
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

4-2017

A Study on the Security of Password Hashing
Based on GPU Based, Password Cracking using
High-Performance Cloud Computing
Parves Kamal
pkamal@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Kamal, Parves, "A Study on the Security of Password Hashing Based on GPU Based, Password Cracking using High-Performance
Cloud Computing" (2017). Culminating Projects in Information Assurance. 25.
https://repository.stcloudstate.edu/msia_etds/25

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/25?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

A Study on the Security of Password Hashing Based On GPU Based, Password Cracking Using

High-Performance Cloud Computing

by

Parves Kamal

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree, of

Master of Science

in Information Assurance

.

March,2017

Starred Paper Committee:

Dr, Dennis Guster, Chairperson

Dr. Jim Q. Chen

Dr.Mahbub Hossai

2

Abstract

 In This paper the current security of various password hashing schemes that are in use today

will be investigated through practical proof of concept – GPU based, password hash dump

cracking using the power of cloud computing. The focus of this paper is to show the possible use

of cloud computing in cracking hash dumps and the way to countermeasures them by using

secure hashing algorithm and using complex passwords.

3

Table of Contents

 Pages

 List of Tables .. 5

 List of Figures... 6

 Chapter 1: Introduction... 7

 1.1 Introduction .. 7

 1.2 Problem Statement ... 8

 1.3 Nature and Significance of the Problem ... 8

 1.4 Objective of the Study .. 9

 1.5 Study Questions and Hypotheses ... 10

 1.6 Definition of Terms .. 11

 1.7 Summary .. 11

 Chapter 2: Background and Review of Literature .. 12

 2.1 Introduction ... 12

 2.2 Background Related to the Problem .. 12

 2.3 Literature Related to the Problem .. 23

 2.4 Literature Related to the Methodology .. 24

 2.5 Summary ... 25

 Chapter 3: Methodology ... 26

 3.1 Introduction .. 26

 3.2 Design of the Study .. 26

 3.3 Data Collection ... 26

 3.4 Tools and Techniques .. 27

4

 3.5 Hardware and Software Requirements ... 27

 3.6 Installing oclHashcaht and Benchmarking of the performance of oclHashcat on

 BothCPU and GPU ... 29

 3.7 Testing Environment Diagram .. 65

 3.8 Wordlist Selected .. 65

 3.9 Sample Password Hashed Dump File .. 66

 Chapter 4: Analyzing Results ... 69

 4.1 Introduction ... 69

 4.2 Test Result .. 69

 4.3 Experimental Run ... 87

 4.4 Analyzing Result ... 88

 4.5 Recommendation ... 89

 Chapter 5: Conclusion .. 90

 5.1 Introduction ... 90

 5.2 Timeline ... 90

 5.3 Future Work .. 91

 5.4 Conclusion .. 91

 Reference .. 92

 Appendix ... 96

5

List of Tables

1. Comparison between different hash algorithms .. 14

2. MD5 cracking performance comparison using GPU .. 25

3. Hardware and Software Requirements .. 27

4. MD5 cracking performance With CPU machine .. 70

5. MD5 cracking performance With GPU machine .. 73

6. SHA-256 cracking performance With CPU machine ... 76

7. SHA-256 cracking performance With GPU machine ... 79

8. Bcrypt cracking performance With CPU machine .. 82

9. Bcrypt cracking performance With GPU machine .. 85

6

List of Figures

1. Hashing(h) Function in operation ... 13

2. Example of Some of the weak and strong passwords ... 18

3. Theoretical peak GFLOP/sec between CPU’S vs GPU’S ... 20

4. CPU Architecture .. 21

5. GPU Architecture .. 21

6. Cloud Computing Offered solutions and their comparison ... 23

7. Testing Environment ... 65

8. Project Timeline .. 90

7

Chapter 1: Introduction

1.1 Introduction

The most common means of authentication scheme are password based authentication

system [1]. An employee uses multiple passwordson adaily basis for all the applications and

systems that he/she might be working on for the employer. Businesses spend atremendous

amount of money for not only storing these passwords but also for securing the storage of these

passwords. Especially when organization deals with a huge number of customers;it's very hard

for them to create, maintain and distribute these passwords across the network for authentication,

authorization or accounting purposes. Thus, Passwords based authentication system possesses

many security problems into rather relatively secured existing infrastructures[2].

To overcome the possible security concerns with storing and distributing the password

across the network, the password is often run against the cryptographic hash function to get the

equivalent digest of the password which is stored along with the user’s other credentials in the

database. When users try to login with the password, the input is calculated by the same hash

function to compare with the digest of the same password that has been stored in the databases.

One of the properties of the cryptographic hash function is its irreversible one-way function

which means it’s nearly impossible to get back the password from the digest itself. Then again,

many of the commonly used hashing functions like MD5, SHA-1, etc. have been developed

during the mid-nineties. One of the weaknesses of most widely used hash function MD5 is that

the attacker can create two identical digests for two different inputs which in cryptography field

is called Hash collision [3]. In fact, the possibility of an adversary of finding the password from

the hash dump is proportional to the amount of the work he/she puts in and the ability to predict

the password characteristics distribution. Moreover, with the advent of the cloud computing and

8

new powerful Graphics Processing Unit (GPU), the attacker is now well equipped than ever to

decipher the passwords from the hash at their will.

Since last decades there has been significant development going on in the field of Graphics

Processing Unit (GPU). The GPU is very suitable for performing parallel tasks as well as

calculating floating point related problems. Modern GPU based, password cracking is tentimes

faster than Central Processing Unit (CPU) based password cracking [4]. In my paper, I will be

showing how an attacker can leverage existing cloud services to crack passwords from sample

password hash dumps using the high-performanceGPU-based computing resources.

1.2 Problem Statement

Many organizations are still using vulnerable hashing functions like MD5/SHA-1 for

storing their user’s passwords. These hashing functions are inherently weaker and susceptible to

many hashing related attacks. Also, the complexity of passwords is still lenient across many

organizations,hence making it possible for the attacker to perform dictionary based rainbow

attacks against those hashed passwords. Adding salting and choosing a relatively slow hashing

function ensuresthat such exhaustive password cracking techniques in the near future will be still

impractical [5].

1.3 Nature and Significance of the Problem

Due to the recent hacking and public disclosure of private information (User’s passwords)

from several big profile organizations like LinkedIn, E-harmony and Yahoo within last 5 years

raises the serious questions of not only the security of the authentication systems in these high

9

profile organizations but also the security aspects of their password storing techniques in their

databases.

Hence, I am taking this opportunity in my paper to show how effective theGPU based,

password cracking technique is against the hashing techniques and provides insighton why

choosing strong, complex passwords along with slow computers hashing function will keep the

attackers at bay while leveraging GPU processing power of the cloud computing resources.

1.4 Objective of the Study

The objectives of this paper are to show the effectiveness of a GPU based,password

cracking by using cloud computing against latest password hashing techniques. By doing so, this

paper providesa recommendation on how to store passwords more securely, which makes any

possible distributed GPU based, password cracking techniques inefficient.We achieve these

goals in following ways:

• Present the literature review of the current password hashing techniques and

identifying their advantages and disadvantages.

• Provide insight into different password cracking techniques and why GPU

based,password cracking using high-performancecomputing in thecloud is viable.

• Demonstrate the effectiveness of a GPU based, password cracking of hashed dump

on cloud computing.

• Providing comparisons amongst the more cryptographically strong hashing

techniques.

• Come to a conclusion and suggestions on the importance of using salt in hashing as

well as the strong password selection.

10

1.5 Study Questions/Hypotheses

 By the end of this paper, we should be able to answer following questions:

How does the GPU affect the performance of exhaustive password cracking techniques in cloud

computing?

To answer the above question, the following sub-questions will help to answer the research

inquiry:

• What are the Password hashing attacks?

• What are the advantages of GPU based, password cracking over CPU based password

cracking?

• How to implement GPU based, cracking in cloud computing?

• Why use computationally slow hash function and salt in hashing?

• The Importance of using non-human readable passwordsrather than human-

memorable passwords.

11

1.6 Definition of Terms

Acronym Description

GPU Graphics Processing Unit

CPU Central Processing Unit

MD5 Message Digest Algorithm 5 (1992)

Hash Cryptographic fixed-size value from arbitrary input

Collision Two different input yields to the same output hash value

API Application programming interface

GPGPU General-Purpose Graphics Processing Unit

GFLOPS (Giga Floating Point Operations Per Second)

OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

1.7 Summary

 This chapter summarizes the research problem statements, objectives,and research

questions. In the next chapter, we will explore the background related to the problem as well as

the literature review.

12

Chapter 2: Background and Review of Literature

2.1 Introduction

This chapter will provide the required theoretical background necessary to understand the

research topics to understand better the research question that we are going to solve. Also, this

chapter will provide the related work that is regarding the GPU based, password cracking and on

password hashing security.

2.2 Background Related to the Problem

This section will provide necessary definitions and concepts related to password hashing

and their attacks, characteristics of strong passwords and their expected cracking time, the

properties of thesecure hash function, performance differences between GPU and CPU-based

password cracking and cloud computing.

2.2.1 What is aHash?

 The process of taking an arbitrary length inputand converting it to a fixed-length output

value by integratingthrough a cryptographic hash function is called hashing, and the output value

is called the hash value as shown in the figure below. The property of cryptographic hash

functions is they are aone-wayfunction, and there is no way of deducing the input value by

reverting from the output hash value [6].

13

Figure 1.Hashing (h) Function in operation [7].

 Because of its irreversible features, hashing is very useful for storing thepassword in the

authentication server. This allows not only protecting customer’s privacy but also allows

theserver to authenticate user’s login information without storing the user’s password. Let’s say

for example the cryptographic hash value of the word ‘parves’ using MD5 algorithm is:

MD5(parves) = cf7cccd2e366698244ac5891da31bb82

14

2.2.2 Different Hashing Algorithm:

 In the following table below the function of a different hashing algorithm that is in use at

largeare shown:

Table 1

Comparison between different hash algorithms[8].

Algorithm Word

Size

Block Size OutputSize Rounds Collision Found

MD-2 32 128 128 18 YES

MD-4 32 512 128 48 YES

MD-5 32 512 128 64 YES

SHA-0 32 512 160 80 YES

SHA-1 40 512 160 80 YES

SHA-2 56/64 512/1024 224/256/384/512 64/80 THEORETICAL

SHA-3 64 1152/1088

832/576

224/256/384/512 24 NO

2.2.3 Characteristics of Secure Hash Function

Any hash function needs to have the following two properties:

• Fixed Output: Hash function always needs to theoutput of a fixed amount of output

irrespective of the input length size. If a hash function h outputs to 64 bits of value, then

an input message of m=22 bits and n=50 bits should always compute to thesame length

of the64-bit hash value .i.e.h(m) → 64 bits’ hash value and h(n)→ 64 bits’ hash value.

15

• Easy Computation function: Hash function should be implemented as such that for any

input y, h(y) should be easy to compute [9].

To be qualified as a cryptographically secured hash function, it must meet the following three

characteristics in their function:

• Preimage Resistance: For all the hashes of x, it is extremely difficult to find the message

m which is hashed to x.

• Second-preimage Resistance: For any given message x, it’s almost very highly unlikely

to find another message y which has the same hash value like message x, i.e. h(x)≠h(y)

where h is any hash function and x ≠ y

• Collision Resistance: It should be very difficult to find two different message computes

to the same hash value. In this type of attack, the attacker is free to choose any two

different messages and find the similar hash value. i.e. h(x) = h(y)

2.2.4 Password Hash Cracking Techniques

Password hash cracking is amethod of attacking dumped hash to find flaws in the

underlying secured hash characteristics that we discussed in theprevious section to find the

message that computer to the same hash value. The attacker, once they get hold of the hash file

by getting the unauthorized access to the network, usually copies the hashed password file and

performs one of the following attacks.

• Exhaustive Attack:

This attack involves trying every possible combination of characters within character

sets. Since it looks for every possible combination, the success rate is 100% of finding

the correct combination given the time, and the cost is out of consideration. Also,

16

themostcryptographic system in use today uses very large space of time, making the

exhaustive search impractical to perform against. The exhaustive attack is used in two of

the following ways [10]:

✓ Known-Plaintext only attacks: In this attack, only the perpetrator knows plain

text ciphertext both. Then he tries to discover the key that encrypts the

plaintext for example.

✓ Ciphertext-only attacks: The attacker only knows the ciphertext, and he tries

to findthe corresponding key or plaintext by going through every combination

of the keys.

Password hashing crack technique is only possible in cipher text theonly method as every

hash function is aone-way function.However, with a single digit increase in password

length makes the exhaustive search iteration increase exponentially, making the

exhaustive search attack impractical for the attacker, especially when long and complex

alphabetical characters are chosen [11].

• Dictionary Attack

A Dictionary attack is avery effective attack if theuseruses some human-memorable

password for their login credentials and the attacker tries a list of common words and

expressions used in any language for example in English to find the password. Users tend

to use common or simple passwords [12] across many platforms, so that can be easily

recalled and if it’s the case then performing dictionary attacks is highly successful. But

some simple modification to those common words can make a dictionary attack highly

unsuccessful too [13].

17

• Rainbow table Attack

Rainbow table Attacks involve looking up the precomputed hash tables and the

corresponding key value to find any matching hash. This type of attack, though, has

limited combination to look up for but when working within its constraints, it takes less

time decrypting hashed password than those two other attacks mentioned earlier [14].

2.2.5 Characteristics of Strong Passwords

We will discuss in the following few sections the characteristics of strong passwords, and

we will define its strength based on the exhaustive brute force attack time it takes to crack those

passwords. We will then introduce the concept of CPU and GPU based, password cracking with

cloud computing to end the chapter.

There are many characteristics that make a password easy to crack using exhaustive attacks.

Some of the characteristics are:

• Passwords are based on common dictionary words

• Passwords are Easily guessable

• Passwords are relatively short in length, making it possible to brute force attack easily

• Passwords have some sorts of thepattern which is easy to deduce. e.g. abc123, XYZ,

46824682 etc.

• Passwords have been repeating characters like abab11 or xy12x. People Use the

passwords with repeating characters so that they can remember.

18

To better understand, let’sshow it more graphical way. The following pictures are some of the

chosen passwords with acombination of characters, numbers, and symbols to check the strength

of the passwords based on the characteristics of the characteristics above of strong passwords.

Figure 2. Example of Some of the weak and strong passwords [15].

So as we have seen even if all the passwords above were eight characters long, using memorable

words like awatch or if using characters that come in sequences significantly make the password

strength very low while using random sequences of characters makes passwords relatively

stronger. It’s very hard to get real random numbers, and for humans, we are not well equipped to

remember random numbers. In fact, ahuman can only remember random numbers up to 7±2

characters [16]. Having passwords with arandom sequence of numbers with at leastone capital

letter, number, aSpecial character from large key space makes password very strong as shown

below in the above figure.

19

One of the methods used to check the strength of the password is based on the entropy.

Entropy depends on the length of the passwords and the key space used. Entropy can be

calculated using the formula, log 2 (𝑛) [17],where n represents the number of characters in key

space.

2.2.6 CPU-Based Versus GPU-Based Password Cracking Performance:

The CPU has traditionally been used for general purpose computing. Usually,the CPU has

limits on how many processing cores it can accommodate. To overcome these CPU’s is hyper

threading technology to compensate whereas the GPU has many more cores compared to its

similarly priced CPU counterpart.

 GPU also works as Single instruction, but Multiple Data computations or known as (SIMD)

whereas CPU’s work as Single Instruction, Single Data computations or known as (SISD). This

makes GPU largely suited for password cracking. The difference between CPU’S and GPU’Scan

regard performance based on single precision floating point number is clearly shown in the figure

below:

20

Figure 3. Theoretical peak GFLOP/Sec between CPU’SvsGPU’S [18]

Part of the reason behind the GPU’S power over CPU is for the recent increase in GPU’S power

in comparison with the CPU’S one. AS we know from Moore’s law CPU’S power doubles once

in 18 months, whereas GPU’S power is doubling four times at the same time [19].

21

Here are the few reasons highlighted behind the GPU’S strength over the CPU:

• CPU’s havefewer cores compared to GPU’s cores as shown below

Figure 4. CPU Architecture.

Figure 5. GPU Architecture.

22

• GPU’Suseless cache than CPU because of the way GPU’S make use of the pipelines and

the static operations [20].

• CPU’s need to preserve the backward compatibility features to work with old instruction

sets, whereas the GPU’s are leaving their old instruction sets making it possible to exploit

SIMD features whereas even though the new features SIMDv5 is used by the new CPU’s,

it still needs to be backward compatible with old instruction sets. There are a lot of

different GPU architectures, but all these differences are taken care of at the hardware

level, leaving the software developer out of hassle.

• The reason GPU’s havealarge amount of GFLOPS (Giga Floating Point Operations Per

Second) because programming application can exploit the power of GPU’s is easier

because of the introduction of Unified Device Architecture (CUDA) and Open

Computing Language (OpenCL). CUDAis used for parallel computing, which developer

exploits while writing programs for GPU’s. OpenCL is an open source language

framework, making it possible to write code applicable for any GPU’s architecture.

• GPU’s needs to make use of the cache and the register shown in fig-5 that is on board to

take advantages of its processing power [21].

2.2.7 Cloud Computing

Cloud computing is rapidly provisioned on demand configurable resources that can be shared

with minimal management effort or service overhead [22]. There are two types of cloud – public

and private. Public cloud is a cloud service offered by thecloud. APrivate cloud is exclusively

provisioned for acertain group of users. Because of the flexibility and the cost effectiveness every

23

company is moving their infrastructure to the cloud now. There are many public cloud companies

like AWS, Rackspace, Google Cloud, Microsoft Azure provide.

Figure 6. Cloud Computing Offered solutions and their comparison [23].

Spinning up a virtual machine in the Amazon AWS with Intel Xeon-based G series computing

along with NVidia’s K520 (1536 cores) cost about $0.02 to $2.87 per hour making it very feasible

for someone to run parallel GPU-based, password cracking on the password hash dump. In my

paper I will demonstrate how effective is GPU based, password cracking using cloud platform.

2.3 Literature Related to the Problem

Thompson in his paper has shown how GPU’s can be used for usual computing task other

than graphically intensive work [24] whereas Cook in his paper shown GPU’s are good for

solving cryptography related work too [25]. In the beginning, it was hard to make any application

that could take advantage of GPU’s because of the lack of API’s and supports. Now with the

advent of CUDA, OpenCL platform, APIs for GPU’s become widely available. Using GPU’s

performance on cryptographic computation has been under review by many researchers. Yang

24

and his colleague have shown how GPU’s can outperform high-performance CPUs in symmetric

cryptographic computations [26]. In Asymmetric encryption strength has also been reviewed by

many researchers suing GPU’s [27,28,29]. Bernstein has shown how NVidia GTX 295 can be

used to break ECC cryptosystem by calculating up to 481 million modular multiplications per

second in his paper [30]. Hash functions like MD5 and Blowfish have also been tested with GPU

processing power, outperforming the CPU’s significantly [31,32].

2.4 Literature Related to the Methodology

Graphical Processing Unit or GPU is now lots used for general purpose computing or better

known as GPGPU than rather using it as to drive graphics.

With the advent of CUDA and OpenCL framework researcher are putting the hash security to

thetest by exploiting the power of the GPU to crack them using parallel processing power. R.

Zhang and his colleagues showed the method to crack MD5 hash using CUDA and reached the

speed of 223 Mbps [33]. Another researcher compared decryption software John, the Ripper

against cracking software based on OpenCL and found 17-times faster speed [34]. In other

research, the authors implemented MD5 decryption methods using Tianhe-1A using CUDA to

reach calculation speeds up to 18 billion keys per seconds [35]. Oclhashcat happens to be the

multiplatform world’s fastest password cracker which is GPUGPG based open source free hash

cracker with speeds of up to 8511 mc/s and 2722 mc/s for MD5 and SHA-1 hash respectively.

TheGPU has also been used for better and faster implementation of hashing algorithm as well.

In one study researcher, implemented MD5 decryption algorithm using GPU cluster and gain

100 times faster performance in comparison to CPU [36]. Moreover, researchers have

25

madeacomparison toaparallel version of MD5 on NVidia’s GPU of which the results are whom

in the following table:

Table 2

MD5 is cracking performance comparison using GPU [37].

Platform Language Performance

NVidia Geforce 9600 GT CUDA 223 Mbps

Nvidia GTX295 OpenCL 76.6 Mbps

Nvidia GTX9800+ CUDA 516 Mbps

AMD HD7970(1G) OpenCL 507.3 Gbps

AMD HD7970 (925 M) OpenCL 409.9 Gbps

As shown above,research has been done on cracking MD5 hashing using GPU’s and relatively

less onan SHA-1 hashing algorithm. Many of the researchers used open source cracker like

Oclhashcat on GPU platforms like NVidia or AMD using CUDA or OpenCL. In our paper, we

will also exploit GPU power that is on offered in the cloud to crack sample password hash dump

using Oclhashcat.

2.5 Summary

 In this chapter, we covered all the required definitions and background knowledge related

to the research and we also covered the literature review related to our research problem and

methodology that we will be using. In the following chapter, we will outline our research

methodology in detail and the necessary tools and the techniques as well as our test environment

in detail.

26

Chapter 3: Methodology

3.1 Introduction

 In this chapter, we will discuss our methodology used in conducting our research.

3.2 Design of the Study

 To answer the research questions proposedin section1.4, the following approaches will be

followed:

• Literature review: We try to identify the characteristics of strong hashing algorithm as

well as the passwords with the data gathered from the proof of concept—password hash

cracking in the cloud

• Proof of concept: To show the performance of the GPU on password hash cracking using

cloud we will implement GPU based, hash cracking on cloud and we will compare this

with CPU based cracking.

• Comparison: We will compare the analyzed data to compare the GPU based, and CPU

based, password cracking performance as well as the effect of using secured password

hashing algorithm on the cracking performance. We will also analyze the reason behind

the password hash cracking effectiveness based on password strength.

3.3 Data Collection

The data will be collected once the test is performed and the benchmark report, as well as

the generated passwords, will be the source of the data which will later be analyzed.

27

3.4 Tools and Techniques

Multi-GPU based OclHashcat on Amazon AWS EC2 on CUDA based NVIDIA Tesla GPU

to crack sample password hash of MD5,SHA-256, and Bcrypt.

3.5 Hardware and Software Environment

 The following hardware and software will be used in conducting my research. The setup

was done in AWS (Amazon Web Service) cloud. The exact software and Hardware details are in

the table below. The test will be conducted in cracking the password hash on both GPU and CPU

instances (Machine).

Table 3

Hardware and Software Requirements.

GPU Test Machine

Software Hardware

Ubuntu 16.04 with NVIDIA GRID and

TESLA GPU Driver

Intel Xeon E5-2670 (Sandy Bridge)

Processors

oclHashcat is a GPGPU-based multi-

hash cracker

P2 instances provide up to 16 NVIDIA

K80 GPUs, 64 vCPUs and 732 GiB of

host memory, with a combined 192 GB of

GPU memory, 40 thousand parallel

processing cores, 70 teraflops of single

precision floating point performance, and

28

over 23 teraflops of double precision

floating point performance. P2 instances

also offer GPU Direct™ (peer-to-peer

GPU communication) capabilities for up

to 16 GPUs, so that multiple GPUs can

work together within a single host

 vCPU - 32 Ram – 488 GPU -8 GB

SSD- 300GB

CPU Test Machine

Software Hardware

Ubuntu 16.04 - - with Updates HVM-

1602

Intel Xeon E5-2666 v3 2.9 GHz

oclHashcat is a CPU-based multi-hash

cracker

High-frequency Intel Xeon E5-2666 v3

(Haswell) processors optimized

specifically for EC2

EBS-optimized by default and at no

additional cost

Ability to control processor C-state and

P-state configuration on the c4.8xlarge

instance type

 VCPU-8 RAM – 15GB SSD-30GB

29

3.6 Installing oclHashcaht and Benchmarking of the Performance of oclHashcat on Both

CPU and GPU

First, the installation of the ocHashcat multi-GPU based, hash cracker with the following

steps after ssh into our cloud Linux machine on both CPU and GPU test machine.

30

Then the benchmark test was run on the different hashing algorithm and the full benchmark

results are as follows:

GPU Test Machine Benchmark Results:

root@ip-172-31-43-198 hashcat-3.30]# ./hashcat64.bin –b

OpenCL Platform #1: NVIDIA Corporation

==

Device #1: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #2: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #3: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #4: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #5: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #6: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #7: Tesla K80, 2047/11439 MB allocatable, 13MCU

Device #8: Tesla K80, 2047/11439 MB allocatable, 13MCU

Hashtype: MD4

Speed.Dev.#1.....: 8466.9 MH/s (51.48ms)

Speed.Dev.#2.....: 8501.4 MH/s (51.27ms)

Speed.Dev.#3.....: 8445.6 MH/s (51.61ms)

Speed.Dev.#4.....: 9079.5 MH/s (48.00ms)

Speed.Dev.#5.....: 8212.8 MH/s (53.07ms)

Speed.Dev.#6.....: 8906.6 MH/s (48.94ms)

Speed.Dev.#7.....: 8260.1 MH/s (52.77ms)

Speed.Dev.#8.....: 9072.7 MH/s (48.04ms)

31

Speed.Dev.#*.....: 68945.7 MH/s

Hashtype: MD5

Speed.Dev.#1.....: 4551.7 MH/s (95.80ms)

Speed.Dev.#2.....: 4440.1 MH/s (98.20ms)

Speed.Dev.#3.....: 4427.0 MH/s (49.20ms)

Speed.Dev.#4.....: 4626.7 MH/s (94.24ms)

Speed.Dev.#5.....: 4264.6 MH/s (51.10ms)

Speed.Dev.#6.....: 4521.0 MH/s (96.45ms)

Speed.Dev.#7.....: 4229.8 MH/s (51.53ms)

Speed.Dev.#8.....: 4613.5 MH/s (94.51ms)

Speed.Dev.#*.....: 35674.4 MH/s

Hashtype: Half MD5

Speed.Dev.#1.....: 3223.9 MH/s (67.60ms)

Speed.Dev.#2.....: 3156.0 MH/s (69.07ms)

Speed.Dev.#3.....: 3109.5 MH/s (70.10ms)

Speed.Dev.#4.....: 3309.7 MH/s (65.83ms)

Speed.Dev.#5.....: 2947.0 MH/s (73.94ms)

Speed.Dev.#6.....: 3307.7 MH/s (65.88ms)

Speed.Dev.#7.....: 3075.6 MH/s (70.88ms)

Speed.Dev.#8.....: 3311.1 MH/s (65.82ms)

Speed.Dev.#*.....: 25440.4 MH/s

32

Hashtype: SHA1

Speed.Dev.#1.....: 1993.0 MH/s (54.46ms)

Speed.Dev.#2.....: 1940.6 MH/s (55.91ms)

Speed.Dev.#3.....: 1972.2 MH/s (55.03ms)

Speed.Dev.#4.....: 2045.6 MH/s (53.03ms)

Speed.Dev.#5.....: 1937.4 MH/s (56.02ms)

Speed.Dev.#6.....: 1999.5 MH/s (54.26ms)

Speed.Dev.#7.....: 1872.4 MH/s (57.97ms)

Speed.Dev.#8.....: 2024.6 MH/s (53.61ms)

Speed.Dev.#*.....: 15785.3 MH/s

Hashtype: SHA256

Speed.Dev.#1.....: 815.1 MH/s (66.79ms)

Speed.Dev.#2.....: 815.5 MH/s (66.76ms)

Speed.Dev.#3.....: 811.9 MH/s (67.05ms)

Speed.Dev.#4.....: 874.6 MH/s (93.39ms)

Speed.Dev.#5.....: 810.0 MH/s (67.27ms)

Speed.Dev.#6.....: 836.2 MH/s (65.17ms)

Speed.Dev.#7.....: 797.3 MH/s (68.34ms)

Speed.Dev.#8.....: 847.4 MH/s (64.30ms)

Speed.Dev.#*.....: 6608.0 MH/s

33

Hashtype: SHA384

Speed.Dev.#1.....: 174.6 MH/s (78.05ms)

Speed.Dev.#2.....: 174.8 MH/s (77.93ms)

Speed.Dev.#3.....: 175.5 MH/s (77.60ms)

Speed.Dev.#4.....: 175.8 MH/s (77.48ms)

Speed.Dev.#5.....: 175.3 MH/s (76.83ms)

Speed.Dev.#6.....: 175.1 MH/s (77.82ms)

Speed.Dev.#7.....: 174.5 MH/s (78.07ms)

Speed.Dev.#8.....: 175.0 MH/s (77.83ms)

Speed.Dev.#*.....: 1400.6 MH/s

Hashtype: SHA512

Speed.Dev.#1.....: 177.5 MH/s (76.75ms)

Speed.Dev.#2.....: 177.8 MH/s (76.64ms)

Speed.Dev.#3.....: 177.9 MH/s (76.60ms)

Speed.Dev.#4.....: 178.9 MH/s (76.15ms)

Speed.Dev.#5.....: 177.5 MH/s (76.77ms)

Speed.Dev.#6.....: 178.1 MH/s (76.49ms)

Speed.Dev.#7.....: 177.7 MH/s (76.68ms)

Speed.Dev.#8.....: 178.1 MH/s (76.51ms)

Speed.Dev.#*.....: 1423.4 MH/s

34

Hashtype: SHA-3(Keccak)

Speed.Dev.#1.....: 184.6 MH/s (73.79ms)

Speed.Dev.#2.....: 175.5 MH/s (77.65ms)

Speed.Dev.#3.....: 184.5 MH/s (73.84ms)

Speed.Dev.#4.....: 186.9 MH/s (72.90ms)

Speed.Dev.#5.....: 180.1 MH/s (75.66ms)

Speed.Dev.#6.....: 190.8 MH/s (71.40ms)

Speed.Dev.#7.....: 182.7 MH/s (74.57ms)

Speed.Dev.#8.....: 183.4 MH/s (74.27ms)

Speed.Dev.#*.....: 1468.5 MH/s

Hashtype: SipHash

Speed.Dev.#1.....: 8380.1 MH/s (52.01ms)

Speed.Dev.#2.....: 8436.0 MH/s (51.64ms)

Speed.Dev.#3.....: 8236.4 MH/s (52.91ms)

Speed.Dev.#4.....: 8848.4 MH/s (49.26ms)

Speed.Dev.#5.....: 8010.7 MH/s (54.41ms)

Speed.Dev.#6.....: 8694.2 MH/s (50.13ms)

Speed.Dev.#7.....: 8078.2 MH/s (53.95ms)

Speed.Dev.#8.....: 8825.6 MH/s (49.39ms)

Speed.Dev.#*.....: 67509.6 MH/s

35

Hash type: RipeMD160

Speed.Dev.#1.....: 1218.0 MH/s (89.15ms)

Speed.Dev.#2.....: 1196.2 MH/s (90.77ms)

Speed.Dev.#3.....: 1200.0 MH/s (90.49ms)

Speed.Dev.#4.....: 1236.2 MH/s (87.81ms)

Speed.Dev.#5.....: 1177.3 MH/s (92.22ms)

Speed.Dev.#6.....: 1233.4 MH/s (88.38ms)

Speed.Dev.#7.....: 1120.3 MH/s (48.63ms)

Speed.Dev.#8.....: 1253.8 MH/s (86.94ms)

Speed.Dev.#*.....: 9635.2 MH/s

Hashtype: Whirlpool

Speed.Dev.#1.....: 78468.3 kH/s (85.80ms)

Speed.Dev.#2.....: 78975.2 kH/s (85.24ms)

Speed.Dev.#3.....: 78928.0 kH/s (85.30ms)

Speed.Dev.#4.....: 78865.1 kH/s (85.34ms)

Speed.Dev.#5.....: 78963.1 kH/s (85.25ms)

Speed.Dev.#6.....: 78982.6 kH/s (85.23ms)

Speed.Dev.#7.....: 78080.8 kH/s (86.23ms)

Speed.Dev.#8.....: 79145.9 kH/s (85.07ms)

Speed.Dev.#*.....: 630.4 MH/s

36

Hashtype: GOST R 34.11-94

Speed.Dev.#1.....: 66313.6 kH/s (101.54ms)

Speed.Dev.#2.....: 66579.7 kH/s (101.12ms)

Speed.Dev.#3.....: 66764.5 kH/s (100.85ms)

Speed.Dev.#4.....: 66243.8 kH/s (101.65ms)

Speed.Dev.#5.....: 66301.9 kH/s (101.55ms)

Speed.Dev.#6.....: 67160.6 kH/s (100.25ms)

Speed.Dev.#7.....: 65520.9 kH/s (102.76ms)

Speed.Dev.#8.....: 67115.1 kH/s (100.32ms)

Speed.Dev.#*.....: 532.0 MH/s

Hash type: GOST R 34.11-2012 (Streebog) 256-bit

Speed.Dev.#1.....: 19925.1 kH/s (170.97ms)

Speed.Dev.#2.....: 19592.7 kH/s (173.87ms)

Speed.Dev.#3.....: 20090.6 kH/s (169.56ms)

Speed.Dev.#4.....: 20300.8 kH/s (167.79ms)

Speed.Dev.#5.....: 19341.0 kH/s (176.13ms)

Speed.Dev.#6.....: 19972.5 kH/s (170.55ms)

Speed.Dev.#7.....: 19413.8 kH/s (175.47ms)

Speed.Dev.#8.....: 20344.7 kH/s (167.44ms)

Speed.Dev.#*.....: 159.0 MH/s

37

Hash type: GOST R 34.11-2012 (Streebog) 512-bit

Speed.Dev.#1.....: 19861.1 kH/s (171.55ms)

Speed.Dev.#2.....: 19686.2 kH/s (173.07ms)

Speed.Dev.#3.....: 20028.9 kH/s (170.09ms)

Speed.Dev.#4.....: 20083.5 kH/s (169.62ms)

Speed.Dev.#5.....: 19398.3 kH/s (175.65ms)

Speed.Dev.#6.....: 20046.2 kH/s (169.97ms)

Speed.Dev.#7.....: 19641.2 kH/s (173.46ms)

Speed.Dev.#8.....: 20436.0 kH/s (166.72ms)

Speed.Dev.#*.....: 159.2 MH/s

Hash type: DES (PT = $salt, key = $pass)

Speed.Dev.#1.....: 3699.9 MH/s (58.77ms)

Speed.Dev.#2.....: 3647.5 MH/s (59.63ms)

Speed.Dev.#3.....: 3679.8 MH/s (59.09ms)

Speed.Dev.#4.....: 3694.4 MH/s (58.86ms)

Speed.Dev.#5.....: 3607.1 MH/s (60.31ms)

Speed.Dev.#6.....: 3822.5 MH/s (56.91ms)

Speed.Dev.#7.....: 3789.0 MH/s (57.43ms)

Speed.Dev.#8.....: 3779.2 MH/s (57.57ms)

Speed.Dev.#*.....: 29719.3 MH/s

38

Hash type: 3DES (PT = $salt, key = $pass)

Speed.Dev.#1.....: 250.1 MH/s (54.41ms)

Speed.Dev.#2.....: 256.2 MH/s (53.14ms)

Speed.Dev.#3.....: 259.0 MH/s (52.54ms)

Speed.Dev.#4.....: 256.1 MH/s (53.14ms)

Speed.Dev.#5.....: 258.5 MH/s (52.66ms)

Speed.Dev.#6.....: 250.6 MH/s (54.31ms)

Speed.Dev.#7.....: 246.5 MH/s (55.23ms)

Speed.Dev.#8.....: 256.0 MH/s (53.17ms)

Speed.Dev.#*.....: 2033.1 MH/s

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla)

Speed.Dev.#1.....: 1379.7 kH/s (76.42ms)

Speed.Dev.#2.....: 1366.3 kH/s (77.23ms)

Speed.Dev.#3.....: 1315.0 kH/s (80.29ms)

Speed.Dev.#4.....: 1419.0 kH/s (74.39ms)

Speed.Dev.#5.....: 1284.7 kH/s (82.18ms)

Speed.Dev.#6.....: 1413.9 kH/s (74.65ms)

Speed.Dev.#7.....: 1362.7 kH/s (77.46ms)

Speed.Dev.#8.....: 1417.3 kH/s (74.47ms)

Speed.Dev.#*.....: 10958.5 kH/s

39

Hashtype: script

Speed.Dev.#1.....: 202.1 kH/s (32.43ms)

Speed.Dev.#2.....: 202.3 kH/s (32.40ms)

Speed.Dev.#3.....: 199.7 kH/s (32.84ms)

Speed.Dev.#4.....: 197.2 kH/s (33.26ms)

Speed.Dev.#5.....: 182.5 kH/s (35.94ms)

Speed.Dev.#6.....: 150.7 kH/s (43.59ms)

Speed.Dev.#7.....: 141.1 kH/s (46.55ms)

Speed.Dev.#8.....: 151.1 kH/s (43.46ms)

Speed.Dev.#*.....: 1426.6 kH/s

Hashtype: PBKDF2-HMAC-MD5

Speed.Dev.#1.....: 1427.7 kH/s (60.61ms)

Speed.Dev.#2.....: 1413.8 kH/s (61.20ms)

Speed.Dev.#3.....: 1430.8 kH/s (60.40ms)

Speed.Dev.#4.....: 1484.7 kH/s (58.24ms)

Speed.Dev.#5.....: 1374.1 kH/s (62.99ms)

Speed.Dev.#6.....: 1486.3 kH/s (58.11ms)

Speed.Dev.#7.....: 1405.9 kH/s (61.54ms)

Speed.Dev.#8.....: 1484.0 kH/s (58.21ms)

Speed.Dev.#*.....: 11507.3 kH/s

40

Hashtype: PBKDF2-HMAC-SHA1

Speed.Dev.#1.....: 777.6 kH/s (58.92ms)

Speed.Dev.#2.....: 752.4 kH/s (60.93ms)

Speed.Dev.#3.....: 767.1 kH/s (59.72ms)

Speed.Dev.#4.....: 790.7 kH/s (57.87ms)

Speed.Dev.#5.....: 751.3 kH/s (61.01ms)

Speed.Dev.#6.....: 775.4 kH/s (59.10ms)

Speed.Dev.#7.....: 727.7 kH/s (63.03ms)

Speed.Dev.#8.....: 793.6 kH/s (57.72ms)

Speed.Dev.#*.....: 6135.9 kH/s

Hash type: PBKDF2-HMAC-SHA256

Speed.Dev.#1.....: 292.4 kH/s (84.88ms)

Speed.Dev.#2.....: 286.2 kH/s (86.75ms)

Speed.Dev.#3.....: 290.1 kH/s (85.55ms)

Speed.Dev.#4.....: 298.2 kH/s (83.25ms)

Speed.Dev.#5.....: 283.1 kH/s (87.69ms)

Speed.Dev.#6.....: 295.3 kH/s (84.06ms)

Speed.Dev.#7.....: 289.0 kH/s (85.92ms)

Speed.Dev.#8.....: 298.1 kH/s (83.25ms)

Speed.Dev.#*.....: 2332.3 kH/s

41

Hashtype: PBKDF2-HMAC-SHA512

Speed.Dev.#1.....: 94553 H/s (67.10ms)

Speed.Dev.#2.....: 93350 H/s (67.97ms)

Speed.Dev.#3.....: 94379 H/s (67.23ms)

Speed.Dev.#4.....: 95693 H/s (66.30ms)

Speed.Dev.#5.....: 89283 H/s (71.92ms)

Speed.Dev.#6.....: 96060 H/s (66.05ms)

Speed.Dev.#7.....: 94247 H/s (67.32ms)

Speed.Dev.#8.....: 95611 H/s (66.36ms)

Speed.Dev.#*.....: 753.2 kH/s

Hashtype: Skype

Speed.Dev.#1.....: 2840.6 MH/s (76.74ms)

Speed.Dev.#2.....: 2912.7 MH/s (74.81ms)

Speed.Dev.#3.....: 2904.7 MH/s (75.03ms)

Speed.Dev.#4.....: 3074.1 MH/s (70.90ms)

Speed.Dev.#5.....: 2846.7 MH/s (76.58ms)

Speed.Dev.#6.....: 2991.6 MH/s (72.84ms)

Speed.Dev.#7.....: 2973.5 MH/s (73.30ms)

Speed.Dev.#8.....: 3109.2 MH/s (70.11ms)

Speed.Dev.#*.....: 23653.1 MH/s

42

Hash type: WPA/WPA2

Speed.Dev.#1.....: 91985 H/s (70.54ms)

Speed.Dev.#2.....: 90301 H/s (71.86ms)

Speed.Dev.#3.....: 92049 H/s (70.49ms)

Speed.Dev.#4.....: 95516 H/s (67.93ms)

Speed.Dev.#5.....: 88909 H/s (72.98ms)

Speed.Dev.#6.....: 93344 H/s (69.51ms)

Speed.Dev.#7.....: 91694 H/s (70.77ms)

Speed.Dev.#8.....: 94990 H/s (68.31ms)

Speed.Dev.#*.....: 738.8 kH/s

Hashtype: IKE-PSK MD5

Speed.Dev.#1.....: 316.6 MH/s (86.08ms)

Speed.Dev.#2.....: 314.5 MH/s (86.64ms)

Speed.Dev.#3.....: 317.5 MH/s (85.82ms)

Speed.Dev.#4.....: 317.8 MH/s (85.74ms)

Speed.Dev.#5.....: 306.6 MH/s (88.87ms)

Speed.Dev.#6.....: 318.1 MH/s (85.64ms)

Speed.Dev.#7.....: 317.9 MH/s (85.71ms)

Speed.Dev.#8.....: 317.0 MH/s (85.97ms)

Speed.Dev.#*.....: 2525.9 MH/s

43

Hashtype: IKE-PSK SHA1

Speed.Dev.#1.....: 165.1 MH/s (82.48ms)

Speed.Dev.#2.....: 162.8 MH/s (83.67ms)

Speed.Dev.#3.....: 163.9 MH/s (83.11ms)

Speed.Dev.#4.....: 167.4 MH/s (81.36ms)

Speed.Dev.#5.....: 161.0 MH/s (84.62ms)

Speed.Dev.#6.....: 168.1 MH/s (81.04ms)

Speed.Dev.#7.....: 167.6 MH/s (81.27ms)

Speed.Dev.#8.....: 168.6 MH/s (80.82ms)

Speed.Dev.#*.....: 1324.6 MH/s

Hash type: NetNTLMv1-VANILLA / NetNTLMv1+ESS

Speed.Dev.#1.....: 4720.0 MH/s (92.37ms)

Speed.Dev.#2.....: 4697.4 MH/s (92.82ms)

Speed.Dev.#3.....: 4530.3 MH/s (96.24ms)

Speed.Dev.#4.....: 4710.7 MH/s (92.56ms)

Speed.Dev.#5.....: 4456.6 MH/s (97.81ms)

Speed.Dev.#6.....: 4737.6 MH/s (92.02ms)

Speed.Dev.#7.....: 4407.3 MH/s (98.93ms)

Speed.Dev.#8.....: 4714.3 MH/s (92.49ms)

Speed.Dev.#*.....: 36974.2 MH/s

44

Hash type: NetNTLMv2

Speed.Dev.#1.....: 295.5 MH/s (92.24ms)

Speed.Dev.#2.....: 291.7 MH/s (93.42ms)

Speed.Dev.#3.....: 287.9 MH/s (94.67ms)

Speed.Dev.#4.....: 294.8 MH/s (92.42ms)

Speed.Dev.#5.....: 293.9 MH/s (92.72ms)

Speed.Dev.#6.....: 294.3 MH/s (92.60ms)

Speed.Dev.#7.....: 294.7 MH/s (92.46ms)

Speed.Dev.#8.....: 294.6 MH/s (92.50ms)

Speed.Dev.#*.....: 2347.3 MH/s

Hash type: IPMI2 RAKP HMAC-SHA1

Speed.Dev.#1.....: 346.0 MH/s (78.76ms)

Speed.Dev.#2.....: 349.4 MH/s (77.99ms)

Speed.Dev.#3.....: 354.6 MH/s (76.83ms)

Speed.Dev.#4.....: 362.8 MH/s (75.09ms)

Speed.Dev.#5.....: 326.6 MH/s (83.42ms)

Speed.Dev.#6.....: 365.4 MH/s (74.57ms)

Speed.Dev.#7.....: 335.4 MH/s (81.25ms)

Speed.Dev.#8.....: 359.4 MH/s (75.82ms)

Speed.Dev.#*.....: 2799.6 MH/s

45

Hash type: Kerberos 5 AS-REQ Pre-Authtype 23

Speed.Dev.#1.....: 47808.6 kH/s (142.52ms)

Speed.Dev.#2.....: 47191.6 kH/s (144.39ms)

Speed.Dev.#3.....: 47967.8 kH/s (142.05ms)

Speed.Dev.#4.....: 47687.9 kH/s (142.88ms)

Speed.Dev.#5.....: 48071.0 kH/s (141.74ms)

Speed.Dev.#6.....: 47765.8 kH/s (142.63ms)

Speed.Dev.#7.....: 47612.6 kH/s (143.11ms)

Speed.Dev.#8.....: 47767.8 kH/s (142.65ms)

Speed.Dev.#*.....: 381.9 MH/s

Hash type: Kerberos 5 TGS-REP type 23

Speed.Dev.#1.....: 46763.9 kH/s (72.84ms)

Speed.Dev.#2.....: 46724.8 kH/s (72.90ms)

Speed.Dev.#3.....: 46731.8 kH/s (72.88ms)

Speed.Dev.#4.....: 47354.2 kH/s (143.89ms)

Speed.Dev.#5.....: 47632.9 kH/s (143.05ms)

Speed.Dev.#6.....: 47401.7 kH/s (143.75ms)

Speed.Dev.#7.....: 47301.7 kH/s (144.06ms)

Speed.Dev.#8.....: 46954.6 kH/s (72.54ms)

Speed.Dev.#*.....: 376.9 MH/s

46

Hash type: DNSSEC (NSEC3)

Speed.Dev.#1.....: 714.1 MH/s (76.24ms)

Speed.Dev.#2.....: 742.3 MH/s (73.41ms)

Speed.Dev.#3.....: 773.0 MH/s (70.50ms)

Speed.Dev.#4.....: 781.6 MH/s (69.65ms)

Speed.Dev.#5.....: 736.5 MH/s (73.99ms)

Speed.Dev.#6.....: 764.6 MH/s (71.27ms)

Speed.Dev.#7.....: 747.8 MH/s (72.87ms)

Speed.Dev.#8.....: 776.6 MH/s (70.16ms)

Speed.Dev.#*.....: 6036.6 MH/s

Hash type: PostgreSQL Challenge-Response Authentication (MD5)

Speed.Dev.#1.....: 1430.2 MH/s (75.90ms)

Speed.Dev.#2.....: 1395.0 MH/s (77.80ms)

Speed.Dev.#3.....: 1353.3 MH/s (80.22ms)

Speed.Dev.#4.....: 1487.0 MH/s (73.00ms)

Speed.Dev.#5.....: 1321.7 MH/s (82.15ms)

Speed.Dev.#6.....: 1506.1 MH/s (72.07ms)

Speed.Dev.#7.....: 1323.9 MH/s (82.01ms)

Speed.Dev.#8.....: 1461.1 MH/s (74.30ms)

Speed.Dev.#*.....: 11278.5 MH/s

47

Hash type: MySQL Challenge-Response Authentication (SHA1)

Speed.Dev.#1.....: 518.0 MH/s (52.52ms)

Speed.Dev.#2.....: 503.8 MH/s (54.01ms)

Speed.Dev.#3.....: 512.9 MH/s (53.06ms)

Speed.Dev.#4.....: 528.4 MH/s (51.50ms)

Speed.Dev.#5.....: 508.2 MH/s (53.55ms)

Speed.Dev.#6.....: 533.2 MH/s (76.66ms)

Speed.Dev.#7.....: 502.3 MH/s (54.18ms)

Speed.Dev.#8.....: 540.8 MH/s (75.58ms)

Speed.Dev.#*.....: 4147.6 MH/s

Hash type: SIP digest authentication (MD5)

Speed.Dev.#1.....: 511.8 MH/s (53.17ms)

Speed.Dev.#2.....: 509.6 MH/s (53.40ms)

Speed.Dev.#3.....: 510.8 MH/s (53.27ms)

Speed.Dev.#4.....: 514.5 MH/s (52.87ms)

Speed.Dev.#5.....: 509.3 MH/s (53.44ms)

Speed.Dev.#6.....: 515.8 MH/s (52.76ms)

Speed.Dev.#7.....: 508.3 MH/s (53.55ms)

Speed.Dev.#8.....: 511.9 MH/s (53.17ms)

Speed.Dev.#*.....: 4091.9 MH/s

48

Hash type: PostgreSQL

Speed.Dev.#1.....: 4405.2 MH/s (49.47ms)

Speed.Dev.#2.....: 4414.2 MH/s (49.37ms)

Speed.Dev.#3.....: 4267.3 MH/s (51.06ms)

Speed.Dev.#4.....: 4575.1 MH/s (95.31ms)

Speed.Dev.#5.....: 4146.7 MH/s (52.56ms)

Speed.Dev.#6.....: 4615.7 MH/s (94.47ms)

Speed.Dev.#7.....: 4160.1 MH/s (52.39ms)

Speed.Dev.#8.....: 4584.1 MH/s (95.12ms)

Speed.Dev.#*.....: 35168.4 MH/s

Hash type: MSSQL(2000)

Speed.Dev.#1.....: 1734.2 MH/s (62.58ms)

Speed.Dev.#2.....: 1819.9 MH/s (59.64ms)

Speed.Dev.#3.....: 1769.9 MH/s (61.32ms)

Speed.Dev.#4.....: 1871.3 MH/s (58.00ms)

Speed.Dev.#5.....: 1736.4 MH/s (62.52ms)

Speed.Dev.#6.....: 1874.3 MH/s (57.91ms)

Speed.Dev.#7.....: 1754.6 MH/s (61.85ms)

Speed.Dev.#8.....: 1895.5 MH/s (57.25ms)

Speed.Dev.#*.....: 14456.2 MH/s

49

Hash type: MSSQL(2005)

Speed.Dev.#1.....: 1832.0 MH/s (59.25ms)

Speed.Dev.#2.....: 1822.2 MH/s (59.57ms)

Speed.Dev.#3.....: 1824.8 MH/s (59.49ms)

Speed.Dev.#4.....: 1841.1 MH/s (58.96ms)

Speed.Dev.#5.....: 1696.2 MH/s (64.00ms)

Speed.Dev.#6.....: 1879.5 MH/s (57.75ms)

Speed.Dev.#7.....: 1749.0 MH/s (62.07ms)

Speed.Dev.#8.....: 1920.5 MH/s (56.52ms)

Speed.Dev.#*.....: 14565.2 MH/s

Hash type: MSSQL(2012)

Speed.Dev.#1.....: 180.1 MH/s (74.78ms)

Speed.Dev.#2.....: 180.1 MH/s (75.66ms)

Speed.Dev.#3.....: 180.7 MH/s (75.41ms)

Speed.Dev.#4.....: 181.1 MH/s (74.34ms)

Speed.Dev.#5.....: 180.7 MH/s (74.50ms)

Speed.Dev.#6.....: 180.3 MH/s (75.55ms)

Speed.Dev.#7.....: 180.2 MH/s (75.60ms)

Speed.Dev.#8.....: 180.3 MH/s (75.58ms)

Speed.Dev.#*.....: 1443.5 MH/s

50

Hash type: MySQL323

Speed.Dev.#1.....: 18603.4 MH/s (93.75ms)

Speed.Dev.#2.....: 19034.4 MH/s (91.63ms)

Speed.Dev.#3.....: 19019.5 MH/s (91.71ms)

Speed.Dev.#4.....: 19411.8 MH/s (89.85ms)

Speed.Dev.#5.....: 19523.0 MH/s (89.34ms)

Speed.Dev.#6.....: 19824.0 MH/s (87.98ms)

Speed.Dev.#7.....: 18995.3 MH/s (91.82ms)

Speed.Dev.#8.....: 19696.5 MH/s (88.54ms)

Speed.Dev.#*.....: 154.1 GH/s

Hash type: MySQL4.1/MySQL5

Speed.Dev.#1.....: 871.1 MH/s (62.55ms)

Speed.Dev.#2.....: 863.1 MH/s (63.14ms)

Speed.Dev.#3.....: 892.0 MH/s (61.07ms)

Speed.Dev.#4.....: 921.5 MH/s (59.10ms)

Speed.Dev.#5.....: 834.7 MH/s (65.28ms)

Speed.Dev.#6.....: 894.4 MH/s (60.91ms)

Speed.Dev.#7.....: 815.6 MH/s (66.81ms)

Speed.Dev.#8.....: 905.8 MH/s (60.15ms)

Speed.Dev.#*.....: 6998.2 MH/s

51

Hash type: md5apr1, MD5(APR), Apache MD5

Speed.Dev.#1.....: 2497.0 kH/s (84.13ms)

Speed.Dev.#2.....: 2533.6 kH/s (82.91ms)

Speed.Dev.#3.....: 2510.8 kH/s (83.65ms)

Speed.Dev.#4.....: 2672.9 kH/s (78.54ms)

Speed.Dev.#5.....: 2418.1 kH/s (86.89ms)

Speed.Dev.#6.....: 2667.8 kH/s (78.70ms)

Speed.Dev.#7.....: 2491.5 kH/s (84.30ms)

Speed.Dev.#8.....: 2681.7 kH/s (78.29ms)

Speed.Dev.#*.....: 20473.3 kH/s

Hash type: SHA-1(Base64), NSS LDAP, Netscape LDAP SHA

Speed.Dev.#1.....: 1911.3 MH/s (56.79ms)

Speed.Dev.#2.....: 1973.7 MH/s (54.99ms)

Speed.Dev.#3.....: 1907.3 MH/s (56.89ms)

Speed.Dev.#4.....: 2015.0 MH/s (53.86ms)

Speed.Dev.#5.....: 1884.5 MH/s (57.60ms)

Speed.Dev.#6.....: 2009.2 MH/s (54.01ms)

Speed.Dev.#7.....: 1853.6 MH/s (58.54ms)

Speed.Dev.#8.....: 2017.0 MH/s (53.81ms)

Speed.Dev.#*.....: 15571.6 MH/s

52

Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA

Speed.Dev.#1.....: 1961.5 MH/s (55.34ms)

Speed.Dev.#2.....: 1940.2 MH/s (55.95ms)

Speed.Dev.#3.....: 1892.6 MH/s (57.34ms)

Speed.Dev.#4.....: 2031.0 MH/s (53.44ms)

Speed.Dev.#5.....: 1883.5 MH/s (57.63ms)

Speed.Dev.#6.....: 2011.3 MH/s (53.96ms)

Speed.Dev.#7.....: 1863.8 MH/s (58.23ms)

Speed.Dev.#8.....: 2029.2 MH/s (53.48ms)

Speed.Dev.#*.....: 15613.0 MH/s

Hash type: SSHA-512(Base64), LDAP {SSHA512}

Speed.Dev.#1.....: 177.3 MH/s (76.82ms)

Speed.Dev.#2.....: 177.6 MH/s (76.70ms)

Speed.Dev.#3.....: 178.4 MH/s (76.33ms)

Speed.Dev.#4.....: 178.7 MH/s (76.25ms)

Speed.Dev.#5.....: 177.4 MH/s (76.83ms)

Speed.Dev.#6.....: 178.2 MH/s (76.45ms)

Speed.Dev.#7.....: 177.4 MH/s (76.80ms)

Speed.Dev.#8.....: 177.9 MH/s (76.56ms)

Speed.Dev.#*.....: 1423.0 MH/s

53

Hash type: LM

Speed.Dev.#1.....: 3758.6 MH/s (57.87ms)

Speed.Dev.#2.....: 3751.9 MH/s (58.01ms)

Speed.Dev.#3.....: 3803.6 MH/s (57.19ms)

Speed.Dev.#4.....: 3772.9 MH/s (57.65ms)

Speed.Dev.#5.....: 3763.3 MH/s (57.82ms)

Speed.Dev.#6.....: 3796.4 MH/s (57.30ms)

Speed.Dev.#7.....: 3761.3 MH/s (57.83ms)

Speed.Dev.#8.....: 3775.4 MH/s (57.65ms)

Speed.Dev.#*.....: 30183.4 MH/s

Hash type: NTLM

Speed.Dev.#1.....: 8089.8 MH/s (53.88ms)

Speed.Dev.#2.....: 8196.5 MH/s (53.18ms)

Speed.Dev.#3.....: 8123.2 MH/s (53.66ms)

Speed.Dev.#4.....: 8549.1 MH/s (50.99ms)

Speed.Dev.#5.....: 7940.4 MH/s (54.90ms)

Speed.Dev.#6.....: 8424.6 MH/s (51.74ms)

Speed.Dev.#7.....: 7883.6 MH/s (55.29ms)

Speed.Dev.#8.....: 8519.3 MH/s (51.16ms)

Speed.Dev.#*.....: 65726.4 MH/s

54

Hash type: MS-AzureSync PBKDF2-HMAC-SHA256

Speed.Dev.#1.....: 2724.5 kH/s (74.28ms)

Speed.Dev.#2.....: 2810.0 kH/s (71.90ms)

Speed.Dev.#3.....: 2750.2 kH/s (73.44ms)

Speed.Dev.#4.....: 2882.1 kH/s (69.83ms)

Speed.Dev.#5.....: 2704.5 kH/s (74.85ms)

Speed.Dev.#6.....: 2882.5 kH/s (69.99ms)

Speed.Dev.#7.....: 2669.8 kH/s (75.84ms)

Speed.Dev.#8.....: 2869.0 kH/s (70.31ms)

Speed.Dev.#*.....: 22292.8 kH/s

Hash type: descrypt, DES(Unix), Traditional DES

Speed.Dev.#1.....: 176.1 MH/s (77.25ms)

Speed.Dev.#2.....: 175.5 MH/s (77.50ms)

Speed.Dev.#3.....: 176.1 MH/s (77.24ms)

Speed.Dev.#4.....: 175.9 MH/s (77.27ms)

Speed.Dev.#5.....: 175.3 MH/s (77.59ms)

Speed.Dev.#6.....: 176.8 MH/s (76.91ms)

Speed.Dev.#7.....: 175.0 MH/s (77.71ms)

Speed.Dev.#8.....: 175.8 MH/s (77.34ms)

Speed.Dev.#*.....: 1406.5 MH/s

55

Hash type: BSDiCrypt, Extended DES

Speed.Dev.#1.....: 519.8 kH/s (67.84ms)

Speed.Dev.#2.....: 524.3 kH/s (67.25ms)

Speed.Dev.#3.....: 524.9 kH/s (67.17ms)

Speed.Dev.#4.....: 522.2 kH/s (67.52ms)

Speed.Dev.#5.....: 516.6 kH/s (68.26ms)

Speed.Dev.#6.....: 525.7 kH/s (67.07ms)

Speed.Dev.#7.....: 503.2 kH/s (70.09ms)

Speed.Dev.#8.....: 524.2 kH/s (67.27ms)

Speed.Dev.#*.....: 4161.0 kH/s

Hash type: md5crypt, MD5(Unix), FreeBSD MD5, Cisco-IOS MD5

Speed.Dev.#1.....: 2660.3 kH/s (59.16ms)

Speed.Dev.#2.....: 2578.8 kH/s (61.05ms)

Speed.Dev.#3.....: 2601.5 kH/s (60.52ms)

Speed.Dev.#4.....: 2650.6 kH/s (59.39ms)

Speed.Dev.#5.....: 2469.2 kH/s (63.78ms)

Speed.Dev.#6.....: 2608.1 kH/s (60.35ms)

Speed.Dev.#7.....: 2453.8 kH/s (64.19ms)

Speed.Dev.#8.....: 2624.1 kH/s (60.00ms)

Speed.Dev.#*.....: 20646.5 kH/s

56

Hash type: bcrypt, Blowfish(OpenBSD)

Speed.Dev.#1.....: 1796 H/s (26.05ms)

Speed.Dev.#2.....: 1789 H/s (26.16ms)

Speed.Dev.#3.....: 1817 H/s (25.75ms)

Speed.Dev.#4.....: 1794 H/s (26.08ms)

Speed.Dev.#5.....: 1814 H/s (25.79ms)

Speed.Dev.#6.....: 1815 H/s (25.79ms)

Speed.Dev.#7.....: 1802 H/s (25.97ms)

Speed.Dev.#8.....: 1812 H/s (25.83ms)

Speed.Dev.#*.....: 14439 H/s

Hash type: sha256crypt, SHA256(Unix)

Speed.Dev.#1.....: 106.0 kH/s (50.66ms)

Speed.Dev.#2.....: 105.3 kH/s (51.00ms)

Speed.Dev.#3.....: 105.5 kH/s (50.86ms)

Speed.Dev.#4.....: 108.5 kH/s (49.48ms)

Speed.Dev.#5.....: 102.5 kH/s (52.35ms)

Speed.Dev.#6.....: 108.0 kH/s (49.73ms)

Speed.Dev.#7.....: 103.4 kH/s (51.89ms)

Speed.Dev.#8.....: 109.1 kH/s (49.22ms)

Speed.Dev.#*.....: 848.3 kH/s

57

Hash type: sha512crypt, SHA512(Unix)

Speed.Dev.#1.....: 35327 H/s (76.44ms)

Speed.Dev.#2.....: 33959 H/s (79.48ms)

Speed.Dev.#3.....: 34833 H/s (77.47ms)

Speed.Dev.#4.....: 35590 H/s (75.89ms)

Speed.Dev.#5.....: 33576 H/s (80.39ms)

Speed.Dev.#6.....: 34901 H/s (77.33ms)

Speed.Dev.#7.....: 34829 H/s (77.48ms)

Speed.Dev.#8.....: 35363 H/s (76.38ms)

Speed.Dev.#*.....: 278.4 kH/s

Speed.Dev.#7.....: 689.5 MH/s (79.05ms)

Speed.Dev.#8.....: 743.6 MH/s (73.29ms)

Speed.Dev.#*.....: 5727.3 MH/s

58

CPU Test Machine Benchmark Results:

root@ip-172-31-43-196 hashcat-3.30]# ./hashcat64.bin -b

hashcat (v3.30) starting in benchmark mode...

OpenCL Platform #1: Intel(R) Corporation

==

Device #1:Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 2047/14622 MB allocatable,

8MCU .

Hash type: MD4

Speed.Dev.#1.....: 391.4 MH/s (21.37ms)

Hash type: MD5

Speed.Dev.#1.....: 219.2 MH/s (38.22ms)

Hash type: Half MD5

Speed.Dev.#1.....: 143.6 MH/s (58.35ms)

Hash type: SHA1

Speed.Dev.#1.....: 120.4 MH/s (69.60ms)

Hash type: SHA256

Speed.Dev.#1.....: 48370.0 kH/s (86.66ms)

59

Hash type: SHA384

Speed.Dev.#1.....: 12959.8 kH/s (80.85ms)

Hash type: SHA512

Speed.Dev.#1.....: 12833.2 kH/s (81.65ms)

Hash type: SHA-3(Keccak)

Speed.Dev.#1.....: 11684.9 kH/s (89.68ms)

Hash type: SipHash

Speed.Dev.#1.....: 244.8 MH/s (34.21ms)

Hash type: RipeMD160

Speed.Dev.#1.....: 57361.1 kH/s (73.06ms)

Hash type: Whirlpool

Speed.Dev.#1.....: 3201.5 kH/s (81.50ms)

Hash type: GOST R 34.11-94

Speed.Dev.#1.....: 3857.5 kH/s (67.63ms)

Hash type: GOST R 34.11-2012 (Streebog) 256-bit

Speed.Dev.#1.....: 1378.2 kH/s (95.05ms)

60

Hash type: GOST R 34.11-2012 (Streebog) 512-bit

Speed.Dev.#1.....: 1378.1 kH/s (94.96ms)

Hash type: DES (PT = $salt, key = $pass)

Speed.Dev.#1.....: 25573.2 kH/s (81.79ms)

Hash type: 3DES (PT = $salt, key = $pass)

Speed.Dev.#1.....: 6376.6 kH/s (82.14ms)

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla)

Speed.Dev.#1.....: 74729 H/s (54.44ms)

Hash type: scrypt

Speed.Dev.#1.....: 0 H/s (2.43ms)

Hash type: PBKDF2-HMAC-MD5

Speed.Dev.#1.....: 75724 H/s (53.31ms)

Hash type: PBKDF2-HMAC-SHA1

Speed.Dev.#1.....: 45658 H/s (88.66ms)

Hash type: PBKDF2-HMAC-SHA256

Speed.Dev.#1.....: 17934 H/s (37.64ms)

61

Hash type: PBKDF2-HMAC-SHA512

Speed.Dev.#1.....: 6482 H/s (78.62ms)

Hash type: Skype

Speed.Dev.#1.....: 154.2 MH/s (54.36ms)

Hash type: WPA/WPA2

Speed.Dev.#1.....: 5624 H/s (90.53ms)

Hash type: IKE-PSK MD5

Speed.Dev.#1.....: 18647.3 kH/s (56.17ms)

Hash type: IKE-PSK SHA1

Speed.Dev.#1.....: 11367.2 kH/s (92.18ms)

Hash type: NetNTLMv1-VANILLA / NetNTLMv1+ESS

Speed.Dev.#1.....: 238.0 MH/s (35.19ms)

Hash type: NetNTLMv2

Speed.Dev.#1.....: 17148.7 kH/s (61.09ms)

Hash type: IPMI2 RAKP HMAC-SHA1

Speed.Dev.#1.....: 22893.4 kH/s (91.55ms)

62

Hash type: Kerberos 5 AS-REQ Pre-Authetype 23

Speed.Dev.#1.....: 3234.9 kH/s (80.00ms)

Hash type: Kerberos 5 TGS-REP etype 23

Speed.Dev.#1.....: 3306.6 kH/s (78.26ms)

Hash type: DNSSEC (NSEC3)

Speed.Dev.#1.....: 43621.6 kH/s (96.09ms)

Hash type: SHA-1(Base64), nsldap, Netscape LDAP SHA

Speed.Dev.#1.....: 120.2 MH/s (69.75ms)

Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA

Speed.Dev.#1.....: 120.3 MH/s (69.70ms)

Hash type: SSHA-512(Base64), LDAP {SSHA512}

Speed.Dev.#1.....: 12853.2 kH/s (81.52ms)

Hash type: LM

Speed.Dev.#1.....: 25799.0 kH/s (81.07ms)

Hash type: NTLM

Speed.Dev.#1.....: 402.1 MH/s (20.81ms)

63

Hash type: Domain Cached Credentials (DCC), MS-Cache

Speed.Dev.#1.....: 125.0 MH/s (67.04ms)

Hash type: Domain Cached Credentials 2 (DCC2), MS-Cache 2

Speed.Dev.#1.....: 4526 H/s (90.33ms)

Hash type: MS-AzureSync PBKDF2-HMAC-SHA256

Speed.Dev.#1.....: 50307 H/s (52.63ms)

Hash type: descrypt, DES(Unix), Traditional DES

Speed.Dev.#1.....: 1055.6 kH/s (496.44ms)

Hash type: BSDiCrypt, Extended DES

Speed.Dev.#1.....: 15896 H/s (85.55ms)

Hash type: md5crypt, MD5(Unix), FreeBSD MD5, Cisco-IOS MD5

Speed.Dev.#1.....: 35248 H/s (57.66ms)

Hash type: bcrypt, Blowfish(OpenBSD)

Speed.Dev.#1.....: 2448 H/s (51.08ms)

Hash type: sha256crypt, SHA256(Unix)

Speed.Dev.#1.....: 1805 H/s (56.40ms)

64

Hash type: sha512crypt, SHA512(Unix)

Speed.Dev.#1.....: 1702 H/s (59.90ms)

Speed.Dev.#1.....: 0 H/s (39.28ms)

Hash rate denominations

1 kH/s is 1,000 (one thousand) hashes per second

1 MH/s is 1,000,000 (one million) hashes per second.

1 GH/s is 1,000,000,000 (one billion) hashes per second.

1 TH/s is 1,000,000,000,000 (one trillion) hashes per second.

1 PH/s is 1,000,000,000,000,000 (one quadrillion) hashes per second.

1 EH/s is 1,000,000,000,000,000,000 (one quintillion) hashes per second.

Conversions

1 MH/s = 1,000 kH/s

1 GH/s = 1,000 MH/s = 1,000,000 kH/s

1 TH/s = 1,000 GH/s = 1,000,000 MH/s = 1,000,000,000 kH/s

65

3.7 Testing Environment Diagram

The testing Environment of this research is shown below:

Figure 7. Testing Environment

3.8 Wordlist Selected

For the test, different filters and combination of uppercase letters, lowercase letters,digits,

special characters will be used. The test will be done using thehybrid attack at first before

applying brute force attacks where every combination of the characters will be tried.

66

3.9 Sample Password Hashed Dump File

In order to conduct the test some common password upto 8 characters in length characters’

length and will hash it with MD5 and SHA1 as well as more cryptographically strong hashing

algorithm bcrypt. The following sample password hash has been selected

Sample password list:

Password

HELLOO

MYSECRET

test1234

password!

You9can!

./?';,<>

Mysecret

TheMD5 and SHA1 hash of the generated password from the above is generated by the following

code:

67

MD5 Hash:

dc647eb65e6711e155375218212b3964

16454bd041c46012e31778eb94b8111a

958152288f2d2303ae045cffc43a02cd

16d7a4fca7442dda3ad93c9a726597e4

49f24c0c152b2375431210f9443d176f

b64b0e1165a77bd90a1673469f1af0e1

7185ad7f0851780a2db24edc8347b12a

06c219e5bc8378f3a8a3f83b4b7e4649

SHA256 Hash:

e7cf3ef4f17c3999a94f2c6f612e8a888e5b1026878e4e19398b23bd38ec221a

2d32d2db26a9a8e8b3a69a5739a17981a5a064a5c3037a8d3891ab3e41f57246

3fcdbc4a0ed38df8d4bd234e2c8ad3b2623fa5265f31763d1e91a848471a8a9b

937e8d5fbb48bd4949536cd65b8d35c426b80d2f830c5c308e2cdec422ae2244

c075349b9b6f6b3e41b34e4e71ac22a685102b0b2246c5f84d67c5eed3ad39fb

4824033be89e919a06ac33255b06761f706edc1ac8fc37b86574892ab7c3248d

9070906f306d5d34c301b9f4cda9f71c2a19543ccea44b6b08c18b3d76941936

652c7dc687d98c9889304ed2e408c74b611e86a40caa51c4b43f1dd5913c5cd0

68

We also generateabcrypt hash of the following password with the following code.

Sample Password:

HELLO

1!Su

Pass

pass

1234

:/?<

import bcrypt

password = b"Pass"

Hash a password for the first time, with a certain number of rounds

hashed = bcrypt.hashpw(password, bcrypt.gensalt(14))

print(hashed)

b'$2b$14$4tWHOXsyYtuVD8CbzjMUbeNqfMKGKiECODTkQ4Zcf11wJ6nJAD7XW'

Here the bcrypt hash of sample password “Pass” was created with 14 round (2^14=16384) of

generation via gensalt() function. For the sake of our test, we will be keeping it to minimal, less

than 10.

The Resulting generated bcrypt hash of the above sample password was:

$2y$10$vHvY3cA252u/68KesxmOg.WIjkWOHQcFqXc.KRSV4aLn/pIC1D5ZC

$2y$10$eVaCxfaaMDXKS5LTu1uX2O6k3/lUpGE83luvxfoGdkM6HAMVWirvW

$2y$10$K8nQaEFpiZkSdkjKlXfjveu44pTKD/lvpOU2Cu/8INh2vPDUgS29e

$2y$10$wacXM0HGg/26pzRGvIEE4OMg4jGIHjhptHKMdowmdr4zpTyu0triC

$2y$10$FwaS9uiu7mkCIJ.d9fCYI.PsF8qY5I1ZdrbJ0qBBcHdDLhours3gxPLq

$2y$10$kjGTFQVsc7eislYriw0ibu1GZi1rUod0unnpY0rT9eeSIYGBJRiui

69

Chapter 4: Analyzing Results

4.1 Introduction

In this section, we will analyze the result performed in the previous test scenario and all

the test results are included in the appendix section at the end of this paper. We end this section

with recommendations based on analyzing the test result.

4.2 Test Results

We ran the CPU crack and GPU cracking on the sample MD5, SHA-256, and Bcrypt hash

dump. We applied thedifferent filter as follows:

u= uppercase letters only – total 26 characters

l= lowercase letter only – total 26 characters

ul= uppercase and lowercase – total 52 characters

d= digits only – total 10 digits

s= special characters only – total 33 characters

ls/us= lowercase/uppercase with special characters – total 59 characters

usld= lowercase, uppercase, special character, and digits- total 95 characters

We also conducted an experimental run where we applied fixed characters in certain positions to

observe any improvements in timing. All our CPU/GPU/Experimental test results are shown

below in the following tables.

70

Table 4

 MD5 crackingperformance With CPU machine

M
D

5
 C

P
U

W
it

h
3
1
2
M

H
/s

F
il

te
r

H
E

L
L

O

(6
u
)

te
s1

2
3
4

(7
ld

)

P
as

sw
o
r!

(7
ls

)

P
as

sw
o
rd

(8
u
l)

m
y
se

cr
et

(8
l)

./
?!

’;
<

>

(8
s)

M
Y

S
E

C
R

E
T

(8
u
)

Y
o
u
9
ca

n
!

(8
u
ls

d
)

F
u
ll

R
o
u
n
d
(8

ch
ar

)

u
 2

se
c

1
2
m

in

1
2
 m

in

l

1
2
m

in

1
2
 m

in

u
l

1
h
o
u
rs

 1
2
m

in

1
h
o
u
rs

1
2
m

in

ld

3
m

in

2
h
o
u
rs

3
0
m

in

ls

1
h
o
u
rs

 1
3
m

in

5
d
ay

s1
h
o
u
rs

s

1
h
o
u
rs

1
2
m

in

1
h
o
u
rs

 2
5
m

in

u
ls

d

 *

2
4
6
d
ay

s

(e
st

im
at

ed
)

71

In the Table -4 as the result is as follows:

• Using uppercase only character (u) it takes 2sec for 6-character long password, HELLO

to crack where 8-character long password ‘MYSECRET’ takes 12 min and it finishes

checking all the combination of 8 characters roughly at thesame time too.

• Using lowercase only character (l) it takes 12 min to crack 8-character long password

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly at

thesame time too.

• Using acombination of uppercase and lowercase character (ul) it takes 1 hour 12 min to

finish cracking 8 char long ‘Password’ as well as finishes checking all the combination

of 8 characters roughly in thesame time too.

• Using lowercase and digits (ld) it takes 3 min to crack 7 char long ‘tes1234’ password

while it takes 2hours 30 min to finish checking all the combination ofthe 8 char field.

• Using lowercase and aspecialcharacter(ls) it takes it takes 1hours 13 min to find the 7-

char password ‘Passwor!’ while it will take approximately 5days and 1hours to finish

checking all the combination.

The way we estimated 8 char long password cracking time with lowercase and special

characters are as follows:

✓ Total characters: lowercase (26) and special characters (33) =33+26=59

✓ Total combination possible 598=1.4683044e+14

✓ MD5 CPU cracking speed= 312MHS = 312000000H/s

72

✓ Cracking time in days=

1.4683044e+14/312000000=470610.376937s/3600=130.725104705hours/24

=5days 1hours

• Using the special characters only it takes 1hours 12 min to finish cracking 8 char long

password ‘./?!’;<>’ while it takes 1hours25min to finish checking all the special

character combination of the8char field.

• At last we try all the lowercase, uppercase, special characters and digits(usld) for all the

8 filed of the password and though we could not find out 8 char long password

‘You9can!’ we did find to estimate how long it will take to look up all the (USLD)

combination of each 8-char filed with our CPU machine with thefollowing calculation:

✓ Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) =33+26+26+10=95

✓ Total combination possible 〖95〗^8= 6.6342043e+15

✓ MD5 CPU cracking speed= 312MHS = 312000000H/s

✓ Cracking time in days= 6.6342043e+15/ 312000000H/s

=21263475.3618s/3600=5906.52093384hours/24=246days

73

Table 5

MD5 cracking performance With GPU machine

M
D

5
 G

P
U

W
it

h
2
1
1
1
7
M

H
/s

F
il

te
r

H
E

L
L

O

(6
u
)

te
s1

2
3
4

(7
ld

)

P
as

sw
o
r!

(7
ls

)

P
as

sw
o
rd

(8
u
l)

m
y
se

cr
et

(8
l)

./
?!

’;
<

>

(8
s)

M
Y

S
E

C
R

E
T

(8
u
)

Y
o
u
9
ca

n
!

(8
u
ls

d
)

F
u
ll

R
o
u
n
d
(8

ch
ar

)

u
 1

se
c

 1
0
se

c

 3
0
 s

ec

l

1
0
se

c

3
0
se

c

u
l

1
2
m

in

1
2
m

in

ld

2
se

c

2
m

in

ls

2
m

in

2
h
o
u
rs

s

7
se

c

1
m

in
2
8
se

c

u
ls

d

1
0
 s

ec

2
0
m

in

1
h
o
u
rs

1
h
o
u
rs

1
h
o
u
rs

1
h
o
u
rs

(7
ch

ar
)4

d
ay

s

(e
st

im
at

ed
)

74

In the Table -5 as the result is as follows:

• Using uppercase only character (u) it takes 1sec from 6-character long password, HELLO

to crack where 8-character long password ‘MYSECRET’ takes 10 Sec and it finishes

checking all the combination of 8 characters roughly in 30 secs.

• Using lowercase only character (l) its takes 10 secs to crack 8-character long password

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in 30

secs.

• Using acombination of uppercase and lowercase character (ul) it takes 12 min to finish

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8

characters roughly in thesame time too.

• Using lowercase and digits (ld) it takes 2secs to crack 7 char long ‘tes1234’ password

while it takes 2 mins to finish checking all the combination of the 8 character field.

• Using lowercase and aspecialcharacter(ls) it takes it takes 2 min to find the 7-char

password ‘Passwor!’ while it will take approximately 2hours to finish checking all the

combination.

• Using the special characters only it takes 7sec to finish cracking 8 char long password

‘./?!’;<>’ while it takes 1min 28 sec to finish checking all the special character

combination of the8char field.

• At last, we try all the lowercase, uppercase, special characters and digits(usld) for all the

8 field of the password and for the 8-char long password (.

/?!’;<>,MYSECRET,You9can!) . We could not finish the all the combination of 8 chars

but we estimated it will take around 4 days to finish checking all the possible combination

75

of 8 -char password using our GPU machine. The way we estimated the cracking time as

follows:

✓ Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) =33+26+26+10=95

✓ Total combination possible 〖95〗^8= 6.6342043e+15

✓ MD5 GPU cracking speed= 21117MHS = 21117000000H/s

✓ Cracking time in days= 6.6342043e+15/ 21117000000H/s

=314164.14798s/3600=87.2678188833hours/24=4days

76

Table 6

 SHA-256 cracking performance With CPU machine

S
H

A
-2

5
6
 C

P
U

 w
it

h

8
8
9
5
4
K

H
/s

F

il
te

r

H
E

L
L

O

(6
u
)

te
s1

2
3
4

(7
ld

)

P
as

sw
o
r!

(7
ls

)

P
as

sw
o
rd

(8
u
l)

m
y
se

cr
et

(8
l)

./
?!

’;
<

>

(8
s)

M
Y

S
E

C
R

E
T

(8
u
)

Y
o
u
9
ca

n
!

(8
u
ls

d
)

F
u
ll

R
o
u
n
d
(8

ch
ar

)

u

1
5
se

c

2
0
m

in

3
8
m

in

l

2
6
m

in

3
8
m

in

u
l

3
4
se

c

3
h
o
u
rs

7
d
ay

s
2
0

h
o
u
rs

ld

1
5
m

in

9
h
o
u
rs

2
5
m

in
s

ls

1
5
m

in

 7
h
o
u
rs

5
0
m

in
s

(7
ch

ar
)

s 2
0
m

in

 9
h
o
u
rs

u
ls

d

1
h
 9

 m
in

s

9
d
y
s

9
d
ay

s

 *

*

*

9
d
ay

s(
7
ch

ar
)

8
6
3
d
ay

s(
8
ch

ar
)

(e
st

im
at

ed
)

77

In the Table -6 as the result is as follows:

• Using uppercase only character (u) it takes 15sec for 6-character long password HELLO

to crack where 8-character long password ‘MYSECRET’ takes 20 mins and it finishes

checking all the combination of 8 characters roughly in 38mins.

• Using lowercase only character (l) it takes 26 min to crack 8-character long password

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in

38mins.

• Using a combination of uppercase and lowercase character (ul) it takes 3 hours to finish

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8

characterswill take estimated 7days 20 hours to finish.

The way we estimated the cracking time as follows:

✓ Total characters: lowercase (26) , uppercase (26) =26+26=52

✓ Total combination possible 〖52〗^8= 5.3459729e+13

✓ SHA-256 CPU cracking speed,88954KH/s=88954000h/s

✓ Cracking time in days=

5.3459729e+13/88954000=600981.726864s/3600=166.939368573hours/24=

7days.

• Using lowercase and digits (ld) it takes 15 min to crack 7 char long ‘tes1234’ password

while it takes 9hours 25 min to finish checking all the combination ofthe 8 char field.

• Using lowercase and specialcharacter(ls) it takes it takes 15 min to find the 7-char

password ‘Passwor!’ while it will take 7hours 50 min to check 7 charsfield.

78

• Using the special characters only it takes 20 min to finish cracking 8 char long passwords

‘./?!’;<>’ while it takes 9hours to finish checking all the special character combination

of8char field.

• At last we try all the lowercase, uppercase, special characters and digits(usld) for all the

8 field of the password and though we could not find out 8 char long password ‘You9can!’

we did find to estimate how long it will take to look up all the (USLD) combination of

each 7 char and 8-char filed with our CPU machine with following calculation

Time Estimation for 7-char password

✓ Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) =33+26+26+10=95

✓ Total combination possible 〖95〗^7= 6.983373e+13

✓ SHA-256 CPU cracking speed, 88954KH/s=88954000h/s

✓ Cracking time in days= 6. 983373e+13/ 88954000h

/s=785054.405753s/3600=218.070668265/24=9days

Time Estimation for 8-char password

✓ Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) =33+26+26+10=95

✓ Total combination possible 〖95〗^8= 6.6342043e+15

✓ SHA-256 CPU cracking speed,88954KH/s=88954000h/s

✓ Cracking time in days= 6.6342043e+15/ 88954000h /s =74580168.5466

s/3600=20716.7134852 hours/24=863days

79

Table 7

 SHA-256 cracking performance With GPU machine

S
H

A
-2

5
6
 G

P
U

W
it

h
5
3
2
5
M

H
/s

F
il

te
r

H
E

L
L

O

(6
u
)

te
s1

2
3
4

(7
ld

)

P
as

sw
o
r!

(7
ls

)

P
as

sw
o
rd

(8
u
l)

m
y
se

cr
et

(8
l)

./
?!

’;
<

>

(8
s)

M
Y

S
E

C
R

E
T

(8
u
)

Y
o
u
9
ca

n
!

(8
u
ls

d
)

F
u
ll

R
o
u
n
d
(8

ch
ar

)

u

1
m

in

1
m

in
 6

se
c

l

1
m

in

1
m

in
 6

se
c

u
l

1
se

c

1
m

in

2
h
o
u
rs

 5
7
m

in

ld

1
m

in

1
m

in

2
2
se

c

1
0
m

in

ls
 8

m
in

 8
h
o
u
rs

s

2
m

in

5
m

in

u
ls

d

2
m

in

3
h
o
u
rs

3
h
o
u
rs

 *

*

*

3
h
o
u
rs

 5
0
m

in

(7
ch

ar
)

1
4
d
ay

s1
0
h
o
u
rs

(8
ch

ar
)

80

In the Table -7 as the result is as follows:

• Using uppercase only character (u) to crack 8-character long password ‘MYSECRET’

takes 1 min and it finishes checking all the combination of 8 characters roughly in 1min

6secs.

• Using lowercase only character (l) it takes 1 min to crack 8-character long password

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in

1min 6secs.

• Using a combination of uppercase and lowercase character (ul) it takes 1 min to finish

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8

characters roughly in 2hours 87min.

• Using lowercase and digits (ld) it takes 1min to crack 7 char long ‘tes1234’ password and

1 min 22sec for 8-char password ‘mysecret’, while it takes 10 min to finish checking all

the combination ofthe 8 char field.

• Using lowercase and specialcharacter(ls) it takes it takes 8 min to find the 7-char

password ‘Passwor!’ while it will take approximately 8hours to finish checking all the

combination.

• Using the special characters only it takes 2 min to finish cracking 8 char long password

‘./?!’;<>’ while it takes 5min to finish checking all the special character combination

of8char field.

• At last we try all the lowercase, uppercase, special characters and digits(usld). It took

around 3 hours to finish checking 7 char length password while for all the 8 field of the

password and for the 8-char long password (. /?!’;<>,MYSECRET,You9can!).Though

81

we could not finish 8 char password, but we estimated it will take around 10days and 10

hours to finish checking all the combination of the 8char field. The estimated time is

calculated as follows:

✓ Time Estimation for 8-char password

✓ Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) =33+26+26+10=95

✓ Total combination possible 〖95〗^8= 6.6342043e+15

✓ SHA-256 GPU cracking speed, 5325MH/s=5325000000h/s

✓ Cracking time in days= 6.6342043e+15/5325000000h/s=

1245859.96486/3600=346.0722hours/24=14days

82

Table 8

Bcrypt cracking performance With CPU machine

B
cr

y
p
t-

C
P

U

9
0
H

/s

F
il

te
r

P
as

s(
4
u
l)

P
as

s(
4
l)

1
2
3
4
(4

d
)

,/
?<

(4
s)

1
!S

u
(4

u
sl

d
)

H
E

L
L

O
(5

u
)

F
u
ll

 R
o
u
n
d

u
 *

3
ch

ar
 2

1
m

in

4
ch

ar
 8

h
o
u
rs

u
l *

3
ch

ar
 2

h
o
u
rs

2
1
m

in

4
ch

ar
 2

2
h
o
u
rs

5
5
m

in
s

(e
st

im
at

ed
)

l

3
h
o
u
rs

 2
0
m

in

3
ch

ar
 2

h
o
u
rs

4
ch

ar
 8

 h
o
u
rs

d

9
m

in

4
ch

ar

9
m

in

s

3
h
o
u
rs

3
ch

ar
 3

6
m

in

4
ch

ar
 4

 h
o
u

rs

u
ls

d

 *

3
ch

ar
 1

5
h

o
u
rs

 4
 m

in
s

4
ch

ar
 1

0
 d

ay
s

1
0
h
o
u

rs

(e
st

im
at

ed
)

83

In the Table -8 as the result is as follows:

• Using uppercase only character (u) it takes 21min to go through all combinations of 3

char length, whereas it takes 8hours to finish 4 char long.

• Using uppercase and lowercase (ul) it takes 2 hours 21 min to finish 3 char length

passwords. We could not finish cracking 4 char length passwords ‘Pass’ as we

estimated it will take 3dys 17hours to finish checking all the combination. The

estimation is calculated as follows:

Time Estimation for 4-char password

✓ Total characters: lowercase (26), uppercase (26) =52

✓ Total combination possible 〖52〗^4= 7311616

✓ Bcrypt CPU machine cracking speed=90h/s

✓ Cracking time in days=

7311616/90=81240.1777778s/3600=2031.004hr/24=22hours 50 mins

• Using lowercase only character (l) its takes 3hours 20 min to crack 4-character long

password ‘Pass’ and to finish all the combination of 4 chars it takes 8hour where for 3

chars it takes 2hour.

• Using only digits(d) it takes 9min to crack 4 char password ‘1234’ as well as roughly

going through all the combination of 4-char field.

• Using only special characters(s) it takes 36 mins to finish checking all the combination

of 3 char length password whereas it found 4 char length password ‘,/?<(‘ in 3 hours

while taking 4 hours to go through all the combination of the 4 char length password.

84

• At last we try all the lowercase, uppercase, special characters and digits(usld). It takes

15hours 4 min to finish going through all the combination of the 3-char length. We

could not finish checking for our 4 char length password ‘1!Su’ as we estimated it will

take 10 days 10hours to check all the possible combinations using following formulas

✓ Time Estimation for 4-char password

✓ Total characters: lowercase (26), uppercase (26), Special characters(33),

digits(10) =95

✓ Total combination possible 〖95〗^4= 81450625

✓ Bcrypt CPU machine cracking speed=90h/s

✓ Cracking time in

days=81450625/90=905006.944444/3600s=251.390817901hr =10days

85

Table 9

Bcrypt cracking performance With GPU machine

B
cr

y
p
t-

G
P

U

5
2
0
H

/s

F
il

te
r

P
as

s(
4
u
l)

P
as

s(
4
l)

1
2
3
4
(4

d
)

,/
?<

(4
s)

1
!S

u
(4

u
sl

d
)

H
E

L
L

O
(5

u
)

F
u
ll

 R
o
u
n
d

u

1
h
o

u
r

2
0
 m

in

5
 c

h
ar

 2
h
o
u
rs

4
0
 m

in

4
ch

ar
 1

h
o
u
rs

u
l

3
5
 m

in

3
ch

ar
 2

3
 m

in

4
 c

h
ar

 4
h
o
u
rs

3
0
 m

in
s

l

1
h
o
u
rs

4
ch

ar
 1

h
o
u
rs

 2
0
 m

in

d

6
m

in

5
ch

ar
 1

0
 m

in

s

1
h
o
u
r

2
0
 m

in

4
ch

ar
 2

h
o
u
rs

u
sl

d

 *

3
 C

h
ar

 2
h
o
u
rs

4
0
 m

in

4
 c

h
ar

 1
 d

ay

1
9
h
o
u
rs

86

In the Table -9 as the result is as follows:

• Using uppercase only character (u) it takes1hour to go through all combinations of4 char

length, whereas it takes 2hours to finish 5 char length passwords. It found our 5-char

length password ‘HELLO’ in 1 hour 20 mins.

• Using uppercase and lowercase (ul) it takes 35 mins to crack 4 char length password

‘Pass’ .To go through all the combination of 3 char length passwords it takes 23 mins

while to 4 char length passwords it takes 4 hours 30 mins only.

• Using lowercase only character (l) it takes 1hour to crack 4-character long password

‘Pass’ and to finish all the combination of 4 chars it takes 1hour 20 mins only.

• Using only digits(d) it takes 6min to crack 4 char password ‘1234’. It finished checking

all the combination of 5 char length passwords in about 10 mins.

• Using only special characters(s) it took 1 hour 20 mins to crack 4 char password ‘1!Su’

and going through all the combination in roughly about 2 hours.

• At last we try all the lowercase, uppercase, special characters and digits(usld). It takes

2hours 40 mins to finish going through all the combination of the 3-char length. We could

not finish checking for our 4 char length password ‘1!Su’ as we estimated it will take 1

day 19hours to check all the possible combinations using following formulas

✓ Time Estimation for 4-char password

✓ Total characters: lowercase (26), uppercase (26), Special characters(33),

digits(10) =95

✓ Total combination possible 〖95〗^4= 81450625

✓ Bcrypt CPU machine cracking speed=520h/s

87

✓ Cracking time in days=81450625/520=156635.817308

/3600s=43.5099492521 hr =1day 19hours.

4.3 Experimental Run

• MD5 GPU with 1st character set as uppercase (U) and last character set as special

characters(s) while all other character is combination of lowercase (l), uppercase (u),

special character(s), digits (d) takes only 2mins to finish whole 8-character set.

• MD5 GPU with last character fixed as special characters(s) and trying all other

combination (lowercase (l), uppercase (u), special character(s), digits (d)) in first 7

character takes only 8hours to finish.

• MD5 GPU trying all first 7 char as lowercase(l) and special character(s) whole last

character fixed as special character(s) makes the cracking time of 8-character set to only

1min

• SHA-256 GPU machine cracking 8 characters with combination of lowercase (l),

uppercase (u), special character(s), digits (d) in 2nd to 7th character while making the 1st

character fixed for special characters(s) and 8th character fixed for uppercase (u) brings

the cracking time to only 6mins while just making the 1st character fixed for uppercase(s)

letters makes the cracking time around 10hours.

4.4 Analyzing Result

• Using CPU instances with the combination of characters like uppercase, lowercase,

special characters and digits a password length of 8 using MD5 hash takes 246 days to

decrypt while using GPU it takes only 3 days.

88

• Similarly,the same password length using more secured SHA-256 hashing algorithm

takes 863 days for our CPU machine to crack where with our GPU its only 10 days.

• Using more secured and computationally intensive Bcrypt hashing algorithm a password

length of 4 characters only with a combination of characters like uppercase, lowercase,

special characters and digits it takes our CPU instances 84 days to crack whereas with

our GPU only 12 days.

• GPU instancing took only 5 min to crack SHA-256 password length of 8 with special

characters only, whereas it took almost 3hours to crack password length of 4 with Bcrypt

hashing algorithm

4.5 Recommendation

• Use password random generator to make a strong Radom password. One such sample

random password generator script is given below:

Alphanumeric Password Generator Script

import random

import string

str = []

chars = string.ascii_letters + string.punctuation + string.digits

num = int(input('How long do you want the string to be? '))

for k in range(1, num+1):

 str.append(random.choice(chars))

str = "".join(str)

print (str)

89

• Never reuse the same password for different accounts.

• As a security administrator or developer try to use a modern hashing algorithm like Bcrypt

which is slow in computing using GPU or CPU.

• Never store password without hashing.

• Always add salt to the hashed password for added security.

• Password length should be at least 10 characters in length and use combination of

characters like uppercase, lowercase, special characters and digits and never use

dictionary words.

• Avoid using words from dictionary which can be easily brute-force by dictionary attack.

Chapter 5: Conclusion

5.1 Introduction

In the last section of our paper, we provide the timeline of our project as well as future

work direction and closing remarks of our paper.

5.2 Timeline

Here is the timeline of my tasks that will be undertakenthoursough my research:

90

Figure 8. Project Timeline

5.3 Future Work

In the future, we plan to test whether adding salt (random number) with MD5 and SHA-

256 increase the cracking time it takes with GPU or not. Also we didn’t test the effect of fixed

certain character types in the password field with Bcrypt hashing algorithm like we did in section

3.11 with SHA-256 and MD5 hash. So, we would like to give it a try with Bcrypt and compare

results with SHA-256 and MD5.

5.4 Conclusion

91

In the end the aim of our paper was to compare the effectiveness of a GPU based, password

cracking over the CPU as well the weakness in contemporary password hashing algorithm used

(SHA-256, MD5) in today and why we should use a modern hashing algorithm like Bcrypt over

SHA-256 and MD5 and why should use more complex passwords. We also came into conclusion

that using salt with a hashed password add more computational cost to crack even with Highly

capable GPU. We also presented a test bed scenario where a normal user can leverage the power

of cloud computing to crack relatively complex password relatively easily.

92

REFERENCES

1. Lawrence O’Gorman, "Comparing Passwords, Tokens, and Biometrics for User

Authentication," Proceedings of the IEEE, vol. 91, no. 12, pp. 2021 - 2040, 2003.

2. Anne Adams, Martina Angela Sasse, and Peter Lunt, "Making Passwords Secure and

Usable," Proceedings of HCI on People and Computers, vol. XII, pp. 1 - 19, 1997.

3. MD5 Message Digest Algorithm Hash Collision Weakness. (2016). Securityfocus.com.

Retrieved 24 September 2016, from http://www.securityfocus.com/bid/11849/discuss

4. Qiu, W., Gong, Z., Guo, Y., Liu, B., Tang, X., & Yuan, Y. (2016). GPU-Based High-

Performance Password Recovery Technique for Hash Functions. ResearchGate. Retrieved

24 September 2016, from

https://www.researchgate.net/publication/292761539_GPUBased_High_Performance_Pa

ssword_Recovery_Technique_for_Hash_Functions

5. About Secure Password Hashing « Stack Exchange Security Blog. (2016).

Security.blogoverflow.com. Retrieved 24 September 2016, from

http://security.blogoverflow.com/2013/09/about-secure-password-hashing/

6. Fritz Bauspiess , Frank Damm, Requirements for Cryptographic hash functions,

Computers, and Security, v.11 n.5, p.427-437, Sept. 1992 [doi>10.1016/0167-

4048(92)90007-E]

7. Anon, (2016). Computing.dcu.ie. Retrieved 25 September 2016, from

http://www.computing.dcu.ie/~hamilton/teaching/CA642/notes/Hash.pdf

8. Robin Thomas Jose, and C.G Thomas 2320-9798 (Print): A Comparative Study on

Different Hashing Algorithms 3.7 (2015): n.7 p-1-6 International Journal of Innovative

Research in Computer and Communication Engineering, 7 Aug. 2015. Web. 24 Sept. 2016.

9. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC

Press, fifth edition, October 1996.

10. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of applied

cryptography. CRC, 1997. [cited at p. 8, 14, 15]

http://www.securityfocus.com/bid/11849/discuss
https://www.researchgate.net/publication/292761539_GPUBased_High_Performance_Password_Recovery_Technique_for_Hash_Functions
https://www.researchgate.net/publication/292761539_GPUBased_High_Performance_Password_Recovery_Technique_for_Hash_Functions
http://security.blogoverflow.com/2013/09/about-secure-password-hashing/
http://www.computing.dcu.ie/~hamilton/teaching/CA642/notes/Hash.pdf

93

11. D. Reid and C. Knipping, Proof in mathematics education: Research, learning and

teaching.2010

12. D. Florencio and C. Herley, “A large-scale study of web password habits,” 2007.

13. R. Shirey, “RFC2828 Internet security glossary.” Retrieved 25 September 2016,

Fromhttps://tools.ietf.org/html/rfc2828

14. Hellman, M. 1980. A cryptanalytic time-memory tradeoff. IEEE Trans. Inf. Theor. 26,

401—406

15. Password Strength Checker. (2016). Passwordmeter.com. Retrieved 26 September 2016,

from http://www.passwordmeter.com/

16. Cognitive Disabilities and the Web: Where Accessibility and Usability Meet. (2016).

Ncdae.org. Retrieved 26 September 2016, from

 http://ncdae.org/resources/articles/cognitive/

17. Yulong Yang, JanneLindqvist, and Antti Oulasvirta. 2014. Text Entry Method Affects

Password Security. Computing Research Repository (2014).

http://arxiv.org/abs/1403.1910

18. Karl Rupp. Retrieved September 25, 2016,”CPU, GPU and MIC Hardware Characteristics

over Time,” from https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-

characteristics-over-time/

19. Y. Liu E. Wu. Emerging technology about GP-GPU. In Circuits and Systems- Asia Pacific

Conference, pages 618{622. IEEE, Dec 2008

20. D. Geer. Taking the graphics processor beyond graphics. Computer, 38:14{16, Sep 2005.

21. T. R. Halfhill, “Parallel Processing with CUDA,”Microprocessor Report, January 28, 2008

22. P. Mell and T. Grance, The NIST Definition of Cloud Computing (Special Publication

800-145), 2011.

23. C. Vecchiola, S. Pandey and R. Buyya, "High-Performance Cloud Computing: A View of

Scientific Applications."

https://tools.ietf.org/html/rfc2828
http://www.passwordmeter.com/
http://ncdae.org/resources/articles/cognitive/
http://arxiv.org/abs/1403.1910
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

94

24. C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics architectures for general-

purpose computing: A framework and analysis. In Proceedings of the 35th annual

ACM/IEEE international symposium on Microarchitecture, pages 306{317. IEEE

Computer Society Press, 2002. [cited at p. 2]

25. D. L. Cook, J. Ioannidis, A. D. Keromytis, and J. Luck. CryptoGraphics: Secret key

cryptography using graphics cards. Topics in Cryptology {CT-RSA 2005, pages 334{350,

2005. [cited at p. 2]

26. J. Yang and J. Goodman. Symmetric key cryptography on modern graphics hardware.

Advances in Cryptology {ASIACRYPT 2007, pages 249{264, 2008. [cited at p. 2,35]

27. A. Di Biagio, A. Barenghi, G. Agosta, and G. Pelosi. The design of a parallel AES for

graphics hardware using the CUDA framework. In Parallel & Distributed Processing,

2009. IPDPS 2009. IEEE International Symposium on, pages 1{8. IEEE, 2009. [cited at p.

3]

28. S. A. Manavski. CUDA compatible GPU as an efficient hardware accelerator forAES

cryptography. In Signal Processing and Communications, 2007. ICSPC 2007. IEEE

International Conference on, pages 65{68. IEEE, 2008. [cited at p. 3, 85]

29. O. Harrison and J. Waldron. AES encryption implementation and analysis on commodity

graphics processing units. Cryptographic Hardware and Embedded SystemsCHES 2007,

pages 209{226, 2007. [cited at p. 3, 85]

30. D. Bernstein, H. C. Chen, C. M. Cheng, T. Lange, R. Niederhagen, P. Schwabe, and B. Y.

Yang. ECC2K-130 on NVIDIA GPUs. Progress in Cryptology-INDOCRYPT 2010, pages

328{346, 2010. [cited at p. 3, 85]

31. G. Hu, J. Ma, and B. Huang. High Thoursoughput Implementation of MD5 Algorithm on

GPU. In Ubiquitous Information Technologies & Applications, 2009. ICUT’09.

Proceedings of the 4th International Conference on, pages 1{5. IEEE, 2010. [cited at p. 3]

32. R. Mukherjee, M. S. Rehman, K. Kothapalli, PJ Narayanan, and K. Srinathan. Presenting

new Speed records and constant time encryption on the GPU. [cited at p. 3]

33. R. Zhang and X. Wang, “MD5 crack method based on compute unified device

architecture,” Computer Science, Vol. 38, 2011, pp. 302-305

95

34. J. Weng, Q. Wu, and C. Yang, “OpenCL-based MD5 decryption algorithm,” Computer

Engineering, Vol. 37, 2011, pp. 119-121

35. F. Wang, C. Yang, Q. Wu, and Z. Shi, “Constant memory optimizations in MD5crypt

cracking algorithm on a GPU-accelerated supercomputer using CUDA,” in Proceedings of

the 7th International Conference on Computer Science and Education,2012, pp. 638-642.

36. . D. H. Nguyen, T. T. Nguyen, T. N. Duong, and P. H. Pham, “Cryptanalysis of MD5 on

GPU Cluster,” in Proceedings of International Conference on Information Security and

Artificial Intelligence, Vol. 2, 2010, pp. 910-914

37. . R. C. Detomini, R. S. Lobato, R. Spolon, and M. A. Cavenaghi, “Using GPU to exploit

parallelism on cryptography,” in Proceedings of the 6th Iberian Conference on Information

Systems and Technologies, 2011, pp. 1-6

96

Appendix

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

	St. Cloud State University
	theRepository at St. Cloud State
	4-2017

	A Study on the Security of Password Hashing Based on GPU Based, Password Cracking using High-Performance Cloud Computing
	Parves Kamal
	Recommended Citation

	tmp.1495138739.pdf.mDrC4

