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Abstract 

 

Distributed systems normally come with a set of challenges: consistency of data, 

coordination/synchronization for tasks, failures due to network partitions and so on. Consensus 

algorithms are a solution to some of these problems especially for coordination and 

synchronization challenges. These algorithms are normally tied to a consistency model which 

can fall between two extremes: very strong guarantees on consistency and very weak guarantees 

on consistency. Two consensus algorithms, RAFT and CRDT are compared using a message 

queueing system that can form the backbone of a distributed application. 
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Chapter 1: Introduction 

1.1 Overview of the Current Research 

For a software system to be used by a large cohort of users, in other words scalable, it has 

to be composed of different parts. This extends the life of the software system as the different 

parts can be changed without devastating side effects to adapt to the varying load the software 

system would be under. These different parts must work in the system in such a manner that it 

appears to any user that they are still one monolithic application. These different parts must work 

in a manner such that the user perceives the software system to be relatively close to 

himself/herself. In other words, it means that the system must appear to be location transparent. 

For the software system to achieve goals of scalability and location transparency, it often 

means that its different parts coordinate themselves in a relatively fast manner in such a way that 

can be perceived from the user as near instantaneous. This coordination normally happens over 

some network by the use of messages as the different parts normally reside on different systems. 

The network used or parts of it might fail causing some of the different parts of the software 

system to be unable to communicate with each other. This is called a network partition and is 

highly undesirable but commonplace in distributed systems.   

A theorem was proposed that encapsulates this problem, the CAP theorem [1]. The 

theorem can be summarized as follows: a distributed software system cannot be consistent(C), 

available (A) and have partition tolerance (P). Since most distributed systems strive to be 

partition tolerant, we are left with two permutations, CP (Consistent + Partition Tolerance) and 

AP (Availability + Partition Tolerance). CP systems prioritize consistency while AP systems 

prioritize availability. There are protocols that enable such systems. One of them is Raft [2] 

which enables a CP system while another is CRDTs [3] [4] which enables an AP system. 
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1.2 Objective 

The goal of this work is to compare a protocol used in a CP system, RAFT, against a 

protocol used in AP systems, CRDT, in the context of a distributed messaging system. The 

comparisons will be in the terms of latency and throughput as those are the characteristics on 

which a distributed messaging system is typically judged [5]. These metrics would be initially 

judged in the context of a single machine, and if there is time, comparisons using multiple 

machines would be made. 
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Chapter 2: RAFT 

2.1 Overview of RAFT 

Being a protocol used by CP systems, RAFT concerns itself with consistency. It models 

this problem as a problem of consensus. It tries to present itself as an understandable consensus 

algorithm, that is, a consensus algorithm that can be easy to implement for people developing 

highly distributed software systems. This is due to the fact that, according to [2], they struggled 

to understand the gold standard for consensus algorithms, Paxos [6] [7]. The remark [8] below 

encapsulates this point 

“The dirty little secret of the NSDI1 community is that at most five people 

really, truly understand every part of Paxos ;-).” 

RAFT is a leader-based consensus algorithm. It makes use of a single leader for all its 

decisions. The leader can change depending on circumstances: network partitions, and so on. It 

models consensus in terms of the replicated state machine architecture [9]. For a network of n 

nodes to properly handle failures, there must be at least 2f + 1 servers where f = number of 

failures. On each of the server nodes in the network, there is a state machine, a log and a 

consensus module. On each of the client nodes of this network, there is a consensus module. The 

state machine can be seen as a composition of state-encoding variables and commands that 

change those variables, thereby changing its state. The logs on the server nodes store the 

commands from the client nodes in this network, in a particular order which the state machine 

faithfully follows. It is the responsibility of the consensus module to keep the logs consistent. In 

order for the system to appear to be highly reliable, these logs are replicas of the master log on 

the leader, so the state machines at each server are processing the logs in the exact same way. 

The algorithm used by the consensus module is divided into leader election, log replication and 
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the safety component. In this paper, node and server are used interchangeably and unless 

otherwise specified, stand for the same thing. 

In a cluster of servers that use RAFT, each server at any point in time is in either of these 

states: follower, candidate or leader. The modes change based on the RPCs sent between these 

nodes. A follower is a state where a node is passive, that is, the node cannot issue requests but 

acts as a recipient for them. A candidate is a transition state where a node in a follower state 

enters into, on its way to the leader state or a where, a node in a leader state enters into, on its 

way to the follower state. A follower becomes a candidate by issuing a RequestVoteRPC on its 

way to being elected a leader. A candidate becomes a follower if it failed to become a leader. A 

leader is in charge of the cluster and is the only interface to the outside world for the cluster. All 

communication in the cluster is only between the leader and the followers and is initiated only by 

the leader. 

RAFT does not make any assumption of the state of global synchronization. To this end, 

the log is partially ordered by a value known as the term [2] which increases monotonically. The 

term can also be infinitely large. This provides some form of synchronization as each server node 

stores a version of the term on the node itself. Messages in the RPCs carry the source’s term. A 

receiving node processes a received term in two ways: 

(a) If the term received is larger than or equal to the receiving node’s own local copy, the 

receiving node overwrites its copy with the received term, and responds with a positive 

acknowledgement. 

(b) If the received term is smaller than the receiving node’s own local copy, the receiving 

node responds with a negative acknowledgement. 
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2.2 Leader Election 

RAFT has a requirement that there should be at most one leader per term. A fixed interval 

of time is chosen. This interval is used to generate arbitrary values of time. The values are also 

known as timeout values and are used in satisfying the requirement mentioned earlier. These 

values are randomly allotted to each node except the leader. The generation of timeout values 

and their subsequent allotment are implementation-dependent. After the expiry of a nodes’ 

timeout value, a new timeout value is allotted to it. The process is summarized below in      

Figure 2.1:  

 

Figure 2.1. Node timeout process (adapted from [2]) 

α is implementation-dependent and can be negative if the cluster has no leader, as a way to elect 

a leader by determining which node is the fastest to get to 0. α can be positive if the cluster 

already has a leader as a way to prevent the node from reaching 0. The nodes in the cluster get 

periodic heartbeats from the leader. If the leader is down for a period of time known as the 
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election timeout, an election for a new leader is started. The leader election algorithm, based on 

the assumption that there is no current leader for the cluster, follows these steps [2]: 

(a) If the system is starting up for the first time, all the nodes starts out as followers. If 

any part of this system fails, that part also starts up as followers upon recovery. 

(b) If a node times out before the rest of the nodes in the system, it moves from the 

follower state into the candidate state. This node also increments its term. This node sends out 

RequestVoteRPCs with its term to every node in the cluster including itself. Figure 2.2 illustrates 

this process. Here each node’s reply (vote) is positive. 

 

Figure 2.2. Successful election (Normal mode) (adapted from [2]) 

There are times where more than one node timeout at exactly the same time. In this state, the 

system cannot make progress. This state is called a split move. To resolve this state [2]: 
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(I) another set of timeout values are immediately calculated and allotted to the affected 

nodes. This increases the possibility that timeouts would not occur at the same time in the near 

future. 

(II) The timeout values for the other nodes in the system are still decreasing even as the 

system is in an impasse. At some point, one of the nodes in the system would timeout first and 

jump to a candidate state or if two or more expire at the same time again, the steps to resolve this 

state is repeated, that is (I)-(II). 

Figure 2.3 shows this process. Here each node’s reply (vote) is positive.  

 

Figure 2.3. Successful election (Split Vote mode) (adapted from [2])  

(c) A node will vote for at most one node to be the leader per term. The only reason a 

node is unable to vote for a candidate is if there is a network partition or if the node itself has 
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failed. If the node in the candidate state from (b) gets all votes back from a majority of the other 

nodes in the cluster, the node moves into the leader state and begins to send heartbeats 

(AppendEntriesRPCs with no log entries) to the other server nodes in the system. These 

AppendEntries also discourage any would-be nodes from starting its own election process.  

(d) Network partitions can occur, where segments of the network are disconnected from 

the other segments of the network. Consider a scenario where there is a network partition of a 

system that is composed of five nodes (Node A- E), which divides the system as such; Node A-C 

in one partition and Node D-E in the other partition: 

     (i) Node A and Node D timeout and increment their terms. Node A becomes the leader 

in its partition after receiving votes from B and C, which is a majority of the votes needed (3 out 

of 5). Node D cannot become leader because it does not receive a strict majority (2 out of 5).  

     (ii) The partition is removed. Node D timeouts and increments its term and sends out 

RequestVoteRPCs to all the nodes in the system. They all send their votes back and Node D is 

elected leader. Note A reverts back to a follower state.  

2.3 Log Replication 

The log on any server can be viewed as a contiguous collection of entries. Each entry is a 

combination of a command from a client and the term number of the current leader. There are 

indexes associated with a log: a commit index for committed entries and a log index for the 

number of entries in the log. The leader maintains an extra index for every server in the cluster, a 

nextIndex. The difference between the nextIndex and the log index is 1. AppendEntriesRFCs that 

have log entries with their associated log index, are used by the leader to replicate its log among 

the nodes in the system. Indexes are always incremented by 1. This replication process described 

in detail below [2] can only be done with a strict majority of nodes. 
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(a) The leader adds a new entry in its log and increments its log index. 

(b) Two log entries are sent out from the leader’s log to the follower nodes (one, the log 

entry of the current log index, logCurrent and the other, the preceding log entry, logBefore). 

(c) Upon receipt of message, the follower nodes check for the following conditions: 

     - the current term, which is the highest term of the node’s log entries must match the 

received message’s term, which is the highest term from the log entries(logCurrent and 

logBefore) in the received message.  

     - the highest index on the node’s log must match the log index of the one of the log 

entries(logBefore) in the received message.  

If the conditions are met, logCurrent is appended to the entry of the follower node and a positive 

acknowledgement is returned. The leader executes (d). The only cases that the conditions 

specified above would not hold is if that particular follower node is recovering from a crash or 

failure. In such cases, the leader executes (e)-(f). 

(d) When the leader receives positive acknowledgements from a particular server, the 

leader increments the nextIndex associated with that server. After receiving positive 

acknowledgements from a strict majority of nodes, the leader commits the entries after applying 

the commands to its state machine and increments the commit index for every committed entry. 

The result of the application of the commands in the log entry is returned back to the client. 

(e) The leader decrements the nextIndex for that entry on the server, assigns the nextIndex 

as the current log index and step (b) is carried out. 

(f) (e) is carried out until there is a successful acknowledgement from that particular 

server. Then the leader can execute step (d). 
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Figure 2.4 illustrates the above. In Figure 2.4, the nextIndex is the index of the next log 

entry on the leader to be replicated. Figure 2.4(a), (b), (c) represent a normal sequence of 

operations, that is, they represent a sequence of steps (a), (b), (c) and (d). Figure 2.4(d) shows a 

scenario where a node (Node 2) has recovered from failure and is missing some entries. Figure 

2.4(e) represents a scenario where steps (e) and (f) have been applied to bring down the 

nextIndex for node 2 to a point where replication can occur. Figure 2.4(f) and (g) represents a 

sequence of operations that allows node 2 to acquire the missing entries from the leader.  

 

Figure 2.4. Log replication (adapted from [2]) 

The safety component is used to address certain edge cases in the leader election and the 

log replication   components as shown below [2] by imposing certain restrictions on both the 

leader election and log replication components of the algorithm. 
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Table 2.1. Edge cases (adapted from [2]) 

Edge case Solution 

A node could be elected leader despite not containing 

all the committed entries. 

During the voting phase, a node only returns 

a positive vote if its last term number <= the 

candidate’s term number and the length of 

its log <= candidate’s length of log. 

Future leaders could try to replicate an entry on a 

formerly crashed leader that was replicated but not 

committed by the formerly crashed leader. There is a 

time lag between a replication and a commit. During 

that time, the leader can crash. So subsequent leaders 

can try to replicate these entries. This would overwrite 

the entries stored on the nodes even though those 

entries have already been stored on a majority of 

nodes, introducing an unnecessary 

duplication/redundancy. 

Never commit entries from previous terms. 
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Chapter 3: CRDT 

3.1 Overview of the CRDT Protocol 

The consistency in the CAP theorem [1] refers to the act of removing accidental non-

determinism in computation of values between processes. Consistency tends to be on a sliding 

scale [10] [11] from strong consistency on one end to weak/eventual consistency on the other 

end. Strong consistency is normally enforced through synchronization, effectively turning the 

system into a sequential system. 

CRDT is an acronym for Conflict-Free Replicated Data Types. They obey a consistency 

model called Strong Eventual Consistency [5] which states that in a system, all replicas have 

equivalent state if and only if the system is eventually consistent and updates have been 

delivered by those replicas in any order at any node. This means CRDTs are systems that try to 

achieve consistency without explicit synchronization (synchronization when needed). CRDTs 

also follow the CALM (Consistency as a Logical Monotonicity) principle [12] which is 

summarized as a system state should only monotonically increase over time. They also have a 

property that every operation on them should be commutative, associative and idempotent. 

There are two known classes [3] [4]: 

(a) State-based CRDTs: They are also called Convergence-Based CRDTs or CvRDTs. 

States of replicas are exchanged between each other using gossip-protocols. The broadcast 

operations performed by these protocols to merge states at replicas must also be commutative, 

associative and idempotent. In other words, they enforce convergence. Convergence here can be 

thought to have two aspects:  
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     - Liveness: a delivery of an updated state to all (interested) nodes in the system 

happens after a defined number of message exchanges. This happens after a delivery of that same 

update to a node in the system. 

     - Safety: The same value can be queried from two distinct node that have been 

delivered the same set of updated states. 

(b) Operation-based CRDTs (CmRDTs): They are also called Commutative-Based 

CRDTs or CmRDTs. In contrast to State-based CRDTs, these only exchange changes in states. 

They broadcast operations, namely the update performed on them to change their states from one 

version to another. Sending only these operations reduces the amount of message overhead 

relative to amount sent by the State-Based CRDTs. They bear remarkable similarities to state 

machine replication [9] as shown in the following example. Imagine a replica r1 in a group of 

replicas which has had update operations u1 and u2 applied to it. When it broadcast these 

operations u1 and u2 to the rest of replicas in the group of replicas, these operations u1 and u2 can 

arrive at different times at each replica. To enforce convergence at all replicas in this replica set, 

these operations u1 and u2 must be associative, commutative but not necessarily idempotent. 

Their idempotency guarantees are based on whatever network protocol is used by the developer 

to transmit the messages, that is, the ability of CmRDTs to be idempotent is heavily reliant on 

the reliability of the network protocol used to transmit operations. In the following sections, the 

primary data structures that are useful for demonstrating and building CRDTs are discussed. 

3.2 Counters 

A counter [3] [4] is integer-based as it supports only increment and decrement operations. 

The number of operations can be derived from this integer. A naive CmRDTs version is 

intuitive, as long as the property that all operations are delivered and applied only once, is rigidly 
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enforced. A naive CvRDT version is not possible as it violates the principle underlying a 

CvRDT. To illustrate this point, assume that in a set of replicas, the merge operation calculates 

the max of the values in a subset of replicas. Consider two replicas with an initial state of 0. At 

each replica, a client executes an increment. Upon a merge of these two replicas, the value would 

be 1 instead of 2 as there were two independent increment operations, one for each of the 

replicas. Based on this observation, we must modify the naive CvRDT counter.   

Assume we use an integer vector, with the size of the vector equal to the number of 

replicas in the system. Each index in this vector corresponds to a particular replica. The merge 

operation can compute the max by getting the maximum value of each position in the vector. 

This whole procedure is explained in Figure 3.1: 

 

Figure 3.1. An increment-only CvRDT counter (adapted from [3]) 
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To support decrements, another type of counter, a PN Counter [3] [4] is used. In a PN 

Counter, two counters are associated with each element and it tracks the element modification: 

the deletion and addition of that element the counter is associated with. A decrement is an 

increment on the counter that is associated with deletion. The same goes for the increment 

operation. A query is the value of difference of the two counters. An example of a PN Counter is 

shown below: 

 

Figure 3.2. A PN counter (adapted from [3]) 

Figure 3.2 illustrates a CmRDT-based PN counter. Here a value has three replicas stored 

at three nodes, one replica for each node. Additions and deletions to this element are modeled 

with two counters, one for additions, and the other for deletions. Additions and deletions add 1 or 

remove 1 from the value respectively, but are both represented as increments to the counters 
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representing them. Figure 3.2(a)–(h) show the states at each node after a particular operation or 

sequence of operations have been applied. In Figure 3.2(d), the operations are applied as such, 

increment first and then decrement.  

3.3 Registers 

A register [3] [4] acts as a placeholder for objects of a particular type. The two operations 

on this data structure are assign and value. Implementing CRDTs semantics using this data 

structure is tricky but there are two known implementations [3] [4]: 

(a) Last Write Wins Register (LWW): The values are ordered by an increasing value, 

usually a timestamp. These timestamps are assumed to possess properties of uniqueness, total 

ordering and casual ordering. The current value is retrieved using the value operation. For 

CvRDTs of this type of register, the assign operation updates the values contained in the register 

and generates a new timestamp to be associated with the operation. The merge operation returns 

the value that has the maximum timestamp associated with it. For CmRDTs of this type of 

register, the assign operation generates a new timestamp at the sender. The receiver only updates 

the value if the new timestamp is greater than its own timestamp for that particular value. 

(b) Multi Value Register (MV): Here values are stored as set of pairs (value, version 

vector [13]) for example an object in this system is stored in this way:{a1: unique identifier for 

replica a1, a2: unique identifier for replica a2, … ,an: unique identifier for replica an} where n is 

the number of replicas for that particular object. These unique identifiers are usually composed 

of a timestamp and a monotonically increasing value to implement some sort of ordering. 

Version vectors summarize the history of updates to a particular replica. Version vectors have 

been shown to track causality [13] in distributed systems. An example of a version vector is 

shown below. For version vector A and B for an object F, we can say that 
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     (I) A dominates B if A > B, that is every element of B is less than or equal to the 

corresponding element of A and at least of one of the elements of B is strictly less than 

corresponding element of B. 

A = [{a, 1}, {b, 2}, {c, 3}] 

B = [{a, 4}, {b, 2}, {c, 3}] 

       B dominates A. 

     (II) A descends B if A >= B. A summary of the occurrence of the events in the system 

is achieved with this method. For example: 

A = [] 

        B = [{a, 1}] 

      B descends A as all version vectors descends the empty vector. 

     (III) A is concurrent or in conflict with B, that is, some elements of A are not in B and 

some elements in B are not in A. Also A conflicts with B if two or more elements do not 

represent a monotonically increasing order. For example: 

A = [{a, 1}] 

B = [{b, 1}] 

       A is concurrent with B. 

A = [{a, 1}, {b, 2}, {c, 4}, {d, 3}] 

B = [{a, 1}, {b, 2}, {c, 3}, {d, 4}] 

 

 A conflicts with B. 

 Everything we have discussed so far concerning Multivalue registers have been for 

CvRDTs. Operations on this CRDT are 
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(a) value: read a local copy of vector 

(b) assign: This is equivalent of a write. It generates a vector that dominates the previous 

ones. 

(c) merge: This takes the pairwise maximum of every element of the vectors being 

compared. 

An example is shown in Figure 3.3: 

 

Figure 3.3.  A multi value register (adapted from [3]) 

 The use of version vectors comes with a caveat: they have unbounded growth. In this 

area, various improvements [14] have been proposed. 
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3.4 Sets 

Implementing a set [3] [4] naively for CRDTs conflicts with the definition of a CRDT. 

Consider two operations; insert and delete. A union is the result of an insert and a minus is the 

result of a delete. Assume that we are dealing with a CmRDT based set. Assume we have a 

system composed of three replicas: a, b, c. We apply operations as they come to each replica in 

causal order. A hypothetical sequence of operations could be as follows: 

Replica a insert a value 2 into its set. State of its set = {2} 

Replica b insert the same value 2 into its set. State of its set = {2} 

Replica a receives the insert operation from Replica b and inserts the same value 2 into its set. 

But since it is a set, the operation has no effect. 

Replica a removes the value 2 from its set. State of its set = {} 

Replica b receives the insert operation from Replica a and inserts the same value 2 into its set. 

But since it is a set, the operation has no effect. 

Replica b receives the remove operation from Replica a and removes the value 2 from its set.  

State of its set = {} 

Replica c receives the insert operation from Replica a and insert the same value 2 into its set. 

State of its set = {2} 

Replica c receives the remove operation from Replica a and removes the value 2 from its set. 

State of its set = {} 

Replica c receives the insert operation from Replica b and inserts the same value 2 into its set. 

State of the set = {2} 

The final states of the replicas are Replica a = {}, Replica b = {}, Replica c = {2}. 

 

Replica c has not converged, that is, its state is not the same as that of Replica a and b. 

This shows that using sets as we know them from mathematics, without some modifications or 

conditions attached, would invalidate the preconditions of a CRDT: associativity, commutativity. 

One modification to allow the use of sets as CRDTs has been based on whether or not they 

support the remove (minus) operation. The set-based CRDTs also differ on how the remove 

operation is implemented if the remove operation is supported. 

(a) G-set [3] [4]: This set-based CRDT does not support the remove function. The 

operations available are add and value. The add operation for CvRDTs of this type are state 
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modifiers if there is some causal order on the states. The add operation is commutative as it is 

implemented as a union for CmRDTs. For example {1} U {2, 3} = {2, 3} U {1}. This type is not 

very useful on its own. It has a similar operation to the increment only counter discussed earlier. 

(b) 2P set [3] [4]: This supports the remove operation in the form of tombstones. 

Basically, the 2P set has two G-sets, one for the insertion Gi and the other for deletion Gd. Gd is a 

tombstone set. An element x can be removed from Gi  if and only if  x ∈Gi. To remove an 

element from the set is to place it in Gd. Once placed in Gd, it cannot be added back again to Gi. 

For 2P CvRDTs, the value operation returns elements that have not been removed. The merge 

operation returns the union of the two sets, Gi  and Gd. For 2P CmRDTs, the remove and add 

operations commute, that they are inherently commutative with a slight modification: a remove 

operation only occurs after an add [3] [4]. 
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Chapter 4: Methodology 

These protocols are used in the building of distributed systems. An example of a 

distributed system in the terms of this paper is a messaging system.\ 

Current large enterprise software in the cloud are becoming microservices-based [15]. A 

microservice [15] is a modular approach to building software where different parts of the 

application are split on business function(services) and communicate over HTTP or RPC. The 

connections between these services can be modeled as a producer which generates data and a 

consumer that processes such data to give results and a pipeline between them. This producer 

and consumer might be in the same enterprise software or they might be in different enterprise 

software. The pipeline brings the producer and consumer together as it transfers the data between 

the producer and consumer. This pipeline might be asynchronous (a message queue) or 

synchronous (an RPC protocol).  

  A message queue is the main part of a messaging system which is normally comprised of 

the queue, messaging protocol and endpoints which are in this case, a producer and consumer. 

Depending on the messaging system, most of the queues are set up as a broker which transforms 

the format of the message sent by the producer into the format accepted by the consumer. Figure 

4.1 gives us a brief overview of such the messaging system described above. Most times, brokers 

do not have transactional support. Transactional support in this case means sending and receiving 

a message is treated as a transaction. The sender sends a message to the message queue. If the 

receiver(s) has/have not received this message and acted upon it, then the message is not deleted 

from the message queue. This work hopes to use the protocols discussed in the earlier sections 

(RAFT, CRDTs) to enable transactional support in a message queue, through some form of 

distributed consensus. 



29 

 

 

Figure 4.1. A general messaging system 

4.1 High Level Overview of the Message Queue 

The message queue is modeled as a broker. The broker is responsible for receiving and 

routing messages from sender to receiver. The broker here is actually a cluster of nodes/servers. 

Consumers and subscribers are used interchangeably in this section and unless specified, mean 

the same thing. 

4.2 RAFT 

Here each node in the cluster has the same configuration as Figure 4.2 (without the 

Producers and Consumers). For the nodes that are not the leader, the Producers and Consumers 

section of Figure 4.2 is replaced by the leader. Only the leader in the RAFT model has this 

cluster manager/sharing layer enabled.  
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Figure 4.2. Application architecture of the leader in the broker-RAFT 

The node is composed of two components: 

(a) Middleware component: This is the layer that actually interacts with the servers and 

clients. It is composed of a: 

     - Serialization layer for serializing the data to a binary format for compact storage. 

     - RPC layer. This layer enables communications between different nodes. 

(b) Consensus component: This layer is what implements the consensus protocol. It is 

divided into two: 

     - Log files: A log file represents a topic. It is a file on the disk that stores the messages 

received from the producer. Messages are appended at the end of the file. Messages are read by 

the I/O layer from the beginning of the file to some offset n based on some mapping in the I/O 

layer. Messages are only removed from a log file after all of the available subscribers have 

received the message and sent back positive acknowledgements.  
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     - A cluster manager: The cluster manager is responsible for reducing/increasing the 

number of nodes that are required based on the following metrics: message volume load from the 

producers and cpu metrics of the system running the broker.  

     -  A I/O layer: The I/O manager is responsible for sending the messages received from 

the producer based on the topic id into the different log files. The I/O layer is also responsible for 

deciding the number of messages n, to send to subscriber Si in subscriber group S. This value n is 

equal to the n described in (a). There can be multiple subscribers for a particular topic. To scale 

properly on the subscriber side, each subscriber Si is fitted with a cache that they can poll 

messages from. The cache eases pressure on the message queue and provides an asynchronous 

way of handling messaging. Also, the I/O layer maintains a mapping {Si, n} for all the 

subscribers in S. Changes to this mapping are replicated using the RAFT protocol. 

 A message will be of the form {topic-id, value}. When the leader gets a message from a 

producer, it appends the value of the message to the relevant log file based on the topic-id 

associated with the log file. The leader then sends the message out to the all the nodes in the 

cluster. Each node appends the value of the message received from the leader to the relevant log 

file based on the topic-id associated with the log file and returns a positive acknowledgement to 

the leader. To remove a message(s) stored on the leader, the leader sends a remove request 

{topic-id, n} to each node in the cluster. Each node physically removes the n messages from the 

relevant log file according to the topic-id associated with the log file and returns a positive 

acknowledgement to the leader. The leader then proceeds to remove n messages from the 

relevant log file according to the topic-id associated with the log file.  
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4.3 CRDT 

For the CRDT model, Figure 4.3 is the representation of the broker. The broker here is a 

cluster of nodes/servers. There are two types of nodes in this broker, a leader node and peer 

node. There are always two leader nodes in the system. One is the master and the other is the 

slave. The master is the leader node that handles all communications between the broker and the 

outside world (producers and consumers) while the slave does not partake in any of the 

communications in the system. If the master leader node fails, the slave node becomes the new 

leader node and a copy of the slave node is created and becomes the new slave node. The leader 

nodes do not store any messages; the peer nodes do. Also, the I/O layer is unique to the leader 

nodes as is the peer-to-peer layer for the peer nodes. 

 
 

Figure 4.3. The broker application architecture for the CRDT model 

 

The serialization layer, RPC layer are the same as the ones described in the RAFT model. 

Here the cluster layer is the same as the cluster manager layer in RAFT. The I/O layer here is 
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responsible for inserting and retrieving the messages stored on all the peer nodes. It inserts 

messages into nodes randomly. The CRDT responsible for holding the message in Figure 4.3 is a 

map [16]. A map is a structure similar to a regular map data structure in that it exposes similar 

operations such as get(key) and put (key, value). It is different from regular map operations as 

the keys and values are CRDT values. The keys in this case are LWW (Last Write Wins) 

registers. The values are sets. The sets in this case are LWW-sets [3] [4]. The LWW-set is 

similar in operation to the 2P-set in that it has an add-component (set) and a remove-

component(set). In the LWW-set, a pair (timestamp, visibility) is associated with a value. A 

visibility of true denotes an add while a visibility of false denotes a remove. To remove an 

element, you add (value, (element timestamp, false)) to the remove set and to add an element, 

you add (value, (element timestamp, true)) to the add set. A merge operation is done by merging 

the add and remove sets together. A lookup for element e results in true value if and only if the 

element e is in the add set and not in the remove set with a higher timestamp, that is, the element 

e in the add set must have a higher timestamp than a corresponding element e in the remove set. 

This also holds even if the element e has duplicates in the add set. In the event of a concurrent 

add and remove, the removes only occur after the adds. Timestamps increase monotonically. 

A description of the maps that are used by the brokers are shown below: 

map (service or user) { 

 register: service-name; 

 register: user-name; 

 set: elements 

}  
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After receiving new messages from the leader, the peer-to-peer layer of a peer node is 

responsible for sending out updates to the other nodes in the cluster. An update operation is 

performed at a replica by merging the maps' sets together. 

When the consumer issues a read of n elements from the broker, that is the consumer 

issues a get(key(s), n) command, these steps are followed in sequence: 

(a) each replica is contacted by the I/O layer to retrieve n elements from the map whose 

keys match with the keys(s) in the command. 

(b) each replica performs a merge of the two sets (add and remove) of all the identified 

maps present in the replica. 

(c) the peer-to-peer layer of each replica sends out messages containing the merged sets 

to all peers  

(d) a merge operation is then conducted at each replica.  

(e) all the replica's sets are then merged to produce a set A. 

(f) The lookup operation is run on each element in set A and returns either a true or false 

value. Those elements that return true, are returned from the broker and pulled into the customer 

cache. Steps (g) –(j) are done after a positive acknowledgment is returned from the customer. 

Steps (g) – (j) are necessary to keep the data stored at a manageable level. 

(g) A remove operation, remove(key(s), n) is then issued by the I/O layer to a replica. 

Assuming that an add () operation has just been applied to the replica, the I/O layer takes note of 

the timestamp t issued by the add () operation and removes n elements associated with key(s) 

whose timestamp is less than that of t. Otherwise, the I/O layer removes n elements associated 

with key(s). In both scenarios, those elements are added into the remove set of that replica.  
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(h) The peer-to-peer layer then replicates this remove set with all the replicas in the set. 

(i) When (h) is complete, a removeElement() operation is performed at each replica. This 

removes each element in the add set that is also in the remove set. 

(j) After that, each element in the remove set is purged. 
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Chapter 5: Implementation 

 

This project uses a few libraries and technologies. These technologies/libraries are as 

follows: 

- Docker 

- ZMQ 

In the sections below, explanations of how these libraries are used in this project will be 

given. Also, the RAFT/CRDT configurations using the aforementioned libraries will also be 

discussed. 

5.1 Docker 

Docker is a library that provides a lightweight VM. It is a system-level VM meaning that 

it houses the system-level libraries in order to run the simulation. It does so, by making use of 

resource isolation (that is address space isolation, network isolation, I/O isolation, memory 

isolation) found in the Linux kernel mainly cgroups and namespaces [17]. An example 

comparison between Docker and the normal type of VM's such as VirtualBox is shown in  

Figure 5.1: 

 

Figure 5.1. Comparison of Docker vs VirtualBox [18] 

The main difference between Docker and a normal VM (VirtualBox) are that a normal 

VM provides a system-level, system-type resource isolation meaning that they provide total 
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isolation between two systems (that is, two host systems running on the same machine) and 

Docker provides a system-level, process-type/application-type resource isolation, meaning that 

only the applications/process are separated but share the same underlying system. This makes 

Docker useful for this project as: 

(a) Each process can be packaged into a container, instances of an image and with the 

system-level support can be regarded as a machine. When a set of these machines are put on a 

network, they become a distributed system.  

(b) With isolation you can transplant a particular bunch of containers onto another host 

system and it will still produce the same output, providing repeatability. 

An image is a snapshot of a system with system-level libraries that provide the perfect 

environment to run a process. This image is immutable and it has a layered filesystem [17] [19]. 

A container is a running/stopped instance of a image that is namespaced [17] [19], that is it can 

only use kernel resources (network, file, user and so on) associated with that namespace. To 

create an image, a Dockerfile is needed. A sample Dockerfile for this project is shown in    

Figure 5.2. 

 
 

Figure 5.2. A Dockerfile for the management server 
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Figure 5.2 contains instructions to generate the image that would contain all the files 

necessary to run a process and it is built from another image: softwareimages/researchpaper: 

latest. The dockerfile for that image is found in Appendix A. A complete meaning of the 

commands used is also explained in Appendix A. To generate the Docker containers from the 

images, a native command is used: docker run. To automate generation of Docker containers 

from images, another native command docker compose is used for that purpose. 

In order for containers to talk to each other, Docker provides the capability of creating a 

virtual network. A virtual Ethernet bridge is created for the user when the user installs Docker. 

This bridge allows for the communication between containers without the use of port 

forwarding, as this bridge is a self-contained IP subnet and gateway. This bridge also supports 

automatic DNS name resolution, resolving the container names to the IP addresses assigned by 

the bridge. This bridge is local. Figure 5.3 shows the configuration of the network used for the 

simulation. 

 

Figure 5.3. The configuration of the network, cluster_network 
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5.2 ZMQ 

ZMQ/ OMQ (pronounced zero-m-q) [20] is a networking library. It is a wrapper around 

the C socket library and provides easier ways of creating and utilizing network sockets. The 

library has several language bindings including a Java binding named jzmq. The library is based 

around ZMQ sockets which at their core are composed of two things: a C socket and a queue. 

The queue allows for the library to send message when it wants to and also allows for the 

retaining of messages that were not delivered to their destination. ZMQ is also built on the idea 

that normal lock-based synchronization primitives are too error-prone and brittle to be used 

effectively and proposes a message-only solution for synchronization [20]. 

A major benefit of ZMQ/ OMQ is that it allows for specific patterns to be used very easily 

which forms the different types of sockets to be found in this project. These types of sockets are 

[20]: 

- REQ socket (a receive-type) 

- REP socket (a send-type) 

- DEALER socket (a receive-type), 

- ROUTER socket (a send-type), 

- PAIR socket (a receive-type and send-type)  

- PUB socket (a send-type) 

- SUB socket (a receive-type)   

These sockets are best understood in pairs [20]:  

(a) A REQ/REP pair is the basic client/server connection type and is the basis of all 

the other subsequent types of sockets that are listed above.  
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(b) A DEALER/ROUTER pair is analogous to the REQ/REP pair. The difference 

between the REQ/REP pair and the DEALER/ROUTER pair is that the DEALER/ROUTER is 

primarily used for asynchronous connections while the REQ/REP pair is synchronous. 

(c) A PAIR/PAIR pair is primarily used between threads of the same process. 

The main differences between them can be summarized in Table 5.1: 

Table 5.1. Differences between ZMQ Sockets (adapted from [21]) 

Socket 

type 

Send  Receive  Fixed-order Socket placement 

    Client-

side 

Server-

side 

REQ Yes No Yes. REQ can only receive after it has sent a message.  Yes No 

REP No Yes Yes. REP can only send after it has received a message. No Yes 

DEALER Yes Yes No. DEALER can send or receive at any time in any order. Yes No 

ROUTER Yes Yes No. ROUTER can send or receive at any time in any order. No Yes 

PUB Yes No Yes. PUB can only send messages. No Yes 

SUB No Yes Yes. SUB can only receive messages Yes No 

PAIR Yes Yes No. PAIR can send or receive at any time in any order. Yes Yes 

 

There are certain caveats which were discovered when using this library in building this 

project. They are: 

-  ZMQ/ OMQ is an async framework, meaning that it expects the user not to depend 

heavily on timing and order of arrival. This reorients the architecture of the network and makes 

the user to have to deal with messages that have long since been delivered which are not 

necessary at a certain stage of the computation, that is, duplicates of an already processed 

message can arrive at a receiver. 

 -  ZMQ/ OMQ does not send instantaneously. A send command hands off the message 

from the user process to the underlying ZMQ thread/process which sends the message on its own 
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time. It is a fire-forget mechanism meaning that depending on the type of socket, the message 

will be dropped if the destination is unreachable. 

-  ZMQ/ OMQ sockets are not thread-safe. They are made thread-safe when used with a 

ZMQ Context [21]. This does not allow them to be passed among multiple processes, that is, a 

ZMQ socket exhibits undefined behavior [20]. The process that it is attached to (the owner of the 

socket) is the only one that can use the socket. This is keeping inline with their message-only 

philosophy discussed earlier. 

(d) Based on the socket semantics as described above, it is important to divide the 

network into static parts. That is, one would typically have the REP/ROUTER sockets bound to 

the “server” parts of the network and the REQ/DEALER sockets bound to the “client” parts of 

the network. 

All these caveats/properties were considered in the design of the network architecture for 

both the RAFT and CRDT configurations. 

5.3 RAFT 

5.3.1 Overall system architecture  

The overall socket/docker/system architecture is shown in Figure 5.4. Each box contains 

a ZMQ Poller which uses select() and poll() internally to deque messages received by the sockets 

to be made available for use in the program. Every socket in the box is registered to a ZMQ 

Poller. From here on out, every time the word container with respect to Figure 5.4 is used, it 

represents a box in that image.  
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The RAFT server containers have three processes:  

- a parent process which is the ET(election task) process which also houses the ZMQ 

Poller,  

- a child process which is the TT(timerThread task). The TT(timerThread task) signals the 

ET when to start an election by sending a timeout message to it, and for the main RAFT server, 

signals when to send messages from the main RAFT servers log to the other servers for 

replication.  

- a child process, which is the ST(StateMachine Task). The ST(StateMachine Task) 

represents the statemachine which is composed of a filethread. The ST(StateMachine Task) 

handles writing of the different RAFT persistent properties[22] and the committed entries on the 

RAFT log to the filesystem. 

5.3.2 Client/server configuration 

A cluster node in this configuration is a RAFT server as show in Figure 5.4. The 

client/consumer and server/producer are entities that request entries from the RAFT server 

(leader)'s log as in the case of the client/consumer or push entries to the RAFT server (leader)'s 

log as in the case of the server/producer. The consumer processes the received messages.  

Upon start, the consumer and producer receive a set of cluster nodes from the 

management server. They initialize a set of DEALER sockets (negotiation sockets) whose 

number is equal to the number of cluster nodes in the system. These negotiation sockets each 

have a pair of addressable names: a private node name, for communication among themselves 

and a public node name for communication to the management server in Figure 5.4. They ping 

these cluster nodes using the DEALER sockets, in a round-robin fashion to find out which node 

is the actual leader. This “pinging” is shown as code in Figure 5.5. The consumer begins to 



44 

 

request for entities from the leader, after connecting to the leader. The producer begins to push 

entities to the leader, after connecting to the leader.  

 

Figure 5.5. The node choosing algorithm 

5.3.3 General algorithm 

The general algorithm used by the RAFT server is shown below. The general algorithm is 

an event loop that triggers a particular socket on inbound events. The three major events in the 

system are INIT, TIMEOUT, and RAFT. The INIT event comes from the management server. 

The INIT event causes the RAFT server to initialize all the variables to be used in the RAFT 

algorithm. Those variables and their initial values are shown in Figure 5.6:  
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Figure 5.6. Initial values of some RAFT state variables and procedure resetState  

The internal state of the server is denoted by state. The internal RAFT state is denoted by 

state.raft. The internal state of the RAFT messages sent between the peers is denoted by 

message.raft.  

The TIMEOUT event is for the leader election algorithm discussed in previous chapters. 

The TIMEOUT event comes from the TT in Figure 5.4. The timeout indicates that an election 

can happen and the RAFT server can choose to act on it or disregard it. The RAFT event handles 

replication of the messages on the RAFT server’s (leader) log. The RAFT event comes from the 

other RAFT servers in the cluster. Sections 5.3.3.1, 5.3.3.2, 5.3.3.3 are high level descriptions of 

the processes that occur on receipt of an INIT, TIMEOUT, RAFT events respectively. 

5.3.3.1 INIT event 

(a) The RAFT server waits upon INIT to receive a list of remote peers from the 

management server on its DEALER socket.  
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(b) Once it does (a), it starts up TT by sending a Timeout message to TT. TT then 

responds, after a certain randomized period of time known as an initial election timeout ieT, with 

a timeout message. TT runs for the entire lifetime of the RAFT server. 

(c) On the completion of (b), the election algorithm described in the next section is run. 

(d) On the termination of the election algorithm, the leader sends a heartbeat message to 

TT. TT then responds, immediately with a heartbeat message and goes to sleep for a certain 

timeout period, heartbeat timeout, hT. 

(e) After (d), the replication algorithm then starts. 

5.3.3.2 TIMEOUT event 

  (a) Upon receipt of the timeout message from TT, the RAFT server checks if it is a 

follower and if it has a leader. 

(b) If the RAFT server is a follower and it does not have a leader, the RAFT server 

changes its state.raft.election to CANDIDATE. The RAFT server also executes the following 

steps:  

     (I) The RAFT server then resets its election timeout by sending a timeout message to 

TT. TT generates a new election timeout number, eN and responds after eN has expired. 

     (II) The RAFT server builds a requestvote message which contains these properties of 

the RAFT server: state.id, state.raft.term, lastLogIndex, lastLogTerm. 

     (III) The RAFT server then broadcasts it to all of its remote peers.   

(c) If the RAFT server is not a follower, it disregards the timeout message. 

(d) If the RAFT server is a follower and it does have a leader, it increments a counter, 

state.numOfTicks and checks to see if it is equal to another counter, state.maxTicks. If it is, it 

resets its state. Resetting its state makes the RAFT server ready to trigger an new election upon 
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the receipt of the next timeout message. This state.numOfTicks is used to wait for the leader that 

could be unresponsive, that is, a heartbeat message has not been received by the RAFT server 

recently. The state.maxTicks is the upper limit to “time” to wait for the leader, before the RAFT 

server triggers a new elections. These counters are used to avoid situations where the RAFT 

server would wait unnecessarily for an unresponsive leader before the RAFT server is triggered 

by TT. 

(e) The RAFT server checks if it is a leader. This also means that the RAFT server knows 

the leader in the cluster. If the RAFT server is a leader, the RAFT server broadcasts an 

appendEntries messages. If the RAFT server does not know the leader of the network, the RAFT 

server changes its state.raft.election to FOLLOWER. 

5.3.3.3 RAFT event 

The RAFT event comes with certain messages, requestvote, requestvote_rep, 

appendEntries and appendEntries_rep messages. Explanations of the algorithms that are run for 

each message are given below:  

- Upon receipt of a requestvote message from a remote peer, the RAFT server checks 

for the following conditions: 

- If the message term is greater than the RAFT server’s term, the RAFT server changes 

its state to that of a follower and sets its term to that of the message.  

- If the message term is less than its term, the RAFT server sends a requestvote_rep 

message with a NACK back to the remote peer requesting a vote.  

- If the message term is the same as its term and its log entries are the same as that of 

the message, the RAFT server sends back a requestvote_rep with an ACK message. 
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- If none of the above condition hold, the RAFT server sends a requestvote_rep 

message  with a NACK back to the remote peer requesting a vote. 

- Upon receipt of a requestvote_rep message from a remote peer, the RAFT server 

checks to see if the requestvote_rep message comes with an ACK. If the 

requestvote_rep message does, the RAFT server increments number of nodes that 

voted for it, state.raft.voters. If the state.raft.voters value is equal to the assigned 

quorum, state.raft.quorum:   

(a) the RAFT server changes its state.raft.election to LEADER 

(b) the RAFT server broadcasts a setLeaderId message which contains its id to all of 

its remote peers. 

(c) the RAFT server assigns for each remote peer, a match index of 0 and a next 

index of 1. The purpose of the match index is to indicate the highest entry 

replicated on a remote peer and the next index, the index of the next log entry of 

the RAFT server to send to that remote peer. 

(d) the RAFT server broadcasts a message with the following properties (id, term, 

prevLogIndex, prevLogTerm, entries, commitIndex) 

- Upon receipt of an appendEntries message from a remote peer, the RAFT server runs 

through a series of steps: 

(a) The RAFT server checks if it is a leader or candidate. If it is either, it changes its 

state.raft.election to FOLLOWER. In the case if it is a leader, it disregards (b). 

(b) The RAFT server checks if the RAFT server has the same previous term as that of 

the message.  
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- If the RAFT server does, the RAFT server checks to see if the message 

contains any new entries. If the message does not, the RAFT server sends 

back a heartbeat to the remote peer. If the message does, the RAFT server 

adds the new entries to its log. The RAFT server also responds with an 

appendEntries_rep message bundled with an ACK. If the commit index of the 

message is greater than the RAFT server’s commit index, the RAFT server’s 

commit index, state.raft.commitIndex becomes the min of the message’s last 

log index and the message’s commit index.  

- If the RAFT server does not, it responds with an appendEntries_rep message 

bundled with a NACK. 

- Upon receipt of a requestvote_rep message from a remote peer, the RAFT server runs 

through a series of steps: 

(a) The RAFT server checks to see if the term in the message and in the RAFT 

server's term are equal. 

(b) If the term in the message is less than that of the RAFT server, the RAFT server 

disregards the message. 

(c) If the term in the message is greater than that of the RAFT server, the RAFT 

server changes its state.raft.election to FOLLOWER. 

(d) If the term in the message matches that of the RAFT server, the RAFT server 

checks for the message(responses) bundled with the requestvote_rep message: 

- If the response is an ACK, the RAFT server assigns the match index for the 

remote peer to be message's last log index. The RAFT server assigns the 

commit index to be the max of all the commit indexes of all of the remote 
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peers. The RAFT server then assigns the next index for the remote peer to the 

min of the RAFT server's last log index and the message's last log index. 

- If the response is a NACK, the RAFT server assigns the next index for the 

remote peer to be the conflicting index sent in the message. 

- If the response is a heartbeat, disregard. 

5.4 CRDT 

5.4.1 Overall system architecture  

The overall socket/docker/system architecture is shown in Figure 5.7. Each box contains 

a ZMQ Poller which uses select() and poll() internally to deque messages received by the sockets 

to be made available for use in the program. Every socket in the box is registered to a ZMQ 

Poller. From here on out, every time the word container with respect to Figure 5.7 is used, it 

represents a box in that image.  
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5.4.2 Client/server configuration 

In the CRDT configuration, the consumer and producer role are similar to the description 

in Section 5.3.2. The CRDT configuration uses a binary star pattern [20] for reliability. 
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In the binary star pattern [20], there are two main servers that all the peer nodes connect 

to. One of the pair of the servers is the primary server and active server, that is, it is the server 

that the outside world (consumer and producer) connect to. The other server in the pair is the 

backup and inactive server. The client and producers do not have a direct connection to the any 

other nodes in the network apart from the above pair. If the active server were to go down, the 

outside world and all the peers in the cluster will automatically connect to the backup server. The 

backup server notifies the management server from Figure 5.7 and proceeds to assume the role of 

the active and primary server. The management server then selects a new backup and inactive 

server from the remaining peers.  

The peer nodes that are not active or backup are connected to each other and do not go 

through the server to replicate messages. In this section and in Section 5.4.3, they are referred to 

as the ordinary servers. The backup server does not participate in replication until it is made active 

and primary. Each peer has a log where the messages are stored and the log is a state-based CRDT, 

a map. The operation of the map is discussed in Section 4.1.2.  

5.4.3 General algorithm 

The general algorithm used by the CRDT server is shown below. The general algorithm 

is an event loop that triggers a particular socket on inbound events. The two major events in the 

system are CONNECTION and CRDT. The CONNECTION event comes from the management 

server and from the outside world (consumer and producer). The CONNECTION event from the 

management server determines if the CRDT server is chosen as active or inactive. The 

CONNECTION event from the outside world is used to give the calling node the addresses of 

the active and backup servers. The CRDT event is used for replication of messages from one  
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peer node to another. Sections 5.4.3.1, 5.4.3.2 are high level descriptions of the processes that 

occur on receipt of CONNECTION and CRDT events respectively. 

5.4.3.1 CONNECTION event 

- Upon receipt of a connection event from the management server, the CRDT server 

checks to see if the management server designates the CRDT server as a primary and 

active server or as a backup and inactive server. Whatever the outcome, the CRDT 

server sends back an ACK to the management server that it changed its state. The 

CRDT server then broadcasts a setPrimary or setBackUp message to every peer in the 

cluster. 

- Upon receipt of a connection event from the outside world (consumer and producer), 

the CRDT server checks to see it has the address of both the active and the backup 

servers. If the CRDT server does, it sends back a setServers message with the 

addresses. If the CRDT server does not, it sends a setServers message with a NACK. 

5.4.3.2 CRDT event 

The CRDT event comes with certain messages: serverPost, update, clientGet, serverGet, 

mergeState, mergeState_rep, serverGet_rep, clientGet_rep, removeValue messages. 

Explanations of the algorithms that are run for each message are given below:  

- Upon receipt of a serverPost message from the producer, the CRDT server checks to 

see if it is an ordinary server. If it is not, it disregards the message. If the CRDT 

server is an ordinary server, it checks to see if the message is a delta or not. 

-  If the message is a delta, the CRDT server updates its event log and broadcasts the 

delta as an update message to all the other ordinary servers. 
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-  If the message is not a delta, the CRDT server sends its entire log as an update 

message to all the other ordinary servers. 

- Upon receipt of an update message from an ordinary server, the CRDT server checks 

to see if it is an ordinary server. If it is not, it disregards the message. If the CRDT 

server is an ordinary server, it checks to see if the message is a delta or not. 

-  If the message is a delta, the CRDT server updates its event log with the delta. 

-  If the message is not a delta, the CRDT server updates its event log with the 

message payload. 

-  Upon receipt of a clientGet message from the consumer, the CRDT server checks to 

see if it is an ordinary server. If it is, it disregards the message. If the CRDT server is 

a primary server, it broadcast a serverGet message to all the ordinary servers. 

- Upon receipt of a serverGet message from the primary server, the CRDT server 

checks to see if it is an ordinary server. If it is not, it disregards the message. If the 

CRDT server is an ordinary server, it broadcasts a mergeState message to all the other 

ordinary peers. 

- Upon receipt of a mergeState message from an ordinary server, the CRDT server 

checks to see if it is an ordinary server. If it is not, it disregards the message. If the 

CRDT server is an ordinary server, it does a merge, according to the merge operation, 

detailed in Chapter 5. The CRDT server then appends its merged state to its event log. 

The CRDT server then sends a mergeState_rep back to the CRDT server where the 

mergeState message originated from.  

- Upon receipt of a mergeState_rep, the CRDT server gets its updated state and sends it 

to the primary server as part of a serverGet_rep message. 
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- Upon receipt of a serverGet_rep message, the CRDT server checks to see if it is an 

ordinary server. If it is, it disregards the message. If the CRDT server is a primary 

server, the CRDT server increments a counter, mergedStates. Once the counter is 

equal or greater than the number of cluster nodes minus 2, the CRDT server merges 

the state in the serverGet_message with its own event log. The CRDT server then 

sends the latest value of the state for the value the consumer is requesting, as part of a 

clientGet_rep message. The CRDT server then sends that latest value as part of a 

removeValue message. 

- Upon receipt of a removeValue message, the CRDT server checks to see if it is an 

ordinary server. If it is not, it disregards the message. If the CRDT server is an 

ordinary server, it does a remove operation as described in Chapter 4 with the payload 

of the removeValue message. This is done to prevent the event logs of the ordinary 

server from growing too large with all the frequent merges of state. 
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Chapter 6: Results 

In this chapter, a comparison of the two implementations of CRDT and RAFT as 

described in Chapter 5 was performed. Two metrics, latency and throughput were used as the 

basis for the comparison. In the subsequent section, the simulation environment will be 

described. Next, a definition of the metrics used will be explained. Finally, results in the form of 

graphs will be shown and explained. 

6.1 Simulation Environment 

The simulation was run on a laptop, running Ubuntu OS 16.04.3. The processor is an 

Intel Core i7-4500U (4th Gen) with 1.8 Ghz clock speed. The memory is 8GB DDR3 RAM and 

the hard disk size is 1TB. The simulation was run with the following software, Docker 18.0.1 

CE, Java 8, jzmq-4.0.1. 

6.2 Metrics  

The metrics used for comparison are latency and throughput. Latency is the time it takes 

for a single message to go from the producer to the consumer and is measured in seconds. 

Throughput is the inverse of latency and is the number of messages that could be delivered in 

one second at the consumer from the producer, after passing through the message queue. This 

latency and throughput metric are averages, as a baseline for the message queue is desired. The 

computation of the latency and throughput metric follow the model for computing latency and 

throughput in [23] and is described below.  

A particular number of messages (N = 2000) are tagged with a tag Id, td. td is necessary 

for the consumer to identify messages with td and record their timestamps as part of the 

simulation. Timestamps of messages that have been previously received by the consumer are not 

recorded. This is because we want to measure replication latency, not message latency. Based on 
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the description of the RAFT and CRDT implementations in Chapter 5, the consumer can receive 

the same message multiple times. 

Each message w, generates a timestamp t upon initialization. This timestamp correlates to 

On in [23]. This same message is what is retrieved for the RAFT implementation. The CRDT 

implementation does this differently. Since a new message m is always generated from a 

message q during merge operations, a merge operation copies timestamp t into q. This makes it 

equivalent to what the RAFT implementation does. 

The latency and throughput computations are done on the consumer, because with that, 

we can be sure that a particular message m was sent from the producer, through the queue and 

received by the consumer. Once the consumer receives message m that has tag id td and has not 

yet received the same message before, it records the timestamp tm as the received timestamp. 

This correlates to In in [23].  

The latency Ln, then becomes the difference between In and On. The average latency is 

calculated as L divided by the number of messages tagged with td. The throughput, T is computed 

as the number of messages tagged with td, divided by the difference between time the last 

message was received and the time the first message was received. To measure the latency/ 

throughput, the concept of the simulation run is used. 

A simulation run is pushing 2000 messages through the queue from the producer to the 

consumer. This simulation run is repeated 20 times and average values were computed. The 

average latency and throughput on the graphs, shown in Figures 16-23 is the average of the 

repeated simulations. The average time for one simulation run is 1.5 hrs.  
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We test the throughput and latency against the number of replicas and also against 

message sizes. These are two interesting parameters to judge the message queue performance on, 

due to two reasons: 

-  Size of the payload: This is to determine how the latency is affected under different 

message sizes. In these simulations, we use a small message size (128 bytes) and a large message 

size (512 bytes).  

-  No of replicas: This is to determine what effect an increasing number of replicas will 

have on latency. This increase, in a normal application might be due to fault tolerance and 

compensate for node failures. In these simulations, we test the message queue with 3, 5, 7 

replicas.  

6.3 Numerical Results 

 

Figure 6.1. Average latency for message size 128 bytes (RAFT) 
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Figure 6.2. Average throughput for message size 128 bytes (RAFT) 

 

Figure 6.3. Average latency for message size 512 bytes (RAFT) 
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Figure 6.4. Average throughput for message size 512 bytes (RAFT) 

 

Figure 6.5. Average latency for message size 128 bytes (CRDT) 
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Figure 6.6. Average throughput for message size 128 bytes (CRDT) 

 

Figure 6.7. Average latency for message size 512 bytes (CRDT) 
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Figure 6.8. Average throughput for message size 512 bytes (CRDT) 

Figures 6.1-6.4 is the graphs for the RAFT implementation. Figures 6.5-6.8 are the 

graphs for the CRDT implementation. For both implementations, as the number of replicas 

increase, a increase in latency is observed. This increase can be explained by the fact that the 

more nodes would result in more messages which would increase the time to indicate that a 

particular message has been replicated. The increase is sharper for CRDT than it was for RAFT 

due to the nature of the implementation requiring more communication for replication than 

RAFT. A drop is observed for throughput. This means that latency is inversely proportional to 

throughput, that means that higher values for latencies will result lower values for throughput. 

The message sizes also affected both implementations as both systems seemed to perform better 

for the smaller message (128 bytes) than for the larger message (512 bytes). 
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Chapter 7: Conclusion and Future Work 

From the experiments carried out in this paper, the RAFT [2] protocol is shown to have a 

better message throughput and latency than that of the CRDT [3] protocol. From the experiments 

carried out in the paper, both systems spend quite a bit of time replicating their messages, given 

that they both process less than 20 messages per second.  

In this paper, we discussed and implemented the RAFT protocol (leader election and 

replication). We also discussed the CRDT and the data types that can be derived from CRDT. 

We implemented the map and LWW set data types from the CRDT as CmRDTs. We 

implemented these protocols with Docker to simulate a distributed system, which is a novel 

implementation to date. 

Some possible future work are as follows: 

- Adding network instability to test the system under failures. 

- Implementing the CRDT protocol for operation-based replication, a CvRDT which 

could greatly reduce the number of messages sent between nodes. 

- Implement the extended parts of the RAFT protocol such as log compaction [22], and 

snapshotting [22]. 

- Running the CRDT and RAFT implementations on Amazon AWS EC2 [24] to 

simulate conventional distributed load. 

- Tune the systems to see if the throughputs and latencies could be improved upon. 
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Appendix A: Introduction to a Dockerfile 

A Dockerfile[1] is a declarative way of instructing the docker program on how to build 

our image, which would be ran as a container. This declaration is done as a text file and is fed to 

a command, docker build which builds the image. The dockerfile for the base image of the 

simulation is shown below: 

 

Figure A.1. Dockerfile for the base image of the simulation 
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Each line of a Dockerfile is an instruction, which is run independently and serially. 

Docker images are layered filesystems [2]. When each line of a Dockerfile is run, it produces a 

layer which is added to the layer produced by the previous command. The summary of Figure 

A.1 is as follows:  

(a) Build a layer from the official maven java-8-jdk-alpine image, using the FROM 

command.  

(b) Use the RUN command to run a package installation using the package manager for 

the alpine OS and to also build the jzmq package. 

(c) Setup the environment variables for gradle [3], which is used to install jzmq, with the 

ENV command 

(d) Make the directory to run all the .java files with the WORKDIR command 

(e) Copy a file jzmq_prompt.sh from the host directory into the /etc/profile of the image, 

using the COPY command. 

(f) Whenever a container is created from this image, provide the default login shell 

/bin/bash using the CMD command 
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