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Abstract

Bioinformatics and Computational Biology are rapidly growing multidisciplinary fields,
which includes wide variety of domains from DNA sequencing to sequence alignments. Recent
advances in both these disciplines have allowed biologists all around the world to quickly gather
a huge amount of DNA sequence data for analysis. DNA sequence alignments are becoming
ever more popular due their impact in early disease diagnosis, in drug engineering, as well as in
criminal investigations. With the vast growth and popularity of biological data, searching for a
DNA sequence of interest in huge databases is not an easy task to produce results within a
realistic time, hence there is a need to enhance the efficiency.

The reason why such information is so popular is because biologists can identify genetic
information by finding sequences of similar genes or proteins with known behavior or structure
without requiring long and expensive laboratory experiments. One of the most widely used tools
for performing searches is Basic Local Alignment Search Tool (BLAST), a program for
performing pairwise sequence alignments. As the BLAST program becomes ever more popular
with biologists around the world, it faces numerous challenges. One of the main challenges is
the issue of performance. The BLAST program has been looked at by researchers on how to
improve the speed of search by reducing overhead costs. One of the ways to reduce the overhead
cost is to incorporate parallelism to improve the performance of the BLAST algorithm.

For this paper, | explored existing variations of parallel implementations of the BLAST
algorithm and compared its performance improvements with that of serial implementation of
BLAST. The speed-up efficiency noted by the parallel program is far greater compared to the
serial program. The paper sheds light on the impact of parallelization of the BLAST algorithm
and the advantages it has on the overall field of computational biology.
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Chapter 1: Introduction
Overview of the Field of Biology

The field of biology has been revolutionized with technological advancements since the
early 1980s. In the field of bioinformatics and biostatistics, current research and computation are
limited by the available number of computer hardware. This problem can be solved by using
high-performance computing resources. There are several reasons for using high-performance
computing machines: access to huge amounts of data, increased computational requirements due
to the use of sophisticated and complex methodologies, and latest developments in computer
hardware resources.

Modern biology is facing unprecedented challenges mainly in terms of data management,
search and sorting of huge amounts of data. The amount of data stored and retrieved by
biologists all over the world has grown exponentially over the years. For example, a human
DNA is comprised of three billion base pairs with a personal genome representing approximately
100 GB of data. It is forecasted that data will be an ever-increasing problem in the field of
computational biology with the recent developments that rely heavily on computational power
and storage needs.

Over the years, there has also been the need for managing huge amounts of data, and the
advent of such large datasets has significant storage and computational implications. The rise of
cloud computing has been advantageous in the field of biology as researchers need not have to
spend huge amounts of money on buying infrastructure to store the data. Instead, they can hire
infrastructure on a “pay as you go” basis thereby avoiding large capital infrastructure and

maintenance costs.
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However, problems arise with different solutions of storing data. Big data presents

problems in that it deviates from traditional structural data which are organized and accessed by
rows and columns. Instead we are seeing data stored as semi-structured data, such as XML or
unstructured data including flat files which are not compatible with traditional database methods.
One of the major problems that arise with huge amounts of data is searching through these vast
amounts of information to find an article/information of interest.

A major tool that is facing a data management problem is the Basic Local Alignment
Search Tool (BLAST). This tool helps biologists all over the world to search DNA sequences of
interests from a large database pool. The search times could exceed more than an hour in some
instances. Over the years many researchers have proposed new implementations for the BLAST
algorithm to help to speed up the search time. One of the areas of interests is to use parallel
computing techniques to speed up the search time.

Cells--The Basic Precursor to Living
Organisms

Cells is the precursor for every living organism. These cells are essentially made up of
proteins and nucleic acids. Nucleic acids are either Deoxyribonucleic Acids (DNA) or
Ribonucleic Acids (RNA). DNA is a molecule that has the necessary instructions required for
the cell to perform its biological functions. DNA contains genetic information and is responsible
to propagate the characteristics of one organism from one generation to another. The DNA
molecule is made up of four nucleic acids: adenine (A), guanine (G), cytosine (C), and thymine
(T). The DNA molecule has the shape of a double helix and the nucleotides are connected to

each other forming strands with two terminals: 5” and a 3.” The full DNA sequence of an



organism is known as a genome. Figure 1 shows a pictorial representation of a DNA and an

RNA molecule.
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Figure 1

The Structure of a DNA and RNA Molecule

Genes are made of DNAs and each gene provides instructions for cells in living

organisms to make other molecules known as proteins. Proteins arise from DNA from two

separate processes: the transcription and the translation process. During the transcription phase,

information from the DNA is transferred to a molecule called messenger ribonucleic acid

(mRNA). After this step, the mRNA is translated into a protein molecule during the translation

process (Isa, 2013). Figure 2 shows the pictorial representation of the transcription and
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translation phases. During this translation phase, the information from the mRNA is read into 20

main amino acids as shown in Table 1.

AT A WO

pre-mRNA ANA Transcription
I polymerase
meNA T TN T T RN TR T IO T ORI TR T TN TTInun
mRNA
Translation

Ribosome

polypeptide

(Isa, 2013)
Figure 2

The Transcription and Translation Process



13
Table 1

List of 20 Amino Acids

E?:E Amino Single E:t't: Amino Single
Acid Letter Code Acid Letter Code

code code

Ala Alanine A Met Merthionine M
Cys Cysteine C Asn Asparagine N
Asp Aspartic acid D Pro Proline P
Glu Glutamic acid E Gln Glutamine o
Phe Phenylalanine F Arg Arginine R
Gly Glycine G Ser Serine by
His Histidine H Thr Threonine T
Ile Isoleucine I Val Valine V
Lys Lysine K Tp Tryptophan W
Leu Leucine L Tyr Tyrosine Y

(Isa, 2013)

Combinations of any of these 20 main amino acids produce different protein sequences,
each of which has its own biological role to perform. In the field of bioinformatics, tools known
as sequence alignments are used to identify and compare various DNA sequences for reasons
such as mutations or general changes (Isa, 2013). For example, in a pairwise sequence
alignment, a newly discovered biological sequence also known as a query sequence is compared
against sequences in a certain database, while for multiple sequence alignment, a query sequence
is compared against many sequences at once. The reason behind this is for biologists to discover
regions of similarity between the sequences under study, which may provide useful information
on their characteristics. The goal of sequence comparison is to determine the similarities

between two genetic sequences.
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DNA sequencing is also useful to achieve other goals such as facilitating drug

engineering, the determination of protein’s function, and construction of evolutionary (DNA)
trees. For example, when a human protein is damaged, DNA sequenced is performed to find the
most similar sequence in the database. Based on the most similar sequence in the database,
researchers can model the entire human protein sequence needed to make the specialized drug
that binds to the particular DNA sequence (Isa, 2013).

Goal and Objectives

As the demand for quick data searches and retrieval is gaining popularity in the field of
biology, this paper aimed to find solutions to improve the speed efficiency and provide solutions
and improvements to the existing BLAST algorithm.

The goal of this paper was to create a parallel implementation of the BLAST algorithm
and compare the speed up efficiency with that of serial implementation. My work focused
mainly on researching existing variations of BLAST and implementing the parallel algorithm
with ideas driven from these variations. This parallel implementation is compared against the
serial implementation of BLAST using various sizes of databases. Finally, the paper provides
examples of other parallel implementations of the BLAST algorithm and provides solutions and
ideas for future work.

The objective of this paper was to create a serial and parallel implementation of the
BLAST algorithm. Using the serial program as “building blocks” for the implementation of the
parallel BLAST program, the parallel program was developed using the BLAST algorithm in the
serial program and will be parallelized. In other words, the serial implementation of the BLAST

program was created first and then the parallel BLAST program was developed after that using
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the exact same BLAST algorithm with the only difference being the parallelization of the

program. This was done for the sole purpose of initially focusing on the BLAST algorithm and
later focusing on parallelizing the serial implementation using pthreads.

The paper is organized to introduce the reader to the basics of genetics and bioinformatics
in Chapter 1. Chapter 2 of this paper describes the BLAST and its uses. Chapter 3 discusses
parallel computing its influence in the field of computation biology. Chapter 4 discusses the
BLAST algorithm in detail and provides examples. Chapter 5 discusses the study carried out
along with comparisons, and Chapter 6 draws examples for future developments and

improvements to the program.
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Chapter 2: BLAST (Basic Local Alignment Search Tool)

Since the discovery of genetic code, research in the field of biology has undergone a sea
of change in the way it is performed. The growth of molecular biology and research in the field
of genetics during the 20™" century moved biological research from the test tube to more
complicated genetic analysis. During this time, biologists started accumulating DNA and protein
sequence data at an exponential rate. Currently there are approximately 97 billion bases
sequences and over 93 million records stored over various databases all around the world
(Zomaya, 2006).

As DNA sequencing grew at the end of the 20" century, scientists turned to computers to
help analyze the abundant and massive amount of genetic data. Today, one of the most common
tools used to examine DNA and protein sequences is the Basic Local Alignment Search Tool
which is also known as BLAST. BLAST is a computer algorithm that is available for use online
at the National Center of Biotechnology Information (NCBI) website (Zomaya, 2006). BLAST
is used to align and compare a query DNA sequence with a database of sequences, which makes
it a critical tool in ongoing genomic research. In recent years, development of BLAST has
enabled scientists to study the genetic blueprint of life across many species, and it has also
helped connect biology and computer science in combined field known as bioinformatics.
BLAST: A Widely Used Search Tool

One of the current search tools for biologists that is in place is BLAST: Basic Local
Alignment Search Tool. This search tool allows the user to find regions of local similarity
between protein sequences of DNA strands. This search algorithm compares protein sequences

that a user can upload to sequence databases and calculates the statistical significance of



matches.
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This is a useful search tool for researchers to find commonalities between sequences as

well as help in identification of members of gene family. Figure 3 shows the Web Application

for BLAST that is used by biologists all around the world to search DNA sequences from huge

databases.

The search strategy used in BLAST is based on scoring matrices to compare short

subsequences (words) in the query sequence against the entire target DNA or protein sequence

database to find statistically significant matches, then extending these matches to find the most

similar sequences or sub-sequences. Figure 4 shows a pictorial representation of two DNA

strands and how the BLAST search algorithm uses local alignment to efficiently search DNA

sequences in the database.

<

[l & Secure | hitps:/blast.nck nih.gov/Blast.cgi?PROGRAM =blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome

m U.S. National Library of Medi, NCBI National Center for Biotechnology Information

BLAST ° : blastn suite

Standard Nucleotide BLAST

| blastn | blastp | blastx | tbiastn | tblastx
BLASTN search using a uery. mors...
Enter Query Sequence prog a query:
Enter accession number(s), gi(s), or FASTA sequence(s) & Claar Query subrange &
From
To
Or, upload file | ©hoose File |No fila chosen
Job Title
Enter a descriptive title for your BLAST search &
Align two or more seq
Choose Search Set
Database Human genomic + transcript Mouse genomic + transcript ® Others (nr etc.)
Nucleatide collection (nr/nt) v &
Organism
Srgan Exclude [+
Enter organism common name, binomial, of tax id. Only 20 top taxa will be shown &
Exclude Models (XM/XP) Uncultured/environmental sample sequences
Optional
Limit to Sequences from type material
ptiona _
Entrez Query Youllllld Create cus
= L Enter an Entrez query to limit search &

Program Selection
Optimize for ® High

equences (megablast)

ontiguous megablast)

(National Center for Biotechnology Information, 2018)

Figure 3

Web-based BLAST Application
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\—/._, Local Alignment
t

(National Center for Biotechnology Information, 2018)

Figure 4
Web-based BLAST Application

Even though BLAST uses a very efficient algorithm, the growing size of sequence
databases and number of searches needed are quickly expanding beyond the computational
capabilities of individual computers. The ever-increasing need for higher performance has
created a demand for a more powerful version of BLAST for use on multiprocessors and PC
clusters and has led to the development of enhanced versions of BLAST, which attempts to
exploit parallelism to improve performance.
Access and Use of the BLAST Application

There are many ways through which a user can submit BLAST searches, but the most
commonly used way to submit searches is via the NCBI website (National Center for
Biotechnology Information, 2018). In the submission page, the user simply inputs a raw
sequence and clicks the BLAST button. If the user would like to modify the default search, they
are given various options. The user can change the database where the DNA sequence will
provide searches for or limit their search taxonomically using autocomplete menus. Once the
BLAST button is clicked, the BLAST algorithm parses the input and creates an Abstract Syntax
Notation (ASN.1) representation of the search, inserts the search into an MSSQL database, and

sends a Request ID (RID) to the user. During this time, the BLAST algorithm is working behind
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the scenes to provide the user with a detailed search output, which includes similar DNA

sequences and scores. The user’s browser periodically polls the server, checking for complete
results. Once the results are complete, the page displays the report. Results are usually saved for
36 hours on the server. The user may use the RID to retrieve the results in the future.

Users may also be able to access NCBI blast through the BLAST+ remote service, which
is a network service that uses ASN.1 to communicate between the client and the server. In this
case, the client sends the query, parameters, and database to the server in the form of an ASN.1
request. An RID is assigned and sent back to the client. The client polls for the status of the
result on a regular basis. Once the search is done, the ASN.1 results are returned to the client.

Another way that users can search is through NCBI “URL API” interface and the HTTP
protocol to create BLAST jobs and retrieve BLAST results.

There are many use cases for BLAST, but the most common uses are as follows:

1. Data Collection: For biologists that have to gather and analyze large amounts of

DNA sequence data, the biologists can utilize BLAST to query the sequences. For
example, a biologist may collect a large number of DNA sequences as expressed
sequence tags (ESTs) in a single tissue sample, then compare all EST’s against a
known DNA sequence database to estimate their biological properties.

2. Self-Comparisons: Biologists may also wish to compare data with itself to discover
similarities and differences. After collecting a sample amount of DNA sequences,
they may compare each DNA sequence collected against each other to discover
highly expressed sequences of fragments that may be combined into longer

sequences.
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Database Comparisons: Biologists may also wish to perform comparisons using

existing DNA sequence databases, either comparing databases against one another or
against itself. For example, a biologist may compare all human gene sequences
against a monkey gene sequences for comparative genomics or compare the genomes

of different species (Zomaya, 2006).

The BLAST Family

Many variations of the BLAST have been developed and this paper explored a couple of

these variations. In the beginning, the BLAST algorithm was split into two adaptations: the

NCBI BLAST and Washington University BLAST (WU Blast). Both of these BLAST

algorithms have program variations within themselves. A couple years later, more variations of

BLAST were created. Some of them are discussed here:

1.

2.

3.

BLASTN can be used to compare two nucleotide sequences;

BLASTP can be used to compare two protein sequences;

BLASTX can take a nucleotide sequence, translate it, and query it versus a protein
database in one step;

TBLASTN compares a protein query sequence to all possible databases, to search for
a new protein, undescribed genomes;

WImpiBLAST which is a web interface for mpiBLAST to help biologists perform
large scale annotation using high performance computing. WImpiBLAST provides
an easier to use web interface to biologists to perform searches using parallel

computing.
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Genomic Database

There are millions of sequences stored in databases all around the world. After the
completion of the Human Genome Project in 2003, biological information such as DNA
sequences is stored securely in databases. Examples of such databases include: GenBank which
was created and managed in the US, DNA Databank of Japan, and European Bioinformatics
Institute. The most widely used are GenBank from the NCBO (National Center for
Biotechnology Information), SwissPort from the Swiss Institute of Bioinformatics, and PIR from
the Protein Information Resource.

GenBank is a database that contains publicly available nucleotide (DNA) sequences for
more than 200,000 organisms, which are obtained primarily through submissions from individual
labs and batch submissions from large scale sequencing projects. Daily data exchanges occur
with the European and the DNA Data Bank of Japan to ensure worldwide coverage.

BLAST provides sequences similarity searches of GenBank and other sequences in
databases. GenBank data is available at no cost over the internet, via FTP and also via a wide
range of web-based applications such as BLAST which operate mainly on GenBank data.

From its inception, GenBank has doubled in size about every 18 months. It now contains
over 65 billion nucleotide bases from more than 61 million individual sequences, with about 15
million sequences added in the past year (Zomaya, 2006). Each GenBank entry includes a
concise description of the sequence, the scientific name, the taxonomy of the source organism,
bibliographic references, and a table of features listing areas of biological significance, such as

regions of interest in the DNA, their mutations and modifications.
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Figure 5 lists the number of bases and the number of sequence records in each release of

GenBank, beginning with Release 3 in 1982. From 1982 to the present, the number of bases in

GenBank has doubled approximately every 18 months. This has resulted in a massive explosion
in sequence DNA information that is widely available for biologists around the world. The vast
amount of DNA information and its popularity among biologists definitely proves that there is a

huge need for a repository to store and retrieve DNA sequences.

GenBank and WGS Statistics

Bases Sequences
— Gen... 1,000,000,000 e

— WGS — wes
1,000,000,000,... 100,000,000

10,000,000,00...

100,000,000,000
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1,000,000
1,000,000,000

100,000
100,000,000

10,000,000 10,000
1,000,000 1,000

1985 1990 1985 2000 2005 2010 2015 1985 1990 1995 2000 2005 2010 2015

(Zomaya, 2006)
Figure 5
GenBank Statistics

Sequence similarity searches are the most fundamental and most common type of
analysis performed on GenBank Data. NCBI offers the BLAST family of programs to detect
similarities between a query sequence and database sequences. BLAST searches are either

performed on the NCBI’s website or via a set of standalone programs distributed by FTP.
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BLAST was designed to search nucleotides and proteins of interest from a vast database.

BLAST takes your query (DNA sequence or protein sequence) and searches its protein or DNA
databases for levels of identity that ranges from perfect matches to matches of very low
similarity. After it searches through the database, it reports back to you what it finds, in order of
decreasing significance (in decreasing similarity). BLAST results may take anywhere from a
couple of minutes to several hours during peak times. Peak times is defined as times where there
is a heavy load on the servers as many users around the world try to access the same resources,
which in this case would be the BLAST web application. There are many versions (forms) of
BLAST but for simplicity the BLAST algorithm discussed here will be for nucleotide (DNA)
which is called BLASTN, the N stands for nucleotide (DNA).
BLAST Heuristic

BLAST increases the speed of the alignment by decreasing the search space or number of
comparisons it makes. Specifically, instead of comparing every DNA sequence against each
other, BLAST uses short “word” segments to create alignment “seeds.” Requiring only words
that are three letters in length to match in order to seed an alignment, means that fewer sequence
regions needs to be compared. Larger word sizes usually mean there are even fewer regions to
evaluate. Once an alignment is seeded, BLAST extends the alignment and a score is given to the
DNA sequence. Since its creation, BLAST has become an essential tool for biologists. Its
sensitivity allows scientists to compare nucleotide and protein sequences to both single

sequences and large databases.
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Chapter 3: Parallel Computing

Parallel Computing is a computing method of concurrent use of multiple processors
(CPUs) to do computational work. In comparison, serial programming is a method in which a
single processor executes program instructions in a step by step manner. Parallel computation
can be performed on shared-memory systems with multiple CPU’s, distributed memory clusters
made up of smaller shared memory systems or single-CPU systems. Several applications in
computational biology have large run time and memory requirements which can be addressed by
Parallel Computing. The run-time of applications can be reduced by the use of multiple
processors to solve the problem and scaling of memory with processors enables finding solutions
of larger problems (Aluru, 2003).

Parallel Computing

A parallel computer uses a set of processors that are able to work together to solve a
computation problem. This is made possible through splitting the problem load into parts and by
reconnecting the partial computations to create an accurate outcome. The way by which the load
distribution and reconnections are managed is heavily influenced by the system that will support
the execution of the parallel application program.

Parallel computations are broadly classified into two main models based on Flynn’s
specifications: Single-Instruction Multiple Data (SIMD) machines and Multiple Instruction
Multiple Data (MIMD) machines (Aluru, 2003).

SIMD machine consists of many simple processors each with a small local memory. The
complexity and often the inflexibility of SIMD machines, strongly dependent on the

synchronization requirements, have restricted their use mostly to special purpose applications.
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More commonly used, MIMD machines are more amenable to bioinformatics. In MIMD

machines, each computational process works at its own pace in an asynchronous fashion and is
completely independent of the other computation processes. Memory architecture has a strong
influence on the global architecture of MIMD machines, which becomes a key issue for parallel
execution, and frequently determines the optimal programming model (Julich, 1995).

Parallel software enables massive computational tasks to be divided into several separate
processes that execute concurrently for the solution of a common task through the usage of
different processors. There are two key features that could be used to compare models:
granularity, which is the relative size of the units of computation that execute in parallel; and
communication, the way the separate units of computation exchange data and synchronize their
activity.

An example of granularity is by formulating a block of instructions. At this level, a
programmer identifies sections of the program that can safely be executed in parallel and inserts
the directives that begin to separate the tasks. When the parallel program starts, the run time
support creates a pool of threads that are unblocked by the runtime library as soon as the parallel
section is reached. At the end of the parallel section, all extra processes are suspended, and the
original process continues to execute (Aluro, 2003).

Ideally, if we have n-processors, the run time should be also n times faster with respect to
the wall clock time. In real implementations, however, the performance of a parallel program is
decreased by synchronization between processes, communication and load imbalance.
Coordination between processors represents sources of overhead, in the sense that they require

some time added to the pure computational workload.
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Most of the effort of a programmer goes into increasing the efficiency of the program.

By lowering the overhead costs such as decreasing the amount of communication between
processors, idle time and work distribution efficiency will help increase the efficiency of the
program. The simplest way when possible is to reduce the number of task divisions; in other
words, to create a coarsely grained application.

Once granularity has been decided, communications needs to be enforced for correct
behavior and to create an accurate outcome. When shared memory is available, inter-process
communication is performed through shared variables. When several processors are working
over the same space, the locks and the critical sections (block of code that only one process can
execute at a time) are required for safe access to shared variables.

When distributed memory is used, sending messages over the network must be performed
all inter-process communication. With this message passing paradigm, the programmer has to
know where the data is, what is to communicate, and when is to communicate with whom.
Library subroutines are available to facilitate the message passing constructions: PVM and MPI
(Aluru, 2003).

Researchers have attempted to use parallelism techniques to improve BLAST. Various
techniques have been implemented over the years and a couple stand for their advantages. One
of the most commonly used techniques is called the Vector Parallelism Technique. This is one
of the earlier techniques to improve BLAST performance by using low-level vector parallelism
to speed up the calculation of scores for sequence alignments. BLAST is able to find hits
between statistically significant words and sequences in the database; it must find a local

pairwise alignment and calculate a score for the alignment, before returning the best score found.
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This local pairwise alignment can be parallelized in a fine-grain manner using vector parallelism

(Zomaya, 2006).

Another common parallelism technique is known as Multithreading. This approach
improves BLAST performance by using thread-level parallelism to compare queries to different
parts of a sequence database. As a BLAST search is performed against sequence databases
consisting of multiple sequences, searches can easily be performed in parallel using multiple
threads. Some examples of Multithreading include NCBI BLAST and WU BLAST which are
programs that can be run in multithreaded mode on shared-memory multiprocessor (SMP)
machines. These parallel variations of BLAST and along with a couple more variations will be

looked into further later in this paper (Zomaya, 2006).
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Chapter 4: BLAST and its Parallelism

The BLAST application is used by biologists all over the world to search DNA and
protein sequences. This has caused BLAST to grow in popularity over recent years which has
come with a couple downsides. One of the most notable downside is to do with its efficiency in
providing quick results to biologists. Various parallelism techniques have been researched over
the years to improve the speedup of the search. The BLAST algorithm along with the
parallelism techniques will be surveyed in this chapter.

BLAST Algorithm Steps

The BLAST program is used to search DNA and protein sequences against a database of
DNA and protein sequences. The BLAST algorithm has four stages: build words, find seeds,
extend, and score. Figure 6 gives an overview of these stages.

To explain the algorithm, a DNA query sequence of “ACTGA” and a database sequence
of “GACTGC” can be used as an example.

1. Build Words: The first step is to break the user input query into fragments (“words”)
and then the program compiles a word list. For DNA sequence, for example, the
word list includes all the words with an input length of W in the query sequence.
Therefore, for “ACTGA” if the input length is 3, then the word list is: ACT, CTG,
TGA.

2. Find Seeds: BLAST then scans through the database to find all occurrences of the
words in the list. The words are used as “seeds” for the next step. For example, the

seeds generated in this step are “ACT” and “CTG.”
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3. Extend: In this step the matching words (Seeds) are extended into ungapped local

alignments between the query sequence and the sequence from the database.
Extensions are made in both left and right directions and only stop when the “score”
drops below a threshold value. The resulting pairwise alignments are called high
scoring pairs (HSPs). For example, the seed extension step would result in the query
sequence of “ACTG.”

4. Score: In this final step: the top scoring HSP’s are combined. HSPs are consistent
only if they can be combined without any overlapping and while maintaining the
same order in both the query and sequential database sequences. Statistical tools are
used to assess the significance of the results and to select the most likely alignment

(Zomaya, 2006).
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alignment with best score

(Zomaya, 2006)
Figure 6

BLAST Algorithm
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Purpose of BLAST

Biologists may collect large number of DNA sequences from a breast tissue sample of
cancer patients, and then compare this information against known sequence database (BLAST) to
estimate their biological function/properties. Each sequence collected (from one patient) becomes
a single BLAST query. Hence, biologists frequently perform a large number (batch) of sequence
comparisons at once. The data gathered from BLAST may also be used to discover similarities
and differences between DNA sequences.
Factors Affecting BLAST Performance

Large numbers of BLAST searches tend to cause intensive workloads which can have an
effect on the performance of the search results. Some of the main factors affecting BLAST
performance include:

1. Size of the Database: The BLAST program consists of many databases for a number
of organisms, and this database size can vary greatly. DNA Sequence Databases
consisting of nucleotides (A, C,T, G) are typically the largest because DNA
techniques are most developed and researched. On the other hand, protein databases
are smaller because protein sequences are shorter and fewer proteins have been
identified and researched.

2. Size of the Searches: Query searches sizes may range from hundreds to potentially
millions of sequences simultaneously.

3. Size of the Searched Sequence Length: The length of the search sequence may also

vary, depending on the bioinformatics application. Sequence lengths may range from
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50-100 for DNA through 300-500 for proteins, to more than 10,000 for genes

(Zomaya, 2006).
BLAST Case Study

The use of BLAST to find out if a tumor is benign or malignant (cancerous or non-
cancerous):

Patient Jane comes in for a regular physical to her doctor and complains about pain in her
abdomen area. The doctor performs the physical and does two things during the physical: he
takes Jane’s blood for further analysis and sets an appointment for her colonoscopy. The stats
for Patient Jane are as follows:

o Age = 35, Healthy

e Symptoms: pain in abdomen, blood in stool and tiredness

e Colonoscopy performed: Suspicious Polyps (Tumor) found

e Biopsy: Colon Cancer--Confirmed

The doctor then performs a DNA sequencing on the tumor (cancer) cell. The DNA
Sequence of the tumor is as follows:

CTCCGCACTGCTCACTCCCGCGCAGTGAGGTTGGCACAGCCACCGCTCTGTGGCT

CGCTTGGTTCCCTTAGTCCCGAGCGCTCGCCCACTGCAGATTCCTTTCCCGTGCA

GACATGGCCT

The doctor then enters the DNA sequence into the BLAST web application as shown in
the Figure 7. The search is then performed, which takes about an average of couple minutes
(during peak times the time could significantly increase), and then the doctor is presented with

the search results as seen in Figures 8 and 9. As seen in the Figure 9, there is a perfect match



with a database DNA sequence. A perfect match here is considered to be a 100% score under
the identity column.
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Figure 7

BLAST Web Interface
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Figure 8

BLAST Results Overview
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BLAST Results
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The BLAST application shows the user query and the DNA sequence with bars shown in

Figure 10, indicating whether the particular letter matches or not. A score and a percentage
match are also provided to the user. After the doctor looks through the results, he then clicks on
the search result for further information. From this link, the doctor is provided further details
about the DNA sequence with information such as what the DNA sequence is, how it was
discovered, the organism it belongs to, and the research article link for further details on the
gene. Figure 11 provides an example of how a BLAST provides information of a particular DNA
sequence. From this the doctor concludes that the patient may have colon cancer and will need

immediate treatment.
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Figure 10

BLAST Result with User and Database Query
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Homo sapiens cell-line MaMel-95 methylthioadenosine phosphorylase-/antisense
noncoding RNA in INK4 fusion protein (MTAP-ANRIL fusion) mRNA, complete cds

GenBank: KT386341.1

LOCUsS KT386341 1425 bp eRNA linsar PRI 22-FEB-2016

DEFINITION Homo sapiens cell-line MaMel-95 methylthicadenosine
phosphorylase-/antisense noncoding ANA in INKE fusion protein
(MTAP-ANRIL fusion) oRNA, complete cds

ACCESSION KT386341

VERSION KT386341.1

KEYMORDS

SOURCE Homo sapiens (human)
ORGANISMH  Hom T

Evkaryota; Metazos; Chordata; Craniate; Vertebrata; Euteleostomi;
Mamsalia; Eutheria; Evarchontoglires; Primates; Haploerhini;
Cotorrhini; Hominidse; Homo
REFERENCE 1 (bases 1 to 1425)
AUTHORS Xie,H., Rachakonda,P.S,, Heidenreich,B., Nogore,E., Sucker,A,,
Hemminki K., Schadendorf,D. and Kumae,R.

TITLE Mapping of deletion breakpoints at the COKN2A locus in melanoms:
detection of MTAP-ANRIL fusion tramscripts

JOURNAL Oncotarget 7 (13), 16490-16504 (2016)

PUBMED

REFERENCE 1 to 14325)
AUTHORS Xie, M., Rachakonda,S., Sucker,A., Memminki, K., Schadendorf,D. and
Kymar R,
TITLE Direct Submission
JousNal Submitted (12-00G-2015) Molecular Genetic Epidemiology, German

Cancer Research center, Im Neuenheimer Feld 580, Meidelberg,
Baden-Hurttesberg 69129, Germany

COMMENT ealssembly-Oata-START#e
Sequencing Technolegy :: Sanger dideoxy seguencing
#sissenbly-Data-ENDes

FEATURES Location/Qualifiers

(National Center for Biotechnology Information, 2018)
Figure 11
Detailed Information on a Specific DNA Sequence

Use of Parallelism to Improve BLAST
Performance and Related Work

The use of BLAST by so many biologists has required researchers to find ways to
improve the speed and efficiency of BLAST by increasing the overall performance. Researchers
have attempted to use parallelism techniques to improve BLAST.

An obvious way to accelerate the BLAST algorithm is by running them in multiple
processors or multiple nodes. Many techniques were proposed to parallelize the algorithm and

good results were obtained.
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Biological sequence comparison is a very challenging problem. This is mainly due to the

fact that we must find approximate pattern matching between a query sequence and a huge
database.

Current research techniques use one of the following approaches to improve BLAST
performance: vector instructions, multithreading, replicated databases, distributed databases and
optimized batch queries (Zomaya, 2006).

1. Vector Instructions:

One of the earlier techniques to improve BLAST performance was to use low-
level vector parallelism to speed up the calculation of scores for sequence alignments.
BLAST finds hits between statistically significant words and sequences in the
database. It must find a local pairwise alignment and calculate a score for the
alignment, before returning the best score found. This local pairwise alignment can
be parallelized in a fine-grain manner using vector parallelism (Zomaya, 2006).

A version of BLAST called AGBLAST developed by Apple and Genentech use the
Vector parallelism technique to improve BLAST performance. Research on AGBLAST has
shown performance improvement up to an average of five times faster for BLAST queries with
long sequences, which required more time calculating the local alignments. The web application

for AG Blast is shown in Figure 12.
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AG Blast

Created by Confluence Administrator, last modified by Carlisle G Childress Jr. on May 25, 2010

<?xml version="1.0" encoding="utf-8"?>
<html>http://developer.apple.com/opensource/tocls/blast.html

Installing BlastAG on OS X Tiger
Make sure Xcode Tools 2.3 are installed

Download source:
curl -O http://www.opensource.apple.com/projects/blast/source/agblast-2.2.10.tgz
Extract archive with:

gnutar -xzvf agblast-2.2.10.tgz
cd ~/agblast-2.2.10

Compile with:
/ncbi/make/makedis.csh 2>&1 | tee out. makedis.txt
(pessibly Setting environmental variables)
expart NCBI_LOCATION=/Users/<account>/agblast-2.2.10/ncbi [ or -usr-global-agblast-ncbi |
export LD_LIBRARY_PATH=SNCBI_LOCATION/lib
export PATH=SNCBI_LOCATION/bin:$PATH
Download demo from: fip://ftp.ncbi.nih.gov/blast/demo/blast_demo.tar.gz
move this file to ~/agblast-2.2.10
Extract archive with

gnutar -xzvf blast_demo.tar.gz

This creates a directory called ~/agblast-2.2.10/blast_cemo
Build demo binaries:

(AGBLAST-UNIX, 2018)
Figure 12
AGBLAST Web Snip Showing User Steps Required to Use AGBLAST
2. Multithreading
Another approach to improve BLAST performance is to use thread-level
parallelism to compare queries to different parts of a sequence database. Asa BLAST
search is performed against sequence databases consisting of multiple sequences,
searches can easily be performed in parallel using multiple threads.
A threaded BLAST search slices the given database into equal sized chunks
according to the number of available processors. Each database chunk is then distributed

to a predefined processor using memory mapping. Then, each processor is responsible
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for a thread scanning, a different database fragment. The sorted results are stored in a

single global structure, which is shared by all processors and then combined to produce

the final BLAST result which is displayed to the user. Figure 13 shows a snapshot

overview of this process.

Some examples of Multithreading include NCBI BLAST and WU BLAST, which

are programs that can be run in multithreaded mode on shared-memory multiprocessor

(SMP) machines. The only downside of this approach is that, database portioning, thread

creation, management, memory contention, and collecting search results in large

overheads, which prevents BLAST from achieving peak performance. However,

experimental studies have shown that multithreaded BLAST appears to achieve good

performance in practice.
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Multithreaded BLAST Algorithm
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Replicated Databases

This approach required replicating sequence databases on a distributed memory system.
This is one of the most commonly used methods to improve BLAST performance. The
implementation adopts a master/slave paradigm to maintain load balance. When database size is
small, a full copy of the sequence database can be stored in memory of each node. Batched
queries can be split up evenly and assigned to each node.

The slave nodes then perform local BLAST searches and send the results to the master
node. This method has shown to improve performance when there are a large number of batched
queries. Figure 14 gives an overview of the algorithm. Some of the commonly used BLAST

versions that use the replicated database approach include BeoBLAST and Hi-per BLAST.
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(Zomaya, 2006)
Figure 14

Replicated BLAST Algorithm
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Distributed Databases

One of the downsides of a replicated BLAST algorithm is that when database size
increases, they may no longer fit in the memory of individual computers. This may reduce
performance for batched BLAST queries as each query will need to reload the sequence database
into memory to scan for words. Distributed database approach solves this problem by exploiting
the large amount of aggregate memory available in parallel computers through distributed
sequence databases.

In this approach, the database can be split up, with each processor maintaining a portion
of the sequence database small enough to fit in memory. Multiple BLAST queries can be
processed without retrieving the database from slower disk storage requiring disk 1/0. The
downside is that implementing this approach is more complex as sequence database needs to be
partitioned and also distributed equally between processors. Also, increased overheads are
incurred as only partial results are calculated for each query from a single processor. The partial
results are then combined between processors for each query. The overall performance is
improved due to reduced disk access.

The algorithm for mpiBLAST is as follows. Figure 15 gives an overview of the
algorithm.

1. The master node sends a message to each slave node to ask for a list of database

fragments in its local directory.

2. The master node then assigns jobs to the worker node according to the database

fragments at each node.
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3. If aworker node is idle and has a local copy of a database fragment, the master node

will send a message to that node, directing it to search the fragment.

4. The worker node then performs a local BLAST search for the database fragment
assigned by the master.

5. Once the worker node has finished searching the database fragment, it will send its
results and also an idle message to the master node.

6. As partial search results arrive from worker nodes, the master merges them into the
master result list. Once all fragments have been searched, the master node will notify

all slave nodes to terminate, and then output the merged results (Zomaya, 2006).
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Figure 15

mpiBLAST Algorithm
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Batch Query Optimization

The last approach to improve BLAST performance is by reducing redundancies
between multiple queries found in batch BLAST queries. By combining multiple
BLAST queries, results and data already used can be reused and the number of scans
done on the database can be reduced. This is important particularly for large databases
that take a longer time to scan for information.

Batch Query Optimization does not necessarily make use of multiple processors
but combining this approach and executing in parallel can greatly improve performance.
Versions of BLAST that perform batch query optimization include BLAST++ and HT-
BLAST.

The structure of BLAST++ algorithm is similar to BLAST. The major difference
is how BLAST++ compiles its word list. The BLAST++ algorithm is as follows. Figure
16 contains the following steps:

1. BLAST++ creates a virtual query consisting of all queries.

2. When building a word list, BLAST++ maintains a list of (query ID, list of
offsets) pairs for each word to record all the occurrences of the word in the
entire set of batched BLAST queries.

3. The remaining steps of BLAST++ are identical to that of BLAST.

In this approach a common word is searched only once for all the batched
queries, compared to once for each query, hence reducing the computation

time (Zomaya, 2006).
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(Zomaya, 2006)

Figure 16

Batch Query Optimization

mpiBLAST

mpiBlast is a type of BLAST algorithm which achieves super linear speedup by
segmenting a BLAST database. It is designed to work on a computer cluster using MPI library
and adopts a master-slave relationship. In mpiBLAST the master node assigns the query

sequence and database fragments to each worker node. The worker node performs the BLAST

search on queries and sends the result to master node. When one worker node completes a task,

the master node assigns a new fragment (of database) to it. This procedure is repeated until all

queries have been searched. The master node merges all the results and sorts them according to

the score. mpiBLAST performance is evaluated by measuring the speedup and efficiency in

comparison to sequential NCBI BLAST version. The mpiBLAST algorithm consists of three

steps as shown in Figure 17.
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1. Segmenting and distributing the database
2. Running mpiBLAST queries on each node.

3. Merging the results from each node into a single output file (Zomaya, 2006).
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Figure 17

Master Slave Model of mpiBLAST
The Downside to mpiBLAST

One of the major problems with mpiBLAST is to do with the master write problem. In
this scenario, the master process is responsible for sorting the intermediate results according to
the score. This scenario has two drawbacks: the results processing is serialized by the master
which can increase the time and decrease performance; second, the master memory may max out
with all the intermediate results coming in. To remedy this issue, a parallel write is used. The

worker threads after searching their fragment of database, converting their intermediate results
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into the final output, and sending the final output metadata to the master. As the size of each

result alignment output is known to the master, the master then computes the offset ranges for
each output and sends that information back to the workers. With the output offsets, the workers
write the local output records in parallel. By locally buffering the output and parallel processing

the results, the mpiBLAST removes the performance bottleneck.
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Chapter 5: Experiment and Related Work

This chapter focuses on the algorithm that was implemented for the purpose of this paper
and also the methodology that was used. Comparisons made between serial and parallel
implementation of BLAST with results will being tabulated.

Overview of the BLAST Algorithm
Implemented

The algorithm of the BLAST program that was implemented for this paper has the main
objective to show performance results is explained in detail below. For the purposes of
simplicity and to show performance improvements, the program was kept simple and is a hybrid
of various implementation of BLAST.
Below is a detailed pseudocode of the BLAST Algorithm implemented for this paper.
1. User enters the DNA Sequence that he/she wants to search in the database (the
database for this project would be a .txt file).
Example Output of the Program:
Please enter the DNA Sequence that you would like to match:
User Entry: ATGCCCGTCATTCC
2. The first step for search is to break the user entry into three letters:
The program breaks the user input into three-letter words: ATG, TGC, GCC, CCC,
CCG, CGT, GTC, TCA, CAT, ATT, TTC, TCC.

3. The program then searches the database (the user specified .txt file) for sequences that
match the three-letter words which are known as “Hooks.” Figure 18 provides a
pictorial representation of how the hooks are searched by the program in the

respective database file that the user decides to search.
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fﬁlﬂm Sequence Datahash

The 3 Letter Words (User Entry)
GTCATGCCCGTCATTCC
| — TATG
GGGGATGCCCGGGGG TGC
GCC
TTTTATGCCCGTCGAAG CCcC
TAATGCCCGTTITITIT

@CATGCCCG'ITACCCC /

Figure 18
Finding the Hook in the Database
4. After finding the “Hook” by matching the three-letter words to the database, the
algorithm then moves left and right along the DNA sequence of interest.
For example, in the above instance, the first sequence was of interest since we were
able to find the three-letter word: ATG in the sequence. Therefore, the algorithm
moves left and right through the sequence to look for similarities between other
letters in the sequence.
GTCATGCCCGTCATTCC
5. When the algorithm moves left and right the program keeps a score using a program
counter. With every match, the algorithm adds +1 to the overall score, and -1 for any

mismatch.
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In the above example:

User Entry: -- ATGCCCGTCATTCC
Database (Sequence of Interest): TCATGCCCGTCATTCC

The overall score is calculated based on the algorithm keeping a counter for the number
of hits and misses. The counter begins with a score of 0, and then begins counting the score
from the hook, which in this case is “ATG.” As the hook consists of a three-letter word, the
score then increments to +3. The algorithm then moves all the way to the left and right of the
database sequence and increments/decrements the score based on if the word is a hit or a miss.
After the algorithm reaches the end of the sequence or the beginning of the sequence it stops and
provides the user with a total score.

The algorithm searches the database sequence only if it “sees” a hook in the sequence. If
the database sequence consists of multiple hooks, then it prioritizes the first hook seen compared
to other hooks. In other words, the first hook that the algorithm encounters in the database
sequence is the hook that it considers.

Another important observation to point out here is that the algorithm for BLAST searches
is more complex in nature, with a lot more statistical analysis and comparisons made before a
score is provided to the user. For the purpose of this paper, the algorithm here was kept as
simple as possible to solely provide comparisons of serial and parallel implementation of
BLAST which is the main objective of the paper. This is done so as to not to heavily focus on
the complexity of the BLAST algorithm which may cause the reader to stray away from the

objective and the intent of the paper. Rather, the objective of the paper has to do with



parallelism and its advantages on a search algorithm such as BLAST. Table 2 provides a

detailed overview of how the scoring algorithm works.

Table 2

Sequence Scoring

User Entry Database Score Total Score
(Initial Counter = 0)

- T -1 -1

- C -1 -2

A A +3 (HOOK) +1

T T

G G

C C +1 +2

Cc C +1 +3

C C +1 +4

G G +1 +5

T T +1 +6

C C +1 +7

A A +1 +8

T T +1 +9

T T +1 +10

Cc C +1 +11

C C +1 +12

Overall Score: 12

Three letter Hook: ATG
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6. After the algorithm matches the user entry with the sequence of interest it provides an

output to the user that looks something like this.

User Entry: --ATGCCCGTCATTCC

Database (Sequence of Interest): TCATGCCCGTCATTCC

The program also provides the user with the score and a percentage value of how

much matched.
Methodology

The parallel implementation of BLAST algorithm is a done in the language C. The

program can be executed simultaneously in more than one processor. In this section, we will
discuss the details on how both the design and implementation of parallel BLAST algorithm
have been carried out.

Step 1: Splitting the Database. In this algorithm, the database is split up by the master

node, with each processor maintaining a portion of the sequence database small enough
to fit in the memory. Multiple BLAST queries can be processed without retrieving the
database from slower disk storage requiring disk 1/0. This is known as distributed
databases. Distributing data among the slave processors involves sending data from the
root processor (master, a processor with rank 0) to all participating processors including
itself.

Step 2: Managing Communication between Interaction Tasks. Most of the

communication occurs during database fragmentation and distributing the fragments
among processors would take place in the beginning, and at the end while gathering

outputs from them. The communication is static and synchronous.
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Step 3: Input Query Search in Database. During this step, the user query is broken into

words by the master processor and the words are distributed to the worker nodes. These
three letter words (Example: “ATG,” “GGC,” GTA”) are then searched by the slave
processors in their respective database fragments. Each processor performs the
expansion phase on the respective database DNA sequence and calculates the score.

If a node is idle during this phase and has a local copy of the database fragment,
the master node will send a message to that node, directing it to search the database
fragment for the user entry.

Once the slave node has finished searching the database fragment, the slave
processor sends the Highest Scoring Pair’s (HSP’s) to the master processor. After this,
the worker node will send an idle message to the master node.

Step 4: Merging of the Results. As the partial search results arrives from the slave

processors, the master merges them into a master result. Once all database fragments
have been searched, the master node will notify all the slave nodes to terminate and then
the master outputs the merged results.
Use of pThreads
pThreads are defined as a set of C language programming types and procedure calls.
Implemented with a pthread.h/include file and a thread library. pThreads are used for many
reasons; the main motivation is to realize the parallel program performance gains. When
compared to the cost of creating and managing a process, a thread can be created with much less

OS overhead. Managing threads requires fewer system resources than managing processes.
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Also, inter-thread communication is more efficient and, in many cases, easier than to manage

inter-process communication (Akl, 2014).

A thread is a sequence of such instructions within a program that can be executed
independently. It is an independent set of values for the processor registers (for a single core).
Since threads includes the Instruction Pointer (aka Program Counter), it controls what executes
in what order. Threads also includes the Stack Pointer, which had better point to a unique area of
memory for each thread or else they will interfere with each other (Akl, 2014).

Threads are the software unit affected by control flow (function call, loop, goto) and
because instructions operate on the Instruction Pointer, that belongs to a particular thread.
Threads are often scheduled according to some prioritization scheme (although it is possible to
design a system with one thread per processor core, every thread always runs, and no scheduling
is needed).

The value of the Instruction Pointer and the instruction stored at that location is sufficient
to determine a new value for the Instruction Pointer. For most instructions, this simply advances
the IP by the size of the instruction, but control flow instructions change the IP in other
predictable ways. The sequence of values the IP takes on forms a path of execution weaving
through the program code, giving rise to the name "thread."

Independent flows of control are possible because a thread maintains its own:

e Program Counter
o Stack Pointer
e Registers

e Scheduling Properties
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e Signals

e Thread specific data (Akl, 2014)

Threads within the same process share the same resources so an issue to look out for: the
changes made by one thread in a shared system will be seen by all other threads. This brings up
the issue of thread safety.

Thread-safeness refers to an application’s ability to execute multiple threads
simultaneously without clobbering shared data or creating race conditions. A situation where a
race condition would take place: an application creates several threads, each of which makes a
call to the same library routine. The library routine accesses/modifies a global structure in local
memory. The issue that might happen is when as each thread calls this routine it is possible that
the threads may try to modify this global structure/memory location at the same time. Therefore,
the routine should employ some sort of synchronization constructs to prevent data corruption.
This issue where threads trying to modify a global structure at the same time is seen in a shared
memory space model. A forked process is considered a child process and forked processes share
no like code, data, or stack with the parent process; whereas, a threaded process can share code
but has its own stack. The purpose of fork() is to create a new process, which in turn becomes
the child process of the system call. The process will then execute the next instruction following
the fork() system call. In this platform, two identical copies of the address space, code and stack
are created; one for parent and the other for child. On the other hand, the purpose of pthread is to
create a new thread. The thread within the same process can communicate using shared memory
whereas processes have their own memory space. Forks() are harder to synchronize than

pthreads.
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To take advantage of the pThreads, a program must be able to be organized into discrete,

independent tasks which can execute concurrently. For example, if routine 1 and routine 2 can
be interchanged, interleaved, and/or overlapped in real time, they are candidates for threading.
In parallel programming, the master/slave method is used. A single thread, the master thread
assigns work to other threads, the workers. Typically, the master handles all input and parcels
out the work to other tasks. In some instances, the master also gathers the results from the
worker threads and performs the necessary calculations.

There are two forms of master/slave models:

1. Static Load Balancing: This type of load balancing is applied before the execution of
any process. It is referred to as the mapping problem or scheduling problem. A
potential static load-balancing technique is by assigning tasks in sequential order to
processes coming back to the first when all processes have been given a task.
Another way is to select processes at random to assign tasks.

2. Dynamic Load Balancing: In this form, when the job gets done, the worker thread
seeks the next task. Division of tasks is dependent upon the execution of parts of the
program as they are being executed. A variant of Dynamic Load Balancing is
Centralized Dynamic Load Balancing. In this form, the master process holds a
collection of tasks to be performed by the slave process. Tasks are sent to slave
processes and when a task is completed a slave process requests another task when

done.
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POSIX Threads

POSIX threads is a standardized C language threads programming interface designed to
develop portable threaded applications for UNIX systems. Implementations that adhere to this
standard are referred to as POSIX threads or pThreads. pThreads are defined as a set of C
language programming types and procedure calls. pThread library is considered for the
implementation for the following reasons:

1. Primary motivation is to realize potential program performance gains.

2. Compared to the cost of creating and managing a process, a thread can be created
with much less operating system overhead. Managing threads requires fewer system
resources than managing processes.

3. All threads within a process share the same address space. Inter-thread
communication is more efficient and, in many cases, easier to user than inter-process
communication.

4. Tasks that are more important can be prioritized over less important tasks.

A computer program becomes a process when it is loaded from some store into the
computer’s memory and begins execution. A process can be executed by a single processor of a
set of processors. A thread on the other hand, is a sequence of such instructions within a
program that can be executed independently of the other code. In order to define a thread

formally, we must first understand the boundaries of where a thread operates.



Example Program with the Use of pThread: ”
Hello World

The simple pThreads program in C language in which the threads print "Hello World!"
message is shown in Algorithm 1. The function PrintHello is the routine that will be executed
by the child threads. This routine prints the string that has been passed to it.

Following the routine is the main function, the starting point for the program. We start
by declaring the variables for child threads. pthread_t is the type of the variable to be declared.

After declaring the variables, we need to initialize the threads. We use pthread_create
routine provided by the Pthreads library to accomplish the same. pthread_create will initialize
the thread, the thread attributes, the address of the routine the thread has to start executing and
the parameters for that routine. As soon as a thread is created, it will start executing the routine
that has been assigned to it by pthread_create. The pthread_create() routine allows the
programmer to pass one argument to the thread start routine.

From the code it can be clearly seen that both the worker threads are executing the same
routine. Each thread has its own copy of the stack variables for the routine. For instance,
Threadl will execute the routine with “Hello World! It’s me Thread 1.”

pthread_exit is used to explicitly exit a thread. If main () finishes before the threads it
creates, and exits with pthread_exit(), the other threads will continue to execute. Otherwise, they
will be automatically terminated when main() finishes. pthread_exit () routine does not close

any files. Files that are opened inside of the thread will remain open after the thread is

terminated.
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* FILE: hello.c

* DESCRIPTION:

* A "hello world" Pthreads program. Demonstrates thread creation and

* termination.

* LAST REVISED: 08/09/11
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#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#define NUM_THREADS 5

¥oﬁd *PrintHello(void *threadid)

Tong tid;

tid = (long)threadid;

printf("Hello world! It's me, thread #%1d!\n", tid);
N pthread_exit(NULL);

int main(int argc, char *argv[])
{

pthread_t threads [NUM_THREADS];
int rc;
long t;
for(t=0; t<NUM_THREADS; t++J {
printt("In main: creating thread %1d\n", tJ;
r? ? p§?read,create(&threads[t], NULL, PrintHello, (void *)t);
i rc
printf("ERROR; return code from pthread_create() is %d\n", rc);
§xit(—1);

¥

/* Last thing that main() should do */
pthread_exit(NULL);
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Algorithm 1

Hello World Using pThreads

Output of the code is as follows:

In main: creating thread 0

In main: creating thread 1

In main: creating thread 2

In main: creating thread 3

In main: creating thread 4

Hello World! It’s me, thread #0!

Hello World! It’s me, thread #1!

Hello World! It’s me, thread #2!

Hello World! It’s me, thread #3!

Hello World! It’s me, thread #4!
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Thread Joining

Joining is a way to accomplish synchronization among threads as shown in Figure 19.
The pthread_join () subroutine clocks the calling thread until the specified thread terminates.
The programmer is able to obtain the target thread’s termination return status if it was specified
in the target thread’s call to pthread exit (). If successful, the pthread_join () function returns

zero; otherwise an error number shall be returned to indicate the error.

:-n:,-:t:; pthreald_create 0 # pthread join()| —p»

Worker
Thread

DO WORK . pthread exit() [
Worker
Thread

(Costa & Lifschitz, 2003)

Figure 19
pThread Join()
The Experiment and Its Results

BLAST is a relatively fast program that efficiently calculates the sequence alignment of
two biological sequences. BLAST search first breaks the query into words of length w (default
word length = 3) and compare them to each database sequence. The matching words (or seeds)
are then extended in both directions until the score of alignment drops below a threshold to form
the High Scoring Segment Pair (HSP). Before conducting a rigorous amount of detailed

experiments, a simple and quick experiment was performed to understand how the parallel
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implementation differs from the serial implementation of BLAST. Both the serial and parallel

program were run using a database file that contained 999 DNA sequences. The number of

threads used was increased exponentially to a maximum of 16. Figure 20 shows an example run

of the program and Table 3 shows an example of the study with increasing amount of threads

and keeping the number of database sequences constant.

Table 3

Performance of BLAST with Increasing Amount of Threads

No. of DB Sequences

No. of Threads

Parallel Implementation (Time in ms)

999 1 51
999 2 27
999 4 18
999 8 16
999 16 16
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Figure 20
Example Run of the Program

Efficiency here is defined as the time taken by the program to search the user entry within
the database file. From the experiment it was noted that the maximum efficiency was achieved
with eight threads and eight database fragments. After that, the efficiency of the program goes
down. This could be due to the overhead costs with communication when the number of worker
threads increase in parallel write. Sixteen threads were utilized in the last experiment and the
efficiency of the program decreased. This could be due to several reasons but one of the main

reason would be that the master thread could be waiting on all the worker threads to search
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through their database fragments and provide the master thread with the searches and the

respective score. The worker threads search through their respective database fragments, provide
the top results and the scores to the master thread. The master thread then sorts through the
matches provided by the worker threads and displays the results to the user.
The following are the results of the experiment shown in this paper using a system with
the following configuration:
o Hostname: csci606
e Number of cores: 8
e Processor: Intel Xeon CPU E5-2680 v2 @2.8 Ghz
e Memory: 16 GB
Serial BLAST vs. Parallel BLAST
In the next experiment, Serial BLAST algorithm was compared with Parallel BLAST
algorithm. Both programs ran on the exact same hardware using the same database file. The
results of the experiment are shown below. The experiment was performed on various sizes of
database files and with increasing number of threads. The objective of this experiment is to

show the advantage of using pThreads over a serial implementation.
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Table 4

Serial vs. Parallel Implementation Performance: DB = 1000 DNA Sequences

Table 5

Serial vs. Parallel Implementation Performance: DB = 10,000 DNA Sequences
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Table 6

Serial vs. Parallel Implementation Performance: DB = 100,000 DNA Sequences

Table 7

Serial vs. Parallel Implementation Performance: DB = 500,000 DNA Sequences
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Table 8

Serial vs. Parallel Implementation Performance: DB = 1,000,000 DNA Sequences

Table 9

Serial vs. Parallel Implementation Performance: DB = 5,000,000 DNA Sequences
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Table 10

Serial vs. Parallel Implementation Performance: DB = 10,000,000 DNA Sequences

Table 11

Serial vs. Parallel Implementation Performance: DB = 50,000,000 DNA Sequences
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Table 12

Serial vs. Parallel Implementation Performance: DB = 100,000,000 DNA Sequences

Serial BLAST and Parallel BLAST
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Figure 21

Serial vs. Parallel BLAST 1000-500,000 DB Sequences
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Serial vs. Parallel BLAST 1,000,000-10,000,000 DB Sequences
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Serial BLAST and Parallel BLAST
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Figure 23

Serial vs. Parallel BLAST 50,000,000-100,000,000 DB Sequences

Per the results in Figures 21, 22, and 23, the parallel program’s performance was
significantly better compared to the serial implementation of BLAST. As the database file size
grew, the serial implementation of BLAST showed a significant time difference compared to the
parallel implementation.

Initially, as the database file size was less than 10,000, the parallel implementation was
slightly less efficient compared to the serial implementation. This could be due to the overhead
costs which worsens the performance when there is less sequences to search. Also, as the
database files grew in size, the performance of the parallel implementation improved. As the
number of threads increased, the parallel implementation performance was affected. Again, the

parallel performance suffered when the number of threads increased. This experiment helps us
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come to a conclusion that there should exist a right balance in the number of threads with the

database file. If the database file is too small or the number of threads is too large for the amount
of database sequences to search through, then the parallel performance suffers.

In parallel computation, in which multiple processors are all focused on the solution of a
single problem. Many of these applications may be speed up by preprocessing their input data,
carrying out a large number of independent and concurrent computation on the preprocessed data
which is done in parallel, and post-processing the results of the independent computations to
construct the final outputs. A significant approach to speed up the search would be to split the
database to create small subtasks which gets assigned to the worker threads.

Speedup here is defined as the ratio of the time for the execution of the sequential code
on a single core to the execution time of the parallel code. Therefore, speedup = Ts/Tp where Ts
is the execution time of the sequential code, and Tp is the execution time for the parallel code.
We saw an average speed-up of 3.67 when using the parallel program compared to the serial
program.

Related Work

Researchers have extended the above experiment further and have provided further
analysis on performance with regards to size of the database, the size of user batch entries, and
the length of the DNA sequence.

Performance vs. Database Size

The first step is to analyze if there is an impact of sequence database size on

performance. The actual BLAST database can store four nucleotides as a single byte, so a

sequence database with 4 billion sequences would require about 1 GB of space. Figure 24
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represents the performance of various versions of BLAST including mpiBLAST for a wide range

of database sizes for nine processors on a PC cluster. The Y axis represents execution time and
the X axis represents sequence database size in billions of sequences.

The execution times tend to increase for larger databases as more sequences must be
examined for each user query. The results show that before the database size reaches the
memory limit, both BLAST and BLAST++ perform better than mpiBLAST. This is due to
lower parallelization overhead enjoyed by replicated BLAST and replicated BLAST++.
However, once database sizes increase over 4 billion DNA sequences, the databases no longer fit
in the memory of a single node, this is due to the choice of the researchers to use PC nodes that
have 1 GB memory. The performance of BLAST and BLAST++ degrades sharply as portions of
databases are evicted from the file cache and need to be slowly reloaded from the disk (Naruse &
Nishinomiya, 2002).

In comparison, the performance of mpiBLAST does not experience major performance
issues with an increase of the database size to over 4 billion sequences or when the database size
exceeds the limit of a certain PC node. Instead performance degrades linearly with an increase
of database sizes. Steep performance drops are avoided in mpiBLAST since each node only
performs searches on a portion of partitioned database (Naruse & Nishinomiya, 2002). Sharp
performance drops will only be noticed in mpiBLAST when each database fragment becomes
too large for the memory of each individual node. This experiment results demonstrates that
mpiBLAST works best for large sequence databases that do not fit into the memory of a single

node.
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Figure 24
Performance vs. DB Size
Performance vs. Batch Size

The next step that the researchers looked at is to see the impact on the BLAST algorithm
performance with respect to the number of queries entered by the user. Figure 25 represents the
performance of the various versions of BLAST as the batch size varies between 32 and 256. The
results were obtained on a PC cluster using eight processors. In the figure, the Y axis represents
the execution time and the X axis represents query batch size. The database size of 250 million
DNA sequences and the query length is 64 letters long (Costa & Lifschitz, 2003).

Results as expected show that the execution time increases for all the variations of
BLAST as the batch size increases because more user queries need to be searched through the
database. BLAST++ is able to reduce execution times for batched BLAST queries even for
small batches. It also reduced redundancy and the execution time only increases slightly as the

batch grows. BLAST++ is able to accomplish this efficiency by creating a virtual query sequence
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that consists of all the user query sequences (the batch sequence). Unfortunately, a side effect of

maintaining all the additional information for the combined query sequence, increases the

memory usage for BLAST++ compared to BLAST.
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(Zomaya, 2006)
Figure 25
Performance vs. Batch Size
Performance vs. Query Length

The researchers vary the user query length from 256 words to 4096 words. mpiBLAST
achieves the best performance because the large sequence database cannot fit in the memory of a
single node. Serial implementation of BLAST required 2131.8 seconds on one of the machines.
Compared to the parallel implementation of BLAST with 11 threads, only 130 seconds was
required, representing an improvement in the speedup of the algorithm. Figure 26 displays the
time in seconds required with increasing query length sequences for various parallel

implementations of BLAST.
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Chapter 6: Conclusion and Future Work

The experiments carried out shows that there are many factors affecting the performance
of BLAST searches. These factors include, size of DNA sequence database, the length of the
user query, and the number of user queries. Among these factors, the size of the sequence
database seems to be the most important in determining the total search time. This is because
databases can take up a lot of memory and also because the BLAST algorithm is an exhaustive
search algorithm which examines each and every database DNA sequence for every user query.
Further research is being performed to investigate new data indexing and organization methods
for these databases. These new methods show promise for improving the BLAST search
performances further (Costa & Lifschitz, 2003).

From this paper we have seen that there are various ways to improve the performance of
BLAST searches by exploiting parallelism at number of levels. Some of the notable ways
include vector instructions, multithreading, replicated databases, distributed databases and
optimized batch queries, or a hybrid of any of these.

Some of the future work are as follows:

1. Integration of Existing Approaches: Biologists along with researchers are developing
version of BLAST that combine various implementations of parallel BLAST
algorithms. pThreads and UMD-BLAST is a first step in this direction.

2. Preprocessing Sequence Databases: Another area that researchers are currently
looking into is to analyze and pre-process DNA sequence databases to make them
more efficient for BLAST searches. Such pre-processing can take advantage of

knowledge of properties of the BLAST algorithm. For example, the BLAST scoring
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algorithm may be analyzed to index and partition sequence databases to reduce the

portion of the database that must be scanned.

Exploiting Grid Resources: For large user query searches, researchers may attempt to
take advantage of CPU cycles in large grid systems. Grid computing attempts to
provide a common interface for a variety of computing resources, ranging from
dedicated computing clusters at supercomputing centers to spare CPU cycles
harvested from pools of idle computers. Researchers are also looking into the
interfaces and infrastructure required for supporting BLAST in a grid environment.
Prototype grid-based versions of BLAST attempt to provide transparent user
interfaces for performing BLAST searches on a grid. Such system will increase in
importance as grid computing becomes even more popular.

. Alternative Search Algorithms: Lastly, researchers are looking into developing new
search algorithms that yield results as precise or even better than BLAST along with
better performance. Examples include BLAT, PatternHunter, and MEGABLAST.
Although these new algorithms can be quite powerful and precise, BLAST is so
frequently and commonly used tool that convincing biologists to use a new search

tool will require much more evidence of positive results and also training (Akl, 2014).
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