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Abstract 

 In This paper the current security of various password hashing schemes that are in use today 

will be investigated through practical proof of concept – GPU based, password hash dump 

cracking using the power of cloud computing. The focus of this paper is to show the possible use 

of cloud computing in cracking hash dumps and the way to countermeasures them by using 

secure hashing algorithm and using complex passwords. 
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Chapter 1: Introduction 

1.1 Introduction 

The most common means of authentication scheme are password based authentication 

system [1]. An employee uses multiple passwordson adaily basis for all the applications and 

systems that he/she might be working on for the employer. Businesses spend atremendous 

amount of money for not only storing these passwords but also for securing the storage of these 

passwords. Especially when organization deals with a huge number of customers;it's very hard 

for them to create, maintain and distribute these passwords across the network for authentication, 

authorization or accounting purposes. Thus, Passwords based authentication system possesses 

many security problems into rather relatively secured existing infrastructures[2]. 

To overcome the possible security concerns with storing and distributing the password 

across the network, the password is often run against the cryptographic hash function to get the 

equivalent digest of the password which is stored along with the user’s other credentials in the 

database. When users try to login with the password, the input is calculated by the same hash 

function to compare with the digest of the same password that has been stored in the databases. 

One of the properties of the cryptographic hash function is its irreversible one-way function 

which means it’s nearly impossible to get back the password from the digest itself. Then again, 

many of the commonly used hashing functions like MD5, SHA-1, etc. have been developed 

during the mid-nineties. One of the weaknesses of most widely used hash function MD5 is that 

the attacker can create two identical digests for two different inputs which in cryptography field 

is called Hash collision [3]. In fact, the possibility of an adversary of finding the password from 

the hash dump is proportional to the amount of the work he/she puts in and the ability to predict 

the password characteristics distribution. Moreover, with the advent of the cloud computing and 
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new powerful Graphics Processing Unit (GPU), the attacker is now well equipped than ever to 

decipher the passwords from the hash at their will. 

Since last decades there has been significant development going on in the field of Graphics 

Processing Unit (GPU). The GPU is very suitable for performing parallel tasks as well as 

calculating floating point related problems. Modern GPU based, password cracking is tentimes 

faster than Central Processing Unit (CPU) based password cracking [4]. In my paper, I will be 

showing how an attacker can leverage existing cloud services to crack passwords from sample 

password hash dumps using the high-performanceGPU-based computing resources. 

   

1.2 Problem Statement 

Many organizations are still using vulnerable hashing functions like MD5/SHA-1 for 

storing their user’s passwords. These hashing functions are inherently weaker and susceptible to 

many hashing related attacks. Also, the complexity of passwords is still lenient across many 

organizations,hence making it possible for the attacker to perform dictionary based rainbow 

attacks against those hashed passwords. Adding salting and choosing a relatively slow hashing 

function ensuresthat such exhaustive password cracking techniques in the near future will be still 

impractical [5]. 

 

1.3 Nature and Significance of the Problem 

Due to the recent hacking and public disclosure of private information (User’s passwords) 

from several big profile organizations like LinkedIn, E-harmony and  Yahoo within last 5 years 

raises the serious questions of not only the security of the authentication systems in these high 



9 

 

 
 

profile organizations but also the security aspects of their password storing techniques in their 

databases. 

Hence, I am taking this opportunity in my paper to show how effective theGPU based, 

password cracking technique is against the hashing techniques and provides insighton why 

choosing strong, complex passwords along with slow computers hashing function will keep the 

attackers at bay while leveraging GPU processing power of the cloud computing resources. 

 

1.4 Objective of the Study 

The objectives of this paper are to show the effectiveness of a GPU based,password 

cracking by using cloud computing against latest password hashing techniques. By doing so, this 

paper providesa recommendation on how to store passwords more securely, which makes any 

possible distributed GPU based, password cracking techniques inefficient.We achieve these 

goals in following ways: 

• Present the literature review of the current password hashing techniques and 

identifying their advantages and disadvantages. 

• Provide insight into different password cracking techniques and why GPU 

based,password cracking using high-performancecomputing in thecloud is viable. 

• Demonstrate the effectiveness of a GPU based, password cracking of hashed dump 

on cloud computing. 

• Providing comparisons amongst the more cryptographically strong hashing 

techniques. 

• Come to a conclusion and suggestions on the importance of using salt in hashing as 

well as the strong password selection. 
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1.5 Study Questions/Hypotheses 

  By the end of this paper, we should be able to answer following questions: 

How does the GPU affect the performance of exhaustive password cracking techniques in cloud 

computing?  

To answer the above question, the following sub-questions will help to answer the research 

inquiry: 

• What are the Password hashing attacks? 

• What are the advantages of GPU based, password cracking over CPU based password 

cracking? 

• How to implement GPU based, cracking in cloud computing? 

• Why use computationally slow hash function and salt in hashing? 

• The Importance of using non-human readable passwordsrather than human-

memorable passwords. 
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1.6 Definition of Terms 

Acronym Description 

GPU  Graphics Processing Unit 

CPU  Central Processing Unit 

MD5 Message Digest Algorithm 5 (1992) 

Hash Cryptographic fixed-size value from arbitrary input  

Collision Two different input yields to the same output hash value 

API  Application programming interface 

GPGPU  General-Purpose Graphics Processing Unit 

GFLOPS  (Giga Floating Point Operations Per Second) 

OpenCL Open Computing Language 

CUDA Compute Unified Device Architecture 

 

 

1.7 Summary 

  This chapter summarizes the research problem statements, objectives,and research 

questions. In the next chapter, we will explore the background related to the problem as well as 

the literature review. 
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Chapter 2: Background and Review of Literature 

2.1 Introduction 

This chapter will provide the required theoretical background necessary to understand the 

research topics to understand better the research question that we are going to solve. Also, this 

chapter will provide the related work that is regarding the GPU based, password cracking and on 

password hashing security. 

 

2.2 Background Related to the Problem 

This section will provide necessary definitions and concepts related to password hashing 

and their attacks, characteristics of strong passwords and their expected cracking time, the 

properties of thesecure hash function, performance differences between GPU and CPU-based 

password cracking and cloud computing. 

 

2.2.1 What is aHash? 

 The process of taking an arbitrary length inputand converting it to a fixed-length output 

value by integratingthrough a cryptographic hash function is called hashing, and the output value 

is called the hash value as shown in the figure below. The property of cryptographic hash 

functions is they are aone-wayfunction, and there is no way of deducing the input value by 

reverting from the output hash value [6]. 
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Figure 1.Hashing (h) Function in operation [7]. 

 

 Because of its irreversible features, hashing is very useful for storing thepassword in the 

authentication server. This allows not only protecting customer’s privacy but also allows 

theserver to authenticate user’s login information without storing the user’s password. Let’s say 

for example the cryptographic hash value of the word ‘parves’ using MD5 algorithm is: 

MD5(parves) = cf7cccd2e366698244ac5891da31bb82 
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2.2.2 Different Hashing Algorithm: 

 In the following table below the function of a different hashing algorithm that is in use at 

largeare shown: 

Table 1 

Comparison between different hash algorithms[8]. 

Algorithm Word 

Size 

Block Size OutputSize Rounds Collision Found 

MD-2 32 128 128 18 YES 

MD-4 32 512 128 48 YES 

MD-5 32 512 128 64 YES 

SHA-0 32 512 160 80 YES 

SHA-1 40 512 160 80 YES 

SHA-2 56/64 512/1024 224/256/384/512 64/80 THEORETICAL 

SHA-3 64 1152/1088 

832/576 

224/256/384/512 24 NO 

 

2.2.3 Characteristics of Secure Hash Function 

Any hash function needs to have the following two properties: 

• Fixed Output: Hash function always needs to theoutput of a fixed amount of output 

irrespective of the input length size. If a hash function h outputs to 64 bits of value, then 

an input message of m=22 bits and n=50 bits should always compute to thesame length 

of the64-bit hash value .i.e.h(m) → 64 bits’ hash value and  h(n)→ 64 bits’ hash value. 
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• Easy Computation function: Hash function should be implemented as such that for any 

input y, h(y) should be easy to compute [9]. 

To be qualified as a cryptographically secured hash function, it must meet the following three 

characteristics in their function:  

• Preimage Resistance: For all the hashes of x, it is extremely difficult to find the message 

m which is hashed to x. 

• Second-preimage Resistance: For any given message x, it’s almost very highly unlikely 

to find another message y which has the same hash value like message x, i.e. h(x)≠h(y) 

where h is any hash function and x ≠ y 

• Collision Resistance: It should be very difficult to find two different message computes 

to the same hash value. In this type of attack, the attacker is free to choose any two 

different messages and find the similar hash value. i.e. h(x) = h(y) 

 

2.2.4 Password Hash Cracking Techniques 

Password hash cracking is amethod of attacking dumped hash to find flaws in the 

underlying secured hash characteristics that we discussed in theprevious section to find the 

message that computer to the same hash value. The attacker, once they get hold of the hash file 

by getting the unauthorized access to the network, usually copies the hashed password file and 

performs one of the following attacks. 

• Exhaustive Attack: 

This attack involves trying every possible combination of characters within character 

sets. Since it looks for every possible combination, the success rate is 100% of finding 

the correct combination given the time, and the cost is out of consideration. Also, 
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themostcryptographic system in use today uses very large space of time, making the 

exhaustive search impractical to perform against. The exhaustive attack is used in two of 

the following ways [10]: 

✓ Known-Plaintext only attacks: In this attack, only the perpetrator knows plain 

text   ciphertext both. Then he tries to discover the key that encrypts the 

plaintext for example.      

✓ Ciphertext-only attacks: The attacker only knows the ciphertext, and he tries 

to findthe corresponding key or plaintext by going through every combination 

of the keys. 

Password hashing crack technique is only possible in cipher text theonly method as every 

hash function is aone-way function.However, with a single digit increase in password 

length makes the exhaustive search iteration increase exponentially, making the 

exhaustive search attack impractical for the attacker, especially when long and complex 

alphabetical characters are chosen [11]. 

 

• Dictionary Attack 

A Dictionary attack is avery effective attack if theuseruses some human-memorable 

password for their login credentials and the attacker tries a list of common words and 

expressions used in any language for example in English to find the password. Users tend 

to use common or simple passwords [12] across many platforms, so that can be easily 

recalled and if it’s the case then performing dictionary attacks is highly successful. But 

some simple modification to those common words can make a dictionary attack highly 

unsuccessful too [13]. 
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• Rainbow table Attack   

Rainbow table Attacks involve looking up the precomputed hash tables and the 

corresponding key value to find any matching hash. This type of attack, though, has 

limited combination to look up for but when working within its constraints, it takes less 

time decrypting hashed password than those two other attacks mentioned earlier [14]. 

 

2.2.5 Characteristics of Strong Passwords 

We will discuss in the following few sections the characteristics of strong passwords, and 

we will define its strength based on the exhaustive brute force attack time it takes to crack those 

passwords. We will then introduce the concept of CPU and GPU based, password cracking with 

cloud computing to end the chapter. 

There are many characteristics that make a password easy to crack using exhaustive attacks. 

Some of the characteristics are: 

• Passwords are based on common dictionary words 

• Passwords are Easily guessable 

• Passwords are relatively short in length, making it possible to brute force attack easily 

• Passwords have some sorts of thepattern which is easy to deduce. e.g. abc123, XYZ, 

46824682 etc. 

• Passwords have been repeating characters like abab11 or xy12x. People Use the 

passwords with repeating characters so that they can remember. 
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To better understand, let’sshow it more graphical way. The following pictures are some of the 

chosen passwords with acombination of characters, numbers, and symbols to check the strength 

of the passwords based on the characteristics of the characteristics above of strong passwords. 

 

 

Figure 2. Example of Some of the weak and strong passwords [15]. 

 

So as we have seen even if all the passwords above were eight characters long, using memorable 

words like awatch or if using characters that come in sequences significantly make the password 

strength very low while using random sequences of characters makes passwords relatively 

stronger. It’s very hard to get real random numbers, and for humans, we are not well equipped to 

remember random numbers. In fact, ahuman can only remember random numbers up to 7±2 

characters [16]. Having passwords with arandom sequence of numbers with at leastone capital 

letter, number, aSpecial character from large key space makes password very strong as shown 

below in the above figure. 
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One of the methods used to check the strength of the password is based on the entropy. 

Entropy depends on the length of the passwords and the key space used. Entropy can be 

calculated using the formula, log 2 (𝑛) [17],where n represents the number of characters in key 

space. 

 

2.2.6 CPU-Based Versus GPU-Based Password Cracking Performance: 

The CPU has traditionally been used for general purpose computing. Usually,the CPU has 

limits on how many processing cores it can accommodate. To overcome these CPU’s is hyper 

threading technology to compensate whereas the GPU has many more cores compared to its 

similarly priced CPU counterpart. 

 GPU also works as Single instruction, but Multiple Data computations or known as (SIMD) 

whereas CPU’s work as Single Instruction, Single Data computations or known as (SISD). This 

makes GPU largely suited for password cracking. The difference between CPU’S and GPU’Scan 

regard performance based on single precision floating point number is clearly shown in the figure 

below: 
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Figure 3. Theoretical peak GFLOP/Sec between CPU’SvsGPU’S [18] 

 

Part of the reason behind the GPU’S power over CPU is for the recent increase in GPU’S power 

in comparison with the CPU’S one. AS we know from Moore’s law CPU’S power doubles once 

in 18 months, whereas GPU’S power is doubling four times at the same time [19].  
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Here are the few reasons highlighted behind the GPU’S strength over the CPU: 

• CPU’s havefewer cores compared to GPU’s cores as shown below  

 

Figure 4. CPU Architecture. 

 

Figure 5. GPU Architecture. 
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• GPU’Suseless cache than CPU because of the way GPU’S make use of the pipelines and 

the static operations [20]. 

• CPU’s need to preserve the backward compatibility features to work with old instruction 

sets, whereas the GPU’s are leaving their old instruction sets making it possible to exploit 

SIMD features whereas even though the new features SIMDv5 is used by the new CPU’s, 

it still needs to be backward compatible with old instruction sets. There are a lot of 

different GPU architectures, but all these differences are taken care of at the hardware 

level, leaving the software developer out of hassle. 

• The reason GPU’s havealarge amount of GFLOPS (Giga Floating Point Operations Per 

Second) because programming application can exploit the power of GPU’s is easier 

because of the introduction of Unified Device Architecture (CUDA) and Open 

Computing Language (OpenCL). CUDAis used for parallel computing, which developer 

exploits while writing programs for GPU’s. OpenCL is an open source language 

framework, making it possible to write code applicable for any GPU’s architecture. 

• GPU’s needs to make use of the cache and the register shown in fig-5 that is on board to 

take advantages of its processing power [21]. 

 

2.2.7 Cloud Computing 

Cloud computing is rapidly provisioned on demand configurable resources that can be shared 

with minimal management effort or service overhead [22]. There are two types of cloud – public 

and private. Public cloud is a cloud service offered by thecloud. APrivate cloud is exclusively 

provisioned for acertain group of users. Because of the flexibility and the cost effectiveness every 
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company is moving their infrastructure to the cloud now. There are many public cloud companies 

like AWS, Rackspace, Google Cloud, Microsoft Azure provide. 

 

Figure 6. Cloud Computing Offered solutions and their comparison [23]. 

 

Spinning up a virtual machine in the Amazon AWS with Intel Xeon-based G series computing 

along with NVidia’s K520 (1536 cores) cost about $0.02 to $2.87 per hour making it very feasible 

for someone to run parallel GPU-based, password cracking on the password hash dump. In my 

paper I will demonstrate how effective is GPU based, password cracking using cloud platform. 

 

2.3 Literature Related to the Problem 

Thompson in his paper has shown how GPU’s can be used for usual computing task other 

than graphically intensive work [24] whereas Cook in his paper shown GPU’s are good for 

solving cryptography related work too [25]. In the beginning, it was hard to make any application 

that could take advantage of GPU’s because of the lack of API’s and supports. Now with the 

advent of CUDA, OpenCL platform, APIs for GPU’s become widely available. Using GPU’s 

performance on cryptographic computation has been under review by many researchers. Yang 
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and his colleague have shown how GPU’s can outperform high-performance CPUs in symmetric 

cryptographic computations [26]. In Asymmetric encryption strength has also been reviewed by 

many researchers suing GPU’s [27,28,29]. Bernstein has shown how NVidia GTX 295 can be 

used to break ECC cryptosystem by calculating up to 481 million modular multiplications per 

second in his paper [30]. Hash functions like MD5 and Blowfish have also been tested with GPU 

processing power, outperforming the CPU’s significantly [31,32]. 

   

2.4 Literature Related to the Methodology 

Graphical Processing Unit or GPU is now lots used for general purpose computing or better 

known as GPGPU than rather using it as to drive graphics. 

With the advent of CUDA and OpenCL framework researcher are putting the hash security to 

thetest by exploiting the power of the GPU to crack them using parallel processing power. R. 

Zhang and his colleagues showed the method to crack MD5 hash using CUDA and reached the 

speed of 223 Mbps [33]. Another researcher compared decryption software John, the Ripper 

against cracking software based on OpenCL and found 17-times faster speed [34]. In other 

research, the authors implemented MD5 decryption methods using Tianhe-1A using CUDA to 

reach calculation speeds up to 18 billion keys per seconds [35]. Oclhashcat happens to be the 

multiplatform world’s fastest password cracker which is GPUGPG based open source free hash 

cracker with speeds of up to 8511 mc/s and 2722 mc/s for MD5 and SHA-1 hash respectively. 

TheGPU has also been used for better and faster implementation of hashing algorithm as well. 

In one study researcher, implemented MD5 decryption algorithm using GPU cluster and gain 

100 times faster performance in comparison to CPU [36]. Moreover, researchers have 
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madeacomparison toaparallel version of MD5 on NVidia’s GPU of which the results are whom 

in the following table: 

Table 2 

MD5 is cracking performance comparison using GPU [37]. 

Platform Language Performance 

NVidia Geforce 9600 GT CUDA 223 Mbps 

Nvidia GTX295 OpenCL 76.6 Mbps 

Nvidia GTX9800+ CUDA 516 Mbps 

AMD HD7970(1G) OpenCL 507.3 Gbps 

AMD HD7970 (925 M) OpenCL 409.9 Gbps 

 

As shown above,research has been done on cracking MD5 hashing using GPU’s and relatively 

less onan SHA-1 hashing algorithm. Many of the researchers used open source cracker like 

Oclhashcat on GPU platforms like NVidia or AMD using CUDA or OpenCL. In our paper, we 

will also exploit GPU power that is on offered in the cloud to crack sample password hash dump 

using Oclhashcat. 

 

2.5 Summary 

 In this chapter, we covered all the required definitions and background knowledge related 

to the research and we also covered the literature review related to our research problem and 

methodology that we will be using. In the following chapter, we will outline our research 

methodology in detail and the necessary tools and the techniques as well as our test environment 

in detail. 
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Chapter 3: Methodology 

3.1 Introduction  

 In this chapter, we will discuss our methodology used in conducting our research. 

 

3.2 Design of the Study 

 To answer the research questions proposedin section1.4, the following approaches will be 

followed: 

• Literature review: We try to identify the characteristics of strong hashing algorithm as 

well as the passwords with the data gathered from the proof of concept—password hash 

cracking in the cloud 

• Proof of concept: To show the performance of the GPU on password hash cracking using 

cloud we will implement GPU based, hash cracking on cloud and we will compare this 

with CPU based cracking. 

• Comparison: We will compare the analyzed data to compare the GPU based, and CPU 

based, password cracking performance as well as the effect of using secured password 

hashing algorithm on the cracking performance. We will also analyze the reason behind 

the password hash cracking effectiveness based on password strength. 

 

3.3 Data Collection 

The data will be collected once the test is performed and the benchmark report, as well as 

the generated passwords, will be the source of the data which will later be analyzed.  
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3.4 Tools and Techniques 

Multi-GPU based OclHashcat on Amazon AWS EC2 on CUDA based NVIDIA Tesla GPU 

to crack sample password hash of MD5,SHA-256, and Bcrypt. 

 

3.5 Hardware and Software Environment 

 The following hardware and software will be used in conducting my research. The setup 

was done in AWS (Amazon Web Service) cloud. The exact software and Hardware details are in 

the table below. The test will be conducted in cracking the password hash on both GPU and CPU 

instances (Machine). 

 

Table 3 

Hardware and Software Requirements. 

GPU Test Machine 

Software Hardware 

Ubuntu 16.04 with NVIDIA GRID and 

TESLA GPU Driver 

Intel Xeon E5-2670 (Sandy Bridge) 

Processors 

oclHashcat is a GPGPU-based multi-

hash cracker 

P2 instances provide up to 16 NVIDIA 

K80 GPUs, 64 vCPUs and 732 GiB of 

host memory, with a combined 192 GB of 

GPU memory, 40 thousand parallel 

processing cores, 70 teraflops of single 

precision floating point performance, and 
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over 23 teraflops of double precision 

floating point performance. P2 instances 

also offer GPU Direct™ (peer-to-peer 

GPU communication) capabilities for up 

to 16 GPUs, so that multiple GPUs can 

work together within a single host 

 vCPU  - 32 Ram – 488 GPU -8  GB 

SSD- 300GB 

 

CPU Test Machine 

Software Hardware 

Ubuntu 16.04 - - with Updates HVM-

1602 

Intel Xeon E5-2666 v3 2.9 GHz 

oclHashcat is a CPU-based multi-hash 

cracker 

High-frequency Intel Xeon E5-2666 v3 

(Haswell) processors optimized 

specifically for EC2 

EBS-optimized by default and at no 

additional cost 

Ability to control processor C-state and 

P-state configuration on the c4.8xlarge 

instance type 

 VCPU-8 RAM – 15GB SSD-30GB 
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3.6 Installing oclHashcaht and Benchmarking of the Performance of oclHashcat on Both 

CPU and GPU 

First, the installation of the ocHashcat multi-GPU based, hash cracker with the following 

steps after ssh into our cloud Linux machine on both CPU and GPU test machine. 
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Then the benchmark test was run on the different hashing algorithm and the full benchmark 

results are as follows: 

GPU Test Machine Benchmark Results: 

root@ip-172-31-43-198 hashcat-3.30]# ./hashcat64.bin –b 

OpenCL Platform #1: NVIDIA Corporation 

==================================================== 

Device #1: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #2: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #3: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #4: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #5: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #6: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #7: Tesla K80, 2047/11439 MB allocatable, 13MCU 

Device #8: Tesla K80, 2047/11439 MB allocatable, 13MCU 

 

Hashtype: MD4 

Speed.Dev.#1.....:  8466.9 MH/s (51.48ms) 

Speed.Dev.#2.....:  8501.4 MH/s (51.27ms) 

Speed.Dev.#3.....:  8445.6 MH/s (51.61ms) 

Speed.Dev.#4.....:  9079.5 MH/s (48.00ms) 

Speed.Dev.#5.....:  8212.8 MH/s (53.07ms) 

Speed.Dev.#6.....:  8906.6 MH/s (48.94ms) 

Speed.Dev.#7.....:  8260.1 MH/s (52.77ms) 

Speed.Dev.#8.....:  9072.7 MH/s (48.04ms) 
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Speed.Dev.#*.....: 68945.7 MH/s 

 

Hashtype: MD5 

Speed.Dev.#1.....:  4551.7 MH/s (95.80ms) 

Speed.Dev.#2.....:  4440.1 MH/s (98.20ms) 

Speed.Dev.#3.....:  4427.0 MH/s (49.20ms) 

Speed.Dev.#4.....:  4626.7 MH/s (94.24ms) 

Speed.Dev.#5.....:  4264.6 MH/s (51.10ms) 

Speed.Dev.#6.....:  4521.0 MH/s (96.45ms) 

Speed.Dev.#7.....:  4229.8 MH/s (51.53ms) 

Speed.Dev.#8.....:  4613.5 MH/s (94.51ms) 

Speed.Dev.#*.....: 35674.4 MH/s 

 

Hashtype: Half MD5 

Speed.Dev.#1.....:  3223.9 MH/s (67.60ms) 

Speed.Dev.#2.....:  3156.0 MH/s (69.07ms) 

Speed.Dev.#3.....:  3109.5 MH/s (70.10ms) 

Speed.Dev.#4.....:  3309.7 MH/s (65.83ms) 

Speed.Dev.#5.....:  2947.0 MH/s (73.94ms) 

Speed.Dev.#6.....:  3307.7 MH/s (65.88ms) 

Speed.Dev.#7.....:  3075.6 MH/s (70.88ms) 

Speed.Dev.#8.....:  3311.1 MH/s (65.82ms) 

Speed.Dev.#*.....: 25440.4 MH/s 
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Hashtype: SHA1 

Speed.Dev.#1.....:  1993.0 MH/s (54.46ms) 

Speed.Dev.#2.....:  1940.6 MH/s (55.91ms) 

Speed.Dev.#3.....:  1972.2 MH/s (55.03ms) 

Speed.Dev.#4.....:  2045.6 MH/s (53.03ms) 

Speed.Dev.#5.....:  1937.4 MH/s (56.02ms) 

Speed.Dev.#6.....:  1999.5 MH/s (54.26ms) 

Speed.Dev.#7.....:  1872.4 MH/s (57.97ms) 

Speed.Dev.#8.....:  2024.6 MH/s (53.61ms) 

Speed.Dev.#*.....: 15785.3 MH/s 

 

Hashtype: SHA256 

Speed.Dev.#1.....:   815.1 MH/s (66.79ms) 

Speed.Dev.#2.....:   815.5 MH/s (66.76ms) 

Speed.Dev.#3.....:   811.9 MH/s (67.05ms) 

Speed.Dev.#4.....:   874.6 MH/s (93.39ms) 

Speed.Dev.#5.....:   810.0 MH/s (67.27ms) 

Speed.Dev.#6.....:   836.2 MH/s (65.17ms) 

Speed.Dev.#7.....:   797.3 MH/s (68.34ms) 

Speed.Dev.#8.....:   847.4 MH/s (64.30ms) 

Speed.Dev.#*.....:  6608.0 MH/s 
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Hashtype: SHA384 

Speed.Dev.#1.....:   174.6 MH/s (78.05ms) 

Speed.Dev.#2.....:   174.8 MH/s (77.93ms) 

Speed.Dev.#3.....:   175.5 MH/s (77.60ms) 

Speed.Dev.#4.....:   175.8 MH/s (77.48ms) 

Speed.Dev.#5.....:   175.3 MH/s (76.83ms) 

Speed.Dev.#6.....:   175.1 MH/s (77.82ms) 

Speed.Dev.#7.....:   174.5 MH/s (78.07ms) 

Speed.Dev.#8.....:   175.0 MH/s (77.83ms) 

Speed.Dev.#*.....:  1400.6 MH/s 

 

Hashtype: SHA512 

Speed.Dev.#1.....:   177.5 MH/s (76.75ms) 

Speed.Dev.#2.....:   177.8 MH/s (76.64ms) 

Speed.Dev.#3.....:   177.9 MH/s (76.60ms) 

Speed.Dev.#4.....:   178.9 MH/s (76.15ms) 

Speed.Dev.#5.....:   177.5 MH/s (76.77ms) 

Speed.Dev.#6.....:   178.1 MH/s (76.49ms) 

Speed.Dev.#7.....:   177.7 MH/s (76.68ms) 

Speed.Dev.#8.....:   178.1 MH/s (76.51ms) 

Speed.Dev.#*.....:  1423.4 MH/s 
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Hashtype: SHA-3(Keccak) 

Speed.Dev.#1.....:   184.6 MH/s (73.79ms) 

Speed.Dev.#2.....:   175.5 MH/s (77.65ms) 

Speed.Dev.#3.....:   184.5 MH/s (73.84ms) 

Speed.Dev.#4.....:   186.9 MH/s (72.90ms) 

Speed.Dev.#5.....:   180.1 MH/s (75.66ms) 

Speed.Dev.#6.....:   190.8 MH/s (71.40ms) 

Speed.Dev.#7.....:   182.7 MH/s (74.57ms) 

Speed.Dev.#8.....:   183.4 MH/s (74.27ms) 

Speed.Dev.#*.....:  1468.5 MH/s 

 

Hashtype: SipHash 

Speed.Dev.#1.....:  8380.1 MH/s (52.01ms) 

Speed.Dev.#2.....:  8436.0 MH/s (51.64ms) 

Speed.Dev.#3.....:  8236.4 MH/s (52.91ms) 

Speed.Dev.#4.....:  8848.4 MH/s (49.26ms) 

Speed.Dev.#5.....:  8010.7 MH/s (54.41ms) 

Speed.Dev.#6.....:  8694.2 MH/s (50.13ms) 

Speed.Dev.#7.....:  8078.2 MH/s (53.95ms) 

Speed.Dev.#8.....:  8825.6 MH/s (49.39ms) 

Speed.Dev.#*.....: 67509.6 MH/s 
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Hash type: RipeMD160 

Speed.Dev.#1.....:  1218.0 MH/s (89.15ms) 

Speed.Dev.#2.....:  1196.2 MH/s (90.77ms) 

Speed.Dev.#3.....:  1200.0 MH/s (90.49ms) 

Speed.Dev.#4.....:  1236.2 MH/s (87.81ms) 

Speed.Dev.#5.....:  1177.3 MH/s (92.22ms) 

Speed.Dev.#6.....:  1233.4 MH/s (88.38ms) 

Speed.Dev.#7.....:  1120.3 MH/s (48.63ms) 

Speed.Dev.#8.....:  1253.8 MH/s (86.94ms) 

Speed.Dev.#*.....:  9635.2 MH/s 

 

Hashtype: Whirlpool 

Speed.Dev.#1.....: 78468.3 kH/s (85.80ms) 

Speed.Dev.#2.....: 78975.2 kH/s (85.24ms) 

Speed.Dev.#3.....: 78928.0 kH/s (85.30ms) 

Speed.Dev.#4.....: 78865.1 kH/s (85.34ms) 

Speed.Dev.#5.....: 78963.1 kH/s (85.25ms) 

Speed.Dev.#6.....: 78982.6 kH/s (85.23ms) 

Speed.Dev.#7.....: 78080.8 kH/s (86.23ms) 

Speed.Dev.#8.....: 79145.9 kH/s (85.07ms) 

Speed.Dev.#*.....:   630.4 MH/s 
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Hashtype: GOST R 34.11-94 

Speed.Dev.#1.....: 66313.6 kH/s (101.54ms) 

Speed.Dev.#2.....: 66579.7 kH/s (101.12ms) 

Speed.Dev.#3.....: 66764.5 kH/s (100.85ms) 

Speed.Dev.#4.....: 66243.8 kH/s (101.65ms) 

Speed.Dev.#5.....: 66301.9 kH/s (101.55ms) 

Speed.Dev.#6.....: 67160.6 kH/s (100.25ms) 

Speed.Dev.#7.....: 65520.9 kH/s (102.76ms) 

Speed.Dev.#8.....: 67115.1 kH/s (100.32ms) 

Speed.Dev.#*.....:   532.0 MH/s 

 

Hash type: GOST R 34.11-2012 (Streebog) 256-bit 

Speed.Dev.#1.....: 19925.1 kH/s (170.97ms) 

Speed.Dev.#2.....: 19592.7 kH/s (173.87ms) 

Speed.Dev.#3.....: 20090.6 kH/s (169.56ms) 

Speed.Dev.#4.....: 20300.8 kH/s (167.79ms) 

Speed.Dev.#5.....: 19341.0 kH/s (176.13ms) 

Speed.Dev.#6.....: 19972.5 kH/s (170.55ms) 

Speed.Dev.#7.....: 19413.8 kH/s (175.47ms) 

Speed.Dev.#8.....: 20344.7 kH/s (167.44ms) 

Speed.Dev.#*.....:   159.0 MH/s 
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Hash type: GOST R 34.11-2012 (Streebog) 512-bit 

Speed.Dev.#1.....: 19861.1 kH/s (171.55ms) 

Speed.Dev.#2.....: 19686.2 kH/s (173.07ms) 

Speed.Dev.#3.....: 20028.9 kH/s (170.09ms) 

Speed.Dev.#4.....: 20083.5 kH/s (169.62ms) 

Speed.Dev.#5.....: 19398.3 kH/s (175.65ms) 

Speed.Dev.#6.....: 20046.2 kH/s (169.97ms) 

Speed.Dev.#7.....: 19641.2 kH/s (173.46ms) 

Speed.Dev.#8.....: 20436.0 kH/s (166.72ms) 

Speed.Dev.#*.....:   159.2 MH/s 

 

Hash type: DES (PT = $salt, key = $pass) 

Speed.Dev.#1.....:  3699.9 MH/s (58.77ms) 

Speed.Dev.#2.....:  3647.5 MH/s (59.63ms) 

Speed.Dev.#3.....:  3679.8 MH/s (59.09ms) 

Speed.Dev.#4.....:  3694.4 MH/s (58.86ms) 

Speed.Dev.#5.....:  3607.1 MH/s (60.31ms) 

Speed.Dev.#6.....:  3822.5 MH/s (56.91ms) 

Speed.Dev.#7.....:  3789.0 MH/s (57.43ms) 

Speed.Dev.#8.....:  3779.2 MH/s (57.57ms) 

Speed.Dev.#*.....: 29719.3 MH/s 
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Hash type: 3DES (PT = $salt, key = $pass) 

Speed.Dev.#1.....:   250.1 MH/s (54.41ms) 

Speed.Dev.#2.....:   256.2 MH/s (53.14ms) 

Speed.Dev.#3.....:   259.0 MH/s (52.54ms) 

Speed.Dev.#4.....:   256.1 MH/s (53.14ms) 

Speed.Dev.#5.....:   258.5 MH/s (52.66ms) 

Speed.Dev.#6.....:   250.6 MH/s (54.31ms) 

Speed.Dev.#7.....:   246.5 MH/s (55.23ms) 

Speed.Dev.#8.....:   256.0 MH/s (53.17ms) 

Speed.Dev.#*.....:  2033.1 MH/s 

 

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla) 

Speed.Dev.#1.....:  1379.7 kH/s (76.42ms) 

Speed.Dev.#2.....:  1366.3 kH/s (77.23ms) 

Speed.Dev.#3.....:  1315.0 kH/s (80.29ms) 

Speed.Dev.#4.....:  1419.0 kH/s (74.39ms) 

Speed.Dev.#5.....:  1284.7 kH/s (82.18ms) 

Speed.Dev.#6.....:  1413.9 kH/s (74.65ms) 

Speed.Dev.#7.....:  1362.7 kH/s (77.46ms) 

Speed.Dev.#8.....:  1417.3 kH/s (74.47ms) 

Speed.Dev.#*.....: 10958.5 kH/s 
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Hashtype: script 

Speed.Dev.#1.....:   202.1 kH/s (32.43ms) 

Speed.Dev.#2.....:   202.3 kH/s (32.40ms) 

Speed.Dev.#3.....:   199.7 kH/s (32.84ms) 

Speed.Dev.#4.....:   197.2 kH/s (33.26ms) 

Speed.Dev.#5.....:   182.5 kH/s (35.94ms) 

Speed.Dev.#6.....:   150.7 kH/s (43.59ms) 

Speed.Dev.#7.....:   141.1 kH/s (46.55ms) 

Speed.Dev.#8.....:   151.1 kH/s (43.46ms) 

Speed.Dev.#*.....:  1426.6 kH/s 

 

Hashtype: PBKDF2-HMAC-MD5 

Speed.Dev.#1.....:  1427.7 kH/s (60.61ms) 

Speed.Dev.#2.....:  1413.8 kH/s (61.20ms) 

Speed.Dev.#3.....:  1430.8 kH/s (60.40ms) 

Speed.Dev.#4.....:  1484.7 kH/s (58.24ms) 

Speed.Dev.#5.....:  1374.1 kH/s (62.99ms) 

Speed.Dev.#6.....:  1486.3 kH/s (58.11ms) 

Speed.Dev.#7.....:  1405.9 kH/s (61.54ms) 

Speed.Dev.#8.....:  1484.0 kH/s (58.21ms) 

Speed.Dev.#*.....: 11507.3 kH/s 
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Hashtype: PBKDF2-HMAC-SHA1 

Speed.Dev.#1.....:   777.6 kH/s (58.92ms) 

Speed.Dev.#2.....:   752.4 kH/s (60.93ms) 

Speed.Dev.#3.....:   767.1 kH/s (59.72ms) 

Speed.Dev.#4.....:   790.7 kH/s (57.87ms) 

Speed.Dev.#5.....:   751.3 kH/s (61.01ms) 

Speed.Dev.#6.....:   775.4 kH/s (59.10ms) 

Speed.Dev.#7.....:   727.7 kH/s (63.03ms) 

Speed.Dev.#8.....:   793.6 kH/s (57.72ms) 

Speed.Dev.#*.....:  6135.9 kH/s 

 

Hash type: PBKDF2-HMAC-SHA256 

Speed.Dev.#1.....:   292.4 kH/s (84.88ms) 

Speed.Dev.#2.....:   286.2 kH/s (86.75ms) 

Speed.Dev.#3.....:   290.1 kH/s (85.55ms) 

Speed.Dev.#4.....:   298.2 kH/s (83.25ms) 

Speed.Dev.#5.....:   283.1 kH/s (87.69ms) 

Speed.Dev.#6.....:   295.3 kH/s (84.06ms) 

Speed.Dev.#7.....:   289.0 kH/s (85.92ms) 

Speed.Dev.#8.....:   298.1 kH/s (83.25ms) 

Speed.Dev.#*.....:  2332.3 kH/s 
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Hashtype: PBKDF2-HMAC-SHA512 

Speed.Dev.#1.....:    94553 H/s (67.10ms) 

Speed.Dev.#2.....:    93350 H/s (67.97ms) 

Speed.Dev.#3.....:    94379 H/s (67.23ms) 

Speed.Dev.#4.....:    95693 H/s (66.30ms) 

Speed.Dev.#5.....:    89283 H/s (71.92ms) 

Speed.Dev.#6.....:    96060 H/s (66.05ms) 

Speed.Dev.#7.....:    94247 H/s (67.32ms) 

Speed.Dev.#8.....:    95611 H/s (66.36ms) 

Speed.Dev.#*.....:   753.2 kH/s 

 

Hashtype: Skype 

Speed.Dev.#1.....:  2840.6 MH/s (76.74ms) 

Speed.Dev.#2.....:  2912.7 MH/s (74.81ms) 

Speed.Dev.#3.....:  2904.7 MH/s (75.03ms) 

Speed.Dev.#4.....:  3074.1 MH/s (70.90ms) 

Speed.Dev.#5.....:  2846.7 MH/s (76.58ms) 

Speed.Dev.#6.....:  2991.6 MH/s (72.84ms) 

Speed.Dev.#7.....:  2973.5 MH/s (73.30ms) 

Speed.Dev.#8.....:  3109.2 MH/s (70.11ms) 

Speed.Dev.#*.....: 23653.1 MH/s 
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Hash type: WPA/WPA2 

Speed.Dev.#1.....:    91985 H/s (70.54ms) 

Speed.Dev.#2.....:    90301 H/s (71.86ms) 

Speed.Dev.#3.....:    92049 H/s (70.49ms) 

Speed.Dev.#4.....:    95516 H/s (67.93ms) 

Speed.Dev.#5.....:    88909 H/s (72.98ms) 

Speed.Dev.#6.....:    93344 H/s (69.51ms) 

Speed.Dev.#7.....:    91694 H/s (70.77ms) 

Speed.Dev.#8.....:    94990 H/s (68.31ms) 

Speed.Dev.#*.....:   738.8 kH/s 

 

Hashtype: IKE-PSK MD5 

Speed.Dev.#1.....:   316.6 MH/s (86.08ms) 

Speed.Dev.#2.....:   314.5 MH/s (86.64ms) 

Speed.Dev.#3.....:   317.5 MH/s (85.82ms) 

Speed.Dev.#4.....:   317.8 MH/s (85.74ms) 

Speed.Dev.#5.....:   306.6 MH/s (88.87ms) 

Speed.Dev.#6.....:   318.1 MH/s (85.64ms) 

Speed.Dev.#7.....:   317.9 MH/s (85.71ms) 

Speed.Dev.#8.....:   317.0 MH/s (85.97ms) 

Speed.Dev.#*.....:  2525.9 MH/s 
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Hashtype: IKE-PSK SHA1 

Speed.Dev.#1.....:   165.1 MH/s (82.48ms) 

Speed.Dev.#2.....:   162.8 MH/s (83.67ms) 

Speed.Dev.#3.....:   163.9 MH/s (83.11ms) 

Speed.Dev.#4.....:   167.4 MH/s (81.36ms) 

Speed.Dev.#5.....:   161.0 MH/s (84.62ms) 

Speed.Dev.#6.....:   168.1 MH/s (81.04ms) 

Speed.Dev.#7.....:   167.6 MH/s (81.27ms) 

Speed.Dev.#8.....:   168.6 MH/s (80.82ms) 

Speed.Dev.#*.....:  1324.6 MH/s 

 

Hash type: NetNTLMv1-VANILLA / NetNTLMv1+ESS 

Speed.Dev.#1.....:  4720.0 MH/s (92.37ms) 

Speed.Dev.#2.....:  4697.4 MH/s (92.82ms) 

Speed.Dev.#3.....:  4530.3 MH/s (96.24ms) 

Speed.Dev.#4.....:  4710.7 MH/s (92.56ms) 

Speed.Dev.#5.....:  4456.6 MH/s (97.81ms) 

Speed.Dev.#6.....:  4737.6 MH/s (92.02ms) 

Speed.Dev.#7.....:  4407.3 MH/s (98.93ms) 

Speed.Dev.#8.....:  4714.3 MH/s (92.49ms) 

Speed.Dev.#*.....: 36974.2 MH/s 
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Hash type: NetNTLMv2 

Speed.Dev.#1.....:   295.5 MH/s (92.24ms) 

Speed.Dev.#2.....:   291.7 MH/s (93.42ms) 

Speed.Dev.#3.....:   287.9 MH/s (94.67ms) 

Speed.Dev.#4.....:   294.8 MH/s (92.42ms) 

Speed.Dev.#5.....:   293.9 MH/s (92.72ms) 

Speed.Dev.#6.....:   294.3 MH/s (92.60ms) 

Speed.Dev.#7.....:   294.7 MH/s (92.46ms) 

Speed.Dev.#8.....:   294.6 MH/s (92.50ms) 

Speed.Dev.#*.....:  2347.3 MH/s 

 

Hash type: IPMI2 RAKP HMAC-SHA1 

Speed.Dev.#1.....:   346.0 MH/s (78.76ms) 

Speed.Dev.#2.....:   349.4 MH/s (77.99ms) 

Speed.Dev.#3.....:   354.6 MH/s (76.83ms) 

Speed.Dev.#4.....:   362.8 MH/s (75.09ms) 

Speed.Dev.#5.....:   326.6 MH/s (83.42ms) 

Speed.Dev.#6.....:   365.4 MH/s (74.57ms) 

Speed.Dev.#7.....:   335.4 MH/s (81.25ms) 

Speed.Dev.#8.....:   359.4 MH/s (75.82ms) 

Speed.Dev.#*.....:  2799.6 MH/s 
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Hash type: Kerberos 5 AS-REQ Pre-Authtype 23 

Speed.Dev.#1.....: 47808.6 kH/s (142.52ms) 

Speed.Dev.#2.....: 47191.6 kH/s (144.39ms) 

Speed.Dev.#3.....: 47967.8 kH/s (142.05ms) 

Speed.Dev.#4.....: 47687.9 kH/s (142.88ms) 

Speed.Dev.#5.....: 48071.0 kH/s (141.74ms) 

Speed.Dev.#6.....: 47765.8 kH/s (142.63ms) 

Speed.Dev.#7.....: 47612.6 kH/s (143.11ms) 

Speed.Dev.#8.....: 47767.8 kH/s (142.65ms) 

Speed.Dev.#*.....:   381.9 MH/s 

 

Hash type: Kerberos 5 TGS-REP type 23 

Speed.Dev.#1.....: 46763.9 kH/s (72.84ms) 

Speed.Dev.#2.....: 46724.8 kH/s (72.90ms) 

Speed.Dev.#3.....: 46731.8 kH/s (72.88ms) 

Speed.Dev.#4.....: 47354.2 kH/s (143.89ms) 

Speed.Dev.#5.....: 47632.9 kH/s (143.05ms) 

Speed.Dev.#6.....: 47401.7 kH/s (143.75ms) 

Speed.Dev.#7.....: 47301.7 kH/s (144.06ms) 

Speed.Dev.#8.....: 46954.6 kH/s (72.54ms) 

Speed.Dev.#*.....:   376.9 MH/s 
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Hash type: DNSSEC (NSEC3) 

Speed.Dev.#1.....:   714.1 MH/s (76.24ms) 

Speed.Dev.#2.....:   742.3 MH/s (73.41ms) 

Speed.Dev.#3.....:   773.0 MH/s (70.50ms) 

Speed.Dev.#4.....:   781.6 MH/s (69.65ms) 

Speed.Dev.#5.....:   736.5 MH/s (73.99ms) 

Speed.Dev.#6.....:   764.6 MH/s (71.27ms) 

Speed.Dev.#7.....:   747.8 MH/s (72.87ms) 

Speed.Dev.#8.....:   776.6 MH/s (70.16ms) 

Speed.Dev.#*.....:  6036.6 MH/s 

 

Hash type: PostgreSQL Challenge-Response Authentication (MD5) 

Speed.Dev.#1.....:  1430.2 MH/s (75.90ms) 

Speed.Dev.#2.....:  1395.0 MH/s (77.80ms) 

Speed.Dev.#3.....:  1353.3 MH/s (80.22ms) 

Speed.Dev.#4.....:  1487.0 MH/s (73.00ms) 

Speed.Dev.#5.....:  1321.7 MH/s (82.15ms) 

Speed.Dev.#6.....:  1506.1 MH/s (72.07ms) 

Speed.Dev.#7.....:  1323.9 MH/s (82.01ms) 

Speed.Dev.#8.....:  1461.1 MH/s (74.30ms) 

Speed.Dev.#*.....: 11278.5 MH/s 
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Hash type: MySQL Challenge-Response Authentication (SHA1) 

Speed.Dev.#1.....:   518.0 MH/s (52.52ms) 

Speed.Dev.#2.....:   503.8 MH/s (54.01ms) 

Speed.Dev.#3.....:   512.9 MH/s (53.06ms) 

Speed.Dev.#4.....:   528.4 MH/s (51.50ms) 

Speed.Dev.#5.....:   508.2 MH/s (53.55ms) 

Speed.Dev.#6.....:   533.2 MH/s (76.66ms) 

Speed.Dev.#7.....:   502.3 MH/s (54.18ms) 

Speed.Dev.#8.....:   540.8 MH/s (75.58ms) 

Speed.Dev.#*.....:  4147.6 MH/s 

 

Hash type: SIP digest authentication (MD5) 

Speed.Dev.#1.....:   511.8 MH/s (53.17ms) 

Speed.Dev.#2.....:   509.6 MH/s (53.40ms) 

Speed.Dev.#3.....:   510.8 MH/s (53.27ms) 

Speed.Dev.#4.....:   514.5 MH/s (52.87ms) 

Speed.Dev.#5.....:   509.3 MH/s (53.44ms) 

Speed.Dev.#6.....:   515.8 MH/s (52.76ms) 

Speed.Dev.#7.....:   508.3 MH/s (53.55ms) 

Speed.Dev.#8.....:   511.9 MH/s (53.17ms) 

Speed.Dev.#*.....:  4091.9 MH/s 
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Hash type: PostgreSQL 

Speed.Dev.#1.....:  4405.2 MH/s (49.47ms) 

Speed.Dev.#2.....:  4414.2 MH/s (49.37ms) 

Speed.Dev.#3.....:  4267.3 MH/s (51.06ms) 

Speed.Dev.#4.....:  4575.1 MH/s (95.31ms) 

Speed.Dev.#5.....:  4146.7 MH/s (52.56ms) 

Speed.Dev.#6.....:  4615.7 MH/s (94.47ms) 

Speed.Dev.#7.....:  4160.1 MH/s (52.39ms) 

Speed.Dev.#8.....:  4584.1 MH/s (95.12ms) 

Speed.Dev.#*.....: 35168.4 MH/s 

 

Hash type: MSSQL(2000) 

Speed.Dev.#1.....:  1734.2 MH/s (62.58ms) 

Speed.Dev.#2.....:  1819.9 MH/s (59.64ms) 

Speed.Dev.#3.....:  1769.9 MH/s (61.32ms) 

Speed.Dev.#4.....:  1871.3 MH/s (58.00ms) 

Speed.Dev.#5.....:  1736.4 MH/s (62.52ms) 

Speed.Dev.#6.....:  1874.3 MH/s (57.91ms) 

Speed.Dev.#7.....:  1754.6 MH/s (61.85ms) 

Speed.Dev.#8.....:  1895.5 MH/s (57.25ms) 

Speed.Dev.#*.....: 14456.2 MH/s 
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Hash type: MSSQL(2005) 

Speed.Dev.#1.....:  1832.0 MH/s (59.25ms) 

Speed.Dev.#2.....:  1822.2 MH/s (59.57ms) 

Speed.Dev.#3.....:  1824.8 MH/s (59.49ms) 

Speed.Dev.#4.....:  1841.1 MH/s (58.96ms) 

Speed.Dev.#5.....:  1696.2 MH/s (64.00ms) 

Speed.Dev.#6.....:  1879.5 MH/s (57.75ms) 

Speed.Dev.#7.....:  1749.0 MH/s (62.07ms) 

Speed.Dev.#8.....:  1920.5 MH/s (56.52ms) 

Speed.Dev.#*.....: 14565.2 MH/s 

 

Hash type: MSSQL(2012) 

Speed.Dev.#1.....:   180.1 MH/s (74.78ms) 

Speed.Dev.#2.....:   180.1 MH/s (75.66ms) 

Speed.Dev.#3.....:   180.7 MH/s (75.41ms) 

Speed.Dev.#4.....:   181.1 MH/s (74.34ms) 

Speed.Dev.#5.....:   180.7 MH/s (74.50ms) 

Speed.Dev.#6.....:   180.3 MH/s (75.55ms) 

Speed.Dev.#7.....:   180.2 MH/s (75.60ms) 

Speed.Dev.#8.....:   180.3 MH/s (75.58ms) 

Speed.Dev.#*.....:  1443.5 MH/s 
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Hash type: MySQL323 

Speed.Dev.#1.....: 18603.4 MH/s (93.75ms) 

Speed.Dev.#2.....: 19034.4 MH/s (91.63ms) 

Speed.Dev.#3.....: 19019.5 MH/s (91.71ms) 

Speed.Dev.#4.....: 19411.8 MH/s (89.85ms) 

Speed.Dev.#5.....: 19523.0 MH/s (89.34ms) 

Speed.Dev.#6.....: 19824.0 MH/s (87.98ms) 

Speed.Dev.#7.....: 18995.3 MH/s (91.82ms) 

Speed.Dev.#8.....: 19696.5 MH/s (88.54ms) 

Speed.Dev.#*.....:   154.1 GH/s 

 

Hash type: MySQL4.1/MySQL5 

Speed.Dev.#1.....:   871.1 MH/s (62.55ms) 

Speed.Dev.#2.....:   863.1 MH/s (63.14ms) 

Speed.Dev.#3.....:   892.0 MH/s (61.07ms) 

Speed.Dev.#4.....:   921.5 MH/s (59.10ms) 

Speed.Dev.#5.....:   834.7 MH/s (65.28ms) 

Speed.Dev.#6.....:   894.4 MH/s (60.91ms) 

Speed.Dev.#7.....:   815.6 MH/s (66.81ms) 

Speed.Dev.#8.....:   905.8 MH/s (60.15ms) 

Speed.Dev.#*.....:  6998.2 MH/s 
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Hash type: md5apr1, MD5(APR), Apache MD5 

Speed.Dev.#1.....:  2497.0 kH/s (84.13ms) 

Speed.Dev.#2.....:  2533.6 kH/s (82.91ms) 

Speed.Dev.#3.....:  2510.8 kH/s (83.65ms) 

Speed.Dev.#4.....:  2672.9 kH/s (78.54ms) 

Speed.Dev.#5.....:  2418.1 kH/s (86.89ms) 

Speed.Dev.#6.....:  2667.8 kH/s (78.70ms) 

Speed.Dev.#7.....:  2491.5 kH/s (84.30ms) 

Speed.Dev.#8.....:  2681.7 kH/s (78.29ms) 

Speed.Dev.#*.....: 20473.3 kH/s 

 

Hash type: SHA-1(Base64), NSS LDAP, Netscape LDAP SHA 

Speed.Dev.#1.....:  1911.3 MH/s (56.79ms) 

Speed.Dev.#2.....:  1973.7 MH/s (54.99ms) 

Speed.Dev.#3.....:  1907.3 MH/s (56.89ms) 

Speed.Dev.#4.....:  2015.0 MH/s (53.86ms) 

Speed.Dev.#5.....:  1884.5 MH/s (57.60ms) 

Speed.Dev.#6.....:  2009.2 MH/s (54.01ms) 

Speed.Dev.#7.....:  1853.6 MH/s (58.54ms) 

Speed.Dev.#8.....:  2017.0 MH/s (53.81ms) 

Speed.Dev.#*.....: 15571.6 MH/s 
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Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA 

Speed.Dev.#1.....:  1961.5 MH/s (55.34ms) 

Speed.Dev.#2.....:  1940.2 MH/s (55.95ms) 

Speed.Dev.#3.....:  1892.6 MH/s (57.34ms) 

Speed.Dev.#4.....:  2031.0 MH/s (53.44ms) 

Speed.Dev.#5.....:  1883.5 MH/s (57.63ms) 

Speed.Dev.#6.....:  2011.3 MH/s (53.96ms) 

Speed.Dev.#7.....:  1863.8 MH/s (58.23ms) 

Speed.Dev.#8.....:  2029.2 MH/s (53.48ms) 

Speed.Dev.#*.....: 15613.0 MH/s 

 

Hash type: SSHA-512(Base64), LDAP {SSHA512} 

Speed.Dev.#1.....:   177.3 MH/s (76.82ms) 

Speed.Dev.#2.....:   177.6 MH/s (76.70ms) 

Speed.Dev.#3.....:   178.4 MH/s (76.33ms) 

Speed.Dev.#4.....:   178.7 MH/s (76.25ms) 

Speed.Dev.#5.....:   177.4 MH/s (76.83ms) 

Speed.Dev.#6.....:   178.2 MH/s (76.45ms) 

Speed.Dev.#7.....:   177.4 MH/s (76.80ms) 

Speed.Dev.#8.....:   177.9 MH/s (76.56ms) 

Speed.Dev.#*.....:  1423.0 MH/s 
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Hash type: LM 

Speed.Dev.#1.....:  3758.6 MH/s (57.87ms) 

Speed.Dev.#2.....:  3751.9 MH/s (58.01ms) 

Speed.Dev.#3.....:  3803.6 MH/s (57.19ms) 

Speed.Dev.#4.....:  3772.9 MH/s (57.65ms) 

Speed.Dev.#5.....:  3763.3 MH/s (57.82ms) 

Speed.Dev.#6.....:  3796.4 MH/s (57.30ms) 

Speed.Dev.#7.....:  3761.3 MH/s (57.83ms) 

Speed.Dev.#8.....:  3775.4 MH/s (57.65ms) 

Speed.Dev.#*.....: 30183.4 MH/s 

 

Hash type: NTLM 

Speed.Dev.#1.....:  8089.8 MH/s (53.88ms) 

Speed.Dev.#2.....:  8196.5 MH/s (53.18ms) 

Speed.Dev.#3.....:  8123.2 MH/s (53.66ms) 

Speed.Dev.#4.....:  8549.1 MH/s (50.99ms) 

Speed.Dev.#5.....:  7940.4 MH/s (54.90ms) 

Speed.Dev.#6.....:  8424.6 MH/s (51.74ms) 

Speed.Dev.#7.....:  7883.6 MH/s (55.29ms) 

Speed.Dev.#8.....:  8519.3 MH/s (51.16ms) 

Speed.Dev.#*.....: 65726.4 MH/s 
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Hash type: MS-AzureSync PBKDF2-HMAC-SHA256 

Speed.Dev.#1.....:  2724.5 kH/s (74.28ms) 

Speed.Dev.#2.....:  2810.0 kH/s (71.90ms) 

Speed.Dev.#3.....:  2750.2 kH/s (73.44ms) 

Speed.Dev.#4.....:  2882.1 kH/s (69.83ms) 

Speed.Dev.#5.....:  2704.5 kH/s (74.85ms) 

Speed.Dev.#6.....:  2882.5 kH/s (69.99ms) 

Speed.Dev.#7.....:  2669.8 kH/s (75.84ms) 

Speed.Dev.#8.....:  2869.0 kH/s (70.31ms) 

Speed.Dev.#*.....: 22292.8 kH/s 

 

Hash type: descrypt, DES(Unix), Traditional DES 

Speed.Dev.#1.....:   176.1 MH/s (77.25ms) 

Speed.Dev.#2.....:   175.5 MH/s (77.50ms) 

Speed.Dev.#3.....:   176.1 MH/s (77.24ms) 

Speed.Dev.#4.....:   175.9 MH/s (77.27ms) 

Speed.Dev.#5.....:   175.3 MH/s (77.59ms) 

Speed.Dev.#6.....:   176.8 MH/s (76.91ms) 

Speed.Dev.#7.....:   175.0 MH/s (77.71ms) 

Speed.Dev.#8.....:   175.8 MH/s (77.34ms) 

Speed.Dev.#*.....:  1406.5 MH/s 
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Hash type: BSDiCrypt, Extended DES 

Speed.Dev.#1.....:   519.8 kH/s (67.84ms) 

Speed.Dev.#2.....:   524.3 kH/s (67.25ms) 

Speed.Dev.#3.....:   524.9 kH/s (67.17ms) 

Speed.Dev.#4.....:   522.2 kH/s (67.52ms) 

Speed.Dev.#5.....:   516.6 kH/s (68.26ms) 

Speed.Dev.#6.....:   525.7 kH/s (67.07ms) 

Speed.Dev.#7.....:   503.2 kH/s (70.09ms) 

Speed.Dev.#8.....:   524.2 kH/s (67.27ms) 

Speed.Dev.#*.....:  4161.0 kH/s 

 

Hash type: md5crypt, MD5(Unix), FreeBSD MD5, Cisco-IOS MD5 

Speed.Dev.#1.....:  2660.3 kH/s (59.16ms) 

Speed.Dev.#2.....:  2578.8 kH/s (61.05ms) 

Speed.Dev.#3.....:  2601.5 kH/s (60.52ms) 

Speed.Dev.#4.....:  2650.6 kH/s (59.39ms) 

Speed.Dev.#5.....:  2469.2 kH/s (63.78ms) 

Speed.Dev.#6.....:  2608.1 kH/s (60.35ms) 

Speed.Dev.#7.....:  2453.8 kH/s (64.19ms) 

Speed.Dev.#8.....:  2624.1 kH/s (60.00ms) 

Speed.Dev.#*.....: 20646.5 kH/s 
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Hash type: bcrypt, Blowfish(OpenBSD) 

Speed.Dev.#1.....:     1796 H/s (26.05ms) 

Speed.Dev.#2.....:     1789 H/s (26.16ms) 

Speed.Dev.#3.....:     1817 H/s (25.75ms) 

Speed.Dev.#4.....:     1794 H/s (26.08ms) 

Speed.Dev.#5.....:     1814 H/s (25.79ms) 

Speed.Dev.#6.....:     1815 H/s (25.79ms) 

Speed.Dev.#7.....:     1802 H/s (25.97ms) 

Speed.Dev.#8.....:     1812 H/s (25.83ms) 

Speed.Dev.#*.....:    14439 H/s 

 

Hash type: sha256crypt, SHA256(Unix) 

Speed.Dev.#1.....:   106.0 kH/s (50.66ms) 

Speed.Dev.#2.....:   105.3 kH/s (51.00ms) 

Speed.Dev.#3.....:   105.5 kH/s (50.86ms) 

Speed.Dev.#4.....:   108.5 kH/s (49.48ms) 

Speed.Dev.#5.....:   102.5 kH/s (52.35ms) 

Speed.Dev.#6.....:   108.0 kH/s (49.73ms) 

Speed.Dev.#7.....:   103.4 kH/s (51.89ms) 

Speed.Dev.#8.....:   109.1 kH/s (49.22ms) 

Speed.Dev.#*.....:   848.3 kH/s 
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Hash type: sha512crypt, SHA512(Unix) 

Speed.Dev.#1.....:    35327 H/s (76.44ms) 

Speed.Dev.#2.....:    33959 H/s (79.48ms) 

Speed.Dev.#3.....:    34833 H/s (77.47ms) 

Speed.Dev.#4.....:    35590 H/s (75.89ms) 

Speed.Dev.#5.....:    33576 H/s (80.39ms) 

Speed.Dev.#6.....:    34901 H/s (77.33ms) 

Speed.Dev.#7.....:    34829 H/s (77.48ms) 

Speed.Dev.#8.....:    35363 H/s (76.38ms) 

Speed.Dev.#*.....:   278.4 kH/s 

Speed.Dev.#7.....:   689.5 MH/s (79.05ms) 

Speed.Dev.#8.....:   743.6 MH/s (73.29ms) 

Speed.Dev.#*.....:  5727.3 MH/s 
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CPU Test Machine Benchmark Results: 

root@ip-172-31-43-196 hashcat-3.30]# ./hashcat64.bin -b 

hashcat (v3.30) starting in benchmark mode... 

OpenCL Platform #1: Intel(R) Corporation 

======================================== 

Device #1:Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz, 2047/14622 MB allocatable, 

8MCU . 

 

Hash type: MD4 

Speed.Dev.#1.....:   391.4 MH/s (21.37ms) 

 

Hash type: MD5 

Speed.Dev.#1.....:   219.2 MH/s (38.22ms) 

 

Hash type: Half MD5 

Speed.Dev.#1.....:   143.6 MH/s (58.35ms) 

 

Hash type: SHA1 

Speed.Dev.#1.....:   120.4 MH/s (69.60ms) 

 

Hash type: SHA256 

Speed.Dev.#1.....: 48370.0 kH/s (86.66ms) 
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Hash type: SHA384 

Speed.Dev.#1.....: 12959.8 kH/s (80.85ms) 

 

Hash type: SHA512 

Speed.Dev.#1.....: 12833.2 kH/s (81.65ms) 

 

Hash type: SHA-3(Keccak) 

Speed.Dev.#1.....: 11684.9 kH/s (89.68ms) 

 

Hash type: SipHash 

Speed.Dev.#1.....:   244.8 MH/s (34.21ms) 

 

Hash type: RipeMD160 

Speed.Dev.#1.....: 57361.1 kH/s (73.06ms) 

 

Hash type: Whirlpool 

Speed.Dev.#1.....:  3201.5 kH/s (81.50ms) 

 

Hash type: GOST R 34.11-94 

Speed.Dev.#1.....:  3857.5 kH/s (67.63ms) 

 

Hash type: GOST R 34.11-2012 (Streebog) 256-bit 

Speed.Dev.#1.....:  1378.2 kH/s (95.05ms) 
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Hash type: GOST R 34.11-2012 (Streebog) 512-bit 

Speed.Dev.#1.....:  1378.1 kH/s (94.96ms) 

 

Hash type: DES (PT = $salt, key = $pass) 

Speed.Dev.#1.....: 25573.2 kH/s (81.79ms) 

 

Hash type: 3DES (PT = $salt, key = $pass) 

Speed.Dev.#1.....:  6376.6 kH/s (82.14ms) 

 

Hash type: phpass, MD5(Wordpress), MD5(phpBB3), MD5(Joomla) 

Speed.Dev.#1.....:    74729 H/s (54.44ms) 

 

Hash type: scrypt 

Speed.Dev.#1.....:        0 H/s (2.43ms) 

 

Hash type: PBKDF2-HMAC-MD5 

Speed.Dev.#1.....:    75724 H/s (53.31ms) 

 

Hash type: PBKDF2-HMAC-SHA1 

Speed.Dev.#1.....:    45658 H/s (88.66ms) 

 

Hash type: PBKDF2-HMAC-SHA256 

Speed.Dev.#1.....:    17934 H/s (37.64ms) 
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Hash type: PBKDF2-HMAC-SHA512 

Speed.Dev.#1.....:     6482 H/s (78.62ms) 

 

Hash type: Skype 

Speed.Dev.#1.....:   154.2 MH/s (54.36ms) 

 

Hash type: WPA/WPA2 

Speed.Dev.#1.....:     5624 H/s (90.53ms) 

 

Hash type: IKE-PSK MD5 

Speed.Dev.#1.....: 18647.3 kH/s (56.17ms) 

 

Hash type: IKE-PSK SHA1 

Speed.Dev.#1.....: 11367.2 kH/s (92.18ms) 

 

Hash type: NetNTLMv1-VANILLA / NetNTLMv1+ESS 

Speed.Dev.#1.....:   238.0 MH/s (35.19ms) 

 

Hash type: NetNTLMv2 

Speed.Dev.#1.....: 17148.7 kH/s (61.09ms) 

 

Hash type: IPMI2 RAKP HMAC-SHA1 

Speed.Dev.#1.....: 22893.4 kH/s (91.55ms) 



62 

 

 
 

Hash type: Kerberos 5 AS-REQ Pre-Authetype 23 

Speed.Dev.#1.....:  3234.9 kH/s (80.00ms) 

 

Hash type: Kerberos 5 TGS-REP etype 23 

Speed.Dev.#1.....:  3306.6 kH/s (78.26ms) 

 

Hash type: DNSSEC (NSEC3) 

Speed.Dev.#1.....: 43621.6 kH/s (96.09ms) 

 

Hash type: SHA-1(Base64), nsldap, Netscape LDAP SHA 

Speed.Dev.#1.....:   120.2 MH/s (69.75ms) 

 

Hash type: SSHA-1(Base64), nsldaps, Netscape LDAP SSHA 

Speed.Dev.#1.....:   120.3 MH/s (69.70ms) 

 

Hash type: SSHA-512(Base64), LDAP {SSHA512} 

Speed.Dev.#1.....: 12853.2 kH/s (81.52ms) 

 

Hash type: LM 

Speed.Dev.#1.....: 25799.0 kH/s (81.07ms) 

 

Hash type: NTLM 

Speed.Dev.#1.....:   402.1 MH/s (20.81ms) 
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Hash type: Domain Cached Credentials (DCC), MS-Cache 

Speed.Dev.#1.....:   125.0 MH/s (67.04ms) 

 

Hash type: Domain Cached Credentials 2 (DCC2), MS-Cache 2 

Speed.Dev.#1.....:     4526 H/s (90.33ms) 

 

Hash type: MS-AzureSync PBKDF2-HMAC-SHA256 

Speed.Dev.#1.....:    50307 H/s (52.63ms) 

 

Hash type: descrypt, DES(Unix), Traditional DES 

Speed.Dev.#1.....:  1055.6 kH/s (496.44ms) 

 

Hash type: BSDiCrypt, Extended DES 

Speed.Dev.#1.....:    15896 H/s (85.55ms) 

 

Hash type: md5crypt, MD5(Unix), FreeBSD MD5, Cisco-IOS MD5 

Speed.Dev.#1.....:    35248 H/s (57.66ms) 

 

Hash type: bcrypt, Blowfish(OpenBSD) 

Speed.Dev.#1.....:     2448 H/s (51.08ms) 

 

Hash type: sha256crypt, SHA256(Unix) 

Speed.Dev.#1.....:     1805 H/s (56.40ms) 



64 

 

 
 

Hash type: sha512crypt, SHA512(Unix) 

Speed.Dev.#1.....:     1702 H/s (59.90ms) 

Speed.Dev.#1.....:        0 H/s (39.28ms) 

 

Hash rate denominations 

1 kH/s is 1,000 (one thousand) hashes per second 

1 MH/s is 1,000,000 (one million) hashes per second. 

1 GH/s is 1,000,000,000 (one billion) hashes per second. 

1 TH/s is 1,000,000,000,000 (one trillion) hashes per second. 

1 PH/s is 1,000,000,000,000,000 (one quadrillion) hashes per second. 

1 EH/s is 1,000,000,000,000,000,000 (one quintillion) hashes per second. 

Conversions 

1 MH/s = 1,000 kH/s 

1 GH/s = 1,000 MH/s = 1,000,000 kH/s 

1 TH/s = 1,000 GH/s = 1,000,000 MH/s = 1,000,000,000 kH/s 
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3.7 Testing Environment Diagram 

The testing Environment of this research is shown below: 

 

Figure 7. Testing Environment 

 

3.8 Wordlist Selected 

For the test, different filters and combination of uppercase letters, lowercase letters,digits, 

special characters will be used.  The test will be done using thehybrid attack at first before 

applying brute force attacks where every combination of the characters will be tried. 
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3.9 Sample Password Hashed Dump File 

In order to conduct the test some common password upto 8 characters in length characters’ 

length and will hash it with MD5 and SHA1 as well as more cryptographically strong hashing 

algorithm bcrypt. The following sample password hash has been selected  

Sample password list: 

Password 

HELLOO 

MYSECRET 

test1234 

password! 

You9can! 

./?';,<> 

Mysecret 

 

TheMD5 and SHA1 hash of the generated password from the above is generated by the following 

code: 
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MD5 Hash: 

dc647eb65e6711e155375218212b3964 

16454bd041c46012e31778eb94b8111a 

958152288f2d2303ae045cffc43a02cd 

16d7a4fca7442dda3ad93c9a726597e4 

49f24c0c152b2375431210f9443d176f 

b64b0e1165a77bd90a1673469f1af0e1 

7185ad7f0851780a2db24edc8347b12a 

06c219e5bc8378f3a8a3f83b4b7e4649 

 

SHA256 Hash: 

e7cf3ef4f17c3999a94f2c6f612e8a888e5b1026878e4e19398b23bd38ec221a 

2d32d2db26a9a8e8b3a69a5739a17981a5a064a5c3037a8d3891ab3e41f57246 

3fcdbc4a0ed38df8d4bd234e2c8ad3b2623fa5265f31763d1e91a848471a8a9b 

937e8d5fbb48bd4949536cd65b8d35c426b80d2f830c5c308e2cdec422ae2244 

c075349b9b6f6b3e41b34e4e71ac22a685102b0b2246c5f84d67c5eed3ad39fb 

4824033be89e919a06ac33255b06761f706edc1ac8fc37b86574892ab7c3248d 

9070906f306d5d34c301b9f4cda9f71c2a19543ccea44b6b08c18b3d76941936 

652c7dc687d98c9889304ed2e408c74b611e86a40caa51c4b43f1dd5913c5cd0 
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We also generateabcrypt hash of the following password with the following code. 

Sample Password: 

HELLO 

1!Su 

Pass 

pass 

1234 

:/?< 

 

import bcrypt 

password = b"Pass" 

# Hash a password for the first time, with a certain number of rounds 

hashed = bcrypt.hashpw(password, bcrypt.gensalt(14)) 

print(hashed) 

b'$2b$14$4tWHOXsyYtuVD8CbzjMUbeNqfMKGKiECODTkQ4Zcf11wJ6nJAD7XW' 

 

Here the bcrypt hash of sample password “Pass” was created with 14 round (2^14=16384) of 

generation via gensalt() function. For the sake of our test, we will be keeping it to minimal, less 

than 10. 

The Resulting generated bcrypt hash of the above sample password was: 

$2y$10$vHvY3cA252u/68KesxmOg.WIjkWOHQcFqXc.KRSV4aLn/pIC1D5ZC 

$2y$10$eVaCxfaaMDXKS5LTu1uX2O6k3/lUpGE83luvxfoGdkM6HAMVWirvW 

$2y$10$K8nQaEFpiZkSdkjKlXfjveu44pTKD/lvpOU2Cu/8INh2vPDUgS29e 

$2y$10$wacXM0HGg/26pzRGvIEE4OMg4jGIHjhptHKMdowmdr4zpTyu0triC 

$2y$10$FwaS9uiu7mkCIJ.d9fCYI.PsF8qY5I1ZdrbJ0qBBcHdDLhours3gxPLq 

$2y$10$kjGTFQVsc7eislYriw0ibu1GZi1rUod0unnpY0rT9eeSIYGBJRiui 
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Chapter 4: Analyzing Results 

4.1 Introduction 

In this section, we will analyze the result performed in the previous test scenario and all 

the test results are included in the appendix section at the end of this paper. We end this section 

with recommendations based on analyzing the test result. 

 

4.2 Test Results 

We ran the CPU crack and GPU cracking on the sample MD5, SHA-256, and Bcrypt hash 

dump. We applied thedifferent filter as follows: 

u= uppercase letters only – total 26 characters 

l= lowercase letter only – total 26 characters 

ul= uppercase and lowercase – total 52 characters 

d= digits only – total 10 digits 

s= special characters only – total 33 characters 

ls/us= lowercase/uppercase with special characters – total 59 characters  

usld= lowercase, uppercase, special character, and digits- total 95 characters 

We also conducted an experimental run where we applied fixed characters in certain positions to 

observe any improvements in timing. All our CPU/GPU/Experimental test results are shown 

below in the following tables. 
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In the Table -4 as the result is as follows: 

• Using uppercase only character (u) it takes 2sec for 6-character long password, HELLO 

to crack where 8-character long password ‘MYSECRET’ takes 12 min and it finishes 

checking all the combination of 8 characters roughly at thesame time too. 

• Using lowercase only character (l) it takes 12 min to crack 8-character long password 

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly at 

thesame time too. 

• Using acombination of uppercase and lowercase character (ul) it takes 1 hour 12 min to 

finish cracking 8 char long ‘Password’ as well as finishes checking all the combination 

of 8 characters roughly in thesame time too. 

• Using lowercase and digits (ld) it takes 3 min to crack 7 char long ‘tes1234’ password 

while it takes 2hours 30 min to finish checking all the combination ofthe 8 char field. 

• Using lowercase and aspecialcharacter(ls) it takes it takes 1hours 13 min to find the 7-

char password ‘Passwor!’ while it will take approximately 5days and 1hours to finish 

checking all the combination.  

The way we estimated 8 char long password cracking time with lowercase and special 

characters are as follows: 

✓ Total characters: lowercase (26) and special characters (33) =33+26=59 

✓ Total combination possible 598=1.4683044e+14 

✓ MD5 CPU cracking speed= 312MHS = 312000000H/s 
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✓ Cracking time in days= 

1.4683044e+14/312000000=470610.376937s/3600=130.725104705hours/24

=5days 1hours 

• Using the special characters only it takes 1hours 12 min to finish cracking 8 char long 

password ‘./?!’;<>’ while it takes 1hours25min to finish checking all the special 

character combination of the8char field. 

• At last we try all the lowercase, uppercase, special characters and digits(usld) for all the 

8 filed of the password and though we could not find out 8 char long password 

‘You9can!’ we did find to estimate how long it will take to look up all the (USLD) 

combination of each 8-char filed with our CPU machine with thefollowing calculation: 

✓ Total characters: lowercase (26) and special characters (33), uppercase (26) 

and digits (10) =33+26+26+10=95 

✓ Total combination possible 〖95〗^8= 6.6342043e+15 

✓ MD5 CPU cracking speed= 312MHS = 312000000H/s 

✓ Cracking time in days= 6.6342043e+15/ 312000000H/s  

=21263475.3618s/3600=5906.52093384hours/24=246days 
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Table 5 

MD5 cracking performance With GPU machine 
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In the Table -5 as the result is as follows: 

• Using uppercase only character (u) it takes 1sec from 6-character long password, HELLO 

to crack where 8-character long password ‘MYSECRET’ takes 10 Sec and it finishes 

checking all the combination of 8 characters roughly in 30 secs.  

• Using lowercase only character (l) its takes 10 secs to crack 8-character long password 

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in 30 

secs. 

• Using acombination of uppercase and lowercase character (ul) it takes 12 min to finish 

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8 

characters roughly in thesame time too. 

• Using lowercase and digits (ld) it takes 2secs to crack 7 char long ‘tes1234’ password 

while it takes 2 mins to finish checking all the combination of the 8 character field. 

• Using lowercase and aspecialcharacter(ls) it takes it takes 2 min to find the 7-char 

password ‘Passwor!’ while it will take approximately 2hours to finish checking all the 

combination.  

• Using the special characters only it takes 7sec to finish cracking 8 char long password 

‘./?!’;<>’ while it takes 1min 28 sec to finish checking all the special character 

combination of the8char field. 

• At last, we try all the lowercase, uppercase, special characters and digits(usld) for all the 

8 field of the password and for the 8-char long password (. 

/?!’;<>,MYSECRET,You9can!) . We could not finish the all the combination of 8 chars 

but we estimated it will take around 4 days to finish checking all the possible combination 
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of 8 -char password using our GPU machine. The way we estimated the cracking time as 

follows: 

✓ Total characters: lowercase (26) and special characters (33), uppercase (26) 

and digits (10) =33+26+26+10=95 

✓ Total combination possible 〖95〗^8= 6.6342043e+15 

✓ MD5 GPU cracking speed= 21117MHS = 21117000000H/s 

✓ Cracking time in days= 6.6342043e+15/ 21117000000H/s 

=314164.14798s/3600=87.2678188833hours/24=4days 
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Table 6 

 SHA-256 cracking performance With CPU machine 
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In the Table -6 as the result is as follows: 

• Using uppercase only character (u) it takes 15sec for 6-character long password HELLO 

to crack where 8-character long password ‘MYSECRET’ takes 20 mins and it finishes 

checking all the combination of 8 characters roughly in 38mins. 

• Using lowercase only character (l) it takes 26 min to crack 8-character long password 

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in 

38mins. 

• Using a combination of uppercase and lowercase character (ul) it takes 3 hours to finish 

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8 

characterswill take estimated 7days 20 hours to finish.  

The way we estimated the cracking time as follows: 

✓ Total characters: lowercase (26) , uppercase (26) =26+26=52 

✓ Total combination possible 〖52〗^8= 5.3459729e+13 

✓ SHA-256 CPU cracking speed,88954KH/s=88954000h/s 

✓ Cracking time in days= 

5.3459729e+13/88954000=600981.726864s/3600=166.939368573hours/24=

7days. 

• Using lowercase and digits (ld) it takes 15 min to crack 7 char long ‘tes1234’ password 

while it takes 9hours 25 min to finish checking all the combination ofthe 8 char field. 

• Using lowercase and specialcharacter(ls) it takes it takes 15 min to find the 7-char 

password ‘Passwor!’ while it will take 7hours 50 min to check 7 charsfield. 
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• Using the special characters only it takes 20 min to finish cracking 8 char long passwords 

‘./?!’;<>’ while it takes 9hours to finish checking all the special character combination 

of8char field. 

• At last we try all the lowercase, uppercase, special characters and digits(usld) for all the 

8 field of the password and though we could not find out 8 char long password ‘You9can!’ 

we did find to estimate how long it will take to look up all the (USLD) combination of 

each 7 char and 8-char filed with our CPU machine with following calculation 

Time Estimation for 7-char password 

✓ Total characters: lowercase (26) and special characters (33), uppercase (26) 

and digits (10) =33+26+26+10=95 

✓ Total combination possible 〖95〗^7= 6.983373e+13 

✓ SHA-256 CPU cracking speed, 88954KH/s=88954000h/s 

✓ Cracking time in days= 6. 983373e+13/ 88954000h 

/s=785054.405753s/3600=218.070668265/24=9days 

Time Estimation for 8-char password 

✓ Total characters: lowercase (26) and special characters (33), uppercase (26) 

and digits (10) =33+26+26+10=95 

✓ Total combination possible 〖95〗^8= 6.6342043e+15 

✓ SHA-256 CPU cracking speed,88954KH/s=88954000h/s 

✓ Cracking time in days= 6.6342043e+15/ 88954000h /s =74580168.5466 

s/3600=20716.7134852 hours/24=863days 
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Table 7 

 SHA-256 cracking performance With GPU machine 
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In the Table -7 as the result is as follows: 

• Using uppercase only character (u) to crack 8-character long password ‘MYSECRET’ 

takes 1 min and it finishes checking all the combination of 8 characters roughly in 1min 

6secs. 

• Using lowercase only character (l) it takes 1 min to crack 8-character long password 

‘mysecret’ as well as finishes checking all the combination of 8 characters roughly in 

1min 6secs. 

• Using a combination of uppercase and lowercase character (ul) it takes 1 min to finish 

cracking 8 char long ‘Password’ as well as finishes checking all the combination of 8 

characters roughly in 2hours 87min. 

• Using lowercase and digits (ld) it takes 1min to crack 7 char long ‘tes1234’ password and 

1 min 22sec for 8-char password ‘mysecret’, while it takes 10 min to finish checking all 

the combination ofthe 8 char field. 

• Using lowercase and specialcharacter(ls) it takes it takes 8 min to find the 7-char 

password ‘Passwor!’ while it will take approximately 8hours to finish checking all the 

combination.  

• Using the special characters only it takes 2 min to finish cracking 8 char long password 

‘./?!’;<>’ while it takes 5min to finish checking all the special character combination 

of8char field. 

• At last we try all the lowercase, uppercase, special characters and digits(usld). It took 

around 3 hours to finish checking 7 char length password while for all the 8 field of the 

password and for the 8-char long password (. /?!’;<>,MYSECRET,You9can!).Though 
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we could not finish 8 char password, but we estimated it will take around 10days and 10 

hours to finish checking all the combination of the 8char field. The estimated time is 

calculated as follows: 

✓ Time Estimation for 8-char password 

✓ Total characters: lowercase (26) and special characters (33), uppercase (26) 

and digits (10) =33+26+26+10=95 

✓ Total combination possible 〖95〗^8= 6.6342043e+15 

✓ SHA-256 GPU cracking speed, 5325MH/s=5325000000h/s 

✓ Cracking time in days= 6.6342043e+15/5325000000h/s= 

1245859.96486/3600=346.0722hours/24=14days  
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Table 8 

Bcrypt cracking performance With CPU machine 
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In the Table -8 as the result is as follows: 

• Using uppercase only character (u) it takes 21min to go through all combinations of 3 

char length, whereas it takes 8hours to finish 4 char long. 

• Using uppercase and lowercase (ul) it takes 2 hours 21 min to finish 3 char length 

passwords. We could not finish cracking 4 char length passwords ‘Pass’ as we 

estimated it will take 3dys 17hours to finish checking all the combination. The 

estimation is calculated as follows: 

Time Estimation for 4-char password 

✓ Total characters: lowercase (26), uppercase (26) =52 

✓ Total combination possible 〖52〗^4= 7311616 

✓ Bcrypt CPU machine cracking speed=90h/s 

✓ Cracking time in days= 

7311616/90=81240.1777778s/3600=2031.004hr/24=22hours 50 mins 

• Using lowercase only character (l) its takes 3hours 20 min to crack 4-character long 

password ‘Pass’ and to finish all the combination of 4 chars it takes 8hour where for 3 

chars it takes 2hour. 

• Using only digits(d) it takes 9min to crack 4 char password ‘1234’ as well as roughly 

going through all the combination of 4-char field. 

• Using only special characters(s) it takes 36 mins to finish checking all the combination 

of 3 char length password whereas it found 4 char length password ‘,/?<(‘ in 3 hours 

while taking 4 hours to go through all the combination of the 4 char length password. 
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• At last we try all the lowercase, uppercase, special characters and digits(usld). It takes 

15hours 4 min to finish going through all the combination of the 3-char length. We 

could not finish checking for our 4 char length password ‘1!Su’ as we estimated it will 

take 10 days 10hours  to check all the possible combinations using following formulas 

✓ Time Estimation for 4-char password 

✓ Total characters: lowercase (26), uppercase (26), Special characters(33), 

digits(10) =95 

✓ Total combination possible 〖95〗^4= 81450625 

✓ Bcrypt CPU machine cracking speed=90h/s 

✓ Cracking time in 

days=81450625/90=905006.944444/3600s=251.390817901hr =10days 
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Table 9 

Bcrypt cracking performance With GPU machine 
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In the Table -9 as the result is as follows: 

• Using uppercase only character (u) it takes1hour to go through all combinations of4 char 

length, whereas it takes 2hours to finish 5 char length passwords. It found our 5-char 

length password ‘HELLO’ in 1 hour 20 mins. 

• Using uppercase and lowercase (ul) it takes 35 mins to crack 4 char length password 

‘Pass’ .To go through all the combination of 3 char length passwords it takes 23 mins 

while to 4 char length passwords it takes 4 hours 30 mins only. 

• Using lowercase only character (l) it takes 1hour to crack 4-character long password 

‘Pass’ and to finish all the combination of 4 chars it takes 1hour 20 mins only. 

• Using only digits(d) it takes 6min to crack 4 char password ‘1234’. It finished checking 

all the combination of 5 char length passwords in about 10 mins. 

• Using only special characters(s) it took 1 hour 20 mins to crack 4 char password ‘1!Su’ 

and going through all the combination in roughly about 2 hours. 

• At last we try all the lowercase, uppercase, special characters and digits(usld). It takes 

2hours 40 mins to finish going through all the combination of the 3-char length. We could 

not finish checking for our 4 char length password ‘1!Su’ as we estimated it will take 1 

day 19hours  to check all the possible combinations using following formulas 

✓ Time Estimation for 4-char password 

✓ Total characters: lowercase (26), uppercase (26), Special characters(33), 

digits(10) =95 

✓ Total combination possible 〖95〗^4= 81450625 

✓ Bcrypt CPU machine cracking speed=520h/s 
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✓ Cracking time in days=81450625/520=156635.817308 

/3600s=43.5099492521 hr =1day 19hours. 

 

4.3 Experimental Run 

• MD5 GPU with 1st character set as uppercase (U) and last character set as special 

characters(s) while all other character is combination of lowercase (l), uppercase (u), 

special character(s), digits (d) takes only 2mins to finish whole 8-character set.  

• MD5 GPU with last character fixed as special characters(s) and trying all other 

combination (lowercase (l), uppercase (u), special character(s), digits (d)) in first 7 

character takes only 8hours to finish. 

• MD5 GPU trying all first 7 char as lowercase(l) and special character(s) whole last 

character fixed as special character(s) makes the cracking time of 8-character set to only 

1min 

• SHA-256 GPU machine cracking 8 characters with combination of lowercase (l), 

uppercase (u), special character(s), digits (d) in 2nd to 7th character while making the 1st 

character fixed for special characters(s) and 8th character fixed for uppercase (u) brings 

the cracking time to only 6mins while just making the 1st character fixed for uppercase(s) 

letters makes the cracking time around 10hours. 

 

4.4 Analyzing Result 

• Using CPU instances with the combination of characters like uppercase, lowercase, 

special characters and digits a password length of 8 using MD5 hash takes 246 days to 

decrypt while using GPU it takes only 3 days. 
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• Similarly,the same password length using more secured SHA-256 hashing algorithm 

takes 863 days for our CPU machine to crack where with our GPU its only 10 days. 

• Using more secured and computationally intensive Bcrypt hashing algorithm a password 

length of 4 characters only with a combination of characters like uppercase, lowercase, 

special characters and digits it takes our CPU instances 84 days to crack whereas with 

our GPU only 12 days. 

• GPU instancing took only 5 min to crack SHA-256 password length of 8 with special 

characters only, whereas it took almost 3hours to crack password length of 4 with Bcrypt 

hashing algorithm 

4.5 Recommendation 

• Use password random generator to make a strong Radom password. One such sample 

random password generator script is given below: 

Alphanumeric Password Generator Script 

import random 

import string 

str = [] 

chars = string.ascii_letters + string.punctuation  + string.digits 

num = int(input('How long do you want the string to be?  ')) 

for k in range(1, num+1): 

 str.append(random.choice(chars)) 

str = "".join(str) 

print (str) 
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• Never reuse the same password for different accounts. 

• As a security administrator or developer try to use a modern hashing algorithm like Bcrypt 

which is slow in computing using GPU or CPU. 

• Never store password without hashing.  

• Always add salt to the hashed password for added security. 

• Password length should be at least 10 characters in length and use combination of 

characters like uppercase, lowercase, special characters and digits and never use 

dictionary words. 

• Avoid using words from dictionary which can be easily brute-force by dictionary attack. 

 

Chapter 5: Conclusion 

5.1 Introduction 

In the last section of our paper, we provide the timeline of our project as well as future 

work direction and closing remarks of our paper. 

 

5.2 Timeline 

Here is the timeline of my tasks that will be undertakenthoursough my research: 
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Figure 8. Project Timeline 

5.3 Future Work 

In the future, we plan to test whether adding salt (random number) with MD5 and SHA-

256 increase the cracking time it takes with GPU or not. Also we didn’t test the effect of fixed 

certain character types in the password field with Bcrypt hashing algorithm like we did in section 

3.11 with SHA-256 and MD5 hash. So, we would like to give it a try with Bcrypt and compare 

results with SHA-256 and MD5. 

 

5.4 Conclusion 
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In the end the aim of our paper was to compare the effectiveness of a GPU based, password 

cracking over the CPU as well the weakness in contemporary password hashing algorithm used 

(SHA-256, MD5) in today and why we should use a modern hashing algorithm like Bcrypt over 

SHA-256 and MD5 and why should use more complex passwords. We also came into conclusion 

that using salt with a hashed password add more computational cost to crack even with Highly 

capable GPU. We also presented a test bed scenario where a normal user can leverage the power 

of cloud computing to crack relatively complex password relatively easily. 
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