
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and Information
Technology

5-2019

Consensus in Distributed Systems: RAFT vs
CRDTs
Oluwadamilola Okusanya
oookusanya@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

This Starred Paper is brought to you for free and open access by the Department of Computer Science and Information Technology at theRepository at
St. Cloud State. It has been accepted for inclusion in Culminating Projects in Computer Science and Information Technology by an authorized
administrator of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Okusanya, Oluwadamilola, "Consensus in Distributed Systems: RAFT vs CRDTs" (2019). Culminating Projects in Computer Science
and Information Technology. 29.
https://repository.stcloudstate.edu/csit_etds/29

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/29?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F29&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Consensus in Distributed Systems: RAFT vs CRDTs

by

Okusanya Oluwadamilola Oluwaseun

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science in

Computer Science

May, 2019

Starred Paper Committee:

Donald Hamnes, Chairperson

Mehdi Mekni

Omar Al-Azzam

2

Abstract

Distributed systems normally come with a set of challenges: consistency of data,

coordination/synchronization for tasks, failures due to network partitions and so on. Consensus

algorithms are a solution to some of these problems especially for coordination and

synchronization challenges. These algorithms are normally tied to a consistency model which

can fall between two extremes: very strong guarantees on consistency and very weak guarantees

on consistency. Two consensus algorithms, RAFT and CRDT are compared using a message

queueing system that can form the backbone of a distributed application.

3

Table of Contents

 Page

List of Tables ... 5

List of Figures .. 6

Chapter

 1. Introduction .. 8

 1.1 Overview of the Current Research .. 8

 1.2 Objective ... 9

 2. RAFT ... 10

 2.1 Overview of RAFT ... 10

 2.2 Leader Election ... 12

 2.3 Log Replication ... 15

 3. CRDT ... 19

 3.1 Overview of the CRDT Protocol .. 19

 3.2 Counters .. 20

 3.3 Registers .. 23

 3.4 Sets .. 26

 4. Methodology .. 28

 4.1 High Level Overview of the Message Queue ... 29

 4.2 RAFT .. 29

 4.3 CRDT .. 32

 5. Implementation .. 36

 5.1 Docker ... 36

4

Chapter Page

 5.2 ZMQ .. 39

 5.3 RAFT .. 41

 5.4 CRDT .. 50

 6. Results .. 56

 6.1 Simulation Environment ... 56

 6.2 Metrics .. 56

 6.3 Numerical Results ... 58

 7. Conclusion and Future Work ... 63

References .. 64

Appendices

 A. Introduction to a Dockerfile ... 66

 B. References .. 68

 C. Signed IP Release Letter .. 59

5

List of Tables

Table Page

 2.1 Edge cases .. 18

 5.1 Differences between ZMQ Sockets ... 40

6

List of Figures

Figure Page

 2.1 Node timeout process ... 12

 2.2 Successful election (Normal mode) ... 13

 2.3 Successful election (Split Vote mode) ... 14

 2.4 Log replication ... 17

 3.1 An increment-only CvRDT counter ... 21

 3.2 A PN counter .. 22

 3.3 A multi value register ... 25

 4.1 A general messaging system .. 29

 4.2 Application architecture of the leader in the broker-RAFT 30

 4.3 The broker application architecture for the CRDT model ... 32

 5.1 Comparison of Docker vs VirtualBox ... 36

 5.2 Dockerfile for the management server ... 37

 5.3 The configuration of the network, cluster_network ... 38

 5.4 The RAFT socket architecture of the simulation ... 42

 5.5 The node choosing algorithm ... 44

 5.6 Initial values of some RAFT state variables and procedure resetState 45

 5.7 The CRDT socket architecture of the simulation .. 51

 6.1 Average latency for message size 128 bytes (RAFT) .. 58

 6.2 Average throughput for message size 128 bytes (RAFT) .. 59

 6.3 Average latency for message size 512 bytes (RAFT) .. 59

 6.4 Average throughput for message size 512 bytes (RAFT) .. 60

7

Figure Page

 6.5 Average latency for message size 128 bytes (CRDT) ... 60

 6.6 Average throughput for message size 128 bytes (CRDT) ... 61

 6.7 Average latency for message size 512 bytes (CRDT) ... 61

 6.8 Average throughput for message size 512 bytes (CRDT) ... 62

8

Chapter 1: Introduction

1.1 Overview of the Current Research

For a software system to be used by a large cohort of users, in other words scalable, it has

to be composed of different parts. This extends the life of the software system as the different

parts can be changed without devastating side effects to adapt to the varying load the software

system would be under. These different parts must work in the system in such a manner that it

appears to any user that they are still one monolithic application. These different parts must work

in a manner such that the user perceives the software system to be relatively close to

himself/herself. In other words, it means that the system must appear to be location transparent.

For the software system to achieve goals of scalability and location transparency, it often

means that its different parts coordinate themselves in a relatively fast manner in such a way that

can be perceived from the user as near instantaneous. This coordination normally happens over

some network by the use of messages as the different parts normally reside on different systems.

The network used or parts of it might fail causing some of the different parts of the software

system to be unable to communicate with each other. This is called a network partition and is

highly undesirable but commonplace in distributed systems.

A theorem was proposed that encapsulates this problem, the CAP theorem [1]. The

theorem can be summarized as follows: a distributed software system cannot be consistent(C),

available (A) and have partition tolerance (P). Since most distributed systems strive to be

partition tolerant, we are left with two permutations, CP (Consistent + Partition Tolerance) and

AP (Availability + Partition Tolerance). CP systems prioritize consistency while AP systems

prioritize availability. There are protocols that enable such systems. One of them is Raft [2]

which enables a CP system while another is CRDTs [3] [4] which enables an AP system.

9

1.2 Objective

The goal of this work is to compare a protocol used in a CP system, RAFT, against a

protocol used in AP systems, CRDT, in the context of a distributed messaging system. The

comparisons will be in the terms of latency and throughput as those are the characteristics on

which a distributed messaging system is typically judged [5]. These metrics would be initially

judged in the context of a single machine, and if there is time, comparisons using multiple

machines would be made.

10

Chapter 2: RAFT

2.1 Overview of RAFT

Being a protocol used by CP systems, RAFT concerns itself with consistency. It models

this problem as a problem of consensus. It tries to present itself as an understandable consensus

algorithm, that is, a consensus algorithm that can be easy to implement for people developing

highly distributed software systems. This is due to the fact that, according to [2], they struggled

to understand the gold standard for consensus algorithms, Paxos [6] [7]. The remark [8] below

encapsulates this point

“The dirty little secret of the NSDI1 community is that at most five people

really, truly understand every part of Paxos ;-).”

RAFT is a leader-based consensus algorithm. It makes use of a single leader for all its

decisions. The leader can change depending on circumstances: network partitions, and so on. It

models consensus in terms of the replicated state machine architecture [9]. For a network of n

nodes to properly handle failures, there must be at least 2f + 1 servers where f = number of

failures. On each of the server nodes in the network, there is a state machine, a log and a

consensus module. On each of the client nodes of this network, there is a consensus module. The

state machine can be seen as a composition of state-encoding variables and commands that

change those variables, thereby changing its state. The logs on the server nodes store the

commands from the client nodes in this network, in a particular order which the state machine

faithfully follows. It is the responsibility of the consensus module to keep the logs consistent. In

order for the system to appear to be highly reliable, these logs are replicas of the master log on

the leader, so the state machines at each server are processing the logs in the exact same way.

The algorithm used by the consensus module is divided into leader election, log replication and

11

the safety component. In this paper, node and server are used interchangeably and unless

otherwise specified, stand for the same thing.

In a cluster of servers that use RAFT, each server at any point in time is in either of these

states: follower, candidate or leader. The modes change based on the RPCs sent between these

nodes. A follower is a state where a node is passive, that is, the node cannot issue requests but

acts as a recipient for them. A candidate is a transition state where a node in a follower state

enters into, on its way to the leader state or a where, a node in a leader state enters into, on its

way to the follower state. A follower becomes a candidate by issuing a RequestVoteRPC on its

way to being elected a leader. A candidate becomes a follower if it failed to become a leader. A

leader is in charge of the cluster and is the only interface to the outside world for the cluster. All

communication in the cluster is only between the leader and the followers and is initiated only by

the leader.

RAFT does not make any assumption of the state of global synchronization. To this end,

the log is partially ordered by a value known as the term [2] which increases monotonically. The

term can also be infinitely large. This provides some form of synchronization as each server node

stores a version of the term on the node itself. Messages in the RPCs carry the source’s term. A

receiving node processes a received term in two ways:

(a) If the term received is larger than or equal to the receiving node’s own local copy, the

receiving node overwrites its copy with the received term, and responds with a positive

acknowledgement.

(b) If the received term is smaller than the receiving node’s own local copy, the receiving

node responds with a negative acknowledgement.

12

2.2 Leader Election

RAFT has a requirement that there should be at most one leader per term. A fixed interval

of time is chosen. This interval is used to generate arbitrary values of time. The values are also

known as timeout values and are used in satisfying the requirement mentioned earlier. These

values are randomly allotted to each node except the leader. The generation of timeout values

and their subsequent allotment are implementation-dependent. After the expiry of a nodes’

timeout value, a new timeout value is allotted to it. The process is summarized below in

Figure 2.1:

Figure 2.1. Node timeout process (adapted from [2])

α is implementation-dependent and can be negative if the cluster has no leader, as a way to elect

a leader by determining which node is the fastest to get to 0. α can be positive if the cluster

already has a leader as a way to prevent the node from reaching 0. The nodes in the cluster get

periodic heartbeats from the leader. If the leader is down for a period of time known as the

13

election timeout, an election for a new leader is started. The leader election algorithm, based on

the assumption that there is no current leader for the cluster, follows these steps [2]:

(a) If the system is starting up for the first time, all the nodes starts out as followers. If

any part of this system fails, that part also starts up as followers upon recovery.

(b) If a node times out before the rest of the nodes in the system, it moves from the

follower state into the candidate state. This node also increments its term. This node sends out

RequestVoteRPCs with its term to every node in the cluster including itself. Figure 2.2 illustrates

this process. Here each node’s reply (vote) is positive.

Figure 2.2. Successful election (Normal mode) (adapted from [2])

There are times where more than one node timeout at exactly the same time. In this state, the

system cannot make progress. This state is called a split move. To resolve this state [2]:

14

(I) another set of timeout values are immediately calculated and allotted to the affected

nodes. This increases the possibility that timeouts would not occur at the same time in the near

future.

(II) The timeout values for the other nodes in the system are still decreasing even as the

system is in an impasse. At some point, one of the nodes in the system would timeout first and

jump to a candidate state or if two or more expire at the same time again, the steps to resolve this

state is repeated, that is (I)-(II).

Figure 2.3 shows this process. Here each node’s reply (vote) is positive.

Figure 2.3. Successful election (Split Vote mode) (adapted from [2])

(c) A node will vote for at most one node to be the leader per term. The only reason a

node is unable to vote for a candidate is if there is a network partition or if the node itself has

15

failed. If the node in the candidate state from (b) gets all votes back from a majority of the other

nodes in the cluster, the node moves into the leader state and begins to send heartbeats

(AppendEntriesRPCs with no log entries) to the other server nodes in the system. These

AppendEntries also discourage any would-be nodes from starting its own election process.

(d) Network partitions can occur, where segments of the network are disconnected from

the other segments of the network. Consider a scenario where there is a network partition of a

system that is composed of five nodes (Node A- E), which divides the system as such; Node A-C

in one partition and Node D-E in the other partition:

 (i) Node A and Node D timeout and increment their terms. Node A becomes the leader

in its partition after receiving votes from B and C, which is a majority of the votes needed (3 out

of 5). Node D cannot become leader because it does not receive a strict majority (2 out of 5).

 (ii) The partition is removed. Node D timeouts and increments its term and sends out

RequestVoteRPCs to all the nodes in the system. They all send their votes back and Node D is

elected leader. Note A reverts back to a follower state.

2.3 Log Replication

The log on any server can be viewed as a contiguous collection of entries. Each entry is a

combination of a command from a client and the term number of the current leader. There are

indexes associated with a log: a commit index for committed entries and a log index for the

number of entries in the log. The leader maintains an extra index for every server in the cluster, a

nextIndex. The difference between the nextIndex and the log index is 1. AppendEntriesRFCs that

have log entries with their associated log index, are used by the leader to replicate its log among

the nodes in the system. Indexes are always incremented by 1. This replication process described

in detail below [2] can only be done with a strict majority of nodes.

16

(a) The leader adds a new entry in its log and increments its log index.

(b) Two log entries are sent out from the leader’s log to the follower nodes (one, the log

entry of the current log index, logCurrent and the other, the preceding log entry, logBefore).

(c) Upon receipt of message, the follower nodes check for the following conditions:

 - the current term, which is the highest term of the node’s log entries must match the

received message’s term, which is the highest term from the log entries(logCurrent and

logBefore) in the received message.

 - the highest index on the node’s log must match the log index of the one of the log

entries(logBefore) in the received message.

If the conditions are met, logCurrent is appended to the entry of the follower node and a positive

acknowledgement is returned. The leader executes (d). The only cases that the conditions

specified above would not hold is if that particular follower node is recovering from a crash or

failure. In such cases, the leader executes (e)-(f).

(d) When the leader receives positive acknowledgements from a particular server, the

leader increments the nextIndex associated with that server. After receiving positive

acknowledgements from a strict majority of nodes, the leader commits the entries after applying

the commands to its state machine and increments the commit index for every committed entry.

The result of the application of the commands in the log entry is returned back to the client.

(e) The leader decrements the nextIndex for that entry on the server, assigns the nextIndex

as the current log index and step (b) is carried out.

(f) (e) is carried out until there is a successful acknowledgement from that particular

server. Then the leader can execute step (d).

17

Figure 2.4 illustrates the above. In Figure 2.4, the nextIndex is the index of the next log

entry on the leader to be replicated. Figure 2.4(a), (b), (c) represent a normal sequence of

operations, that is, they represent a sequence of steps (a), (b), (c) and (d). Figure 2.4(d) shows a

scenario where a node (Node 2) has recovered from failure and is missing some entries. Figure

2.4(e) represents a scenario where steps (e) and (f) have been applied to bring down the

nextIndex for node 2 to a point where replication can occur. Figure 2.4(f) and (g) represents a

sequence of operations that allows node 2 to acquire the missing entries from the leader.

Figure 2.4. Log replication (adapted from [2])

The safety component is used to address certain edge cases in the leader election and the

log replication components as shown below [2] by imposing certain restrictions on both the

leader election and log replication components of the algorithm.

18

Table 2.1. Edge cases (adapted from [2])

Edge case Solution

A node could be elected leader despite not containing

all the committed entries.

During the voting phase, a node only returns

a positive vote if its last term number <= the

candidate’s term number and the length of

its log <= candidate’s length of log.

Future leaders could try to replicate an entry on a

formerly crashed leader that was replicated but not

committed by the formerly crashed leader. There is a

time lag between a replication and a commit. During

that time, the leader can crash. So subsequent leaders

can try to replicate these entries. This would overwrite

the entries stored on the nodes even though those

entries have already been stored on a majority of

nodes, introducing an unnecessary

duplication/redundancy.

Never commit entries from previous terms.

19

Chapter 3: CRDT

3.1 Overview of the CRDT Protocol

The consistency in the CAP theorem [1] refers to the act of removing accidental non-

determinism in computation of values between processes. Consistency tends to be on a sliding

scale [10] [11] from strong consistency on one end to weak/eventual consistency on the other

end. Strong consistency is normally enforced through synchronization, effectively turning the

system into a sequential system.

CRDT is an acronym for Conflict-Free Replicated Data Types. They obey a consistency

model called Strong Eventual Consistency [5] which states that in a system, all replicas have

equivalent state if and only if the system is eventually consistent and updates have been

delivered by those replicas in any order at any node. This means CRDTs are systems that try to

achieve consistency without explicit synchronization (synchronization when needed). CRDTs

also follow the CALM (Consistency as a Logical Monotonicity) principle [12] which is

summarized as a system state should only monotonically increase over time. They also have a

property that every operation on them should be commutative, associative and idempotent.

There are two known classes [3] [4]:

(a) State-based CRDTs: They are also called Convergence-Based CRDTs or CvRDTs.

States of replicas are exchanged between each other using gossip-protocols. The broadcast

operations performed by these protocols to merge states at replicas must also be commutative,

associative and idempotent. In other words, they enforce convergence. Convergence here can be

thought to have two aspects:

20

 - Liveness: a delivery of an updated state to all (interested) nodes in the system

happens after a defined number of message exchanges. This happens after a delivery of that same

update to a node in the system.

 - Safety: The same value can be queried from two distinct node that have been

delivered the same set of updated states.

(b) Operation-based CRDTs (CmRDTs): They are also called Commutative-Based

CRDTs or CmRDTs. In contrast to State-based CRDTs, these only exchange changes in states.

They broadcast operations, namely the update performed on them to change their states from one

version to another. Sending only these operations reduces the amount of message overhead

relative to amount sent by the State-Based CRDTs. They bear remarkable similarities to state

machine replication [9] as shown in the following example. Imagine a replica r1 in a group of

replicas which has had update operations u1 and u2 applied to it. When it broadcast these

operations u1 and u2 to the rest of replicas in the group of replicas, these operations u1 and u2 can

arrive at different times at each replica. To enforce convergence at all replicas in this replica set,

these operations u1 and u2 must be associative, commutative but not necessarily idempotent.

Their idempotency guarantees are based on whatever network protocol is used by the developer

to transmit the messages, that is, the ability of CmRDTs to be idempotent is heavily reliant on

the reliability of the network protocol used to transmit operations. In the following sections, the

primary data structures that are useful for demonstrating and building CRDTs are discussed.

3.2 Counters

A counter [3] [4] is integer-based as it supports only increment and decrement operations.

The number of operations can be derived from this integer. A naive CmRDTs version is

intuitive, as long as the property that all operations are delivered and applied only once, is rigidly

21

enforced. A naive CvRDT version is not possible as it violates the principle underlying a

CvRDT. To illustrate this point, assume that in a set of replicas, the merge operation calculates

the max of the values in a subset of replicas. Consider two replicas with an initial state of 0. At

each replica, a client executes an increment. Upon a merge of these two replicas, the value would

be 1 instead of 2 as there were two independent increment operations, one for each of the

replicas. Based on this observation, we must modify the naive CvRDT counter.

Assume we use an integer vector, with the size of the vector equal to the number of

replicas in the system. Each index in this vector corresponds to a particular replica. The merge

operation can compute the max by getting the maximum value of each position in the vector.

This whole procedure is explained in Figure 3.1:

Figure 3.1. An increment-only CvRDT counter (adapted from [3])

22

To support decrements, another type of counter, a PN Counter [3] [4] is used. In a PN

Counter, two counters are associated with each element and it tracks the element modification:

the deletion and addition of that element the counter is associated with. A decrement is an

increment on the counter that is associated with deletion. The same goes for the increment

operation. A query is the value of difference of the two counters. An example of a PN Counter is

shown below:

Figure 3.2. A PN counter (adapted from [3])

Figure 3.2 illustrates a CmRDT-based PN counter. Here a value has three replicas stored

at three nodes, one replica for each node. Additions and deletions to this element are modeled

with two counters, one for additions, and the other for deletions. Additions and deletions add 1 or

remove 1 from the value respectively, but are both represented as increments to the counters

23

representing them. Figure 3.2(a)–(h) show the states at each node after a particular operation or

sequence of operations have been applied. In Figure 3.2(d), the operations are applied as such,

increment first and then decrement.

3.3 Registers

A register [3] [4] acts as a placeholder for objects of a particular type. The two operations

on this data structure are assign and value. Implementing CRDTs semantics using this data

structure is tricky but there are two known implementations [3] [4]:

(a) Last Write Wins Register (LWW): The values are ordered by an increasing value,

usually a timestamp. These timestamps are assumed to possess properties of uniqueness, total

ordering and casual ordering. The current value is retrieved using the value operation. For

CvRDTs of this type of register, the assign operation updates the values contained in the register

and generates a new timestamp to be associated with the operation. The merge operation returns

the value that has the maximum timestamp associated with it. For CmRDTs of this type of

register, the assign operation generates a new timestamp at the sender. The receiver only updates

the value if the new timestamp is greater than its own timestamp for that particular value.

(b) Multi Value Register (MV): Here values are stored as set of pairs (value, version

vector [13]) for example an object in this system is stored in this way:{a1: unique identifier for

replica a1, a2: unique identifier for replica a2, … ,an: unique identifier for replica an} where n is

the number of replicas for that particular object. These unique identifiers are usually composed

of a timestamp and a monotonically increasing value to implement some sort of ordering.

Version vectors summarize the history of updates to a particular replica. Version vectors have

been shown to track causality [13] in distributed systems. An example of a version vector is

shown below. For version vector A and B for an object F, we can say that

24

 (I) A dominates B if A > B, that is every element of B is less than or equal to the

corresponding element of A and at least of one of the elements of B is strictly less than

corresponding element of B.

A = [{a, 1}, {b, 2}, {c, 3}]

B = [{a, 4}, {b, 2}, {c, 3}]

 B dominates A.

 (II) A descends B if A >= B. A summary of the occurrence of the events in the system

is achieved with this method. For example:

A = []

 B = [{a, 1}]

 B descends A as all version vectors descends the empty vector.

 (III) A is concurrent or in conflict with B, that is, some elements of A are not in B and

some elements in B are not in A. Also A conflicts with B if two or more elements do not

represent a monotonically increasing order. For example:

A = [{a, 1}]

B = [{b, 1}]

 A is concurrent with B.

A = [{a, 1}, {b, 2}, {c, 4}, {d, 3}]

B = [{a, 1}, {b, 2}, {c, 3}, {d, 4}]

 A conflicts with B.

 Everything we have discussed so far concerning Multivalue registers have been for

CvRDTs. Operations on this CRDT are

25

(a) value: read a local copy of vector

(b) assign: This is equivalent of a write. It generates a vector that dominates the previous

ones.

(c) merge: This takes the pairwise maximum of every element of the vectors being

compared.

An example is shown in Figure 3.3:

Figure 3.3. A multi value register (adapted from [3])

 The use of version vectors comes with a caveat: they have unbounded growth. In this

area, various improvements [14] have been proposed.

26

3.4 Sets

Implementing a set [3] [4] naively for CRDTs conflicts with the definition of a CRDT.

Consider two operations; insert and delete. A union is the result of an insert and a minus is the

result of a delete. Assume that we are dealing with a CmRDT based set. Assume we have a

system composed of three replicas: a, b, c. We apply operations as they come to each replica in

causal order. A hypothetical sequence of operations could be as follows:

Replica a insert a value 2 into its set. State of its set = {2}

Replica b insert the same value 2 into its set. State of its set = {2}

Replica a receives the insert operation from Replica b and inserts the same value 2 into its set.

But since it is a set, the operation has no effect.

Replica a removes the value 2 from its set. State of its set = {}

Replica b receives the insert operation from Replica a and inserts the same value 2 into its set.

But since it is a set, the operation has no effect.

Replica b receives the remove operation from Replica a and removes the value 2 from its set.

State of its set = {}

Replica c receives the insert operation from Replica a and insert the same value 2 into its set.

State of its set = {2}

Replica c receives the remove operation from Replica a and removes the value 2 from its set.

State of its set = {}

Replica c receives the insert operation from Replica b and inserts the same value 2 into its set.

State of the set = {2}

The final states of the replicas are Replica a = {}, Replica b = {}, Replica c = {2}.

Replica c has not converged, that is, its state is not the same as that of Replica a and b.

This shows that using sets as we know them from mathematics, without some modifications or

conditions attached, would invalidate the preconditions of a CRDT: associativity, commutativity.

One modification to allow the use of sets as CRDTs has been based on whether or not they

support the remove (minus) operation. The set-based CRDTs also differ on how the remove

operation is implemented if the remove operation is supported.

(a) G-set [3] [4]: This set-based CRDT does not support the remove function. The

operations available are add and value. The add operation for CvRDTs of this type are state

27

modifiers if there is some causal order on the states. The add operation is commutative as it is

implemented as a union for CmRDTs. For example {1} U {2, 3} = {2, 3} U {1}. This type is not

very useful on its own. It has a similar operation to the increment only counter discussed earlier.

(b) 2P set [3] [4]: This supports the remove operation in the form of tombstones.

Basically, the 2P set has two G-sets, one for the insertion Gi and the other for deletion Gd. Gd is a

tombstone set. An element x can be removed from Gi if and only if x ∈Gi. To remove an

element from the set is to place it in Gd. Once placed in Gd, it cannot be added back again to Gi.

For 2P CvRDTs, the value operation returns elements that have not been removed. The merge

operation returns the union of the two sets, Gi and Gd. For 2P CmRDTs, the remove and add

operations commute, that they are inherently commutative with a slight modification: a remove

operation only occurs after an add [3] [4].

28

Chapter 4: Methodology

These protocols are used in the building of distributed systems. An example of a

distributed system in the terms of this paper is a messaging system.\

Current large enterprise software in the cloud are becoming microservices-based [15]. A

microservice [15] is a modular approach to building software where different parts of the

application are split on business function(services) and communicate over HTTP or RPC. The

connections between these services can be modeled as a producer which generates data and a

consumer that processes such data to give results and a pipeline between them. This producer

and consumer might be in the same enterprise software or they might be in different enterprise

software. The pipeline brings the producer and consumer together as it transfers the data between

the producer and consumer. This pipeline might be asynchronous (a message queue) or

synchronous (an RPC protocol).

 A message queue is the main part of a messaging system which is normally comprised of

the queue, messaging protocol and endpoints which are in this case, a producer and consumer.

Depending on the messaging system, most of the queues are set up as a broker which transforms

the format of the message sent by the producer into the format accepted by the consumer. Figure

4.1 gives us a brief overview of such the messaging system described above. Most times, brokers

do not have transactional support. Transactional support in this case means sending and receiving

a message is treated as a transaction. The sender sends a message to the message queue. If the

receiver(s) has/have not received this message and acted upon it, then the message is not deleted

from the message queue. This work hopes to use the protocols discussed in the earlier sections

(RAFT, CRDTs) to enable transactional support in a message queue, through some form of

distributed consensus.

29

Figure 4.1. A general messaging system

4.1 High Level Overview of the Message Queue

The message queue is modeled as a broker. The broker is responsible for receiving and

routing messages from sender to receiver. The broker here is actually a cluster of nodes/servers.

Consumers and subscribers are used interchangeably in this section and unless specified, mean

the same thing.

4.2 RAFT

Here each node in the cluster has the same configuration as Figure 4.2 (without the

Producers and Consumers). For the nodes that are not the leader, the Producers and Consumers

section of Figure 4.2 is replaced by the leader. Only the leader in the RAFT model has this

cluster manager/sharing layer enabled.

30

Figure 4.2. Application architecture of the leader in the broker-RAFT

The node is composed of two components:

(a) Middleware component: This is the layer that actually interacts with the servers and

clients. It is composed of a:

 - Serialization layer for serializing the data to a binary format for compact storage.

 - RPC layer. This layer enables communications between different nodes.

(b) Consensus component: This layer is what implements the consensus protocol. It is

divided into two:

 - Log files: A log file represents a topic. It is a file on the disk that stores the messages

received from the producer. Messages are appended at the end of the file. Messages are read by

the I/O layer from the beginning of the file to some offset n based on some mapping in the I/O

layer. Messages are only removed from a log file after all of the available subscribers have

received the message and sent back positive acknowledgements.

31

 - A cluster manager: The cluster manager is responsible for reducing/increasing the

number of nodes that are required based on the following metrics: message volume load from the

producers and cpu metrics of the system running the broker.

 - A I/O layer: The I/O manager is responsible for sending the messages received from

the producer based on the topic id into the different log files. The I/O layer is also responsible for

deciding the number of messages n, to send to subscriber Si in subscriber group S. This value n is

equal to the n described in (a). There can be multiple subscribers for a particular topic. To scale

properly on the subscriber side, each subscriber Si is fitted with a cache that they can poll

messages from. The cache eases pressure on the message queue and provides an asynchronous

way of handling messaging. Also, the I/O layer maintains a mapping {Si, n} for all the

subscribers in S. Changes to this mapping are replicated using the RAFT protocol.

 A message will be of the form {topic-id, value}. When the leader gets a message from a

producer, it appends the value of the message to the relevant log file based on the topic-id

associated with the log file. The leader then sends the message out to the all the nodes in the

cluster. Each node appends the value of the message received from the leader to the relevant log

file based on the topic-id associated with the log file and returns a positive acknowledgement to

the leader. To remove a message(s) stored on the leader, the leader sends a remove request

{topic-id, n} to each node in the cluster. Each node physically removes the n messages from the

relevant log file according to the topic-id associated with the log file and returns a positive

acknowledgement to the leader. The leader then proceeds to remove n messages from the

relevant log file according to the topic-id associated with the log file.

32

4.3 CRDT

For the CRDT model, Figure 4.3 is the representation of the broker. The broker here is a

cluster of nodes/servers. There are two types of nodes in this broker, a leader node and peer

node. There are always two leader nodes in the system. One is the master and the other is the

slave. The master is the leader node that handles all communications between the broker and the

outside world (producers and consumers) while the slave does not partake in any of the

communications in the system. If the master leader node fails, the slave node becomes the new

leader node and a copy of the slave node is created and becomes the new slave node. The leader

nodes do not store any messages; the peer nodes do. Also, the I/O layer is unique to the leader

nodes as is the peer-to-peer layer for the peer nodes.

Figure 4.3. The broker application architecture for the CRDT model

The serialization layer, RPC layer are the same as the ones described in the RAFT model.

Here the cluster layer is the same as the cluster manager layer in RAFT. The I/O layer here is

33

responsible for inserting and retrieving the messages stored on all the peer nodes. It inserts

messages into nodes randomly. The CRDT responsible for holding the message in Figure 4.3 is a

map [16]. A map is a structure similar to a regular map data structure in that it exposes similar

operations such as get(key) and put (key, value). It is different from regular map operations as

the keys and values are CRDT values. The keys in this case are LWW (Last Write Wins)

registers. The values are sets. The sets in this case are LWW-sets [3] [4]. The LWW-set is

similar in operation to the 2P-set in that it has an add-component (set) and a remove-

component(set). In the LWW-set, a pair (timestamp, visibility) is associated with a value. A

visibility of true denotes an add while a visibility of false denotes a remove. To remove an

element, you add (value, (element timestamp, false)) to the remove set and to add an element,

you add (value, (element timestamp, true)) to the add set. A merge operation is done by merging

the add and remove sets together. A lookup for element e results in true value if and only if the

element e is in the add set and not in the remove set with a higher timestamp, that is, the element

e in the add set must have a higher timestamp than a corresponding element e in the remove set.

This also holds even if the element e has duplicates in the add set. In the event of a concurrent

add and remove, the removes only occur after the adds. Timestamps increase monotonically.

A description of the maps that are used by the brokers are shown below:

map (service or user) {

 register: service-name;

 register: user-name;

 set: elements

}

34

After receiving new messages from the leader, the peer-to-peer layer of a peer node is

responsible for sending out updates to the other nodes in the cluster. An update operation is

performed at a replica by merging the maps' sets together.

When the consumer issues a read of n elements from the broker, that is the consumer

issues a get(key(s), n) command, these steps are followed in sequence:

(a) each replica is contacted by the I/O layer to retrieve n elements from the map whose

keys match with the keys(s) in the command.

(b) each replica performs a merge of the two sets (add and remove) of all the identified

maps present in the replica.

(c) the peer-to-peer layer of each replica sends out messages containing the merged sets

to all peers

(d) a merge operation is then conducted at each replica.

(e) all the replica's sets are then merged to produce a set A.

(f) The lookup operation is run on each element in set A and returns either a true or false

value. Those elements that return true, are returned from the broker and pulled into the customer

cache. Steps (g) –(j) are done after a positive acknowledgment is returned from the customer.

Steps (g) – (j) are necessary to keep the data stored at a manageable level.

(g) A remove operation, remove(key(s), n) is then issued by the I/O layer to a replica.

Assuming that an add () operation has just been applied to the replica, the I/O layer takes note of

the timestamp t issued by the add () operation and removes n elements associated with key(s)

whose timestamp is less than that of t. Otherwise, the I/O layer removes n elements associated

with key(s). In both scenarios, those elements are added into the remove set of that replica.

35

(h) The peer-to-peer layer then replicates this remove set with all the replicas in the set.

(i) When (h) is complete, a removeElement() operation is performed at each replica. This

removes each element in the add set that is also in the remove set.

(j) After that, each element in the remove set is purged.

36

Chapter 5: Implementation

This project uses a few libraries and technologies. These technologies/libraries are as

follows:

- Docker

- ZMQ

In the sections below, explanations of how these libraries are used in this project will be

given. Also, the RAFT/CRDT configurations using the aforementioned libraries will also be

discussed.

5.1 Docker

Docker is a library that provides a lightweight VM. It is a system-level VM meaning that

it houses the system-level libraries in order to run the simulation. It does so, by making use of

resource isolation (that is address space isolation, network isolation, I/O isolation, memory

isolation) found in the Linux kernel mainly cgroups and namespaces [17]. An example

comparison between Docker and the normal type of VM's such as VirtualBox is shown in

Figure 5.1:

Figure 5.1. Comparison of Docker vs VirtualBox [18]

The main difference between Docker and a normal VM (VirtualBox) are that a normal

VM provides a system-level, system-type resource isolation meaning that they provide total

37

isolation between two systems (that is, two host systems running on the same machine) and

Docker provides a system-level, process-type/application-type resource isolation, meaning that

only the applications/process are separated but share the same underlying system. This makes

Docker useful for this project as:

(a) Each process can be packaged into a container, instances of an image and with the

system-level support can be regarded as a machine. When a set of these machines are put on a

network, they become a distributed system.

(b) With isolation you can transplant a particular bunch of containers onto another host

system and it will still produce the same output, providing repeatability.

An image is a snapshot of a system with system-level libraries that provide the perfect

environment to run a process. This image is immutable and it has a layered filesystem [17] [19].

A container is a running/stopped instance of a image that is namespaced [17] [19], that is it can

only use kernel resources (network, file, user and so on) associated with that namespace. To

create an image, a Dockerfile is needed. A sample Dockerfile for this project is shown in

Figure 5.2.

Figure 5.2. A Dockerfile for the management server

38

Figure 5.2 contains instructions to generate the image that would contain all the files

necessary to run a process and it is built from another image: softwareimages/researchpaper:

latest. The dockerfile for that image is found in Appendix A. A complete meaning of the

commands used is also explained in Appendix A. To generate the Docker containers from the

images, a native command is used: docker run. To automate generation of Docker containers

from images, another native command docker compose is used for that purpose.

In order for containers to talk to each other, Docker provides the capability of creating a

virtual network. A virtual Ethernet bridge is created for the user when the user installs Docker.

This bridge allows for the communication between containers without the use of port

forwarding, as this bridge is a self-contained IP subnet and gateway. This bridge also supports

automatic DNS name resolution, resolving the container names to the IP addresses assigned by

the bridge. This bridge is local. Figure 5.3 shows the configuration of the network used for the

simulation.

Figure 5.3. The configuration of the network, cluster_network

39

5.2 ZMQ

ZMQ/ OMQ (pronounced zero-m-q) [20] is a networking library. It is a wrapper around

the C socket library and provides easier ways of creating and utilizing network sockets. The

library has several language bindings including a Java binding named jzmq. The library is based

around ZMQ sockets which at their core are composed of two things: a C socket and a queue.

The queue allows for the library to send message when it wants to and also allows for the

retaining of messages that were not delivered to their destination. ZMQ is also built on the idea

that normal lock-based synchronization primitives are too error-prone and brittle to be used

effectively and proposes a message-only solution for synchronization [20].

A major benefit of ZMQ/ OMQ is that it allows for specific patterns to be used very easily

which forms the different types of sockets to be found in this project. These types of sockets are

[20]:

- REQ socket (a receive-type)

- REP socket (a send-type)

- DEALER socket (a receive-type),

- ROUTER socket (a send-type),

- PAIR socket (a receive-type and send-type)

- PUB socket (a send-type)

- SUB socket (a receive-type)

These sockets are best understood in pairs [20]:

(a) A REQ/REP pair is the basic client/server connection type and is the basis of all

the other subsequent types of sockets that are listed above.

40

(b) A DEALER/ROUTER pair is analogous to the REQ/REP pair. The difference

between the REQ/REP pair and the DEALER/ROUTER pair is that the DEALER/ROUTER is

primarily used for asynchronous connections while the REQ/REP pair is synchronous.

(c) A PAIR/PAIR pair is primarily used between threads of the same process.

The main differences between them can be summarized in Table 5.1:

Table 5.1. Differences between ZMQ Sockets (adapted from [21])

Socket

type

Send Receive Fixed-order Socket placement

 Client-

side

Server-

side

REQ Yes No Yes. REQ can only receive after it has sent a message. Yes No

REP No Yes Yes. REP can only send after it has received a message. No Yes

DEALER Yes Yes No. DEALER can send or receive at any time in any order. Yes No

ROUTER Yes Yes No. ROUTER can send or receive at any time in any order. No Yes

PUB Yes No Yes. PUB can only send messages. No Yes

SUB No Yes Yes. SUB can only receive messages Yes No

PAIR Yes Yes No. PAIR can send or receive at any time in any order. Yes Yes

There are certain caveats which were discovered when using this library in building this

project. They are:

- ZMQ/ OMQ is an async framework, meaning that it expects the user not to depend

heavily on timing and order of arrival. This reorients the architecture of the network and makes

the user to have to deal with messages that have long since been delivered which are not

necessary at a certain stage of the computation, that is, duplicates of an already processed

message can arrive at a receiver.

 - ZMQ/ OMQ does not send instantaneously. A send command hands off the message

from the user process to the underlying ZMQ thread/process which sends the message on its own

41

time. It is a fire-forget mechanism meaning that depending on the type of socket, the message

will be dropped if the destination is unreachable.

- ZMQ/ OMQ sockets are not thread-safe. They are made thread-safe when used with a

ZMQ Context [21]. This does not allow them to be passed among multiple processes, that is, a

ZMQ socket exhibits undefined behavior [20]. The process that it is attached to (the owner of the

socket) is the only one that can use the socket. This is keeping inline with their message-only

philosophy discussed earlier.

(d) Based on the socket semantics as described above, it is important to divide the

network into static parts. That is, one would typically have the REP/ROUTER sockets bound to

the “server” parts of the network and the REQ/DEALER sockets bound to the “client” parts of

the network.

All these caveats/properties were considered in the design of the network architecture for

both the RAFT and CRDT configurations.

5.3 RAFT

5.3.1 Overall system architecture

The overall socket/docker/system architecture is shown in Figure 5.4. Each box contains

a ZMQ Poller which uses select() and poll() internally to deque messages received by the sockets

to be made available for use in the program. Every socket in the box is registered to a ZMQ

Poller. From here on out, every time the word container with respect to Figure 5.4 is used, it

represents a box in that image.

42

F
ig

u
re

 5
.4

.
T

h
e

R
A

F
T

 s
o
ck

et
 a

rc
h
it

ec
tu

re
 o

f
th

e
si

m
u
la

ti
o
n

43

The RAFT server containers have three processes:

- a parent process which is the ET(election task) process which also houses the ZMQ

Poller,

- a child process which is the TT(timerThread task). The TT(timerThread task) signals the

ET when to start an election by sending a timeout message to it, and for the main RAFT server,

signals when to send messages from the main RAFT servers log to the other servers for

replication.

- a child process, which is the ST(StateMachine Task). The ST(StateMachine Task)

represents the statemachine which is composed of a filethread. The ST(StateMachine Task)

handles writing of the different RAFT persistent properties[22] and the committed entries on the

RAFT log to the filesystem.

5.3.2 Client/server configuration

A cluster node in this configuration is a RAFT server as show in Figure 5.4. The

client/consumer and server/producer are entities that request entries from the RAFT server

(leader)'s log as in the case of the client/consumer or push entries to the RAFT server (leader)'s

log as in the case of the server/producer. The consumer processes the received messages.

Upon start, the consumer and producer receive a set of cluster nodes from the

management server. They initialize a set of DEALER sockets (negotiation sockets) whose

number is equal to the number of cluster nodes in the system. These negotiation sockets each

have a pair of addressable names: a private node name, for communication among themselves

and a public node name for communication to the management server in Figure 5.4. They ping

these cluster nodes using the DEALER sockets, in a round-robin fashion to find out which node

is the actual leader. This “pinging” is shown as code in Figure 5.5. The consumer begins to

44

request for entities from the leader, after connecting to the leader. The producer begins to push

entities to the leader, after connecting to the leader.

Figure 5.5. The node choosing algorithm

5.3.3 General algorithm

The general algorithm used by the RAFT server is shown below. The general algorithm is

an event loop that triggers a particular socket on inbound events. The three major events in the

system are INIT, TIMEOUT, and RAFT. The INIT event comes from the management server.

The INIT event causes the RAFT server to initialize all the variables to be used in the RAFT

algorithm. Those variables and their initial values are shown in Figure 5.6:

45

Figure 5.6. Initial values of some RAFT state variables and procedure resetState

The internal state of the server is denoted by state. The internal RAFT state is denoted by

state.raft. The internal state of the RAFT messages sent between the peers is denoted by

message.raft.

The TIMEOUT event is for the leader election algorithm discussed in previous chapters.

The TIMEOUT event comes from the TT in Figure 5.4. The timeout indicates that an election

can happen and the RAFT server can choose to act on it or disregard it. The RAFT event handles

replication of the messages on the RAFT server’s (leader) log. The RAFT event comes from the

other RAFT servers in the cluster. Sections 5.3.3.1, 5.3.3.2, 5.3.3.3 are high level descriptions of

the processes that occur on receipt of an INIT, TIMEOUT, RAFT events respectively.

5.3.3.1 INIT event

(a) The RAFT server waits upon INIT to receive a list of remote peers from the

management server on its DEALER socket.

46

(b) Once it does (a), it starts up TT by sending a Timeout message to TT. TT then

responds, after a certain randomized period of time known as an initial election timeout ieT, with

a timeout message. TT runs for the entire lifetime of the RAFT server.

(c) On the completion of (b), the election algorithm described in the next section is run.

(d) On the termination of the election algorithm, the leader sends a heartbeat message to

TT. TT then responds, immediately with a heartbeat message and goes to sleep for a certain

timeout period, heartbeat timeout, hT.

(e) After (d), the replication algorithm then starts.

5.3.3.2 TIMEOUT event

 (a) Upon receipt of the timeout message from TT, the RAFT server checks if it is a

follower and if it has a leader.

(b) If the RAFT server is a follower and it does not have a leader, the RAFT server

changes its state.raft.election to CANDIDATE. The RAFT server also executes the following

steps:

 (I) The RAFT server then resets its election timeout by sending a timeout message to

TT. TT generates a new election timeout number, eN and responds after eN has expired.

 (II) The RAFT server builds a requestvote message which contains these properties of

the RAFT server: state.id, state.raft.term, lastLogIndex, lastLogTerm.

 (III) The RAFT server then broadcasts it to all of its remote peers.

(c) If the RAFT server is not a follower, it disregards the timeout message.

(d) If the RAFT server is a follower and it does have a leader, it increments a counter,

state.numOfTicks and checks to see if it is equal to another counter, state.maxTicks. If it is, it

resets its state. Resetting its state makes the RAFT server ready to trigger an new election upon

47

the receipt of the next timeout message. This state.numOfTicks is used to wait for the leader that

could be unresponsive, that is, a heartbeat message has not been received by the RAFT server

recently. The state.maxTicks is the upper limit to “time” to wait for the leader, before the RAFT

server triggers a new elections. These counters are used to avoid situations where the RAFT

server would wait unnecessarily for an unresponsive leader before the RAFT server is triggered

by TT.

(e) The RAFT server checks if it is a leader. This also means that the RAFT server knows

the leader in the cluster. If the RAFT server is a leader, the RAFT server broadcasts an

appendEntries messages. If the RAFT server does not know the leader of the network, the RAFT

server changes its state.raft.election to FOLLOWER.

5.3.3.3 RAFT event

The RAFT event comes with certain messages, requestvote, requestvote_rep,

appendEntries and appendEntries_rep messages. Explanations of the algorithms that are run for

each message are given below:

- Upon receipt of a requestvote message from a remote peer, the RAFT server checks

for the following conditions:

- If the message term is greater than the RAFT server’s term, the RAFT server changes

its state to that of a follower and sets its term to that of the message.

- If the message term is less than its term, the RAFT server sends a requestvote_rep

message with a NACK back to the remote peer requesting a vote.

- If the message term is the same as its term and its log entries are the same as that of

the message, the RAFT server sends back a requestvote_rep with an ACK message.

48

- If none of the above condition hold, the RAFT server sends a requestvote_rep

message with a NACK back to the remote peer requesting a vote.

- Upon receipt of a requestvote_rep message from a remote peer, the RAFT server

checks to see if the requestvote_rep message comes with an ACK. If the

requestvote_rep message does, the RAFT server increments number of nodes that

voted for it, state.raft.voters. If the state.raft.voters value is equal to the assigned

quorum, state.raft.quorum:

(a) the RAFT server changes its state.raft.election to LEADER

(b) the RAFT server broadcasts a setLeaderId message which contains its id to all of

its remote peers.

(c) the RAFT server assigns for each remote peer, a match index of 0 and a next

index of 1. The purpose of the match index is to indicate the highest entry

replicated on a remote peer and the next index, the index of the next log entry of

the RAFT server to send to that remote peer.

(d) the RAFT server broadcasts a message with the following properties (id, term,

prevLogIndex, prevLogTerm, entries, commitIndex)

- Upon receipt of an appendEntries message from a remote peer, the RAFT server runs

through a series of steps:

(a) The RAFT server checks if it is a leader or candidate. If it is either, it changes its

state.raft.election to FOLLOWER. In the case if it is a leader, it disregards (b).

(b) The RAFT server checks if the RAFT server has the same previous term as that of

the message.

49

- If the RAFT server does, the RAFT server checks to see if the message

contains any new entries. If the message does not, the RAFT server sends

back a heartbeat to the remote peer. If the message does, the RAFT server

adds the new entries to its log. The RAFT server also responds with an

appendEntries_rep message bundled with an ACK. If the commit index of the

message is greater than the RAFT server’s commit index, the RAFT server’s

commit index, state.raft.commitIndex becomes the min of the message’s last

log index and the message’s commit index.

- If the RAFT server does not, it responds with an appendEntries_rep message

bundled with a NACK.

- Upon receipt of a requestvote_rep message from a remote peer, the RAFT server runs

through a series of steps:

(a) The RAFT server checks to see if the term in the message and in the RAFT

server's term are equal.

(b) If the term in the message is less than that of the RAFT server, the RAFT server

disregards the message.

(c) If the term in the message is greater than that of the RAFT server, the RAFT

server changes its state.raft.election to FOLLOWER.

(d) If the term in the message matches that of the RAFT server, the RAFT server

checks for the message(responses) bundled with the requestvote_rep message:

- If the response is an ACK, the RAFT server assigns the match index for the

remote peer to be message's last log index. The RAFT server assigns the

commit index to be the max of all the commit indexes of all of the remote

50

peers. The RAFT server then assigns the next index for the remote peer to the

min of the RAFT server's last log index and the message's last log index.

- If the response is a NACK, the RAFT server assigns the next index for the

remote peer to be the conflicting index sent in the message.

- If the response is a heartbeat, disregard.

5.4 CRDT

5.4.1 Overall system architecture

The overall socket/docker/system architecture is shown in Figure 5.7. Each box contains

a ZMQ Poller which uses select() and poll() internally to deque messages received by the sockets

to be made available for use in the program. Every socket in the box is registered to a ZMQ

Poller. From here on out, every time the word container with respect to Figure 5.7 is used, it

represents a box in that image.

51

5.4.2 Client/server configuration

In the CRDT configuration, the consumer and producer role are similar to the description

in Section 5.3.2. The CRDT configuration uses a binary star pattern [20] for reliability.

F
ig

u
re

 5
.7

.
T

h
e

C
R

D
T

 s
o
ck

et
 a

rc
h
it

ec
tu

re
 o

f
th

e
si

m
u
la

ti
o
n

52

In the binary star pattern [20], there are two main servers that all the peer nodes connect

to. One of the pair of the servers is the primary server and active server, that is, it is the server

that the outside world (consumer and producer) connect to. The other server in the pair is the

backup and inactive server. The client and producers do not have a direct connection to the any

other nodes in the network apart from the above pair. If the active server were to go down, the

outside world and all the peers in the cluster will automatically connect to the backup server. The

backup server notifies the management server from Figure 5.7 and proceeds to assume the role of

the active and primary server. The management server then selects a new backup and inactive

server from the remaining peers.

The peer nodes that are not active or backup are connected to each other and do not go

through the server to replicate messages. In this section and in Section 5.4.3, they are referred to

as the ordinary servers. The backup server does not participate in replication until it is made active

and primary. Each peer has a log where the messages are stored and the log is a state-based CRDT,

a map. The operation of the map is discussed in Section 4.1.2.

5.4.3 General algorithm

The general algorithm used by the CRDT server is shown below. The general algorithm

is an event loop that triggers a particular socket on inbound events. The two major events in the

system are CONNECTION and CRDT. The CONNECTION event comes from the management

server and from the outside world (consumer and producer). The CONNECTION event from the

management server determines if the CRDT server is chosen as active or inactive. The

CONNECTION event from the outside world is used to give the calling node the addresses of

the active and backup servers. The CRDT event is used for replication of messages from one

53

peer node to another. Sections 5.4.3.1, 5.4.3.2 are high level descriptions of the processes that

occur on receipt of CONNECTION and CRDT events respectively.

5.4.3.1 CONNECTION event

- Upon receipt of a connection event from the management server, the CRDT server

checks to see if the management server designates the CRDT server as a primary and

active server or as a backup and inactive server. Whatever the outcome, the CRDT

server sends back an ACK to the management server that it changed its state. The

CRDT server then broadcasts a setPrimary or setBackUp message to every peer in the

cluster.

- Upon receipt of a connection event from the outside world (consumer and producer),

the CRDT server checks to see it has the address of both the active and the backup

servers. If the CRDT server does, it sends back a setServers message with the

addresses. If the CRDT server does not, it sends a setServers message with a NACK.

5.4.3.2 CRDT event

The CRDT event comes with certain messages: serverPost, update, clientGet, serverGet,

mergeState, mergeState_rep, serverGet_rep, clientGet_rep, removeValue messages.

Explanations of the algorithms that are run for each message are given below:

- Upon receipt of a serverPost message from the producer, the CRDT server checks to

see if it is an ordinary server. If it is not, it disregards the message. If the CRDT

server is an ordinary server, it checks to see if the message is a delta or not.

- If the message is a delta, the CRDT server updates its event log and broadcasts the

delta as an update message to all the other ordinary servers.

54

- If the message is not a delta, the CRDT server sends its entire log as an update

message to all the other ordinary servers.

- Upon receipt of an update message from an ordinary server, the CRDT server checks

to see if it is an ordinary server. If it is not, it disregards the message. If the CRDT

server is an ordinary server, it checks to see if the message is a delta or not.

- If the message is a delta, the CRDT server updates its event log with the delta.

- If the message is not a delta, the CRDT server updates its event log with the

message payload.

- Upon receipt of a clientGet message from the consumer, the CRDT server checks to

see if it is an ordinary server. If it is, it disregards the message. If the CRDT server is

a primary server, it broadcast a serverGet message to all the ordinary servers.

- Upon receipt of a serverGet message from the primary server, the CRDT server

checks to see if it is an ordinary server. If it is not, it disregards the message. If the

CRDT server is an ordinary server, it broadcasts a mergeState message to all the other

ordinary peers.

- Upon receipt of a mergeState message from an ordinary server, the CRDT server

checks to see if it is an ordinary server. If it is not, it disregards the message. If the

CRDT server is an ordinary server, it does a merge, according to the merge operation,

detailed in Chapter 5. The CRDT server then appends its merged state to its event log.

The CRDT server then sends a mergeState_rep back to the CRDT server where the

mergeState message originated from.

- Upon receipt of a mergeState_rep, the CRDT server gets its updated state and sends it

to the primary server as part of a serverGet_rep message.

55

- Upon receipt of a serverGet_rep message, the CRDT server checks to see if it is an

ordinary server. If it is, it disregards the message. If the CRDT server is a primary

server, the CRDT server increments a counter, mergedStates. Once the counter is

equal or greater than the number of cluster nodes minus 2, the CRDT server merges

the state in the serverGet_message with its own event log. The CRDT server then

sends the latest value of the state for the value the consumer is requesting, as part of a

clientGet_rep message. The CRDT server then sends that latest value as part of a

removeValue message.

- Upon receipt of a removeValue message, the CRDT server checks to see if it is an

ordinary server. If it is not, it disregards the message. If the CRDT server is an

ordinary server, it does a remove operation as described in Chapter 4 with the payload

of the removeValue message. This is done to prevent the event logs of the ordinary

server from growing too large with all the frequent merges of state.

56

Chapter 6: Results

In this chapter, a comparison of the two implementations of CRDT and RAFT as

described in Chapter 5 was performed. Two metrics, latency and throughput were used as the

basis for the comparison. In the subsequent section, the simulation environment will be

described. Next, a definition of the metrics used will be explained. Finally, results in the form of

graphs will be shown and explained.

6.1 Simulation Environment

The simulation was run on a laptop, running Ubuntu OS 16.04.3. The processor is an

Intel Core i7-4500U (4th Gen) with 1.8 Ghz clock speed. The memory is 8GB DDR3 RAM and

the hard disk size is 1TB. The simulation was run with the following software, Docker 18.0.1

CE, Java 8, jzmq-4.0.1.

6.2 Metrics

The metrics used for comparison are latency and throughput. Latency is the time it takes

for a single message to go from the producer to the consumer and is measured in seconds.

Throughput is the inverse of latency and is the number of messages that could be delivered in

one second at the consumer from the producer, after passing through the message queue. This

latency and throughput metric are averages, as a baseline for the message queue is desired. The

computation of the latency and throughput metric follow the model for computing latency and

throughput in [23] and is described below.

A particular number of messages (N = 2000) are tagged with a tag Id, td. td is necessary

for the consumer to identify messages with td and record their timestamps as part of the

simulation. Timestamps of messages that have been previously received by the consumer are not

recorded. This is because we want to measure replication latency, not message latency. Based on

57

the description of the RAFT and CRDT implementations in Chapter 5, the consumer can receive

the same message multiple times.

Each message w, generates a timestamp t upon initialization. This timestamp correlates to

On in [23]. This same message is what is retrieved for the RAFT implementation. The CRDT

implementation does this differently. Since a new message m is always generated from a

message q during merge operations, a merge operation copies timestamp t into q. This makes it

equivalent to what the RAFT implementation does.

The latency and throughput computations are done on the consumer, because with that,

we can be sure that a particular message m was sent from the producer, through the queue and

received by the consumer. Once the consumer receives message m that has tag id td and has not

yet received the same message before, it records the timestamp tm as the received timestamp.

This correlates to In in [23].

The latency Ln, then becomes the difference between In and On. The average latency is

calculated as L divided by the number of messages tagged with td. The throughput, T is computed

as the number of messages tagged with td, divided by the difference between time the last

message was received and the time the first message was received. To measure the latency/

throughput, the concept of the simulation run is used.

A simulation run is pushing 2000 messages through the queue from the producer to the

consumer. This simulation run is repeated 20 times and average values were computed. The

average latency and throughput on the graphs, shown in Figures 16-23 is the average of the

repeated simulations. The average time for one simulation run is 1.5 hrs.

58

We test the throughput and latency against the number of replicas and also against

message sizes. These are two interesting parameters to judge the message queue performance on,

due to two reasons:

- Size of the payload: This is to determine how the latency is affected under different

message sizes. In these simulations, we use a small message size (128 bytes) and a large message

size (512 bytes).

- No of replicas: This is to determine what effect an increasing number of replicas will

have on latency. This increase, in a normal application might be due to fault tolerance and

compensate for node failures. In these simulations, we test the message queue with 3, 5, 7

replicas.

6.3 Numerical Results

Figure 6.1. Average latency for message size 128 bytes (RAFT)

59

Figure 6.2. Average throughput for message size 128 bytes (RAFT)

Figure 6.3. Average latency for message size 512 bytes (RAFT)

60

Figure 6.4. Average throughput for message size 512 bytes (RAFT)

Figure 6.5. Average latency for message size 128 bytes (CRDT)

61

Figure 6.6. Average throughput for message size 128 bytes (CRDT)

Figure 6.7. Average latency for message size 512 bytes (CRDT)

62

Figure 6.8. Average throughput for message size 512 bytes (CRDT)

Figures 6.1-6.4 is the graphs for the RAFT implementation. Figures 6.5-6.8 are the

graphs for the CRDT implementation. For both implementations, as the number of replicas

increase, a increase in latency is observed. This increase can be explained by the fact that the

more nodes would result in more messages which would increase the time to indicate that a

particular message has been replicated. The increase is sharper for CRDT than it was for RAFT

due to the nature of the implementation requiring more communication for replication than

RAFT. A drop is observed for throughput. This means that latency is inversely proportional to

throughput, that means that higher values for latencies will result lower values for throughput.

The message sizes also affected both implementations as both systems seemed to perform better

for the smaller message (128 bytes) than for the larger message (512 bytes).

63

Chapter 7: Conclusion and Future Work

From the experiments carried out in this paper, the RAFT [2] protocol is shown to have a

better message throughput and latency than that of the CRDT [3] protocol. From the experiments

carried out in the paper, both systems spend quite a bit of time replicating their messages, given

that they both process less than 20 messages per second.

In this paper, we discussed and implemented the RAFT protocol (leader election and

replication). We also discussed the CRDT and the data types that can be derived from CRDT.

We implemented the map and LWW set data types from the CRDT as CmRDTs. We

implemented these protocols with Docker to simulate a distributed system, which is a novel

implementation to date.

Some possible future work are as follows:

- Adding network instability to test the system under failures.

- Implementing the CRDT protocol for operation-based replication, a CvRDT which

could greatly reduce the number of messages sent between nodes.

- Implement the extended parts of the RAFT protocol such as log compaction [22], and

snapshotting [22].

- Running the CRDT and RAFT implementations on Amazon AWS EC2 [24] to

simulate conventional distributed load.

- Tune the systems to see if the throughputs and latencies could be improved upon.

64

References

[1] E. A. Brewer, “Towards robust distributed systems,” PODC, vol. 7, 2000.

[2] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algorithm,”

USENIX Annual Technical Conference (USENIX ATC 14). 2014.

[3] M. Shapiro et al., “Conflict-free replicated data types,” in Symposium on Self-Stabilizing

Systems. Springer Berlin Heidelberg, 2011.

[4] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehensive study of

convergent and commutative replicated data types,” Ph.D. Dissertation Inria–Centre Paris-

Rocquencourt; INRIA, 2011.

[5] M, Sustrik. “ZeroMQ” [Online]. Available: http://www.aosabook.org/en/zeromq.html.

[Accessed: October 10, 2016].

[6] L. Lamport, “The part-time parliament,” in ACM Transactions on Computer Systems

(TOCS), vol. 16, no. 2, pp. 133-169, 1998.

[7] L. Lamport, “Paxos made simple,” in ACM Sigact News, vol. 32, no. 4, 2001, pp. 18-25.

[8] CoreOS Fest 2015, “An introduction to raft,” Youtube, May 27, 2015. [Video File].

Available: https://www.youtube.com/watch?v=6bBggO6KN_k. [Accessed: October 17,

2017].

[9] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach:

A tutorial,” ACM Computing Surveys, vol. 22, no. 4, Dec. 1990, pp. 299-319.

[10] D. Dziuma et al., “Survey on consistency conditions,” Forth-Ics Tr., vol. 439, 2013, pp.1-

26.

[11] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,” IEEE

Computer, vol. 29, no. 12, pp. 66-76, December 1996.

[12] P. Alvaro et al., “Consistency analysis in bloom: A CALM and collected approach,”

CIDR, 2011, pp. 249-250.

[13] D. S. Parker et al., “Detection of mutual inconsistency in distributed systems,” IEEE

Transactions on Software Engineering, vol. 3, pp. 240-247, 1983.

[14] J. S. Almeida, S. A. Paulo, and B. Carlos, “Bounded version vectors,” in International

Symposium on Distributed Computing. Berlin: Springer Heidelberg, 2004, pp. 102-116.

65

[15] G2Crowd, “Digital trends: microservices,” g2crowd.com [Online]. Available:

https://blog.g2crowd.com/blog/trends/digital-platforms/2018-dp/microservices/ [Accessed

Oct. 10, 2016].

[16] R. Brown et al., “Riak DT map: A composable, convergent replicated dictionary," in

Proceedings of the First Workshop on Principles and Practice of Eventual Consistency,

ACM, p. 1, 2014.

[17] D. Merkel, “Docker: Lightweight Linux containers for consistent development and

deployment,” in Linux Journal, vol. 201, no. 239, 2014, p. 2.

[18] Smart Home Beginner, “What is Docker: Docker vs VirtualBox, Home server with

Docker,” smarthomebeginner.com [Online]. Available: https://www.smarthomebeginner.

com/what-is-docker-docker-vs-virtualbox/ [Accessed: May 19, 2018].

[19] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support paas”

in 2014 IEEE International Conference on Cloud Engineering (IC2E), IEEE, pp. 610-614,

March 2014.

[20] ØMQ. “ØMQ–the guide,” zeromq.org [Online]. Available: http://zguide.zeromq.org/page:

all [Accessed June 18, 2018].

[21] ØMQ. “ØMQ–API,” zeromq.org [Online] Available: http://api.zeromq.org/4-2:zmq

[Accessed June 25, 2018].

[22] H. Howard, ARC: Analysis of Raft consensus. University of Cambridge, Computer

Laboratory, 2014.

[23] ØMQ, “Measuring messaging performance,” zeromq.org [Online] Available:

http://zeromq.org/whitepapers:measuring-performance [Accessed: June 25, 2018].

[24] Amazon, “Amazon EC2,” aws.amazon.com [Online]. Available: https://aws.amazon.

com/ec2/?c=1&pt=1 [Accessed: Oct 10, 2016].

https://www.smarthomebeginner/
http://zguide.zeromq.org/page
https://aws.amazon/

66

Appendix A: Introduction to a Dockerfile

A Dockerfile[1] is a declarative way of instructing the docker program on how to build

our image, which would be ran as a container. This declaration is done as a text file and is fed to

a command, docker build which builds the image. The dockerfile for the base image of the

simulation is shown below:

Figure A.1. Dockerfile for the base image of the simulation

67

Each line of a Dockerfile is an instruction, which is run independently and serially.

Docker images are layered filesystems [2]. When each line of a Dockerfile is run, it produces a

layer which is added to the layer produced by the previous command. The summary of Figure

A.1 is as follows:

(a) Build a layer from the official maven java-8-jdk-alpine image, using the FROM

command.

(b) Use the RUN command to run a package installation using the package manager for

the alpine OS and to also build the jzmq package.

(c) Setup the environment variables for gradle [3], which is used to install jzmq, with the

ENV command

(d) Make the directory to run all the .java files with the WORKDIR command

(e) Copy a file jzmq_prompt.sh from the host directory into the /etc/profile of the image,

using the COPY command.

(f) Whenever a container is created from this image, provide the default login shell

/bin/bash using the CMD command

68

Appendix B: References

[1] Docker, “Dockerfile reference,” docker.com [Online]. Available: https://docs.docker.

com/engine/reference/builder/ [Accessed: Oct 30, 2016].

[2] Usenix, “Layered file system,” usenix.org [Online]. Available: https://www.usenix.org/

legacy/publications/library/proceedings/usenix2000/freenix/full_papers/studenmund/studen

mund_html/node7.html [Accessed: Oct 30, 2016].

[3] Gradle, “Gradle Build Tool,” gradle.org [Online]. Available: https://gradle.org/ [Accessed:

Oct. 30,2016].

https://docs.docker/
https://www.usenix.org/

69

Appendix C: Signed IP Release Letter

	St. Cloud State University
	theRepository at St. Cloud State
	5-2019

	Consensus in Distributed Systems: RAFT vs CRDTs
	Oluwadamilola Okusanya
	Recommended Citation

	tmp.1554653108.pdf.POgyk

