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Abstract 

Data encryption is essential for protecting data from unauthorized access. The Advanced 

Encryption Standard (AES), among many encryption algorithms, is the most popular algorithm 

currently employed to secure static and dynamic data. There are several modes of AES 

operation. Each of these modes defines a unique way to perform data encryption. XTS mode is 

the latest mode developed to protect data stored in hard-disk-like sector-based storage devices.  

  

A recent increase in the rate of data breaches has triggered the necessity to encrypt stored 

data as well. AES encryption, however, is a complex process. As it involves a lot of 

computations, encrypting huge amount of data would undoubtedly be computationally intensive. 

Parallel computers have been used mostly in high-performance computation research to solve 

computationally intensive problems. Parallel systems are currently gaining popularity configured 

as general purpose multi-core system, even at a desktop level. Several programming models have 

been developed to assist the writing of parallel programs, and some have already been used to 

parallelize AES. As a result, AES data encryption has become more efficient and applicable.   

 

The message passing model is a popular parallel communication/synchronization model 

with an early origin. Message Passing Interface (MPI) is the first standardized, vendor-

independent, message passing library interface that establishes a portable, efficient, and flexible 

standard for message passing during computation. Therefore, this paper describes an 

implementation of AES using XTS mode in parallel via MPI. 
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Chapter 1: Introduction 

Data breaches were in the news headline last year. The Equifax data breach, discovered 

on July 29, 2017, exploited a website application vulnerability and gained access to certain files. 

According to the company's' public customer notice of data breach [1], credit card numbers for 

approximately 209,000 consumers, and certain dispute documents containing personal 

identifying information for approximately 182,000 consumers, were accessed along with names, 

social security numbers, birth dates, addresses, and some driver's license numbers. Following 

that, a print edition, published by The Wall Street Journal on September 18, 2017 [2], stated that 

more than 11.5 million people had signed up for credit-monitoring offered by Equifax, others 

had frozen their credit reports with Equifax and its rival companies such as TransUnion and 

Experian PLC. Moreover, its investors shrunk its stock-market value by about $6 billion, or more 

than a third, in 10 days, leaving the company crippled. According to a report prepared by 

Gemalto [3], there were 918 data breaches worldwide during the first half of 2017. It was a 13% 

increase from the last 6 months of 2016. Equifax, and many other companies, have suffered from 

such breaches due to the exposure of their data for as little as split second of time. Data security 

continues to be challenging as more systems, devices, and other objects become interconnected 

with the growth of the Internet of Things [3].  

Less than 5% of all breaches investigated by Gemalto involved encrypted data. Still, 

many organizations fall short when it comes to data encryption effort. Data breaches take place 

not only when data is in transit. Data at rest are likely to be breached equally. Exposure of data at 

rest is equivalent to the exposure of data in transit but for an infinite amount of time. Therefore, 

as it is undeniable that encryption can actually prevent such breaches, it should be considered as 
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a necessity rather than just an option. With encryption, data is protected even if infrastructure 

protections such as firewalls or network access control systems are compromised. Data 

confidentiality is obtained by converting input plaintext data into ciphertext. With so many 

potential threats to sensitive data from both inside and outside companies, encrypting is the best 

way to protect data on personal laptops, storage servers and other devices in addition to emails 

and communications. Therefore, stored data encryption is the focus of this paper. 

Various symmetric algorithms such as AES, Data Encryption Standard (DES), Rivest 

Cipher 4 (RC4) and Blowfish have been developed to encrypt stored data. These algorithms are 

similar to each other as all of them use a single key to encrypt data. But they are different in 

respect to the length of data they process at a time. For example, AES encrypts data in a 128-bit 

sized block and RC4 encrypts data one bit at a time. However, according to William Stallings 

[4], AES is comparatively more secure and is currently the most widely used encryption 

algorithm. As mentioned in Section 3.1, AES can be operated in various modes.  XTS is the 

newest block cipher mode approved by the National Institute of Science and Technology (NIST) 

in 2010. 

With the current trend of recurring data breaches, it is important to encrypt as much data 

as possible. As encrypting data is itself a complex process, encrypting huge amount of data is 

also computationally intensive. Solving such computationally intensive problems is always time-

consuming. However, advancements in microprocessor technology have yielded more advanced 

parallel computing systems. Termed parallel computers, these systems have been employed in 

high-performance computation research to solve computationally intensive problems, and they 

are now gaining popularity for general purpose computation, even at a desktop level [5]. 
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Using parallel computers for solving most problems is fairly uncommon. The increased 

availability of parallel computing systems has accelerated interest in exploring the field of 

parallel programming. The paper, "Parallelizing AES on multicores and GPUs" [6], shows that 

encrypting data using parallel computers results in speedup factors between 2 and 3. This 

indicates that data encryption will become more efficient and beneficial if performed in such 

parallel systems. 

Parallel programming is a term used to define the practice of writing a computer 

program that runs with multiple concurrent execution paths. It is similar to writing a serial 

program as both involve sequence of steps that tell the computer how to solve a problem. But, 

unlike serial programming, parallel programming involves multiple processors working together. 

Therefore, in order to benefit from parallel programming, concurrency within the problem needs 

to be properly identified and exposed before writing a program. 

Section 2.3.1 describes several parallel programming models that have been developed to 

assist in writing parallel programs. Some of those models have already been used to parallelize 

AES. However, the decision about which model to use to write a parallel program is usually a 

combination of a number of factors including the resources available and the nature of the 

application being developed. 

As AES operating in XTS mode can process data blocks independently, it can be 

implemented in parallel [4]. This being the motivation behind doing this project, a parallel 

implementation of AES in XTS mode has been performed using message passing model. Parallel 

programming using MPI is described in detail in Chapter 2. In Chapter 3, AES and its XTS mode 

are explored, followed by the methodology in Chapter 4 which details on how AES has been 
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implemented to run on a parallel computer using MPI. In Chapter 5, results obtained from 

parallel implementation are analyzed and compared against results from its serial 

implementation. Also, we verify the correctness of the implementation by decrypting its output 

ciphertexts and comparing the resulting plaintexts with the initial input plaintexts. The source 

code of both parallel and serial implementations of XTS-AES encryption have been listed as 

XTS_AES_Encrypt.c and XTS_AES_Serial.c in Appendix A and Appendix C 

respectively along with the source code of the parallel implementation of XTS-AES decryption 

as XTS_AES_Decrypt.c.  Finally, in Chapter 6, we conclude with our insights. 
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Chapter 2: Parallel Programming with MPI 

Advancements in computer hardware systems, in terms of their memory and processing 

power, have redefined ways of solving problems using computers. There are newer ways of 

using computers to make computations more efficient. Programs written using a parallel 

programming approach are called parallel programs, and they tend to perform better than 

traditional serial programs. This chapter briefly describes parallel computers first, and then 

explains how parallel programs are designed and implemented using MPI. 

2.1 Parallel Computer 

In past, the performance of a computing system had relied on its hardware architecture 

and had widely been evaluated in terms of its clock speed. Usually expressed in Megahertz 

(MHz) or Gigahertz (GHz), clock speed basically represents the rate at which a system can 

complete a processing cycle and depends upon the number of available computing units inside 

the system. In 1965, Gordon Moore predicted doubling of the number of transistors on 

microprocessors every 18 to 24 months and following that, computer clock speed doubled 

roughly every year for more than 40 years. But, in 2005, Gordon Moore himself said his law 

cannot continue forever because of an increase in heat generation and circuit power requirements 

[7]. Therefore, performance achievable by increasing clock speed maxed out. Parallel 

computation was introduced to allow processors to perform better while generating less heat. 

These parallel computers are commonly available as a multicore processor or group of single 

processors connected via network or hybrid of both. 

Processors in a parallel computer generally execute the same or different program 

instruction simultaneously on the same or different data. Unlike a serial computer, this type of 
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machine provides multiple execution paths for instructions. Each processor can have its own 

local memory or share same memory resources or a mix of both. Among multiple ways of 

classifying parallel computers, Flynn's Taxonomy is the most popular. According to M. J. Flynn 

[8], such computers are characterized based upon the maximum number of simultaneous 

instructions or data being in the same phase of execution. Single Instruction Single Data (SISD), 

Multiple Instruction Single Data (MIMD), Single Instruction Multiple Data (SIMD) and Multiple 

Instruction Multiple Data (MIMD) are Flynn’s four classification categories, and a parallel 

computer can belong to any of them. 

2.2 Design of a Parallel Program 

An algorithm is a set of well-defined steps that lead to the solution of a problem in finite 

time. Algorithms are essential for solving problems using computers. As in serial programming, 

parallel programming includes an algorithm design phase that generates a parallel algorithm. A 

parallel algorithm defines steps to solve a problem using multiple processors. Therefore, in 

addition to just specifying steps, designing a parallel algorithm requires identifying and exposing 

concurrency within the problem. Ian Foster [9], has presented a methodological approach for 

creating a parallel algorithm and it has four distinct stages: 

2.2.1 Stage 1–Partitioning 

In this stage, the main problem is divided into smaller computation units to expose 

opportunities for its parallel execution. Such smaller units are called tasks and are created using 

either domain decomposition or functional decomposition [9].  
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2.2.1.1 Domain Decomposition: In this approach, data associated with the problem is divided 

into small partitions of nearly equal size. This decomposed data may be an input to the program, 

an output of the program, or intermediate values maintained by the program. 

2.2.1.2 Functional Decomposition: In this alternative approach, the computation to be 

performed is decomposed before decomposing data used by it. After successfully dividing the 

computation into disjoint tasks, data requirements of tasks are examined. In case of disjoint data 

requirements, partitioning is complete, otherwise if data overlap is present, significant 

communication is required to avoid less desirable data replication.  

2.2.2 Stage 2–Communication  

Tasks created in an initial partitioning stage are expected to execute concurrently and 

independently from each other. However, computations performed by a task may require data 

associated with another task. In this case, communication between tasks is necessary to proceed 

the computation further. In this stage, such communication requirements are identified and 

respective communication operations are introduced to satisfy all requirements. In general, such 

communication patterns are categorized along four loosely orthogonal axes: local/global, 

structured/unstructured, static/dynamic and synchronous/asynchronous [9].  

In local communication, a small set of tasks communicate with each other. Each task 

communicates with few other tasks only. In contrast, global communication takes place between 

many tasks. Each task communicates with a comparatively larger number of other tasks. 

In structured communication, a group of communicating tasks forms regular structure, 

such as a tree or grid. This structure does not change over time. Whereas, unstructured 

communication networks could be an arbitrary graph whose structure might change over time. 
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  In static communication, identities of communicating tasks do not change over time. In 

contrast, the identity of each task may be determined at runtime in dynamic communication, 

making it highly variable.  

 In synchronous communication, tasks execute in a coordinated fashion. Communicating 

tasks cooperate in data transfer operations. Whereas, in an asynchronous communication, tasks 

may randomly obtain data without cooperating. 

2.2.3 Stage 3–Agglomeration 

The first two stages of the parallel algorithm design process help in identifying a set of 

tasks and possible communications between them [9]. However, the design needs to be 

specialized for an efficient execution on any particular parallel computer as there may be more 

tasks than available processors. Also, the parallel computer itself may not be suitable for efficient 

execution of small tasks. Therefore, in this stage, tasks identified in partitioning stage are 

grouped together if possible.  

2.2.4 Stage 4–Mapping 

In this stage, tasks are mapped to processors such that processors are utilized with less 

idling and communication costs [9]. Unlike in uniprocessors or shared-memory processors where 

operating systems and hardware mechanisms are present to map executable tasks to available 

processors, in other types of processors, general-purpose mapping is done explicitly. Listed 

below are two basic mapping strategies to minimize total execution time of a parallel program. 

➢ Place concurrently executable tasks on different processors in order to enhance 

concurrency. 
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➢ Place frequently communicating tasks on the same processor in order to enhance 

locality. 

Mapping can be performed statically, before execution, or dynamically at runtime. Tasks 

created using domain decomposition are easy to map when they are equal sized and require 

structured local and/or global communication only. In this case, the mapping is subsumed into 

the agglomeration phase. This results in a Single Program Multiple Data (SPMD) program which 

has exactly one task per processor and minimum interprocess communication. 

In case of domain decomposition resulting in unequal sized tasks and/or unstructured 

communication patterns, load balancing algorithms are used. These algorithms identify efficient 

agglomeration and mapping strategies by using heuristic techniques typically. Whereas, for most 

complex problems in which either total number of tasks or the total amount of computation or 

communication keeps changing dynamically, dynamic load balancing algorithm is used. This 

algorithm is mostly executed locally as it is used periodically to determine a new agglomeration 

and mapping.  

Tasks created using functional decomposition usually have shorter execution times and 

they communicate with other tasks only at the beginning and end of execution. Such tasks are 

mapped to idle, or almost idle, processors during runtime using task-scheduling algorithms. 

2.3 Implementation of a Parallel Program 

Different programming languages and libraries have been developed to write explicitly 

parallel programs. Also, numerous programming models are available. Each of these models 

presents a unique way to write parallel programs using available programming languages and 

libraries. This section provides more information on such parallel programming models. 
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2.3.1 Parallel Programming Model 

A parallel programming model is an abstraction of a computer system that allows 

convenient expression of an algorithm and its composition in programs. It is machine 

architecture-independent and exists above hardware and memory architectures. Several 

programming models have been developed for explicit parallel programming. Each of these 

models can be implemented on any underlying hardware architecture [5]. The shared memory 

model, threads model, message passing model, data parallel model and hybrid model are some 

common parallel programming models.  

These models define a unique view of an address space that a machine makes available 

for programming, a degree of synchronization imposed on concurrent activities, and a 

multiplicity of programs [7]. However, selection of the model to be used is usually a 

combination of several factors like the resources available and the nature of the problem. 

2.3.1.1 Message Passing Model: Message passing is one of the oldest and most widely used 

methodologies for writing parallel programs. It focuses more on solving the problem using 

multiple processors rather than targeting the hardware being used. Therefore, it has been used 

since early days of parallel processing [7].   

The logical view of a machine supporting this model basically contains p processors, 

each with its own private address space. The data involved is explicitly partitioned before being 

placed inside address spaces. The processor holding the data and the processor that requires the 

data cooperate with each other prior to actual data transfer. 

Generally, this model supports execution of different programs on each participating 

processors. Though this results in flexible programs, it makes the job of writing parallel 
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programs highly unscalable [7]. Therefore most message passing programs are written using 

SPMD approach which makes most processors execute identical code. 

MPI, a message passing library interface specification, primarily addresses message 

passing model [11]. MPI is a de facto standard defined by a community of parallel computing 

vendors, computer scientists, and application developers [5].  

Before 1992, many parallel computers were based on message passing architectures due 

to their lower costs compared to shared-address-space architectures [7]. Message passing was a 

natural way of programming for those types of computers. As a result, a variety of vendor-

specific message passing libraries were developed. Most of those libraries suffered from 

compatibility failures. They were vendor specific and did not run on parallel computers built by 

other vendors. Furthermore, they were mostly syntactically different from each other. Therefore, 

the MPI standardization effort began with a workshop on Standards for Message-Passing in 

Distributed Memory Environment on 1992 [11]. 

2.3.2 Writing a Parallel Program Using MPI 

As mentioned in Section 2.3.1.1, MPI is basically a library interface and therefore has 

multiple implementations. It contains over 125 routines that are used for parallel processing. 

Initializing and terminating MPI execution environment, getting information about parallel 

computing environment, and sending and receiving messages between processors are some 

commonly performed MPI tasks.  It has been implemented in more than one way to meet 

specific requirements. Among many different types of MPI implementations, Open MPI is an 

open source implementation that is freely available. Below is a well-known “Hello world” 

program in parallel, written using the C programming language and Open MPI. Compared to 
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conventional serial C language implementation of the “Hello world” program, it includes some 

additional MPI statements that are required for writing the parallel program using MPI.  

Program: mpihello.c 

 

                 Figure 1: Parallel Hello World Program using MPI 

Including the MPI header file with #include <mpi.h> is the first step in writing any 

MPI program. This header file contains MPI function declarations. Then, the MPI environment is 

initialized with MPI_Init(&argc, &argv) function. During this initialization, each of 

MPI's global and internal variables such as a communicator (an object that defines a collection of 

communicating processes) and unique ranks of all processors, get constructed. After 

MPI_Init, MPI_Comm_size and MPI_COMM_WORLD are two other main functions that get 

called.  

MPI_Comm_size returns the size of a communicator which is a total number of 

participating processors. MPI_COMM_WORLD encloses all available processors and returns the 

total number of processors requested for the job. Each of these processors in the communicator is 

assigned an incremental rank starting from zero. These ranks uniquely identify communicating 

processors while sending and receiving messages. If required, they are also used conditionally to 
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control an execution of the program. MPI_Comm_rank function returns the rank of a processor 

in the communicator. MPI_Finalize is a final routine called to clean up the MPI 

environment. After this function, no more MPI calls are allowed to be made. 

Parallel programs written using MPI are compiled and linked using mpicc. Once the 

program is compiled successfully, it is executed using mpiexec. Below is an output of the 

mpihello.c program:  

Hello from processor 1 of 4  

Hello from processor 0 of 4  

Hello from processor 3 of 4  

Hello from processor 2 of 4  

As mentioned earlier, this program was compiled as mpicc mpihello.c –o 

mpihello and then executed as mpiexec –n 4 mpihello. Four processors are requested 

to print the “Hello world” statement. Depending upon the number of processors available, these 

parallel programs can be executed on one or more processors. Given below is a general structure 

of all MPI programs. 
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Figure 2: General Structure of a Program Written using MPI [12] 

2.4 Communication in MPI Programming 

Processors interact by sending and receiving messages in MPI programming [7]. 

MPI_Send and MPI_Recv are two functions basically used to send and receive messages 

between two processors. They are called in the following sequence: 

int MPI_Send(void *bufSend, int count, MPI_Datatype 

datatype, int dest, int tag, MPI_Comm comm) 
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int MPI_Recv(void *bufRecv, int count, MPI_Datatype 

datatype, int source, int tag, MPI_Comm comm, MPI_Status 

*status) 

MPI_Send sends data stored in a buffer pointed by pointer bufSend. This buffer 

contains count number of consecutive entries of the type specified by parameter datatype. 

Destination of the message sent by MPI_Send is uniquely specified by the rank of destination 

process dest and communicator comm. Additionally, MPI_Send contains an integer-valued 

tag that distinguishes messages from one another. 

MPI_Recv receives the message sent by a processor whose rank is represented by 

source in comm. The tag of the message sent must be that specified by tag parameter in the 

MPI_Recv function. In case a processor sends more than one message with an identical tag, 

only one message is received and stored in continuous locations in a buffer pointed by 

bufRecv. count and datatype arguments of this function are used to specify the length of 

the buffer and type of the data it stores. Therefore, the message received should be of type 

datatype and length equal to or less than count. 

In addition to sending and receiving data between just two processors, MPI allows 

collective communication among the group of participating processors. It provides an extensive 

set of functions for performing various collective communication operations. Barrier, broadcast, 

scatter, gather, reduction, all-to-all, and prefix are some common types of such operations. Each 

of these functions contains a communicator as an argument and processors belonging to the 

communicator communicate by calling functions containing communicator as one of its 

parameters. Short descriptions of each of these operations follow: 
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2.4.1 Barrier 

This is a synchronization operation performed in MPI using MPI_Barrier function. 

This function call returns only after all processors in the group have called it. 

2.4.2 Broadcast 

This operation is performed to send data from a processor to all other processors in the 

group. It is performed in MPI using MPI_Bcast function as:  

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int 

source, MPI_Comm comm).  

2.4.3 Gather 

The gather operation is used to collect data from all processors including the one 

collecting data. It is performed using the MPI_Gather function as:  

int MPI_Gather(void *sendbuf, int sendcount, MPI_Datatype 

senddatatype, void *recvbuf, int recvcount, MPI_Datatype 

recvdatatype, int target, MPI_Comm comm). 

2.4.4 Scatter 

This operation is used to send a subset of data to all processors including source itself. It 

is performed using the MPI_Scatter function as:  

int MPI_Scatter(void *sendbuf, int sendcount, MPI_Datatype 

senddatatype, void *recvbuf, int recvcount, MPI_Datatype 

recvdatatype, int source, MPI_Comm comm).  
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2.4.5 All-to-All 

During this operation, each processor sends a different portion of the data array to other 

processors including itself. It is performed using the MPI_Alltoall function as:  

int MPI_Alltoall(void *sendbuf, int sendcount, MPI_Datatype 

senddatatype, void *recvbuf, int recvcount, MPI_Datatype 

recvdatatype, MPI_Comm comm). 

2.4.6 Reduce 

This operation combines elements stored in the buffer of each processor using an 

operation specified by op and returns combined values. It is performed using the MPI_Reduce 

function as:  

int MPI_Reduce(void *sendbuf, void *recvbuf, int count, 

MPI_Datatype datatype, MPI_Op op, int target, MPI_Comm comm). 

2.4.7 Prefix 

This operation performs a prefix reduction of data stored in the buffer at each processor. 

It is performed using the MPI_Scan function as:  

int MPI_Scan(void *sendbuf, void *recvbuf, int count, 

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm). 
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Chapter 3: AES and XTS Mode of Operation 

Data security is an essential part of today’s computer security whether it is securing data 

in motion or at rest. Block cipher is one of the commonly used encryption algorithms that 

converts b-bit long input block of plaintext into b-bit long block of ciphertext using an 

encryption key. AES is a type of block cipher which was selected by the National Institute of 

Science and Technology (NIST) as the most secure encryption algorithm in 2001 [9]. This 

chapter provides details on AES and its operation in XTS mode.  

3.1 Background 

Encryption is an important technique to secure data. As it protects data even when 

infrastructure protection such as firewalls or network access control systems get compromised, it 

is important to be performed using a secure standard like AES. In case of data longer than b-bit, 

it gets broken into multiple b-bit long blocks and processed using the same key. According to 

William Stallings [4], several security issues arise due to this. Therefore, NIST defined different 

modes of operation to apply a block cipher to a sequence of data blocks or data stream in a 

variety of applications. 

A mode of operation is basically a technique used for enhancing an effect of a 

cryptographic algorithm or adapting the algorithm itself for an application. Five different modes 

have been defined for AES data encryption. These modes are Electronic Codebook (ECB), 

Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB) and Counter 

(CTR). They are summarized in Table 1.  
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Table 1: Block Cipher Modes of Operation [4] 

 

XTS is a newer mode introduced by IEEE Security in Storage Working Group (SISWG) 

to encrypt data stored in hard-disk-like sector-based storage devices [9]. 

3.2 XTS Mode of Operation 

XTS is a XEX encryption mode with tweak and ciphertext stealing feature [9]. It is a 

tweakable mode developed as an alternative to LRW mode proposed by SISWG as the most 

promising mode in its early drafts. Unlike CBC mode that has been in use for many years, XTS 

has complete support for parallelism in its structure. A block cipher in this mode consists of three 

inputs: a plaintext (P) to be encrypted, a symmetric key (K), and a tweak (T). An output from the 

encryption (E) is a ciphertext (C) represented as E (K, T, P). Likewise, decryption (D) of a 

ciphertext (C) results in plaintext (P) represented as D (K, T, C). Here, in both encryption and 



27 
 

decryption, while key provides security, tweak provides variability, i.e., encrypting a plaintext 

using the same key but different tweaks result in different ciphertexts and decrypting a ciphertext 

using the same key but different tweaks result in different plaintexts. 

3.2.1 AES using XTS Mode of Operation (XTS-AES) 

Figure 3(a) shows the encryption and Figure 3(b) shows the decryption of a single 128-bit 

block of input plaintext using XTS-AES. 

 

Figure 3(a): XTS-AES Encryption on Single Block [4] 

This XTS-AES single block encryption can be represented by following equations as 

well:  

Cj ← XTS-AES-blockEnc(Key, Pj, i, j) 

T = E(Key2, i)   α j 

PP = Pj  T 

CC = E(Key1, PP) 

Cj = CC  T 
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Figure 3(b): XTS-AES Decryption on Single Block [4] 

This XTS-AES single block decryption can be represented by following equations as 

well:  

Pj← XTS-AES-blockDec(Key, Cj, i, j) 

T = E(Key2, i)  α j 

CC = Cj    T 

PP = D(Key1, CC) 

Pj = PP  T 

 

where:  

XTS-AES-blockEnc = Single block encryption. 

XTS-AES-blockDec = Single block decryption. 

Key = The 256 or 512-bit XTS-AES key, parsed as a concatenation of two fields of equal size 

called Key1 and Key2, such that Key = Key1 || Key2. 

Pj = The jth block of 128-bit of plaintext. 
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Cj = The jth block of 128-bit of ciphertext. 

i = The 128-bit nonnegative integer tweak value. 

j = The sequential number of the 128-bit block inside the data unit. 

α = A primitive element of Galois Field (GF (2128)) that corresponds to polynomial x. 

α j = α multiplied by itself j times in GF (2128). 

 = Multiplication in GF (2128) i.e. modulo multiplication of two polynomials with binary 

coefficients modulo x128+x7+x2+x+1. 

 = Bitwise XOR. 

As shown in Figure 3(a) and Figure 3(b), both single block encryption and single block 

decryption begin with encryption of 128-bit tweak using AES encryption algorithm and a 

symmetric key, Key2. The resulting output is multiplied by the j-th power of α (α j) in Galois 

Field to produce T. Now for encryption, input plaintext P is XORed with T first. Then it is 

processed using AES encryption algorithm and another symmetric key Key1. An output of this 

encryption is again XORed with T to produce the final ciphertext C. Likewise, in case of 

decryption, the ciphertext C is XORed with T before processing with AES decryption algorithm 

and key Key1. Then, an output from the decryption is XORed with T again to produce the final 

plaintext P.  

In case of data longer than 128-bit, it is divided into m number of 128-bit sized blocks. 

These blocks are then processed independently from each other as shown in Figure 4. This 

important ability of XTS to process blocks independently supports parallelism in its structure. It 

induces concurrency and allows a large amount of data to be processed with comparatively more 

efficiency. Therefore, it is the primary motivation behind implementing XTS-AES in parallel. 
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Figure 4: XTS-AES Mode with Ciphertext Stealing [4] 

3.2.2 Ciphertext Stealing 

As mentioned above, each 128-bit block, P0 to Pm is encrypted independently to produce 

ciphertexts C0 to Cm respectively. However, the last mth block may be a partial block, i.e., it may 

be 1 to 127 bits long. In such case, a ciphertext-stealing technique is used as shown in Table 2. It 

is carried out by processing last two blocks in a different way. Initial m-2 blocks are encrypted 

with XTS-AES single block encryption as XTS-AES-blockEnc(K, Pj, i, j). Also, m-1th block is 

encrypted similarly and its output is stored in XX. Most significant s-bit of XX are used as s-bit 

Cm and least significant 128-s bits of XX are concatenated with last input block Pm. Finally, an 

output of this concatenation, YY is encrypted with j = m to produce ciphertext Cm-1.  
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This ciphertext stealing technique is also applied to recover plaintext Pm from s-bit 

ciphertext Cm. For that, C0 to Cm-2 are decrypted using a single block XTS-AES decryption 

(XTS-AES-blockDec(K, Cj, i, j)) initially. Likewise, m-1th ciphertext is decrypted to produce YY. 

Then most significant s-bit of YY are used as s-bit Pm and least significant 128-s bits of YY are 

concatenated with last ciphertext block Cm. Finally, an output of this concatenation, XX, is 

decrypted with j = m to produce plaintext Pm-1. 

Table 2: XTS-AES Mode [4] 

 

3.3 Advanced Encryption Standard (AES) 

As mentioned in Section 3.2, AES algorithm intakes 128-bit block of data to perform 

encryption or decryption and a key in both cases. Initially, a 128-bit block of input plaintext is 

represented as a 4 × 4 square matrix of bytes. Then it is copied into a state array and processed as 

a single matrix on each processing round. After last round, the state array is copied into an output 

matrix.  
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AES uses either 16, or 24, or 32-byte (128, 192, or 256-bit) of a symmetric key. 

Depending upon the length of the key, it is also referred to as AES-128, AES-192, or AES-256 

and it contains 10, 12, or 14 processing rounds respectively. Except for the final Nth round, all 

other N-1 rounds consist of four different stages to perform bytes substitution, shift rows, mix 

columns and add round keys. The final round doesn’t consist mix columns stage whereas there is 

just add round key stage in Round 0 before the first round. Figure 5 shows AES encryption and 

decryption in N rounds including Round 0.  

 

Figure 5: AES Encryption and Decryption [4] 
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3.3.1 Substitute Bytes  

In this stage, a byte-by-byte substitution of input data block is performed using a 16×16 

matrix of bytes called an S-box (Table 3). This S-box contains permutations of all possible 256 

8-bit values that will be used to substitute each individual byte of input state matrix. As shown in 

Figure 6, the leftmost nibble of an input byte is used as a row value (x) and the rightmost nibble 

is used as a column value (y). Both x and y serve as indexes in the S-box to select a unique 8-bit 

output value. Similarly, an inverse S-box (Table 4) is used in AES decryption during inverse 

substitute bytes stage.  

Table 3: AES S-box [4] 
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Table 4: AES Inverse S-box [4] 

 

 

Figure 6: Substitute Byte Transformation [4] 
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3.3.2 Shift Rows  

As shown in Figure 7, for encryption, a simple permutation is carried out by performing a 

1-byte circular left shift of each row starting at second row on this stage. Similarly, a 1-byte 

circular right shift is performed in case of inverse shift rows for decryption. 

 

Figure 7: Shift Row Transformation [4] 

3.3.3 Mix Columns  

In this stage, each byte of a column in the state matrix is mapped into a new value by 

matrix multiplication with the state matrix as defined in Figure 8. Similarly, the inverse mix 

column is defined by the matrix multiplication in Figure 9. Each element in the resulting matrix 

is a sum of products of elements of one row and one column. Here, all additions and 

multiplications are defined over GF (28). 

 

Figure 8: Mix Column Transformation [4] 
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Figure 9: Inverse Mix Column Transformation [4] 

3.3.4 Add Round Key  

In this stage, a simple bitwise XOR is performed column-wise between 128-bit of the 

input state matrix and 128-bit of a round key for both encryption and decryption. 128-bit round 

keys used by N+1 rounds including Round 0 are produced using an AES key expansion 

algorithm. As each of these round keys is generated in a different way, knowledge of a part of 

the cipher key or round key does not enable calculation of many other round keys. Therefore, 

this stage ensures the security of AES algorithm in general. 

3.4 Key Expansion 

Depending upon the type of the AES, i.e., AES-128/AES-192/AES-256, a 16/24/32-byte 

input key is expanded into a linear array of 44/52/60 words following pseudo code in Figure 10. 

The AES takes the input key (key) and expands key to generate a total of Nb (Nr + 1) words. 

Here, Nb is the number of words each round requires, and its value is 4 usually. Nr represents a 

total number of processing rounds for which the key schedule should be prepared. Nk is a total 

number of words initially available. As shown in Table 5, values of both Nr and Nk depend upon 

the type of AES used. Additionally, this algorithm requires an initial set of Nk words, and each 

round requires Nb words long key. The resulting key schedule consists of a linear array of 4-byte 

words, w[i], with i in a range from 0 to Nb(Nr + 1).  
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Table 5: Values of Nr and Nk 

 Nr Nk 

AES-128 10 4 

AES-192 12 6 

AES-256 14 8 

 

 

Figure 10: Key Expansion Algorithm [11] 

Expansion of the input key proceeds according to the pseudo code mentioned above. It 

can be seen that initial Nk words of an expanded key are filled by dividing the input key into Nk 

words. After that, every following word, w[i], is generated by XORing previous word, w[i-1] 
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with Nk positions earlier word, w[i-Nk]. For words in positions that are multiple of Nk, a 

transformation is applied to w[i-1]. This transformation consists of a cyclic shift of bytes in w[i-

1] followed by bytes substitution on each byte of its input word using the S-box in Table 3. Then 

its output is XORed with a round constant in a round constant word array Rcon[]. Rcon[] 

contains values given by     [xi-1,{00},{00},{00}] with xi-1 being powers of x ({02}) in the field 

GF(28). 

3.5 Multiplication in Galois Field (GF(2n)) 

  A field is defined as a set of elements in which addition, subtraction, multiplication, and 

division can be performed without leaving the set. Rational numbers, real numbers, and complex 

numbers are some examples of fields. Finite fields and infinite fields are basically two types of 

field. Finite fields play a crucial role in the context of cryptography. The Galois field (GF (2n)) is 

a finite field that consists of 2n elements and is used in XTS-AES for multiplication. 

According to William Stallings [4], there is no simple XOR operation that will 

accomplish multiplication in GF(2n). But it also provides a readily generalizable technique with 

reference to GF (28) using irreducible polynomial m(x) = x8 + x4 + x3 + x + 1.  

In GF (28), when a polynomial f(x) represented as b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + 

b1x + b0, is multiplied by x, we get x * f(x) = (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) 

mod m(x). If b7 is 0 then its product is a polynomial of degree less than 8 and is already in a 

reduced form. In this case no further computation is required. But if b7 is 1, then the product is 

achieved as: x * f(x) = (b6x
7 + b5x

6 + b4x
5 + b3x

4 + b2x
3 + b1x

2 + b0x) + (x4 + x3 + x + 1). This 

follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift 

operation followed by a conditional bitwise XOR with 00011011 representing x4 + x3 + x + 1.  
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In summary for GF(28), x * f(x) = (b6b5b4b3b2b1b00) if b7 = 0. Else if b7 = 1, x * f(x) = 

(b6b5b4b3b2b1b00) XOR (00011011) and multiplication by a higher power of x can be achieved by 

its repeated application. 
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Chapter 4: Methodology 

Parallel implementation of AES using XTS mode of operation is a C implementation of 

an XTS-AES algorithm which can be executed simultaneously in more than one processor. It has 

been implemented to optimize encryption of data stored in hard-disk like storage devices. For 

that, a parallel XTS-AES encryption algorithm is designed following the methodological 

approach described in Chapter 2 and then implemented in C using message passing parallel 

programming model with MPI. This chapter provides details on how both design and 

implementation of the parallel XTS-AES algorithm have been carried out in this project. 

4.1  Design of Parallel XTS-AES Algorithm 

As mentioned in Chapter 1, encryption of stored data lies at the center of this project. 

However, in addition to specifying steps to encrypt data, designing a parallel XTS-AES 

algorithm includes an additional responsibility of identifying and exposing concurrency. As a 

result, creating a parallel XTS-AES algorithm that runs in p number of processors involves 

following steps: 

Step 1–Partitioning Problem into Concurrent Tasks: In this step, task of encrypting 

high amount of data is partitioned into smaller tasks by using data decomposition. Input data is 

partitioned into 128-bit long blocks to be encrypted concurrently. Therefore, data blocks 

represent most tasks in the parallel XTS-AES algorithm. Additionally, a functional 

decomposition is also performed to create few functional tasks such as preprocessing data, key 

expansion, encryption, ciphertext stealing, and handling output. 
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Step 2–Managing Communication between Interacting Tasks: The parallel XTS-AES 

algorithm is designed to encrypt each 128-bit data block independently. Distributing data among 

participating processors involves sending data from a root processor (a processor with rank 0) to 

all participating processors including itself. Also functional tasks may need data being processed 

by another task. However, the identity of these communicating tasks would stay same throughout 

the encryption, and data transfer would take place only at the beginning, while distributing input 

data among processors, and at the end while gathering outputs from them. Therefore, 

communication is also static and synchronous.  

Step 3–Agglomerating Tasks Created from Partitioning: As the size of the data set 

being processed would always be large, the total number of tasks created by partitioning the data 

would also be greater than the total number of processors available. Tasks resulting from 

functional decomposition are also performed on all data. Therefore, the design is customized to 

create similar p coarse-grained tasks, one per processor. Each task contains a certain number of 

data blocks and pre-defined functional tasks. 

Step 4–Mapping Concurrent Tasks onto Processors: As identical tasks would be 

created after an agglomeration step and required communication between them is static, global, 

and synchronous, mapping tasks to processors is subsumed in the agglomeration stage. Each 

processor is assigned exactly one task by using a block distribution of the input array.  

In general, like in most message passing programs, the SPMD approach has been used in 

this project to expose concurrency. Basically, in the SPMD approach, all processors have exact 

same copy of the program, but they execute different part of it. For example in Figure 11, 
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a.out is an output generated by compiling a parallel program (a.c). All tasks mapped to 

different processors have a.out and each of them can execute its different parts concurrently.  

 

Figure 11: SPMD Program Execution [5] 

XTS_AES_Encrypt.c in Appendix A is the parallel message passing XTS-AES 

program that gets compiled into XTS_AES_Encrypt.out. It is then executed by all 

participating processors. It follows the general structure of a parallel program (Figure 2) as well. 

Figure 12 shows a flowchart that demonstrates how XTS_AES_Encrypt.c has been 

implemented in this project.  
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Figure 12(a): Flowchart of Parallel XTS-AES Encryption Algorithm 
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Figure 12(b): Flowchart of XTS-AES Single Block Encryption 

 

Figure 12(c): Flowchart of Ciphertext Stealing 
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4.2 Implementation of Parallel XTS-AES Algorithm  

As mentioned earlier, XTS_AES_Encrypt.c has been implemented in C using MPI. 

Below is an implementation detail of some important operations performed in parallel XTS-

AES.  

4.2.1 Task Mapping  

A task in parallel XTS-AES is basically a partition of data that needs to be encrypted and 

operations performed on it. Mapping tasks to processors generally means distributing data 

partitions among participating processors. Practically, XTS-AES is designed to process data 

stored in sector-based devices. But in this project data have been stored in a text file 

input.txt in hexadecimal format. As all digits in hexadecimal number system (0, 1,….,9, a, 

…,f) can be represented in binary using 4-bit, each character from input.txt file is 

considered to be just 4-bit long. These characters are read from the input file into an unsigned 

character array global_input one byte at a time. Size of the global_input array is 

determined at run time from a predefined TOTAL_NUMBER_OF_ITEMS constant. Total number 

of characters in input.txt file is manually stored in TOTAL_NUMBER_OF_ITEMS before 

compiling the program.  

Usually the root processor, is assigned task of reading data from a file to an array. 

Additionally, this processor also performs a block distribution of the array using MPI_Scatter 

function as MPI_Scatter(global_input, numi, MPI_UNSIGNED_CHAR, 

&local_input, numi, MPI_UNSIGNED_CHAR, 0, MPI_COMM_WORLD). An input 

parameter numi in this function represents size of each partition, i.e. total number of 8-bit 

elements of type MPI_UNSIGNED_CHAR in the partition. Its value is also set manually as a 
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result of TOTAL_NUMBER_OF_ITEMS divided by (2 * number of processors being used) if a 

resulting remainder is zero. In case the remainder is not zero, numi is 

(TOTAL_NUMBER_OF_ITEMS mod (2 * number of processors being used)) + 1. 

local_input array is another unsigned character array of size numi and it is used by each 

processor to store data partition received from the root processor. 

A text file “tweak.txt” has been used to store tweaks that represent nonnegative 128-bit 

integer values, assigned consecutively to each data unit. Like input data, these tweaks are also 

read from tweak.txt file into an unsigned character array global_tweak by the root processor. 

As number of tweaks equals to number of input data +/- s where 1 < s < 128, size of this array is 

equal to size of the global_input array.  It is also distributed among same processors by the 

root processor using MPI_Scatter function as MPI_Scatter(global_tweak, numi, 

MPI_UNSIGNED_CHAR, &local_tweak, numi, MPI_UNSIGNED_CHAR, 0, 

MPI_COMM_WORLD). Here, local_tweak array imitates local_input array but stores 

tweaks instead.  

4.2.2 Key Expansion 

Key expansion is an important operation performed by the root processor. Generally, 

XTS-AES has either a 256 or 512-bit key which is parsed as a concatenation of two equal sized 

fields, key1 and key2 such as Key = key1 || key2. But in this project, key1 and key2 are used 

directly instead. They are initialized as unsigned character arrays key1 and key2 of size either 

24-bit or 32-bit. key1 is used to encrypt input data and key2 is used to encrypt tweaks. The 

KeyExpansion function defined in Section 3.4 is called twice to generate round keys that are 

used in every round of these encryptions. keysize is one of the input parameters of this 
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function. Its value is passed directly while calling the function. Depending upon this value, 

values of other local variables within the function are set. An output key schedule is stored in an 

unsigned integer array w passed to the function as another input parameter. This array w is filled 

using an expansion algorithm as described in Section 3.4. Round constants used in the algorithm 

are stored in an unsigned integer array Rcon initially. Function RotWord takes a word as an 

input and performs concatenation of results obtained by shifting the input word to left by 8-bit 

and shifting it right by 24-bit. SubWord is another function used for substituting the input word 

byte-wise. Each byte is looked up in the S-Box (Table 3) and replaced by its corresponding value 

as explained in Section 3.3.1. 

4.2.3 Input Data Processing 

Once the root processor completes distribution of data among processors as well as 

expansion of key, each processor starts encrypting data. Both input data and tweaks are copied 

from local_input array and local_tweak array into array plaintexts and array 

tweaks respectively. Both of these are two dimensional unsigned character arrays that have 

numb numbers of rows and 16 columns. numb is a constant representing total number of data 

blocks within the data partition received by a processor. Its value is also set manually before the 

program is compiled.  

In general, each processor serially encrypts received data using XTS-AES encryption 

algorithm now. For numb times, a processor first reads data from the plaintexts array into 

an unsigned character array plaintext. In case plaintexts have only s-bit such that 0 < s 

< 128, then plaintext[s+1] is read from ciphertexts[numb-1][s+1]. Here, 

ciphertexts array is another two dimensional unsigned character array that stores 
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corresponding ciphertexts. During this step, whether or not plaintext has 128-bit is recorded. If it 

is a block of 128-bit input data, then a single block operation is performed, else ciphertext 

stealing technique is applied. Likewise, tweaks are copied from tweaks array to unsigned 

character array tweak[16] before encryption.  

4.2.4 Single Block Operation 

A single block operation basically consists of two AES encryptions with a multiplication 

in GF(2128) between them. It performs AES encryption of the input tweak as first AES operation 

and AES encryption of the input plaintext for second single block AES operation using key 

schedules obtained from expansion of key key2 and key1, respectively.  

A function XTS_AES_Block is called to perform this operation. Its input parameters are 

tweak[], plaintext[], key_schedule1, key_schedule2 and an index of block 

being processed currently. It begins with encryption of tweak using aes_encrypt function and 

obtained result is stored in an unsigned character array ciphertext_tweak[]. This is 

followed by multiplication of data in ciphertext_tweak[] with primitive element of 

GF(2128) multiplied by itself j number of times. Here j is a sequential number of 128-bit block 

inside the data unit. Value of j is set to (numb * rank of the processor) and increased by one for 

each block of input data. Product of this multiplication is stored in another unsigned character 

array T[] which is used to perform XOR with the plaintext before encrypting it. T[] is again 

used to perform XOR with an output from the encryption of plaintext. In case of ciphertext 

stealing, i-1th plaintext is readjusted while processing ith plaintext. In this case, Pm-1 encrypted 

again.  
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An output of this second XOR is the final result of single block encryption and it is stored 

in ciphertexts[][] array. Finally, data in ciphertexts[][] are gathered at the root 

processor using MPI_Gather function. 

4.2.5 AES Encryption 

AES_encrypt is a function defined to perform AES encryption. It has four input 

parameters: two unsigned character array input[] and output[] that contain its data to be 

processed and its output respectively, the unsigned integer key[] array used for encryption, and 

an integer variable representing key’s size. Encryption in AES is carried out in N rounds as 

described in Section 3.3. Each round contains four steps. For encryption, these steps have been 

represented by the functions SubBytes, ShiftRows, MixColumns and AddRoundKey. But before 

initial Round 0, 128-bit input array is copied from input[] into 4×4 state square matrix 

column-wise. This matrix is then updated in each of the N+1 rounds, then copied to output[].  

4.2.6 Substitute Bytes 

Look-up tables with pre-calculated values have been stored in unsigned character arrays 

sbox[][] which is used by a function SubBytes while encrypting. This function substitutes all 

bytes in the state array with a corresponding value from the look-up table. As this table is 

represented by arrays, each byte is shifted left 4 times to get first index and then ANDed with 

0x0F to get second index.  

4.2.7 Shift Rows 

In the ShiftRows function, all rows are shifted to left using an integer t which stores bytes 

temporarily to place them in correct position within the state array. 
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4.2.8 Mix Columns 

Each byte in the state array is mapped to a new value by performing column-wise 

multiplication in GF(28), as discussed in Section 3.3.3. The MixColumns function copies data in 

each column to an unsigned char array column[4]. All products have been pre-computed for 

convenience and stored in the gf_mul[256][6] array. The second column of the gf_mul 

array represents multiplicative factors. As total of seven coefficients, 0x01, 0x02, 0x03, 0x09, 

0x0b, 0x0d and 0x0e, are only used in the multiplication here, only 6 coefficients are used 

excluding 1. Therefore, each column of gf_mul[][] represents each coefficient mentioned 

above in an ascending order from 0x00 to 0xFF. Addition involved in this stage is performed 

using XOR operation. 

4.2.9 Add Round Keys 

A function AddRoundKey is used for encryption. This function defines an unsigned 

character array sub_key[4] that stores bytes from array w[] generated by expanding key. It is 

updated after performing columnwise XOR with the state array.   

4.2.10 Ciphertext Stealing 

In case ith input plaintext is only s-bit long, where 0 < s < 128-bit, its ciphertext is 

constructed directly using s most significant bits (MSB) of ciphertext of i-1th plaintext and then 

rest of the 128-s bits are filled with the null character { ‘\0’ }. The i-1th plaintext is also padded 

with 128-s least significant bits (LSB) of the i-1th ciphertext. Again a single block encryption 

function XTS_AES_Block is called with input parameters: i-1th tweak and newly created i-1th 

plaintext, both key schedules and i-1 as the index value.  
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4.2.11 Multiplication in GF(2128) 

This is based on technique presented in Section 3.5. Multiplication by x is implemented 

as 1 bit left shift operation followed by a conditional bitwise XOR with 10000111 representing 

x7 + x2 + x + 1. As 128-bit data is stored in a 16-byte array, direct XOR operations are not 

possible in XTS_AES_ Encrypt.c. Therefore, multiplication is performed 1 byte at a time.  

The MSB of a byte is stored in an integer variable MCheckBit. Then the byte is shifted 

left by 1 bit. LCheckBit is another integer variable initialized to 0. It is used to store MSB of a 

byte before the one being processed. For example, if byte 2 is being processed currently, 

LCheckBit stores MSB of byte 1.  

In case the byte being processed is not the least significant one, depending upon a value 

in LCheckBit, the byte is adjusted. If LCheckBit is 1, MSB of the current byte is set to 1 by 

XORing it with 1. Finally if MSB of the most significant byte is 1, the least significant byte is 

XORed with 10000111, i.e., 0x87. 

4.2.12 Handle Result 

After encryption of all data, each processor writes data in ciphertexts[][] to 

local_input[] array. MPI_Gather function is then called to write those output ciphertexts 

to global_input[]. These data are then written to output.txt file by the root processor. Root 

processor finally displays total time taken to execute XTS_AES_ Encrypt.c. 

4.2.13 Synchronize Processors 

To properly synchronize execution of this parallel program, the MPI_Barrier function 

is called multiple times by all processors.  
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Chapter 5: Result and Analysis 

Parallel XTS-AES was implemented to enhance the performance of the XTS-AES 

algorithm. Various intuitive metrics for evaluating performance of parallel systems exist. An 

execution time taken to solve a given problem can be considered as the simplest among all [7]. 

Therefore, execution times of both serial and parallel XTS-AES have been recorded in Table 6 as 

a function of input size (n) and number of processing elements (p) used. 

Table 6: Execution Time (in milliseconds) for n Bytes Data Using p Processors  

n               p 1 (Serial) 2 4 8 16 32 

256 0.002 0.015 0.02 0.02 0.15 0.1 

2560 0.006 0.02 0.02 0.02 0.14 0.04 

25600 0.05 0.03 0.03 0.08 0.13 0.1 

256000 0.53 0.19 0.17 0.15 0.24 0.17 

2560000 5.4 1.5 1.53 1.53 1.68 1.5 

 

In order to evaluate its performance in terms of execution time, parallel XTS-AES has 

been implemented to run on Intel (R) Xeon (R) CPU ES-2680 v2 @ 2.80 GHz. From data in 

Table 6, we see that for some data an execution time of the parallel XTS-AES is more than that 

for serial XTS-AES. This is usually a case when processing smaller sized data. 

Unlike in serial algorithms, the execution times of parallel algorithms depend on factors 

such as the number of processing elements used, and their relative computation and interprocess 

communication speeds, in addition to their input sizes. A parallel execution time is therefore a 

sum of computation time with interprocess communication time. As the problem being solved 

gets divided among participating processors, a ratio of interprocess communication time to actual 

computation time is comparatively higher for processing smaller-sized data. Therefore, parallel 

implementations perform better while processing larger amount of data. 
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As a parallel algorithm cannot be evaluated in isolation from an underlying parallel 

architecture without some loss in accuracy, some other intuitive metrics, such as speedup, have 

also been calculated to see how faster XTS_AES_ Encrypt.c run compared to 

XTS_AES_Serial.c. 

Table 7: Speedup of XTS-AES Algorithm for n Bytes Data Using p Processors 

n               p 2 4 8 16 32 

256 0.13 0.1 0.1 0.01 0.02 

2560 0.3 0.3 0.3 0.04 0.15 

25600 2 2 0.6 0.6 0.6 

256000 2.8 3.1 3.5 2.2 3.1 

2560000 3.6 3.5 3.5 3.2 3.6 

 

Speedup is defined as a ratio of time taken to solve a problem using a single processing 

unit to time required to solve the same problem on a parallel computer with p identical 

processing units. Basically, speedup is used to capture a relative benefit of solving a problem in 

parallel. From the data in Table 7, the average speedup of implemented parallel XTS-AES was 

calculated to be 1.6. Theoretically, speedup can never exceed the number of processing elements, 

p. In practice, a speedup greater than p might be sometimes observed when work performed by a 

serial algorithm is greater than its parallel formulation, or due to hardware features that put the 

serial implementation at a disadvantage. This phenomenon, termed super linear speedup, been 

observed in this project couple of times. 

Efficiency is another metric that is used to measure performance of a parallel program. It 

is a measure of a fraction of time for which a processing element is usefully employed and is 

calculated as a ratio of speedup to the number of parallel processing elements used. For 

XTS_AES_ Encrypt.c, we found it to be 37%. In the case of an ideal parallel system with p 
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processing elements, a speedup of p can be observed. When speedup is equal to p, the efficiency 

is equal to one. However, the inability of parallel processing elements to devote 100% of their 

time to computation prevents it from being 100% efficient. 

In addition to speedup and efficiency, correctness of this program has been verified by 

decrypting the output ciphertexts. A parallel XTS_AES_Decrypt.c (in Appendix B) has been 

implemented similarly in C using MPI for decryption. Upon decrypting, output plaintexts were 

found to be identical with input plaintexts in input.txt file.  

The ability of a parallel program to utilize increasing processing resources effectively is 

called its scalability. It is an important property of any parallel algorithm. It indicates the 

capability of a program to increase speedup in proportion to the number of processing elements. 

As performance and correctness of the program are much more difficult to establish based on 

programs written and tested for smaller problems on fewer processing elements, efficiency has 

been evaluated under two scenarios: 

1. First, for a given problem size, the number of processing elements has been increased. 

In this case, the efficiency of the parallel program went down as shown in Figure 13. 

This is a common characteristic of all parallel programs. 
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Figure 13: Variation of Efficiency as the Number of Processing Elements is  

Increased for 256000-byte Data 

 

2. Then, the problem size has been increased, keeping the number of processing elements 

constant. In this case, efficiency increases with an increase in the problem size, as 

shown in Figure 14. 

 

Figure 14: Variation of Efficiency as the Problem Size is Increased for Four Processing Elements 
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For algorithms exhibiting such characteristics, efficiency could be made more consistent 

by increasing both the problem size and the number of processing elements simultaneously. 

Table 8: Efficiency as a Function of n Bytes Input Data on p Processing Elements 

n               p 2 4 8 16 32 

256 0.1 0.1 0.025 0.0125 0.001 

2560 0.15 0.1 0.04 0.03 0.005 

25600 1 0.5 0.1 0.03 0.02 

256000 1.4 0.8 0.4 0.1 0.1 

2560000 1.8 0.9 0.4 0.2 0.1 

 

In Table 8, the efficiency of encrypting 256-byte data using two processors is 0.1. If the 

number of processors is increased to 4, and the problem size is increased to 2560-byte, the 

efficiency remains 0.1. Increasing p to 8 and n to 25600 results in the same efficiency. Thus, this 

parallel XTS-AES system can be termed a scalable parallel system since its efficiency remains 

0.1 with an increasing number of processing elements, provided that the problem size is also 

increased. 
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Chapter 6: Conclusion 

Currently, data encryption is gaining popularity within organizations. Increasing trends in 

disk encryption show that focus has extended from encrypting data-in-motion to data-at-rest. As 

a result, using more computing units to process larger amounts of data not only increases the rate 

of data processing but also makes the process comparatively more efficient. XTS is an important 

mode of AES operation as it provides the flexibility of encrypting data independently. This 

feature of XTS supports encryption of stored data in parallel.  

The message passing model is one of the oldest parallel programming models used 

widely to write programs that run on parallel computers. MPI, a message passing library 

interface is a de facto standard for creating portable message-passing parallel programs that can 

execute across distributed computing nodes. Currently, such programs also run on hybrid 

systems that contain multi-core CPUs on a single node or connected via a network.   

The main objective of this project has been to implement XTS-AES algorithm in parallel. 

It was preceded by parallel XTS-AES algorithm design. A methodological approach of parallel 

XTS-AES design has been presented in this paper which provides the theory on how the 

encryption is carried out by multiple processors. For our implementation, MPI was used to pass 

messages among processors and to synchronize their actions. Also, the performance of the 

parallel XTS-AES algorithm was analyzed against its serial implementation. Our results from 

our analyses show that the implemented parallel XTS-AES algorithm correctly performed 

encryption with speedup equal to 1.6 and with 37% efficiency. Further, we showed that the 

parallel XTS-AES algorithm is scalable, as the efficiency remained constant (e.g., 10%) when 

the number of processing elements and data size both were increased at a constant rate. 
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Therefore, this implementation can be used to efficiently and reliably encrypt larger amounts of 

data by using more processors. 
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Appendix 

 

[A] XTS_AES_Encrypt.c 
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[B] XTS_AES_Decrypt.c 
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[C] XTS_AES_Serial.c
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