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Abstract 

With the advancement of multiple processors, the sequential algorithms are being 

investigated and gradually substituted for its concurrent equivalent to effectively exploit the 

parallel architecture. Parallel algorithms speed up the performance by dividing the task into a 

number of processes (or threads) that can be scheduled and executed simultaneously in 

independent processing units. Various well-known basic algorithms and data-structures have 

been explored for its efficient parallel counterparts and have been published as popular libraries. 

However, advanced data-structures and algorithms have not seen similar investigation mainly 

because they have many optimization steps mostly backed by many states and finding safe and 

efficient parallel implementation isn’t an easy endeavor. 

Safety concerns for shared-memory parallel implementation are of utmost importance as 

it provides a basis for consistency of any data structure and algorithm. There are well-known 

tools like locks, semaphores, atomic operations and so on that assist towards safe parallel 

implementation but using them effectively and in well-defined synchronization are key factors in 

the overall performance of any data-structures and algorithms. 

This paper explores an advanced data structure, Fibonacci Heap, and its operations to 

evaluate its implementation using two different synchronization mechanisms: Coarse-grained 

and Fine-grained. The analysis in this paper shows that a fine-grained synchronized Fibonacci 

Heap implementation with certainly relaxed semantics is more scalable with growing number of 

concurrency in comparison to the coarse-grained synchronized Fibonacci Heap implementation. 



3 

 

Acknowledgment 

I would like to sincerely thank my advisor Dr. Jie Hu Meichsner, Department of 

Computer Science and Information Technology for her suggestions and continuous guidance for 

the successful execution of the research and its implementation.  

I would like to express my gratitude towards my committee members Dr. Dennis Guster, 

Department of Information Systems, for allowing me to use the BCRL lab, where I was able to 

carry out the experiments for the analysis; and Dr. Mehdi Mekni, Department of Computer 

Science and Information Technology, for his constructive feedback and support throughout the 

research. 

I would also like to thank my friends and all the faculty members of the Computer 

Science Department at SCSU who helped me to shape my knowledge throughout my study. 

Lastly, it wouldn’t have been possible without the continuous support of my family and, 

especially my friend, Suraj Poudel, who helped me on every stage of the research and 

implementation throughout its completion. 



4 

 

Table of Contents 

 Page 

List of Tables ...................................................................................................................................6 

List of Figures ..................................................................................................................................7 

List of Algorithms ............................................................................................................................9 

Chapter 

I. Introduction ..........................................................................................................................9 

Overview ........................................................................................................................9 

Related Work ...............................................................................................................10 

Objective ......................................................................................................................11 

II. Fibonacci Heap ..................................................................................................................12 

Overview ......................................................................................................................12 

Overview of Sequential Fibonacci Heap .....................................................................12 

III. Parallel Data Structure .......................................................................................................17 

Issues with Parallel Implementation of a Data Structure .............................................17 

IV. Parallel Implementation Details for Fibonacci Heap .........................................................24 

System and Libraries....................................................................................................24 

Algorithm Details.........................................................................................................27 

V. Experiments and Results ....................................................................................................43 

CPU Utilization ............................................................................................................44 

Strong Scaling ..............................................................................................................46 

Weak Scaling ...............................................................................................................47 



5 

 

Chapter  Page 

VI. Conclusions and Future Works ..........................................................................................49 

Conclusions ..................................................................................................................49 

Future Works ...............................................................................................................49 

References ......................................................................................................................................51  

Appendix ........................................................................................................................................53 



6 

 

List of Tables 

Table  Page 

1. Comparison of Timing Results between fork and pthread_create Method .......................25 

2. Comparison of MPI Shared Memory Bandwidth to Pthreads Worst-Case  

 Memory-to-CPU Bandwidth ..............................................................................................26 

 

3. Comparison of CPU Utilization and Execution Time between Coarse-Grained 

 and Fine-Grained Synchronized Fibonacci Heap ..............................................................44 

 

 



7 

 

List of Figures 

Figure  Page 

1. Structure of Fibonacci Heap ..............................................................................................12 

2. Insert Operation in Sequential Fibonacci Heap .................................................................13 

3. Extract-min Operation in Sequential Fibonacci Heap .......................................................14 

4. Consolidation Operation in Sequential Fibonacci Heap ....................................................16 

5. Blocking Algorithm Illustration .........................................................................................21 

6. Non-Blocking Algorithm Illustration ................................................................................23 

7. Breaks Root List into Multiple Sections to Scale Multiple Inserts ....................................30 

8. Various Insert Scenarios in Fine-Grained Fibonacci Heap Implementation .....................33 

9. Spill Over Operation in Fine-Grained Fibonacci Heap .....................................................39 

10. Comparison of CPU Utilization (%) for Coarse-Grained and Fine-Grained Fibonacci 

  Heap Implementations Executing 10K, 100K, and 1M operations in 2, 4, 8,  

  16 Thread Settings .......................................................................................................46 

 

11. Comparison of Strong Scaling Results for Coarse-Grained and Fine-Grained  

 Synchronized Fibonacci Heap for 1M Operations .......................................................47 

 

12. Comparison of Weak Scaling Results for Coarse-Grained and Fine-Grained 

 Synchronized Fibonacci Heap for 100K Operations Per Thread .................................48 



8 

 

List of Algorithms 

Algorithm Page 

1. Coarse-Grained Synchronized Fibonacci Heap .................................................................28 

2. Fine-Grained Synchronized Fibonacci Heap Insert Operation ..........................................34 

3. Fine-Grained Synchronized Fibonacci Heap Extract Min Operation ................................36 

4. Fine-Grained Synchronized Fibonacci Heap Spill Over Operation ..................................38 

5. Fine-Grained Synchronized Fibonacci Heap Consolidate Operation ................................41 



9 

 

Chapter I: Introduction 

 

Overview 

 

Modern day computers have seen unprecedented growth in low-cost high-performance 

computing mainly because of cheap energy efficient multi-core processors. But because multi-

core processors are architecturally different from single-core processors, software implementation 

needs to be re-designed with multiprocessor programming paradigm to be able to maximize 

performance benefits of such systems. This paradigm, in general, requires implementations to 

break operations into multiple tasks that can be scheduled and executed simultaneously in 

different cores. One big challenge in multiprocessor programming stems from the fact that the 

memory is shared between multiple cores and simultaneous access /modification to the same 

memory address can lead to an inconsistent state called race condition. 

In multiprocessor programming, if a memory address is being written/read 

simultaneously by multiple processes/threads, then implementations need to ensure guarding 

operations on this memory address to avoid probable inconsistencies. Applying guards on 

such operations, e.g., locks, leads to sequentially executing in such regions, called critical paths 

that restricts implementation to reach its theoretical speedup. Reducing the time taken in 

executing critical paths has great influence on increasing the efficiency of parallel 

implementation. The coarse-grained locking mechanism has been popularly used to provide 

guards in critical paths of programs, which can, however, make the program difficult to scale out 

as many integrated cores in a single chip becomes more common. This has led the scientific 

community to research for lock-free algorithms and data structures operations or to explore 

options to reduce the critical paths, termed as fine-grained locking. 
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Related Work 

Fibonacci Heap is an advanced data structure, introduced by Fredman and Tarjan 

(1987). It is widely used to implement priority queues. The priority queue is one of the 

most used data structure to implement various algorithms like Single Source Shortest Path 

Algorithm, Vertex Problem etc. The sequential Fibonacci heap algorithm is known to be the most 

efficient algorithm for the implementation of priority queues (Huang & Weihl, 1991). For the 

Fibonacci heap, the extract minimum operation takes constant, i.e., O(1) amortized time. The 

insert and decrease key operations also work in constant amortized time. 

The primary motivation of the Fibonacci heap was to gain speed up in the performance 

of Dijkstra’s algorithm from O (E log V) to O (E + V log V) (Wayne, 2007). Huang and 

Weihl (1991) provided a concurrent Fibonacci heap’s design and implementation, following 

closely the sequential algorithm, with a low contention by distributing locks over the entire 

data structure and showed experimentally to have linearly scalable throughput and speedup up to 

many processors. The efficiency obtained in the Huang and Weihl studied relied on their 

assumption that strict semantics on extracting nodes concurrently are mostly undesirable. Shavit 

and Zemach (1999) addressed problems of designing scalable priority queue structures that 

support a fixed range of priorities as opposed to an unbounded range of priorities and claim to 

have better scalability. Shavit and Zemach designed a funnel-based algorithm for priority queue 

implementation which does not directly correspond with its sequential algorithms. Few other 

pieces of research have also implemented parallel priority queues based on binomial heap (Das & 

Pinotti, 2000) and relaxed Fibonacci heap (Boyapati & Rangan, 1995). 
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Objective 

The objective of this paper is to investigate the parallel implementation of the insert and 

extract-minimum operations in Fibonacci Heap data structure, a computationally best-known 

priority queue implementation algorithm. 

A coarse-grained synchronization mechanism can provide a safe and easy parallel 

implementation for the Fibonacci heap, but the implementation cannot scale-out well with 

increasing number of threads which is imminent with growing number of cores in a single 

chip. However, if Fibonacci heap operations are investigated to find various linearizable 

sections to implement fine-grained synchronization, then it is more likely to scale out better with 

increasing parallelism. 

In this paper, a coarse-grained synchronized Fibonacci Heap i s  implemented using a 

global lock to guard operations in sequential Fibonacci Heap. Algorithm for sequential 

Fibonacci Heap is provided in Appendix A: Sequential Fibonacci Heap Algorithm and this will 

be referred as SEQ_Fibonacci_Heap hereafter. 

This paper focuses on investigating the ways that lead to fine-grained critical regions in 

the Fibonacci Heap operations to increase the degree of parallelism in the PARALLEL-FIB-

HEAP-INSERT and PARALLEL-FIB-HEAP-EXTRACT-MIN operations. The performance of 

coarse-grained synchronized Fibonacci Heap is tabulated as a basis for comparison with the fine-

grained synchronized Fibonacci Heap performance with increasing parallelism. 
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Chapter II: Fibonacci Heap 

Overview 

This chapter of the paper describes the background required to understand Fibonacci 

heap, associated problems, and the works related to the parallel implementation of the Fibonacci 

heap. 

Overview of Sequential Fibonacci Heap 

Fibonacci heap is a collection of heap-ordered trees, where root always contains the 

minimum element among the trees. The roots of all trees in the Fibonacci heap are connected 

by the circular, doubly linked list. The circular linked list has advantages in the Fibonacci heap, 

we can remove an element from the circular, doubly linked list in O (1) time. It has a minimum 

pointer pointing to the minimum element of the root list (Wayne, 2007). Figure 1 shows the 

structure of the Fibonacci heap. 

 

 

Figure 1. Structure of Fibonacci Heap 

Fibonacci heap operations. Amongst many operations possible in the Fibonacci heap, 

this paper mainly explores insert, extract min, and consolidate operations which are briefly 

described below. 

• Insert: Insert operation refers to the insertion of an element in the root list and can 

be inserted anywhere. To insert a new element, a new node is created. The position of 

the newly created node is located by finding the two adjacent nodes, between which it 

4 2 3 1 min 

5 6 7 8 
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needs to be inserted. The corresponding pointers of those nodes and newly created 

nodes are updated such that they are linked to each other. After insert operation, if the 

new element is smaller than the element pointed by the minimum pointer, the value 

pointed by the minimum pointer needs to be updated. The insert operation takes 

constant time to insert an element. 

 

Figure 2.  Insert Operation in Sequential Fibonacci Heap 

• Extract Min: Extract-min operation extracts the element pointed by the minimum 

pointer in the heap. Once the value pointed by the minimum pointer is extracted, the 

child nodes of the root node meld with the root list and the value pointed by the 

minimum pointer is updated. In Figure 3, the value pointed by minimum pointer 

‘min’ is extracted, i.e., ‘1’ and pointer is updated to next minimum value ‘2’. The 

child node of ‘1’ i.e. ‘8’ is melded with the root node (Wayne, 2007). Extract 

operation takes logarithmic time. The heap needs to be consolidated after the extract-

minimum operation.  
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Figure 3. Extract-min Operation in Sequential Fibonacci Heap 

• Consolidate. Consolidation is the process during which, trees with the same degree 

are merged together, thus reducing the number of trees in the Fibonacci heap. This 

causes the amortized cost of extracting the minimum node to be O(D(n)) where D(n) 

is the maximum degree of an n-node Fibonacci heap which has an upper bound of O 

(log n). The degree of the trees refers to the number of children of its root node. 

 

A. Degree of ‘4’ is Zero. 

 

B. Degree of ‘2’ is One. 
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C. Degree of ‘3’ is Two. 

 

D. Degree of ‘8’ is Zero, So Merge It Below ‘4.’ 

 

E. Degree of ‘4’ is Equal to the Degree of ‘2’ so Merge Tree 4 Below ‘2.’ 
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F. Degree of ‘2’ is equal to the degree of ‘3’ So Merge Tree 3 Below ‘2’ (Wayne, 2007). 

Figure 4. Consolidation Operation in Sequential Fibonacci Heap 
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Chapter III:  Parallel Data Structure 

Parallel data structures are the way of storing and organizing data that need concurrent 

access by multiple threads or processors. This mainly represents data structures that can be 

accessed by multiple threads executed on multiple processors that can actually be 

accessing/updating the data and/or internal states of the data structures simultaneously. As 

parallel data structures can be accessed simultaneously through multiple computing resources, 

this is also referred to as shared data structures and are generally allocated in a shared storage 

environment referred to as shared memory. 

In a parallel computing environment, data structures need to have additional properties in 

comparison to sequential environments. Safety and liveness property are two such properties. 

The liveness property refers to property that specifies data structures to make progress even if the 

executing multiple processors sometimes might have to wait for certain resources to be available 

(e.g., wait on locks) in critical sections i.e. part of the program that cannot be executed 

simultaneously by multiple processors. Because there is no guarantee on how the threads will be 

scheduled and unscheduled on the multi-processor environment, there are many possibilities of 

how methods can be interleaved at any threaded execution. So, with safety property, data 

structures ensure correct execution in various such possibilities. It is, therefore, significantly 

more difficult to design and verify concurrent data structures than their corresponding sequential 

data structures. 

Issues with Parallel Implementation of a Data Structure 

Data structures have operations that modify/accesses its internal and external states. In 

the parallel implementation, operations on the data structures are called from multiple 
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threads/processes and there is no guarantee that those calls won’t interfere with each other unless 

synchronized explicitly. If the operations are just reads, then there is no need for any 

synchronization because all the threads/processes read the same state. However, when there are 

reads and writes operations called by multiple threads/processes, it is not uncommon for threads 

to view the inconsistent state of the data structure, which is called race condition. 

Race condition. A race condition is a bug in multithreaded programs, which occurs when 

two or more threads access the same memory location, and the result depends on the order of 

execution of the threads. Such memory location is called the critical section. However, it only 

occurs when one of the threads is writing to the memory location. That means we have room to 

avoid this situation by carefully synchronizing these events as long as the resources do not 

change (Tsyrklevich & Bennet, 2003). 

Example:  Let us assume that two threads want to increment the value of a global integer 

variable by one. Ideally, the following sequence of operations would take place: 

Thread 1 Thread 2  Value 

   0 

read value  ← 0 

increase value   0 

write back  → 1 

 read value ← 1 

 increase value  1 

 write back → 2 
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In the above example, the expected final value is 2. However, the end result could be 

wrong if multiple threads run simultaneously without any locks or synchronization, which is 

shown below. 

 

In this case, the final value is 1 instead of the expected result of 2. This is because of 

the race condition where the increment operations are not mutually exclusive. Mutually 

exclusive operations are those that cannot be interrupted while accessing some resource such as a 

memory location. 

Preventing race conditions. In computing environments, race conditions can be 

prevented by following methods: 

• Thread synchronization: The loading and saving a shared variable are usually 

implemented as separate operations and are not atomic. This means if we consider the 

above example, an “increment variable” operation is usually converted into loading, 

incrementing, and saving operation, so if the variable memory is shared the other 

process may interfere with the incrementing, easily leading to a race condition. In 

this method, the race condition can be avoided by the serialization of memory or 
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storage access. This means if read and write commands are received close 

together, the read command is executed and completed first by default. This can be 

achieved by performing atomic actions in the file system and using temporary files 

(Tsyrklevich & Bennet, 2003).    

Locking. If we grant an exclusive right to perform a certain operation, it helps to avoid 

the race condition. However, several other problems get introduced along with the locks, 

namely, deadlocks, livelocks, and releasing “stuck” locks if a program does not clean up its locks. 

A deadlock can occur if programs cannot proceed forward because of waiting for each other to 

release resources (Tsyrklevich & Bennet, 2003).  For example, a deadlock would occur if 

Process 1 locks Resource A and wait for Resource B, while Process 2 locks Resource B and 

waits for Resource A. Many deadlocks can be prevented by simply requiring all processes that 

lock multiple resources to lock them in the same order (e.g., alphabetically by lock name). 

The locking mechanism can be implemented in following ways: Using Files as Locks: Whenever 

process wants to access the file, lock that file so that other process cannot request for the file 

access. 

Implementation techniques for parallel algorithms. As discussed earlier, the 

implementation and design of parallel algorithms is a difficult endeavor.  Although the tools and 

constructs required to assist safe and live implementation are prevalent, putting them together to get the 

complete implementation of any parallel algorithms and data structures require more consideration. One of 

the key issue to be addressed is performance.  

The speedup of any algorithms is the ratio of its execution time in a single processor to its 

execution time in multiple processors. The ideal speedup is to be linear, i.e., with P processors 
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the speedup should be P. Data structures and algorithms that have a linear speedup are called 

scalable. However, using tools for e.g. locks can severely undermine the scalability if used 

naively. Techniques for implementing various parallel algorithms fall into this broad category of 

how locks are used to implement various synchronization points to provide the safe 

implementation and those techniques have the different impact on the performance of the 

algorithms which are discussed below:  

Blocking concurrency algorithms: A blocking concurrency algorithm is an algorithm 

which either performs the action requested by the thread  or blocks the thread until the action can 

be performed safely. 

There are several algorithms and concurrent data structures which are blocking. If we 

consider the concurrent BlockingQueue in Java, if a thread attempts to insert an element into a 

BlockingQueue and the queue does not have space, the inserting thread is blocked until the 

BlockingQueue has space for the new element (Cao & Singhal, 1998). 

The following diagram illustrates the behavior of a blocking algorithm guarding a shared 

data structure:  

 

 

Figure 5. Blocking Algorithm Illustration (Jenkov, 2015) 
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While implementing concurrent programs, the only bottleneck might be the lock 

contention. When multiple threads run at the same time they might compete for the same lock. If 

one thread holds a lock on a resource for a while and the other thread waits for the same 

resource, it turns into a competition. This introduces widely used terms such as "coarse-

grained” locking and “fine-grained” locking mechanism. 

In the coarse-grained locking, a larger portion of data is locked by a single lock, which 

makes it easier to implement. Hence, the coarse-grained locking mechanism can easily make 

algorithms safe since large portions of the data are guarded with very few locks. However, in 

fine-grained locking, we guard individual data elements with different locks as opposed to a 

single lock guarding most of the data elements. This highly reduces the lock contention and 

improves performance in terms of speed up. But, fine-grained locking can easily 

deadlock/livelock if not carefully considered of various scenarios, which makes it difficult to 

implement. This paper focuses on fine-grained locking algorithms and its implementation. 

Non-blocking concurrency algorithms. A non-blocking concurrency algorithm is an 

algorithm which either: performs the action requested by the thread or notifies the requesting 

thread that the action could not be performed (Cao & Singhal, 1998). 

If we consider the Java again, it contains several such non-blocking data structures. The 

AtomicBoolean, AtomicInteger, etc are some non-blocking data structures. This diagram 

illustrates the behavior of a non-blocking algorithm guarding a shared data structure. 
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Figure 6. Non-Blocking Algorithm Illustration (Jenkov, 2015) 

 



24 

 

Chapter IV:  Parallel Implementation Details for Fibonacci Heap 

This chapter describes the tools, libraries, and system used to implement both coarse-

grained and fine-grained synchronized implementation of Fibonacci Heap. 

System and Libraries 

Parallel Fibonacci Heap is implemented in C++ and different libraries in C/C++ is used 

to make low-level system calls e.g. creating a thread. Also, the implementation was tested on 

Linux system with multi-core processors. The following section describes them in detail. 

POSIX threads. POSIX threads library is a standardized C language threads 

programming interface designed to develop portable threaded applications for UNIX systems. It 

has been specified by the IEEE POSIX 1003.1c standard. Implementations that adhere to this 

standard are referred to as POSIX threads or Pthreads (Blaise, 2017).  Pthreads are defined as a 

set of C language programming types and procedure calls, implemented with 

a “pthread.h” header/include file and a thread library - although this library may be part of 

another library, such as libc, in some implementations. Pthreads library was considered for the 

implementation because of the following reasons: 

Lightweight: 

• A thread can be created with less OS overhead as compared to the process. 

• Managing threads requires fewer system resources than managing processes. 
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Table 1 

Comparison of Timing Results between fork and pthread_create Method 

 

Efficient Communications/Data Exchange: 

• For Pthreads, there is no intermediate memory copy required because threads share 

the same address space within a single process. 

• There is no data transfer and it can be as efficient as simply passing a pointer (Blaise, 

2017). 

Platform 

fork () pthread_create () 

real user sys real user sys 

Intel 2.6 GHz Xeon E5-2670 (16 cores/node) 

 

8.1 0.1 2.9 0.9 0.2 0.3 

Intel 2.8 GHz Xeon 5660 (12 cores/node) 4.4 0.4 4.3 0.7 0.2 0.5 

AMD 2.3 GHz Opteron (16 cores/node) 12.5 1.0 12.5 1.2 0.2 1.3 

AMD 2.4 GHz Opteron (8 cores/node) 17.6 2.2 15.7 1.4 0.3 1.3 

IBM 4.0 GHz POWER6 (8 cpus/node) 9.5 0.6 8.8 1.6 0.1 0.4 

IBM 1.9 GHz POWER5 p5-575 (8 cpus/node) 

 

64.2 30.7 27.6 1.7 0.6 1.1 

IBM 1.5 GHz POWER4 (8 cpus/node) 104.5 48.6 47.2 2.1 1.0 1.5 

INTEL 2.4 GHz Xeon (2 cpus/node) 54.9 1.5 20.8 1.6 0.7 0.9 

INTEL 1.4 GHz Itanium2 (4 cpus/node) 54.5 1.1 22.2 2.0 1.2 0.6 
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Table 2 

Comparison of MPI Shared Memory Bandwidth to Pthreads Worst-Case Memory-to-CPU 

Bandwidth 

Platform 

MPI Shared Memory 

Bandwidth 

(GB/sec) 

Pthreads Worst Case 

Memory-to-CPU Bandwidth  

(GB/sec) 

Intel 2.6 GHz Xeon E5-2670 4.5 51.2 

Intel 2.8 GHz Xeon 5660 5.6 32 

AMD 2.3 GHz Opteron 1.8 5.3 

AMD 2.4 GHz Opteron 1.2 5.3 

IBM 1.9 GHz POWER5 p5-575 4.1 16 

IBM 1.5 GHz POWER4 2.1 4 

Intel 2.4 GHz Xeon 0.3 4.3 

Intel 1.4 GHz Itanium 2 1.8 6.4 

 

Other common reasons: Threaded applications offer potential performance gains and 

practical advantages over non- threaded applications in several other ways: 

• Overlapping CPU work with I/O: For example, a program may have sections where it 

is performing a lengthy I/O operation. While one thread is waiting for an I/O system 

call to complete, CPU intensive work can be performed by other threads. 

• Priority/real-time scheduling: tasks which are more important can be scheduled to 

supersede or interrupt lower priority tasks. 

• Asynchronous event handling: tasks which service events of indeterminate frequency 

and duration can be interleaved. For example, a web server can both transfer data 

from previous requests and manage the arrival of new requests. 
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System details. The experiments shown in this paper were performed on the system with 

the following configuration: 

Hostname Csci606 

Number of Cores 8 

Processor Model Intel Xeon CPU E5-2680 v2 @ 2.8 GHz 

Memory 16 GB 

Compiler g++ 5.4.0 

Profiler gprof 

Algorithm Details 

The following section describes sequential, coarse-grained, and fine-grained algorithms 

in detail. 

Sequential fibonacci heap. Sequential Fibonacci Heap was implemented according to 

Appendix A using C++.  

Coarse-grained fibonacci heap. The coarse-grained implementation shown below 

maintains a global lock to guard individual operations to synchronize between various 

operations performed on the heap. 

The sequential algorithm for each Fibonacci Heap operations is guarded by a global lock 

to avoid two or more threads from simultaneously updating the heap state, thus creating a coarse-

grained synchronized parallel Fibonacci Heap implementation. Fibonacci Heap has various other 

internal operations like CONSOLIDATE which do not explicitly need guards as guarding FIB-

HEAP-EXTRACT-MIN and FIB-HEAP-INSERT operation automatically avoids race 
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conditions. Such implementation of parallel Fibonacci Heap is a naive approach towards 

guaranteeing safety. 

Algorithm 1 

Coarse-Grained Synchronized Fibonacci Heap 

state: 

    std::mutex global_lock  

    SEQ_Fibonacci_Heap heap 

  

operations: 

  

PARALLEL-FIB-HEAP-EXTRACT-MIN (): 

    global_lock.lock()  

    min = FIB-HEAP-EXTRACT-MIN(heap) 

    global_lock.unlock() 

    return min 

 

PARALLEL-FIB-HEAP-INSERT (x):  

    global_lock.lock()  

    FIB-HEAP-INSERT (heap, x) 

    global_lock.unlock() 

 

There is a subtle assumption in the above algorithm, that is simultaneous operations on 

the Fibonacci Heap are always unsafe regardless of any input and it is safe to always avoid 

having two operations to occur together with no matter what. However, with this approach the 

cases where FIB-HEAP-EXTRACT-MIN and FIB-HEAP-INSERT operations that might not have 

race conditions are not considered. For example, if we perform FIB-HEAP-INSERT(x) in one of the 

trees in one part of heap whose minimum is far from being the current minimum, then 
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performing FIB-HEAP-EXTRACT-MIN can happen simultaneously without racing the FIB-

HEAP-INSERT(x) operation. 

Fine-grained fibonacci heap. This paper primarily focuses on implementing the basic 

relaxed semantics proposed by Huang and Weihl (1991) and improved it using various 

optimization techniques. The following sections describe the proposed insert, extract-min, 

consolidate and spill over buffer implementation in details. 

Insert operation. Insert semantics for fine-grained Fibonacci Heap is similar to the insert 

operation of a sequential Fibonacci heap. However, if the same sequential insert implementation 

is used for the parallel counterpart, then a thread trying to insert an element in the root list  

needs to first lock the complete list. If another thread tries to insert a new element in the heap 

subsequently, it will have to wait till the first thread completes its insert operation and releases 

the lock. This makes multiple threads contend on a single lock for insert, thus creating a 

bottleneck for scaling insert operation. Hence, modifications are required to avoid this 

bottleneck. This paper proposes spreading out insert operations across root list by placing many 

dummy nodes, which owns a unique lock to guard smaller sections of the root list as shown in 

Figure 7.  
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Figure 7. Breaks Root List into Multiple Sections to Scale Multiple Inserts 

Dummy nodes are like normal nodes of the doubly linked list, except they do not 

represent node with a valid value for the heap. On a request for insert operation by a thread, a 

dummy node is randomly chosen to try to acquire its lock. If the lock in the dummy node is 

successfully acquired, the element is inserted into the right link of the dummy node. If the lock 

couldn’t be acquired, the dummy node was already locked by another thread. So, the thread 

retries the entire process i.e. another dummy node is randomly chosen to be acquired and the new 

node is inserted on its right side, if successful (Refer to Algorithm 2 for an algorithm and Figure 

8 for an example). 

After inserting a new node, the minimum pointer might need to be updated. This paper is 

based on the design, which relaxes the idea of only using a single minimum pointer and 

substitutes it with a list of pointers to potential minimum elements referred as a promising list, 

similar to the Huang and Weihl (1991) implementation. However, this paper proposes that this 

method needs to be separated from each insert operations, instead amortized with extract 
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operation which will be discussed later in the section on Spill-Over Operation as spill-over buffer 

operation. This was proposed because of a subtle flaw in Huang et al implementation.  

According to Huang and Weihl, the promising list is updated if any element in the promising list 

is greater than the new element, or if any node in the promising list is dead (dead refers to the 

node which is extracted from the promising list) or if the node is nil (empty node). However, 

there is a problem with this logic of updating the promising list in an insert operation. Consider a 

scenario when 100 elements are inserted in the Fibonacci Heap in ascending order and the 

promising list is of size, say three. Then the first three elements are inserted in the promising list. 

No thread extracts an element from the promising list, until the 99th insertion. Before 100th 

insertion, another thread extracts an element from promising list and marks it as dead. Now in 

the 100th insertion, on checking for its eligibility in the promising list, it finds a dead node 

existing and replaces it. If another thread performs extract min, then 100 might be returned, 

despite the presence of several other minimum elements in the heap. This paper proposes to 

improve such cases which will be discussed later. 
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A. Insert '7' into the Fibonacci Heap 

 
 

B. Try lock at a random dummy node. Locking succeeds so insertion  

for 7 begins to the right of the dummy node. 
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C. While insertion for 7 is in progress in a thread A, another ‘insert 8’ 

operation is performed in another thread B. 

 

 
 

D. Try lock at a random dummy node. Here, the first attempted random dummy node already 

had lock acquired because of ongoing 'insert 7' operation. So, another dummy node is 

attempted for trying lock. It then finds an unlocked dummy node to insert into. 

 

Figure 8. Various Insert Scenarios in Fine-Grained Fibonacci Heap Implementation 
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Primarily, much of the insertion logic remains same as Huang and Weihl (1991). The 

only but major difference is the inserted value does not compete to be on the promising list. The 

inserted node is just added to the doubly linked list at one Fibonacci heap section that the thread 

successfully acquires the lock to. The inserted node is only allowed to compete for the promising 

list when the EXTRACT thread does a spill over. 

As an example, consider that the first insert does not update the minimum value 

immediately. Only the first extract operation goes ahead to attempt to consolidate on one node 

and then reattempts EXTRACT to do a spillover from that node to the promising list. 

Algorithm 2 

Fine-Grained Synchronized Fibonacci Heap Insert Operation 
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Extract min operation. The semantics of the insert operation is less strict as compared to 

the extract operation of a sequential Fibonacci heap. The sequential Fibonacci heap always gives 

the minimum element of the heap on extract operation. However, on parallel implementation of 

the Fibonacci heap, if many processes are extracting nodes concurrently, then contention occurs. 

The minimum value needs to be updated and consolidation of the tree must happen after each 

extraction. So, the next thread must wait till the first thread is done, i.e., extraction will happen 

sequentially. This will be the bottleneck for extract operation. Hence, in this paper, the extraction 

operation is relaxed, such that, the extract operation returns one of the values from the promising 

list and marks the node dead.  

Performing multiple extractions will result in an empty promising list. To facilitate the 

early warning that the promising list might be empty in near future, few modifications are 

proposed in this paper. Firstly, the promising list size(PL_SZ) is tripled (3 * PL_SZ) and a 

pointer EXTRACT_PTR moves along the list in a cyclic fashion per call to the extract-min. When 

the EXTRACT_PTR has moved by PL_SZ value from the last CONSOLIDATE, the 

CONSOLIDATE is called. If the last call to extract-min made a CONSOLIDATE, it would result 

in calling spill-over. If neither of this happens, it just goes through the promising list and tries to 

lock a node. The first successful node at which lock is attainable is returned after the node is 

marked as dead and unlocked. The EXTRACT_PTR has incremented atomically.  
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Algorithm 3 

Fine-Grained Synchronized Fibonacci Heap Extract Min Operation 
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Spill-over operation. During this operation, the thread starts attempting to lock all the 

consolidate locks from index 0 to CONSOLIDATE_LOCKS_SIZE. It blocks on waiting for the 

locks to be acquired. After acquiring the lock for a section, it scans through the nodes in that 

section (only the root list) and stores the reference of top PL_SZ minimum number in the list. As 

the number is being added, it goes through an IN_PROGRESS list, that maintains the sorted list 

across all the section, doing an insertion sort like sequence. Thus, at the end of the spill-over 

operation, PL_SZ number of minimum values are obtained which are ready to be spilled over the 

main promising list in the spill-over section.  

This refills the promising list thus making more extract-min to return the value 

immediately without undergoing the relatively expensive consolidate and spill-over operation, 

thus resulting in non-contending parallel extraction. 
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Algorithm 4 

Fine-Grained Synchronized Fibonacci Heap Spill Over Operation 
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Figure 9. Spill Over Operation in Fine-Grained Fibonacci Heap 

Consolidation operation. There are two conditions under which consolidation operation 

will be performed. First, when the promising list has no elements and a thread request for the 

minimum element. During this process, the consolidation operation will be performed, and the 

promising minimum elements are filled in the promising list. The thread requesting extract-min 

then retries its extract operation. Second, consolidation is performed after the extract operation.  

A thread performing consolidate operation randomly chooses a section (between two dummy 

nodes). If the section is not already in consolidation process by other thread, the thread locks the 

section and walks through the nodes. The consolidation process merges trees of the same degree 

to reduce the number of trees in the list. 

In this paper, most of the logic in the consolidate operation is similar to Huang and Weihl 

(1991) except that the promising list is not updated during this operation. It moves through each 
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Fibonacci heap section attempting to lock the consolidation lock without blocking on an already 

acquired lock. This is because of the following reasons. 

• If some other thread is consolidating then waiting on this section does not make 

sense, as not much change is expected when the thread waits and attempts to 

consolidate on the recently consolidated section as the degree of all the nodes in that 

will be almost different for a recently consolidated section. 

• Similarly, when some thread is doing spill-over, all the values are being checked in 

that list for filling in next set of values in the promising list, waiting to consolidate it 

isn’t essential. This will eventually get consolidated in the next consolidate cycle. 

After a thread performing consolidate operation acquires a lock, it goes through the 

logic similar to the sequential consolidate to merge the nodes. One difference though 

is that if the consolidate sees a dead node it attaches its child list in its place. 
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Algorithm 5 

Fine-Grained Synchronized Fibonacci Heap Consolidate Operation 
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Chapter V: Experiments and Results 

Various experiments were performed to compare the behavior of coarse-grained 

synchronized Fibonacci Heap with fine-grained synchronized Fibonacci Heap. It is a difficult 

challenge in multi-threaded application to design experiments where results can be comparable 

to one another. The random nature of the timing of scheduling and execution for different threads 

make any two executions nearly impossible to match. So, the approach followed here to 

experiment with some degree of comparable results was to make sure that same set of operations 

were queued in the system in the same order. There was no restriction on which threads would 

pick on what operation mainly because of the amortized nature of the algorithm; i.e. all long 

running operations might be scheduled to run in the same thread.  

Experiments were chosen with 10K, 100K, and 1M operations as variations of workload 

chosen at random but using the same seed for random number generation for execution in each 

of coarse-grained and fine-grained synchronized Fibonacci Heap. The following table 

summarizes the results collected for various settings of a number of operations and number of 

executing threads. Table 3 compares CPU utilization and execution time results for the varied 

number of operations and number of threads settings for coarse-grained vs. fine-grained 

synchronized Fibonacci Heap. 



44 

 

Table 3 

Comparison of CPU Utilization and Execution Time between Coarse-Grained and Fine-Grained 

Synchronized Fibonacci Heap 

Operations Threads CPU Utilization (%) Execution Time (sec) 

 Coarse 

Grained 

Fine 

Grained 

Coarse 

Grained 

Fine Grained 

10K 2 150 177 0.05 0.02 

 4 104 266 0.04 0.02 

 8 133 336 0.05 0.02 

 16 128 352 0.05 0.02 

100K 2 152 187 0.55 0.28 

 4 121 311 0.45 0.25 

 8 113 370 0.44 0.24 

 16 109 511 0.43 0.25 

1M 2 153 197 6.08 10.47 

 4 135 381 5.37 6.44 

 8 126 558 5.4 5.14 

 16 125 604 5.81 5.1 

 

The following sections explain various metrics of Table 3 in further detail. 

CPU Utilization 

CPU utilization metric denotes the non-idle time, i.e., time CPU was not running the idle 

thread. CPU utilization in a parallel execution is usually a strong indicator that CPU is constantly 

executing instructions and not staying idle waiting for other activities like wait on acquiring the 

lock. Ideally, multiple threads in a system with multiple physical cores can be scheduled 

independently in different cores and thus utilization of CPU would increase with increasing 
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number of threads as long as there is enough independent processing unit available for those 

threads. 

Based on the experiments executed on an 8-core system, Figure 10 shows that for coarse-

grained synchronized Fibonacci Heap, increasing the number of threads does not have much 

effect on the CPU utilization. In fact, on multiple workloads, the performance degrades with 

increasing number of threads. While on the other hand, fine-grained synchronized Fibonacci 

Heap seems to much better use the available cores as the threads increase. Also, with increasing 

workload, the CPU utilization is increasing which is likely because there is more work being 

done per thread. The increasing trend seems to flatten while going from 8 to 16 threads, but that 

can be attributed to the fact that processing resources are shared in executing 16 threads on an 8-

core system. 
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Figure 10. Comparison of CPU Utilization (%) for Coarse-Grained and Fine-Grained 

Synchronized Fibonacci Heap Implementations Executing 10K, 100K, and  

1M Operations in 2, 4, 8, and 16 Threads Settings 

 

Strong Scaling 

Strong scaling refers to how the execution time varies with increasing number of 

processing units for fixed problem size. This is an indicator if the system can reduce the 

execution time in proportion to the amount of resource added to the system. Ideally, the 

execution time should decrease linearly with increasing processing unit. To compare the strong 

scaling aspect of coarse-grained synchronized Fibonacci Heap with the fine-grained Fibonacci 

Heap, 1M operations (constant problem size) were performed on the heaps for various numbers 

of threads on an 8-core system.  

Figure 11 shows that coarse-grained synchronized Fibonacci Heap does not scale at all 

with increasing number of threads. Moreover, with a system with 8 physical cores, coarse-

grained synchronized Fibonacci Heap performed worse with 8 threads and beyond. However, it 

is not the case for fine-grained synchronized Fibonacci Heap. Even though the scaling here isn’t 
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perfectly linear with respect to increasing threads, it can be observed that the fine-grained 

synchronized Fibonacci Heap is scaling much better than coarse-grained synchronized Fibonacci 

Heap. Although the absolute execution time for 2-threads is much worse for fine-grained 

synchronization, the strong scaling aspect for it is much more desirable as it has the capability to 

add more cores (and threads) to reduce the execution time in total. The flat lines after 8 threads 

are again attributed to the fact that since this experiment was done on an 8-core system, after 8 

threads the processing resource is shared amongst threads. 

 

Figure 11. Comparison of Strong Scaling Results for Coarse-Grained and Fine-Grained 

Synchronized Fibonacci Heap for 1M Operations. The x-axis represents the number of threads 

(processing unit) and the y-axis represents execution time in seconds.  

Fine-grained implementation scales are better here. 

 

Weak Scaling 

Weak scaling refers to how the execution time varies over the number of processing units 

for the fixed amount of work per processing unit. Ideally, the execution time should remain 

constant because each processing unit has the same amount of work to do. The weak scaling 

describes whether the overhead in the parallel execution varies faster or slower than the amount 

of work. 
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As shown in Figure 12, the experiment to compare weak scaling for two implementations 

of Fibonacci Heap was done by assigning the workload of 100K operations per threads in four 

different operations and threads settings. It is observed that the thread overhead grows almost in 

the same manner for both the implementations for increasing number of a workload in increased 

concurrency settings. This can potentially be attributed to the distribution of various operations 

amongst threads in different threads settings which is a difficult thing to control.  

 

Figure 12. Comparison of Weak Scaling Results for Coarse-Grained and Fine-Grained 

Synchronized Fibonacci Heap for 100K Operations Per Thread. The x-axis represents a number 

of threads (processing unit) with total operations performed and the y-axis represents execution 

time in seconds. Both implementations show a similar trend in parallel overhead. 
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Chapter VI: Conclusions and Future Works 

Conclusions 

Based on various experiments conducted and the metrics evaluated, it can be seen that the 

fine-grained synchronized Fibonacci Heap operations scale much stronger than a coarse-grained 

synchronized Fibonacci Heap. This means that increasing the resources can increase the 

performance of fine-grained synchronized Fibonacci Heap. However, the strong scaling aspect of 

fine-grained synchronized Fibonacci Heap is more advantageous when the workloads are huge, 

and system includes many processing units. As evident from the strong scaling metric for the 

coarse-grained Fibonacci Heap, it is only an option for a safe implementation that produces an 

outcome which is easy to reason about. But, with a certain degree of relaxed semantics, strong 

scaling can be achieved by putting more careful and thoughtful consideration about reducing the 

critical sections in operations of such data structure. The proposed fine-grained Fibonacci Heap 

data structure is one such example. 

Future Works 

Even though this paper provides a more scalable Fibonacci heap implementation using 

fine-grained implementation, there are various further improvements and optimization 

possibilities that can be looked in the future. Some of those are discussed below. 

• For insertion purpose, this paper proposes a way to distribute the insertions points by 

distributing the data structure into multiple root lists each of which has blocking 

insertions to some degree even though thread does not wait on any locks for more 

than the lock attempt period. In the future, the insert operation can further be scaled 
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by using a lock-free queue for each of those multiple root lists (Laden-Mozes & 

Shavit, 2004). 

• The current implementation of fine-grained implementation only implements extract 

min and insert operation. The future version of this implementation can add other 

operations thus providing a complete implementation. 

• Distributed and parallel (Hybrid) priority queues can be an important data structure 

for various frameworks (e.g., Pearce, Gokhale, & Amato, 2014). So, the future 

implementation can include message passing to deploy in such systems out of the 

box. 

• Currently, due to resource constraints, the scalability tests for this implementation is 

only done with 16 threads. Tests and robustness for scalability can further be 

investigated on resources with more performance capability and capacity. 
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Appendix 

Sequential Fibonacci Heap Data Structure 

 

  

 

 

 

 

 

 

 

 

 

 

Each node x contains a pointer p[x] to its parent and a pointer child[x] to any one of its 

children.  

The children of x are linked together in a circular, doubly linked list, which is referred as 

the child list of x.  

Each child y in a child list has pointers left[y] and right[y] that point to y’s left and right 

siblings, respectively. If node y is an only child, then left[y] = right[y] = y. degree[x] is the 

number of children in the child list of node x.  mark[x], Boolean-valued field indicates whether 

node x has lost a child since the last time x was made the child of another node.  

Figure A.1. A Fibonacci heap consisting of five heap-ordered trees and 14 nodes. The red 

line indicates the root list. The minimum node of the heap is the node containing the key 

3. The three marked nodes are blackened. The potential of this Fibonacci heap is 5 + 

2 * 3 = 11 
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Newly created nodes are unmarked, and a node x becomes unmarked whenever it is made 

the child of another node. min[H] is called the minimum node of the Fibonacci heap containing a 

minimum key. If a Fibonacci heap H is empty, then min[H] = NIL.  

The roots of all the trees in a Fibonacci heap are linked together using their left and right 

pointers into a circular, doubly linked list called the root list of the Fibonacci heap. The pointer 

min[H] thus points to the node in the root list whose key is minimum. n[H] is the number of 

nodes currently in Fibonacci heap H. 

If the number of trees in the root list of H is indicated by t(H) and the number of marked 

nodes in H is indicated by m(H), The potential of Fibonacci heap H is then defined by, 

 (H) = t(H) + 2m(H) 
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Inserting a Node 

The following algorithm inserts node x into Fibonacci heap H, assuming that the node has 

already been allocated and that key[x] has already been filled in. 

FIB-HEAP-INSERT (H, x) 

degree[x]  0 

p[x]  NIL 

child[x]  NIL 

left[x]  x 

right[x]  x 

mark[x]  FALSE 

concatenate the root list containing x with root list H  

if min[H] = NIL or key[x] < key[min[H]] 

then min[H]  x 

n[H]  n[H] + 1 
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Extracting the Minimum Node 

The following algorithm extracts the minimum node. The code assumes for convenience 

that when a node is removed from a linked list, pointers remaining in the list are updated, but 

pointers in the extracted node are left unchanged. It also uses the auxiliary CONSOLIDATE 

operation, which is presented below. 

 

FIB-HEAP-EXTRACT-MIN (H) 

      z  min[H] 

if z  NIL 

    then for each child x of z 

             do add x to the root list of H 

                p[x]  NIL 

         remove z from the root list of H 

         if z = right[z] 

            then min[H]  NIL 

            else min[H]  right[z] 

                  CONSOLIDATE(H) 

             n[H]  n[H] - 1 

return z 
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Consolidation 

In consolidation, the number of root lists (the number of trees) in the Fibonacci heap is 

reduced; this is performed by the call CONSOLIDATE(H). Consolidating the root list consists of 

repeatedly executing the following steps until every root in the root list has a 

distinct degree value. 

Find two nodes x and y in the root list with the same degree, where key[x]  key[y]. 

 Link y to x: remove y from the root list, and make y a child of x. This operation is performed by 

the FIB-HEAP-LINK algorithm. The field degree[x] is incremented, and the mark on y, if any, is 

cleared. 

The CONSOLIDATE operation uses an auxiliary array A [0... D(n[H])]. if A[i] = y, 

then y is currently a root with degree[y] = i. 

CONSOLIDATE (H) 

for i  0 to D(n[H]) 

    do A[i]  NIL 

for each node w in the root list of H 

    do x  w 

       d  degree[x] 

       while A[d]  NIL 

          do y  A[d] 

             if key[x] > key[y] 

                then exchange x  y 

               FIB-HEAP-LINK (H,Y,x) 

               A[d]  NIL 
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               d  d + 1 

         A[d]  x 

min[H]  NIL 

for i  0 to D(n[H]) 

     do if A[i]  NIL 

           then add A[i] to the root list of H 

                if min[H] = NIL or key[A[i]] < key[min[H]] 

                   then min[H]  A[i] 

 

FIB-HEAP-LINK (H, y, x) 

remove y from the root list of H 

make y a child of x, incrementing degree[x] 

mark[y]  FALSE 
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