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Abstract 

Software engineering is a discipline which specifies, designs, develops, and maintains 

software applications. It applies practices and technologies from computer science. Software 

engineering is the backbone of software systems and forms the basis of operational design and 

development of software systems.  

   

Analysts use requirements elicitation techniques to ascertain the needs of customers and 

users, with the goal being a system that has a high chance of satisfying those needs. Success or 

failure of system development relies heavily on the quality of requirements gathering. 

 

Software modeling is an essential part of the software development process. Models are 

built and analyzed before the implementation of a system and are used to direct implementation. 

The Unified Modeling Language (UML) provides a standard way to visualize the design of a 

system.  

 

During the planning and design stages, software engineers must consider the risks involved 

in developing a system. Software must solve a problem and must respond to both functional and 

nonfunctional requirements. Software systems generally follow a pattern or an architectural 

style. 

 

We show the initial steps of developing a software system, define its specification and 

design topics, and demonstrate their creation by presenting a case study. 
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Introduction 

Software engineering is a discipline which specifies, designs, develops, and maintains 

software applications. It applies practices and technologies from computer science. Software 

engineering is the backbone of software systems and forms the basis of operational design and 

development of software systems. Design is pivotal to successful software engineering.  

The purpose of software engineering is to deliver quality products on time, containing 

functions and features that meet the needs of stakeholders. Software engineering is composed of 

methods, processes, and tools that enable complex computer-based systems to be built in a 

timely manner and with quality. The process incorporates five framework activities: 

communication, planning, modeling, construction, and deployment. These activities are 

applicable to all software projects.  

Software engineering is a problem-solving activity. It contains a set of core requirements, 

such as the reason the software exists, keeping the solution simple, maintaining the vision of the 

software being developed, remembering that what is produced others will consume, and planning 

for the future use of the application [1]. 

Planning a software solution must follow some key steps. The engineer must understand 

the scope of the project. He should involve stakeholders in planning. She must recognize that 

planning is an iterative process. Cost and time estimations of a project must be based on what is 

known. Risk must be considered throughout the planning process. A software engineer must be 

realistic about what developing the software entails and plan accordingly. Ensured quality must 

be a part of the plan. Maintainability of the system must be considered as the software evolves. 

The software must be able to change as needs change. Designers must be aware that adjustments 

in the plan will happen frequently [1]. 



9 
 

The initial stage of a software application’s life cycle is gathering specifications which 

describe what the system must do and the quality attributes the software application needs to 

meet. Requirements elicitation is a technique used to gather information on the software 

application being created. Software engineering analysts use requirements elicitation techniques 

to ascertain the needs of customers and users, with the goal being a system that has a high chance 

of satisfying those needs. Success or failure of system development relies heavily on the quality 

of requirements gathering, which is the practice of collecting requirements of a system from 

users, customers, and other stakeholders—the people who will be affected by the software 

application [2]. 

Companies have performed many studies to measure and assign costs to fixing defects in 

software. A defect is an error detected by a tester or user of a software application. In general, 

the later in the software lifecycle a defect is found, the more expensive it is to correct. Research 

also suggests that correcting software defects may require nearly two hundred times the effort if 

the correction is effected in the maintenance phase versus the requirements specification phase in 

a software system’s lifecycle. Elicitation is key in creating a viable software system [2]. 

Software modeling is an essential part of the software development process. Software 

models are ways of expressing a software design pictorially. Models are built and analyzed 

before the implementation of the system and are used to direct implementation. A software 

system can be considered from different perspectives. These models are created with an abstract 

language like Unified Modeling Language (UML) and can also be pictures to express a software 

application’s design.   

UML is a general-purpose and developmental modeling language in the field of software 

engineering and is intended to provide a set of standard ways to visualize the design of a system. 
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UML also provides a way to gain deeper understanding of a software system. Requirements 

models, static models, and dynamic models of a software system can aid in the understanding of 

these different perspectives. A graphical modeling language aids in developing, understanding, 

and communicating different views.  

Object-oriented concepts aid in software analysis and design. They contribute to the 

modifiability, adaptability, and evolution of software systems. Object oriented methods are based 

on the following concepts: information hiding, classes, and inheritance. Information hiding may 

lead to more self-contained software systems, which are more modifiable and maintainable.   

UML was developed to provide a standard graphical language and notation in which to 

describe object-oriented models. UML is methodology-independent and must be used with an 

object-oriented analysis and design method. Object-oriented analysis and design objectives are 

model-based. They use a combination of use-case modeling, static modeling, state machine 

modeling, and object interaction modeling. 

Use-case modeling is a process in creating use cases, which are lists of actions or event 

steps defining the interactions between an actor and a system. An actor can be a human or an 

external software system. Static modeling is used to represent the static aspects of a software 

application, including classes, objects, and interfaces, and the relationships between each. State 

machine modeling is the process of creating state machines, also called finite-state automation. 

A state machine is an abstract machine that can be in only one state of a finite number of states. 

Object interaction modeling represents how objects interact with other objects. 
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UML diagrams represent two different views of a system model:  

• static (or structural) view emphasizes the static structure of the system using objects, 

attributes, operations, and relationships. It includes class diagrams and composite 

structure diagrams 

• dynamic (or behavioral) view emphasizes the dynamic behavior of the system. It 

shows collaborations among objects and changes to the internal states of objects. The 

dynamic view includes sequence diagrams, activity diagrams, and state machine 

diagrams. 

System requirements describe what the actor expects from the system—what the system 

will do for the actor. During the design phase, the system should be viewed as a black box where 

only the external characteristics of the system are considered. A non-functional requirement 

specifies the criteria that can be used to judge the operation or quality of a system, rather than the 

specific behaviors functional requirements detail. Both functional and nonfunctional 

requirements must be considered. Requirements modeling is composed of requirements analysis 

and specification [3]. 

In this paper, we show the initial steps of developing a software system. The first section 

discusses elicitation as part of the requirements’ gathering phase of a software development 

lifecycle. The rest of the paper reveals the steps of creating a Software Requirements 

Specification (SRS) document. An SRS document describes a software system that will be 

developed. An SRS is defined after the requirements specification phase.  

We define various specification topics and demonstrate their creation by presenting a 

case study. Our case study, Automating Mental Health Intake Forms, demonstrates the process of 

defining requirements and offers a design approach. Our case study reveals topics of 
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consideration, including functional requirements, nonfunctional requirements, risk analysis and 

assessment, architectural styles, and a problem statement. Our case study develops use cases and 

sequence diagrams that detail how the system behaves. This case study also shows how to model 

data by taking the insurance section of the form and breaking it down into tables by using entity 

relationship models.  

Traditional and Trending Elicitation Practices 

In software engineering, elicitation is the practice of collecting requirements of a system 

from users, customers, and other stakeholders who are affected by a software system. This 

practice is also referred to as requirements gathering. Before requirements are analyzed and 

modeled they must be gathered by an elicitation process. Elicitation is key in creating a viable 

software system.  

Hickey and Davis discuss elicitation techniques with the focus on reporting the results of 

interviews with nine expert analysts. Hickey and Davis do not associate specific opinions with 

any of these experts. Hickey and Davis point out that requirements analysts, who have extensive 

experience, can select the appropriate elicitation techniques better than requirements analysts 

with lesser experience. Hickey and Davis’ mission was to report the processes of elicitation 

experts employ [2]. 

Unsatisfactory performance of practicing analysts could be caused by a variety of 

conditions. It could be unrelated to elicitation techniques, but it could be caused by lack of 

effective use of them. Unsatisfactory execution may also be caused by poor use of these 

practices. If effective requirements-gathering methods do exist, there may be some problem 

related to the skills of the analysts. Poor performance may occur when analysts don’t know how 

to apply good elicitation techniques, or the analysts do not know when to apply them. Hickey 
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and Davis pose this question in their article: what are the expert analysts doing that can be 

captured and conveyed to analysts of lesser experience to improve their performance? The 

writers assembled advice of the most experienced analysts with the aim of improving 

requirements elicitation practice [2]. 

There are a variety of contexts in which elicitation is performed. The responsibility of 

determining requirements in organizations can be creating custom software or customizing a 

base of existing software. The software could be sold to a single customer or be used within the 

same company. In any situation, the individual doing the elicitation is responsible for 

understanding the needs of users. This person must translate these requirements into terminology 

the IT team understands [2]. 

Hickey and Davis chose a qualitative research approach. They used three primary 

information-gathering methods—participation in the setting, document analysis, and in-depth 

interviews. After analyzing key articles and conducting interviews with successful elicitors, 

Hickey and Davis reported on these results with this categorization: 

• When to use techniques. This includes the insights from the experts concerning those 

conditions under which they would use a particular technique. This was the primary 

focus of the research. 

• Normalized Situations. They asked each of the experts to analyze a subset of the same 

four situations. 

• Other useful information. The writers learned other information related to elicitation 

techniques. 
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Hickey and Davis provided the following classifications of elicitation techniques:  

• collaborative sessions are conducted with stakeholders and software engineers who 

are working toward a common goal for a software application.  

• requirements analysts interview stakeholders to gather requirements for a software 

application. 

• team-building involves the action or process of helping a group of people to work 

more effectively as a team, usually through activities and events that are designed to 

promote cooperation and motivation.  

• ethnography describes the customs of individual people and cultures.  

• issues lists detail the problems with the software application.  

• models are pictures and diagrams that explain a software application to a stakeholder 

and to other software engineers.  

• questionnaires are devised to survey the stakeholders about a software application.  

• data gathering from existing software involves researching the software 

documentation currently available. If a new software application is an extension of an 

old system, requirements analysts need to pull from the documentation information 

that will help develop the new software application.  

• requirements categorization sorts the features of the software application into groups 

or classes.  

• conflict awareness and resolution, also conflict management, is the process of 

limiting the negative aspects of conflict of a team while increasing the positive 
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aspects of a team. Conflict management intends to enhance performance and 

effectiveness of a team.  

• prototyping is the initial stage of a software application’s release. Prototyping’s intent 

is to catch and fix errors that may occur in a bigger release. 

• stakeholders role play, or act out, the part of an actor of the software application in 

order to determine requirements. 

• formal methods are mathematical approaches to a software applications development. 

Formal methods involve the design and verification of a software application. 

Hickey and Davis concluded that, in general, it appeared that collaborative sessions were 

seen by all the experts they interviewed to be a standard or default approach to elicitation and 

that interviews were widely used but were used primarily to gain new information or ferret out 

conflicts or politics among the stakeholders. Based on the interviews of expert analysts, Hickey 

and Davis concluded that “elicitation technique selection is not only a function of situational 

characteristics, but is also a function of what information (requirements) is still needed” [2]. 

Because software development organizations can be physically separated from customers 

and end users, frequent face-to-face collaboration with end-users is often unrealistic. Eliciting 

requirements in the current economy requires the combination of past elicitation methods with 

new techniques.  

Loyd, Rosson and Arthur reported the results of an exploratory study that investigated the 

effectiveness of requirements engineering in a distributed setting. Their study had 46 participants 

who role-played as either an engineer or a customer. The participants separated into six groups. 

At the end of the project, those who role-played as software engineers wrote a Software 
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Requirements Specification (SRS), a document that details the functional and non-functional 

requirements of a software system. They used only the knowledge gleaned from their remote 

collaboration with customers [4]. 

At the time of the article, 2002, distributed software development was becoming practical 

because of improvements in technology such as bandwidth and performance in communication 

structure. Several agents contributed to the need for distributed software development. Project 

members were unwilling to travel or there was a lack of skilled workers in a geographical area. 

Also, high travel and relocation costs made distributed software development attractive.  

Loyd et al. had three main goals: first, identify what agents led the groups to write high 

quality SRS documents; second, evaluate the effectiveness of software for collaboration used to 

help distributed requirements elicitation; and, third, determine the effectiveness of various 

requirements elicitation techniques when used in a distributed venue. Loyd et al. sought to 

identify which requirements elicitation techniques work best in a distributed mode [4]. 

All group interaction was distributed and supported by software collaboration tools to 

enable both synchronous and asynchronous collaboration. The “customer” and “engineer” never 

met face-to-face. All negotiations or discussions related to the project were done remotely. Those 

involved in this study gathered requirements and wrote an SRS document to solve the problem of 

a meeting scheduler system.  

As part of their training, the software engineers were instructed in requirements 

elicitation methods. Loyd et al. discovered a weak but positive relationship between a group’s 

average requirements engineering experience and the quality of their SRS documents. A negative 

relationship was observed between requirements elicitation technique effectiveness and overall 

SRS quality. In this experiment, the groups appeared to create higher quality SRS documents if 
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they reported having more experience with requirements engineering. Loyd et al. demonstrated 

the value of having elicitation experience in gathering requirements [4]. 

Through a survey, Loyd et al. discovered that the study participants had varying degrees 

of elicitation experience. The choice of techniques the participants used were influenced by 

technique experience and course instruction. According to Loyd et al., some elicitation 

techniques were more suited for use in a distributed setting while others functioned poorly. The 

data suggested that those groups who avoided using email and asynchronous methods produced 

higher quality SRS documents. Loyd et al. postulated that the groups using the asynchronous 

techniques were doing so because they were failing to acquire the needed information from the 

scheduled meetings. They may also have prepared poorly and thus obtained poorer results [4]. 

Loyd et al. showed a positive connection between perceived effectiveness of the Question 

and Answer elicitation method and customer participation. The software engineers’ ratings of the 

question and answer technique were higher when they also reported active participation by the 

customer during meetings.  

Loyd et al. provided the following classifications of elicitation techniques:  

• question and answer is a technique where engineers ask the customer or end-user 

questions about a software application’s requirements. The dialogue can vary based 

on the feedback of the actor. 

• brainstorming is a computer software process used for the development of creative 

ideas, which can include word associations, idea maps, or flow charts. 

• requirements management involves the process of analyzing and documenting 

requirements with the intention of stakeholders agreeing on those requirements. 
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Loyd, et al. reported the above as the most effective elicitation techniques. However, 

Loyd et al. found that the impact of specific requirements elicitation techniques on overall SRS 

quality was inconclusive. Loyd et al. suggested that synchronous communication in the 

requirements process was more effective than asynchronous communication. Loyd et al. also 

suggested that distributed requirements engineering is more effective when stakeholders 

(customers in this case) were active participants in synchronous activities of the requirements’ 

process. Synchronous collaboration in this study, supported by voice conferencing, seemed to 

deliver higher informational “bandwidth” than asynchronous tools such as email. In addition, 

those groups who obtained satisfactory requirements from the planned virtual sessions had better 

success at writing a high-quality SRS document. They “captured greater numbers of the original 

requirements, exhibited more requirements evolution in the SRS document, produced fewer 

errors in the SRS, and consequently received better SRS grades” [4]. 

In 2012, Duarte et al. focused on users in requirements elicitation through an online 

collaborative approach. Duarte, et al. proposed the use of visualization techniques to increase 

stakeholders’ perception of requirements, thus giving them a motivation to be involved in the 

elicitation activity. Duarte et al. believed lack of user involvement could lead to requirements 

that were discovered in later phases of development, which would lead to project delays and 

rewriting code [5]. 

Group work is a way to elicit requirements in a collaborative setting. It promotes 

stakeholder’s cooperation and commitment. Some group meetings include a brainstorm or focus 

group, which is a demographically diverse group of people who are assembled to participate in a 

guided discussion about a software application before it is deployed. Focus group has been used 
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in both face-to-face and online discussions. These meetings can be difficult to schedule due to 

the number of stakeholders involved. 

Duarte et al. proposed a collaborative environment for requirements elicitation that had 

both requirements and social visualization support. The proposal included the creation of a 

community to submit and discuss requirements. Duarte et al. incorporated some patterns to 

design social interfaces like comments, votes, reputation, and rankings. They hoped to avoid 

scheduling and geographical constraints. From the belief that requirements elicitation benefits 

from user involvement, they used visualization techniques to engage and stimulate this activity. 

What was used in the proposed visualizations were metadata associated with requirements such 

as date and time of submission, number of votes, and comments. The authors recommended the 

use of a web platform for gathering text-based requirements [5]. 

To motivate users of online communities to contribute, Duarte et al. proposed using 

social visualization. They suggested a bubble chart to illustrate each user’s contributions. The 

size of a bubble represented the total number of contributions to the community, such as new 

requirements, comments, and votes. 

Duarte et al.’s prototype supported the features described in their article. The prototype 

allowed users to submit new requirements and discuss existing ones through comments. Users 

could also prioritize using votes. The results of the evaluation of Duarte et al.’s prototype 

showed that it accomplished the goal, which was greater participation of stakeholders, providing 

them greater understanding of requirements. The requirements and visualization techniques also 

received positive feedback. 

Adding the visualization techniques proposed by Duarte et al. to an analyst’s tool-set will 

help him perform elicitation in a distributed way more effectively. Analysts can use these 
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visualization methods to improve user participation. Combining visualization techniques with 

elicitation techniques will help analysts meet the needs of both face-to-face collaboration, and 

collaboration in geographically separated teams. To help promote successful requirements 

gathering, analysts need to find new tools and still retain knowledge of tools developed in the 

past [5]. 

Elicitation is composed of many details. Understanding the problem and being able to 

elicit for requirements as well as being able to express the problem back to stakeholders is key in 

designing viable software systems. Analysts need to be able to communicate with stakeholders 

and end users to gather the needs of the software system and must also be able to model those 

needs. 

Case Study—Automating Mental Health Intake Forms 

Our case study, Automating Mental Health Intake Forms, details the results of applying 

some of the elicitation techniques described above. As part of the elicitation, therapist Dr. 

Tammy Rhine was interviewed. She explained the type of system she would like to use in her 

practice. The state of Minnesota requires that Dr. Rhine keep records for her minor clients. The 

parents fill in these forms manually, and Dr. Rhine transposes the forms electronically—a 

process which takes significant time.  

With the initial team developing this system, brainstorming sessions were conducted with 

the intention of ascertaining system requirements. The first Software Requirements Specification 

written detailed this initial system’s requirements. As our case study developed, this system 

evolved into a more general intake system that could be used by both adult and minor clients, for 

whom guardians would populate the intake form.  
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Our case study is intended to show the development of a Software Requirements 

Specification document and a partial design document. 

In many cases, small therapy clinics use paper forms for their intake process. This is an 

outdated way to manage forms and lacks the efficiency of an automated system, which would 

add convenience for clients as well as therapists. It provides a way to centralize forms without 

the need to maintain paper forms.  

With an automated system, the entire intake process can be completed before the first 

appointment. A therapist would then have all the necessary information on a client before 

starting to address a client’s need. In many cases, the initial diagnostic visit has a higher cost to a 

client, and if that time is devoted to paperwork instead of addressing a client’s concerns, there 

would be a lower cost benefit to a client. 

Periodically, clients need to fill in forms gauging their emotional state over a period of 2 

weeks. In the same way that intake forms can be centralized in a web-based system, these forms 

can be electronic, resulting in less paperwork. These forms would be filled in prior to a visit, 

providing a therapist information on a client’s emotional state before an appointment. 

This application provides a way for small therapy clinics to have a web presence and an 

automated intake system. This system offers the following functionality. An actor of this system 

creates a user account. A client fills in automated intake forms gauging her emotional state over 

a period of two weeks. A client list is displayed to a therapist, allowing him to select a name and 

be directed to options such as creating session notes and viewing intake forms.  

A major issue for this system is security. Because medical information will be transmitted 

over the internet, an implementation needs to be HIPAA compliant. 
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Mental health therapists will be the main actors of this system. Other actors of this system 

will be clients. It is difficult to predict the technical skills of these actors. Some will be 

comfortable with computer systems, and others will not be. A requirement of this system will be 

ease of use for various actors. 

Our system is broken down into three main functional requirements. This system must be 

able to create accounts, including registration for new clients, generate forms, and create session 

notes. 

Creating accounts. When a client contacts a clinic for therapy for either herself or her 

minors, a therapist will send an invitation email. Upon receipt of this invite, a client or guardian 

will be able to register. 

Generating forms. A therapist will be able to see a list of clients, and each client name 

will be a hyperlink to another page where a therapist can choose to view intake forms or generate 

a therapist form. Once a guardian has access to the website, he will be able to fill in a form to 

answer questions about the minor seeking therapy. He will be able to generate a form for a 

specific minor, update a form that has not been submitted, and view a submitted form. When an 

adult client has access to the website, she will be able to populate, update, and view forms that 

have not been submitted. Once a form is submitted she can view the forms but cannot edit them. 

Session notes. A therapist will be able to compose session notes on each client, which 

will be saved by date. A therapist will choose the client’s name and select “Session Notes.” 

UML Modeling 

Models are created to gain better understanding of the entity being built. A model must 

represent the information that the software transforms and the architecture and functions that 

enables that occurring transformation. It must contain the features that an actor desires and must 



23 
 

capture the behavior of the system being built. Models must show the software at different levels 

of abstraction. The software must be depicted from the customer’s viewpoint and later from the 

technical level [1]. 

Two classes of models can be created—requirements models and design models. 

Requirements models that are also known as analysis models capture customer requirements by 

showing the software in three different domains: informational, functional, and behavioral. 

Design models represent the characteristics of the software to help software engineers construct 

the system effectively—architecture, user interface, and component-level detail. 

A modeler’s primary goal is to build software and not create models. Models must only 

represent the problem and there should be no more models than necessary to describe the system. 

The aim should be creating the simplest models to describe the problem or the software. Models 

are subject to change. Each model must be explicit for the purpose it is created [1]. 

Designs must be traceable to the requirements model. They must always consider the 

architecture of the system being built. Data design is as important as the design of the process 

functions. User interfaces must be considered and designed with the end user in mind, stressing 

ease of use. Component-level design must be functionally independent with components loosely 

coupled to the external environment. Models should be easily understood. Modeling and 

designing are iterative processes. 

Use Case Diagrams 

The purpose of a use case diagram is to provide a high-level view of a system. It conveys 

the requirements in layman’s terms. A use case diagram provides simplified and graphical 

representation of what a system must do. A use case diagram is a good communication tool for 

stakeholders. These diagrams mimic the real world, providing a view for the stakeholder to 
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understand how the application will be designed. The actor initiates the use case, and the use 

case defines a sequence of interactions between the software system and the actor. 

Case Study—Use Case Diagrams 

Our case study shows the development of a use case diagram. The first step is to generate 

a use case glossary, depicted in Table 1. 

Use Case Glossary 

The use case glossary provides a description for each actor. 

Table 1. Use Case Glossary 

Name Description 

Therapist The therapist manages the intake form process. 

Client or 

Guardian 

The client or guardian fills in the intake forms that will be used by the therapist. 

 

The next step of developing a use case diagram is by drawing the diagram in terms of the 

actor and the system. 

Client or Guardian Use Case Diagram 

The client or guardian use case diagram in Figure 1 shows the web application at its 

highest level. A client first submits her name and email address to the therapist. She then 

receives and invitation email, which she must accept to register as a new user. To log in, an actor 

must be registered. To manage client forms the actor must be logged in. 
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Figure 1. Client or Guardian Use Case Diagram 

Therapist Use Case Diagram 

The therapist use case diagram in Figure 2 shows the web application at its highest level. 

Therapists must be logged in to send invitation emails to clients, manage client information, 

generate session notes, and manage forms. 
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Figure 2. Therapist Use Case Diagram 

Further Reading 

Gemino [6], Kawabata [7], Siau [8], and Vidgen [9]. 

Use Cases 

Use cases are used to represent and model units of functionality or services provided by 

the application or system. They include interactions or dialogs between the system and actors, 

including messages passed between the system and actors and actions performed by the system. 

Use cases are initiated by actors. They may involve the participation of other actors. 

Use Cases share the following characteristics: 

• organize functional requirements 

• model the goals of system/actor (user) interactions 
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• record paths (called scenarios) from trigger events to goals 

• done main flow of events (also called a basic course of action) 

Case Study—Use Cases 

To demonstrate how use cases are created, our Automating Mental Health Intake Forms 

case study is broken down into descriptions and priorities, stimuli/responses sequences, actors, 

triggers, and processing steps. 

Use Case Models for Clients and Guardians 

Use Case 1.0: Submit Name, Email Address, and Phone Number to Clinic  

Description and Priority: A client or guardian navigates to the clinic’s website and 

requests more information by submitting her name, email address, and phone number. This is a 

high priority feature. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian navigates to the Request Information form. 

Processing Steps:  

1) The Request Information page is displayed that contains fields for the client to 

submit name, email address, and phone number. 

2) The client or guardian submits the information. 

3) The system creates a message with the client’s information. 

4) The system saves the message to the clinic’s account. 

Functional Requirements: A client must be able to request more information from a clinic 

by providing a name, an email address, and a phone number. A message with a client’s 

information needs to be generated and saved to a clinic’s account. 
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Use Case 2.0: Receive Invitation Email  

Description and Priority: A client or guardian receives an invitation email from a clinic. 

This invitation email serves a similar purpose as a Google document or Drive invitation sent for 

collaboration purposes. This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian receives an invitation to the clinic’s website via email. 

This is a high priority feature. 

Processing Steps:  

1) The client or guardian receives an email invite along with more information from the 

clinic. 

Functional Requirements: A client or guardian must receive an invitation email from a 

clinic. 

Use Case 3.0: Create Account (Sequence Diagram 17.7.1) 

Description and Priority: A client or guardian selects the link in the invitation email and 

is navigated to the create account portion of the clinic’s website. To create an account, a client or 

guardian must have a username and a password. This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian navigates to the registration page. 

Processing Steps:  
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1) The system prompts the client or guardian for the required fields—name, address, 

email, phone number, username (which will be the client’s or guardian’s email 

address), and password. 

2) The client or guardian fills in the required fields. 

3) A success/failure message is displayed indicating whether the process was a success 

or failure. 

4) If the submission is accepted, the client or guardian will be directed to the Form 

landing page of the web application. 

Functional Requirements: A client or guardian must be able to register as a new user. A 

client’s credentials must be passed to this system and have it pass back a new account or send 

back a failure message. An exception is raised if any of the following criteria are not met:  

• The username does not already exist in this system and is a valid email address 

associated with a client or guardian. 

• The passwords need to match and must meet the security requirements 

Use Case 4.0: Log in (Sequence Diagram 17.7.2) 

Description and Priority: If a client or guardian already has an account, then she must be 

able to log into this system by providing a username and password. This is a high priority 

feature. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian clicks the “Log in” button. 

Processing Steps:  

1) The system prompts the client or guardian for his username and password. 
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2) The client or guardian enters his username and password. 

3) The system validates the username and password. 

4) If the log in is successful, the client or guardian will be directed to the landing page of 

the form’s section of the web application. 

5) If the login is not successful, an error message will be displayed that indicates a 

wrong password or a username not in the system. 

Functional Requirements: A client or guardian must be able to log in.  

An exception will be raised if any of the following criteria are not met. 

• The username does not exist in this system. 

• The username and password do not correspond to the same username and password 

pair entered while creating the account. 

Use Case 5.0: Create and Populate Intake Form (Sequence Diagram 17.7.4) 

Description and Priority: A client must be able to create and populate a form. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian navigates to the first page of the intake form. 

Processing Steps:  

1) The system prompts the client or guardian to populate the fields. 

2) The client or guardian populates the intake form and saves the data. 

3) The system saves the data to the database. 

Functional Requirements: A client must be able to create and populate a form. 
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Use Case 5.1: Edit a Saved Form (Sequence Diagram 17.7.13) 

Description and Priority: A client or guardian has the option to edit a saved form. A client 

or guardian populated a form in previous sessions. A client or guardian will be able to add more 

information or update a form. This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Client or Guardian 

Trigger: The client or guardian navigates to the page where she can select a link to edit 

the form. 

Processing Steps:  

1) The system displays the form requested by the client or guardian. 

2) The client or guardian makes changes to the form. 

3) The client or guardian saves the form. 

4) The form information is saved in the database. 

5) The system returns a success/failure message. 

Functional Requirements: A client or guardian must be able to edit a form. 

Use Case Models for Therapist 

Use Case 11.0: Log in for Therapist (Sequence Diagram 17.7.2) 

Description and Priority: A therapist must be able to log in into this system by providing 

a username or password. This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Therapist 

Trigger: The therapist navigates to the login page. 

Processing Steps:  
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1) The system prompts the therapist for her username and password. 

2) The system authenticates the therapist’s login information. 

3) If the log in is successful, the clinic’s landing page is displayed. 

4) If the login is not successful, an error message will be displayed that indicates a 

wrong password or a username not in the system. 

Functional Requirements: The therapist must be able to log in.  

An exception will be raised if any of the following criteria are not met. 

• The username does not exist in this system. 

• The username and password do not correspond to the same username and password 

pair entered while creating the account. 

Use Case 11.1: Therapist Sends Invitation Email to Client 

Description and Priority: A therapist must be able to send an invitation email to the client. 

This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Therapist 

Trigger: The therapist navigates to the send invitation email page. 

Processing Steps:  

1) The system prompts the therapist for the client’s or guardian’s email address. 

2) The therapist enters the client’s or guardian’s email address. 

3) The system sends an invitation email to the client or guardian. 

Functional Requirements: A therapist must be able to send an invitation email to a client 

or guardian. 
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Use Case 11.2: Therapist See Client List 

Description and Priority: A therapist must be able to view a client list. This is a high 

priority feature. 

Stimulus/Response Sequences: 

Actor: Therapist 

Trigger: The therapist is logged in. 

Processing Steps: 

1) The client list is displayed with each name hyperlinked. 

Functional Requirements: A therapist must be able to see a list of clients.  

Use Case 11.3: Therapist Can View Client Intake Form (Sequence Diagram 17.7.10) 

Description and Priority: After a therapist selects the hyperlink to a client, a therapist can 

view a client’s intake form. This is a high priority feature. 

Stimulus/Response Sequences: 

Actor: Therapist 

Trigger: The therapist navigates to the View Intake Form page. 

Processing Steps: 

1) The client list is displayed. A hyperlink is associated with each name. 

2) The therapist selects a client name. 

3) The system shows the client’s intake form. 

Functional Requirements: A therapist must be able to view client intake forms. 

Use Case 11.4: Session Notes 

Description and Priority: A therapist must be able to create session notes for each client. 

Stimulus/Response Sequences: 
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Actor: Therapist 

Trigger: The therapist selects one client from the list and select “Session Notes”. 

Processing Steps:  

1) The system displays a text box with limited editing features. 

2) The therapist writes notes on a session. 

3) The therapist saves the session notes. 

4) The system saves the notes to the database. 

Functional Requirements: The therapist must be able to create session notes for a client. 

Further Reading 

 Fowler [10], Jacobson [11], Jacobson [12], and Leffingwell [13]. 

Class Diagram 

The class diagram is one type of structure diagram. It describes the structure of the 

system by showing the system’s classes and their attributes, methods or operations, and the 

relationship among the objects. The class diagram is the primary building block of object-

oriented modeling. The class diagram is also used for general conceptual modeling that leads to 

programming code. Class diagrams can also be used for data modeling. In the design of a 

system, classes are identified and grouped together in a class diagram that helps determine the 

static relationships between classes. With detailed modelling, the classes of the conceptual 

design are often split into subclasses. 

Class diagrams consist of associations, which are static and are composed of structural 

relationships between two or more classes. Class diagram associations are either aggregation, 

composition, or inheritance. An aggregation and composition hierarchy are whole/part 

relationships. An aggregation is a special case of an association. When an object ‘has-a’ object, 
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then you have an aggregation between them. Direction between them specifies which object 

contains the other object. Aggregation is also called a “has-a” relationship. A composition is a 

special case of aggregation. In a more specific manner, a restricted aggregation is called a 

composition. When an object contains the other object and the contained object cannot exist 

without the existence of container object, then the association is called a composition.  

An association between two classes (binary association) is depicted by a line joining the 

two class boxes. An association has a name. Optionally, there is an arrowhead to depict the 

direction in which the association should be read. On each end of the association line joining the 

classes is the multiplicity of the association indicating how many instances of one class are 

related to an instance of the other class. The multiplicity of an association specifies the number 

of instances of one class that may relate to a single instance of another class.  

A composition is indicated by a black diamond. It is a stronger form of a whole/part 

relationship. The aggregation relationship is indicated by a hollow diamond. The diamond 

touches the aggregate or composite class box. Inheritance is depicted as an arrow joining the 

subclass to the superclass with the arrowhead touching the superclass box. 

Case Study—Class Diagram 

Our case study details the classes required to meet the needs of this software system. 

Figure 3 presents this system in more detail. There are five classes in the class diagram: user 

information, form, and clinician (therapist) and client, which inherit from user. The diagram 

shows the methods and variable names that are part of this system. 
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Figure 3. Class Diagram 

Context Diagram 

The context diagram defines the boundary between the system or a part of the system and 

its environment. It is used to show how a system interoperates at a very high level.  

Case Study—Context Diagram 

At the highest level, our case study is composed of two pieces—forms and a database. 

Figure 4 is a context diagram that demonstrates this high-level look. 

 

Figure 4. Context Diagram 
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Further Reading 

Choubey [14], Kossiakoff [15], Wiener [16], and Robertson [17]. 

Entity Relationship Diagrams 

Entities are nouns. An entity can be defined as something that is capable of an 

independent existence or as some aspect of the real world distinguished from other aspects of the 

real world. It exists either virtually or physically. A relationship is a verb. A relationship 

captures how entities are related to one another. Like an insurance company has an address. 

Entities have attributes such as an address which has addressID, line1, city, state, and zip. 

An entity-relationship diagram is an abstract data model that defines data or an 

information structure that can be implemented in a database, usually a relational database. It 

presents a data schema in graphical form. A data schema is an organization of data as a blueprint 

of how the database is constructed, such as the division of tables in the case of relational 

databases. A schema is a set of formulas or sentences that are called integrity constraints 

imposed on a database. 

Entity-relationship diagrams don’t show single entities or single instances of relations. 

They show entity sets and all the relationship sets. An insurance company has an address. The 

insurance company and the address are entities and the has joins them to form a relationship.  

A context data model shows a high-level view of an entity and a relationship. It includes 

only an entity and a relationship. A key-based data model shows primary and foreign keys of 

entities and their relationships. A primary key is a special relational database table column (or 

combination of columns) designated to uniquely identify all table records. A primary key's main 

feature is that it must be a unique value for each row of data. A foreign key is a column or group 

of columns in a relational database table that provides a link between data in two tables. The 
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foreign key references the primary key of another table, establishing a link between these two 

tables. A fully attributed data model shows the entities with all their attributes. A normalized 

entity relationship diagram shows all the attributes of the entities along with their types.  

Case Study—Entity Diagrams 

Our case study demonstrates the creation of entity diagrams by modeling one section of 

the intake form—insurance. Before viewing the entity diagrams, the entity and business 

definition are provided in Table 2. 

Table 2. Entity and Business Definition 

Entity Business Definition 

Person The adult client or the guardian of a minor client 

Insurance Company The client’s insurance company 

Insurance Type The type of insurance, either primary or secondary 

Person Insurance Company The person’s insurance company 

Address Either the person’s or insurance company’s address 

Login/Validation The login information 

Relationship Type The type of relationship between persons 

Emergency Contact Client’s emergency contact 

Persons Defines that there is a relationship between people—like spouse, 

minor, and guardian. 

 

Context Data Model for Insurance Form 

Figure 5 shows the high-level view of the entity and the relationship. It includes only the 

entity and the relationship. At the center of the entities and the relationships depicted here is the 

Person table. A Person has an Emergency Contact, a Relationship Type that defines whether the 

insured person is a spouse or a dependent, Address that can be more than one, an associated 

Person Insurance Company, a Gender Type, and a Login/Validation. A Person is related to 
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another Person, such as a guardian is related to a minor. The Person Insurance Company is part 

of an Insurance Company and has an Insurance Type, such as a primary insurance company or a 

secondary insurance company.  

 

Figure 5. Context Data Model Diagram for Insurance Form 

Key-Based Data Model for Insurance Form 

Figure 6 shows the primary and foreign keys of the entities and their relationships. A 

Person table’s primary key is personID, which uniquely distinguishes each person. The Person 

table has foreign keys into the Emergency Contact table (emergencyContactID), Relationship 

table (relationshipID), Address table (addressID), and Log in/Validation table (loginID). A 

Person Insurance Company table’s primary key is personID, which also uniquely identifies the 

insured person. The Person Insurance Company table has foreign keys into the Insurance 
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Company table (insuranceID), and Insurance Type table (insuranceTypeID). The Insurance 

Company table has a primary key (insurance ID) and has foreign key into the Address table. The 

Insurance Type table has a primary key (insuranceTypeID) and has no foreign keys. The 

Relationship table has a primary key (relationshipID) and has no foreign keys. The Persons table 

has joined primary keys, meaning the two primary keys distinguish persons. The Relationship 

table has a primary key (relationshipID) and no foreign keys. Finally, the Login/Validation table 

has a primary key (loginID) and no foreign keys.  

 

Figure 6. Key Based Data Model Diagram for Insurance Form 

Fully Attributed Data Model for Insurance Form 

Figure 7 shows the entities with all their attributes, for example an Address table has a 

line1, state, city, zip, createDate, and updateDate. The other tables follow the same pattern. 
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Figure 7. Fully Attributed Data Model Diagram for Insurance Form 

Normalized Entity Relationship Diagram for Insurance Form 

Figure 8 shows all the attributes of the entities along with their types, for instance the 

Address table has a state that is a char and a zip that is an int. The other tables follow the same 

pattern. 
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Figure 8. Normalized Entity Relationship Diagram for Insurance Form 

Further Reading 

Chen [18], Barker [19], Mannila [20], and Thalheim [21]. 

Sequence Diagrams 

A sequence diagram shows object interactions between layers in the software system 

arranged in a time sequence. It depicts the objects and classes involved in this interaction and 

details the sequence of messages exchanged by these objects to carry out the function of the 

application. Sequence diagrams are sometimes called event diagrams or event scenarios. These 
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interactions are depicted horizontally and the vertical dimension represents time. Starting at each 

object box is a vertical dashed line (termed the lifeline). A sequence diagram shows the 

interactions between objects arranged in a time sequence. The diagram depicts the objects and 

classes involved in the scenario. It also depicts the messages exchanged between the objects.  

Case Study—Sequence Diagrams 

Our case study includes several sequence diagrams. All of them include the following 

layers: User, UI, URL Handler, Validation Controller, and Validation. The interactions flow 

from the User through the various layers to the Validation layer. For example, in the creating 

account sequence diagram, the User requests to create a new account. The UI then requests for 

the user’s credentials. The User enters the credentials. The UI transfers the credentials to the 

URL Handler. The URL Handler requests to create an account, passing the credentials. The 

Validation Controller checks to see if the account exists and if not creates the account. From the 

Validation layer a return status is passed back to the User in a message that indicates success or 

failure.  

The sequence diagrams presented in this paper follow the same general pattern. Messages 

are passed between the layers indicating what each layer needs to do in the sequence. 
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Creating Account Sequence Diagram (Use Case 3.0) 

Figure 9 shows the steps in the sequence to create an account. 

User UI URL 
Handler

Validation 
Controller

Validation

Request to create 
a new account

Request user’s 
credentials

Enter Credentials

Transfer Credentials

Request to
Create account

Check if 
account 

exists

<<create>>

Account

Return status of create

Return status

Return status

Indicate success or 
failure

 

Figure 9. Creating Account Sequence Diagram 
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Log In Sequence Diagram (Use Case 4.0 & 11.0) 

Figure 10 shows the sequence of steps for either a client or therapist to log in. 

User UI URL 
Handler

Validation 
Controller

Validation

Request to log in

Request user 
ID & password

Enter user ID
And password

Transfer user info

Request to sign in

Return login 
status

Return login 
status

Indicate success or 
Failure of login

Request to verify
 ID & password

Verify ID & 
password

Return verification
status

 

Figure 10. Log in Sequence Diagram 
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Change Password Sequence Diagram 

Figure 11 shows the change password steps. Like the Log In diagram, this sequence 

diagram shows the process for the therapist and the guardian to log in.  

User UI URL 
Handler

Validation 
Controller

Validation

Request to change
password

Direct to change
password page

Enter new 
password

Transfer new 
password

Transfer new
 password

Return status of
changed

passwordReturn status of
changed

password

Indicate success or 
failure of password 

change

Request validation
for new password

Validate 
new password

Return status of
changed

password

 

Figure 11. Change Password Sequence Diagram    
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Create Form Sequence Diagram (Use Case 5.0) 

Figure 12 shows the steps in the sequence for creating a new form for a minor via a 

guardian’s account.  

User UI URL 
Handler

Validation 
Controller

Validation

Request to 
create new form

Transfer request
for new form &

transfer info Request for 
new form

Return status of 
creating form

Return status of 
creating form

Indicate success or 
failure of creating 

form

<<create>>

Create form

Return status of 
creating form

 

Figure 12. Create Form Sequence Diagram  
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View Client Intake Form Sequence Diagram (Use Case 5.3) 

Figure 13 shows the steps in the sequence taken to view an intake form by both the client 

and the therapist. 

User UI URL 
Handler

Validation 
Controller

Validation

Request to 
View submitted 

form

Request to 
View submitted 

form Request to 
View submitted 

form

Return form

Return form

Display

Request to 
View submitted 

form
Search, find, 

& return form

Return form

 

Figure 13. View Client Intake Form Sequence Diagram   
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Add a New Minor Sequence Diagram (Use Case 6.0) 

Figure 14 shows the steps in the sequence required to add a new minor to the guardian’s 

account. 

User UI URL 
Handler

Validation 
Controller

Validation

Request to add 
new child

Request child info

Enter child info

Transfer request to 
add new child 

& info Transfer request 
to add new 
child & info

Return add new 
child status

Return add new 
child status

Return add new 
child status

Check if 
child 
exists 

in system

<<create>>

Indicate success or 
failure of adding 

a new child

 

Figure 14. Add a New Minor Sequence Diagram 
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Edit Form Sequence Diagram (Use Case 5.1 & Use Case 11.5) 

Figure 15 shows the steps in the sequence needed to edit a form for a client. It also 

describes the steps needed for a therapist to edit a therapist form. 

User UI URL 
Handler

Validation 
Controller

Validation

Request to edit 
existing form

Request for 
selected form

Request for 
selected form

Request for 
selected form

Return selected 
form

Return selected 
form

Return selected 
form

Display saved form 
and make it 

available to edit

Transfer edited 
form to save

Transfer edited 
form to save

Transfer edited 
form to save

Transfer edited 
form to save

Save form

Return status 
of save

Return status 
of save

Return status 
of save

Indicate success or 
failure of save

 

Figure 15. Edit Form Sequence Diagram 
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Cause-Effect Analysis 

Cause-Effect analysis helps identify all the likely causes of the issues faced in the 

problem to be solved. It is important to have a clear understanding of the problem at hand to 

design the system that will address it. 

Case Study—Cause-Effect Analysis 

Our case study demonstrates a way to conduct cause-effect analysis for an application. 

Going through the process of developing cause-effect analysis helps determine the issues to be 

faced in designing an application. 

As part of the intake process at a therapy clinic, a client or guardian must fill out intake 

forms. In many cases, this is a handwritten process. Therapy clinics that do not have a web 

presence do not have an automated way to handle the intake process. Some therapy clinics may 

have a website but no automated intake form system, or the intake system available is of poor 

quality. Table 3 shows the cause-and-effect analysis and improvement objectives. 

(Client refers to both client and guardian.) 
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Table 3. Cause and Effect Analysis 

  Cause-and-Effect Analysis System Improvement Objectives 

Problem or 

Opportunity 

Causes and Effects System Objective System Constraint 

Client filling out 

physical copy of 

necessary forms 

in a clinic before 

an appointment 

A client would need to spend 

more time at a clinic filling out 

paperwork by arriving earlier than 

a scheduled appointment.  

Our system needs to 

be convenient, 

leading to less time 

at the clinic. 

Our system must be 

accessible to a client 

before scheduling an 

appointment to reduce 

the time required at a 

clinic. 

 

Client filling out 

paperwork during 

an appointment 

If a client does not arrive earlier 

than the scheduled appointment, 

the paperwork would be filled out 

during the appointment. Because 

the first appointment is more 

expensive than subsequent 

appointments, the time to consult 

with a client would be diminished 

adding more cost to a client. 

 

Our system needs to 

be convenient, so 

the time needed for 

consultation is not 

consumed by filling 

out forms. 

Our system must be 

accessible to the client 

before scheduling an 

appointment to 

provide more time for 

consultation. 

 

 

Client forgetting 

to fill out 

paperwork before 

a scheduled 

appointment 

A clinic may mail the intake form 

to a client to be filled out before 

an appointment, but a client might 

forget to fill out the paperwork, 

forget to bring in the paperwork, 

or lose the paperwork 

The intake form 

would be filled out 

electronically via a 

clinic’s website 

before an 

appointment is 

scheduled. 

Our system must be 

accessible to a client 

before scheduling an 

appointment to avoid 

paperwork not being 

filled out before an 

appointment. 

 

Clinic has no 

current web 

presence 

Having no web-presence can 

make attracting new clients more 

difficult. Also, clients would not 

be able to gain more information 

on a clinic. 

A web-presence 

would provide 

information to 

potential clients 

with the potential of 

attracting more 

clients.  

Our system must be 

attractive and easy to 

navigate for potential 

clients to gain more 

knowledge about a 

clinic. 

 

Risk Assessment 

A risk is the potential of gaining or losing something of value. Risk is the intentional 

interaction with uncertainty, which is a potential, unpredictable and uncontrollable outcome. A 

risk is a consequence of an action taken despite this uncertainty.  
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It is necessary to assess the risks associated with designing a software system. Both 

quantitative and qualitative assessments may be conducted. A quantitative assessment relates to 

measuring something by quantity rather than its quality. A qualitative assessment is the opposite. 

A software system in this case is measured by its quality rather than its quantity. 

Understanding the risks aid in the development of the application. Being aware of what 

could go wrong with the software aids in planning. 

Case Study—Risk Assessment 

Our case study shows a way to assess risk. 

There are various risks associated with automating the intake process. To assess the risk 

of this automation, a qualitative approach was taken. The top four risks were assessed in order of 

highest to lowest. Table 4 charts them and the severity of each risk based on the likelihood each 

risk will occur. 

Table 4. Risk Assessment 

Undesirable Outcome Very Likely Possible Unlikely 

Privacy Catastrophic Catastrophic Severe 

High Cost (Money) High High Moderate 

Updating form High Moderate Moderate 

Merging forms appropriately Moderate Moderate Low 

 

The risk of highest priority is security. Because this system will deal with medical 

records, all information passed over the internet must be secure. This issue is at the heart of 

designing a system of this type. If this risk is very likely or even unlikely, it is still either 

catastrophic or severe. This risk must be analyzed and mitigated.  
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The second risk is cost. If a therapy clinic does not have a web presence, cost could be a 

factor. Part of this system requires web hosting.  

The third risk is updating the form. If the therapist wants to change the format of the form 

or wants to elicit more information from the client with the form, it would be necessary to alter 

or create new webpages. Also, the database would need to be extended or redesigned. Updating 

forms would be a complicated, time consuming process. 

The fourth risk is merging forms appropriately. Biological, foster, or adoptive parents 

may generate forms for a minor.  If there are multiple forms on the same minor, the forms may 

need to be merged. Each form would need to contain the name of the person filling out the form 

along with the name of the minor. This is currently an open issue and not detailed in the use case 

section of this SRS. 

Problem Statement Matrix 

A problem statement is a short description of the issues that need to be addressed by 

those developing the software. The problem statement matrix consists of six categories—brief 

statements of the problem, urgency, visibility, benefits, priority, and proposed solution. 

Understanding the problems that need to be addressed by the software is key to understanding 

what needs to be done. Ascertaining the problems provides a guide in the software solution’s 

design.  

 Case Study—Problem Statement Matrix 

Our case study shows a way to create a problem statement matrix. The creation of this 

matrix is a significant part of understanding the problem. 

Table 5 details, at a high level, what this system must do. (Client refers to both client and 

guardian.) 
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Table 5. Problem Statement Matrix 

 
Brief Statements of 

Problem 

Urgency Visibility Benefits Priority Proposed Solution 

The main concern 

for this system is 

that it needs to be 

secure. 

High High Having a secure way of 

storing data will 

prevent any loss of 

sensitive client 

information. This will 

allow this system to be 

HIPAA compliant.   

 

1 Using Secure 

Socket Layer 

(SSL) will restrict 

access to this 

system from 

unauthorized 

actors. 

A client must be able 

to create a user 

account. 

High High Without the ability to 

create a user account, 

there would be no way 

to link a client to his 

intake form. 

 

1 A new client will 

be sent an email 

invite to the form 

section of a clinic’s 

website. 

A client needs to be 

able to electronically 

fill out the intake 

form before 

scheduling the first 

appointment.  

 

High High Filling out the forms 

electronically will save 

a client time by not 

needing to arrive early 

to the first appointment.  

1 A client will fill 

out an intake form 

before the first 

appointment is 

scheduled. 

A client needs to be 

able to electronically 

fill out the intake 

form before 

scheduling the first 

appointment. 

 

High High A client would not need 

to spend consultation 

time filling out the 

intake form. 

1 A client will fill 

out the intake form 

before the first 

appointment is 

scheduled. 

A client needs to be 

able to electronically 

fill out the intake 

form before 

scheduling the first 

appointment. 

High High A client will not forget 

to fill out the intake 

form because the first 

appointment would not 

be scheduled until the 

intake form is 

completed. 

1 A client will fill 

out the intake form 

before the first 

appointment is 

scheduled. 

 

Nonfunctional Requirements 

In software engineering and requirements engineering functional requirements define 

specific behavior or functions. A non-functional requirement is a requirement that specifies the 

criteria that can be used to judge the quality and operation of a system. 
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Case Study—Nonfunctional Requirements 

Our case study shows a way to uncover nonfunctional requirements. 

Performance Requirements 

For a small practice, not many people will interact with the proposed system. If other 

clinics have larger practices, then performance issues may apply, but most clinics do not have 

many clients that will be accessing this system at the same time. Thus, this system does not have 

high performance requirements. 

Safety Requirements 

This system is a web-based application and won’t be used in situations where there could 

be loss, damage, or harm that could result from use of the system. 

Security Requirements 

Security is a main concern for this system because sensitive information will be 

transferred over the internet. HIPAA regulations will need to be honored. If security is breached 

while using this system, there could be potential damage to a client’s reputation. Medical records 

must be kept secure, so managing security is highly important. 

Software Quality Attributes 

Because clients or therapists may not be computer-savvy, this system must be easy to use. 

This system should have a good interface that appears attractive to actors. Using this system 

should be easy to understand and its use self-explanatory and uncomplicated.  

The layout of this system is a non-functional requirement. The first page of this system 

should have a picture of the logo and information pertinent to the clinic. At the very top of the 

first page on the right-hand side there should be one link: Log In. On the left side of the page 

there should be three links: Home, About, and Contact. 
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On the login screen, there should be a username field, password field, and a Forgot 

Password link. 

The email invite sent to the adult user will contain a link to register for the forms’ portion 

of the website. On the registration page, there should be the following fields: First and Last 

Name, Address, Phone Number, and Email Address (to be used as the unique identifier of the 

client guardian), and Password and Confirm Password. The password must be at least eight 

characters with at least one number and one special character. The username must be the actor’s 

email address. 

A client or guardian must also be able to change a password. If a client or guardian 

forgets his password, then he can have an email sent to his email address that provides a link to 

change the password associated with that username. The email address is a unique identifier for 

the client or guardian and serves as the username. When a client or guardian needs to request a 

new password, the message is sent to his email address. 

After an adult user is registered or returns to the site, the form landing page of the website 

will be displayed. The adult user will see four buttons: Populate Intake Form, Edit Intake Form, 

Submit Intake Form, and Add Minor. 

If an adult user has added minors, a list of those minors will be displayed. Each minor’s 

name will be hyperlinked. If the adult user drills down on a minor’s name, she will be led to a 

page that has three options: Populate Intake Form, Edit Form, and Submit Form. 

On each page of the adult or minor form there will be five buttons on the bottom right: 

Save, Next, Exit, Submit, and Clear.  
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If the Save button is clicked, all supplied information will be saved to the database. The 

database will allow null values. If the Next button is clicked, all information will be saved and 

the actor will be directed to the next page.  

If the Exit button is clicked, all information will be saved and the actor will be returned to 

the landing page of the form section of the website.  

If the Clear button is clicked, a modal appears asking if the actor wants to clear all fields. 

If the actor chooses yes, all the populated fields on that page will be cleared. Otherwise, the page 

will appear with none of the fields cleared.  

If the Submit button is selected, the form will be submitted only if all required fields are 

populated. The site will be directed to the first place of the form that has not been completed. 

The other uncompleted required fields will be indicated in red. 

Help Features 

To aid in ease of use, the application will have a site navigation guide. There will be a 

link to the guide at the bottom of each page. Also, when an actor hovers over a button, a message 

appears indicating what the button does. When an actor hovers over a field title, such as the 

Medical History title, a message appears to explain the purpose of the field. On each page, there 

will be directions indicating what the actor must do. 

Exception Handling 

When a database exception occurs, this system will display a modal that says, 

“Information not saved. Please close window to return.” This system will return to the page 

before the exception occurred. If a database exception occurs and the actor is returned to the 

previous page, all fields must be populated with the actor’s information. The fields must not be 

empty. 
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When an exception is thrown because a page takes too long to load, a system will display 

a modal that says, “Page took too long to load. Please close window to return.” This system will 

return to the page before the exception occurred. All fields must be populated with the actor’s 

information. The fields must not be empty.  

Business Rules 

Licensed therapists are the only ones who have administrative accounts. Adult actors will 

have access to this system only via an invitation email sent by a clinic. The general-public will 

be able to view the first page of the website that contains information on the clinic. 

Other Requirements 

Data will never be deleted, so the database will inevitably grow; this system must then 

scale up gracefully. 

Further Reading 

Chen [22], Stellman [23], Wiegers [24], and Young [25].  

Architectural Style/Pattern 

A pattern is an arrangement or design regularly found in comparable objects. In building, 

an architect follows a pattern when designing a home. A Colonial home is one architectural style 

and a Victorian home is another. When you talk about a building’s style, a person can see the 

style in their mind. 

In software, an architectural style or pattern represents a structure that a software 

application can have. When solving a problem, a software engineer needs to know what the 

application is like. The software engineer must ask, “Has a similar application been developed, 

and if so can this new software be written in the same style?”  
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Architectural styles are templates for construction, describing a system category which 

encompasses a set of components, such as databases and conceptual models that perform 

functions in a system. Architectural styles contain a set of connectors which enable 

communication, coordination, and cooperation among components and, also, determine the 

constraints on how the components can be integrated to form a system. Architectural styles show 

the semantics of the models which enable a designer to understand the overall properties of a 

system.  

Architectural styles or patterns provide skeletons or templates for high-level designs of 

applications. A style or pattern can be grouped into two categories: architectural structure 

patterns, which address the static structure of the architecture, and architectural communication 

patterns, which address the dynamic communication among distributed components of the 

architecture. 

Case Study—Architectural Style Options 

Our case study indicates three types of architectural style options, with the third, layered 

approach, as preferable. 

Client/Server Architectural Style 

One option for an architectural style is client/server. This style describes distributed 

systems that involve separate client and server systems with a connecting network. In its simplest 

form, it allows a server application to be accessed by many clients. This is referred to as a 2-Tier 

style. In the past, this architecture involved a desktop UI application communicating with a 

database server that holds the business logic in the form of stored procedures. The client/server 

architectural style is a relationship between a client and one or more servers. The client indicates 
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requests, waits for a reply, and then processes those replies. The server authorizes the actor and 

carries out the necessary processing. 

This style is appropriate for this system because it is web-based. The UI would be on the 

server and the business logic would then be processed on the server side. The main benefit of this 

style is that all the data would be stored on the server, which offers greater security than a client 

machine would offer.  

This system must provide as much security as possible, and this would be a good way of 

doing it. Another benefit is that all the data would be centralized. Data would be stored on only 

one server, and accesses and updates to the data would only be done on the server as well, which 

may offer easier administration.  

Another benefit to using this style is that it is easy to maintain, because the 

responsibilities are distributed among many servers known to each other via a network. This 

would ensure that a client would be unaware of and unaffected by server repairs or upgrades. For 

the proposed system, the client would be therapists and clients and the server would be 

maintained by the developer. This system would be exposed through a Web browser. There are 

also the necessary business processes that need to be considered. Because data for this system 

must be hidden, the client/server architectural style could be a good option. 

Data-Centric Architectural Style 

A data-centric architectural style could also be a good choice for this application. Data 

are the most important piece of this system; the main reason for its development is the storing 

and retrieval of data. The goal of this architectural style is to have the database management 

system do as much of the work as possible. The business rules would then be a part of the 

database. This style would rely on SQL. A disadvantage of this is there is no good way of 
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developing a website around it. Behind the scenes of this system could be a data centric system, 

but the front end would still need to be web-based. 

Layered Architectural Style 

The layered architectural style groups related functionality within an application into 

distinct layers and within each of these layers the functionality is related via a common role or 

responsibility. Communication between these layers is loosely coupled and explicit. Basically, 

this architectural style results in a separation of concerns. 

The layered architectural style promotes abstraction, encapsulation, clearly defined 

functional layers, high cohesion, reusability, and loose coupling. This style abstracts the view of 

a system, meaning there is enough detail provided on each role to be understood between layers. 

There need not be any assumptions about data types and methods. Separation between the 

functionalities of the layers is clear. The responsibilities of the different pieces are separate, and 

these separate pieces do not know each other’s tasks or how they are performed. 

This style is recommended to implement this system. The MVC pattern is a layered 

architectural style, and the “separation of concerns” is a good way of approaching the details of 

this system. 

Further Reading 

Avgeriou [26], Buschmann [27], Bass [28], Gomaa [3], and Pressman [1]. 

Conclusion 

Software engineering is a vital piece of software application development that aims to 

create quality products in a timely manner. Our aim was to show key software engineering 

topics. To that aim, we presented traditional and trending elicitation practices. Many of the same 

elicitation techniques used in face-to-face collaboration as are used via conferencing in 
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geographically separated teams. To design a viable software solution, elicitation and being able 

to repeat back to stakeholders the requirements of a system is key. An SRS document aids in this 

communication between software engineers and stakeholders. Modeling a system via UML aids 

in communication between software engineers, stakeholders, and developers.  

We explained several UML features and presented the following via our case study: use 

case diagrams, use cases, context diagrams, class diagrams, entity relationship diagrams, and 

sequence diagrams. We assessed risk and presented a cause-effect analysis and a problem 

statement. We discussed the nonfunctional requirements of our system and possible architectural 

styles. 

We conclude with a quote from Mitch Kapor, the creator of Lotus 1-2-3: 

What is design? It’s where you stand with a foot in two worlds—the world of technology 

and the world of people and human purposes—and you try to bring the two together. … 

The Roman architecture critic Vitruvius advanced the notion that well-designed buildings 

were those which exhibited firmness, commodity, and delight. The same might be said of 

good software. Firmness: A program should not have any bugs that inhibit its function. 

Commodity: A program should be suitable for the purpose for which it was intended. 

Delight: The experience of using the program should be a pleasurable one. Here we have 

the beginnings of a theory of design for software. [29] 
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