharing and be

able to invite others to the room. Once a room is opened, the user should be

able to share the unique room URL to others. Screen sharing should enable

both audio/video as per user’s requirement.

e. A Study Materials page should offer following three main functionalities:

i. A Chapters section should list all the major chapters with necessary notes and

description. This can also include related videos.

ii. A Lab Assistant Hours page should allow students to look at the latest lab

assistant hours’ schedule for the week. This should have its own interface, and

they should be modifiable for Teachers but read-only for students.

iii. A FAQ page should contain all the major frequently asked questions in C++

(more specifically related to CSCI 201).

Chapter and FAQ pages should also have a search mechanism that should

allow the user to find the user's interesting content in the page quickly.

f. A Logout page similar to a login page should be available for the user to log out of

the system.

Only for the user logged in as Teacher, following additional features should be offered by

web tool.

g. A Manage page that should allow admin/teacher to manage the users of the tool. This

page should allow admin/teacher to add new users and delete/edit the existing users.

h. A Message page should give admin/teacher ability to check the messages sent by

other users of the tool with concerns and queries. This should provide an option to

manage the messages as needed.

37

Only for the user logged in as Student, following feature should be available.

i. A Contact us menu that should allow the user to notify the admin whenever needed

with concerns and queries related to the tool.

3.4 Non-Functional Requirements

a. Availability and Reliability

The tool should be available to students almost all the time. The features should also

be accurate and reliable when giving the search result. Logging mechanism should be

error free as well. In terms of speech recognition, it should accurately take the user

input and produce the right results. In the case of online chat, the tool should have

good response time and offer seamless communication.

b. Security

The overall session in the website should be secured especially since screen sharing is

offered.

c. Maintainability

The tool should be designed such that maintenance should be easy. The tool should

be written such that it is consistent throughout the tool. Simplicity, conciseness, self-

descriptiveness and modularity should be maintained to support maintainability.

d. Scalability

The tool should be built such that new features could be added in future when needed.

e. Usability

The tool should be easy to use for all kinds of user roles. The tool should be made

user-friendly such that user should be able to locate and easily perform all the

functionalities.

3.5 Resource Requirements

3.5.1 Software Requirement

 Sublime Text

 Google Chrome - Inspector

 WinSCP - For secure file transfer between local and remote computer

38

3.5.2 Hardware Requirement

 Windows Desktop Machine or Laptop equipped with microphone and camera

 Linux Operating System

3.5.3 Web Server Requirement

 Apache HTTP Server

 XAMPP - For initial design and testing

3.5.4 Database Requirement

 MySQL Relational Database Management System (RDBMS)

3.6 Language Requirements for Building the Tool

3.6.1 Scripting Languages

 JavaScript

o AngularJS - JavaScript-based front-end web application framework

o JQuery - JavaScript library

 PHP - Server-side scripting language for web development

3.6.2 Markup Languages

 HTML

 CSS

 Bootstrap - HTML, CSS and JavaScript-based front-end web application

framework for developing responsive design

39

Chapter 4: SYSTEM DESIGN

4.1 Chapter Overview

In this chapter, the overall designing phase of the web tool, which includes the architectural

designing, flowcharts, use cases and diagrams, will be described.

4.2 System Architecture Design

The software design pattern used to develop the virtual assistant web tool is ‘MVC’ design

pattern. MVC pattern divides the whole system into three main categories as Models, Views,

and Controllers [20]. However, in this project, Controller contains two main parts as

‘controller’ to control the actions and ‘services’ which perform the services triggered by the

controller.

4.2.1 High-level Architecture Design Diagram

There are two kinds of primary user of the tools. The only input to the tool is from the

primary users. First, Views will help to gather the inputs from the user. Then, Controllers

will process the input and modify the Models as needed to reflect the results of actions. The

result is then displayed by the Views which is the only interface between the system and the

users.

On a high level, tools offer a variety of services to the users that include:

 Asking a question to the web tool (either using a voice recognition or not)

 Asking the tutor using online chat services or screen sharing

 Look at chapters, notes and FAQ sections

 Look at the lab assistant hour schedule

 Managing the users

 Sending offline messages to admin.

Each of the listed actions goes through series of steps to get the desired result. First, the user

tries to perform an action and depending on action type; the action is either processed in

client side or sent to the server side. If the process request is sent to the server side, the server

40

performs the necessary service that may involve the database transactions and send the result

back to the client side. Views in client side then display the result.

Figure 5: High –Level System Architecture Diagram

As mentioned earlier, there are three major categories; Models, Controllers, and Views used

to design overall system. All the interfaces and web pages that users see are included under

Views. The user gives the input to the system through views which are recorded using

Models and Controller decides the course of actions to perform. The modified models are

returned after the actions are processed by the controller which are then finally displayed in

the Views to the users.

41

Notice in Figure 5, categories are represented in different layers. View Layer contains all the

UI page design of the project. Controllers contain two major layers as Action Layer and

Service Layer. Action Layer initiates the processing of action which is mentioned as actions

1 through 5. The actions are then fully processed in service layer depending on the

requirements. The major services are listed in this layer. Finally, Data Access Layer is for

accessing the data from the database on the server side using a different kind of data models

as needed.

4.3 Site Map

There are two kinds of primary users. The site map demonstrates the overall web tool map

for two different kinds of primary users. It lists all the pages of the tool accessible to the

users.

4.3.1 Student Site Map

Figure 6: Site Map for Student

42

4.3.2 Teacher Site Map

Figure 7: Site Map for Teacher

4.4 Use Case Diagrams

There are two kinds of primary users: Teacher and Students. However, a guest can also be

considered as a user who can still use some of the functions offered by the system.

Considering all cases, an overall complete use case diagram, followed by separate use case

diagrams for different types of user roles will be discussed in this section.

4.4.1 Overall Complete Use Case Diagram

An overall use case diagram including all different types of user roles with major

functionalities is shown in Figure 8.

43

Figure 8: Overall Use Case diagram

44

4.4.2 Use Case Diagram for Student

A detailed use case diagram for Student is shown in Figure 9.

Figure 9: Student Use Case diagram

4.4.3 Use Case Diagram for Teacher

A detailed use case diagram for Teacher is shown in Figure 10.

45

Figure 10: Teacher Use Case diagram

4.4.4 Use Case Diagram for Guest

A detailed use case diagram for guest who doesn't have any credential to use all the

functionalities of the system is shown in Figure 11.

46

Figure 11: Guest Use Case diagram

4.5 Extracting Interfaces, Controllers and Services Scripts

To successfully offer all the services, a good implementation approach is needed. First, a

good interface design is necessary to communicate with different type of users of the system.

Once interfaces are designed, major controller and services which direct and implements the

function need to be identified along with database and file storage needs.

4.5.1 Interface Designing

Depending on user type, there are many functions that need to be handled. For a user to

successfully perform any function, the interface should be built and should be as user-

friendly as possible and easy to navigate. Below are the decided minimum interfaces needed

to successfully offer all the functional requirements of the project.

4.5.1.1 Homepage Interface

This page is the main startup page which has main menu bar to navigate throughout the tool.

The home page is designed to be slightly different for different users. Each user has their

own specific set of main functions. The available menus in the main menu bar differs

depending on those set of functions.

47

4.5.1.1.1 Default Homepage and Property Matrix (Without Logging in)

Figure 12: Home page for Guest

This page is the default page of the web tool. This page has the main navigation bar. It also

contains information about the web tool. It is designed to have a slider with useful images

hyperlinked to the useful links. Lastly, it contains three columns with a different set of useful

information to the users.

48

Table 1: Property matrix for the default Home page (without logging in)

Field Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Home Button Home Mouse

Click

Yes Clicking this button

should take the user to

home page from any

screen (default

screen).

2. Ask a Question Button Ask a

Question

Mouse

Click

Yes The user must

log in to use

this service

Clicking this button

should take the user to

log in screen.

3. Ask a tutor Button Ask a tutor Mouse

Click

Yes The user must

log in to use

this service

drop down

buttons.

Clicking this button

should take the user to

log in screen.

4. FAQ Button FAQ Mouse

Click

Yes Clicking this button

should take to FAQ

page where the users

can look through all

the FAQ related to

C++.

5. Lab Assistant

Hours

Button Lab

Assistant

Hours

Mouse

Click

Yes Clicking this button

should take the users

to a page where they

can look at tutors’

schedule.

6. Log in Button Login Mouse

Click

Yes Clicking this button

should take the user to

login screen with a

form to enter the user

and password.

7. Contact Button Contact Mouse

Click

Yes Clicking this button

should take the user to

a page with a form to

contact the

teacher/admin of the

tool.

49

4.5.1.1.2 Homepage and Property Matrix When Logged in as Student

Figure 13: Home page for Student

This page contains navigation bar designed for students. Below is the condition that is

applied to all the fields listed in table 2.

1. Logged in as Student to the web-tool.

Table 2: Property matrix for the default Home page logged in as Student

Field Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Home Button Home Mouse

Click

Yes Clicking this button should take

the user to default home page

from any screen.

2. Ask a

Question

Button Ask a

Question

Mouse

Click

Yes Clicking this button should take

the user to a page which allows

50

them to ask questions (C++

related) verbally or manually to

the system.

3. Ask a tutor Drop

down

button

Ask a tutor Mouse

Click

Yes This should

contain two

additional

drop-down

buttons.

This drop button should display

two buttons to go to online chat

or share screen page. (Figure 14

below)

3.1. Online Chat Button Online Chat Mouse

Click

Yes One of the

options in

Ask a

Tutor drop-

down menu

Clicking this button should take

the user to a page that allows

them to perform online

chat/communication.

3.2. Share

Screen

Button Share Screen Mouse

Click

Yes One of the

options in

Ask a Tutor

drop-down

menu

Clicking this button should take

the user to a page where they

will be able to share the screen.

4. Study

Materials

Drop

down

button

Study

Materials

Mouse

Click

Yes This should

contain

three

additional

drop-down

buttons.

This drop-down button should

display three buttons to go to

chapters, lab assistant hours or

FAQ page. (Figure 15 below)

4.1. Chapters Button Chapters Mouse

Click

Yes One of the

options in

Study

Materials

drop-down

menu

Clicking this button should

open a page where the users

can browse through different

chapter notes.

4.2. Lab

Assistant

Hours

Button Lab

Assistant

Hours

Mouse

Click

Yes One of the

options in

Study

Materials

drop-down

Clicking this button should

open a page where the users

can look at the tutors’ schedule.

4.3. FAQ Button FAQ Mouse

Click

Yes One of the

options in

Study

Materials

drop-down

Clicking this button should

open a page where the users

can look through all the FAQs

related to C++.

5. Log-out Button Log-out Mouse

Click

Yes Clicking this button should log

out the user from the current

session.

6. Contact Button Contact Mouse

Click

Yes Clicking this button should take

the user to a page with a form

to contact the teacher/admin.

51

Figure 14: Drop-down menu for Ask a Tutor menu

Figure 15: Drop-down menu for Study Materials menu

52

4.5.1.1.3 Homepage and Property Matrix When Logged in as Teacher

Figure 16: Home page for Teacher

This page contains navigation bar designed for students. Below is the condition that is

applied to all the fields listed in Table 3.

1. Logged in as Teacher to the web-tool.

Table 3: Property matrix for the default Home page logged in as Teacher

Field Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Home Button Home Mouse

Click

Yes Clicking this button

should take the user to

default home page

53

from any screen.

2. Ask a Question Button Ask a

Question

Mouse

Click

No If added, clicking this

button should take the

user to a page which

allows them to ask

questions (C++

related) verbally or

manually to the

system.

3. Ask a tutor Drop

down

button

Ask a tutor Mouse

Click

Yes This should

contain two

additional

drop-down

buttons.

This drop button

should display two

buttons to go to online

chat or share screen

page. (Figure 14

above)

3.1. Online Chat Button Online Chat Mouse

Click

Yes One of the

options in Ask

a Tutor drop-

down menu

Clicking this button

should take the user to

a page that allows

them to perform online

chat/communication.

3.2. Share Screen Button Share

Screen

Mouse

Click

Yes One of the

options in Ask

a Tutor drop-

down menu

Clicking this button

should take the user to

a page where they will

be able to share the

screen.

4. Study Materials Drop

down

button

Study

Materials

Mouse

Click

Yes This should

contain three

additional

drop-down

buttons.

This drop down button

should display three

buttons to go to

chapters, lab assistant

hours or FAQ page.

(Figure 15 above)

4.1. Chapters Button Chapters Mouse

Click

No One of the

options in

Study

Materials

drop-down

menu

If added, clicking this

button should take to a

page where the users

can browse through

different chapter notes.

4.2. Lab Assistant

Hours

Button Lab

Assistant

Hours

Mouse

Click

Yes One of the

options in

Study

Materials

drop-down

Clicking this button

should open a page

where the teachers can

add/edit/delete lab

assistant lab hours to

the schedule table.

4.3. FAQ Button FAQ Mouse

Click

No One of the

options in

Study

Materials

drop-down

If added, clicking this

button should open a

page where the users

can look through all

the FAQs related to

C++.

5. Manage Button Manage Mouse

Click

Yes Clicking this button

should open a page

where the teachers can

add/edit/delete web

54

tool’s users/students.

6. Log-out Button Log-out Mouse

Click

Yes Clicking this button

should log out the user

from the current

session.

7. Messages Button Messages Mouse

Click

Yes Clicking this button

should take the user to

a page to check all the

messages, concerns or

queries sent by

users/students. The

user should be able to

manage them.

4.5.1.2 Ask a Question Interface

Since web tool is going to offer speech recognition facility, this page is designed to have a

mic button to take voice input. The user can also give input using the textbox in the page.

It is designed to display the answer in the answer box as shown in Figure 17 below.

Figure 17: Ask a Question interface

The mic button should also be able to play the animation to denote the mic recording as

shown in Figure 18 below.

55

Figure 18: Mic design when listening to the user

Table 4: Property matrix for Ask a Question interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Question

display

box

Input

text box

 Using mic

or typing

manually

Yes Displays the question

to be asked to the

system.

2. Ask

System

Button Go Mouse

Click

Yes/No If the user

chooses to type

the question to

ask the system.

Clicking this button

should ask a question

in the question display

box to the system.

3. Mic Button Mic image Mouse

Click

Yes/No If the user

chooses to ask

a question

verbally to the

system.

Clicking this button

should animate the

mic image in button,

start recording the

user’s voice for 5

seconds, display

question in question

display box and make

an action request to

the system for an

answer.

4. Answer

display

box

HTML

div tag

Answer

will be

displayed

here

 Yes The question

has been asked

to the system

for an answer.

Once a question is

asked to the system,

the response is

displayed in this box.

4.5.1.3 Online Chat Interface

This is one of the main functions of the web tool. The online chat interface is designed such

that it is easier to view other online users and share messages with them. The interface

designed is shown in Figure 19.

56

Figure 19: Online Chat interface: online users box on left, chat messages box on right

This page is designed to at least have a chat box to display the communication messages. It is

also desired to have a button to show the status of the user which could be available, busy or

away as shown in Figure 20 below.

Figure 20: Different status available for users

The final design decision also includes an online users box (left side in Figure 19) where the

user can see all the current online users.

57

Table 5: Property matrix for Online Chat interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. User

Status

Button Available

(Default)

Mouse

Click and

select

Yes The users should able

to either select

available, away or

busy status as shown

in figure 20 above.

2. Online

Users

Text box Online

Users

 Yes This box should

populate current

online users of the

web-tool.

3. Open

room

messages

Text box Open

room

messages

 Yes This box should

populate all recent

messages made (last

20 messages).

4. Message

box

Input

text box

Type your

message

here

Keyboard

typing

Yes This textbox is

designed to take in

input message from

the user to share with

other users.

5. Send Button Send Mouse

Click

Yes Clicking this button

should send the

message to other

online users and also

should appear in open

room message box.

6. Message

Status

Text box Yes This box should

display the status of a

message sent. For

example, it should

display Message Sent

Failed in case

message was not able

to send or Message

Sent if the message

was sent successfully

as shown in figure 21

below.

58

Figure 21: Status of message sent as Message sent in circle.

4.5.1.4 Screen Sharing Interface

Screen Sharing interface is designed for the user to start screen sharing easily. This interface

contains an instruction set box to guide them on how to use the screen sharing function. It is

also designed to show all the users who are online like on online chat interface. But in this

interface, the user will be able to directly invite other online users to the opened room. They

can select individual online users or select all at once and start screen sharing. The final

design of screen sharing interface before and after screen sharing starts are shown in Figure

22 and 23.

59

Figure 22: Screen Sharing interface final design (before screen share starts).

Figure 23: Screen Sharing interface final design (after screen share starts).

60

Table 6: Property matrix for Screen Sharing interface

Field Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Check box Checkbox Mouse

click

Yes Clicking should

select the checkbox

and clicking again

should uncheck the

check box.

2. Select all Button Select all Mouse

Click

Yes Clicking this should

select all the check

boxes.

3. Clear all Button Clear all Mouse

Click

Yes Clicking this should

unselect all the check

boxes.

4. Send invites Button Send invites Mouse

Click

Yes Clicking this button

should invite all the

selected users to the

opened room.

5. Refresh list Button Refresh

online list

Mouse

Click

Yes Clicking this button

should refresh the

online user’s list.

6. Instructions

box

Text box All the

instructions

to start

sharing

screen

 Yes This text box should

list the instructions

needed for the user

to start sharing the

screen with other

users.

7. Room id Input text

box

Unique

room id

 Yes This textbox should

display the unique

room id

8. Open room Button Open room Mouse

Click

Yes Clicking this button

should initiate the

screen sharing

function with

appropriate dialog

boxes to follow the

steps.

9. Unique

URLs

Text box Unique

URLs

generated

using

unique room

id

 Yes Only should

appear once

a room is

successfully

opened.

The unique URLs to

the room should be

displayed in this box.

10. Video Box HTML

Div box

 Yes Only should

appear once

a room is

successfully

opened.

This box will display

the shared screen

window once screen

sharing starts.

11. Full screen button [] Mouse

Click

Yes Only should

appear once

a room is

Clicking this button

should maximize the

screen sharing

61

successfully

opened.

window to full

screen.

4.5.1.5 Chapter Interface

This interface is designed to give chapters notes to the users. Each of the chapters is designed

to have their own content which can be collapsed and seen on clicking. A detailed description

is shown below in Figure 24 and property matrix table 7.

Figure 24: Chapters interface with collapsible titles.

62

Table 7: Property matrix for Chapters’ interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Search Text box Search for Keyboard

typing

Yes As soon as users start

typing, a search result

from within the page

should be displayed.

2. Title Collapsible

Button

Title of

the

chapters

Mouse

click

Yes Clicking this should

allow the user to

display the full view

and clicking again

should collapse the

view.

The collapsible button should be applied to all title and subtitles of the chapters as shown in

Figure 24 above. The interface is also designed to have a search box wherein user can search

for a different topic in the page.

4.5.1.6 Lab Assistant Hours Interface

Lab Assistant Hours interface is designed to give the user the ability to look at the current lab

assistant hours. The page is designed separately depending on kind of users which could be

students/guest or teachers. Figure 25 below shows the interface when logged in as a student.

Similar is the interface when guest looks at this page.

However, the interface is designed little differently for teachers since they need the ability to

modify the schedule table in the interface which looks like interface as shown in Figure 26

below.

63

Figure 25: Lab Assistant Hours interface designed for students/guests.

Table 8: Property matrix for Lab Assistant Hours’ interface for students/guests

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Lab

Assistant

hour table

HTML

table

Full

schedule

 Yes For student,

table is un-

editable

Users should be able

to look at lab assistant

hours for the week.

64

Figure 26: Lab Assistant Hours interface designed for teachers/admins.

Table 9: Property matrix for Lab Assistant Hours’ interface for teachers/admins

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Edit Button Edit/Update Mouse

Click

Yes Only for

teacher/admin

Clicking this button

should allow the user

to start editing the lab

assistant hour table.

2. Save Button Save

Changes

Mouse

Click

Yes Only for

teacher/admin

Clicking this button

should save the

changes made in the

table and lock for

further modification.

3. Lab

Assistant

hour table

HTML

Editable

table

Full assistant

hour

schedule

 Yes Editable only

for

teacher/admin

when edit is

enabled

Users should be able

to modify the table as

per need.

65

4.5.1.7 FAQ Interface

FAQ page is designed to provide FAQs related to C++ to the users, especially students. This

page is designed such that all the questions are listed on top and are hyperlinked to the

answers to make the navigation easier. In Figure 27 below, all the heading questions in blue

are hyperlinked to their respective answers in the page.

Figure 27: FAQ interface with a complete question set.

66

Table 10: Property matrix for FAQ interface

Field

Name
Field Type

Display

Text

Input

Type
Required Condition Explanations

1. Search Text box Search for Keyboard

typing

Yes As soon as users

start typing, a search

result from within

the page should be

displayed.

2. Question

headings

Hyperlinked

texts

List of

questions

Mouse

Click

Yes Clicking on the

hyperlinked heading

question should take

the user to particular

section of the page

with answer

3. Go to top Button Go to top Mouse

Click

Yes It is available

after the

answer to

each question

listed in the

page.

Clicking on this

button should take

the user to the

beginning or top of

the page for easy

navigation.

4.5.1.8 Manage (Members) Interface

This interface is only available for teachers/admins, which have the abilities to add a new

member, edit or delete the existing member. Hence, this interface is only visible to teachers.

The interface is designed to have a table with a list of existing members with buttons on side

of each member that should allow the teacher to edit or delete the selected member. At the

bottom of the page, a button is available to add a new member to the list. As soon as this

button is clicked, a form should appear to fill in the member details. Figure 28 shows the full

interface design and Figure 29 shows the form to add a new member to the list.

67

Figure 28: Manage interface

Table 11: Property matrix for Manage interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Member

table

HTML

Table

All the

members

 Yes This table displays the full

details of all the members

of the tool.

2. Edit Button Edit Mouse

Click

Yes Only

available

for teachers

Clicking this button should

open a form as shown in

figure 29 with the member

info.

3. Delete Button Delete Mouse

Click

Yes Only

available

for teachers

Clicking this button should

allow the user to delete the

selected member.

4. Add Button Add Mouse

Click

Yes Only

available

for teachers

Clicking this button should

open a form as shown in

figure 30 to add a new

member/user to the system.

68

Figure 29: Add a new member form

Table 12: Property matrix for Adding a new member form

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. First

Name

Textbox Keyboard

typing

Yes This field should take in

the first name of the new

member to be created.

2. Last

Name

Textbox Keyboard

typing

Yes This field should take in

the last name of the new

member to be created.

3. User Role Drop

down

 Mouse

Click

Yes This drop down should let

the user choose the user-

type of the new member

(teacher or student).

4. Confirm Button Confirm

Add

Mouse

Click

Yes Clicking this should create

a new member and add to

the member list.

5. Cancel Button Cancel Mouse

Click

Yes Clicking this button should

cancel the process of

creation of new member.

69

Figure 30: Edit a member form

Table 13: Property matrix for Editing a member form

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. First

Name

Textbox Keyboard

typing

Yes This field should display

the existing first name of

the member and allow to

edit it.

2. Last

Name

Textbox Keyboard

typing

Yes This field should display

the existing last name of

the member and allow to

edit it.

3. User name Textbox Keyboard

typing

 This field should display

the existing user name of

the member and allow to

70

edit it.

4. Password Textbox Keyboard

typing

 This field should display

the existing password of

the member and allow to

edit it.

5. User Role Drop

down

 Mouse

Click

Yes This drop down should let

the user choose the user-

type of the member.

6. Confirm Button Confirm

Edit

Mouse

Click

Yes Clicking this should

successfully edit the

member.

7. Cancel Button Cancel Mouse

Click

Yes Clicking this button should

cancel the process of

editing of the member.

4.5.1.9 Login Interface

Login interface is designed to let user successfully log in to the system to use different

functionalities offered by the system. A form is displayed in this display to let the user enter

their user name and password.

Figure 31: Login screen Interface design

Table 14: Property matrix for Log in interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. Username Textbox Username Keyboard

typing

Yes This field should take

in the user name.

71

2. Password Textbox

(Password

type)

Password Keyboard

typing

Yes The typing in

the box should

be hidden or

appeared as a

set of dots.

This should take in

the password of the

user.

3. Remember

me

Checkbox Mouse

Click

Yes This should let the

user save the user

name and pass in the

browser for later use.

4. Log in Button Log in Mouse

Click

Yes This should trigger

the authentication

process and take to

the respective home

page on successful

login.

4.5.1.10 Logout Interface

This interface is designed to let the user know about the successful ending of the session.

Figure 32: Log out interface

4.5.1.11 Contact Interface

Contact interface represents one of the main functions of the web tool which is only available

to student or guest to send the important queries and concerns to the teachers. The interface is

designed as shown in Figure 33 below.

72

Figure 33: Contact interface (Only available for student/guest)

Table 15: Property matrix for Contact interface

Field

Name

Field

Type

Display

Text

Input

Type
Required Condition Explanations

1. First

Name

Textbox First

Name

Keyboard

typing

Yes The page is only

available for

student/guest.

This field should take in

the first name of the user

writing the query or

concern.

2. Last Name Textbox Last

Name

Keyboard

typing

Yes The page is only

available for

student/guest.

This field should take in

the last name of the user

writing the query or

concern.

3. E-Mail Textbox E-Mail

Address

Keyboard

typing

Yes The page is only

available for

student/guest.

This field should take in

the email address of the

user writing the query or

concern.

4. Message Textbox Message

here

Keyboard

typing

Yes The page is only

available for

student/guest.

This textbox should take

in full message of the

user to be delivered to

the teacher/admin.

4.5.1.12 Message Interface

The message sent using the Contact interface above is collected and shown to the teacher

using Message interface. This is designed to list all the messages sent by users which are

listed by date, oldest on top. The teacher should be able to read, delete or reply to the

73

message sent by the user. The final design decision for the interface is shown in Figure 34

below.

Figure 34: Message interface for Teachers

Table 16: Property matrix for Message interface for teacher

Field

Name

Field

Type
Display Text

Input

Type
Required Condition Explanations

1. Message

Table

HTML

table

All the

messages

 Yes The page is

only available

for the

teacher.

This table should

display all the

messages to be read.

2. Email HTML

address

tag

Corresponding

email address

of the user

sending

message

Mouse

Click

Yes The page is

only available

for the

teacher.

This tag on-click

should activate the

default mail client on

the computer to

respond to the

message.

4.5.2 Extracting Controllers and Services

To support all the interfaces listed above, there are many controllers and services required to

process the actions requested from the interfaces. To extract all the controllers and services,

the main jobs and functions from each interface could be extracted and dedicated to writing

separate scripts to perform the job. The jobs could be to perform a certain action which may

or may not involve communication with backend server and database. After user interactions

in different interfaces (see section 4.5.1), there may be various kinds of actions that need to

74

be performed. Controllers are needed to perform those major actions and requests from all

the interfaces. Depending on whether backend and/or database communication required, the

controller may need to work with services script to complete the request. Some of the major

controllers and services needed for this project are listed below.

4.5.2.1 Login Controller

This controller is responsible for processing the provided username and password entered by

the user. To process and complete this request, a service script is needed to perform

communication with the database to verify the user. Below is the service that should achieve

the successful result.

 User Verify Service

This service is dedicated to verify the user by comparing the given input information

with the records in the database and return the result as pass or fail.

The final response from the service is then processed by the login controller to direct the user

to the proper screen.

4.5.2.2 Mic Controller

This controller controls the speech recognition that is integrated into Ask a Tutor interface.

One input is taken using the speech recognition; a service script is needed to pull the closely

related answer from the database which will be provided by the script below.

 Search Database

Once the question is asked, this script looks for the closest answer that is recorded in

the database and return with an appropriate list of answers.

Once the script comes up with the response, the controller is responsible for displaying the

answer in the proper format.

75

4.5.2.3 Users Messages Controller

This controller displays the recent messages in the chat box. For this, a communication to the

backend server is needed to collect the most recent (20) messages saved on the server which

can be performed with the help of script below.

 Get file-data service

This script gets the data (messages) from the server which could be saved in a file and

return to the user message controller.

In the end, the controller decorates the response from the service and display in the chat box.

4.5.2.4 Chat Message Controller

This controller controls the sending and saving of the message from the user. The message is

eventually saved to the file (in the backend server) once a send request is made in the

interface. To perform the saving of the new messages, a script is needed which can access the

files and/or database on the server.

 Sending message service

Once the message is typed and send request is made, this script is called by the

controller. This script opens the file, saves the message and successfully closes the

file. A response is then sent to the controller depending on the success or failure of

the transaction.

A notification is finally shown by the controller to the user depending on the response from

the script.

4.5.2.5 Status Controller

To reflect the status of the user in the tool, a controller is needed. This controller can be

supported with multiple scripts as shown below.

 Current status service

76

This service collects the current status of the user.

 Change status service

This service changes the status of the user when a change of status call is made.

4.5.2.6 Screen Sharing Controller

This is the main controller behind the screen sharing function. It takes in the request from the

user, sets up a window to display the shared screen and be ready to share the window in the

web browser. The script generates a separate unique room with an URL after each screen

sharing session.

4.5.2.7 Screen Sharing Online User List Controller

Once screen sharing controller starts a screen sharing window, a controller is needed to share

the room URL to other online users of the tool. This is fulfilled by screen sharing online user

list controller. This controller gets the list of current online users and sends an invitation

request to the chosen users by the organizer. Hence, a couple of service scripts are required to

perform the job.

 Get file-data service

This service gathers the current online user information and returns the list of user

information to the controller.

 Send invitation service

Once the list of the online user is seen, this service sends the invitation to the chosen

user with the unique room URL.

In the end, the controller collects the response from the script and displays them in a readable

format to the user in the interface.

77

4.5.2.8 Detect Invitation to Screen Controllers

The controller and services to send the invitation are discussed above. And therefore, a

controller to detect and handle the invitation from the organizer of the screen sharing is

needed. In order to fulfill this requirement, a service script is needed which can communicate

between users of the tool.

 Detect invitation to screen service

This service script detects invitation from other users for viewing the shared screen

and send the response to the controller with the appropriate data.

In addition, the controllers manipulate the response from the script and greet the user with a

suitable dialog box. Depending on the response from the user, the controller handles the

further request from the user.

4.5.2.9 Manage Database Controller

This controller handles the member information in the Manage interface. It displays the

member information in a decorated table and is assisted by following services.

 Fetch data database service

This service fetches the data from the database and returns to the controller.

 Add, edit, or delete database service

Depending on the action request from the controller, this script adds, edits or deletes

the member of the tool.

Once the database transaction is done, controllers gather the response from the script and

notify the user.

78

4.5.2.10 Lab Assistant Hours’ Controller

This controller controls the overall schedule of the lab assistant hour and displays in the

interface. This controller is assisted with a service that returns the final schedule of the lab

assistant hours.

 Get lab assistant hours’ service

This service gets the lab assistant hours’ schedule from the server and returns it to the

controller to display in the decorated format.

4.5.2.11 Search Controller (for FAQ and Chapters Page)

This controller dynamically searches the closest content in the page and lists them below the

search box.

4.5.2.12 Contact Messages Database Controller

Similar to member database controller, this controller handles the messages sent by the

users/students in the form of queries and concerns. It displays all the contact messages in a

decorated table (in the Message interface, see section 4.5.1.12) and is assisted by the

following service.

 Contact messages fetch database service

This service fetches the data from the database and returns to the controller.

 Delete contact message database service

This service performs the delete transaction from the database on request.

4.5.2.13 Contact Message Controller

This controller collects the contact information and messages from the user from the Contact

interface and uses the service below to save the new messages to the database.

79

 Contact message store service

This service gets the new messages from the controller and returns the success or

failure response back to the controller.

The controller finally collects the response from the service and notification is shown to the

user.

4.5.2.14 Previous Session Controller

This controller maintains and collects each session data once the user logs into the system.

This controller is mainly responsible for detecting any previous valid session for ease of user.

For example, if a user is logged in a window and user again tries to go to the tool in another

window, the user should not have to log in again since the user is logged in another window

already. The controller communicates with the server using following service script.

 Detect the previous session

This maintains and saves the user session data and guides the controller to perform

the necessary actions.

4.5.2.15 Additional Services Required

 Timeout session check for student

This service keeps track of session for student and checks if the timeout of the session

has occurred. If the timeout has occurred, it terminates the session.

 Timeout session check for teacher

Like Timeout session check student service, this service checks if timeout session has

occurred for teacher and logs out if that is the case.

 Logout service

This service is responsible for logging out the user of the tool. This service is used by

both services listed above.

80

 Image slider service

This service is responsible for having the image slider mechanism that is designed to

have on the home page of the tool.

4.5.3 Extracting Database Tables and File Storage Necessity

There are different kinds of data that needs to be stored for the full functionality of the tool.

Based on the requirements and designed specifications above, there are three major database

tables that need to be set up and some files for storing important information.

4.5.3.1 Database Tables

MySQL is a relational database management system (RDBMS) that is used in this project. A

database called VirtualTutor is created and there are three major tables designed to have in

this project which are listed below.

4.5.3.1.1 Members

This table holds the member information and has 6 defined columns.

 ID – Primary key, unique ID for every member, AUTO_INCREMENT, integer type

 User Fame – varchar type, the first name of the user

 User Lname – varchar type, the last name of the user

 User login – varchar type, the login name of the user to log in to the system

 User pass – varchar type, the user password to log in to the system

 User type – Type of user: Teacher or Student

4.5.3.1.2 Contact Messages

This table records all the contact messages sent by the users/guests and has 6 defined

columns.

81

 Message ID – Primary key, unique ID for every message, AUTO_INCREMENT,

integer type

 First Name – varchar type, the first name of the user who sent message

 Last Name – varchar type, the last name of the user who sent message

 Email – varchar type, the email of the user who sent message

 Message – text type, the actual message sent by the user

 Date time – timestamp, default to the message received current timestamp

4.5.3.1.3 QandA

This table records the important questions and answers with important links related to the

question and has 6 defined columns.

 ID – Primary key, unique ID for every QandA, AUTO_INCREMENT, integer type

 Question – text type, the question

 Answer – text type, the short answer to the question

 Sample Code – text type, the sample implementation code related to the question

 Video link – text type, the important video link(s) related to the question

 Useful link – text type, the important useful link(s) related to the question

4.5.3.2 File Storage Needs

For the simplicity of the project, some files are saved in the server to hold some important

useful information. One example is to save all the online user names in the file which could

be used by the several controllers to list the online users. Following are different files that are

set up in the server for smooth execution of the tool.

4.5.3.2.1 Online Users Text File

This file lists all the current online users and is used by multiple controllers upon

requirement. Every time a user logs in or logs out of the system, this file is updated, saved

82

and locked. Each online member information is saved using member name and unique id to

avoid similar name confusion.

4.5.3.2.2 Log Report Text File

This file logs the recent 20 messages to be displayed in the chat box. Every time a new

message is sent, this file is updated, saved and locked. Every message is saved with the

message sent time stamp and member name sending the message.

4.5.3.2.3 Lab Assistant Hours’ Text File

This file records the lab assistant hours and is updated every time lab schedule table is

modified in the lab assistant hours’ page.

4.5.3.2.4 Invitation Text File

This file records the information of the member who is inviting another online user to the

shared screen room. It also saves the user’s info that is being invited. Once the invitation is

picked up, the invitation information is deleted from the file and saved.

4.6 Use Cases Realization

Detailed use case realizations of each use cases with extended and refined scenarios are listed

in this section. All the realizations are accompanied with a flow chart to demonstrate the

overall flow of the system.

83

4.6.1 Log in

Figure 35: Log in Use Case diagram

Table 17: Log in Use Case realization table

Use Case ID 01

Use Case Name Virtual tutor Log in

Brief Description This use case enables users to log in to the system.

Actors Student, Teacher

Pre-condition 1. User has valid login credentials.

2. User’s information is saved and exists in the

database.

3. User has internet service available.

Step by Step description 1. User opens a browser (Google chrome or Firefox for

full usability).

2. User enters the virtual tutor website URL. Virtual

tutor home page is displayed on the screen.

3. User clicks LOGIN button in the main navigation

84

menu and is redirected to the login page with a login

form displayed on the screen.

4. User enters user name and password.

5. User hits Log in button to log in to the system.

6. Use logs in to the system.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to login to the system.

b. User opens the login page.

c. User enters user name and password.

d. User clicks to log in button on the screen.

e. User is successfully logged in.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page. (Refer

use cases 02, 03, 04.)

b. User goes back to home page clicking on

HOME menu.

3.

a. User wants to login to the system.

b. User opens the login page.

c. User enters user name and password.

d. User clicks log in button. Log in fails and is

again displayed with a login form to start

over.

Post condition User is successfully logged into the system and is

displayed with the full navigation bar to use all the

functionalities.

85

Figure 36: User login full action flow diagram

86

4.6.2 Go to FAQ Page

Figure 37: Go to FAQ page Use Case diagram

Table 18: Go to FAQ page Use Case realization table

Use Case ID 02

Use Case Name Go to FAQ page

Brief Description This use case enables users to go to FAQ page to browse

all the FAQs related to C++.

Actors Student, Teacher, Guest

Pre-condition 1. User has internet service available.

(Optional: Use may or may not be logged in)

Step by Step description 1. Two major ways to get to FAQ page.

a. User is not in the tool at startup (not in use):

 User opens a browser (Google chrome

87

or Firefox for full usability).

 User enters the virtual tutor website

URL. Virtual tutor home page is

displayed on the screen.

 User clicks FAQ button in the main

navigation menu and is redirected to

the FAQ page.

b. User is already in the tool at startup (in use):

 User clicks FAQ button in the main

navigation menu and is redirected to

the FAQ page.

(Note:

*If the user is logged in as Student or teacher, FAQ

button is found under STUDY MATERIALS drop down

menu.

*Refer to use cases 25 for search in-page functionality)

2. User browses through the question (search for a

question, Refer use case 25).

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to browse through FAQs.

b. User opens the FAQ page.

c. User successfully browses through the FAQs

related to C++.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If guest, refer use cases 01, 03, 04.

If logged in as Student, refer use cases 03, 04,

05, 06, 07, 10 and 24.

If logged in as Teacher, refer use cases 03, 04,

05, 06, 07, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

3. -

88

Post condition User is successfully able to browse through all the FAQs

that is available in FAQ page or search them in the page.

Figure 38: Go to FAQ page full action flow diagram

89

4.6.3 View Lab Assistant Hours

Figure 39: View lab Assistant hours’ page Use Case diagram

Table 19: View lab Assistant hours’ page Use Case realization table

Use Case ID 03

Use Case Name View Lab Assistant Hours

Brief Description This use case enables users to look at current lab

assistant hours for the week.

Actors Student, Teacher, Guest

Pre-condition 1. User has internet service available.

(Optional: Use may or may not be logged in)

90

Step by Step description 1. Two major ways to get to FAQ page.

a. User is not in the tool at startup (not in use):

 User opens a browser (Google chrome

or Firefox for full usability).

 User enters the virtual tutor website

URL. Virtual tutor home page is

displayed on the screen.

 User clicks LAB ASSISTANT HOURS

button in the main navigation menu

and is redirected to the lab assistant

hours’ page.

b. User is already in the tool at startup (in use):

 User clicks LAB ASSISTANT HOURS

button in the main navigation menu

and is redirected to the lab assistant

hours’ page.

(Note: If the user is logged in as Student or teacher, LAB

ASSISTANT HOURS button is found under STUDY

MATERIALS drop down menu.)

2. User looks at the table of schedule of lab assistants

for the week.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to look at the current schedule of

lab assistants for the week.

b. User opens the LAB ASSISTANT HOURS

page.

c. User successfully browses through the lab

assistant hours’ table.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If guest, refer use cases 01, 02, 04.

If logged in as Student, refer use cases 02, 04,

05, 06, 07, 10 and 24.

If logged in as Teacher, refer use cases 02, 04,

05, 06, 07, 10, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

91

3. Exception Scenario

3. -

Post condition User is successfully able to look at the lab assistant

schedule page.

Figure 40: View lab assistant hours’ full action flow diagram

92

4.6.4 Contact Admin or Teacher

Figure 41: Contact admin or teacher page Use Case diagram

Table 20: Contact admin or teacher page use case realization table

Use Case ID 04

Use Case Name Contact admin or teacher

Brief Description This use case enables users to send messages with

concerns or queries to the admin or teacher.

Actors Guest, Student

Pre-condition 1. User has internet service available.

(Optional: Use may or may not be logged in)

Step by Step description 1. Two major ways to get to FAQ page.

a. User is not in the tool at startup (not in use):

 User opens a browser (Google chrome

or Firefox for full usability).

 User enters the virtual tutor website

URL. Virtual tutor home page is

displayed on the screen.

 User clicks CONTACT button in the

main navigation menu and is

redirected to the contact us page.

b. User is already in the tool at startup (in use):

 User clicks CONTACT button in the

main navigation menu and is

93

redirected to the contact us page.

2. A contact us form is displayed. User fills in first

name, last name, email, and messages.

3. User hits Send button below the form.

4. User successfully sends the message. A confirmation

box appears on the screen.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to send a major concern about the

website to the admin or teacher.

b. User opens the tool in the browser.

c. User opens the CONTACT page.

d. User fills in the contact us form and

successfully sends the messages. A

confirmation message is displayed on the

screen.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If guest, refer use cases 01, 02, 03

If logged in as Student, refer use cases 02, 03,

05, 06, 07, 10 and 24.

b. User goes back to home page clicking on

HOME menu.

3. User wants to send a major concern about the website

to the admin or teacher. User opens the tool in the

browser. User opens the CONTACT page. User fills

in the contact us form but message sending fails

because of some invisible issue when Send button is

clicked.

Post condition User successfully contacts the admin by sending a

message.

94

4.6.5 Ask a Question

Figure 42: Ask a Question Full Use Case diagram

Table 21: Ask a Question Use Case realization table

Use Case ID 05

Use Case Name Ask a Question

Brief Description This use case enables users to ask a question to the tool,

verbally using speech recognition or using a keyboard

and get the answers saved in the database.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as student or teacher with correct

credentials and is on the home page of the tool.

Step by Step description 1. There are two major ways to get to ASK A

QUESTION page and use the service.

a. User wants to use speech recognition:

 User is on the home page of the tool.

 User clicks on ASK A QUESTION

button in the main navigation menu

and is redirected to the ask a question

page.

 User clicks on mic button that is

shown on the screen which turns to

95

red and starts asking a question.

The mic is on for 5 secs.

 The closest answer is displayed in the

answer box after searching in the

database.

b. User wants to type question:

 User is on the home page of the tool.

 User clicks on ASK A QUESTION

button in the main navigation menu

and is redirected to the ask a question

page.

 User clicks on empty text box field in

the page.

 User types in question to ask to the

system.

 User clicks on Go button next to the

text box field.

 The closest answer is displayed in the

answer box after searching in the

database

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to ask a question related to C++ to

the system.

b. User logs in as a Student/Teacher with correct

credentials.

c. User is displayed with the home page of the

tool.

d. User clicks on the ASK A QUESTION menu

on the main menu bar.

e. User fills in the empty text box in the page.

f. User clicks on Go button next to text box.

g. User is displayed with the closest answer to

the question with helpful links and video.

2.

a. User instead wants to use speech recognition

to ask the question. (Follow steps 1a above.)

b. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 06, 07, 10 and 24.

96

3. Exception Scenario

If logged in as Teacher, refer use cases 02, 03,

06, 07, 10, 13, 17, 20 and 24.

c. User goes back to home page clicking on

HOME menu.

3.

a. User’s mic is unavailable but is trying to use

speech recognition to ask the question to the

system.

b. User asks the question but no answer is

displayed in the answer box.

Post condition User successfully asks the question and answer is

displayed in the answer box with useful links and a

video.

97

Figure 43: Ask a Question full action flow diagram

98

4.6.6 View Chapters

Figure 44: View Chapters Full Use Case diagram

Table 22: Chapters Use Case realization table

Use Case ID 06

Use Case Name View Chapters

Brief Description This use case enables users to view different chapters’

notes and descriptions.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as student or teacher with correct

credentials and is on the home page of the tool.

Step by Step description 1. User clicks on STUDY MATERIALS drop down menu

and select CHAPTERS menu to go to chapters page.

2. User browses through chapters lists (Refer to use

cases 25 for search in-page functionality).

Scenarios:

1. A regular scenario

1.

a. User wants to browse through different

99

2. Alternative scenarios

3. Exception Scenario

chapters available in the tool.

b. User logs in as a Student/Teacher with correct

credentials.

c. User is displayed with the home page of the

tool.

d. User clicks on the STUDY MATERIALS drop

down menu and clicks on CHAPTERS menu

on the main menu bar.

e. User browses through different chapter’s list.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 07, 10 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 07, 10, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

3. -

Post condition User successfully browses through chapter’s notes and

description available in the tool.

100

Figure 45: View Chapters full action flow diagram

4.6.7 Go to Online Chat

Figure 46: Go to Online Chat Full Use Case diagram

101

Table 23: Go to Online Chat Use Case realization table

Use Case ID 07

Use Case Name Go to Online Chat

Brief Description This use case enables users to go to online chat section

where they can send messages, look at other’s messages

and change online status.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as student or teacher with correct

credentials and is on the home page of the tool.

Step by Step description 1. User clicks on ASK A TUTOR drop down menu and

selects ONLINE CHAT menu to go to online chat

screen.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to send a message to another

online user in the tool.

b. User logs in as a Student (or Teacher for other

purposes) with correct credentials.

c. User is displayed with the home page of the

tool. User clicks on the ASK A TUTOR drop

down menu and clicks on ONLINE CHAT

menu on the main menu bar.

d. User enters the online chat screen.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 06, 10 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 06, 10, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

102

3. Exception Scenario

3. -

Post condition User successfully enters online communication screen

where the user can send, receive messages or change

online status.

Figure 47: Go to Online Chat full action flow diagram

There are two major functions that are included in this use case (or this online chat page).

Both the use cases are listed below.

103

4.6.7.1 Send Messages to Online Users

Table 24: Send Message (in chat) Use Case realization table

Use Case ID 08

Use Case Name Send Messages to Online Users

Brief Description This use case enables users to send and receive messages

to and from other online users using the tool.

Actors Teacher, Student

Pre-condition 1. User is on the online chat page. (Refer to use case 07)

Step by Step description 1. User fills in the empty text box below the ‘open room

messages’ box with the message(s).

2. User clicks on the Send button.

3. Sent message is displayed in ‘open room messages’

box with the user name and message sent time stamp.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to ask a question and send a

message to another online user in the tool.

b. User logs in as a Student (or Teacher for other

purposes) with correct credentials.

c. User is displayed with the home page of the

tool. User clicks on the ASK A TUTOR drop

down menu and clicks on ONLINE CHAT

menu on the main menu bar.

d. User enters the online chat screen.

e. User types in message/question to other users

in the text box below the online message box.

f. User clicks ‘Send’ button to send the message

g. The message is displayed in the online

message box with user’s name and time-

stamp.

2.

104

3. Exception Scenario

a. User instead chooses to change the online

status, refer to use case 09.

b. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 06, 10 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 06, 10, 13, 17, 20 and 24.

c. User goes back to home page clicking on

HOME menu.

3. User types in the message. Message sent failed is

displayed in the status bar. The message sending

process is restarted again.

Post condition User successfully sends a message to other online users.

105

Figure 48: Send Message full action flow diagram

106

4.6.7.2 Change Online Status

Table 25: Change Online Status Use Case realization table

Use Case ID 09

Use Case Name Change Online Status

Brief Description This use case enables users to change online status to

either available, away or busy status.

Actors Teacher, Student

Pre-condition 1. User is on the online chat page. (Refer to use case 07)

Step by Step description 1. User clicks the status button in the screen.

2. A drop-down list is opened with different statuses.

3. User selects a status.

4. User status is changed and visible to everyone using

the tool.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to change the status from

available to away.

b. User logs in as a Student (or Teacher for other

purposes) with correct credentials.

c. User is displayed with the home page of the

tool. User clicks on the ASK A TUTOR drop

down menu and clicks on ONLINE CHAT

menu on the main menu bar.

d. User enters the online chat screen.

e. User clicks the status button and chooses

“away” from the drop-down list.

f. User’s status is updated to ‘Away’

everywhere in the tool.

2.

a. User instead chooses to send messages to

other online users, refer to use case 08.

107

3. Exception Scenario

User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 06, 10 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 06, 10, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

3. User wants to change the status. Status change is

failed due to loss of connection to the server. User

tries to change the status again.

Post condition User successfully changes the online status which is

visible to other users.

108

Figure 49: Change Status full action flow diagram

109

4.6.8 Start Share Screen

Figure 50: Share Screen Full Use Case diagram

Table 26: Start Screen Sharing Use Case realization table

Use Case ID 10

Use Case Name Start Share Screen

Brief Description This use case enables users to open a screen sharing

room or join opened room with other online users of the

tool.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as student or teacher with correct

credentials.

Step by Step description 1. User clicks on ASK A TUTOR drop down menu and

selects SHARE SCREEN menu to go to online screen

sharing screen.

2. User clicks on “Open room” button.

3. User selects the window to be shared.

4. User clicks on “Share” to finally start sharing the

screen.

Scenarios:

110

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to open a room to share the screen

with other users.

b. User logs in as a Student (or Teacher) with

correct credentials.

c. User is displayed with the home page of the

tool. User clicks on the ASK A TUTOR drop

down menu and clicks on SHARE SCREEN

menu on the main menu bar.

d. User enters the Screen sharing page.

e. User clicks on “Open Room” button on the

screen.

f. User selects if the entire screen or specific

application window is to be shared.

g. User finally clicks on “Share” button to start

sharing the screen.

2.

a. User instead chooses to cancel the screen

sharing on the last step of the step by step

description.

b. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 06, 07 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 06, 07, 13, 17, 20 and 24.

c. User goes back to home page clicking on

HOME menu.

3.

a. User wants to change the status. Status

change is failed due to loss of connection to

the server. User tries to change the status

again.

b. Generation of unique room ID fails and

therefore screen sharing process terminates.

To start over, page refreshing is needed.

Post condition User successfully opens a room with unique IDs to share

the screen with other online users.

111

Figure 51: Start Screen Share and invite users full action flow diagram

112

Once the user opens a room, there is a sub use-case where the user can invite other users to the

created screen sharing room. The use-case is shown in the table below.

4.6.8.1 Invite Users

Table 27: Invite Users Use Case realization table

Use Case ID 11

Use Case Name Invite Users

Brief Description This use case enables a user to invite other online users

to the opened screen sharing room.

Actors Teacher, Student

Pre-condition 1. User is in Screen sharing page. (Refer to use case 10)

Step by Step description 1. User selects a specific user(s) from “Online user”

lists or the user clicks on “Select All” button to select

all online users at once.

2. User clicks “Send Invites” button to invite all the

selected user to the room with unique to the room.

Scenarios:

1. A regular scenario

1.

a. User wants to invite the specific user to the

opened room.

b. User logs in as a Student (or Teacher for other

purposes) with correct credentials.

c. User is displayed with the home page of the

tool. User clicks on the ASK A TUTOR drop

down menu and clicks on SHARE SCREEN

menu on the main menu bar.

d. User enters the Screen sharing page.

e. User opens a room with a unique id.

f. User selects the desired user on the list of

online users to invite to the room.

g. The invitation is sent to the chosen user(s).

113

2. Alternative scenarios

3. Exception Scenario

2.

a. User clicks on a different button on the main

menu bar displayed on the home page.

If logged in as Student, refer use cases 02, 03,

04, 05, 06, 07 and 24.

If logged in as Teacher, refer use cases 02, 03,

05, 06, 07, 13, 17, 20 and 24.

b. User goes back to home page clicking on

HOME menu.

3.

a. User wants to invite the user to the room.

Invitation fails because the room is not

opened yet.

b. No user is selected to invite to the room and

therefore invitation error occurs.

Post condition User successfully invites desired users to the opened

screen sharing room.

4.6.9 Join Room

Figure 52: Join Room Full Use Case diagram

114

Table 28: Join Room Use Case realization table

Use Case ID 12

Use Case Name Join Room

Brief Description This use case enables users to join an opened screen

sharing room.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as student or teacher with correct

credentials.

3. Invited room exists and is not expired.

4. User either gets an invitation to join the room or has

unique URL to the room.

Step by Step description 1. An invitation dialog box pops up when other users

send a request/invitation to join the room.

2. User clicks on “Join room” button.

3. User is directed to opened room in the new browser

tab.

OR

4. If the user already has a unique URL to the room, the

user opens a new browser tab and go to the given

URL to enter the room.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to join a room when invitation

appears in the window.

b. User clicks on join room button to be re-

directed to the opened screen sharing room.

OR

c. User enters unique URL to the new tab and

goes to the room.

2.

a. User instead chooses to cancel the screen

115

3. Exception Scenario

sharing invitation.

3.

a. User joins the room but room already expired.

Post condition User successfully joins the screen sharing room after

invitation or using the unique URL.

4.6.10 Manage Members

Figure 53: Manage Members Full Use Case diagram

Table 29: Manage Members Use Case realization table

Use Case ID 13

Use Case Name Manage Members

Brief Description This use case enables teachers to add and delete members

and manage the information of existing members.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

116

Step by Step description 3. User clicks on MANAGE menu to go to manage

members page on the main menu bar.

4. For rest of the steps, refer to use cases 14, 15 and 16.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to go to manage member page to

add, edit or delete a member.

b. User logs in as a Teacher with correct

credentials.

c. User is displayed with the home page of the

tool.

d. User clicks on the MANAGE menu on the

main menu bar.

e. Based on the requirement, the user performs

the actions, refer to use cases 14, 15 or 16.

2.

a. User goes back to home page clicking on

HOME menu.

b. User clicks on a different button on the main

menu bar displayed on the home page. Refer

use cases 02, 03, 05, 06, 07, 10, 17, 20 and

24.

3. -

Post condition User is successfully able to add, edit or delete member

upon requirements.

117

Figure 54: Manage Members full action flow diagram

Based on the requirement, this use case enables the user to perform either add, edit or delete the

members. Below are the three use cases that describe the actions in details.

118

4.6.10.1 Add Member

Table 30: Add Members Use Case realization table

Use Case ID 14

Use Case Name Add Members

Brief Description This use case enables teachers to add a new member to

the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is in MANAGE page in the tool.

Step by Step description 1. User clicks on Add Member button in the screen that

displays a new member form.

2. User fills in the form with new user’s detail

information.

3. User clicks “Confirm Add” button in the form to

finally add a new member to the system.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to add a new member to the

system.

b. User goes to the MANAGE page.

c. User clicks on Add member button to display

new member form.

d. User fills in a form with the member details.

e. User confirms the add by clicking “Confirm

Add” button in the form.

f. The new member is added to the system.

2. User clicks on “Cancel” button in the add form to

cancel the whole process.

119

3. Exception Scenario

3. -

Post condition User is successfully able to add a new member to the

system.

4.6.10.2 Edit Member

Table 31: Edit Members Use Case realization table

Use Case ID 15

Use Case Name Edit Members

Brief Description This use case enables teachers to edit/modify existing

member in the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is on the MANAGE page in the tool.

Step by Step description 1. User clicks on Edit button in the screen to modify

specific member. A form with original information of

the member is displayed.

2. User fills in the form with the modified member’s

information.

3. User clicks “Confirm Edit” button in the form to

finally edit member in the system.

Scenarios:

1. A regular scenario

1.

a. User wants to edit a member in the system.

b. User goes to the MANAGE page.

120

2. Alternative scenarios

3. Exception Scenario

c. User clicks on Edit member button for the

given member that displays a form with

original information of the member.

d. User fills in a form with the new details for

the member.

e. User confirms the edit by clicking “Confirm

Edit” button in the form.

f. Member is modified in the system.

2. User clicks on “Cancel” button in the edit form to

cancel the whole process.

3. -

Post condition User is successfully able to edit existing member in the

system.

4.6.10.3 Delete Member

Table 32: Delete Members Use Case realization table

Use Case ID 16

Use Case Name Delete Members

Brief Description This use case enables teachers to delete existing member

from the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is on the MANAGE page in the tool.

Step by Step description 1. User clicks on Delete button in the screen to delete a

specific member. A dialog box appears to confirm the

deletion of the member.

121

2. User clicks “Delete” button in the confirmation

window to finally delete a member from the system.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to delete a member from the

system.

b. User goes to the MANAGE page.

c. User clicks on Delete button for the given

member that displays a confirmation window

to delete the member from the system.

d. User confirms the deletion by clicking

“Delete” button in the form.

e. Member is deleted from the system.

2. User cancels the whole process of deletion.

3. -

Post condition User is successfully able to delete existing member from

the system.

4.6.11 Manage Messages

Figure 55: Manage Members Full Use Case diagram

122

Table 33: Manage Messages Use Case realization table

Use Case ID 17

Use Case Name Manage Messages

Brief Description This use case enables teachers to manage messages sent

by guests or students using the tool. Managing includes

reading and deleting the messages from the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

Step by Step description 1. User clicks on MESSAGES menu to go to manage

messages page on the main menu bar.

2. For rest of the steps, refer to use cases 18 and 19.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to go to manage messages page to

read or delete messages.

b. User logs in as a Teacher with correct

credentials.

c. User is displayed with the home page of the

tool.

d. User clicks on the MESSAGES menu on the

main menu bar.

e. Based on the requirement, the user performs

the actions, refer to use cases 18 or 19.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page. Refer

use cases 02, 03, 05, 06, 07, 10, 13, 20 and

24.

b. User goes back to home page clicking on

HOME menu.

123

3. Exception Scenario

3. -

Post condition User is successfully able to read or delete messages upon

requirements.

Figure 56: Manage Messages full action flow diagram

124

Based on the requirement, this use case enables the user to perform either read or delete the

messages sent by guests or students. Below are the two use cases that describe the actions in

details.

4.6.11.1 Read Messages

Table 34: Read Messages Use Case realization table

Use Case ID 18

Use Case Name Read Messages

Brief Description This use case enables teachers to read messages (queries

and concerns from students and guests) in the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is in MESSAGES page in the tool.

Step by Step description 1. User reads the messages in the table displayed.

Scenarios:

1. A regular scenario

2. Alternative scenarios

1.

a. User wants to read messages from other

members in the system.

b. User goes to the MESSAGE page.

c. User reads the necessary message displayed

in the table ordered by the received date.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page. Refer

use cases 02, 03, 05, 06, 07, 10, 13, 20 and

24.

b. User goes back to home page clicking on

HOME menu.

125

3. Exception Scenario

3. -

Post condition User is successfully able to read all necessary messages

sent by other users (student and guests) in the system.

4.6.11.2 Delete Messages

Table 35: Delete Messages Use Case realization table

Use Case ID 19

Use Case Name Delete Messages

Brief Description This use case enables teachers to delete messages sent by

other members from the system.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is in MESSAGE page in the tool.

Step by Step description 1. User clicks on button in the screen to delete a

specific message. A dialog box appears to confirm

the deletion of the message.

2. User clicks “Confirm Delete” button in the

confirmation window to finally delete the message

from the system.

Scenarios:

1. A regular scenario

1.

a. User wants to delete a message from the

system.

b. User goes to the MESSAGE page.

126

2. Alternative scenarios

3. Exception Scenario

c. User clicks on button for the given message

to be deleted and a confirmation window is

displayed.

d. User confirms the deletion by clicking

“Confirm Delete” button in the form.

e. The message is deleted from the system.

2. User cancels the whole process of deletion by

clicking on “Cancel” button in the confirmation

window.

3. -

Post condition User is successfully able to delete existing message from

the system.

4.6.12 Manage Lab Assistant Hours

Figure 57: Manage Lab Assistant hours’ full Use Case diagram

Table 36: Manage Lab Assistant Hours Use Case realization table

Use Case ID 20

Use Case Name Manage Lab Assistant hours

Brief Description This use case enables teachers to add, modify and delete

lab assistant hours and manage the overall lab assistant

schedule.

Actors Teacher

127

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

Step by Step description 1. User clicks on STUDY MATERIALS to list the drop-

down menu.

2. User clicks on LAB ASSISTANT HOURS menu and is

redirected to the lab assistant hours’ page.

3. Based on requirement steps are performed as per use

cases 21 and 22.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to go to manage lab assistant

hours’ page to add new hours to the schedule

table.

b. User logs in as a Teacher with correct

credentials.

c. User is displayed with the home page of the

tool.

d. User clicks on the STUDY MATERIALS on

the main menu to list drop down and clicks on

LAB ASSISTANT HOURS to go to the lab

assistant hours’ page.

e. User performs the actions listed on use cases

21.

2.

a. User clicks on a different button on the main

menu bar displayed on the home page. Refer

use cases 02, 03, 05, 06, 07, 10, 13, 17 and

24.

b. User goes back to home page clicking on

HOME menu.

3. -

Post condition User is successfully able to add, edit or delete hours in

the lab assistant hour schedule upon requirements.

128

Figure 58: Manage Lab Assistant hours’ full action flow diagram

129

Based on the requirement, this use case enables the user to perform either add, edit or delete the

members. Below are the three use cases that describe the actions in details.

4.6.12.1 Add New Schedule Hours

Table 37: Add new schedule Use Case realization table

Use Case ID 21

Use Case Name Add New Schedule Hours

Brief Description This use case enables teachers to add new schedule hours

to the schedule table.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is in LAB ASSISTANT HOURS page in the tool.

Step by Step description 1. User clicks on Edit/Update button in the screen to

make the schedule table editable.

2. User fills in the new hours in the table.

3. User clicks Save Changes button in the page to

finally save the newly added hours to the schedule

table.

Scenarios:

1. A regular scenario

1.

a. User wants to add a new hour to the system.

b. User goes to the LAB ASSISTANT HOURS

page.

c. User clicks on Edit/Update button to make

the table editable.

d. User fills in new hours in the table.

e. User confirms the add by clicking Save

Changes button in the page.

f. New hours are added to the schedule table.

130

2. Alternative scenarios

3. Exception Scenario

2. User clicks on a different button on the main menu

bar. Refer use cases 02, 03, 05, 06, 07, 10, 13, 17 and

24.

3. -

Post condition User is successfully able to add a new member to the

system.

4.6.12.2 Modify or Delete Scheduled Hours

Table 38: Modify or Delete Scheduled Hours Use Case realization table

Use Case ID 22

Use Case Name Modify or Delete Scheduled Hours

Brief Description This use case enables teachers to modify or delete

existing hours in the schedule table.

Actors Teacher

Pre-condition 1. User have internet service available.

2. User is logged in as a teacher with correct

credentials.

3. User is in LAB ASSISTANT HOURS page in the tool.

Step by Step description 1. User clicks on Edit/Update button in the screen to

make the schedule table editable.

2. User modifies or deletes the hours from the schedule

table as needed.

3. User clicks Save Changes button in the page to

finally save the modification or deletion of hours to

the schedule table.

Scenarios:

131

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to delete certain lab hours from

the schedule table.

b. User goes to the LAB ASSISTANT HOURS

page.

c. User clicks on Edit/Update button to make

the table editable.

d. User deletes the required hours from the table.

e. User confirms the deletion by clicking Save

Changes button in the page.

f. Desired hours are deleted from the schedule

table.

2. User clicks on a different button on the main menu

bar. Refer use cases 02, 03, 05, 06, 07, 10, 13, 17 and

24.

3. -

Post condition User is successfully able to modify or delete scheduled

hours in the schedule table.

4.6.13 Manage Content on the Website

Figure 59: Manage Content on the website full Use Case diagram

132

Table 39: Manage Content on the website Use Case realization table

Use Case ID 23

Use Case Name Manage Content on the website

Brief Description This use case enables teachers to add, modify or delete

the content on the website as needed directly from the

backend.

Actors Teacher

Pre-condition 1. User has internet service available.

2. User has direct access to the website database with

correct credentials.

Step by Step description 1. User updates the content in the database.

2. User saves the changes in the database.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to add a new set of question and

answer for ask a question section of the tool.

b. User makes the necessary changes in the

database.

c. User saves the necessary changes.

2. –

3. User is not able to make changes because the user

does not have write permission.

Post condition User is successfully able to add, edit or delete contents of

the page directly in the backend.

133

4.6.14 Log Out

Figure 60: Log Out Full Use Case diagram

Table 40: Log Out Use Case realization table

Use Case ID 24

Use Case Name Log Out

Brief Description This use case enables users to log out of the system and

end the session.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as Student or Teacher.

Step by Step description 1. User clicks on LOG OUT menu in the main

navigation bar.

2. A log out screen appears and the user is successfully

logged out of the system.

Scenarios:

1. A regular scenario

1.

134

2. Alternative scenarios

3. Exception Scenario

a. User wants to terminate the current session on

the website.

b. User clicks on LOG OUT button on the main

navigation bar.

c. User successfully logs out of the system.

2.

a. User clicks on a different button on the main

menu bar.

If logged in as Student, refer use cases 2, 3, 4,

5, 6, 7 and 10.

If logged in as Teacher, refer use cases 2, 3, 4,

5, 6, 7, 10, 13, 17 and 20.

b. User goes back to home page clicking on

HOME menu

3. -

Post condition User successfully logs out of the system.

4.6.15 Search Term in the Page

Following is the additional use case determined to be important for two use cases above,

refer use cases 02 and 06.

Table 41: Search term in the page Use Case realization table

Use Case ID 25

Use Case Name Search term in the page

Brief Description This use case enables users to search for the related

content within the page.

Actors Teacher, Student

Pre-condition 1. User have internet service available.

2. User is logged in as Student or Teacher.

135

3. User is either in FAQ or Chapters page. Refer use

cases 02 and 06.

Step by Step description 1. User types in the search text in the search field.

2. The result is shown below the search field with the

result dynamically as soon as the user starts typing in

the search field.

Scenarios:

1. A regular scenario

2. Alternative scenarios

3. Exception Scenario

1.

a. User wants to look for all contents in the FAQ

page related to the specific term.

b. User opens the FAQ page (refer use case 02).

c. User types in the search term in the search

field.

d. The result is displayed below the search field.

2. -

3. The search term returns no result because the exact

term is not available on the page.

Post condition User is able to search and list all the content on the page

related to the given search term.

136

Chapter 5: SYSTEM IMPLEMENTATION

5.1 Chapter Overview

This chapter summarizes the overall implementation of the system. It includes the code

implementation following the major implementation work flow process used in the system.

The development environment used in making the system is to be discussed as well.

5.2 Design Decisions

1. The system to be developed is a standalone web application and will be implemented

using HTML, CSS, JavaScript and PHP.

2. All the interfaces are designed using Photoshop and implemented using HTML, CSS,

and Bootstrap.

3. The system launches with the home screen interface which will be similar to every

kind of user roles.

4. Each functionality and features are represented by a button in the interfaces, which is

selectable by the mouse click.

5. The details in the fields of the forms and any text boxes can be input directly by the

keyboard.

6. The data and information are saved in either text files or the database tables.

7. Each of the core functionalities of the project is divided into sub-functionalities for

providing complete enhanced features.

8. Each of the major functions has their dedicated view, controller and service scripts.

5.3 Development Environment

5.3.1 Installation and Configuration of Tools

Various kinds of tools were installed and configured depending upon requirements for the

project as listed in section 3.5.

A LAMP web development platform was used for the overall development of the project and

was set up in DigialOcean which does the webhosting for the servers. LAMP uses the Linux

137

Operating System, the Apache HTTP Server, the MYSQL relational database management

system and the PHP programming language.

Below is the list of tools that were installed and configured on the local computer to prepare

for the development of the system.

1. Sublime Text

This tool was installed and used for writing all sets of codes required for full

development of the system.

2. Google Chrome – Inspector

This tool is very easy to use and to inspect various UI property of the tool. Google

Chrome browser was installed to make use of the inspector.

3. WinSCP

This was a really important tool to transfer the important script files between local

and remote server.

There were also tools like Photoshop and Paint that were used extensively for making the UI

design of the project.

5.3.2 Language Environment

The language environment consisted of scripting and markup languages. JavaScript and PHP

were the scripting languages used for overall development of the project. Similarly, HTML

and CSS were the markup languages used for building the majority of the UI. Bootstrap and

Angular JS web application frameworks were also used extensively for the project. Both the

frameworks are JavaScript-based which are designed to help developers in making web

application.

138

5.4 Code Implementations and Major Source Codes

This section includes the code implementation and major source codes used in making the

system. The codes are divided into three categories: Views, Controllers, and Services. The

views are all the UIs, controllers process the data in the UIs and Services does all the

backend services and communications with the servers and databases. Figure 61 shows the

overall high level visualization of the communication between scripts.

Figure 61: Communication between scripts

Views are mainly written using HTML, CSS and using the Bootstrap framework. Bootstrap

is mainly used to create forms and pop-up dialog boxes. In this section, only some of the

major controllers and services scripts are discussed in details. All controllers are written in

JavaScript and services are written in PHP.

5.4.1 Login Feature Implementation

Login system is one of the major components of the project. To completely build this feature,

a controller script to process the login action is written. The action is processed using a

service script which is written to take the request to the server and validate the login action.

139

Controller and service communicate with each other at every login request. Figure 62 below

shows the full steps of processing the login request.

Figure 62: Login mechanism full action flow

140

5.4.1.1 Login Controller

Login Controller handles the login functionality of the system. This is written using Angular

JS. Its main job is to get data from the user in the form of user name and password and pass

it to service script to perform the authentication. Below is the snippet code of the controller.

//This is the angular JS app in the login page
var app = angular.module('mainApp',[]);

// Following app-controller grabs the login controller from the app
above and performs the username and password null checking
// Prepares and sends data to service script for final verification
// Process the response to show the authentication result
app.controller('login_controller',function($scope, $http, $location)
{ ... });

See Appendix A.1.1 for full source code.

5.4.1.2 User Verify Service

Once the login controller collects the user’s info as user name and password, they are passed

to user verify service script for final authentication which is written in PHP. A connection to

the database is made and user’s credential is matched in the database [22].

// This script is responsible for verifying the user credentials
// 1. Prepare the database connection
// 2. Verify the user credentials and send response back
// 3. Close the database connection
function verifyUser {...}

See Appendix A.1.2 for full source code.

5.4.2 Ask a Tutor Page Implementation Using Speech Recognition

This is another important component of the tool. In this part of the project, the user can use

the speech recognition mechanism to ask a question to the tool. In return, the tool gives the

answer with important links and a video tutorial on the topic. The questions should be strictly

related to C++. Figure 63 shows the complete flow of the ask a tutor page implementation.

141

Figure 63: Ask a Tutor full action flow

142

5.4.2.1 Mic Controller

This controller script uses SpeechRecognition API which listens to the web browser. The

script is supported to listen to chrome and firefox browsers. The script is enhanced by mics

animation. Overall mic controller script is written in JavaScript. Once the message is

recorded and collected, it is then sent to service script to make a database search and get the

result. Below is the snippet of different functions in mic controller script which loads every

time the page loads so that speech recognizer is ready to listen.

// This function does the following:
// 1. Tests browser support
// 2. Create a new recognizer
// 3. Collect the data once recognizer starts listening
function performSpeechRecognition() {...}

Below is the function that initiates the recording and animation of the mic.

function startMic() {
 recognizer.start();
 turnMicOn();
}

function turnMicOn (){
 // Mic animation is done here and is done for 5 secs
 ...
 // after 5 secs mic is turned off
 stopMic();
}

function stopMic(){
 recognizer.stop();
}

Once mic is turned off, database searching is done. The data collected from the user is sent to

service script which does the database searching. Note that, if the user is not using the mic,

the typed message is collected and sent to the service script. The function to send the final

data to the service script is shown below.

143

// The function collects the final data either using mic or manual

typing by user

// Make AJAX call to search database script

// Collect the response and display the formatted result

function askQuestion() {...}

See Appendix A.2.1 for full source code.

5.4.2.2 Search Database

Database searching script is written in PHP. It collects the data from mic controller and

makes the close matching to the questions available in the database and responds with the

details answers with a link to videos and useful links.

// This script is responsible for searching database for answer
asked by the user performing followings steps:
// 1. Prepare the database connection
// 2. Search for the answer in the database
// 3. Calculate and sort the matching percentage
// 4. Prepare and send back the list of final answers with good
matching percentage
// 3. Close the database connection
{...}

See Appendix A.2.2 for full source code.

5.4.3 Online Chat Implementation

Online Chat offers the user to have the ability to communicate with other online users of the

tool in real time. There are three parts of the online chat:

 Displaying the latest 20 messages in the chat box along with a list of all online users

in the view. This is handled by Message Display Controller and Get File Data

Service.

144

 Sending a message and saving it on the server with sent time stamp. This is handled

by Chat Message Controller and Sending Message Service.

 Handling the status of the user. There are three kinds of statuses available for user:

Available, Away and Busy. This is handled by Status Controller, Current Status

service, and Change Status service scripts.

5.4.3.1 Message Display Controller

This controller is responsible for collecting all the recent messages sent in the online

communication page along with a list of online users at the moment. It is written in Angular

JS. The script updates the chat box and online users list content every 1 sec. The script is

assisted by a service which collects the necessary information from the server as listed in

5.4.3.2. Below is the sample code that does the necessary job.

//This is the angular JS app in the online chat page
var app = angular.module('mainApp',[]);

// Following app-controller updates the message in the chat box
every 1 sec
// Make http call to service script to get the recent online
messages
// Collect, format and display the response from service script
app.controller('onlineUserController',function($scope, $http) {});

See Appendix A.3.1 for full source code.

5.4.3.2 Get File Data Service

This service script detects the caller (controller) and sends response accordingly. The main

job of this service is to open the necessary file on the server and collect the contents and send

it back to the caller. The script is written in PHP. Below is the code description of the script.

// Based on request from the controller, this script opens file and
collects data

145

// Example: request may be to collect list of online users or to
collect recent online messages sent
{...}

// This function formats the file content and returns response
function array2string($data) {...}

See Appendix A.3.2 for full source code.

5.4.3.3 Chat Message Controller

This script written in JavaScript using jQuery collects the message from the chat text box

responding to send action performed in the interface. Once the message is collected, a

necessary ajax call is made to run the service script (section 5.4.3.4) which saves the

necessary message in the dedicated file saved on the server. Figure 64 below shows the

detail steps to successfully send a message using the tool.

146

Figure 64: Sending a Message full action flow

// This jQuery function:
// 1. Collects the new message & sends to service script to save
// 2. Collect the response from service script to notify user
$(document).ready(function() {
 $('#messageForm').on('submit', function(e) {
 ...
 });
});

See Appendix A.3.3 for full source code.

147

5.4.3.4 Sending Message Service

This is helper service script in PHP to save the message sent by chat message controller

above to the necessary file in the server. The saving of the message is done as shown below.

// This script performs following:
// 1. Collects the message sent by the user from controller
// 2. Add new message to the file with new time stamp
{...}

See Appendix A.3.4 for full source code.

5.4.4 Status Controller

This controller written in JavaScript controls the status of the user in the tool. It is

responsible for reflecting the current status of the user in real time. To accomplish this task,

this controller is assisted by services to reflect current status and change of status. The tool

offers three kinds of statuses: Available, Away and Busy. Below is the code snippet for the

status controller.

// This function updates the status as saved in the server
function updateCurrentStatus() {...}

// This function is responsible for changing the status:
// 1. Collect and display the new status
// 2. Make AJAX call to change the status details in the server
function changeStatus(status) {...}

See Appendix A.4 for full source code.

5.4.4.1 Current Status and Change Status Services

Both the service scripts are written in PHP. Current Status Service script returns the current

online status of the user that is saved in the session. See Appendix A.4.1 for full source code

of Current Status Service script. Change status service script sets the new status of the user in

the current session. Hence, the status of the user can be changed by the user as long as

session exists.

148

Change Status Service

// The script performs the following:
// 1. Collect the new status to be set sent by controller
// 2. Collect the list of online users
// 3. Find the user in the online user list and change status
// 4. Save the list of online users with updated status of the user
{...}

See Appendix A.4.1 for full source code.

5.4.5 Screen Sharing Implementation

This is the most important part of the project. This allows the user to share their screen with

other users who may or may not be online in the tool. However, to be the organizer of the

screen sharing, the user needs to log in to the system. There are multiple controllers and

services that together offers the full functionality of the screen sharing service.

Some major things to note about this feature:

a. A separate browser extension is needed to use the feature. Currently, google chrome

and Firefox extension is available and therefore screen sharing is supported only on

these browsers. Note that, the extension is not required for audiences of the screen

sharing room.

b. A unique id is created for every room session which is used to create a unique room

URL. The URL can be used to join the opened room using any browser.

c. The feature also supports inviting other online users using the tool directly to the

created screen sharing room.

d. A free signaling server is used to organize the screen sharing. Nonetheless, the

session is fully secured.

The controllers and services that are needed for the screen sharing are listed and discussed in

details in this section. Below is the complete high level flow diagram of the screen sharing,

step by step.

149

Figure 65: Screen Sharing full action flow

150

5.4.5.1 Screen Sharing Controller

Screen sharing controller handles the major part of screen sharing feature. This controller is

responsible for creating an actual screen sharing room using free signaling server, creating a

unique id for the room and hence creating a unique URL for each opened room. Currently,

the controller is written to support audio and screen sharing. User attending the screen

sharing room can see the organizer’s screen as well as talk to the organizer.

The script is written using JavaScript. An open sourced RTCMulticonnection which is a

WebRTC-library is used write the script to be able to start screen sharing [21]. This script is

called when a button to open a screen sharing is clicked in the view. Below is the detail

description of the screen sharing controller.

First of all, following three libraries are included in the project.

<script src="https://cdn.webrtc-
experiment.com:443/rmc3.min.js"></script>
 <script src="//cdn.webrtc-
experiment.com/getScreenId.js"></script>
 <script src="https://cdn.webrtc-
experiment.com/getMediaElement.js"></script>

Then, an object of RTCMulticonnection is created and properties are set.

var connection = new RTCMultiConnection();
// Set connection properties
// set the video and audio container in the view page
{...}

Now connection can be started using on-stream event and the media element can be

displayed in the container.

// On receiving the onstream event, this function prepares the video
containers and plays the video

151

connection.onstream = function(event)
{...};

The user-id is returned from the getScreenId.js library which is included in the project. The

function below is responsible for detecting the extension available in the browser. If the

extension is not detected, an error is thrown. As a user, the screen sharing won’t start on the

screen.

// The function determines the screen constraints using the
installed extension in the browser
connection.getScreenConstraints = function(callback)
{...};

Again, getScreenContraints is included in the getScreenId.js library.

Now when the streaming ends, the onstreamended event is called and the screen sharing

view is removed.

// The function triggers when the stream ends and stops the
streaming
connection.onstreamended = function(event)
{...};

The function below is responsible for handling the room id.

function handleRoomID() {

// Get the id if available in local storage else create one
...

}

Once the room id is created following function is responsible for generating unique URL to

the room.

function showRoomURL(roomid)
{...}

152

See Appendix A.5.1 for full source code.

Once the room is created, following controllers and services enhances the feature abilities.

5.4.5.2 Screen Sharing Online User List Controller and Get File Data Service

Screen sharing online user list controller and get file data service helps to list all the online

users along with their statuses. Both the controller and service script are similar as described

in 5.4.3.1 and 5.4.3.2.

However, screen sharing online user list controller also helps choose users from the online

user list to send an invitation to the opened screen sharing room. Below is the series of

outlines of the codes in JavaScript that performs the tasks of invitation which is eventually

assisted by sending invitation service on the backend side.

// This function helps user to select users from the online list and
send invites

function sendInvites() {

// Detect if the room has been created yet
...

// If not ask user to open room first to send invitation

 // Detect all the selected users from online user list
 // create an array of invited user list with room id

// if the checkbox is checked, user is selected for
invitation
// If no user is selected, report user to select at least
one user to send the invitation

 ...

 // Send the invitation and notify

...
}

153

// This function helps select all the users at once
function selectAll() {...}

// This function helps user to clear the selection
function clearAll()
{...}

// This function finally sends invitation to other users making AJAX
calls
function sendInvitation()

{...}

See Appendix A.5.2 for full source code.

5.4.5.3 Send Invitation Service

Once the list of selected users to send the invitation is confirmed, this service written in PHP

receives the invited user list. The received list of invited users is saved to the file on the

server so that invitation detection service (discussed in 5.4.5.5) can pick up the data about

invited users along with the room id. Below are the outlines of the code to do this job.

// The script performs the following:
// 1. Collect the invitation sender info
// 2. Gather list of invited users from the controller
// 3. Create a pattern with sender id and name to match to the
// gathered list of invited users
// 4. If the invitation is for self, skip otherwise save the info
// 5. Save all the invited user to the file
{...}

See Appendix A.5.3 for full source code.

5.4.5.4 Detect Invitation to Screen Controller

This controller is responsible for detecting if there is any invitation sent. If the invitation is

detected, this pops up a dialog box with the URL to the opened room with the invitation

sender information. This script runs in every user’s session to detect invitation. The script

154

makes use of the Bootstrap framework and is written in JavaScript. This can pop up in any of

the pages in the tool. This controller is assisted by detect invitation to screen service

(discussed in 5.4.5.5) which is responsible for collecting the invitation information from the

server.

// This function checks
// 1. if there is any invitation for current user
// 2. create a bootstrap pop-up dialog box with
// a. unique URL and
// b. inviter details
function checkInvitation()
{...}

See Appendix A.5.4 for full source code.

5.4.5.5 Detect Invitation to Screen Service

This service written in PHP assists in detecting the invitation communicating with the server.

If invitation is detected, it collects the room id and inviter information and sends back to the

controller making the request.

// The script performs the following:
// 1. Collect the current user id
// 2. Collect the current user name
// 3. Collect the invited users list
// 4. Detect if any invitation is made for current user
// 5. If any invitation is detected, respond back to controller with
// a. room key and
// b. inviter name
{...}

In addition, following function is included in the script.

// This function performs the following:
// 1. Assists in deleting the detected invitation in the
// server so that invitation is not made again and again
//
// Input: user name

155

// Output: Deletes the detected invitation from the server

function deleteDetectedinInvitationList($a_user)

{...}

See Appendix A.5.5 for full source code.

5.4.6 Manage Members Implementation

Manage Member is another important feature of this project. With this feature, the user is

able to add a new member to the system. This feature also lets the user modify the existing

member and even delete the user. There are two kinds of members using the tools, Teachers,

and Student. This feature is only available for members who are Teachers.

Below shown is the complete flow-chart describing the steps to complete different

transaction offered by this feature.

156

Figure 66: Members Management full action flow

The controller and service scripts that are involved in giving full functionality of this feature

are discussed below.

5.4.6.1 Manage Database Controller

This controller is responsible for displaying all the member’s information in a tabular form.

This also controls the actions of adding a new member, deleting or editing the existing user.

157

The controller is written using JavaScript and uses the Bootstrap framework. First, this

controller makes a call to fetch data database service (discusses in 5.4.6.2) to gather all the

member’s information and displays them in a tabular format. The functions involved in this

controller are mentioned below.

// This function makes a call to service to gather all the member
information
function fetchData()
{...}

// This function parses the response from service and displays in
// the table in readable format
function updateTable(response)
{...}

See Appendix A.6.1 for full source code.

This controller also controls the major actions of adding a new member to the system and

deleting/editing the existing member. Below discussed are the code implementation for these

three major actions.

Add a Member

For adding a new member to the system, first of all, details of the new member are collected

from the user and once confirmed, a call to service is made to finally save the new member in

the database. In course of action, a unique password is generated automatically to the new

user.

// This function on call displays the form to fill in new member's
// details
function addThisItem()
{...}

158

Once the form is displayed and filled in and is confirmed by the user, new member details are

collected and send to the add/edit/delete service to perform INSERT transaction to the

database.

// On add confirmation, this function sends the add request to
// service with member details to finally add to the database
// The series of steps performed in this functions are:
// 1. Collect First Name, Last Name and user role (Teacher/Student)
// 2. Generate unique pass for new user
// 3. Prepare data to send to service to add to the database
// 4. Make AJAX call to service and send the prepared data
function confirmAddThisItem()
{...}

// This function is used to create a unique password
function createID()
{...}

See Appendix A.6.1.1 for full source code.

Edit a Member

For editing a member, details of the member are gathered and shown in the editing form. The

member can edit the form with the member details as needed.

// Given the id of the user to be modified, this function collects
// member details and show them in the editing form
function editThisItem(id)
{...}

Once the member details are modified and confirmed, the modified details are collected.

Then a call to add/edit/delete service is made to finally UPDATE the member’s details in the

database.

// On edit confirmation, this function sends the UPDATE request to
// service with modified member details to finally reflect the
// modification in the database
// The series of steps performed in this functions are:

159

// 1. Collect the new details from the editing form
// 2. Prepare data to send to service to make the Update transaction
// 3. Make AJAX call to service and send the prepared data

function confirmEditThisItem(id)
{...}

See Appendix A.6.1.2 for full source code.

Delete a Member

If the user wishes to delete a member, a form is shown with the member’s detail to confirm

the deletion.

// This function displays a form with the member detail to delete
function deleteThisItem(id)
{...}

On confirmation, a request to add/edit/delete service is made to perform the DELETE

transaction on the database.

// On delete confirmation, this function sends the DELETE request to
// service with member's ID
// The series of steps performed in this functions are:
// 1. Prepare data to send to service script
// 2. Perform DELETE transaction
// 3. Make AJAX call to service and send the prepared data
function confirmDeleteThisItem(id)
{...}

See Appendix A.6.1.3 for full source code.

5.4.6.2 Fetch Data Database Service

This service is dedicated for collecting all the member’s details and return to the controller.

The member’s information is collected and returned in json format for the easy processing.

160

// The series of steps performed in this scripts are:
// 1. Prepare the database connection
// 2. Collect all members
// 3. Return the final record and Close the connection to database
{...}

See Appendix A.6.2 for full source code.

5.4.6.3 Add, Edit, or Delete Database Service

This service gets the transaction request from the controller with the member’s details and

based on the transaction type, it performs either INSERT, UPDATE or DELETE transaction

on the database in the Members table. Below are the complete service script steps and

functions written in PHP to perform the different transaction.

// The script performs the following steps to gather necessary
// details before starting the final transaction of add/edit/delete
// 1. Collect the sent data from the controller
// 2. Determine the transaction type and call the necessary function
// with the collected data
{...}

// This function with the given data performs the UPDATE(edit)
// transaction performing following steps
// 1. Extract the data from the sent data package
// 2. Prepare the database connection
// 3. Perform the UPDATE transaction
// 4. Respond with the success result back to the controller
function editMember($sentData)
{...}

// This function with the given data performs the INSERT(add)
// transaction performing following steps
// 1. Extract the data from the sent data package
// 2. Prepare the database connection
// 3. Perform the INSERT transaction
// 4. Respond with the success result back to the controller
function addMember($sentData)
{...}

161

// This function with the given data performs the DELETE transaction
// performing following steps
// 1. Extract the data from the sent data package
// 2. Prepare the database connection
// 3. Perform the DELETE transaction
// 4. Respond with the success result back to the controller
function deleteMember($sentData)
{...}

See Appendix A.6.3 for full source code.

5.4.7 Displaying and Modifying Lab Assistant Hours’ Implementation

Displaying and managing lab assistant hours’ is one of the major features of the tool. This

feature enables users to look at the current lab assistant working hours. If logged in as a

teacher, this lets the user modify the lab assistant’s schedule upon requirement. The user is

able to add new hours and modify/delete existing hours of operations. To meet all these

requirements, a controller and a service script are written which are discussed in sections

5.4.7.1 and 5.4.7.2. Below is the complete flow of actions in displaying and managing the lab

assistant hours’ table.

162

Figure 67: Lab Assistant hours’ management full action flow

163

5.4.7.1 Lab Assistant Hours’ Controller

This controller is responsible for displaying and managing the lab assistant hour’s table.

Below are the functions written in JavaScript using jQuery to perform the actions of

displaying and managing the table with the help of service discussed in section 5.4.7.2.

 // This jQuery on load gets the current schedule, making a request
to service and display in the table
$.get("url to get lab assistant hours service", function(data){
 ...
});

// Below functions are ready to be triggered on load
$(document).ready(function() {
 // this function on click makes the table editable
 $("#edit_update").click(function() {...});

 // this function on click saves the modified table making a
request to service
 $("#save").click(function() {...});
});

See Appendix A.7.1 for full source code.

5.4.7.2 Get Lab Assistant Hours’ Service

This service assists lab assistant hours’ controller (discussed in 5.4.7.1) to collect the latest

lab assistant hours’ schedule.

// Detect the type of request
// If request is POST, save the modified data sent as message
// else respond with current schedule to the controller
{...}

// this helper function converts array to string
function array2string($data) {...}

See Appendix A.7.2 for full source code.

164

5.4.8 Search Controller (for FAQ and Chapters Page)

This controller is used for searching the content within the page. This controller is dedicated

and used only in FAQ and Chapters page. To implement this search mechanism, a bootstrap

twitter typehead with json api is used. In order to be able to use this feature, following library

should be linked.

<link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs
s">

See Appendix A.8 for full source code.

5.4.9 Contact Message Sending Implementation

This feature lets users send the message to the system admins (Teachers/Tutors). It is for the

students or even the guests to send the concerns and queries, which will be visible to all the

admins. This feature is implemented by using a controller and a service, which are discussed

in details below.

165

Figure 68: Contact Message sending full action flow

166

5.4.9.1 Contact Message Controller

This controller written using Angular JS is responsible for collecting the messages and

sender details. Then, a request to the service is made to store the messages in the database.

//This is the angular JS app in the contact us page
var app = angular.module('mainApp',[]);

// Following app-controller collects the contact message along with
the sender details
// Make http call to service script to save the messages in database
// Notify the success result to the user
app.controller('contact_message_controller',function($scope, $http)
{ ... });

See Appendix A.9.1 for full source code.

5.4.9.2 Contact Message Store Service

This service helps contact message controller (discussed in 5.4.9.1) in storing the sent

messages to the database in the ContactMessages table. This is written in PHP.

// This script performs the following:
// 1. Collect the sender details and messages
// 2. Prepare the database connection
// 3. Make INSERT transaction to Messages table in the database
// 4. Respond with transaction result
{...}

See Appendix A.9.2 for full source code.

5.4.10 Contact Message Management Implementation

As a teacher, a user should be able to manage the messages send by other users. This

implementation helps teachers read messages and manage them. The controller and services

discussed below aids in implementing this feature.

167

Figure 69: Manage Contact messages full action flow

168

5.4.10.1 Contact Messages Database Controller

This controller collects all the messages sent by other users (students/guests) sent as a

concern and query to the teachers. It is responsible for displaying all those messages in the

tabular format for easy reading and handling. This controller along with two services script

which are discussed in sections 5.4.10.2 and 5.4.10.3, helps teachers read messages and

manage them. The implementation of this controller in JavaScript is shown below in detail.

The fetching of data is done and shown in the table with the help of following functions in

the script.

// This function fetches all messages from database by making a
request to service
function fetchData() {...}

// This function displays each record found in the database in the
table
function updateTable(response) {...}

When the teachers want to delete messages from the database, following functions are

triggered which makes a request to services to perform the job.

// This function finally deletes the item with given id
// from the database making a request to service
function confirmDeleteThisItem(id) {...}

See Appendix A.10.1 for full source code.

5.4.10.2 Contact Messages Fetch Database Service

The main function of this script written in PHP is to help controller gather all the messages

saved in the ContactMessages table from the database. Once gathered, the information is

passed back to the controller to display in the table for the users. Below are the steps in

implementation of this script.

169

// The series of steps performed in this scripts are:
// 1. Prepare the database connection
// 2. Collect all contact messages from the database
// 3. Return the collected records and Close the connection to
database
{...}

See Appendix A.10.2 for full source code.

5.4.10.3 Delete Contact Message Database Service

This service is more dedicated to handling the delete transaction in the ContactMessages

table in the database. This is triggered when controller sends a request for delete transaction

and a transaction result is sent back to the controller. The steps in the script are shown in

detail below which are written in PHP.

// This script with the given data performs the DELETE transaction
// performing following steps
// 1. Collect the data from the sent data package
// 2. Prepare the database connection
// 3. Perform the DELETE transaction
// 4. Respond with the success result back to the controller
{...}

See Appendix A.10.3 for full source code.

5.4.11 Resume Session Controller

This is an important controller that helps in controlling the session time. With the help of

resume session service (discussed in section 5.4.11.1), this controller helps the user to extend

the session time. It shows a pop-up dialog box displaying the notification for users about the

session timeout and asks them to take action. If the user chooses to extend the time, a request

to service is made to extend the time. Below is the code snippet of implementation of the

controller.

// This Function notifies user of nearing the ending session and
suggesting to add time to the session

170

function resumeSession() {...}

See Appendix A.11 for full source code.

5.4.11.1 Resume Session Service

This service is responsible to extend the time period for the session. Once the request comes

from the controller, this script stamps the new timeout for the session for the user.

See Appendix A.11.1 for full source code.

5.4.12 Additional Services

There are additional services that are needed to offer additional services. These are needed to

make sure about different unseen features such as time out checking of the session, logging

out service and image slider service that is used on the home page of the tool.

5.4.12.1 Timeout Session Check (for Student and Teacher)

This service is more dedicated to continuously monitoring the timeout session of the user.

This makes use of resume session controller discussed in section 5.4.11 to keep track of

session time limit. Below discussed are time session check services applicable for student’s

session and teacher’s session.

Student Time Check:

The session time is set as 200 minutes. After 180 minutes a pop-up dialog box is shown to

the user if they want to renew the session. If the user does not renew the session, they are

automatically logged out of the session and system.

See Appendix A.12.1 for full source code.

171

Teacher Time Check:

The session time check for a teacher is similar to student’s time check. The only difference is

when the user type check is made at the bottom of the script. Below shown is the script

needed for teacher’s time check.

// Same as student time check
...

See Appendix A.12.1 for full source code.

5.4.12.2 Logout Service

This service is triggered when the user wants to log out of the system. This is responsible for

killing the session and destroying all the details collected during the session. This is also

activated when the time out check fails for either teacher or student. Below shown is the full

description of functionality of logout service written in PHP.

// This script displays appropriate notification or logs out the
user depending on different scenarios
// 1. Display the message if the user was logged out because of
session timeout
// 2. Display message if user was logged out in different window and
log out
// 3. Otherwise logs out the user, delete the user’s details from
the online user list and destroys the session
{...}

See Appendix A.12.2 for full source code.

5.4.12.3 Image Slider Service

Image slider service is used on the home page of the system. This is responsible for

collecting the images and setting up a slider mechanism to display the collected slides with

animation. The script is written in JavaScript using jQuery and is shown in details below.

172

// This jQuery function loads up all the images available every time
window loads and runs the slides show
$(function() {
 ...

// This helper function collects the images
(function preloader(){

 ...
 }());

 // This helper function starts the slideshow and continue to
display next slides
 function SlideShow() {
 ...
 }
});

See Appendix A.12.3 for full source code.

173

Chapter 6: TESTING

6.1 Chapter Overview

This chapter summarizes the overall testing performed to measure the accuracy and

functionality of the system. Different kinds of testing were performed to test the system. The

testing carried out were unit testing, integration testing and overall system testing.

6.2 Unit Testing

The major functionalities were carried out with unit testing to measure the correctness of the

functions. Unit testing was done for different functions related to different individual features

of the system to ensure the accuracy. Followings are the list of unit testing done for different

major functionalities of the system.

6.2.1 User Verification

This test case ensures the user verifications are done accurately.

Test Case Name User Verification

Test Case Description This test case validates the accuracy of user

verification

Pre-conditions -

Input test data User name and password – see table below

Steps to be Executed Enter the username and password

Expected Results If the user’s username and password are in the

database, login should success otherwise it should fail

with 100% success rate.

Actual Results 100% user verification success

Pass/Fail Pass

User Name Password Expected Result Actual Result Test Pass/Fail

santosh Basnet Success Success Pass

174

santosh Random Fail Fail Pass

Ritu Tamang Success Success Pass

Ritu Random Fail Fail Pass

abc qwerty Success Success Pass

abc 1234 Fail Fail Pass

6.2.2 Speech Recognition Activation Period

This test case ensures that the user can make use of speech recognition and turn the mic on

for the given period of time.

Test Case Name Speech Recognition Activation Period Testing

Test Case Description This test case validates the activation period of speech

recognition

Pre-conditions Microphone is enabled

Input test data N/A

Steps to be Executed Click on speech recognition icon

Expected Results The mic button should turn red for 5 secs and should

go back to normal

Actual Results The mic button turned red for 5 secs

Pass/Fail Pass

6.2.3 Speech Recognition

This test case ensures the accuracy of speech recognition.

Test Case Name Speech Recognition Test

Test Case Description This test case validates the accuracy of speech

recognition

Pre-conditions Microphone is enabled

Input test data See table below

175

Steps to be Executed Click the mic button and start speaking after mic

activation

Expected Results Words, phrases, sentences should be detected with

100% accuracy

Actual Results 83.33% accurate

Pass/Fail Pass

Sample speech recognition Test result

Spoken Text Detected Text Result – Pass/Fail

Testing Speech Recognition Testing Speech Recognition Pass

Define Class Define Class Pass

What is JavaScript What is JavaScript Pass

How is C++ different than

Java

how is C plus plus different

in Java

Fail

Define Constructor Define Constructor Pass

What is Destructor what is destruct Fail

How to use while loop how to use while loop Pass

Difference between for and

while

difference between for and

while

Pass

How to give input in C++ how to give input in C plus

plus

Pass

How to print output in C++ how to print output in C plus

plus

Pass

What is operator overloading what is operator overloading Pass

Some random text some random text Pass

6.2.4 Database Search for Answer

This test case ensures the accuracy of the answering capability of the tool to the asked

questions.

176

Test Case Name Database search for answer

Test Case Description Once the input is made either using a mic or not, the

question asked is used for searching answer in the

database. This test case validates the accuracy of

answer detection in the database

Pre-conditions Question to be asked is ready

Input test data See table below

Steps to be Executed Type the question in the text box and click go

Expected Results Answers related to the question should be displayed

with 100% accuracy

Actual Results 91.66% accurate

Pass/Fail Pass

Currently, the database holds the answer for the definition of class, functions, destructor and

input in C++. So, to measure the accuracy, questions related to these topics are asked. If

questions related to topics other than mentioned above is asked, answer returned is null.

Sample asked questions and generated answers test result

Question typed and asked Generated answer Result – Pass/Fail

What is class Related to Class Pass

Define Class Related to Class Pass

What is function Related to Functions Pass

How to use function Related to Class Pass

Define function Related to Class Pass

Define Destructor Related to destructor Pass

What is Destructor Related to destructor Pass

How to give input in C++ Related to input in C++ Pass

Cin in C++ No matching result found Fail

177

Difference between

constructor and overloaded

operator

Related to constructor and

overloaded operator

Pass

How to use functions in class Related to functions Pass

Some random question No matching result found Pass

Function class destructor Related to destructor -

For the last question asked in the table, the answer returned is related to destructor because

matching percentage is higher for destructor keyword than other two.

6.2.5 Change Status

This test case ensures if the user can change their status accurately without any error.

Test Case Name Change status

Test Case Description This test case verifies if status is changed accurately

upon request

Pre-conditions -

Input test data -

Steps to be Executed Change the status multiple times and see if new status

is saved and reflected

Expected Results Status should change with 100% accuracy

Actual Results 100 % success

Pass/Fail Pass

6.2.6 Send Message in Online Chat

This test case ensures if the user can send messages successfully.

Test Case Name Send Message

Test Case Description Verify if messages are sent successfully

178

Pre-conditions -

Input test data Any text message

Steps to be Executed a. Type the message in the text box

b. Click send button

Repeat the process multiple times

Expected Results Each message should be sent successfully and saved in

the file in the server

Actual Results 100 % success

Pass/Fail Pass

6.2.7 Receive Messages Sent in Online Chat

This test case ensures the user can receive the messages successfully.

Test Case Name Receive Messages

Test Case Description This test case verifies if messages sent by other users

are received and displayed

Pre-conditions Multiple users are present in the online chat

Input test data -

Steps to be Executed Try sending message and see if it is displayed on the

screen in the chat box in another users’ screen

Expected Results Each message sent by every user should appear in the

chat box

Actual Results 100 % success

Pass/Fail Pass

6.2.8 Save Online User Details

This test case ensures if the user details are saved successfully for managing the user’s

session. This detail assists in online communication including status updates. This also helps

in managing the screen sharing invitation.

179

Test Case Name Save online user details

Test Case Description This test case verifies if online user details are saved in

the text in the server

Pre-conditions User is using the system

Input test data -

Steps to be Executed a. Test the user details in the dedicated text file in the

server

b. Repeat with different user credentials with different

id, name and different status

Repeat the process several times.

Expected Results Following user details should be saved.

a. Status

b. ID

c. Name

Actual Results 100 % success

Pass/Fail Pass

6.2.9 Open Screen Sharing Room

This test case ensures if the user can open a screen sharing room successfully.

Test Case Name Open Screen sharing room

Test Case Description This test case validates the accuracy of opening a

screen sharing room upon request

Pre-conditions a. Microphone and use of camera is enabled in

browser

b. Required Extension is installed in the browser

Input test data -

Steps to be Executed a. Click the open room button

b. Choose window to share in the pop-up dialog box

180

c. Click share button

Repeat the process several times.

Expected Results A new screen shared room should be created

successfully in every attempt

Actual Results 100 % success

Pass/Fail Pass

6.2.10 Send Invitation

This test case ensures that the user can send an invitation to other users successfully.

Test Case Name Send invitation

Test Case Description This test case validates the accuracy of sending a

request to other users.

Pre-conditions a. Other online user’s details are available on the

server in the online user list file

b. Online users are listed in the screen with check

boxes

c. A unique room id is provided to detect the

invitation

Input test data -

Steps to be Executed a. Choose the online users to send the invitation from

the list and check the checkboxes

b. Click send invitation

Repeat the process several times.

Expected Results The full invitation details that include inviter and

invitee details along with unique id is saved in

invitation text file on the server.

Actual Results 100 % success

Pass/Fail Pass

181

6.2.11 Lab Assistant Hours’ Update Verification

This test case ensures that the user can update the lab assistant hours successfully.

Test Case Name Lab assistant hours’ verification

Test Case Description This test case validates if the updates made in the lab

assistant hours’ table is saved and reflected

Pre-conditions User can modify the table

Input test data

Steps to be Executed a. Add new hours to the schedule or modify/delete the

existing hours.

b. Hit save button

c. Repeat the process several times.

Expected Results New updated table should be saved and reflected in

every iteration

Actual Results 100 % success

Pass/Fail Pass

6.2.12 Send Contact Message

This test case ensures that the user can send contact messages successfully using the contact

form.

Test Case Name Send Contact message

Test Case Description This test case validates if users can send the contact

messages and are saved in the database

Pre-conditions -

Input test data Text input for following fields:

a. First name

b. Last name

c. Email

182

d. Message

Steps to be Executed a. Fill in the input details and click on send button

b. Check the message in the database

c. Repeat the process for multiple times

Expected Results The message should be sent each time and saved in the

database with 100% accuracy

Actual Results 100 % success

Pass/Fail Pass

6.2.13 Add a New Member to the System

This test case ensures that the user can add a new member to the system successfully.

Test Case Name Add a new member

Test Case Description This test case validates if a new user can be added to

the system

Pre-conditions User can add a new member to system and new

member details are provided

Input test data Text input for following fields:

a. First name

b. Last name

c. User type of the new member

Steps to be Executed a. Fill in the input details and click on confirm add

button to add a new member

b. Repeat the process for multiple new members

Expected Results Each member must be added to the table and hence to

the database

Actual Results 100 % success

Pass/Fail Pass

183

6.2.14 Edit a Member in the System

This test case ensures that the user can edit an existing member in the system successfully.

Test Case Name Edit a member

Test Case Description This test case validates if a member can be edited

successfully in the system

Pre-conditions User can edit a member in the system

Input test data Text input for fields that needs to be modified which

can be:

a. First name and/or

b. Last name and/or

c. User type of the new member

Steps to be Executed a. Fill in the modified input details and click on

confirm edit button to edit the member

b. Repeat the process for multiple members

Expected Results Each member must be edited successfully and must be

reflected in the database and system

Actual Results 100 % success

Pass/Fail Pass

6.2.15 Delete a Member from the System

This test case ensures that the user can delete an existing member from the system

successfully.

Test Case Name Delete a member

Test Case Description This test case validates if a member can be deleted

successfully from the system

Pre-conditions User can delete a member from the system

Input test data -

184

Steps to be Executed a. Select member to delete from the list and confirm

delete

b. Repeat the process for multiple members

Expected Results Each member must be deleted successfully and must be

reflected in the database and system

Actual Results 100 % success

Pass/Fail Pass

6.2.16 Delete a Contact Message from the System

This test case ensures that the user can delete contact messages from the system successfully.

Test Case Name Delete a Contact Message

Test Case Description This test case validates if a member can delete a

contact message from the system

Pre-conditions User can delete a message from the system

Input test data -

Steps to be Executed a. Select a message to delete from the list and confirm

delete

b. Repeat the process for multiple messages

Expected Results Each message must be deleted successfully and must

be reflected in the database and system

Actual Results 100 % success

Pass/Fail Pass

6.2.17 Search Content in the Page

This test case ensures that the user can do the searching of the content in the page

successfully.

185

Test Case Name Search content in the page

Test Case Description This test case validates if a member can perform a

search in the current page in the tool

Pre-conditions -

Input test data Any term to search in the page

Steps to be Executed a. Type the search term in the search text box field

b. Repeat the process with multiple searching terms

Expected Results The search result should be displayed dynamically as

soon as typing in the search field starts with the closest

matching contents in the page

Actual Results The searching result was seen as soon as typing started

Pass/Fail Pass

6.3 Integration Testing

Integration testing was done for various major integration cases to make sure different

components work together successfully. Following are different cases of integration testing

done.

6.3.1 ‘Searching the Database’ Integrated with ‘Speech Recognition’ Functionality

The searching of the database to look for answers to the question was integrated with speech

recognition functionality and integration testing was done to ensure the functionalities work

best together.

Test Case Name Testing of Integration of database search for answer

with speech recognition

Test Case Description This test case validates if a member can use the speech

recognition to look for the answer searching the

database

Pre-conditions Microphone is enabled in the browser

186

Input test data Test 1: Voice input – “How to use Function?”

Test 2: Voice input – “What is Class?”

Test 3: Voice input – “Random question?”

Steps to be Executed a. Click on mic button to activate the speech

b. Ask the question

Expected Results Answer related to asked question is should be

displayed in the answer box. If no answer is found, no

answer found should be displayed.

Actual Results For test 1 and 2, the answers were displayed. For test 3,

no answer found was displayed.

100 % success

Pass/Fail Pass

6.3.2 ‘Send/Receive Messages’ Integrated with ‘Status Changing Mechanism’

The sending messages, receiving messages and change status were integrated together to give

full service of online communication.

Test Case Name Testing of Integration of sending/receive messages

and change status

Test Case Description This test case validates if a member can change status

and send/receive messages at the same time.

Pre-conditions -

Input test data Test input data sets:

1. Text input – “Hello, this is US.”. Change status

from Available to Away.

2. Text input – “This is Santosh.”. Change status from

Away to Busy.

3. Text input – “This is the third message.”. Change

status from Busy to Available.

187

Steps to be Executed a. Type the message in the message text box and click

send

b. Change the status as mentioned in the test input

data sets above.

c. Repeat the process for all the test input data sets

Expected Results Changing status and sending a message should happen

successfully without any error. The messages should be

displayed on the screen (which means the sent message

was stored in the database successfully and hence was

received by all the users).

Actual Results All the test input data sets were used. Changing of

status and message sending were executed

successfully.

100 % success

Pass/Fail Pass

6.3.3 ‘Open Screen Sharing Room’ Integrated with ‘Send Invitation’

Open screen sharing room was integrated with send invitation to give the user the ability to

send an invitation to available users in the online user's list to the opened room.

Test Case Name Testing of Integration of open screen sharing room

and send invitation

Test Case Description This test case validates if a member can send an

invitation to other users to the opened screen sharing

room.

Pre-conditions 1. User can open a screen sharing room

2. Other users are available to send the invitation

Input test data -

Steps to be Executed a. Open a screen sharing room

188

b. Choose the users from the online user's list to send

the invitation to the created room.

c. Repeat process for multiple times

Expected Results The user should be able to open a screen sharing room

and be able to send an invitation to all the chosen users

from the online user's list. The invitation details should

be saved in the invitation text file in the server.

Actual Results The user was able to open the screen sharing room. The

invitation details were successfully registered in the

invitation text file in the server.

100 % success

Pass/Fail Pass

6.3.4 ‘User Verification’ Integrated with ‘Save Online User’s Details’

User verification was integrated with save online user’s details so that after every successful

user verification, user’s details is saved on the server. User’s details need to be saved to

process some important function such as changing user’s status, sending invitation and

messages, etc.

Test Case Name Testing of Integration of user verification and save

online user’s details

Test Case Description This test case validates if necessary user’s details are

saved in the server after each successful user

verification process.

Pre-conditions 1. The user has user-name and password to start user

verification process.

Input test data Text inputs – user name and password of the user

Steps to be Executed a. Fill in the user name and password to initiate the

user verification process

189

b. Repeat process for multiple times

Expected Results Following user’s necessary details are saved in the

online user list text file in the server.

a. ID

b. Name

c. Status (default is Available)

Actual Results Each time, necessary user’s details were saved in a

dedicated file in the server.

100 % success

Pass/Fail Pass

6.4 Overall System Testing

Overall System Testing was carried out to test all the functionalities available in the system

to meet the desired system requirement specifications. It was also performed to measure the

accuracy of the entire system.

All the test cases are described in details below. The test cases included from URL validation

to GUI testing to all the major and minor functionality of the system.

6.4.1 System URL Validation

Test Case ID 1

Test Case Type Functional

Test Case Description Verify whether web tool URL is valid

Pre-conditions User have the URL address to the tool

Input test data URL address

Steps to be Executed a. Open any web browser

b. Enter web tool URL address in the address box

c. Press Enter

Repeat process using other browsers.

190

Expected Results URL should open properly to the home page of the tool

Actual Results URL opened as expected

Pass/Fail Pass

6.4.2 Home page – Guest (After Launching the System in the Browser)

6.4.2.1 Main Menu Bar

Test Case ID 2

Test Case Type GUI

Test Case Description Verify whether full menu bar is available on top of the

home page

Pre-conditions User is on the home page of the tool

Input test data -

Steps to be Executed Check the menu bar items list

Expected Results A list of the items should be present in the main menu

bar as follows:

Home, ask a question, ask a tutor, faq, lab assistant

hours, login and contact

Actual Results Main menu bar was present with given item lists.

Pass/Fail Pass

6.4.2.2 Main Menu Test

Test Case ID 3

Test Case Type Functional

Test Case Description Verify all menus in the main menu bar

Pre-conditions User is not logged in to the system

Input test data -

Steps to be Executed Click on each menu item

191

Expected Results a. Home menu is the current page

b. FAQ menu should redirect to FAQ page with the

list of C++ FAQs

c. Lab Assistant Hours menu should redirect to Lab

Assistant hours’ page where user can see the

current lab assistant hours for the week

d. Contact menu should redirect to contact page with a

form to contact system admin

e. Every other menu should redirect to login page

Actual Results Only FAQ, Lab Assistant Hours and Contact menu

redirected to their own page. Rest of the menus lead to

the login page.

Pass/Fail Pass

6.4.2.3 Home Page Interface Look

Test Case ID 4

Test Case Type GUI

Test Case Description Verify the look and feel of the home page

Pre-conditions User is on the home page of the tool

Input test data -

Steps to be Executed -

Expected Results a. The main navigation bar should be present on top

of the page

b. System should have an imager slider on top of the

page

c. A welcome message box should be present

d. More columns should be present to display

additional information

192

Actual Results Home page interface included everything as expected.

Pass/Fail Pass

6.4.2.4 Image Slider

Test Case ID 5

Test Case Type GUI & Functions

Test Case Description Verify the look and feel of the image slider

Pre-conditions User is on the Home page of the tool

Input test data -

Steps to be Executed -

Expected Results a. Image should change with animation every 3 secs

b. Image sub title should change on the bottom of the

page along with the image

Actual Results Images changed with subtitle as expected.

Pass/Fail Pass

6.4.3 Login

6.4.3.1 Login Form/Interface

Test Case ID 6

Test Case Type GUI

Test Case Description Verify whether Login page is displayed with

appropriate login form

Pre-conditions User is on the Login page of the tool

Input test data -

Steps to be Executed -

Expected Results Login form should be displayed with at least following

fields:

193

a. User Name field

b. Password Field

c. Login button

Actual Results Login form with required fields was displayed.

Pass/Fail Pass

6.4.3.2 Main Menu Bar Interface and Functional Test

Refer to test 2 and 3 in sections 6.4.2.1 and 6.4.2.2. Same test cases apply.

6.4.3.3 Login Test

Test Case ID 7

Test Case Type Functional

Test Case Description Verify if the user can login successfully

Pre-conditions The user must be registered in the database.

Input test data Correct User Name and Password

Steps to be Executed a. Enter correct user name and password in the form

b. Click Login button

Expected Results The user must successfully login to the system and

authenticated home page should be displayed. In

addition, the user’s name should display on the main

menu bar.

Actual Results As expected, the user could login and name appeared in

the main menu bar on the authenticated home page

with the full menu.

Pass/Fail Pass

194

Negative Login Test

Test Case ID 8

Test Case Type Functional

Test Case Description Verify if the unregistered user can login to the system

Pre-conditions

Input test data Incorrect User Name and Password

Steps to be Executed a. Enter incorrect user name and password in the form

b. Click Login button

Expected Results The user must not be able to login. The Proper error

should be displayed and prompt to login again.

Actual Results The user was not able to login with incorrect

credentials and error was displayed. The user was

prompted to enter username and password again.

Pass/Fail Pass

Test Case ID 9

Test Case Type Functional

Test Case Description Verify if entering only correct user name with empty

password field, user can login to the system

Pre-conditions User must be registered

Input test data Valid User Name and empty Password

Steps to be Executed a. Enter correct user name and no password in the

form

b. Click Login button

Expected Results The user must not be able to login. The Proper error

should be displayed and prompt to login again.

Actual Results The user was not able to login with only valid

username and empty password field. An error was also

displayed. The user was prompted to enter username

195

and password again.

Pass/Fail Pass

Test Case ID 10

Test Case Type Functional

Test Case Description Verify if entering empty user name with correct

password field, user can login to the system

Pre-conditions User’s password is registered

Input test data Empty User Name and valid Password

Steps to be Executed a. Enter only valid password in the password field

with empty user name field in the form

b. Click Login button

Expected Results The user must not be able to login. The Proper error

should be displayed and prompt to login again.

Actual Results The user was not able to login with only valid

password and empty username field. An error was also

displayed. The user was prompted to enter the

username and password again.

Pass/Fail Pass

Test Case ID 11

Test Case Type Functional

Test Case Description Verify if the user can login with empty username and

empty password field

Pre-conditions -

Input test data -

Steps to be Executed Click Login button

Expected Results The user must not be able to login. The Proper error

should be displayed and prompt to login again.

196

Actual Results The user was not able to login. An error was displayed.

The user was prompted to enter the username and

password again.

Pass/Fail Pass

6.4.3.4 Password Field Mask Test

Test Case ID 12

Test Case Type Functional

Test Case Description Verify if the password is masked in the password field

in the login form i.e. password must be in bullets or

asterisks

Pre-conditions -

Input test data Any registered or unregistered password

Steps to be Executed a. Enter some characters in the password field

Expected Results The password field should display the characters in

asterisks or bullets such that it is not visible on the

screen

Actual Results The characters in the password field were displayed in

bullets.

Pass/Fail Pass

6.4.3.5 Password Field Case Sensitivity Test

Test Case ID 13

Test Case Type Functional

Test Case Description Test if login handles case sensitivity of the password

Pre-conditions The password is registered user’s password which is

originally in lower case changed to upper case or vice

197

versa

Input test data Valid user name and case changed valid registered

password

Steps to be Executed a. Enter username and case changed password in

respective fields in the form

Expected Results The user should not be able to login and the appropriate

error message should be displayed. It should prompt

the user to log in again.

Actual Results The user was not able to login and an error message

was displayed. The user was prompt to log in again.

Pass/Fail Pass

6.4.3.6 Password Field Copy/Paste Safety

Test Case ID 14

Test Case Type Functional

Test Case Description Test if password entered in password field can be

copied from the field

Pre-conditions -

Input test data Valid user name and password

Steps to be Executed a. Enter username and password in respective fields in

the form

b. Copy and paste password field contents on another

tool/screen

Expected Results The password should not be copied and pasted.

Actual Results The password could not be copied and pasted.

Pass/Fail Pass

198

6.4.4 Contact

6.4.4.1 Contact Form/Interface

Test Case ID 15

Test Case Type GUI

Test Case Description Test whether Contact page is displayed with

appropriate contact form

Pre-conditions User is on the contact page of the tool

Input test data -

Steps to be Executed -

Expected Results Contact form should be displayed with at least

following fields:

a. User’s First Name Field

b. User’s Last Name Field

c. Email Field

d. Message Field

Actual Results Contact form with required fields was displayed.

Pass/Fail Pass

6.4.4.2 Main Menu Bar Interface and Functional Test

Refer to test 2 and 3 in sections 6.4.2.1 and 6.4.2.2. Same test cases apply.

6.4.4.3 Contact with Message Test

Test Case ID 16

Test Case Type Functional

Test Case Description Verify if user can contact successfully (Send

query/concern as message)

Pre-conditions User is in contact page

199

Input test data Text input for First name, Last name, Email, Message

Steps to be Executed a. Enter valid first name, last name, email, and

messages

b. Click Send button

Expected Results The user must successfully send a message (contact) to

the system and a modal view with message send result

should appear.

Actual Results As expected user was able to send a message.

Pass/Fail Pass

Negative Login Test

Test Case ID 17

Test Case Type Functional

Test Case Description Verify if entering first name, last name, email, and

empty message, user can contact the system

Pre-conditions User is in contact page

Input test data Text input for first name, last name and email

Steps to be Executed a. Enter first name, last name and email in the form

b. Click Send button

Expected Results User must not be able to contact the system and

missing field error should be displayed

Actual Results User was not able to contact the system with empty

message field

Pass/Fail Pass

Test Case ID 18

Test Case Type Functional

Test Case Description Verify if entering first name, last name, empty email,

and message, user can contact the system

200

Pre-conditions User is in contact page

Input test data Text input for the first name, last name, and message

Steps to be Executed a. Enter first name, last name, and message in the

form

b. Click Send button

Expected Results User must not be able to contact the system and

missing field error should be displayed

Actual Results User was not able to contact the system with empty

email field

Pass/Fail Pass

Test Case ID 19

Test Case Type Functional

Test Case Description Verify if entering first name, empty last name, email,

and message, user can contact the system

Pre-conditions User is in contact page

Input test data Text input for the first name, email, and message

Steps to be Executed a. Enter first name, email, and message in the form

b. Click Send button

Expected Results User must not be able to contact the system and

missing field error should be displayed

Actual Results User was not able to contact the system with empty last

name field

Pass/Fail Pass

Test Case ID 20

Test Case Type Functional

Test Case Description Verify if entering empty first name, last name, email,

and message, user can contact the system

Pre-conditions User is in contact page

201

Input test data Text input for the last name, email, and message

Steps to be Executed a. Enter last name, email, and message in the form

b. Click Send button

Expected Results User must not be able to contact the system and

missing field error should be displayed

Actual Results User was not able to contact the system with empty

first name field

Pass/Fail Pass

6.4.5 Logout

6.4.5.1 Logout Interface

Test Case ID 21

Test Case Type GUI

Test Case Description Verify the look and feel of the Logout interface.

Pre-conditions User is in the Logged-out page of the tool

Input test data -

Steps to be Executed -

Expected Results Logged out page should have a message saying the

user is logged out of the system.

Actual Results Log out page displayed the message that user has been

logged out.

Pass/Fail Pass

6.4.5.2 Main Menu Bar Interface and Functional Test

Refer to test 2 and 3 in sections 6.4.2.1 and 6.4.2.2. Same test cases apply.

202

6.4.5.3 Back Button After Log Out

Test Case ID 22

Test Case Type Functional

Test Case Description Verify if the user can go back to logged in content after

coming in the logged-out screen.

Pre-conditions User is in the logged-out page of the tool

Input test data -

Steps to be Executed Click on the back button in the browser navigation .

Expected Results The user should not be redirected to any of the

authenticated pages. Instead, the user should be

redirected to login page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

Following test cases are applicable when logged in as a Student

6.4.6 Home Page - Student

6.4.6.1 Interface

Refer to test 4 in section 6.4.2.3. Same test case applies.

6.4.6.2 Main Menu Bar

Test Case ID 23

Test Case Type GUI

Test Case Description Verify whether full menu bar is available on top of the

home page for student as per requirement

specifications for student user role

Pre-conditions User is in the logged in home page of the tool

Input test data -

203

Steps to be Executed Check the main menu bar items list

Expected Results A dedicated list of the items should be present in the

main menu bar as shown below:

Home, Ask a Question, Ask a Tutor (online chat, share

screen), Study Materials (Chapters, Lab Assistant

hours, FAQ), logout and Contact.

Actual Results As expected all main menu items were present in the

main menu bar.

Pass/Fail Pass

6.4.6.3 Main Menu Test

Test Case ID 24

Test Case Type Functional

Test Case Description Validate if all menus in the main menu bar including

drop down buttons functions as expected

Pre-conditions User is in the logged in home page of the tool

Input test data -

Steps to be Executed a. Click on each menu item

b. Click on drop down button to check more menu

items

Expected Results a. Each item should redirect to the respective page

b. Each drop down button should work effectively.

c. Log out should log out the user out of the system.

Actual Results The menu items worked as expected and redirected to

each individual page.

Pass/Fail Pass

204

6.4.6.4 Verify Authenticated Home Page URL After Logging Out

Test Case ID 25

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated home

page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Copy the URL of the home page.

c. Log out.

d. Paste the copied URL into the browser.

Expected Results The URL should not be redirected to the authenticated

home page content. Instead, it should redirect to the log

in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.7 Ask a Question Page - Student

6.4.7.1 Interface

Test Case ID 26

Test Case Type GUI

Test Case Description Verify the look and feel of the ask a question page

Pre-conditions User is logged in and is in ask a question page of the

tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see the following fields:

205

a. Instructions set on how to use the feature

b. A text field

c. A button with microphone icon which should turn

black on hover.

d. ‘Go’ button

Actual Results All the fields were present and behaved as expected

with a set of instructions to use the feature on top.

Pass/Fail Pass

6.4.7.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.7.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.7.4 Speech Recognition Test

Test Case ID 27

Test Case Type Functional

Test Case Description Verify if the system can recognize the user’s speech

Pre-conditions a. User is logged in and is in ask a question page of

the tool

b. Microphone is enabled in the browser

Input test data Voice input – “This is my name”

Steps to be Executed a. Click on mic button in the screen

b. Speak the voice input within next 5 secs

Expected Results The user should be able to see following observations:

a. Microphone button should turn red and animation

should start and last for 5 secs

206

b. “This is my name” should be displayed in the text

field on the screen at the end of 5 secs

c. After 5 secs, mic animation should stop and go

back to normal state

Actual Results Microphone animation started as soon as mic button

was clicked. The animation lasted for 5 secs and the

spoken text was visible in the text field.

Accuracy Excellent

Pass/Fail Pass

6.4.7.5 Answer Result Box Validation

Using speech recognition

Test Case ID 28

Test Case Type Functional

Test Case Description Verify if the system can display the answer to the

question asked using the speech recognition

Pre-conditions a. User is logged in and is in ask a question page of

the tool

b. Microphone is enabled in the browser

Input test data Voice input – “Define Class”

Steps to be Executed a. Click on mic button in the screen

b. Speak “Define Class” within next 5 secs

Expected Results The user should be able to see the answer related to

‘class’ in the answer box in the screen after 5 secs.

Actual Results The answer box was populated with the answer related

to class.

Accuracy Excellent

Pass/Fail Pass

207

Manually typing question (without using speech recognition)

Test Case ID 29

Test Case Type Functional

Test Case Description Verify if the system can display the answer to the

question asked typing in the given text field

Pre-conditions a. User is logged in and is in ask a question page of

the tool

Input test data Text input – “Define Class”

Steps to be Executed a. Type the question in the text box field

b. Click on ‘Go’ button in the screen or press enter on

the keyboard

Expected Results The user should be able to see the answer related to

‘class’ in the answer box in the screen.

Actual Results The answer box was populated with the answer related

to class.

Accuracy Excellent

Pass/Fail Pass

Negative test case

Test Case ID 30

Test Case Type Functional

Test Case Description Verify if the system displays the answer with empty

question field

Pre-conditions a. User is logged in and is in ask a question page of

the tool

Input test data -

Steps to be Executed a. Click on ‘Go’ button in the screen

Expected Results The user should not be able to see any kind of text in

the answer box. It should display “No matching result

208

found”.

Actual Results The answer box said, “No matching result found”.

Pass/Fail Pass

Test Case ID 31

Test Case Type Functional

Test Case Description Verify if the system displays the answer to the question

for randomly asked question.

Pre-conditions a. User is logged in and is in ask a question page of

the tool

(Microphone is enabled in the browser if mic

button is used)

Input test data Text/Voice input – “What is my name”

Steps to be Executed a. Use microphone button to ask the question

OR

a. Type the question in the text box field

b. Click on ‘Go’ button in the screen or press enter on

the keyboard

Expected Results The user should not be able to see any kind of text in

the answer box. It should display “No matching result

found”.

Actual Results The answer box said, “No matching result found”.

Accuracy Excellent

Pass/Fail Pass

6.4.7.6 Verify Authenticated Ask a Question URL After Log Out

Test Case ID 32

Test Case Type Functional

209

Test Case Description Verify if the user can go back to authenticated ask a

question page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Ask a Question Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results URL should not be redirected to the authenticated Ask

a Question page content. It should redirect to the log in

page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.8 Online Chat Page - Student

6.4.8.1 Interface

Test Case ID 33

Test Case Type GUI

Test Case Description Verify the look and feel of the online chat

communication page

Pre-conditions User is logged in and is in online chat communication

page of the tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see the following fields:

a. A status button with color signal

b. Online users list box

210

c. Open room messages box

d. New message text field

e. Send button

f. Message send Status box

g. Go to screen sharing button

Actual Results All the fields were present as expected.

Pass/Fail Pass

6.4.8.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.8.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.8.4 Change Status

Test Case ID 34

Test Case Type Functional

Test Case Description Verify whether the user can change the status

Pre-conditions a. User is in the online chat page of the tool

b. User’s current status is ‘Available’.

Input test data -

Steps to be Executed a. Click on the status button which says ‘Available’

with the green signal by default.

b. Choose the new status as ‘Busy’

Expected Results a. New status should be reflected in the button as

‘Busy’

b. The status should also be reflected in the online

user's list with a red color signal with status in

211

parenthesis.

Actual Results The status changed as expected. The status button

changed to red with ‘Busy as the button label text. The

online user's list also got updated with new status.

Pass/Fail Pass

6.4.8.5 Online Users List Box

Test Case ID 35

Test Case Type Functional

Test Case Description Verify whether ‘online users list’ box gets populated

with correct online users

Pre-conditions a. Multiple users are logged in from different machine

b. User is in online chat page to verify the listing of

users

Input test data -

Steps to be Executed Check the online user's list box in the online chat page

Expected Results All the logged in users must be listed in the box with

their appropriate statuses

Actual Results All different users were listed in the online user's list

box with their correct statues.

Pass/Fail Pass

Test Case ID 36

Test Case Type Functional

Test Case Description Verify whether ‘online users list’ box gets updated

when a member logs in and another log out.

Pre-conditions a. Multiple users are logged in from different machine

b. User is in online chat page to verify the listing of

212

users

Input test data -

Steps to be Executed a. One user with name ‘Sam’ logs in from one

machine and another with name ‘Dean’ logs out

b. Check the online user's list box in the online chat

page

Expected Results The list should get updated. The list should have ‘Sam’

added to the list whereas ‘Dean’ should be removed

from the list.

Actual Results ‘Sam’ was added to the list and ‘Dean’ was removed.

The list was updated as expected.

Pass/Fail Pass

Test Case ID 37

Test Case Type Functional

Test Case Description Test if other user’s change of status is reflected in the

online user list

Pre-conditions a. Multiple users are logged in from different machine

b. User is in online chat page to verify the status of all

the users in the online user's list box

Input test data -

Steps to be Executed a. An online user ‘Sam’ changes the status from

‘Available’ to ‘Away’

b. An online user ‘Dean’ changes the status from

‘Available’ to ‘Busy’

c. Observe the online user's list box

Expected Results a. The status of ‘Sam’ should change to ‘Away’ and

the status of ‘Dean’ should change to ‘Busy’.

b. The new status should be reflected for all the users

213

in the online user's list box.

Actual Results The status changed for both ‘Sam’ and ‘Dean’ as

expected. The status of them was reflected in the online

user's list box.

Pass/Fail Pass

6.4.8.6 Send Message

Test Case ID 38

Test Case Type Functional

Test Case Description Verify whether user can send the message

Pre-conditions a. User is in the online chat page of the tool

Input test data Text input – “Hello World!”

Steps to be Executed a. Type the message “Hello World!” in the message

text field on the screen

b. Click Send button

Expected Results c. The message status box should say “Message Sent”

in green. The message should also appear in the

“Open room message” box.

Actual Results The new message appeared in the open room messages

box. The message status box was also updated with

“Message Sent” in green.

Pass/Fail Pass

Test Case ID 39

Test Case Type Functional

Test Case Description Verify if the user can send empty message

Pre-conditions a. User is in the online chat page of the tool

Input test data -

214

Steps to be Executed a. Leave the message text field empty

b. Click Send button

Expected Results There should not be any change in the page.

Actual Results No single change was seen.

Pass/Fail Pass

6.4.8.7 Open Room Messages Box

Test Case ID 40

Test Case Type Functional

Test Case Description Verify whether ‘Open Room Messages’ box gets

populated with recent messages

Pre-conditions a. User is in online chat page

b. Recent 10 messages are saved in the server

Input test data -

Steps to be Executed Check the open room messages box in the online chat

page

Expected Results The box should be populated with the recent 10

messages

Actual Results The box was populated with recent last 10 messages

with time stamps.

Pass/Fail Pass

Test Case ID 41

Test Case Type Functional

Test Case Description Verify whether ‘Open Room Messages’ box gets

updated when a logged in member sends a message.

Pre-conditions a. Multiple users are logged in from different machine

b. Users are in the online chat page

215

c. A user sends message “This is Santosh”

d. Another user Dean sends message “This is Dean”

from different machine

Input test data Text input – “This is Santosh” and “This is Dean”

Steps to be Executed a. Type the message “This is Santosh” and click Send

button

b. Make the user Dean to type the message “This is

Dean” and click send

c. Check the Open Room Messages box in the online

chat page

Expected Results The message box should get updated with two new

messages from the user and Dean with correct

timestamp. User’s message “This is Santosh” Should

appear before Dean’s message “This is Dean”.

Actual Results Both the messages were seen in the messages box.

“This is Santosh” appeared before “This is Dean”.

Pass/Fail Pass

Test Case ID 42

Test Case Type Functional

Test Case Description Verify whether the old messages are removed when

message box limit of 20 messages is met.

Pre-conditions a. User is in online chat page

b. User sends multiple messages until message box

display overflows

Input test data Multiple text input

Steps to be Executed a. Keep typing messages and send until message

display box overflows

b. Observe the Open Room Messages box in the

216

online chat page

Expected Results The oldest message should be truncated from the top

and new messages should be listed with latest time

stamp messages from the bottom of the list.

Actual Results The old messages were removed from the top and new

messages kept appearing from the bottom of the list

Accuracy Excellent

Pass/Fail Pass

6.4.8.8 Go to Screen Sharing Button

Test Case ID 43

Test Case Type Functional

Test Case Description Verify whether ‘Go to Screen Sharing’ button redirects

user to screen sharing page

Pre-conditions User is in online chat page

Input test data -

Steps to be Executed Click on ‘Go to Screen Sharing’ button

Expected Results The user should be redirected to the screen sharing

page.

Actual Results The user was directed to the screen sharing page.

Pass/Fail Pass

6.4.8.9 Verify Authenticated Online Chat URL After Log Out

Test Case ID 44

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated online

chat page after logging out.

217

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Online chat Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results URL should not be redirected to the authenticated

Online chat page content. It should redirect to the log

in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.9 Screen Sharing Page - Student

6.4.9.1 Interface

Test Case ID 45

Test Case Type GUI

Test Case Description Test the look and feel of the screen sharing page

Pre-conditions User is logged in and is in screen sharing page of the

tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see following fields:

a. A set of instructions box with two hyperlinks to

screen sharing extension page

b. Online users list box with check boxes

c. Select All and Clear All buttons

d. Send Invites Button

218

e. Refresh online list buttons

f. Room id text field box

g. Open Room button

Actual Results All the fields were present as expected.

Pass/Fail Pass

6.4.9.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.9.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.9.4 Online Users List Box

Test Case ID 46

Test Case Type Functional

Test Case Description Verify whether ‘online users list’ box gets populated

with correct online users

Pre-conditions a. Multiple users are logged in from different machine

b. User is in Screen sharing page to verify the listing

of users

Input test data -

Steps to be Executed Check the online user's list box in the screen sharing

page

Expected Results All the logged in users must be listed in the box with

their appropriate statuses

Actual Results All different users were listed in the online user's list

box with their correct statues.

Pass/Fail Pass

219

Test Case ID 47

Test Case Type Functional

Test Case Description Verify whether ‘online users list’ box gets updated

when a member logs in and another log out.

Pre-conditions a. Multiple users are logged in from different machine

b. User is in screen sharing page to verify the listing

of users

c. Among multiple users, ‘Sam’ and ‘Dean’ are two

users

Input test data -

Steps to be Executed a. User with name ‘Sam’ logs in from one machine

and ‘Dean’ logs out

b. Check the online user's list box in the screen

sharing page

Expected Results The list should get updated. The list should have ‘Sam’

added to the list whereas ‘Dean’ should be removed

from the list.

Actual Results ‘Sam’ was added to the list and ‘Dean’ was removed.

The list was updated as expected.

Pass/Fail Pass

Test Case ID 48

Test Case Type Functional

Test Case Description Verify if other user’s change of status is reflected in the

online user list

Pre-conditions a. Multiple users are logged in from different machine

b. User is in screen sharing page to verify the status of

all the users in the online user's list box

c. Among multiple users, ‘Sam’ and ‘Dean’ are two

220

users

Input test data -

Steps to be Executed a. An online user ‘Sam’ changes the status from

‘Available’ to ‘Away’

b. An online user ‘Dean’ changes the status from

‘Available’ to ‘Busy’

c. Observe the online user's list box

Expected Results a. The status of ‘Sam’ should change to ‘Away’ and

the status of ‘Dean’ should change to ‘Busy’.

b. The new status should be reflected for all in online

users list box.

Actual Results The status changed for both ‘Sam’ and ‘Dean’ as

expected. The status of them was reflected in the online

user's list box.

Pass/Fail Pass

6.4.9.5 Checkbox Usability

Test Case ID 49

Test Case Type Functional

Test Case Description Verify whether the checkboxes in the online user list

box functions properly

Pre-conditions a. Multiple users are listed in the online user's list box

b. User is in Screen sharing page to verify the listing

of users

Input test data -

Steps to be Executed a. Check and uncheck box clicking mouse button

b. Repeat the process for multiple users

Expected Results The checkboxes should react to clicking normally and

221

should check and uncheck appropriately

Actual Results Checkboxes were updated normally.

Pass/Fail Pass

6.4.9.6 Select All Button

Test Case ID 50

Test Case Type Functional

Test Case Description Verify whether the clicking on Select All button checks

all the checkboxes in the online user's list

Pre-conditions a. Multiple users are listed in the online user's list box

b. User is in Screen sharing page

Input test data -

Steps to be Executed Click on Select All button and observe the checkboxes

Expected Results The checkboxes should all be checked with a single

click on Select All button.

Actual Results Checkboxes were all checked.

Pass/Fail Pass

6.4.9.7 Clear All Button

Test Case ID 51

Test Case Type Functional

Test Case Description Verify whether the clicking on Clear All button

unchecks all the checkboxes in the online user's list

Pre-conditions a. Multiple users are listed in the online user's list box

b. User is in Screen sharing page

Input test data -

Steps to be Executed Click on Clear All button and observe the checkboxes

222

Expected Results The checkboxes should all be unchecked with a single

click on Clear All button.

Actual Results Checkboxes were all unchecked.

Pass/Fail Pass

6.4.9.8 Open Room

Test Case ID 52

Test Case Type Functional

Test Case Description Verify if open room button prompts the user with share

screen pop-up window.

Pre-conditions a. User is in Screen sharing page

Input test data -

Steps to be Executed Click on Open Room button and observe

Expected Results The share screen pop-up window should appear asking

the user to choose the window to be shared with two

buttons at bottom of the dialog box.

Actual Results The share screen pop-up window appeared with

application window to choose from. Also, two buttons

with text label ‘Share’ and ‘Cancel’ were seen.

Pass/Fail Pass

6.4.9.9 Share Screen Pop – Up Window Interface

Test Case ID 53

Test Case Type GUI

Test Case Description Verify the look of the share screen pop-up window.

Pre-conditions a. User is in Screen sharing page

Input test data -

223

Steps to be Executed a. Click on Open Room button and observe the pop-

up window interface

Expected Results a. A pop-up window should have two tabs with title

‘Your Entire Screen’ and ‘Application window’.

b. Each tab should present correspond screen shots of

either entire screen or separate application window.

c. The pop-up window should also have two buttons

with text labels ‘Share’ and ‘Cancel’ at the bottom.

Actual Results The pop-up window had two tabs as ‘Your Entire

Screen’ and ‘Application window’. Respective screen

shots were also seen when tabs were changed. Two

buttons at the bottom were also available.

Pass/Fail Pass

6.4.9.10 ‘Share’ Button in Share Screen Pop – Up Window

Test Case ID 54

Test Case Type Functional

Test Case Description Verify if the user can start screen sharing by clicking

on the share button in the share screen pop-up window.

Pre-conditions a. User is in Screen sharing page

Input test data -

Steps to be Executed a. Click on Open Room button to display the pop-up

window.

b. Click on Share button

Expected Results a. Screen sharing should start immediately.

b. Unique URL for the screen sharing room should be

listed on the screen.

c. Live Shared Screen window should appear below

224

the unique URL listings.

Actual Results The screen sharing started with unique URLs listed on

the screen.

Pass/Fail Pass

6.4.9.11 ‘Cancel’ Button in Share Screen Pop – Up Window

Test Case ID 55

Test Case Type Functional

Test Case Description Verify if ‘Cancel’ button in share screen pop-up

window exits the pop-up window.

Pre-conditions a. User is in Screen sharing page

Input test data -

Steps to be Executed a. Click on Open Room button to display the screen

share pop-up window.

b. Click on Cancel button

Expected Results The pop-up window should close.

Actual Results The pop-up window closed when cancel button was

clicked.

Pass/Fail Pass

6.4.9.12 ‘Tabs’ Usability in Share Screen Pop – Up Window

Test Case ID 56

Test Case Type Functional

Test Case Description Verify if tabs work appropriately as desired in the

screen share pop-up window.

Pre-conditions a. User is in Screen sharing page

Input test data -

225

Steps to be Executed a. Click on Open Room button to display the screen

share pop-up window.

b. Play with tabs

c. Observe the changes that happen with changing

tabs

Expected Results a. There should be two tab options.

b. Changing tabs should work flawlessly.

c. The screen shot of entire screen should appear

when selecting ‘Your Entire Screen’ tab.

d. The screen shot of separate application window

screens should appear when selecting ‘Application

window’ tab.

Actual Results The pop-up window had two tabs with the title as

‘Your Entire Screen’ and ‘Application window’.

Selecting ‘Your Entire Screen’ displayed the screen

shot image of the entire screen whereas choosing

‘Application window’ showed the images of each

opened separate application windows.

Pass/Fail Pass

6.4.9.13 LIVE Shared Screen Test

Test Case ID 57

Test Case Type Functional

Test Case Description Verify if application offers live shared screen

Pre-conditions a. User is in Screen sharing page

Input test data -

Steps to be Executed a. Click on Open Room button to display the screen

226

share pop-up window.

b. Choose the screen/application window to share

c. Click Share and observe the shared screen window

Expected Results a. The screen share should start as soon as share

button is clicked.

b. Full shared screen should appear in the dedicated

html div box.

c. It should reflect the live screen that is being shared.

Actual Results Screen share started as soon as Share button was

clicked. The shared screen/application window

broadcasted live which could be seen in the dedicated

html div box.

Pass/Fail Pass

6.4.9.14 LIVE Shared Screen Interface

Test Case ID 58

Test Case Type GUI

Test Case Description Verify the look and feel of the shared screen window

Pre-conditions a. User is in Screen sharing page with live shared

window playing

Input test data -

Steps to be Executed Observe the live shared window

Expected Results a. Live window should be playing in dedicated box

b. Live window should have a full screen () button

at the right topmost part of the window

Actual Results Live window was present with the full screen ()

button at the top right position of the window

Pass/Fail Pass

227

6.4.9.15 Full Screen () Button in LIVE Shared Screen

Test Case ID 59

Test Case Type Functional

Test Case Description Verify if user can view shared screen in full screen

view clicking on full screen () button

Pre-conditions a. User is in Screen sharing page with live shared

window playing

Input test data -

Steps to be Executed Click on the full screen () button

Expected Results Live shared window should expand to full screen view

Actual Results Clicking on full screen button expanded the shared

screen view to full screen.

Pass/Fail Pass

Test Case ID 60

Test Case Type Functional

Test Case Description Verify if user can get out of full screen view by

clicking on () button

Pre-conditions a. User is in live shared screen room page with full

screen view

Input test data -

Steps to be Executed Click on the full screen exit () button

Expected Results Live shared window should come back to normal view

from full screen view

Actual Results Clicking on the full screen exit () button collapsed the

full screen view back to normal view.

Pass/Fail Pass

228

6.4.9.16 LIVE Shared Screen Unique URL Validation

Test Case ID 61

Test Case Type Functional

Test Case Description Verify if generated unique screen shared room URL

redirects to a page with screen sharing session

Pre-conditions a. User is in Screen sharing page with live shared

window playing

b. Unique room URL is listed on the screen

Input test data -

Steps to be Executed a. Copy the unique room URL listed on the screen

b. Open a new browser and paste the copied URL

Expected Results a. The shared screen window should appear and the

user should be able to see the screen sharing

b. The unique room id should be listed on the top of

the page

Actual Results A live shared screen appeared and started playing in

the browser with the unique room id listed on the top of

page

Accuracy Excellent

Pass/Fail Pass

Negative case

Test Case ID 62

Test Case Type Functional

Test Case Description Verify if generated unique screen shared room URL

redirects to a page with screen sharing page when the

actual screen sharing session has been ended by

organizer

229

Pre-conditions User has the unique URL to the room

Input test data -

Steps to be Executed a. Copy the unique room URL listed on the screen

b. Terminate the screen sharing session

c. Open a browser and paste the copied URL

Expected Results The user should not able to view any kind of screen

sharing session.

Actual Results A new tab was opened with unique URL to the screen

sharing room but no live screen sharing was going on.

The page was blank with only unique id to the room.

Pass/Fail Pass

6.4.9.17 Send Invites to The Shared Screen Room

Test Case ID 63

Test Case Type Functional

Test Case Description Verify if user can send invitation to the selected user

from the online user's list to the screen sharing room

Pre-conditions a. User is in Screen sharing page with live shared

window playing

b. Multiple users are online and are listed in the online

user's list box in screen sharing page

Input test data -

Steps to be Executed a. Select the users to invite to the screen sharing room

from the online user's list by checking the

checkboxes

OR

Click ‘Select All’ button to select all online users at

once

230

b. Click send invites button

Expected Results a. Invitation should be sent to all the selected users

and a confirmation modal view (dialog box) should

appear with confirmation of the invitation

b. A modal view (dialog box) with invitation message

should appear in each user’s window who have

been invited to the shared screen room.

Actual Results Once the ‘send invites’ button was clicked, a modal

view appeared with invitation confirmation message.

Similarly, all the selected users got invitation modal

view appeared on the screen immediately after the

screen sharing organizer clicked on send invites button.

Pass/Fail Pass

Negative cases

Send invites without opening a room

Test Case ID 64

Test Case Type Functional

Test Case Description Verify if the user can send invitation without opening a

screen sharing room

Pre-conditions a. User is in Screen sharing page

b. Multiple users are online and are listed in the online

user's list box in screen sharing page

Input test data -

Steps to be Executed a. Select some members from the online user list to

send invitation

b. Click on send invites button

Expected Results a. The invitation should fail. A modal view should

appear with the reason of invitation failure.

231

Actual Results Invitation failed and a modal view appeared saying a

screen sharing room need to be created first to send an

invitation to other users.

Pass/Fail Pass

Send invites without selecting any users

Test Case ID 65

Test Case Type Functional

Test Case Description Verify if user can send invitation without selecting any

user from the online user's list to the screen sharing

room

Pre-conditions a. User is in Screen sharing page and a live screen

share room is already opened and ready

b. Multiple users are online and are listed in the online

user's list box in screen sharing page

Input test data -

Steps to be Executed a. Do not select any user from the online user list

b. Click on send invites button

Expected Results The invitation should fail. A modal view should appear

with the reason of invitation failure.

Actual Results Invitation failed and a modal view appeared saying at

least one-member must be selected for invitation.

Pass/Fail Pass

6.4.9.18 Invitation Modal View Interface - Screen Sharing

Test Case ID 66

Test Case Type GUI

Test Case Description Verify look and feel of invitation modal view

232

Pre-conditions a. User has received an invitation to go to the screen

sharing room

Input test data -

Steps to be Executed Observe the invitation modal view on the screen

Expected Results a. Reason for the appearance of modal view should be

mentioned

b. Go to room button should be visible to take directly

to the room

c. A close button should be present to cancel the

invitation

Actual Results Modal view appeared with title “You have been invited

to a screen sharing room by users”. There was a button

in the middle of the modal view with the title “Go to

room” and a close button was present on the right

bottom section of the view.

Pass/Fail Pass

6.4.9.19 Invitation Modal View Validation

Test Case ID 67

Test Case Type Functional

Test Case Description Verify if a user receives the invitation modal view

Pre-conditions a. User is logged in to the system.

b. A screen sharing organizer is ready to send the

invitation to the user

Input test data -

Steps to be Executed a. A screen sharing organizer selects the user to send

invitation to the room

b. Organizer clicks on send invite button

233

Expected Results An invitation modal view should appear on the screen

as soon as invitation is sent by the organizer

Actual Results Modal view appeared on the screen when organizer

sends the invitation to the room.

Pass/Fail Pass

6.4.9.20 Go to Room Button in Invitation Modal View

Test Case ID 68

Test Case Type Functional

Test Case Description Verify if clicking on ‘Go to Room’ button takes the

user to the shared screen room

Pre-conditions a. User has received an invitation to go to the screen

sharing room

Input test data -

Steps to be Executed Click on “Go to Room” button in the invitation modal

view on the screen

Expected Results The user should be redirected to the screen sharing

room in a new tab.

Actual Results A new tab was opened with unique URL to the screen

sharing room and live screen sharing started.

Pass/Fail Pass

Negative case

Test Case ID 69

Test Case Type Functional

Test Case Description Verify if clicking on ‘Go to Room’ takes to shared

screen room when the actual screen sharing session has

been ended by organizer

234

Pre-conditions a. User has received an invitation to go to the screen

sharing room

b. Organizer has ended the screen sharing session

Input test data -

Steps to be Executed Click on “Go to Room” button in the invitation modal

view on the screen

Expected Results The user should not able to view any kind of screen

sharing session.

Actual Results A new tab was opened with unique URL to the screen

sharing room but no live screen sharing was going on.

The page was blank with only unique id to the room.

Pass/Fail Pass

6.4.9.21 Close Button - Invitation Modal View

Test Case ID 70

Test Case Type Functional

Test Case Description Verify if clicking on cancel button cancels the

invitation

Pre-conditions a. User has received an invitation to go to the screen

sharing room

Input test data -

Steps to be Executed Click on “Cancel” button in the invitation modal view

on the screen

Expected Results Invitation modal view should disappear with no actions

being taken.

Actual Results Invitation modal view disappeared. Nothing happened.

Pass/Fail Pass

235

6.4.9.22 Verify Authenticated Screen Sharing Page URL After Logging Out

Test Case ID 71

Test Case Type Functional

Test Case Description Verify if the user can go back to the authenticated

screen sharing page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Screen sharing Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not be redirected to the authenticated

screen sharing page content. It should redirect to the

log in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.10 Chapters Page - Student

6.4.10.1 Interface

Test Case ID 72

Test Case Type GUI

Test Case Description Test the look and feel of the Chapters page

Pre-conditions User is logged in and is in Chapters page of the tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see following fields:

236

a. A search text field

b. A button

c. List of chapters with the title of each chapter

Actual Results All the fields were present as expected.

Pass/Fail Pass

6.4.10.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.10.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.10.4 Search

Test Case ID 73

Test Case Type Functional

Test Case Description Verify if user can use the search function

Pre-conditions User is logged in and is in Chapters page of the tool

Input test data Text input – “Expanding”

Steps to be Executed Type “Expanding” in the search field

Expected Results The user should be able to see the search result as soon

as the user starts typing.

Actual Results The searching result was shown dynamically as soon as

user started typing in the search field.

Pass/Fail Pass

Test Case ID 74

Test Case Type Functional

Test Case Description Verify if search works when search field is left empty

237

Pre-conditions User is logged in and is in Chapters page of the tool

Input test data -

Steps to be Executed Click on search text field but leave it empty

Expected Results The user should not see any change on the screen.

Actual Results No change was observed on the screen.

Pass/Fail Pass

6.4.10.5 Search Clear Button

Test Case ID 75

Test Case Type Functional

Test Case Description Verify if user can clear and restart the search function

by clicking on search clear button

Pre-conditions User is logged in and is in Chapters page of the tool

Input test data Text input – “Expanding”

Steps to be Executed a. Type “Expanding” in the search field

b. Click on search clear button

Expected Results Search text field should be clear and searching process

should restart.

Actual Results The search text field was cleared as soon as the button

was clicked and searching restarted.

Pass/Fail Pass

6.4.10.6 Collapsible Titles and Subtitles

Test Case ID 76

Test Case Type Functional

Test Case Description Verify if titles and subtitles of each chapter are

collapsible

238

Pre-conditions User is logged in and is in Chapters page of the tool

Input test data -

Steps to be Executed a. Click on each title to expand and click again to

collapse

b. Click on each subtitle to expand and click again to

collapse

Expected Results Each title and subtitle should be collapsible such that it

reveals and hides the content when needed.

Actual Results Each of the titles and subtitles was observed to be

collapsible.

Pass/Fail Pass

6.4.10.7 Verify Authenticated Chapters Page URL After Logging Out

Test Case ID 77

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated Chapters

page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Chapters Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not be redirected to the authenticated

chapters page. It should redirect to the log in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

239

6.4.11 Lab Assistant Hours Page - Student

6.4.11.1 Interface

Test Case ID 78

Test Case Type GUI

Test Case Description Verify the look and feel of the Lab Assistant Hours

page

Pre-conditions User is logged in and is in Lab Assistant Hours page of

the tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see a schedule table with

tutor/lab assistant availability.

Actual Results A schedule table with tutor/lab assistant availability

was shown.

Pass/Fail Pass

6.4.11.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.11.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.11.4 Verify Authenticated Lab Assistant Hours Page URL After Logging Out

Test Case ID 79

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated Lab

Assistant Hours page after logging out.

240

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Lab Assistant Hours Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not be redirected to the authenticated

Lab Assistant Hours page content. It should redirect to

the log in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.12 FAQ Page - Student

6.4.12.1 Interface

Test Case ID 80

Test Case Type GUI

Test Case Description Verify the look and feel of the FAQ page

Pre-conditions User is logged in and is in FAQ page of the tool

Input test data -

Steps to be Executed -

Expected Results The user should be able to see the following fields:

a. Title of the page

b. A search text field and a button

c. List of hyperlinked questions

d. Rest of the content with the FAQs related to C++

e. At the end of each FAQ, a hyperlinked text “Go to

top” should be present

241

Actual Results All the expected fields were seen.

Pass/Fail Pass

6.4.12.2 Main Menu Bar

Refer to test 23 in section 6.4.5.2. Same test case applies.

6.4.12.3 Main Menu Test

Refer to test 24 in section 6.4.5.3. Same test case applies.

6.4.12.4 Search

Refer to test 73 in section 6.4.10.4. Same test cases apply.

6.4.12.5 Search Clear Button

Refer to test 75 in section 6.4.10.5. Same test case applies.

6.4.12.6 Hyperlinked Question Titles

Test Case ID 81

Test Case Type Functional

Test Case Description Verify if hyperlinked question titles redirect to

respective content in the page

Pre-conditions User is logged in and is in FAQ page of the tool

Input test data -

Steps to be Executed Click on each question titles

Expected Results Each hyperlinked title should redirect to respective

question and answer content in the page.

Actual Results The hyperlinked titles routed to the respective section

in the content page as expected.

Pass/Fail Pass

242

6.4.12.7 “Go to Top” Hyperlinked Text

Test Case ID 82

Test Case Type Functional

Test Case Description Verify if “Go to top” hyperlinked text redirect user to

top of the page

Pre-conditions User is logged in and is in FAQ page of the tool

Input test data -

Steps to be Executed Click on each “Go to top” hyperlinked text at the end

of each FAQs

Expected Results Each “Go to top” hyperlinked text at the end of every

FAQs should redirect the user to the top of the page

Actual Results Each hyperlinked text redirected user to the top of the

page.

Pass/Fail Pass

6.4.12.8 Verify Authenticated FAQ Page URL After Logging Out

Test Case ID 83

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated FAQ

page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to FAQ Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

243

Expected Results The URL should not be redirected to the authenticated

FAQ page content. It should redirect to the log in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.13 Contact Page - Student

Refer to following test cases since same test cases apply:

a. Test case 15 in section 6.4.4.1

b. Test case 23 in section 6.4.6.2

c. Test case 24 in section 6.4.6.3

d. Test case 16-20 in section 6.4.4.3

6.4.13.1 Verify Authenticated Contact Page URL After Logging Out

Test Case ID 84

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated Contact

page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Contact Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not redirect to the authenticated

Contact page and should redirect to the login page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

244

Following test cases are applicable when logged in as a Teacher

6.4.14 Home Page - Teacher

6.4.14.1 Interface

Refer to test 4 in section 6.4.2.3. Same test case applies.

6.4.14.2 Main Menu Bar

Test Case ID 85

Test Case Type GUI

Test Case Description Verify whether the full menu bar is available on top of

the home page for teacher as per requirement

specifications for teacher user role

Pre-conditions User is in the authenticated home page of the tool

Input test data -

Steps to be Executed Check the menu bar items list

Expected Results A dedicated list of the items should be present in the

main menu bar as listed below:

Home, Ask a Question, Ask a Tutor (online chat, share

screen), Study Materials (Chapters, Lab Assistant

hours, FAQ), Manage, logout, and Messages.

Actual Results As expected all main menu items were present in the

main menu bar.

Pass/Fail Pass

6.4.14.3 Main Menu Test

Test Case ID 86

Test Case Type Functional

Test Case Description Validate all the menus in the main menu bar

245

Pre-conditions User is in the logged in home page of the tool

Input test data -

Steps to be Executed Click on each menu item

Expected Results a. Each item should redirect to the respective page

b. Log out should log out user out of the system.

Actual Results The menu items worked as expected.

Pass/Fail Pass

6.4.14.4 Verify Logged in URL After Log Out

Refer to test 25 in section 6.4.6.4. Same test case applies.

6.4.15 Ask a Question Page - Teacher

Refer to following test cases since same test cases apply:

a. Test case 26 in section 6.4.7.1

b. Test case 85 in section 6.4.14.2

c. Test case 86 in section 6.4.14.3

d. Test case 27 in section 6.4.7.4 - Test case 32 in section 6.4.7.6

6.4.16 Online Chat Page - Teacher

Refer to following test cases since same test cases apply:

a. Test case 33 in section 6.4.8.1

b. Test case 85 in section 6.4.14.2

c. Test case 86 in section 6.4.14.3

d. Test case 34 in section 6.4.8.4 - Test case 44 in section 6.4.8.9

6.4.17 Screen Sharing Page - Teacher

Refer to following test cases since same test cases apply:

a. Test case 45 in section 6.4.9.1

b. Test case 85 in section 6.4.14.2

c. Test case 86 in section 6.4.14.3

246

d. Test case 46 in section 6.4.9.4 - Test case 71 in section 6.4.9.22

6.4.18 Chapters Page - Teacher

Refer to following test cases since same test cases apply:

a. Test case 72 in section 6.4.10.1

b. Test case 85 in section 6.4.14.2

c. Test case 86 in section 6.4.14.3

d. Test case 73 in section 6.4.10.4 - Test case 77 in section 6.4.10.7

6.4.19 Lab Assistant Hours Page - Teacher

Refer to following test cases since same test cases apply:

a. Test case 85 in section 6.4.14.2

b. Test case 86 in section 6.4.14.3

c. Test case 79 in section 6.4.11.4

6.4.19.1 Interface

Test Case ID 87

Test Case Type GUI

Test Case Description Verify the look and feel of the Lab Assistant Hours

page

Pre-conditions User is logged in and is in Lab Assistant Hours page of

the tool

Input test data -

Steps to be Executed -

Expected Results a. The user should be able to see a schedule table with

tutor/lab assistant availability.

b. User should be able to see two buttons on top of the

table and one of them should be disabled

247

Actual Results A schedule table with tutor/lab assistant availability

was shown with two buttons on the top of the page.

‘Save changes’ button was disabled.

Pass/Fail Pass

6.4.19.2 Update Table

Test Case ID 88

Test Case Type Functional

Test Case Description Verify if the user can update the table

Pre-conditions User is logged in and is in Lab Assistant Hours page of

the tool

Input test data Text input – “Santosh”

Steps to be Executed a. Click on edit/update button

b. Enter the input “Santosh” somewhere in the table

c. Delete some names from the table

d. Click on save changes button

Expected Results a. User should be able to see the updated table with

the name “Santosh” added to the table whereas

other names which have been deleted should be

removed

b. Save changes button should be disabled after

making changes

Actual Results The table was updated as expected and save changes

button was again disabled.

Pass/Fail Pass

6.4.20 FAQ Page - Teacher

Refer to following test cases since same test cases apply:

248

a. Test case 80 in section 6.4.12.1

b. Test case 85 in section 6.4.14.2

c. Test case 86 in section 6.4.14.3

d. Test case 73 in section 6.4.10.4

e. Test case 75 in section 6.4.10.5

f. Test case 81 in section 6.4.12.6 - Test case 83 in section 6.4.12.8

6.4.21 Manage Page - Teacher

6.4.21.1 Interface

Test Case ID 89

Test Case Type GUI

Test Case Description Verify the look and feel of the Manage page

Pre-conditions User is logged in and is in Manage page of the tool

Input test data -

Steps to be Executed -

Expected Results a. User should be able to see a table full of rows with

all the member details

b. Each row should have two buttons with the title

“Edit” and “Delete”

c. At the bottom of the page, user should be able to

another button with the title label “Add a new

member”

Actual Results A table filled with member’s information was shown

on the page with each row having two buttons with

titles edit and delete. At the bottom of the page, a

button for adding a new member was present.

Pass/Fail Pass

249

6.4.21.2 Main Menu Bar

Refer to test case 85 in section 6.4.14.2. Same test case applies.

6.4.21.3 Main Menu Test

Refer to test case 86 in section 6.4.14.3. Same test case applies.

6.4.21.4 Edit Member Form Interface

Test Case ID 90

Test Case Type GUI

Test Case Description Verify if the edit member form is displayed with

appropriate form

Pre-conditions User is logged in and is in Manage page of the tool

Input test data -

Steps to be Executed a. Choose one of the rows with the member’s details

and click on Edit button which is at the end of the

row

Expected Results A form should appear with following fields:

a. First name

b. Last name

c. User name

d. Password

e. User role

f. Confirm and cancel button

Actual Results ‘Edit form’ with required fields was displayed.

Pass/Fail Pass

250

6.4.21.5 Edit a Member

Test Case ID 91

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

by clicking on confirm button after updating details

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data Text input for first and last name

Steps to be Executed a. Click on edit button at the end of the chosen

member row

b. Update the details in the edit form

c. Click confirm button

Expected Results The member details with updated first and last name

should be displayed in the table

Actual Results The table was updated with selected member’s new

details.

Pass/Fail Pass

Negative Case

Test Case ID 92

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

with empty first name

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen

member row

251

b. Delete the first name in the edit form

c. Click confirm button

Expected Results The user should not be able to update the member

details with the empty first name. The Proper error

must be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to update the member details.

Pass/Fail Pass

Test Case ID 93

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

with empty last name

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen row

b. Delete the last name in the edit form

c. Click confirm button

Expected Results The user should not be able to update the member

details with empty last name. The Proper error must be

shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to update the member details.

Pass/Fail Pass

Test Case ID 94

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

with empty user name

252

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen

member row

b. Delete the user name in the edit form

c. Click confirm button

Expected Results The user should not be able to update the member

details with the empty user name. The Proper error

must be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to update the member details.

Pass/Fail Pass

Test Case ID 95

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

with empty password

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen

member row

b. Delete the password in the edit form

c. Click confirm button

Expected Results The user should not be able to update the member

details with an empty password. The Proper error must

be shown.

Actual Results Proper error “Please fill out this field” was shown and

253

the user was not able to update the member details.

Pass/Fail Pass

Test Case ID 96

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member

with empty user role

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen

member row

b. Delete the user role in the edit form

c. Click confirm button

Expected Results The user should not be able to update the member

details with an empty user role. The Proper error must

be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to update the member details.

Pass/Fail Pass

Test Case ID 97

Test Case Type Functional

Test Case Description Verify if user can edit the details of selected member if

cancel button is clicked in the edit form

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to edit

Input test data -

Steps to be Executed a. Click on edit button at the end of the chosen

254

member row

b. Update the details in the edit form

c. Click cancel button

Expected Results The member details should not be changed. The table

should remain same.

Actual Results The table was not updated.

Pass/Fail Pass

6.4.21.6 Add a Member Form Interface

Test Case ID 98

Test Case Type GUI

Test Case Description Verify if the ‘add a member form’ is displayed with

appropriate form

Pre-conditions User is logged in and is in Manage page of the tool

Input test data -

Steps to be Executed Click on Add a new member button at the bottom of

the page

Expected Results A form should appear with following fields:

a. First name

b. Last name

c. User role

d. Confirm and cancel button

Actual Results ‘Add a member form’ with required fields was

displayed.

Pass/Fail Pass

255

6.4.21.7 Add a Member

Test Case ID 99

Test Case Type Functional

Test Case Description Verify if user can add a new member by clicking on

confirm button after filling up the form

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data Text input for first and last name

Steps to be Executed a. Click on add a new member button at the bottom of

the page

b. Fill in the first and last name field with the input

c. Choose user role type from the drop down

d. Click confirm button

Expected Results The new member with given first name, last name and

user role should be added and displayed in the table.

Actual Results The table was updated with the new member’ details.

Pass/Fail Pass

Negative Case

Test Case ID 100

Test Case Type Functional

Test Case Description Verify if user can add a new member with empty first

name

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data Text input for the last name

Steps to be Executed a. Click on add a new member button at the bottom of

the page

b. Fill in the last name field and leave the first name

field blank

256

c. Choose user role type from the drop down

d. Click confirm button

Expected Results The user should not be able to add a new member with

the empty first name. The Proper error must be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to add the new member.

Pass/Fail Pass

Test Case ID 101

Test Case Type Functional

Test Case Description Verify if user can add a new member with empty last

name

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data Text input for the first name

Steps to be Executed a. Click on add a new member button at the bottom of

the page

b. Fill in the first name field and leave the last name

field blank

c. Choose user role type from the drop down

d. Click confirm button

Expected Results The user should not be able to add a new member with

empty last name. The Proper error must be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to add the new member.

Pass/Fail Pass

Test Case ID 102

Test Case Type Functional

Test Case Description Verify if user can add a new member with empty user

257

role

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data Text input for first and last name

Steps to be Executed a. Click on add a new member button at the bottom of

the page

b. Fill in the first and the last name field

c. Leave user role type field blank

d. Click confirm button

Expected Results The user should not be able to add a new member with

an empty user role. The Proper error must be shown.

Actual Results Proper error “Please fill out this field” was shown and

the user was not able to add the new member.

Pass/Fail Pass

Test Case ID 103

Test Case Type Functional

Test Case Description Verify if user can add a new member if cancel button is

clicked in the add a new member form

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data Text input for first and last name

Steps to be Executed a. Click on add a new member button at the bottom of

the page

b. Fill in the first and last name field with the input

c. Choose user role type from the drop down

d. Click confirm button

Expected Results The new member details should not be added to the

table. The table should remain same.

Actual Results The table was not updated.

Pass/Fail Pass

258

6.4.21.8 Delete Member Form Interface

Test Case ID 104

Test Case Type GUI

Test Case Description Verify if the delete member form is displayed with

appropriate form

Pre-conditions User is logged in and is in Manage page of the tool

Input test data -

Steps to be Executed a. Choose one of the rows with member’s details and

click on Delete button which is at the end of the

row

Expected Results A confirmation modal view (form) should appear that

contains a Delete button to confirm the deletion. A

cancel button (x) should appear at the top of the modal

view.

Actual Results Delete form with the required buttons was displayed.

Pass/Fail Pass

6.4.21.9 Delete a Member

Test Case ID 105

Test Case Type Functional

Test Case Description Verify if user can delete the selected member by

clicking on Delete button in the modal view

Pre-conditions a. User is logged in and is in Manage page of the tool

b. User has chosen a member to delete

Input test data -

Steps to be Executed a. Click on delete button at the end of the chosen

member row

259

b. Click Delete button in the generated form

Expected Results The selected member should be deleted and updated

table should be displayed

Actual Results The table was updated with the deletion of selected

member.

Pass/Fail Pass

Negative Case

Test Case ID 106

Test Case Type Functional

Test Case Description Verify if user can delete the selected member if cancel

button is clicked in the delete modal view (form)

Pre-conditions a. User is logged in and is in Manage page of the tool

Input test data -

Steps to be Executed a. Click on delete button at the end of the chosen

member row

b. Click cancel (x) button in the generated form

Expected Results The selected member should not be deleted from the

table. The table should remain same.

Actual Results The table was not updated.

Pass/Fail Pass

6.4.21.10 Verify Authenticated Manage Page URL After Logging Out

Test Case ID 107

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated Manage

page after logging out.

Pre-conditions -

260

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Manage Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not redirect to the logged in Manage

page content. It should redirect to the log in page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

6.4.22 Message Page - Teacher

6.4.22.1 Interface

Test Case ID 108

Test Case Type GUI

Test Case Description Verify the look and feel of the Message page

Pre-conditions User is logged in and is in Message page of the tool

Input test data -

Steps to be Executed -

Expected Results a. User should be able to see a table full of rows with

all the messages that exist in the system

b. Each row should contain message id, first name,

last name, email, messages and date message

received

c. Each row should have buttons with label “Delete”

Actual Results A table filled with messages was shown on the page

with each row having a button to delete.

Pass/Fail Pass

261

6.4.22.2 Main Menu Bar

Refer to test case 85 in section 6.4.14.2. Same test case applies.

6.4.22.3 Main Menu Test

Refer to test case 86 in section 6.4.14.3. Same test case applies.

6.4.22.4 Delete Message Form Interface

Test Case ID 109

Test Case Type GUI

Test Case Description Verify if the delete member form is displayed with

appropriate form

Pre-conditions User is logged in and is in Message page of the tool

Input test data -

Steps to be Executed a. Choose one of the rows with a message and click

on Delete button which is at the end of the row

Expected Results A confirmation modal view (form) should appear that

contains a Delete button to confirm the deletion. A

cancel button (x) should appear at the top of the modal

view.

Actual Results Delete form with the required button was displayed.

Pass/Fail Pass

6.4.22.5 Delete a Message

Test Case ID 110

Test Case Type Functional

Test Case Description Verify if user can delete the selected message by

clicking on Delete button in the modal view

262

Pre-conditions a. User is logged in and is in Message page of the tool

b. User has chosen a message to delete

Input test data -

Steps to be Executed a. Click on delete button at the end of the chosen

message row

b. Click Delete button in the generated form

Expected Results The selected message should be deleted and updated

table should be displayed

Actual Results The table was updated with the deletion of selected

message.

Pass/Fail Pass

Negative Case

Test Case ID 111

Test Case Type Functional

Test Case Description Verify if user can delete the selected message if cancel

button is clicked in the delete modal view (form)

Pre-conditions a. User is logged in and is in Message page of the tool

Input test data -

Steps to be Executed c. Click on delete button at the end of the chosen

message row

d. Click cancel (x) button in the generated form

Expected Results The selected message should not be deleted from the

table. The table should remain same.

Actual Results The table was not updated.

Pass/Fail Pass

263

6.4.22.6 Verify Authenticated Message Page URL After Logging Out

Test Case ID 112

Test Case Type Functional

Test Case Description Verify if the user can go back to authenticated Message

page after logging out.

Pre-conditions -

Input test data -

Steps to be Executed a. Log in to the system.

b. Navigate to Message Page.

c. Copy the URL of the page.

d. Log out.

e. Paste the copied URL into the browser.

Expected Results The URL should not be redirected to the logged in

Message page content. It should redirect to the log in

page.

Actual Results The user was redirected to the login page.

Pass/Fail Pass

264

Chapter 7: DEPLOYMENT

7.1 Chapter Overview

This chapter outlines the settings for the deployment of the system.

7.1.1 Deployment Settings

Following is the system setup for the deployment of the system

Domain name: vtstcloudstate.com

Protocol type: HTTPS (secure)

Linux - Linux 14.04.4 - Ubuntu SMP

Apache server: Apache/2.4.7 (Ubuntu)

PHP 5.5.9-1, ubuntu 4.17

MySQL Version 14.14 Distribution 5.5.49

265

Chapter 8: EVALUATION

8.1 Chapter Overview

This chapter outlines the evaluation of the system after the deployment. The evaluation is

fully described in four main categories of accomplishments, limitation, future enhancements

and maintenance followed by a conclusion section.

8.2 Accomplishments

A system is built that can support the current lab assistants and teachers in providing extra

guidance to the students in CSCI 201 (C++). Now both students and teachers can benefit

from this system in providing virtual help. With the deployment of the tool, all the major

functionalities listed in section 1.5 are accomplished. A speech recognition system to find out

the closest answer is built with the helpful links and videos. A screen sharing system to have

the online screen sharing conference is built. An online chat section is built where a student

can share the common questions with each other about C++. Anyone can volunteer to help

each other. Also, available teachers/assistants can step in to help students in need. A contact

section is built to help students send the queries to all teachers/assistant at once.

In addition, the management system is built to handle adding and deleting members and

messages which are some of the very important aspects of managing the system. Finally,

login and logout system is built to successfully allow only dedicated users to use the system.

8.3 Limitations

Most of the functions listed in section 1.5 are met. However, there are limitations on some of

the features.

1. In online chat communication, there is only one main room available. The user cannot

open a private chat room yet.

2. While screen sharing, users (audiences) can NOT hear/talk to each other. It is one-to-

many kind of topology; it is NOT a mesh or many-to-many.

266

3. File sharing is not supported yet.

4. Ask a Tutor section works best when the answer is available in the database.

Currently, there is limited information in the database which is needed to be updated

with more information.

5. Currently, to use all the features offered by the system, it is recommended to use

either Google chrome or Firefox. Other browsers are not yet fully supported.

6. The best experience can be achieved if the system is used in windows or mac system.

It is responsive when used in smaller devices, but full functionality may not be

supported.

8.4 Future Enhancements

Although the goals of the project were met, there are still many cases where enhancements

can be made. All the limitations mentioned above can be considered in future enhancements.

1. First, the tool can be enhanced such that file sharing is possible, which could be very

helpful for students.

2. In online chat section, a feature can be added such that user can open a separate room

for online chat communication.

3. In screen sharing section, the feature can be updated such that all the audiences can

also hear and talk to each other.

4. The tool is not supported by some of the available browsers. Although, most of the

functions are supported by all of the browsers, organizing screen sharing may not be

possible. However, becoming an audience is possible in any kinds of browsers.

267

5. Similarly, the tool cannot be fully utilized when using in small devices like androids

and iOS devices. Even though the tool is designed to be responsive to the user’s

behavior and environment based on screen sizes and platform, some of the functions

are still not supported. This can be considered a high priority on the list of future

enhancements since the popularity of small devices is getting higher and students tend

to use small devices a lot more in current days.

6. A ‘Send Reply’ button can be added in the ‘Message’ page for teacher/lab assistant

such that it is easier to reply to the sender from the page itself.

7. Currently, the user is not able to change the default password. Only teacher/lab

assistant can change the password. This function can be added so that user can have

the password as they wish.

8. Currently, a free signaling server is used for screen sharing. In future, a dedicated

server can be created to eliminate the use of free signaling server.

The abve listed functions and features can be added to provide more functionality to the user.

Some of them may be necessary while some of them may not be required at all. Depending

on time and resources, it can be decided which features/functions are to be integrated.

8.5 Maintenance

The system is all set up and ready to provide the service. However, at least one dedicated

admin is needed to add all the necessary contents required to go live with users/students.

Once the tool is up and running, maintenance of the tool is very necessary for either fixing

faults or extending the functionality of the website (enhancements). Even though developing

the tool is regarded as a major accomplishment, maintenance is however equally important to

smoothly run the tool for the long term. In regard to this project, at least an admin is

necessary to frequently monitor the tool. Since the tool is controllable by more than one

member (teachers and lab assistants), it may be easy to update the necessary content in the

268

tool (especially lab assistant hours’ table). However, to work on enhancements, a dedicated

member is required.

8.6 Conclusion

The system was successfully implemented meeting all the specified requirements. A

complete system offering different kinds of features was developed. The initial scope of the

project was to develop a system to help answering student queries about C++. However,

more features were added later, which could significantly help students in learning more.

Online chat and screen sharing sections are those features that were added later.

All the major functionalities that were proposed to add are listed in section 1.5. By the end

of the deployment, all those listed features and functionalities are integrated into the tool.

During the time of building up the tool, several steps were carried out. The system

investigations, technical investigations, relevant background analysis were carried out for

major features of the tool that includes speech recognitions, online communication, screen

sharing and more. The investigations and background analysis helped a lot in determining the

major requirements of the systems, the possibility of integrating similar systems, and also

helped in defining the necessary approach in making up the tool. All the functional and non-

functional requirements of the project were determined along with resource requirements.

Once the investigations and background analysis were completed, system design was

performed following Model-View-Controller architecture. To help the controllers control

different features, services were introduced that could communicate with the server to

perform the necessary tasks on the server. UML modeling techniques were used to document

the design using user case diagrams. The use case diagrams were then used to perform

interface design, extracting all the necessary controllers and services that were needed to

complete the project. At the end, use case realizations were done for each of the use cases

with extended and refined scenarios along with the help of detailed flow chart diagrams. The

development of the detailed use case realizations was very helpful in developing the codes

and eventually in code implementations. HTML, CSS, PHP and JavaScript along with

269

Angular JS, Bootstrap framework were used in developing the overall system. Different

libraries and API were used in developing major features of the system such as Speech API,

WebRTC-library, and jQuery.

Finally, it was possible to develop a tool that could potentially benefit both students and

teachers to help struggling students in C++. The tool enables the user to perform all the

actions that were described in the project scope successfully.

270

REFERENCES

[1]. Treehouse Island, Inc. 2016. About Treehouse. [Online]

Available at: https://teamtreehouse.com/

[2]. Udemy. 2016. Learning about Udemy [Online]

Available at: https://about.udemy.com/

[3]. Stockley D.; Rossner V., " The Virtual-TA: Moving Beyond the Traditional Teaching

Assistant," in N.A.WEB 96 - The Second International North America World Wide Web

Conference

Available at: http://www.uvm.edu/~hag/naweb96/zstockley.html

[4]. Google Inc. n.d. Web Speech API Specification [Online]

Available at: https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

[5]. Google Inc. n.d. Web Speech API Demonstration [Online]

Available at: https://www.google.com/intl/en/chrome/demos/speech.html

[6]. Microsoft Cognitive Services. n.d. Microsoft Speech Recognition Documentation

[Online]

Available at: https://www.microsoft.com/cognitive-services/en-us/speech-

api/documentation/overview

[7]. Microsoft Cognitive Services. n.d. Microsoft Speech recognition demo [Online]

Available at: https://www.microsoft.com/cognitive-services/en-us/speech-api

[8]. Show My PC. 2016. n.d. About Screen Sharing API [Online]

Available at: https://showmypc.com/faq/screen-sharing-api.html

https://teamtreehouse.com/
https://about.udemy.com/
http://www.uvm.edu/~hag/naweb96/zstockley.html
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html
https://www.google.com/intl/en/chrome/demos/speech.html
https://www.microsoft.com/cognitive-services/en-us/speech-api/documentation/overview
https://www.microsoft.com/cognitive-services/en-us/speech-api/documentation/overview
https://www.microsoft.com/cognitive-services/en-us/speech-api
https://showmypc.com/faq/screen-sharing-api.html

271

[9]. Screen Leap API. 2016. Introduction to Screen Leap [Online]

Available at: http://www.screenleap.com/api

[10]. Wikipedia. 2016. Google-Hangouts - Wikipedia, the free encyclopedia [online]

Available at: https://en.wikipedia.org/wiki/Google_Hangouts

[11]. HipChat. 2016. About HipChat [online]

Available at: https://www.hipchat.com/

[12]. Anon. n.d. Dragon - Continuous vs. Discrete Speech Recognition [online]

Available at: http://www.synapseadaptive.com/naturallyspeaking/define.html

[13]. George Ornbo. 2014. The HTML 5 Speech Recognition API [online]

Available at: https://shapeshed.com/html5-speech-recognition-api/

[14]. Sam Dutton. 2014. Getting Started with WebRTC [Online]

Available at: https://www.html5rocks.com/en/tutorials/webrtc/basics/

[15]. Muaz Khan. 2016. Getting Started Guide for RTCMultiConnection [Online]

Available at: https://github.com/muaz-

khan/RTCMultiConnection/blob/master/docs/getting-started.md

[16]. Muaz Khan. 2016. WebRTC Experiments and Demos [Online]

Available at: https://github.com/muaz-khan/WebRTC-Experiment

[17]. Ahmad Murey. Simple Text Chat Box Tutorial. [Online]

Available at: http://www.dreamincode.net/forums/topic/44808-simple-text-chat-box/

[18]. Peter Cowburn. PHP Documentation Group. 2016. PHP manual. [Online]

Available at: http://php.net/manual/en/index.php

http://www.screenleap.com/api
https://en.wikipedia.org/wiki/Google_Hangouts
https://www.html5rocks.com/en/tutorials/webrtc/basics/
https://github.com/muaz-khan/RTCMultiConnection/blob/master/docs/getting-started.md
https://github.com/muaz-khan/RTCMultiConnection/blob/master/docs/getting-started.md
https://github.com/muaz-khan/WebRTC-Experiment
http://www.dreamincode.net/forums/topic/44808-simple-text-chat-box/
http://php.net/manual/en/index.php

272

[19]. W3Schools. 2016. How to open, read, and close file in php. [Online]

Available at: https://www.w3schools.com/php/php_file_open.asp

[20]. Google Chrome Developer. 2016. MVC Architecture. [Online]

Available at: https://developer.chrome.com/apps/app_frameworks

[21]. Muaz Khan. 2016. WebRTC Experiments and Demos [Online]

Available at: https://github.com/muaz-khan/WebRTC-Experiment

[22]. W3Schools. 2016. PHP MySQL Database. [Online]

Available at: https://www.w3schools.com/php/php_mysql_intro.asp

https://www.w3schools.com/php/php_file_open.asp
https://developer.chrome.com/apps/app_frameworks
https://github.com/muaz-khan/WebRTC-Experiment
https://www.w3schools.com/php/php_mysql_intro.asp

273

Appendix A – SOURCE CODES

A.1. Login Feature Implementation

A.1.1. Login Controller (Angular JS)

//This is the angular JS app in the login page
var app = angular.module('mainApp',[]);

// This grabs the login controller from the app above
app.controller('login_controller',function($scope, $http, $location)
{
 $scope.submit = function() {
 var uname = $scope.username;
 var password = $scope.password;

 ...
 // Grab user name and pass and do null checkings
 ...

 // Preparing data to send to service script for final
verification
 var formData = {
 username : uname,
 password : password
 };

 // Making call to service script for verification
 $http({
 method: 'POST',
 url: 'url to user verify service script',
 data: $.param(formData),
 headers: {'Content-Type': 'application/x-www-form-
urlencoded'}
 }).then(function(response) {
 ...
 // Process response to show the result of authentication
 ...
 });
 }
});

274

A.1.2. User Verify Service (PHP)

// Connect to the database
$name = $_POST['username'];
$username = $_POST['username'];
$password = $_POST['password'];

// Prepare the database connection
$db_host = 'localhost';
$db_user = 'root';
$db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

// Check if user's info exist in the database
$sql = "select * from Members where user_login = '$username' and
BINARY user_pass = '$password'";

$result = $connection->query($sql);
$row = $result->fetch_assoc();
$id = $row["ID"];

// if user exist and ID is found
if ($id) {
 ...
 // new session is registered for users
 // users info is registered in online users lists file for later
use
 ...

 // Return the user type to the controller on sucess:
teacher/student
 echo strtolower($type);

}
else {
 // Return failure result
 echo "Invalid username or password";
}

275

// Database connection close
$connection->close();

A.2. Ask a Tutor Page Implementation Using Speech Recognition

A.2.1. Mic Controller (JavaScript)

// Voice recognition script
// Testing browser support
window.SpeechRecognition = window.SpeechRecognition || // Chrome
 window.webkitSpeechRecognition || //
Firefox
 null;
if (window.SpeechRecognition === null) {

document.getElementsByClassName('microphone').setAttribute('disabled
', 'disabled');
}
else {
 // Creating a new recognizer
 var recognizer = new window.SpeechRecognition();
 var recordedMessage =
document.getElementById('readQuestionArea');

 // Collect the data once recognizer starts listening
 recognizer.onresult = function(event) {
 recordedMessage.value = '';

 for (var i = event.resultIndex; i < event.results.length; i++) {
 if (event.results[i].isFinal) {
 recordedMessage.value = event.results[i][0].transcript;
 } else {
 recordedMessage.value += event.results[i][0].transcript;
 }
 }
};

Below is the function that initiates the recording and animation of the mic.

function startMic() {
 recognizer.start();
 turnMicOn();

276

}

function turnMicOn (){

 // Mic animation is done here and is done for 5 secs
 ...

 // after 5 secs mic is turned off
 stopMic();

}

function stopMic(){
 recognizer.stop();
}

Once mic is turned off, database searching is done. The code snippet to send the final data to

the service script is shown below.

function askQuestion() {

 // The final data either using mic or manual typing is collected
here
 var data = document.getElementById('readQuestionArea').value;

 // Making ajax call to search database script
 $.ajax({
 type: 'post',
 url: 'url to search database script',
 data: ({info:data}),
 success: function(response) {
 // Collect the response and display the formatted result
 }
 });
}

A.2.2. Search Database (PHP)

// Prepare the database connection
$db_host = 'localhost';

277

$db_user = 'root';
$db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

$sql = "select ID,Question from QandA";
$result = $connection->query($sql);

// calculate matching percentage
$result_array = [];
$index = 0;
while($row = $result->fetch_assoc()) {
 similar_text($data, $row['Question'], $percent);
 $result_array[$row['ID']] = $percent;
}

// sorting the matching percentage in array maintaining index
association

 arsort($result_array);

// preparing the answer results to send back based on matching
percentage. Collect all answers above 40% matching

 $result_keys = array_keys($result_array);
 $result_values = array_values($result_array);

 if (sizeof($result_keys) > 0) {
 $counter = 0;
 $index = 0;
 $outp = "";
 for ($i = 0; $i < sizeof($result_array); $i++) {
 if ($result_values[$i] > 40) {

 $sql = "select Answer,Sample_code,video_link,useful_link
from QandA where ID =". $result_keys[$i];

 $result = $connection->query($sql);
 $row = $result->fetch_assoc();

 if ($outp != "") {$outp .= ":::";}

 $outp .= $row['Answer'] . ":::" . $row['Sample_code'] .
":::" . $row['video_link'] . ":::" . $row['useful_link'];

278

 $counter ++;
 }
 if ($counter > 4) $i = sizeof($result_array);
 }
 echo ($outp);
 }
 else {
 echo "No matching results found.";
 }

// database connection close
$connection->close();

A.3. Online Chat Implementation

A.3.1. Message Display Controller (JavaScript)

var app = angular.module('myApp',[]);

app.controller('onlineUserController',function($scope, $http) {
 // Update message in the chat box every 1 sec
 setInterval(function(){
 $scope.update();
 }, 1000)

 $scope.update = function() {
 // http call to get the recent online messages with user
info
 $http({
 method: 'POST',
 url: 'url to file opening and returning service',
 // param to identify caller to service
 data: $.param({infotype:"messages"}),
 headers: {'Content-Type': 'application/x-www-form-
urlencoded'}

 }).then(function(response) {
 // Collect and format the response to display in the
view
 var html = "Formatted response";
 $("#chatBox").html(html);
 });

 // http call to get list of online users with their statuses

279

 $http({
 method: 'POST',
 url: 'url to file opening and returning service',
 data: $.param({infotype:"users"}),
 headers: {'Content-Type': 'application/x-www-form-
urlencoded'}

 }).then(function(response) {
 // Collect and format the response to display the online
users
 var html = "Formatted online users";
 $("#usersOnLine").html(html);
 });
 }
});

A.3.2. Get File Data Service (PHP)

// Look for infotype param sent by caller
$data = $_POST['infotype'];

// Based on $data, open file, collect contents
// example: request may be to collect list of online users
// or to collect recent online messages sent
if ($data == "online_users") {
 // open file containing list of online users
} else if ($data == "recent_messages") {
 // open file containing recent messages
}

echo array2string($fileContent);

// This function formats the file content and returns in usable
format
function array2string($data){
 $log_a = "";
 foreach ($data as $key => $value) {
 if(is_array($value)) $log_a .= array2string($value) .
"\n";
 else $log_a .= $value . "\n";
 }
 return $log_a;
}

280

A.3.3. Chat Message Controller (jQuery)

$(document).ready(function() {
 $('#messageForm').on('submit', function(e) {
 e.preventDefault();

 var message = document.getElementById("message").value;
 if (!message) {return false;}
 $.ajax({
 type: 'post',
 url: 'url to necessary service script to communicate with
backend',
 data: ({message:message}),
 success: function(response) {
 // this response determines if saving of message was
sucess
 // notify user based on response result
 }
 });
 });
});

A.3.4. Send Message Service (PHP)

// Collect the user information and message sent
session_start();
$user = $_SESSION['name'];
$id = $_SESSION['ID'];
$message = $_POST['message'];

// Collect the content of file
$chat_file=file("message containing file",FILE_IGNORE_NEW_LINES);

// Add new message to the array containing old messages with time
stamp
$chat_file[]=date("Y-m-d H:i:s")."<!@!> ".$id." ".$user." :
".$message;

// See if message count is less than 20, slice oldest message if
otherwise
if (count($chat_file)>20)$chat_file=array_slice($chat_file,1);

// Save the new list of messages to the file

281

$file_save = fopen("message containing file","w+");
flock($file_save,LOCK_EX);
for($line = 0;$line<count($chat_file);$line++){
 fputs($file_save,$chat_file[$line]."\n");
};
flock($file_save,LOCK_UN);
fclose($file_save);
echo "Message Sent";

A.4. Status Controller

//Get the current status responsible for changing the status
window.onload = updateCurrentStatus;
setInterval(updateCurrentStatus,4000);

// This function updates the current status as saved in the server
function updateCurrentStatus() {
 $.get('url to current status service', function(result) {
 changeStatus(result);
 });
}

// This function is responsible for changing the status
function changeStatus(status) {
 var mainStatus = status;
 // Collect the new status which is triggered from the view
 // Display the new status with images
 ...
 $(".dropdown").html(html);

 // AJAX call to change the status and save the new status in the
server
 $.ajax({
 type: 'post',
 url: 'url to change status service',
 data: ({status:mainStatus}),
 success: function(data) {
 }
 });
}

282

A.4.1. Current Status and Change Status Services (PHP)

Current Status
session_start();
echo $_SESSION['status'];

Change Status
Change status service script sets the new status of the user to the current session. Hence, the

status of the user can be changed by the user as long as session exists.

// Collect the new status to be set sent by controller
session_start();
$status = $_POST['status'];
$id = $_SESSION['ID'];
$name = $_SESSION['Name'];

$newInfo = $status . ' ' . $_SESSION['ID'].' '.$_SESSION['name'];
$oldInfo = $_SESSION['status'] . ' ' . $_SESSION['ID'].'
'.$_SESSION['name'];

// Collect the list of online users
$online_users = file("url to file with online user
list",FILE_IGNORE_NEW_LINES);
$pattern = '/'.$id.'\s'.$name.'/';
$matchFound = false;

// Find the user in the online user list and change status
for ($i=0; $i<count($online_users);$i++) {
 if (preg_match($pattern, $online_users[$i])) {
 $online_users[$i] = $newInfo;
 $_SESSION['status'] = $status;
 break;
 }
}

// Save the list of online users with updated status of the user
$myfile = fopen("url to file with online user list", "a")
 or die("Unable to open file!");
$file_save=fopen("url to file with online user list","w+");
flock($file_save,LOCK_EX);
for($line = 0;$line<count($online_users);$line++){
 fputs($file_save,$online_users[$line]."\n");

283

};
flock($file_save,LOCK_UN);
fclose($file_save);

A.5. Screen Sharing Implementation

A.5.1. Screen Sharing Controller (JavaScript)

An object of RTCMulticonnection is created and properties are set.

var connection = new RTCMultiConnection();
connection.socketURL = 'signaling url here';
connection.socketMessageEvent = 'message for debugging';
connection.session = {
 audio: 'two-way', // audio is two-way, rest is one way
 screen: true,
 oneway: true
};

connection.sdpConstraints.mandatory = {
 OfferToReceiveAudio: true,
 OfferToReceiveVideo: true
};

// set the video and audio container in the view page
connection.videosContainer = document.getElementById('video-
container');
connection.audiosContainer = document.getElementById('audio-
container');

Now connection can be started using on-stream event and the media element can be

displayed in the container.

connection.onstream = function(event) {
 var width = connection.videosContainer.clientWidth;
 var mediaElement = getMediaElement(event.mediaElement, {
 title: event.userid,
 width: width,
 });

 event.stream.isScreen ? {

284

 connection.videosContainer.appendChild(mediaElement);
 } : {
 connection.audiosContainer.appendChild(mediaElement);
 }

 setTimeout(function() {
 mediaElement.media.play();
 }, 5000);

 mediaElement.id = event.streamid;
};

The user-id is returned from the getScreenId.js library which is included in the project. The

function below is responsible for detecting the extension available in the browser. If the

extension is not detected, an error is thrown. As a user, the screen sharing won’t start on the

screen.

connection.getScreenConstraints = function(callback) {
 getScreenConstraints(function(error, screen_constraints) {
 if (!error) {
 screen_constraints =
connection.modifyScreenConstraints(screen_constraints);
 callback(error, screen_constraints);
 return;
 }
 throw error;
 });
};

Again, getScreenContraints is included in the getScreenId.js library.

Now when the streaming ends, the onstreamended event is called and the screen sharing

view is removed.

connection.onstreamended = function(event) {
 var mediaElement = document.getElementById(event.streamid);
 if(mediaElement) {
 mediaElement.parentNode.removeChild(mediaElement);
 }

285

};

The function below is responsible for handling the room id.

var roomid = '';
// Get the id if available in local storage else create one
if (localStorage.getItem(connection.socketMessageEvent)) {
 roomid = localStorage.getItem(connection.socketMessageEvent);
} else {
 roomid = connection.token();
}
document.getElementById('room-id').value = roomid;

var hashString = location.hash.replace('#', '');
var roomid = params.roomid;
if(!roomid && hashString.length) {
 roomid = hashString;
}

(function() {
 var params = {},
 r = /([^&=]+)=?([^&]*)/g;

 function d(s) {
 return decodeURIComponent(s.replace(/\+/g, ' '));
 }
 var match, search = window.location.search;
 while (match = r.exec(search.substring(1)))
 params[d(match[1])] = d(match[2]);
 window.params = params;
})();

Once the room id is created following function is responsible for generating unique URL to

the room. For example, below is an example to show the unique URL using the

vtstcloudstate domain name.

function showRoomURL(roomid) {
 var roomHashURL = '#' + roomid;
 var roomQueryStringURL = '?roomid=' + roomid;

286

 var html = '<h2>Unique URL for your room:</h2>
';

 html += '<i>Hash URL: <font
color="blue">https://www.vtstcloudstate.com/Views/screen.php' +
roomHashURL + '</i>';
 html += '
';
 html += '<i>QueryString URL: <font
color="blue">https://www.vtstcloudstate.com/Views/screen.php' +
roomQueryStringURL + '</i>';

 var roomURLsDiv = document.getElementById('room-urls');
 roomURLsDiv.innerHTML = html;

 roomURLsDiv.style.display = 'block';
}

A.5.2. Screen Sharing Online User List Controller (JavaScript)

Invitation source code part

// This function helps user to select users from the online list and
// send invites
var invitation_successful = false;
var inivited_users = [];
function sendInvites() {

 // Detect if the room has been created yet
 if ($('#videos-container').is(':empty')) {
 // Ask user to open room first to send invitation
 return;
 }

 var atLeastOneSelected = false, index = 0;
 for (var i = 0; i < online_user_array.length-1; i++) {
 // Detect all the selected users from online user list
 // create an array of invited user list with room id
 // if the checkbox is checked, user is selected for
invitation
 if ($('#'+id).prop('checked')) {
 inivited_users[index] = online_user_array[i] + ' ' +
$("#room-id").val();
 atLeastOneSelected = true;
 index++;
 }

287

 }

 if (!atLeastOneSelected) {
 // Report user to select at least one user to send the
invitation
 return;
 }

 sendInvitation();

 // Display the invitation successfull message here
 $('.modal-title').html('Invitation
sent.');
 $('.modal-body').html('Invitation Successful!');
 atLeastOneSelected = false;
 clearAll();
}

// This function helps select all the users at once
function selectAll() {
 if (!online_user_array) {return;}
 for (var i = 0; i < online_user_array.length-1; i++) {
 var id = 'checkbox' + i;
 $("#"+ id).prop("checked", true);
 }
}

// This function helps user to clear the selection
function clearAll() {
 if (!online_user_array) {return;}
 for (var i = 0; i < online_user_array.length-1; i++) {
 var id = 'checkbox' + i;
 $("#"+ id).prop("checked", false);
 }
}

// This function finally sends invitation to other users making AJAX
calls
function sendInvitation() {
 var jsonString = JSON.stringify(inivited_users);
 $.ajax({
 type: 'post',
 url: 'url to send invitation service',
 data: ({message:jsonString}),

288

 success: function(data) {}
 });
}

A.5.3. Send Invitation Service (PHP)

// Collect the invitation sender info
session_start();
$user = $_SESSION['name'];
$id = $_SESSION['ID'];

// gather list of invited users from the controller
$data = json_decode(stripslashes($_POST['message']));

// create a pattern with sender id and name to match to the gathered
list of invited users
// id is needed because it is unique to every individual user
$sender = '/'.$id.'\s'.$user.'/';

$myfile = fopen("url to invitation.txt","w") or die("Unable to open
file!");
$invited_users = [];
foreach($data as $aData){
 if (isset($aData)){
 // if the invitation is for self skip else save the info
 if (preg_match($sender, $aData)) {
 continue;
 }
 $invited_users[] = $aData . ' ' . $user;
 }
}

$file_save=fopen("url to invitation.txt","w+");
flock($file_save,LOCK_EX);
for($line=0;$line<count($invited_users);$line++){

 // Save all the invited user to the file
 fputs($file_save,$invited_users[$line]."\n");
};
flock($file_save,LOCK_UN);
fclose($file_save);

289

A.5.4. Detect Invitation to Screen Controller (JavaScript)

window.onload = checkInvitation;
setInterval(checkInvitation,3000);

// This function checks if there is any invitation for current user
function checkInvitation() {
 $.get('url to detect invitation to screen service',
function(result) {

 // result contains the unique room id and inviter
 if (result && result != 0) {
 var keyAndInviter = result.split(" ");
 var url = 'https://www.vtstcloudstate.com/screen.php#' +
keyAndInviter[0];

 // Create a bootstrap pop-up dialog box with url and
inviter information
 $('.modal-title').html('You have
been invited to a screen sharing room by ' +
keyAndInviter[1] + ' .');

 var html = 'Please use url below to go to the room or
click on the go to link button below';
 html += '
'+ url;
 html += '

<div id="browse_app"><a class="btn btn-
large btn-info center-block" href="' + url + '" target="_blank">GoTo
Room</div>';

 $('.modal-body').html(html);
 $('.center-block').css("width", "40%");

 $("#myModal").modal();
 $('#myModal').css("width", "100%");
 }
 });
}

A.5.5. Detect Invitation to Screen Service (PHP)

session_start();

// if either id or name is not set, return

290

if (!isset($_SESSION['ID']) || !isset($_SESSION['name'])) { echo 0;
return;}

// Collect the current user id and name
$id = $_SESSION['ID'];
$name = $_SESSION['name'];

// collect the invited users list
$invitation_users=file("url to
invitation.txt",FILE_IGNORE_NEW_LINES);

// Create a pattern with id and name
// id is needed because it is unique to every individual user
$user_pattern = '/'.$id.'\s'.$name.'/';
$key = 0;
$name = '';

// detecting if any invitation is made for current user
for ($i=0; $i<count($invitation_users);$i++) {
 if (preg_match($user_pattern, $invitation_users[$i])) {
 $singleArray = explode(" ", $invitation_users[$i]);
 deleteDetectedinInvitationList($invitation_users[$i]);
 $key = $singleArray[2];
 $name = $singleArray[3];
 break;
 }
}

// if any room key is found, respond back to controller with room
// key and inviter name
if ($key) {
 echo $key . ' ' . $name;
}

// This function assists in deleting the detected invitation so that
// invitation is not made again and again
function deleteDetectedinInvitationList($a_user){
 $user = $a_user;
 $filename = "url to invitation.txt";
 $data = file($filename);

 $share_screen_users = array();

 //Storing all the users back that do not match with this users

291

 foreach($data as $a_user) {
 if(trim($a_user) != $user) {
 $share_screen_users[] = $a_user;
 }
 }

 // put back all the users that have not been invited yet
 $fp = fopen($filename, "w+");
 flock($fp, LOCK_EX);
 foreach($share_screen_users as $a_user) {
 fwrite($fp, $a_user);
 }
 flock($fp, LOCK_UN);
 fclose($fp);
}

A.6. Manage Members Implementation

A.6.1. Manage Database Controller (JavaScript)

// Display members information on window load
window.onload = fetchData;

// This function makes a call to service to gather all the member
information
function fetchData() {
 $.get('url to fetchdata database service', function(data) {
 if (data) {
 updateTable(data);
 }
 });
}

// This function parses the response from service and displays in
the table in readable format
function updateTable(response) {
 var data = JSON.parse(response);
 var html = "";

 for(var i = 0;i<data.records.length;i++) {
 // Data contains list of members with their full details in
particular format
 // Parse them and display in the table

292

 html += ...
 }
 $("#members").html(html);
}

A.6.1.1. Add a Member (JavaScript)

// This function on call displays the form to fill in new member's
details
function addThisItem() {

 // Display the form to gather new member's details using
Bootstrap
 $(".modal-title").html("Add New Member");
 var html = '<form role="form"><div class="form-group"><label
for="fn">First Name:</label><input class="form-control input-sm"
id="fn" type="text" required>';
 html += '</div><div class="form-group"><label for="ln">Last
Name:</label><input class="form-control input-sm" id="ln"
type="text" required></div>';
 html += '<div class="form-group"><label for="type">User
Role</label><select class="form-control " id="type"
required><option></option><option>Teacher</option><option>Student</o
ption></select></div>';
 html += '<div id="confirmButton"><button type="submit"
class="btn btn-success btn-responsive center-block"
onclick="confirmAddThisItem()">Confirm Add</button></div></form>';

 $(".modal-body").html(html);
 $('#myModal1').modal();
}

// On add confirmation, this function sends the add request to
service with member details to finally add to the database
function confirmAddThisItem() {
 // Collect First Name, Last Name and user role as
Teacher/Student
 var firstname = document.getElementById('fn').value;
 var lastname = document.getElementById('ln').value;
 var type = document.getElementById('type').value;
 var username = firstname;

 // Return is one of the item is missing

293

 if (!firstname || !lastname || !type) return;

 // Generate unique pass for new user
 var password = createID();

 // Prepare data to send to service to add to the database
 var data = {
 'transaction_type':'add',
 'fname':firstname,
 'lname':lastname,
 'uname':username,
 'pword':password,
 'type':type
 };

 // Make AJAX call to service and sedn the prepared data
 $.ajax({
 type: 'post',
 url: 'url to add/edit/delete database services',
 data: {fullData:data},
 success: function(response) {
 // Transaction is success if response is 1
 if (response == 1){
 // Refill the table with the new member
 fetchData();
 // Display necessary success notification
 } else {
 alert("Something went wrong. try again later.");
 }
 }
 });
}

// This function is used to create a unique password
function createID() {
 var id = "";
 var possible =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
 for(var i=0; i < 6; i++)
 id += possible.charAt(Math.floor(Math.random() *
possible.length));
 return id;
}

294

A.6.1.2. Edit a Member (JavaScript)

// Given the id of the user to be modified, collect member details
// and show them in the editing form
function editThisItem(id) {
 // Collect details of member to be edited and show in the form
 // using the table with full member details
 ...

 // make the form and display
 ...

 // display member's details in the editing form
 ...
}

// On edit confirmation, this function sends the UPDATE request to
service with modified member details to finally reflect the
modification in the database
function confirmEditThisItem(id) {

 // Collect the new details from the editing form
 ...

 // return if one of the information is missing
 if (!firstname || !lastname || !username || !password || !type)
return;

 // prepare data to send to the service to make the Update
transaction
 var data = {
 'transaction_type':'edit',
 'idNum':id,
 'fname':firstname,
 'lname':lastname,
 'uname':username,
 'pword':password,
 'type':type
 };

 // make AJAX call with the prepared data
 $.ajax({
 type: 'post',
 url: 'url to add/edit/delete database service',

295

 data: {fullData:data},
 success: function(response) {
 // Transaction is success if response is 1
 if (response == 1){
 // Refill the table with the member's modified details
 fetchData();
 // Display necessary success notification
 } else {
 alert("Something went wrong. try again later.");
 }
 }
 });
}

A.6.1.3. Delete a Member (JavaScript)

// This function displays a form with the member detail to delete
function deleteThisItem(id) {
 var firstname =
document.getElementById('firstname'+id).innerHTML;
 var lastname = document.getElementById('lastname'+id).innerHTML;
 $(".modal-title").html("Delete
Member");
 $(".modal-body").html('Are you sure you want to delete this
member?
' + firstname + ' ' + lastname +'');
 $(".modal-footer").html('<button type="button" class="btn btn-
danger btn-responsive center-block"
onclick="confirmDeleteThisItem('+id+')">Delete</button>');

 // display the form
 $('#myModal1').modal();
}

// On delete confirmation, this function sends the DELETE request to
service with member's ID
function confirmDeleteThisItem(id) {
 // prepare the data to send to service
 var data = {
 'transaction_type':'delete',
 'idNum':id
 };

// make AJAX call with collected data to perform DELETE transaction

296

 $.ajax({
 type: 'post',
 url: '../../Services/add_edit_delete_database_services.php',
 data: {fullData:data},
 success: function(response) {
 // Transaction is success if response is 1
 if (response == 1){
 // Refill the table with left member's details
 fetchData();
 } else {
 alert("Something went wrong. try again later.");
 }
 }
 });
}

A.6.2. Fetch Data Database Service (PHP)

// Prepare the database connection
$db_host = 'localhost'; $db_user = 'root'; $db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

// Collect all members
$sql = "select * from Members";
$result = $connection->query($sql);
$outp = "";
while($rs = $result->fetch_array(MYSQLI_ASSOC)) {
 if ($outp != "") {$outp .= ",";}
 $outp .= '{"ID":"' . $rs["ID"] . '",';
 $outp .= '"Firstname":"' . $rs["user_fname"] . '",';
 $outp .= '"Lastname":"' . $rs["user_lname"] . '",';
 $outp .= '"User":"' . $rs["user_login"] . '",';
 $outp .= '"Pass":"' . $rs["user_pass"] . '",';
 $outp .= '"UserType":"'. $rs["user_type"] . '"}';
}
$outp ='{"records":['.$outp.']}';

297

// return the final record and Close the connection to database
echo($outp);
$connection->close();

A.6.3. Add, Edit, or Delete Database Service (PHP)

// Collect the send data from the controller
$sentData = $_POST['fullData'];
$transaction_type = $sentData['transaction_type'];

// Determine the transaction type and call the necessary function
if ($transaction_type == 'edit') { editMember($sentData);}
else if ($transaction_type == 'add'){ addMember($sentData);}
else { deleteMember($sentData);}

// This function with the given data performs the UPDATE transaction
function editMember($sentData){
 // Extract the data from the sent data package
 $id = $sentData['idNum'];
 $firstname = $sentData['fname'];
 $lastname = $sentData['lname'];
 $username = $sentData['uname'];
 $password = $sentData['pword'];
 $type = $sentData['type'];

 // Prepare the database connection
 $db_host = 'localhost'; $db_user = 'root'; $db_pass = 'admin';
 $db_name = 'VirtualTutor';

 $connection =
mysqli_connect($db_host,$db_user,$db_pass,$db_name);

 if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
 }

 $sql = "UPDATE Members SET user_fname = '$firstname', user_lname
= '$lastname', user_login='$username', user_pass='$password',
user_type='$type' WHERE ID = '$id'";
 $result = $connection->query($sql);
 $connection->close();

 // Respond with the success result back to the controller

298

 echo($result);
}

function addMember($sentData){
 // Extract the data from the sent data package
 $firstname = $sentData['fname'];
 $lastname = $sentData['lname'];
 $username = $sentData['uname'];
 $password = $sentData['pword'];
 $type = $sentData['type'];

 // Prepare and make the database connection as in edit member
function
 ...
 $sql = "INSERT INTO Members (user_fname, user_lname,
user_login,user_pass,user_type) VALUES ('$firstname', '$lastname',
'$username','$password','$type')";

 $result = $connection->query($sql);
 $connection->close();

 // Respond with the success result back to the controller
 echo($result);
}

function deleteMember($sentData){
 // Extract the data from the sent data package
 $id = $sentData['idNum'];

 // Prepare and make the database connection as in edit member
function
 ...
 $sql = "DELETE FROM Members WHERE ID = '$id'";
 $result = $connection->query($sql);
 $connection->close();

 // Respond with the success result back to the controller
 echo($result);
}

299

A.7. Display and Modifying Lab Assistant Hours’ Implementation

A.7.1. Lab Assistant Hours’ Controller (jQuery)

// This jQuery on load gets the current schedule, making a request
to service
$.get("url to get lab assistant hours service", function(data){
 // Diplay the table with data in html element with id as content
 $("#content").html(data);
});

// Below functions are ready to be triggered on load
$(document).ready(function() {
 // this function on click makes the table editable
 $("#edit_update").click(function() {
 $("#content").attr("contenteditable", "true");
 $("#info_edit").html('<i>Table is now
editable ...</i>');
 $('#save').removeAttr('disabled');
 });

 // this function on click saves the modified table making a
request to service
 $("#save").click(function() {
 var message = $("#content").html();

 // make a AJAX post request to save the table
 $.ajax({
 type: 'post',
 url: 'url to get lab assistant hours service',
 data: ({message:message}),
 success: function(data) {
 // update the table attributes once save is done
 $("#content").attr("contenteditable", "false");
 $("#info_edit").html('
');
 $('#save').attr('disabled','disabled');
 }
 });
 });
});

300

A.7.2. Get Lab Assistant Hours’ Service (PHP)

// Detect the request and if request is POST, save the modified data
sent as message else respond with current schedule to the controller
if ($_SERVER['REQUEST_METHOD'] === 'POST') {
 $message = $_POST['message'];
 file_put_contents('url to file with schedule', $message);
 echo "Schedule Updated";
} else {
 $lab_hours_schedule_file=file("url to file with
schedule",FILE_IGNORE_NEW_LINES);
 echo array2string($lab_hours_schedule_file);
}

// this function converts array to string
function array2string($data){
 $log_a = "";
 foreach ($data as $key => $value) {
 if(is_array($value)) $log_a .= array2string($value) . "\n";
 else $log_a .= $value . "\n";
 }
 return $log_a;
}

A.8. Search Controller

In order to be able to use this feature, following library should be linked.

<link rel="stylesheet"
href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.cs
s">

Below is the code that implements the search mechanism saved in the table.

<div>
 <div class="row">
 <div class="col-md-3">
 <form action="#" method="get">
 <div class="input-group">
 <input class="form-control" id="system-search"
name="q" placeholder="Search for" required>

301

 <button type="submit" class="btn btn-
default"><i class="glyphicon glyphicon-search"></i></button>

 </div>
 </form>
 </div>
 <div class="col-md-12">
 <table class="table table-list-search">
 <tbody>
 <!--List of datas in the table-->
 <tr><td>Data1</td></tr>
 <tr><td>Data1</td></tr>
 <tr><td>Data1</td></tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

A.9. Contact Message Sending Implementation

A.9.1. Contact Message Controller (Angular JS)

// App that is registered in the view
var app = angular.module('mainApp',[]);
app.controller('contact_message_controller',function($scope, $http)
{
 // this is called once submit button is clicked
 $scope.submit = function() {
 // collect the data from the scope
 var name = $scope.fname;
 var lname = $scope.lname;
 var email = $scope.email;
 var msg = $scope.message;
 var missing = false;

 // return if either the name, lname, email or message is missing
 if (missing) { // display missing error and return
 ...
 return;
 }

 // prepare the form data to send to the service

302

 var formData = {
 firstname : name,
 lastname : lname,
 email : email,
 message : msg
 };

 // make http POST call to service with form data to save the
messages in database
 $http({
 method: 'POST',
 url: 'url to contact message store service',
 data: $.param(formData),
 headers: {'Content-Type': 'application/x-www-form-
urlencoded'}
 }).then(function(response) {
 if (response.data) {
 ... // display the pop up with success notification
 }
 else {
 ... // display the pop up with failed notification
 }
 });
 }
});

A.9.2. Contact Message Store Service (PHP)

// Collect the sender details and messages
$firstname = $_POST['firstname']; $lastname = $_POST['lastname'];
$email = $_POST['email']; $message = $_POST['message'];

// Prepare the database connection
$db_host = 'localhost'; $db_user = 'root'; $db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

// make INSERT transaction to Messages table in the database

303

$sql = "INSERT INTO ContactMessages (FirstName, LastName,
Email,Messages) VALUES ('$firstname', '$lastname',
'$email','$message')";
$result = $connection->query($sql);
$connection->close();

// respond with transaction result
echo($result);

A.10. Contact Message Management Implementation

A.10.1. Contact Message Database Controller (JavaScript)

First, the fetching of data is done and shown in the table.

//Get all the messages and display them on load
window.onload = fetchData;

// This function fetches all messages from database by making a
request to service
function fetchData() {
 $.get('url to contact messages fetch database service',
function(data) {
 // if data is available, display them in table
 if (data) {
 updateTable(data);
 }
 });
}

function updateTable(response) {
 var data = JSON.parse(response);
 var html = "";
 for(var i = 0;i<data.records.length;i++) {
 // display each records found in the database in the table
 // tagging each row with id of the messages to id of the row
 html += ...
 ...
 }
 // display collected message in html element with id
all_messages
 $("#all_messages").html(html);
}

304

When the teachers want to delete messages from the database, following functions are

triggered which makes a request to services to perform the job.

// This function finally deletes the item with given id
// from the database making a request to service
function confirmDeleteThisItem(id) {
 // prepare data to send while making post request
 var data = {
 'MessageID':id
 };

 // Making ajax post call to service with id of the message to be
deleted
 $.ajax({
 type: 'post',
 url:
'../../Services/delete__contact_message_database_services.php',
 data: {data:data},
 success: function(response) {
 if (response == 1){
 // display the pop up with sucess notification
 ...
 // refill the table with updated data
 fetchData();
 } else {
 alert("Something went wrong. try again later.");
 }
 }
 });
}

A.10.2. Contact Message Fetch Database Service (PHP)

// Prepare the database connection
$db_host = 'localhost'; $db_user = 'root'; $db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();

305

}

// main query
$sql = "select * from ContactMessages";

// execute the query
$result = $connection->query($sql);
$outp = "";

// collect the output in json format for easy handling
while($rs = $result->fetch_array(MYSQLI_ASSOC)) {
 if ($outp != "") {$outp .= ",";}
 $outp .= '{"MessageID":"' . $rs["MessageID"] . '",';
 $outp .= '"FirstName":"' . $rs["FirstName"] . '",';
 $outp .= '"LastName":"' . $rs["LastName"] . '",';
 $outp .= '"Email":"' . $rs["Email"] . '",';
 $outp .= '"Messages":"' . $rs["Messages"] . '",';
 $outp .= '"Datetime":"'. $rs["Datetime"] . '"}';
}
$outp ='{"records":['.$outp.']}';
$connection->close();

// repond to the controller with the collected information
echo($outp);

A.10.3. Delete Contact Message Database Service (PHP)

// Collect data sent by controller
$sentData = $_POST['data'];
$MessageID = $sentData['MessageID'];

// Prepare the database connection
$db_host = 'localhost'; $db_user = 'root'; $db_pass = 'admin';
$db_name = 'VirtualTutor';

$connection = mysqli_connect($db_host,$db_user,$db_pass,$db_name);

if (mysqli_connect_errno()) {
 echo "Failed to connect to MySQL: " . mysqli_connect_error();
}

// main query
$sql = "DELETE FROM ContactMessages WHERE MessageID = '$MessageID'";

306

// execute the query
$result = $connection->query($sql);
$connection->close();

// respond with the transaction result
echo($result);

A.11. Resume Session Controller (JavaScript)

// Function to notify user of nearing the ending session and
suggesting to add time to the session
function resumeSession() {
 var r = confirm("Session is about to expire, Click 'OK' to stay
logged in or else you will get logged out in 20 minutes.");
 if (r == true) {
 // Calling resume session service to increase the time
 $.ajax ({
 type: "GET",
 url: "url to resume session service",
 success: function(result) {
 alert(result);
 }
 });
 }
}

A.11.1. Resume Session Service (PHP)

session_start();
$_SESSION['last_logged_in_time'] = time();
echo "extended" ;
$_SESSION['extended'] = 1;

A.12. Additional Services

A.12.1. Timeout Session Check (PHP)

Student Time Check

session_start();

307

// Warn the user with pop-up notifying about the session time about
to end
if ($_SESSION['last_logged_in_time'] < time() - 180 * 60) {
 echo "<script type='text/javascript'
src='//code.jquery.com/jquery-1.7.1.min.js'></script>
 <script src='url to resume session
controller'></script><script>resumeSession();</script>";
}

// Log out if session time limit is reached
if ($_SESSION['last_logged_in_time'] < time() - 200 * 60) {
 header('Location: url to logout service');
}

// check if the user is listed in the online users list
$online_users=file("url to onlineUsers.txt",FILE_IGNORE_NEW_LINES);
$pattern = '/'.$_SESSION['ID'].'\s'.$_SESSION['name'].'/';
$matchFound = false;
for ($i=0; $i<count($online_users);$i++) {
 if (preg_match($pattern, $online_users[$i])) {
 $singleArray = explode(" ", $online_users[$i]);
 $_SESSION['status'] = $singleArray[0];
 $matchFound = true;
 break;
 }
}

if (!$matchFound) {
 // if match not found, user logged out from another system
 // code is 10, re-route user to log out service
 $_SESSION['connect'] = 10;
 header('Location: url to logout service');
}

// if user uses authenticated url without logging in,immediately log
out and route to login screen
if (!$_SESSION['connect'] || $_SESSION['type'] != "student") {
header('Location: url to login view');}
$name = $_SESSION['name'];

Teacher Time Check

// Same as student time check except for the last part

308

...

// if it happens that user comes to page who is not logged in and or
is not teacher,
// immediately log out and route to login screen
if (!$_SESSION['connect'] || $_SESSION['type'] != "teacher") {
header('Location: url to login view');}
$name = $_SESSION['name'];

A.12.2. Logout Service (PHP)

session_start();
// Display message if user was logged out because session timeout
if (isset($_SESSION['timeout'])) {
 if ($_SESSION['timeout'] < time() - 75 * 60) {
 echo "<script>alert('Session ended. Logging out.');</script>";
 }
}

// Display message if user logged out in different window & log out
if ($_SESSION['connect'] == 10){
 $message = "You logged out in different system. Hence, you
automatically logged out from here.";
 echo "<script
type='text/javascript'>alert('$message');</script>";
}
// Deleting the logging out uesr from the online users list
$user = $_SESSION['status'] . ' ' . $_SESSION['ID'] . " " .
$_SESSION['name'];
$filename = "url to onlineUsers.txt";
$data = file($filename);

$online_users = array();

//Storing all the users that did not logged out yet
foreach($data as $a_user) {
 if(trim($a_user) != $user) {
 $online_users[] = $a_user;
 }
}

// put back all the online users who are still online
$fp = fopen($filename, "w+");

309

flock($fp, LOCK_EX);
foreach($online_users as $a_user) {
 fwrite($fp, $a_user);
}
flock($fp, LOCK_UN);
fclose($fp);

$_SESSION['connect'] = 0;
$_SESSION=array();

// Unset the session parameters and destroy the session
unset($_SESSION);
session_destroy();

A.12.3. Image Slider Service (jQuery)

$(function() {
 // collect the slides details
 var slides = $(".slideshow>li");
 var slideCount = 0;
 var totalSlides = slides.length;
 var slideCache = [];
 var information_images = [// an array of subtitles strings];

 // This function loads up all the images with class slideshow
and with tag li
 (function preloader(){
 if (slideCount < totalSlides) {
 //load images
 slideCache[slideCount] = new Image();
 slideCache[slideCount].src =
slides.eq(slideCount).find('img').attr('src');
 slideCache[slideCount].onload = function(){
 slideCount++; preloader();
 }
 }
 else {
 //run the slideshow
 slideCount = 0;
 SlideShow();
 }
 }());

310

 // This function starts the slideshow and continue to display
next slides
 function SlideShow() {
 slides.eq(slideCount).fadeIn(1000).delay(2000).fadeOut(1000,
function(){
 var info_image =
document.getElementById("information_bar");
 var i = 0;
 if (slideCount+1 >= totalSlides) {
 i = 0;
 }
 else {
 i = slideCount + 1;
 }
 info_image.innerHTML = information_images[i];
 slideCount < totalSlides -1 ? slideCount++ : slideCount
= 0;
 SlideShow();
 })
 }
});

	St. Cloud State University
	theRepository at St. Cloud State
	5-2017

	Virtual Teaching Assistant: A Web Tool (for C++)
	Santosh Basnet
	Recommended Citation

	tmp.1494911746.pdf.uizri

