
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

6-2018

Selection of UML Models for Test Case
Generation: A Discussion on Techniques to
Generate Test Cases
Raj Kumar Rapolu
St. Cloud State University, rrapolu@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

Part of the Computer Sciences Commons

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Rapolu, Raj Kumar, "Selection of UML Models for Test Case Generation: A Discussion on Techniques to Generate Test Cases"
(2018). Culminating Projects in Computer Science and Information Technology. 26.
https://repository.stcloudstate.edu/csit_etds/26

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/26?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Selection of UML Models for Test Case Generation: A Discussion on

Techniques to Generate Test Cases

by

Raj Kumar Rapolu

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

in Computer Science

June, 2018

Starred Paper Committee:

Ramnath Sarnath, Chairperson

Jie H. Meichsner

Sneh Kalia

2

Abstract

Software development life cycle (SDLC) depicts the distinct phases a software needs to

go through, starting off with the requirement engineering phase through the testing phase.

Requirement engineering and testing hold a very important place in the development of the

software. Testing plays such a crucial part in SDLC that more than development some projects

spend more time on testing. This helps in finding bugs and ensure that a quality product is

shipped.

Test case generation is the toughest step in the testing process. It involves a lot of effort

to find errors in the code. To eliminate the tedious process of finding errors in the code and

improve the efficiency of the software, an innovative approach called Model-Based Testing

(MBT) has been evolved. In the MBT approach, testing begins at the design phase and is thus

helpful in identifying the faults early. Unified Modeling Language (UML) has been used to

generate test cases using MBT. There has been a lot of research and proposals made for MBT

using different UML diagrams. But the problem with these approaches is that a single UML

diagram like activity diagram or sequence diagram is not enough to generate test cases in all the

scenarios. There might be situation where multiple models might be used to generate test case.

This paper discusses about different existing MBT methodologies used for testing and discusses

the guidelines for choosing an efficient UML diagram to generate test cases. It also discusses

about the way of improving the models by using multiple UML models or by extending the

models.

Keywords: Software testing, Model-Based Testing (MBT), Unified Modeling Language

(UML).

3

Table of Contents

 Page

List of Tables .. 5

List of Figures ... 6

Chapter

 1. Introduction ... 7

 1.1 Objectives .. 9

 1.2 Paper Contents ... 10

 2. Related Work and Notation .. 12

 2.1 Related Work ... 12

 2.2 Notation .. 14

 3. Case Studies and Discussion on Techniques .. 22

 3.1 Case Studies ... 22

 3.1.1 Grocery Items Buying System (GIBS) .. 22

 3.1.2 Grocery Item Request (GIR) .. 23

 3.2 Techniques ... 23

 3.2.1 Test Case Generation Using Activity Diagram 24

 3.2.2 Test Case Generation Using Sequence Diagram 29

 3.2.3 Test Case Generation Using State Chart Diagram 37

 4. Observations and Guideline .. 41

 4.1 Observations .. 41

 4.2 Guideline .. 43

4

Chapter Page

 4.2.1 Application of Guideline .. 45

 5. Conclusion and Future Study .. 52

References ... 54

5

List of Tables

Table Page

 1. Activity Dependency Table (ADT) for ATMW ... 19

 2. Activity Dependency Table (ADT) for GIBS ... 25

 3. Test Cases for GIBS .. 27

 4. Operation Scenarios for GIR .. 31

 5. Test Cases for GIR .. 33

 6. Operation Scenario for GIBS .. 35

 7. Test Cases for GIBS Case Study Using Sequence Diagram 36

 8. Comparison of GIR Test Cases for Different Techniques .. 41

 9. Comparison of GIBS Test Cases for Different Techniques 42

 10. Test Cases Generated for a Case Study Using Different Techniques 43

 11. Guidelines to Generate Consistent Test Cases .. 44

 12. Test Cases Generated for GIBS Case Study Using Sequence Diagram and

 LTS ... 50

6

List of Figures

Figure Page

 1. Activity Diagram for ATMW ... 16

 2. Sequence Diagram for ATMW ... 17

 3. State Chart Diagram for ATMW .. 18

 4. Activity Dependency Graph (ADG) for ATMW .. 20

 5. Activity Diagram for GIBS ... 24

 6. Activity Dependency Graph (ADG) for GIBS ... 26

 7. Sequence Diagram for GIR ... 30

 8. Sequence Diagram Graph (SDG) for GIR .. 32

 9. Sequence Diagram for GIBS Case Study ... 34

 10. Sequence Diagram Graph (SDG) for GIBS .. 35

 11. State Chart Diagram for GIBS Case Study ... 37

 12. State Transition Graph (STG) for GIBS Case Study .. 38

 13. Sequence Diagram for GIBS Case Study ... 46

 14. Elements of Labeled Transition System (LTS) .. 47

 15. Labeled Transition System (LTS) for GIBS ... 48

7

Chapter 1: Introduction

Software testing is one of the important steps of Software Development Life Cycle

(SDLC). About 50% of the time taken to release a product is spent on testing [1]. Testing has

helped organizations to release a reliable and stable product in to production. The important goal

of testing is failure detection, which could be defined as finding out the differences between

implementation and expected behavior based on specifications. As the systems are becoming

large and complex, the need to find effective testing mechanism has become a vital part of the

SDLC process. The testing process in SDLC depends mainly on four parts: test case generation,

test case selection, test case execution, and test case evaluation [1]. All four parts are important

but the part that takes a lot of effort and is vital to build an efficient product from day one is test

case generation. It helps in identifying the test cases early in the software development so that

errors could be identified early. Test case generation also needs a lot of effort and plays a key

role on the efficiency and effectiveness of a software test [2].

As software becomes large and complex, the requirement to find a reliable test case

generation scenario has taken a lot of importance. The existing methodologies of automated and

manual testing are useful, but they fail to identify errors early in the SDLC. These methodologies

help in identifying errors after the development process has started and does not identify errors at

the design phase of the software. It is important to identify the test paths earlier in the software

development life cycle as it helps the software developers in designing effective test cases that

would cover all the possible scenarios [3]. This test path could be identified early by using a new

software development paradigm, Model-Based Testing (MBT), by using the design models for

8

testing software, especially object-oriented programs. Some of the important reasons for using

design models in testing object-oriented programs are [4]:

i. Models help in testing the dynamic behavior of object-oriented systems, unlike the

traditional testing techniques which consider only the static view of the code.

ii. Models help the software tester to understand the system in a better way and helps

them to find the test information only by simple processing of models when

compared to the use of code, which may become tedious and complex to test object-

oriented programs.

iii. Model-based test generation helps in carrying out the development of the code and

testing simultaneously by planning the generation of test cases early in the software

development life cycle.

[5] defines MBT as “the automatable derivations of concrete test cases from abstract

formal models, and their execution”. MBT provides a more efficient way of testing as it provides

a methodology with a combination of source code and system requirements for software testers

to test the software. In MBT, test cases are generated using the models, which help the testers to

understand the software in a better way and could get the test information with simple processing

of the models [1]. One of the major advantage of MBT is its ability to detect errors from the

early stage of development and generating test case without being dependent on any

implementation of the design [6]. Using MBT, a model that describes about the system under test

(SUT) could be used to generate test cases. Many of the MBT approaches use Unified Modeling

Language (UML) models to visually depict the software systems.

9

Over the past few years, UML has been gaining a lot of popularity and has gained a lot of

attention from researchers. UML offer different models such as use case, activity, and sequence

diagrams to analyze the system. UML is flexible and is used to describe artifacts of a software

system [7]. Each diagram in UML presents a view of the software and helps developers

understand the system flow. Even though each type of UML diagram offers a view of the

software there are some limitations to each type of model in generating test cases. The problem

with the models is that each type offers unique features and is useful in certain scenarios but

holds some limitation to generate test cases when they are used in a different scenario. To

explain this in detail, let us consider an example of sequence diagram which is good in capturing

the messages between objects, but it is alone not enough to decide different components such as

input, expected output, pre and post conditions of the test cases. If we consider use case diagram,

as it is used to review the requirements it cannot be used for test case generation [1]. Some of the

UML diagrams does not support looping and iteration and cannot be used in such features.

As each of the UML diagram has limitations, it is difficult to identify and select a UML

diagram that can be used for distinctive features of case study. In this paper, we would discuss

this problem, different UML diagrams and how they could be used in test case generation. We

would discuss how a single or a combination of UML models can be used to generate test cases.

This discussion would help researcher and testers find out the models that can be used for a

scenario of test cases generation.

1.1 Objectives

The main objective of this paper is to discuss the existing techniques which use the UML

diagram to generate test cases. Different UML diagrams can be used to generate test cases, but it

10

is difficult to say which would be a better option for case study with a set of features. For

Example: Sequence diagram may not be a good option to generate test cases when the case study

has a looping activity. In such cases, choosing two or more UML diagrams or an extension of

UML diagram would help in covering all the possible test case paths.

In this paper, we would discuss the techniques which use Activity diagram, Sequence

diagram, and State chart diagram to generate test cases. We would consider three case studies,

apply these techniques and discuss about the advantages and limitations of choosing a UML

diagram for a case study.

Finally, we would discuss the technique proposed in [1] to overcome the limitations of

sequence diagram when the case study has a looping activity and also discuss the guidelines

proposed in [1] which helps in selecting one or more UML diagram to generate test cases.

1.2 Paper Contents

In this paper, we discuss techniques that make use of UML diagrams to generate test

cases. After the discussion on different techniques, we compare the test case generated by them,

discuss the drawbacks of the UML diagrams for generating test cases and discuss the guideline

to overcome the drawbacks while using state chart diagram to generate test cases.

Chapter 1 presents introduction which discusses about the importance of model-based

testing and its advantages. Section 1.1describes the objectives of the paper. Chapter 2 discusses

the related work in the field of model-based testing. Chapter 3 presents the case studies that are

used to implement the methods. We use two case studies Grocery Item Buying System (GIBS)

and Grocery Item Request (GIR) to discuss the techniques. Section 3.2 discusses the techniques

in detail. The techniques discussed in this paper use activity, sequence or state chart diagram.

11

Chapter 3 also discusses the results obtained by comparing the case studies. Chapter 4 describes

about the guideline that can be used to eliminate the drawbacks while using state chart diagram

to generate test cases. Chapter 4 makes use of Grocery Item Buying System (GIBS) case study to

describe the implementation of the guideline. Chapter 5 describes the conclusion of the paper. It

presents the overview of the results discussed. And the final section contains the references to

articles, books which have been used during the study of this paper.

12

Chapter 2: Related Work and Notation

In this chapter we will discuss about some of the related work in this field and the

techniques that research have used to generate test cases using MBT. We will also discuss

notation that we will be using through the paper.

2.1 Related Work

The approach proposed in [8] generates the test cases by applying a genetic algorithm on

dominance tree, which is generated from the control flow graph. In a paper by [9], the authors

presents the approach of generating test cases by making use of UML class and sequence

diagrams. In the paper by [10], the authors propose a prototype tool which helps in deriving the

test cases using activity diagrams. The paper presented by [11] proposes the use of System

Modeling Language (SysML) activity diagrams in combination with Modeling and Analysis of

Real-Time and Embedded systems (MARTE) to validate the requirements at early phase of

software development life cycle. It also presents an approach for the translation of SysML

activity diagram to Time Petri Net with Energy constraints (ETPN). The technique proposed in

[4] presents a graph-based method to generate test cases from individual activity diagrams.

In another study which is proposed in [12] makes use of sequence diagram to generate

the test cases. They convert the sequence diagram to sequence diagram graph (SDG) and

generate the test cases from SDG. Each node in SDG has information collected from use cases,

class diagram and data dictionary. Then, test cases are generated by covering all the possible

paths from initial node to final node which would cover all the interactions and message

sequence paths. Automatic Teller Machine (ATM) case study with ATM pin validation as the

use case was considered to implement the approach.

13

Besides these research studies, there have been other studies which used a combination of

UML diagrams to generate test cases. [13] proposed a technique which uses sequence diagram

and state chart diagram to generate test cases. The selection of these UML diagrams is based on

the reasons that sequence diagram describes the interaction between the components whereas

state chart diagram shows the transitions between states in UML. In this technique the sequence

diagram is converted in to sequence graph and the state chart diagram is converted in to state

chart graph, and ultimately these two techniques are combined to create system testing graph

(SYTG). And then, a genetic algorithm is applied to this graph to optimize test cases

automatically based on coverage criteria and fault model. They have used Online voting system

as the case study and have proved that by combining multiple UML diagrams maximum number

of test cases could be covered and helps in solving faults like scenario faults, error handling, and

other faults in the system.

The research study proposed in [14] made use of a combination of activity diagram and

sequence diagram. The activity diagram is converted in to activity graph and sequence diagram

is converted in sequence graph. Then, these two graphs are integrated to form a system graph

which could be used to generate test cases. The depth-first search (DFS) is used to traverse

deeper in the graph. This approach is capable of handling state explosion problem in case of

concurrent system [1]. An example of ATM card validation is used to implement this technique.

The work carried out by [15] uses UML state diagram and Object Constrained Language

(OCL) to generate test cases. They convert the state diagram into Finite State Machine (FSM)

where each node represents state and the arrows describe the transition between the states. FSM

stores valuable information collected from use case diagram including pre and post conditions

14

that are expressed using OCL. To generate the test cases, FSM is traversed based on three types

of coverage criteria which are transition coverage, transition pair coverage and provides state

coverage. For their case study, they have taken the example of ATM cash transaction problem

from ATM case study.

From the literature review, we could observe that there are different methods available to

generate test cases using different UML diagrams. The case studies selected by the researchers

are also mainly concentrated on Online Voting System, Conference Management System, and

Automatic Teller Machine System. Every research has used its own method of test case

generation using different UML diagrams. Some research studies use a single UML diagram

where as other use a combination of UML diagrams. Most of the researches have used a

technique of converting the UML diagram into an intermediate graph which is used to generate

test cases. The graph is traversed based on coverage criteria and fault model to generate test

cases. In some studies, the researchers use a combination of UML diagrams as sequence diagram

and state chart diagram are not alone sufficient to generate test cases. Because of this limitation

an integration of two UML diagrams is required in some cases.

2.2 Notation

There are many notations that have been used throughout the paper. This section will

help us understand all the notations in detail by using simple examples.

Considering the simple use case of Automatic Teller Machine Withdrawal (ATMW), we

explain the different notations that have been used throughout the paper.

Use Case of ATMW: The user selects the withdrawal option from the list of options

presented on the screen. The system requests the user to insert the card. Once the user inserts and

15

removes the card, it validates the card to check if it supported by the system. If it does not

support, it displays the error text and exit. If the system supports the withdrawal from the card,

the system requests the user to enter a pin. The system allows user to enter incorrect pin three

times. If the user has entered a valid pin, then the system will present the amount that is available

in the account and asks to enter the amount to be withdrawn. If the amount entered is below the

available amount, it returns the receipt and money. But if it is greater than the available amount,

it displays an error and exits the system.

Unified Modeling Language popularly known as UML is a language for describing the

software system visually using models. A software might contain a lot of modules with a huge

code base. To provide an abstract view of the system architecture, transfer the knowledge quite

easily and to understand the software system quickly and efficiently, UML provides models

which describe the structure of a software system. Activity, state chart, sequence and use case

diagram are some of the most important models of UML.

Activity Diagram represent the systematic flow of the system. It visually presents the

series of actions performed on the system by the user. It is similar to flow chart. It has a start and

end. Arrows describe the flow of system, whereas rectangle boxes represent the actions

performed. Diamond box represents the condition execution. Figure 1 presents the activity

diagram for ATMW case study.

16

Figure 1: Activity Diagram for ATMW

Sequence Diagram represents the interaction between objects in the system. It describes

the messages between the object in a time sequence and presents the name of the classes

involved in the interaction. Figure 2 presents the sequence diagram for ATMW case study. The

17

rectangular boxes represent the classes in the system. It displays the interaction between the

components and actor being one of the components in the system. For Example: message m1

presents the interaction between the actor and ATMW View and the dotted arrows represent the

response from the system. The blocks are the conditional blocks that would get executed when a

condition is true. For Example: “Amount > Available Amount” is one of the condition presented

in the box. The condition c5 and the message m16 only get executed when the condition is

satisfied.

Figure 2: Sequence Diagram for ATMW

State Chart Diagram represents the dynamic nature of a system. It presents the different

states the system enters during its lifetime. The transition between states are triggered by the

events. Figure 3 presents the state chart diagram for ATMW case study. The black circle

Actor
ATMW
View

ATMW
controller

Card User

Select withdraw money (m1)

Insert card message (m2)

Insert card (m3)

Validate card (m4)

Invalid card (c1)
Display message (m6)

Valid card (c2)

Enter PIN message (m7)

Enter PIN (m8)

Validate PIN (m9)

Validate PIN (m10)

Invalid PIN (c3)

Display message (m11)

Valid PIN (c4)

Enter amount message (m12)

Enter amount (m13)

Validate amount (m14)

Get cards (m5)

Validate amount (m15)

Incorrect amount (c5)

Display message (m16)

Amount > Available amount

Correct amount (c6)

Update amount (m17)

Return amount (m18)

Return receipt (m19)

Amount <= Available amount

18

represents the start of the use case and rectangular box represents the states of the use case.

Display options, insert card, validate card etc., are different states of a software system. The

arrow represents the action on the state and its head points to the state the software attains due to

the action. For Example: “Select Withdraw” is the action performed on the “Display options”

state which moves the system to the new state “Insert card”.

Figure 3: State Chart Diagram for ATMW

Activity Dependency Table (ADT) presents the dependencies of nodes, their input and

output. It helps in gathering information regarding the nodes of activity diagram. Table 1

presents the ADT of GIBS case study. It has five columns symbol, activity name, dependency,

input, and output.

Symbol represents the activity in an activity diagram

Activity Name is name of the activity in an activity diagram

Dependency represent the dependency that the activity has on other activities

19

Input describes the input for the activity

Output describes the output from the activity

For Example: For the second row in ADT, “B” represents the symbol for activity name “Enter

Card”. It has dependencies on node A with an input of “Withdraw option selected: and an output

of “Card Entered”.

Table 1: Activity Dependency Table (ADT) for ATMW

Symbol Activity Name Dependency Input Expected Output

A Select withdrawal

option
 Select withdraw Selecting withdraw option

B Enter Card A Withdraw option

selected

Card Entered

C Validate Card B Card Entered True (Card = “Valid”)

False (Card = “Invalid”)

D Enter PIN C, E True (Card =

“Valid”)

PIN Entered

E Validate PIN D PIN Entered True (PIN = “Valid”)

False (PIN = “Invalid”)

F No. of Correct

Attempts

E False (PIN =

“Invalid”)

Enter PIN (Attempts < 3)

Exit (Attempts >= 3)

G Enter Amount to

Withdraw

E True (PIN =

“Valid”)

Entered amount

H Validate Amount G Entered amount True (Amount = “Valid”)

False (Amount = “Invalid”)

I Return receipt and

money

H True (Amount =

“Valid”)

Display receipt and money

J Exit C, F, H, I Display receipt and

money

Exit the system

Activity Dependency Graph (ADG) is generated from ADT. It presents the dependency

of node on another visually and helps in generating the test case paths. Figure 4 presents the

ADG generated for GIBS case study. The arrows in ADG depict the dependency of a node on

another. The information required for ADG are taken from ADT. ADG can also be defined as

visual representation of ADT.

20

Figure 4: Activity Dependency Graph (ADG) for ATMW

Sequence Diagram Graph (SDG) consists of nodes and edges where each node defines

the event and edge represents the transition between the events. It covers the transitions between

the events and contains all the information to generate test cases.

21

State Transition Graph (STG) describes the process of the system using the vertices.

STG is generated from state chart diagram by representing the state of a system using a vertex

(V). STG contains a list of vertices which can be defined as Vi = (V1, V2, V3….) and there is a

unique edge which joins two vertices. The edges represent transition between the states or

vertices. Figure 6 presents the STG for GIBS case study.

 Coverage Criteria can be defined as guidelines or requirements that need to be met to

generate test cases. They help in covering all possible test path. Node, all-transition and all-

transition coverage criteria are some of the coverage criteria helpful in deriving test cases.

22

Chapter 3: Case Studies and Discussion on Techniques

In this section, we would discuss case studies that we would be using in the paper and

then discuss different techniques of MBT using activity, sequence, and state chart diagram.

3.1 Case Studies

The two case studies that we would be using to explain techniques which use activity,

sequence and state chart diagram are Grocery Items Buying System (GIBS) and Grocery Item

Request (GIR). There were different case studies used by many researchers to explain MBT.

Some of case studies researchers have used are Automatic Ticket Machine System (ATMS),

Automatic Teller Machine Pin Authentication (ATMPA), Automatic Teller Machine Withdrawal

(ATMW) etc. GIBS and GIR are functionally so different and involve a different industry of use

cases. ATMS and ATMPA case studies were used with a looping activity whereas the ATMW

case study was used without any looping activity. When the case studies are compared based on

the looping activity, GIBS case study involves looping activity whereas GIR case study does not

involve any looping activity. Thus, both GIBS and GIR helps us in discussing the techniques and

the results they produce when case studies with varying features are used to generate test cases.

This is the primary reason to choose these case studies, to study how different techniques work

for a case study involving looping activity and the one that does not involve looping activity.

3.1.1 Grocery Items Buying System (GIBS)

The precondition to this user story is that the user has successfully logged in to the

system. The user selects a store and clicks on continue. If the user has not selected any store, the

user will see a message to select the store and displays the list of stores. If the store is valid he

will be presented with a list of items available in the store and he can select them. The selected

23

items are stored in the cart. Then the user checkouts the cart and system searches for the number

of items in the cart. If the selected items are zero, then the user is presented with an option to

select items or exit the system. If user selects to exit he will return to the initial screen otherwise

the system presents the list of items to the user. If it is greater than zero, system will check if all

the items and their quantity are still available. If the items are available, the system request for

payment details. If not available, it corrects the items to available items and then requests to enter

payment details. Once the user enters payment details, it authorizes the payment. After the

authorization the user will get a confirmation coupon and then he can go and pick it up at the

store. Otherwise, he will be prompted with a message saying that the payment method has failed,

and the user needs to correct the payment details.

3.1.2 Grocery Item Request (GIR)

The user wants to request a grocery store about the item he is interested in buying with

them which the store has not stocked. The user enters the item name and system searches for all

the items matching the name. If there is no match the system exits with a message. If the item

exists, the list of items which matches the name are displayed. The user selects an item and the

system searches if a request already exists for that item. If it exists, the existing request is

returned otherwise it creates a new request and returns the request.

 3.2 Techniques

 We use GIBS and GIR case study to implement the techniques and generate test cases.

The techniques we are going to discuss make use of one among the activity, sequence or state

chart diagram. We are going to discuss about why a technique generate specific set of test cases

and the disadvantages of using a model to derive test cases.

24

3.2.1 Test Case Generation Using Activity Diagram

[16] used activity diagram to generate test cases. They have used ATM withdrawal case

study to propose test case generation technique. In this test case generation technique proposed

by [16], they have used activity diagram as a source of test case generation. The reason they have

selected the activity diagram is that the activity diagram helps in presenting the activity flow of

the case study. In this section, we discuss about [16] technique with the help of a case study

Grocery Items Buying System (GIBS).

Figure 5 presents the activity diagram created for GIBS. It presents how the users interact

with the system and presents the flow of various activities between user and GIBS. In the activity

diagram, each node represents the activity or action that needs to be carried out where as the

edges represent the transition between the activities.

Figure 5: Activity Diagram for GIBS

25

3.2.1.1 Technique Overview

The technique proposed by [16] uses activity diagram for test case generation. Using

activity diagram, an Activity Dependency Table (ADT) is created. In ADT, each activity is given

a symbol, and contains the information about the expected input and output, dependencies on

other activities. After the creation of ADT, it is converted in to Activity Dependency Graph

(ADG) from which the test cases are generated.

3.2.1.2 Generation of Activity Dependency Table (ADT)

After the creation of activity diagram, an ADT is created which contains information

about the activities and its unique symbol, input and output, and dependencies on the other

activities. Table 2 presents the ADT for GIBS case study.

Table 2: Activity Dependency Table (ADT) for GIBS

Symbol Activity Name Dependency Input Expected Output

A Select a Store Select store Store Selected

B Validate Store A Store Selected True (Store = “Selected”), False

(Store = “Not Selected”)

C Select Items B True (Store =

“Selected”)

Items Selected

D Calculate No. of

Items

C Items Selected True (Items>0), False (Items=0)

E Display Option D Items = 0 Display Options

F Choose Exit or

select items

E Options Displayed True (Exit), False (Select items)

G Verify if all items

are available

D Items>0 True (All items available)

False (All items not available)

H Adjust items G All items not

available

Adjusted items

I Display Cart G, H Select available

items

Displays items and price

J Make Payment I, K Display items and

price

Processes payment request

K Validate Payment J Processes payment True (Valid payment),

False (Invalid payment)

L Display Coupon K Valid payment Displays coupon

M Exit L, F Display coupon or

exit

Systems becomes Idle

26

3.2.1.3 Generation of Activity Dependency Graph (ADG)

In the next step, ADT and activity diagram are used to generate ADG. ADG is made up

of nodes and edges. Each node is represented by the symbol used to denote each activity and

edges represent the transition between activities or nodes. An edge with a pointing arrow is

drawn from one node to the other node that it is dependent on. The arrow points out the direction

of the dependency. By applying this procedure to the entire ADT, we create an ADG. Figure 6

illustrates ADG for GIBS.

Figure 6: Activity Dependency Graph (ADG) for GIBS

27

3.2.1.4 Generation of Test Cases

After the creation of ADG, all the possible test case paths are generated using ADG.

Using the Depth First Search (DFS) technique, the test case paths are generated. By analyzing

and using DFS for ADG presented in Figure 2, we could obtain six possible test case paths. The

possible test case paths are presented below:

Path 1: A-B-A-B-C-D-E-F-M

Path 2: A-B-A-B-C-D-G-I-J-K-L-M

Path 3: A-B-C-D-E-F-C-D-G-I-J-K-L-M

Path 4: A-B-A-B-C-D-G-H-I-J-K-L-M

Path 5: A-B-C-D-E-F-C-D-G-H-I-J-K-L-M

Path 6: A-B-C-D-G-I-J-K-J-K-L-M

After generating the test paths by traversing through ADG, the information from ADT is

extracted and added to test path. A table is created by adding the information and is presented in

Table 3. The table lists all the six paths that are generated along with all the information

regarding the activities. The number of test cases generated using this technique are same when

compared with the state chart diagram technique proposed in [17].

 Table 3: Test Cases for GIBS

Test

Case

Test

Path

Node Input Node Expected Output Test Case

Input

Test Case

Expected

Output

1 A

B

A

B

C

D

E

F

M

Select Store

False (Store = “Not Selected”)

Select Store

True (Store = “Selected”)

Select Items

Calculate No. of Items (Items = 0)

Display Option

Choose Exit or select items Exit

False (Store = “Not

Selected”)

True (Store =

“Selected”)

Items = 0

Exit

Items = 0 Failure, Exit

system

28

2 A

B

A

B

C

D

G

I

J

K

L

M

Select Store

False (Store = “Not Selected”)

Select Store

True (Store = “Selected”) Select

Items

Calculate No. of Items (Items>0)

Verify if all items are available (All

available)

Display Cart

Make Payment

Validate Payment

True (Valid payment)

Display Coupon

Exit

False (Store = “Not

Selected”)

True (Store =

“Selected”)

Items>0

All Items available

True (Valid payment)

Get coupon

Valid

payment

Get Coupon

3 A

B

C

D

E

F

C

D

G

I

J

K

L

M

Select Store

True (Store = “Selected”) Select

Items

Calculate No. of Items

Items = 0

Display Option

Choose Exit or select items

Select Items

Calculate No. of Items

Items > 0

Verify if all items are available

All Items are available

Display Cart

Make Payment

Validate Payment

True (Valid payment)

Display Coupon

Exit

True (Store =

“Selected”)

Items = 0

Item > 0

All Items are available

True (Valid payment)

Get Coupon

Valid

payment

Get Coupon

4 A

B

A

B

C

D

G

H

I

J

K

L

M

Select Store

False (Store = “Not Selected”)

Select Store

True (Store = “Selected”) Select

Items

Calculate No. of Items

Items > 0

Verify if all items are available

All items not available

Adjust items

Display Cart

Make Payment

Validate Payment

Valid payment

Display Coupon

Exit

False (Store = “Not

Selected”)

True (Store =

“Selected”)

Items > 0

All items not available

True (Valid payment)

Get Coupon

Valid

Payment

Get Coupon

29

5 A

B

C

D

E

F

C

D

G

H

I

J

K

L

M

Select Store

True (Store = “Selected”) Select

Items

Calculate No. of Items

Items = 0

Display Option

Choose Exit or select items

Select Items

Calculate No. of Items

Items > 0

Verify if all items are available

Adjust items

Display cart

Make Payment

Validate Payment

Valid payment

Get Coupon

True (Store =

“Selected”)

Items = 0

Items > 0

Validate Payment

Get Coupon

Valid

Payment

Get Coupon

6 A

B

C

D

G

I

J

K

J

K

L

M

Select Store

Validate Store

True (Store = “Selected”)

Select Items

Calculate No. Items

Items > 0

Verify if all items are available

All items are available

Display Cart

Make Payment

Validate payment

Invalid payment

Make payment

Validate payment

Valid payment

Get coupon

True (Store =

“Selected”)

Items > 0

All items are available

Invalid payment

Valid payment

Get coupon

Valid

Payment

Get Coupon

3.2.2 Test Case Generation Using Sequence Diagram

In this section we use the technique proposed by [12] which uses sequence diagram to

generate test cases. The technique proposed by [12] uses a case study, Automatic Teller Machine

Pin Authentication (ATMP). Sequence diagram helps in picturizing the interaction between the

user and the system. In this section, we use Grocery Items Request (GIR) case study to present

this technique and compares the test case generated in this case study with other case studies.

30

Figure 7 presents the sequence diagram created for GIR. It presents the actions and

messages exchanged between the user and the system.

3.2.2.1 Technique Overview

In this technique, first, a sequence diagram is created which would capture the interaction

between the user and the system. Then an operation scenario is used to convert sequence diagram

in to Sequence Diagram Graph (SDG). Using SDG, test cases are generated.

Figure 7: Sequence Diagram for GIR

3.2.2.2 Generation of Operation Scenario

[12] proposed operation scenario as the guide to convert sequence diagram to SDG. They

have defined operation scenario as a quadruple and is stated as below:

aOpnScn: <ScnId; StartState; MessageSet; NextState>

Where,

ScnId: A unique number which identifies each operation scenario.

User
Grocery

system View

System

Controller

Items

Controller

Items

Model

Requests

Controller

Requests

Model

Enter item name (m1)

Find item (m2)

Get items (m3)

Get item (m4)

No items (c1)

Items exists (c2)

Display message (m5)

Return items (m6)

Select item (m7)

Search request (m8)

Get request for item (m9)

Get request (m10)

Request exits (c3)

Return request (m11)

Request does not exist (c4)

Create request (m12)

Return request (m13)

31

StartState: It is the starting point of a scenario.

Message set: Represents all the events that occur in an operation scenario.

NextState: It is the next state the system enters after the completion of the scenario.

All the events that occur in a scenario are represented as a tuple:

<messageName; fromObject; toObject[|guard]>

Where,

messageName is the name of the message with its signature

fromObject is the sender of the message

toObject is the receiver of the message

|guard parameter is the condition to subject with the event occurs.

An operation scenario can have only a single startState but can have multiple endState.

The operation scenarios for GIR case study are presented in the Table 4. State X is defined as the

start state for all the scenarios, whereas State Y as the failure state and State Z as the success

state for all the operations.

Table 4: Operation Scenarios for GIR

<Scn 1 <Scn 2 <Scn 3

State X State X State X

S1: (m1, a, b) S1: (m1, a, b) S1: (m1, a, b)

S2: (m2, b, c) | c1 S2: (m2, b, c) | c2 S2: (m2, b, c) | c2

S3: (m3, c, d) S3: (m3, c, d) S3: (m3, c, d)

S4: (m4, d, e) S4: (m4, d, e) S4: (m4, d, e)

S5: (m5, b, a) S6: (m6, d, a) S6: (m6, d, a)

State Y S7: (m7, a, b) S7: (m7, a, b)

 S8: (m8, b, c) | c3 S8: (m8, b, c) | c4

 S9: (m9, c, f) S9: (m9, c, f)

 S10: (m10, f, g) S10: (m10, f, g)

 S11: (m11, f, a) S12: (m11, f, g)

 State Z S13: (m13, f, a)

 State Z

32

3.2.2.3 Transformation of Sequence Diagram in to Sequence Diagram Graph (SDG)

After all the operation scenarios are identified, an SDG is created. An SDG consists of

nodes and edges where each node defines the event and edge represents the transition between

the events. The SDG created using the sequence diagram and operation scenario is presented in

Figure 8.

Figure 8: Sequence Diagram Graph (SDG) for GIR

SDG contains all the information required to generate test paths. It covers all the

interactions starting from start node to the final node. There are two different final nodes, final

node Y and final node Z. The final node Y denotes an unsuccessful transaction whereas final

node Z denotes the successful transaction. The test case that are generated from SDG are:

Path 1: S1-S2-S3-S4-S5 = Unsuccessful

Path 2: S1-S2-S3-S4-S6-S7-S8-S9-S10-S11 = Successful

Path 3: S1-S2-S3-S4-S6-S7-S8-S9-S10-S12-S13 = Successful

33

These test path can be used to generate the final test cases. Each test path contains all the

information including the expected input and output.

3.2.2.4 Generation of Test Cases

A set of test sets are defined to generate test cases. This sets could be used to detect any

faults that occur when an object invokes a method of another object or whether message passing

follows the correct sequence to finish an operation. The coverage criteria for this technique is

defined as, given a test set A and sequence diagram B, T must cause each sequence of message

path exercised at least once [1]. This coverage criteria and fault model is used to generate the test

cases. The generated test cases are presented in Table 5.

Table 5: Test Cases for GIR

Test case scenario Input Output

1 Product Name =

“Invalid”

Message would be that there are

no items with the entered name

2 Product Name = “Valid”

Request = “Exists”

Displays the existing request

3 Product Name = “Valid”

Request = “Not exists”

Creates and displays request

The three test cases generated using this technique are same when compared to the test

cases generated using [16] which uses activity diagram to generate the test cases. The technique

proposed in [17] uses state chart diagram to generate test case. When [17] technique is used, the

test cases generated are consistent with that of the other two techniques. So, for GIR case study

the test cases generated are all the same in all the techniques and this is because the GIR case

study does not contain any looping activity. This confirms that the features of the case study

affect the generation of test cases.

34

3.2.2.5 Test Case Generation for GIBS Using Sequence Diagram

[12] used sequence diagram to generate test cases. Here, we use GIBS case study which

involves looping activity to generate test cases.

Using sequence diagram, we generate the operation scenario table and then we create

SDG from the operation scenario table.

Figure 9 presents the sequence diagram for GIBS case study. The operation scenario for

this case study is presented in Table 6. It produces two unsuccessful and two successful

scenarios.

Figure 9: Sequence Diagram for GIBS Case Study

User
GIBS
View

System
Controller

Items
Controller

Items
Model

Select store (m1)

Verify Store (m2)

Invalid store (c1)

Display message (m3)

Valid store (c2)

Get Items (m4)

Get Item (m5)

Return items list (m6)

Select Items (m7)

Verify items (m8)

No Item selected (c3)

Display option (m9)

Select exit (m10)

Items <= 0

Display message (m11)

Check Items Availability and adjust (m12)

Items > 0 (c4)

Return available items (m13)

Make payment (m14)

Validate payment (m15)

Invalid payment (c5)

Display message (m16)

Valid payment (c6)

Display coupon (m17)

Items > 0

35

Table 6: Operation Scenario for GIBS

<Scn 1 <Scn 2 <Scn 3 <Scn4

State X State X State X State X

S1: (m1, a, b) S1: (m1, a, b) S1: (m1, a, b) S1: (m1, a, b)

S2: (m2, b, c) | c1 S2: (m2, b, c) | c1 S2: (m2, b, c) | c1 S2: (m2, b, c) | c1

S3: (m3, b, a) S4: (m4, c, d) S4: (m4, c, d) S4: (m4, c, d)

State Y> S5: (m5, d, e) S5: (m5, d, e) S5: (m5, d, e)

 S6: (m6, d, a) S6: (m6, d, a) S6: (m6, d, a)

 S7: (m7, a, b) S7: (m7, a, b) S7: (m7, a, b)

 S8: (m8, b, c) | c3 S8: (m8, b, c) | c4 S8: (m8, b, c) | c4

 S9: (m9, b, a) S12: (m12, c, d) S12: (m12, c, d)

 S10: (m10, a, b) S13: (m13, d, a) S13: (m13, d, a)

 S11: (m11, b, a) S14: (m14, a, b) S14: (m14, a, b)

 State Y> S15: (m15, b, c) | c5 S15: (m15, b, c) | c6

 S16: (m16, b, a) S17: (m17, c, a)

 State Z> State Z>

The sequence diagram graph (SDG) can be created using Table 6 and is presented in

Figure 10.

Figure 10: Sequence Diagram Graph (SDG) for GIBS

36

From Figure 10, the test case paths that are generated are listed below.

Path 1: S1-S2-S3 = Unsuccessful

Path 2: S1-S2-S4-S5-S6-S7-S8-S9-S10-S11 = Unsuccessful

Path 3: S1-S2-S4-S5-S6-S7-S8-S12-S13-S14-S15-S16 = Successful

Path 4: S1-S2-S4-S5-S6-S7-S8-S12-S12-S14-S15-S17 = Successful

Using above test case paths and by gathering more information, test cases are presented in

Table 7.

From Table 7 we could infer that sequence diagram generate four test cases for GIBS

case study. This is because sequence diagram does not cover all the looping or iteration activities

of the case study. The sequence diagram failed to cover the looping activity when the selected

store is invalid. It also failed to cover the looping activity when the payment is invalid. These are

the two test cases which sequence diagram failed to cover. Because of this reason, it generates

four test cases whereas activity diagram technique generates six test cases.

Table 7: Test Cases for GIBS Case Study Using Sequence Diagram

Test case scenario Input Output

1 Store = “Invalid” Message would be to select a store.

2 Store = “Valid”

Selected items = 0

Select Exit

Displays the initial screen with stores.

3 Store = “Valid”

Selected items > 0

All items are available

Payment = “Valid”

Displays the coupon

4 Store = “Valid”

Selected items > 0

All items are not available

Payment = “Invalid”

Displays the coupon

37

3.2.3 Test Case Generation Using State Chart Diagram

 In this section we discuss technique proposed by [17] which uses state chart diagram to

generate test cases. They have proposed a test case coverage criterion which would be useful

when UML state chart diagram is used to generate test cases. It uses ATMW case study to

demonstrate the coverage criterion. State chart diagram is useful in describing the behavior of a

system and model dynamic nature of the system [1]. In this section, we discuss the coverage

criterion presented in [17] technique using Grocery Item Buying System (GIBS) case study.

Figure 11 presents the state chart diagram for GIBS case study. The state chart diagram

presents different states involved and the transitions between the states.

Figure 11: State Chart Diagram for GIBS Case Study

38

3.2.3.1 Technique Overview

In this technique, state chart diagram is converted in to state transition graph (STG). All

the information that is required to generate test cases is extracted from STG. Using STG, we

define the test paths and extract the test cases based on different coverage criterion like all-state

coverage, all-transition coverage, all-transition-pair coverage.

3.2.3.2 Conversion of State Chart Diagram to State Transition Graph

State transition graph (STG) describes the process of the system using the vertices. STG

is generated from state chart diagram by representing the state of a system using a vertex (V).

STG contains a list of vertices which can be defined as Vi = (V1, V2, V3….) and there is a

unique edge which joins two vertices. The edges represent transition between the states or

vertices. Figure 12 presents the STG for GIBS case study.

Figure 12: State Transition Graph (STG) for GIBS Case Study

39

3.2.3.3 Coverage Criterion

[17] discusses about different coverage criterion which would be useful in covering all

the possible test paths. The different coverage criterion to consider while generating test case

using state chart diagram are:

All-State Coverage specifies that each state should be visited at least once to satisfy this

criterion. It is useful in covering all the states in a coverage criterion. This criterion helps in

analyzing if all the states are visited and considered while generating test cases.

All-Transition Coverage specifies that each transition must be visited at least once to

satisfy this criterion. It is useful in covering all the transition between the state and helps in

analyzing if all the transition has been considered while generating test cases.

All-Transition-Pairs Coverage specifies that the test cases should considers all adjacent

transition successively entering and leaving a state. It is useful in covering all the transitions

leaving from a given state.

3.2.3.4 Generation of Test Cases

To generate test cases we consider state transition graph (STG) presented in Figure 6.

From STG, we define the set of vertices as Vi = (V1, V2, V3, V4, V5, V6, V7, V8, V9, V10,

V11) and edges as Ei = (E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14)

The six test paths that are generated covering all the coverage criteria are:

Test Path 1: V1-V2-V3-V4-V5-V6-V7-V8-V9-V12

Test Path 2: V1-V2-V3-V4-V5-V11-V6-V7-V8-V9-V12

Test Path 3: V1-V2-V1-V2-V3-V4-V5-V6-V7-V8-V9

Test Path 4: V1-V2-V3-V4-V5-V6-V7-V8-V7-V8-V9-V12

40

Test Path 5: V1-V2-V3-V4-V10-V3-V4-V5-V6-V7-V8-V9-V12

Test Path 6: V1-V2-V3-V4-V10-V4-V10-V12

 The GIBS case study generates six test cases when state chart diagram is used. The same

case study generates four test cases when sequence diagram is used but when activity diagram is

used GIBS case study produces six test cases. This inconsistency of test case between state chart

or activity diagram with sequence diagram is because the GIBS case study involves looping

activities. As sequence diagram fails to capture the looping activity of a use case, it does not

cover all the test cases. Whereas, activity and state chart diagram can be individually chosen to

generate test cases for case studies involving looping activity.

41

Chapter 4: Observations and Guideline

In this section, we will be discussing about the observation that we have made using the

three techniques we discussed in the previous section. Based on the observations, we would

discuss a guideline to eliminate the limitations of UML diagrams.

4.1 Observations

Based on the case studies and techniques applied in the previous section, we could infer

that only GIR case study produces consistent results among two techniques that were used to

generate test cases. The two test cases are demonstrated with different techniques to generate test

cases, but all the techniques produce the same number of test cases in case of GIR case study.

This is depicted in the Table 8 which shows the comparison of the test cases generated for GIR

case study with different techniques of generation.

Table 8: Comparison of GIR Test Cases for Different Techniques

GIR test cases Activity Diagram Sequence Diagram State Chart Diagram

Test case 1 Yes Yes Yes

Test case 2 Yes Yes Yes

Test case 3 Yes Yes Yes

The reason GIR case study generates three test cases even when different techniques are

used to generate test cases is that the GIR case study does not have any looping or iteration

activity. For this reason, all the three UML diagrams can be used to generate test case for the

case studies that does not involve looping or iteration activity.

GIBS generates inconsistent test cases when different techniques are used to generate test

cases. The reason is because the GIBS case study involves looping or iteration. Due to this, a

sequence diagram alone cannot cover all the test case paths. Furthermore, normally modeled

sequences are not complete and does not offer any information on when the model behavior will

42

occur [18]. From the case study, GIBS which involves looping or iteration activity, we could

infer that sequence diagram alone is not enough to cover all the test case paths for the case

studies involving looping or iteration activity [1].

Table 9 displays the types of test cases generated for GIBS case study, from which we

could infer that the sequence diagram technique does not generate the two test cases, whereas the

other two techniques generate six test cases.

Table 9: Comparison of GIBS Test Cases for Different Techniques

GIBS test cases Activity Diagram Sequence Diagram State Chart Diagram

Test case 1 Yes Yes Yes

Test case 2 Yes Yes Yes

Test case 3 Yes Yes Yes

Test case 4 Yes Yes Yes

Test case 5 Yes No Yes

Test case 6 Yes No Yes

From the above case studies and results which are presented in [1], we could infer that

not all UML diagrams support looping or iteration activities. In the two case studies, GIR case

study is the only one which produces consistent results using activity, sequence and state chart

diagram. Whereas, the other case study generates inconsistent test cases when sequence diagram

is used to generate test cases. The final number of test cases generated using different techniques

are presented in the Table 10. Using these observation, a guideline is proposed in [1], which

discusses about the UML diagrams that could be used in a specific scenario to generate

consistent test cases. In the next section, we discuss the guideline proposed in [1].

43

Table 10: Test Cases Generated for a Case Study Using Different Techniques

Case studies\Type of

UML diagram

Activity Diagram Sequence Diagram State chart Diagram

GIR 3 3 3

GIBS 6 4 6

4.2 Guideline

The guideline presented in [1] helps the readers and researchers to choose a correct set of

UML diagram to produce consistent test cases. This guideline takes in to consideration the

features of the case study and analyzes the best possible UML diagrams that could be used to

generate consistent number of test cases.

This guideline is based on two factors: one of them is the features of the case study and

the other is the type of UML diagram [1]. The features of the case study correspond to the

looping or iteration activity of the case study or the concurrent execution of the case study. And

the type of UML diagram depends on the features of the case study which could generate

consistent test cases. There are certain rules that this guideline imposes which are proposed in

[1]:

a) Sequence diagram is good at capturing the interaction between the components in the

system, but it fails in capturing the looping and iteration activities in the system.

Because of this reason, sequence diagram should never be used in a case study which

involves looping or iteration activity.

b) Activity diagram which is one of the most commonly used UML diagram to generate

test cases, describes about the sequence of operations or steps need to complete a use

case. Activity diagram could be used to generate test cases for case studies involving

44

looping or iteration activity, and concurrent activity. It could also be used for case

studies where there is no looping or iteration activity.

c) State chart diagram presents the dynamic behavior of the system. The transitions

occur due to an event on the system. State chart diagram could be used in all the case

studies that the activity diagram could be used in.

d) For the case studies which does not involve looping or iteration activity, either of the

three UML diagrams (activity diagram, sequence diagram, state chart diagram) could

be used. They all generate consistent test cases when there is no looping or iteration

activity.

e) For the case studies involving looping and iteration activity, activity and state chart

diagram could be used alone to generate test cases. If you want to use sequence

diagram to generate test case, you could use this along with Labeled Transition

System (LTS). This combination of sequence diagram and LTS generate the same

number of test cases as the activity diagram, and state chart diagram.

Table 11 summarizes the rules proposed by [1].

Table 11: Guidelines to Generate Consistent Test Cases

Features of the case study UML Diagrams

Case studies which does not involve looping or

iteration process

1. Activity Diagram

2. State Chart Diagram

3. Sequence Diagram

Case studies which involves looping process 1. Activity Diagram

2. State Chart Diagram

3. Sequence Diagram with Labeled

Transition System (LTS) extension.

From Table 11 we could infer that if sequence diagram is needed to generate test cases

for case studies which involve looping or iteration activities, it could be combined with LTS

45

which helps in generating consistent test cases when compare with activity diagram and state

chart diagram. LTS technique transforms the sequence diagram and captures all the actions that

occur and change the state of the system [1]. LTS captures all the interaction and labels them.

This would help in deriving the final set of test case paths.

4.2.1 Application of Guideline

This section presents the methodology discussed in [1] to generate consistent number of

test cases by using sequence diagram in combination with LTS. We discuss about the

methodology by considering GIBS as the case study. In the above section, we have discussed

that sequence diagram alone is not enough to generate test cases in case studies which involve

looping or iteration activity. To solve this problem and to generate consistent number of test

cases using sequence diagram, a technique has been proposed by researcher in [19] which uses

LTS technique along with sequence diagram. This technique generates the same number of test

cases as activity diagram, and state chart diagram.

4.2.1.1 Creation of Sequence Diagram from GIBS Case Study

Figure 13 represents the sequence diagram for GIBS case study. It represents the

interaction between user and the system. The user communicates with GIBS system and the

messages or type of operation that are performed by the user and the system are depicted in the

sequence diagram. Once the sequence diagram is generated for the GIBS case study, we could

use LTS, which generates the functional feature behavior, from which we could generate the test

case paths.

46

Figure 13: Sequence Diagram for GIBS Case Study

4.2.1.2 Transformation of Sequence Diagram in to Labeled Transition System (LTS)

LTS is one of the formal methods that can be used to represent the behavior of a system

[20]. One of the problem with sequence diagram is its inability to represent looping or iteration

operation. Because of this reason it is difficult to extract test cases covering these scenarios. This

problem can be eliminated by using sequence diagram in combination with Labeled Transition

System (LTS).

The researcher in [19] defined LTS as “a highly testable model that provides a universal,

monolithic description of the set of all possible behaviors of the system”. Figure 14 shows the

User
GIBS
View

System
Controller

Items
Controller

Items
Model

Select store (m1)

Verify Store (m2)

Invalid store (c1)

Display message (m3)

Valid store (c2)

Get Items (m4)

Get Item (m5)

Return items list (m6)

Select Items (m7)

Verify items (m8)

No Item selected (c3)

Display option (m9)

Select exit (m10)

Items <= 0

Display message (m11)

Check Items Availability and adjust (m12)

Items > 0 (c4)

Return available items (m13)

Make payment (m14)

Validate payment (m15)

Invalid payment (c5)

Display message (m16)

Valid payment (c6)

Display coupon (m17)

Items > 0

47

three elements of the system. (a) the initial state of the system, (b) the action performed on the

system that initiates the transition of the state, (c) the final state of the system after the transition.

Figure 14: Elements of Labeled Transition System (LTS)

[1] defines LTS as a 4-tuple, S = (Q, A, T, q0), where:

 Q is a finite, nonempty set of states,

 A is a finite, nonempty set of states,

 T is a transition relation, is a subset of QxAxQ,

 q0 is the initial state.

To transform the sequence diagram in to LTS, the scenarios need to be obtained from the

sequence diagram which represents the user actions and the system response. To add more

details to LTS, annotations could be added which are steps, expectedResults, and conditions. The

purpose of each annotation as defined in [1] is:

• Steps, the users action to be performed

• Expected Results, the systems response for user’s actions.

• Conditions, a true of false situation which validates user’s actions.

Figure 15 shows LTS which is created by transforming sequence diagram. LTS has nodes

and transitions, with “0” being the initial node and incrementing the node count as new actions

or transitions are performed. For each transition a new state is created.

48

Figure 15: Labeled Transition System (LTS) for GIBS

The label “Steps” is used for transition from user-system or user-user. Whereas,

“Expected Results” label is used to represent the transition from system to user. The label

“Conditions” represent a state where the system validates user selection.

49

4.2.1.3 Generation of Test Cases

To generate test cases from LTS we use Depth First Search (DFS) technique. It helps in

identifying all the paths from LTS. Using DFS, first the left branch is explored deeply before

ntering the right branch. We start the DFS technique from the initial node of LTS. The generated

test paths using DFS on LTS for GIBS case study are shown in Table 12.

The test paths are represented in the table and hence it is called Path Table. The Path

Table shows that six test case paths are generated for GIBS case study. Each row in the path

table represents a test case generated. Sequence diagram with LTS generates six test cases. test

cases generated using this technique are consistent with the test case generated from activity

diagram, and state chart diagram.

This method of generating test cases using sequence diagram and LTS extension is

different from other techniques [1]. Other techniques use a UML model and covert in to a graph

and generate test case from them. But this technique generates test cases by using an extension of

LTS which is generated by transforming the sequence diagram. By using this extension of LTS,

we eliminated the disadvantage of using sequence diagram to generate test case for case studies

involving looping or iteration activity.

50

Table 12: Test Cases Generated for GIBS Case Study Using Sequence Diagram and LTS

Test case number Test case path

1 Step: Select Store

Condition: Invalid Store

Expected Result: Display message and select store

2 Step: Select Store

Condition: Valid Store

Expected Result: Display Items

Step: Select Items

Condition: Item = 0

Expected Result: Display option

Step: Select exit

Expected Result: Exit

3 Step: Select Store

Condition: Valid Store

Expected Result: Display Items

Step: Select Items

Condition: Item = 0

Expected Result: Display option

Step: Select Items

4 Step: Select Store

Condition: Valid Store

Expected Result: Display items

Step: Select Items

Condition: Item > 0

Condition: All items available

Expected Result: Display cart

Step: Make payment

Condition: Invalid payment

Expected Result: Revise payment

5 Step: Select Store

Condition: Valid Store

Expected Result: Display items

Step: Select Items

Condition: Item > 0

Condition: All items available

Expected Result: Display cart

Step: Make payment

Condition: Valid payment

Expected Result: Display coupon

6 Step: Select Store

Condition: Valid Store

Expected Result: Display items

Step: Select Items

Condition: Item > 0

Condition: All items not available

Expected Result: Adjust items

Step: Make payment

51

Sequence diagram with LTS extension generates consistent test cases compared with

activity diagram and state chart diagram. As we have already observed that sequence diagram

alone cannot be used to generate test cases for case studies involving looping or iteration activity

instead we could use activity diagram, state chart diagram, or sequence diagram with LTS

extension.

52

Chapter 5: Conclusion and Future Study

 Generating test cases is a challenging task and requires a lot of effort. Generating and

analyzing the test cases early in the software development process helps in detecting the faults

earlier. Using UML diagrams to generate test cases is challenging as there are some advantages

and disadvantages for each of them.

 In this paper we have discussed case studies which have distinctive features. We have

discussed about the techniques using different UML diagrams and discussed which would be the

best one to choose in a case study based on the features. For the case studies which does not

involve looping or iteration activity, we could use activity, sequence or state chart diagram. All

the three UML diagrams produce consistent results for the case studies which does not have

looping or iteration activity.

For the case studies which involve looping or iteration activity, sequence diagram alone

might not be sufficient to cover all the test case paths. To achieve consistent results for such case

studies we could either choose activity diagram, state chart diagram or a sequence diagram with

an extension of Labeled Transition System (LTS). By using LTS as an extension we could use

sequence diagram to generate the test cases which would produce consistent results when

compared to test cases generated using activity or state chart diagram.

In this paper, we have discussed how the features of a case study affects in choosing a

model to generate test cases. We have specifically looked at the looping activity in the use case

and how it would affect the usage of models. Similarly, there could be discussion in future

regarding the other features like nested looping, conditional statements that would impact the

models. Discussing these would help software teams to better choose a test case generation

53

technique based on the features of the case study. Based on the findings of the discussions the

researchers could also find a solution to overcome the disadvantages of models.

54

References

[1] R. Abdul, N. A. J. Dayang, N. A. Ahmad, and R. Abdullah, “Selecting UML models for

generation of test cases: An experiments of technique to generate test cases,” 2017,

http://serl.fc.utm.my/index.php/ijset/article/view/86.

[2] S. M. Mohi-Aldeen, S. Deris, and R. Mohamad, “Systematic mapping study in automatic

test case generation,” in New Trends in Software Methodologies, Tools and Techniques,

H. Fujita et al., eds. IOS Press, 2014, 703-720.

[3] A. Kanjilal, S. Sengupta, and S. Bhattacharya, “Scenario path identification for

distributed systems: A graph based approach,” in Proceedings of 2010 21st IEEE

International Symposium on Rapid System Prototyping, 2010, pp. 1-8.

10.1109/RSP.2010.5656332

[4] K. Debasish and S. Debasis, “A novel approach to generate test cases from UML activity

diagrams,” 2009, http://www.jot.fm/issues/issue_2009_05/article1.pdf.

 [5] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing

approaches,” Software Testing, Verification & Reliability, vol. 22, no. 5, pp. 297-312,

2012.

[6] M. Mohamed, O. Samir, A. S. Waseem, and H. Abdelwahab, (2009). “A survey of

model-driven testing techniques,” 2009 Ninth International Conference on Quality

Software, 2009, pp. 167-172. 10.1109/QSIC.2009.30

[7] J. Offutt and A. Abdurazik, “Generating tests from UML specifications,” in The Unified

Modeling Language, Lecture Notes in Computer Science, vol. 1723. R. France and B.

Rumpe, eds. Springer, Berlin, Heidelberg, 1999, pp. 416-429.

[8] A. Varikuti and D. Puvvula, “A novel approach for an early test case generation using

genetic algorithm and dominance concept based on use cases,” International Journal of

Computer Science and Information Technologies, vol. 3, no. 3, pp. 4218-4224, 2012.

[9] S. Asthana, S. Tripathi, and S. K. Singh, “A novel approach to generate test cases using

class and sequence diagrams,” in Contemporary Computing. IC3 2010. Communications

in Computer and Information Science, vol. 95, S. Ranka et al. (eds). Springer, Berlin,

Heidelberg, 2010.

[10] D. Xu, N. Philbert, Z. Liu, and W. Liu, “Towards formalizing UML activity diagrams I

CSP,” in 2008 International Symposium on Computer Science and Computational

Technology, ISCST 2008, vol. 2, pp. 450-453, 2012.

http://serl.fc.utm.my/index.php/ijset/article/view/86
http://www.jot.fm/issues/issue_2009_05/article1.pdf
https://www.bing.com/search?q=software+testing+verification++reliability&filters=ufn%3a%22software+testing+verification++reliability%22+sid%3a%2215862210-d9e8-1f20-42cb-e28e5383bed8%22

55

[11] E. Andrade, P. Maciel, G. Callou, and B. Nogueira, “A methodology for mapping SysML

activity diagram to time petri net for requirement validation of embedded real-time

systems with energy constraints,” in Third International Conference on Digital Society

ICDS, 2009, pp 266-271.

[12] M. Sarma and R. Mall, “Automatic test case generation from UML models,” 10th

International Conference on Information Technology (ICIT 2007), pp. 196-201. 2007.

[13] N. Khurana and R. S. Chillar, “Test case generation and optimization using UML models

and genetic algorithm,” Procedia Computer Science, vol. 57, pp. 996-1004, 2015.

[14] A. Tripathy and A. Mitra, “Test case generation using activity diagram and sequence

diagram,” in Proceedings of International Conference on Advances in Computing, 2012,

pp. 121-129.

[15] M. AzaharuddinAli, K. Shaik, and S. Kumar, “Test case generation using UML state

diagram and OCL expression,” International Journal of Computer Applications, vol. 95,

no. 12, pp. 7-11, June 2014.

[16] P. N. Boghdady, N. Badr, M. Hashem, and M. Tolba, “A proposed test case generation

technique based on activity diagrams,” International Journal of Engineering and

Technology, vol. 11, no. 3, pp. 37-57, 2011.

[17] Y. D. Salman, N. L. Hashim, M. M. Rejab, R. Romli, and H. Mohd, “Coverage criteria

for test case generation using UML state chart diagram–1.5005458,” 2017,

https://aip.scitation.org/doi/pdf/10.1063/1.5005458.

[18] D. Sokenou, “Generating test sequences from UML sequence diagrams and state

diagrams,” GI Jahrestagung, no. 2, pp. 236-240, 2006.

[19] G. E. Cartaxo, G. O. F. Neto, and D. L. P. Machado, “Test case generation by means of

UML sequence diagrams and labeled transition systems,” in 2007 IEEE International

Conference on Systems, Man and Cybernetics, 2007, pp. 1292-1297.

10.1109/ICSMC.2007.4414060

[20] N. F. As’Sahra and F. Komputeran, “Test case prioritization technique using sequence

diagram and labeled transition systems in regression testing,” Universiti Teknologi

Malaysia, 2015, https://books.google.com/books?id=isNPAQAACAAJ.

https://aip.scitation.org/doi/pdf/10.1063/1.5005458
https://aip.scitation.org/doi/pdf/10.1063/1.5005458
https://books.google.com/books?id=isNPAQAACAAJ

	St. Cloud State University
	theRepository at St. Cloud State
	6-2018

	Selection of UML Models for Test Case Generation: A Discussion on Techniques to Generate Test Cases
	Raj Kumar Rapolu
	Recommended Citation

	tmp.1528305957.pdf.DMQUd

