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Abstract 

Through the continual flow of water in lotic systems, upstream impacts may be 
observed in downstream reaches.  The River Continuum Concept classifies and 
describes abiotic and biotic processes as a river flows from headwaters to mouth.  
Disruptions of the theoretical system by impoundments are described by the Serial 
Discontinuity Concept that predicts, among other things, changes in biotic and abiotic 
stream processes.  This study observed four surface-release impoundments on the 
Upper Mississippi River and documented impacts on the quantity and quality of fine 
particulate organic matter (FPOM) and looked for evidence of the Serial Discontinuity 
Concept.  It was hypothesized that there would be an increase in the FPOM 
downstream of the impoundments, that there would be an impact on the quality of the 
FPOM, and that there would be evidence to support the Serial Discontinuity Concept.  
Three scenarios were observed in the quantity of the FPOM.  1) No difference between 
above and below sampling sites, 2) higher amounts of FPOM above the impoundments, 
and 3) higher amounts of FPOM below the impoundments.  The hypothesis that there 
would be an increased amount of FPOM was supported by the third scenario.  The 
results did not support the hypothesis that there would be an impact on the quantity of 
FPOM, there were no significant differences in phosphorus content between sampling 
sites.  Disconnected sections of the river were found in support of the Serial 
Discontinuity Concept.   
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Introduction 

Water in streams is always moving, flowing downstream.  Through the flow of the 

water, upstream impacts (e.g. agriculture, clearing of trees, impoundments, etc.) can be 

observed in physical and chemical properties for some distance downstream.  Through 

this continual current it is observed that the downstream stretch of a river is heavily 

dependent on upstream processes (Vannote et al. 1980).  Vannote et al (1980) also 

reasoned that producer and consumer communities become established in given 

reaches of a river in harmony with dynamic physical conditions within the waterway.   

One of the processes that is important to lotic organisms that may be impacted by 

modifications to a lotic system is the flow and breakdown of particulate organic matter 

(POM).  At the headwaters of streams that originate in deciduous forests, allochthonous 

coarse particulate organic matter (CPOM; ≥ 1 mm) forms the basis of the food web.  At 

this point, the stream is small and greatly shaded by trees, and there may not be 

enough sun to support adequate primary productions.  In these situations, the food web 

of the stream depends primarily on terrestrial sources for nutrient input (Wang et al. 

2014, Brett 2017).   

The nutrients enter the stream mainly in the form of deciduous leaf material or 

CPOM.  This material supports the primary consumers of the stream ecosystem, the 

shredder and collector invertebrates (Finlay 2001).  Through their actions, the CPOM is 

broken down into smaller pieces while it is simultaneously washed downstream by the 

flow of the water.  As the POM becomes smaller, its surface area to volume ratio 

becomes larger.  This increase in surface area supports growing communities of 

microbes that feed on the organic components.  These large communities of microbes 
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increase the quality of the now fine particulate organic matter (FPOM; 0.45 µm-1mm) 

(Vannote et al. 1980, Graca and Canhoto 2006).  As the water continues to flow, the 

river becomes larger and more sunlight can reach the water’s surface.  As more light 

reaches the surface of the river, primary production begins to increase.  At this point, 

the food web switches from being supported by CPOM to being supported by FPOM 

and increasingly by autochthonous primary production (Vannote et al. 1980).  There is 

also a change in the micro and macroorganism populations, shifting from being 

dominated by shredder species to assemblages of species that feed on algae (Patrick 

2013).      

The natural flow of water down a stream can be disturbed by impoundments.  An 

impoundment is any structure that collects and confines water and creates a reservoir.  

The result of constructing these structures is to impede the natural flow of water in a 

system, greatly disrupting the River Continuum Concept (Vannote et al. 1980, Ward and 

Stanford 1983).  Humans have been creating impoundments for centuries to store 

drinking water, power equipment, produce electricity, increase navigability and to supply 

water to agriculture.  According to the Army Corps of Engineers’ National Inventory of 

Dams (2017), 90,580 dams are currently in the United States, 1097 of those are in 

Minnesota.  Besides holding back water, impoundments affect flow regimes, 

sedimentation rates, impede the movement of species up and downstream, and various 

other impacts.  Impoundments ultimately divide up these continually moving systems 

into definite fragments.   

Impoundments can be divided into various categories based on many various 

factors, including construction material, design, purpose, or water release.  For this 
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study, impoundments are divided into two categories depending on their designed 

release of water: deep-release and surface-release.   

A deep-release impoundment is a dam that is capable of releasing water from 

the deepest part of the reservoir.  This style of impoundment tends to be taller, storing 

copious amounts of water.  Deep-release impoundments are, thus, capable of releasing 

water from deeper depths, creating a different temperature regime than a free-flowing 

river.  This usually results in colder temperatures in the summer months and warmer 

temperatures in the winter months, altering the regime.  These impacts will then be 

reflected in the different populations of species downstream.   

A surface-release impoundment allows water to flow over a weir.  Surface-

release impoundments lack the height needed to create cold water storage and, during 

the hot months, may have an opposite impact, allowing warmer surface water to more 

easily flow over the impoundment.     

Impoundments help stabilize a seemingly chaotic lotic system (e.g. reducing or 

eliminating flood events, provide a constant flow throughout the year).  Impoundments 

can be installed in a stream or river for many reasons—flow control and water storage 

are two of the biggest.  Lotic systems and the species that make them their home have 

adapted to variability offered by this environment.  By artificially adding stability, species 

that have adapted to these areas may be out competed by other species (Ziger 1985).  

Over time, species that are favored by this type of habitat will increase in number and 

replace other species, reducing diversity.  With this loss of diversity, the system 

becomes less stable (MacArthur 1955, Goodman 1975).  These different organisms will 

also impact food web dynamics (Patrick 2013).  The varied species present will impose 



11 
 

different pressures on the food web by modifying predator-prey relationships and by 

altering the food quality available to species higher in the food web (Conde-Porcuna 

2000, Bonsall and Hastings 2004).   

The impacts an impoundment can have on a river system are profound.  The 

areas both downstream and upstream from the impoundment are far different from the 

natural river system that existed pre-impoundment.  The water above the impoundment 

begins to backup, creating a reservoir, flooding over the natural banks of the channel.  

The water in this area has a slower velocity, decreasing its ability to carry particulate 

matter.  This area begins to act more like a lentic system (Bott et al. 2006, Okuku et al. 

2016).  The impacts caused by this change then can impact organisms for kilometers 

downstream.  Eventually, after flowing downstream, the system begins to return to a 

more natural condition, acting again like a riverine system (Ward and Stanford 1983, 

Yount and Niemi 1990).  If a river has multiple impoundments, forming a series of 

disturbances to the system, these impacts may become cumulative, creating a condition 

where it takes longer and longer for the system to revert to a more natural state (Ward 

and Stanford 1983, Matzinger et al. 2007).   

Changes in the quantity and quality of the particulate organic matter flowing 

downstream can impact the growth rate of the organisms that reside in the stream.  Not 

only is the quantity of food important, but also the overall quality for providing the 

needed nutrients.  One way to measure the quality of food in an aquatic environment is 

the ratio of carbon to phosphorus (C:P).  If a food source has a higher C:P ratio, more 

food will need to be consumed to obtain the needed amount of phosphorus; there is 

also an increased energy cost for obtaining, consuming and breaking down this food to 
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acquire the needed nutrients.  All organisms need phosphorus to perform many of their 

internal processes, from protein synthesis to energy storage in the form of Adenosine 

Triphosphate.  According to the Growth Rate Hypothesis, the amount of phosphorus in 

an organism’s tissues is directly related to its growth rate (Urbe et al. 1997).  This is 

believed to be true because a higher level of phosphorus can be translated into a higher 

level of RNA.  Higher levels of RNA can support higher levels of protein synthesis (Main 

et al. 1997; Hessen et al. 2007).   

An impoundment can alter the phosphorus concentration of POM flowing 

downstream, thus changing the quality of the food available at the basis of the food web 

(Liu et al. 2016).  This can be done by altering the composition of the microorganism 

community or by altering how particulate autochthonous material flows downstream.  If 

an organism’s food sources are of a lower quality, it will need to take in more food to get 

the needed nutrients (Kilham el al. 1997).  This need to exert more energy to obtain the 

needed nutrients leaves fewer resources for reproduction, reducing fecundity (Kilham el 

al. 1997) and possibly reducing generational recruitment (Korpinen and Jormalainen 

2008).   

A shift in resource quantity and quality can have a compounding impact on food 

web dynamics.  If food sources are of lower quality, then more needs to be consumed to 

gain the same amount of a limited nutrient (Kilham el al. 1997).  By impacting the base 

of a food web, these impacts can reverberate up into consumer species, with 

consumers needing to expend more energy to obtain more food to gain the needed 

nutrients to have higher fecundity (Kilham el al. 1997).  A similar impact can be seen 

with the quantity of food.  Low amounts of food can have a similar impact as low quality 
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food (Kilham el al. 1997).  Even if food sources are of high quality, if there isn’t enough 

in the environment, then fecundity will be impacted.  These effects can be 

compounding, with low amounts of low quality food resources have an even more 

negative impact on the different species in the system.  Impacts can also be felt on 

species dynamics with high amounts of high quality food.  With this no longer being a 

limiting resource, species that are better at competing for other resources such as 

space may be favored in the alternate dynamic (Conde-Porcuna 2000).   

The organisms that populate lotic systems have adapted over time to handle the 

flow variability of moving water.  The organisms have adapted to changes in flow regime 

brought on by seasonal variation.  By installing impoundments in these systems, 

artificial stability has been introduced in a system adapted to change (Ziser 1985).  Not 

only do impoundments impact the variability in a steam, but they create a reservoir.  

This reservoir can introduce an artificial lentic environment within the stream (Okuku el 

al. 2016); a lake within a river.  This provides a habitat more suited to species that have 

evolved in a lentic environment.  These organisms are better adapted to more stagnant 

water and may outcompete organisms that would naturally habitat this area if it were not 

for the impoundment.   

Impoundments have a substantial impact on our river systems and, even though 

work has been done to look at these impacts, much more work is needed.  This study 

intends to look at the impacts impoundments on a limited stretch of the Upper 

Mississippi River may have on the quantity and quality of fine particulate organic matter 

in the water column.  It is hypothesized that, because of increased primary production of 

plankton in the reservoir, there will be an increase in FPOM downstream of the 
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impoundments.  Adams et al. (1983) stated that an increase in primary production in the 

reservoir, may support higher levels of FPOM flowing over the impoundment.  It is also 

hypothesized that there will be an impact on the quality of FPOM as it relates to its 

phosphorus content.  This is hypothesized because of a shift from allochthonous 

material to zooplankton and phytoplankton caused by the widened channel that is the 

reservoir.  This study will also look for evidence of the Serial Discontinuity Concept as 

described by Ward and Stanford (1983) as it pertains to samples collected going 

downstream in this stretch of river.  Support for the Serial Discontinuity Concept will be 

shown by finding significant disconnects between upstream and downstream sample 

sites.  A significant difference between these sample locations would demonstrate that 

the system is attempting to normalize as it moves downstream.   
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Study Sites 

This study was conducted on the Upper Mississippi River between river kilometer 

1,556.5 and 1491.  This stretch of the Mississippi River flows through five communities 

in Minnesota: Little Falls, Royalton, Rice, Sartell, and St. Cloud.  There are four 

impoundments on this section of the river.  The impoundments’ impacts will be 

observed in this study.  The location of the impoundments and their relation to each 

other can be seen in Figure 1. 

 

  
Figure 1: This map shows the four impoundment locations utilized in this study and their 
relation to area cities.   
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Little Falls Dam  

Located at river kilometer 1,553.3 (45.975897, -94.367664) in Morrison County (Figure 

2), the Little Falls Dam was first constructed in 1887. The current surface release 

impoundment (Figure 3) was constructed from 1918 to 1920.  The impoundment 

currently supplies 4.9 megawatts of hydroelectric power to the area.   The impoundment 

height is 7.3 meters and has a crest length of 375 meters.  The reservoir is estimated to 

extend 2.9 kilometers upstream. 

 

 
Figure 2: Little Falls Dam above and below impoundment sampling locations. 
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Figure 3: Little Falls dam as seen from downstream.   
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Blanchard Dam 

Blanchard Dam is a surface release impoundment located at river kilometer 

1539.5 (45.975897, -94.367664) in Morrison County (Figure 4).  Construction of the 

impoundment was completed and the power plant was first used in 1925.  The 

impoundment is currently owned by Minnesota Power and has the capacity to supply 

18.0 megawatts of electricity.  Blanchard Dam (Figure 5) was constructed to a height of 

14 meters and is 228.6 meters long.  To the east is the powerhouse which is 37.8 

meters long and a 737.6 meter long earthen dike.  A 341.4 meter earthen dike is located 

on the west side of the impoundment.   It has a drainage area of approximately 30,043.9 

sq. km.  The reservoir is measured to extend approximately 4.2 kilometers upstream. 

 
 

 
Figure 4: Blanchard Dam above and below impoundment sampling locations. 
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Figure 5: Blanchard Dam as seen from downstream.   
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Champion Dam 

Champion Dam is a surface release impoundment located at river kilometer 

1,500.7 (45.975897, -94.367664) in Stearns County (Figure 6).  It was originally 

construction between 1905 and 1907 for producing electricity and to grind wood into 

pulp.  The impoundment was rebuilt in 1964 and can produce 9.5 megawatts of power 

(Figure 7).  Champion Dam was constructed to a height of 14 meters and 118.3 meters 

long, not including the power house.  The reservoir extends 14.4 kilometers upstream.   

 

 
Figure 6: Champion Dam above and below impoundment sampling locations. 
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Figure 7: Champion Dam as seen from downstream.   
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St. Cloud Dam  

The St Cloud Dam is a surface release impoundment located on river kilometer 

1,491.1 (45.975897, -94.367664) in Sterns County (Figure 8).  The first hydroelectric 

dam was constructed in 1888.  The dam stood at the west end of the cities wooden dam 

that was constructed two years earlier.  The construction of the current concrete 

impoundment was completed in May of 1988 and the plant went into commercial 

operation June 1st of that year (Figure 9).  It reaches a height of 7.1 meters and is 205.7 

meters long. It has a drainage area of 34,398.7 sq. km and can provide 8.8 megawatts 

of power to the Northern States Power Company. The reservoir extends 5.1 kilometers 

upstream.   

 

 
Figure 8:  St. Cloud Dam above and below impoundment sampling locations. 



23 
 

 

 

 
Figure 9:  St. Cloud Dam as seen from downstream.   
 
 
 

Water samples were taken before each reservoir and after the impoundment at 

each sample location. 
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Materials and Methods 

Nine, one liter, water samples were collected during each sampling period from 

the middle of the channel and at a depth of approximately 15 cm to avoid contamination 

from floating particulate matter at each site.  Sampled impoundments can be seen in 

Figure 1.  Sample locations for Little Falls Dam can be seen in Figure 2, for Blanchard 

Dam in Figure 4, for Champion Dam in Figure 6, and for St. Cloud Dam in Figure 8.  

Three samples were collected to determine the phosphorus concentration of the FPOM, 

three to determine the carbon concentration of the FPOM, and three to determine the 

inorganic to organic composition of the FPOM.  All nine sample weights were used to 

determine the amount of FPOM.  Samples were collected at each site on August 14, 

September 25, and November 6, 2007.  Samples were put on ice and brought back to 

the laboratory.  On the same day samples were collected, they were first put through a 

1 mm sieve to remove any course particulate matter (>1 mm).  The water samples were 

then filtered through a 3 µm glass fiber filter (Whatman Schleicher & Schuell Cat. No 

1823 047) to separate the fine particulate matter (<1 mm and > 2.7 µm) from dissolved 

(<2.7 µm).  The filters were then placed in a drying oven at 60ºC for 48 hours.  Dry 

weights were then recorded. To analyze the amount of Carbon, a Costech Analytical 

Elemental Combustion System 4010 (Costech Analytical, Valencia, California, USA) 

was used.  The total phosphorus and carbon contained in the FPOM samples were 

calculated using standardization curves based of National Institute of Standards and 

Technology (NIST) samples (Kay et al. 2008).  Due to technical difficulties, the carbon 

data obtained from these samples were unusable.  Phosphorus was measured using 

persulfate acid digestion and ascorbate-molybdate colorimetry on an Alpkem 
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autoanalyzer (OI Analytical, College Station, Texas, USA).  To determine the ratio of 

organic to inorganic matter in the samples, samples were combusted in a 550° Celsius 

muffle furnace.   

Statistical analyses were done utilizing Minitab 18, 2017.  Above versus below 

impoundment comparisons were done via a Mann-Whitney U test, Bonferroni 

corrections were done for means that were used twice.  Comparison of differences 

between sampling periods and overall difference of samples as they progress 

downstream were done using a one-way ANOVA.   
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Results 

Sample Weights  

The FPOM (Figure 10) samples collected at each sample location during the 

08/14/07 sampling period demonstrated a significant difference when comparing 

Champion Dam Above and Champion Dam Below (p<0.001), Champion Dam Below 

and St. Cloud Dam Above (p<0.001), and St. Cloud Dam Above and St. Cloud Dam 

Below (p<0.001).  Significant differences were observed between sample locations 

during the 09/25/17 sampling period between Little Falls Dam Above and Little Falls 

Dam Below (p=0.027) and Blanchard Dam Below and Champion Dam Above (p=0.006).  

During the 11/06/07 sampling period, significant differences were observed between 

samples collected between Little Falls Dam Below and Blanchard Dam Above 

(p=0.013), Blanchard Dam Above and Blanchard Dam Below (p=0.008), and St. Cloud 

Dam Above and St. Cloud Dam Below (p<0.001).  The p-values for each individual test 

can be seen in Table 1.   

When comparing sample collected at each sample location between sampling 

periods, there was a significant difference in FPOM sample weights at Little Falls Dam 

Above (p=0.027), Blanchard Dam Above (p<0.001), Blanchard Dam Below (p=0.021), 

Champion Dam Above (p=0.003), Champion Dam Below (p<0.001), St. Cloud Dam 

Above (p<0.001), and St. Cloud Dam Below (p<0.001).  All p-values for each statistical 

test can be seen in Table 2.   
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Figure 10:  Total mean ± 1 SD FPOM weights at each sample site during the three 
sample periods.  Codes for each sample location:  Little Falls Above (LFA), Little Falls 
Below (LFB), Blanchard Above (BA), Blanchard Below (BB), Champion Above (CA), 
Champion Below (CB), St. Cloud Above (SCA), and St. Cloud Below (SCB).   
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Table 1:  This table shows the p-values comparing the sample weights for samples 
collected at each sample locations as water progresses downstream for each sampling 
period.  Codes for each sample location:  Little Falls Above (LFA), Little Falls Below 
(LFB), Blanchard Above (BA), Blanchard Below (BB), Champion Above (CA), Champion 
Below (CB), St. Cloud Above (SCA), and St. Cloud Below (SCB). 
 

P-values for FPOM Weights  

Sample Site 08/14/07 09/25/07 11/06/07 

LFA 
p=0.724 p=0.027 p=0.216 

LFB 

LFB 
p=0.965 p=0.042 p=0.013 

BA 

BA 
p=0.158 p=0.077 p=0.008 

BB 

BB 
p=0.158 p=0.006 p=0.930 

CA 

CA 
p<0.001 p=0.052 p=0.310 

CB 

CB 
p<0.001 p=0.566 p=0.251 

SCA 

SCA 
p<0.001 p=0.077 p<0.001 

SCB 

 
 
 
Table 2:  This table shows the p-values comparing sample weights at each sample 
location over each sample period.  Codes for each sample location:  Little Falls Above 
(LFA), Little Falls Below (LFB), Blanchard Above (BA), Blanchard Below (BB), 
Champion Above (CA), Champion Below (CB), St. Cloud Above (SCA), and St. Cloud 
Below (SCB). 
 

P-values for FPOM Weight Change Among Sampling Periods 

Sample Site     

LFA p=0.027 

LFB p=0.143 

BA p<0.001 

BB p=0.021 

CA p=0.003 

CB p<0.001 

SCA p<0.001 

SCB p<0.001 
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Phosphorus  

Average Phosphorus composition for samples collected at each sample location 

can be seen in Figure 11.  When comparing sample locations following the water 

downstream, there was no significant difference between any of the sample locations 

during each of the three sample periods.  P-values for statistical analysis can be seen in 

Table 3.    

Significant differences at each sample locations were observed at Little Falls 

Dam Below, Champion Dam Above, St. Cloud Dam Above, and St. Cloud Dam Below 

when comparisons were made between sampling periods at each sample site.  The 

results of the statistical analysis can be seen in Table 4.   
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Figure 11:  This figure depicts the mean percentage of Phosphorus in samples collected 
at each sample location.  Symbols represent means ± 1 SD.  Codes for each sample 
location:  Little Falls Above (LFA), Little Falls Below (LFB), Blanchard Above (BA), 
Blanchard Below (BB), Champion Above (CA), Champion Below (CB), St. Cloud Above 
(SCA), and St. Cloud Below (SCB).   
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Table 3:  This table shows the p-value comparing the phosphorus composition for 
samples collected at each sample locations as water progresses downstream for each 
sampling period.  Codes for each sample location:  Little Falls Above (LFA), Little Falls 
Below (LFB), Blanchard Above (BA), Blanchard Below (BB), Champion Above (CA), 
Champion Below (CB), St. Cloud Above (SCA), and St. Cloud Below (SCB). 
 

P-values for FPOM Phosphorus Content  

Sample Site 08/14/07 09/25/07 11/06/07 

LFA 
p=1.000 p=0.081 p=0.663 

LFB 

LFB 
p=0.663 p=0.663 p=0.383 

BA 

BA 
p=0.190 p=0.383 p=1.000 

BB 

BB 
p=1.000 p=0.383 p=1.000 

CA 

CA 
p=0.663 p=0.383 p=1.000 

CB 

CB 
p=0.663 p=0.663 p=1.000 

SCA 

SCA 
p=0.663 p=0.663 p=0.383 

SCB 

 
 
 
Table 4:  This table shows the p-values comparing phosphorus composition at each 
sample location over each sample period.  Codes for each sample location:  Little Falls 
Above (LFA), Little Falls Below (LFB), Blanchard Above (BA), Blanchard Below (BB), 
Champion Above (CA), Champion Below (CB), St. Cloud Above (SCA), and St. Cloud 
Below (SCB). 
 

P-values for FPOM Phosphorus Content Change Among Sampling Periods 

Sample Site   

LFA p=0.394 

LFB p=0.031 

BA p=0.476 

BB p=0.671 

CA p=0.008 

CB p=0.063 

SCA p=0.003 

SCB p=0.039 
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Inorganic and Organic Composition 

The inorganic and organic composition of samples collected at each sample 

location during each sample period can be seen in Figure 12.  When comparing the 

total sample weight to the total organic weight of the FPOM, none of the samples 

contained a significant amount of inorganic material (Figure 12).    

 
Figure 12:  The above graph shows the changes in inorganic and organic composition 
of samples collected at each sample location during the three sample periods. Sample 
period 1 was 08/14/07, sample period 2 was 09/25/07, and sample period 3 was 
11/06/07.  Symbols represent means ± 1 SD.  Codes for each sample location:  Little 
Falls Above (LFA), Little Falls Below (LFB), Blanchard Above (BA), Blanchard Below 
(BB), Champion Above (CA), Champion Below (CB), St. Cloud Above (SCA), and St. 
Cloud Below (SCB).   
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Table 5:  This table shows the p-value comparing the inorganic and organic composition 
for samples collected at each sample locations as water progresses downstream for 
each sampling period.  Codes for each sample location:  Little Falls Above (LFA), Little 
Falls Below (LFB), Blanchard Above (BA), Blanchard Below (BB), Champion Above 
(CA), Champion Below (CB), St. Cloud Above (SCA), and St. Cloud Below (SCB). 
 

P-values for Sample Inorganic and Organic Composition 

Sample Site 08/14/07 09/25/07 11/06/07 

LFA p=0.663 p=0.827 p=0.081 

LFB p=0.827 p=0.081 p=0.081 

BA p=0.081 p=0.081 p=0.081 

BB p=0.513 p=0.081 p=0.081 

CA p=0.081 p=0.081 p=0.127 

CB p=0.081 p=0.081 p=0.081 

SCA p=0.383 p=0.081 p=0.081 

SCB p=0.081 p=0.081 p=0.081 
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Discussion 

Many studies have focused on the impacts of large, deep release impoundments 

on riverine systems (Matzinger et al.  2007). The impacts on temperature regimes 

(Hamblin and McAdam 2003), fish (Zhong and Power 1996), and sediment transport 

(Conley et al. 2000) have all been examined.  Much less research has been done on 

surface release impoundments and their impacts (Mbaka and Mwaniki 2015).  This 

study examined the impact of four surface=release impoundments on the Upper 

Mississippi River, and their impacts on the quantity and quality of FPOM, as well as 

impacts on its inorganic and organic composition.   

Quantity 

There appears to be three distinct scenarios being displayed by the 

impoundments regarding FPOM quantity. The first scenario is no significant difference 

between upstream and downstream sampling sites.  This was displayed by Little Falls 

and Blanchard Dams during the 08/14/07 sampling period; Blanchard, Champion, and 

St. Cloud Dams during the 09/25/07 sampling period; and Little Falls and Champion 

Dams during the last sampling period on 11/06/07.  At these impoundments, during 

these sampling periods, no detectable impact on the amount of FPOM caused by the 

impoundment was observed.  The stream flowed through these sites without being 

notably impacted.  This scenario was also found in larger impoundments by Finger et al. 

(2006), where they noted no impact on the quantity of fine particulate matter was 

caused by damming.  The second scenario, supported by the data form St. Cloud Dam 

during the 08/14/07 sampling period and Blanchard Dam during the 11/06/07 sampling 

period, was that the reservoir was acting like a sink for FPOM.  The impoundment is 
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slowing the flow of water to the point that suspended material settles out before flowing 

over the impoundment, depositing sediments in the reservoir (Conley et al. 2000).  The 

third observed scenario was higher FPOM weights below the impoundments.  This was 

seen during the 08/14/07 sampling period at Champion Dam, the 09/25/07 sampling 

period at Little Falls Dam, and during the 11/06/07 sampling period at St. Cloud Dam.  

This scenario supports the hypothesis that there would be an increase in FPOM 

downstream of the impoundments due to higher primary (phytoplankton) and secondary 

(zooplankton) production (Adam et al. 1983).  Lamberti and Steinman (1997) state that 

wider stretches of slower moving streams would have higher amounts of primary 

production when compared to the narrower, quicker moving waters that would be more 

natural to these locations.  The observation that some of the impoundments switching 

back and forth between acting as a sink or as a source for FPOM was documented by 

Thomson et al. (2005) on a small run-of-river dam.  While the data supports the 

hypothesis at some of the sites during the different sampling periods, the true answer is 

much more complicated.    

Quality 

There were no significant differences in the phosphorus content of the FPOM 

samples collected above to those collected below any of the impoundments during any 

of the sampling periods (Figure 11).  The hypothesis that the impoundments would 

influence the quality of FPOM as measured by phosphorus content was not supported.  

Matzinger et al. (2007) found that the total nutrients entering a reservoir were not 

affected by the hydrological changes, but the internal nutrient supply was significantly 

modified.  The impoundments have not impacted the nutrient formation of FPOM and 
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thus not changed the composition of FPOM found at these locations.  It was also noted 

by Matzinger et al. (2007) that algae abundance did not change significantly for various 

levels of primary production; however, reduced production transferred into reduced 

zooplankton production.  This is interesting considering the potential change in plankton 

communities between the lotic habitat if a reservoir and the lentic habitat of a stream 

(Okuku et al. 2016). 

Serial Discontinuity Concept 

The Serial Discontinuity Concept describes how impacts on a lotic system can 

disrupt the River Continuum Concept.  If a lotic system flows from headwaters to mouth 

without any major disturbance, the system would progress as described by the River 

Continuum Concept.  Natural disturbances such as flooding, natural blockages, and 

impacts posed by lower order stream tributaries and water management by humans 

have disturbed this theoretical system.  This study did find disconnects imposed by the 

impoundments in relation to the quantity of FPOM (Figure 10).  The Serial Discontinuity 

Concept describes how dams disconnect upstream and downstream sections of the 

river they impede.  If this were a flow-through system, there would be little to no 

significant difference between sample sites, but disruptions were found in the relatively 

short section of the river.  During the 08/14/07 sampling period, disconnects between 

sampling sites were observed between Champion Dam above and Champion Dam 

below, Champion Dam below and St. Cloud Dam above, and St. Cloud Dam above and 

St. Cloud Dam below; between Little Falls Dam above and Little Falls Dam below, and 

Blanchard Dam below and Champion Dam above during the 09/25/07 sampling period; 

and between Little Falls Dam below and Blanchard Dam above, Blanchard Dam above 
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and Blanchard Dam below, and St. Cloud Dam above and St. Cloud Dam below 

sampling sites during the 11/06/07 sampling period.  Each of the sampling sites is 

disconnected from each other during their pertinent sampling periods.  

Change Among Sampling Periods 

Seasonality is normal in a lotic system (Mulholland et al. 1985).  Under normal 

conditions, a seasonal difference in nutrients would be detected and carried 

downstream.  This change in resource availability, as well as flow regime, influence the 

diversity that is found in lotic systems (Paterson et al. 1997).  By adding stability into the 

system, one group of species will be favored; thus, allowing them to increase in 

population size and outcompete other species, reducing the diversity of the system.  As 

diversity decreases, the overall health of the system decreases and can be pushed to 

the brink when there is an event that puts pressure on the stabilized system that it may 

not be able to rebound.   

One would expect, in any ecosystem in this climate to show signs of change 

among sampling periods.  With temperature, rainfall, and primary production changing 

from one season to another, this system has adapted to changes in the time of year.  

Not only does this mean adjusting to temperature and rainfall regimes, but to sources of 

nutrients (Lowe and Hauer 1999).  According to the results displayed in Table 2, a 

difference in the amount of FPOM at each sample location between sample periods was 

noted except below Little Falls Dam.  At this sample site, the impoundment provided 

stability in the amount of FPOM flowing downstream, while one would expect to see 

seasonal variation in the amount of FPOM flowing downstream (Richter et al. 1997).  

Even though there is a significant difference in the FPOM above the reservoir, the Little 
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Falls Dam has stabilized the amount of FPOM during the sampling period.  This stability 

could come about by the sedimentation in the reservoir during times of high FPOM flow 

and increased primary and secondary production during time of low FPOM input to 

maintain a more constant flow.   

Looking at the results for the phosphorus content of the FPOM (Table 4), there 

was more variation in the change between sampling periods.  It is interesting to note 

that the incoming flow of FPOM into the Little Falls above sampling location exhibited no 

variation in phosphorus content.  It is unknown why the phosphorus content exhibited 

no variation, something upstream had added stability.  The closest upstream 

impoundment is in Brainard, approximately 63 river kilometers upstream. Below Little 

Falls Dam, variation was restored.  Impoundments tend to be thought of as stabilizing 

structures, but in this case, processes within the reservoir have restored variation.  

Traveling down to the next site, Blanchard Dam above, again the phosphorus variation 

between sampling periods has been lost.  In the case of Blanchard Dam, this stability 

flows through the reservoir down to Blanchard Dam below sampling site.  At Champion 

Dam above, variation has returned.  The stretch of the river between Blanchard Dam 

and Champion Dam’s reservoir has reverted to a more natural condition.  Champion 

Dam then stabilizes the system once again; there were no significant difference 

between sample periods below Champion Dam.  This stability does not last since at St. 

Cloud Dam above variation was once again restored and then carried down over St. 

Cloud Dam to the final sampling site.  While Little Falls and Champion Dams both have 

significant impacts on the between sampling period variation, Blanchard and St. Cloud 

Dams both operate in a more flow-through fashion.   
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Inorganic and Organic Composition 

Inorganic matter in a steam includes fine silt, sand, and clay and inorganic 

components of living organisms such as diatoms.  High concentrations of inorganic 

matter can decrease transparency and make it more difficult for aquatic organisms to 

locate food (Henley et al. 2000) and limit primary production to the upper portion of the 

water column (Diehl 2002).  Inorganic material can enter the water through stormwater 

runoff, streambank erosion, and other natural processes.  Diatoms are microscopic 

plankton that have shells consisting of silica, an inorganic compound. While the purpose 

of determining the inorganic and organic content of the FPOM was to demonstrate that 

there was indeed organic matter in the samples, higher levels of inorganic matter can 

point towards there being increased silt, sand and clay suspended in the water column 

and/or increase in the production in the diatom community.  This study did not look at 

the source of the inorganic matter or try to determine the physical makeup of the FPOM.   
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Conclusion 

Riverine systems are very complex.  Different orders of streams flow into one 

another carrying different substances they have picked up from their individual 

watersheds.  It can be very difficult looking to apply different theories to how these 

systems are governed when so many different influential forces are at play through the 

many different sections of the stream.  One may find locations that provide support for 

different hypotheses and then move downstream to find data that show different results.  

Riverine systems are also influenced by of the weather.  Drought and flooding can have 

massively different impacts on the dynamics within a river.  Trying to look for data to 

either support or rebut a hypothesis can be complicated.   What are standard conditions 

for a system that is driven by change? These are also massive systems, taking water 

cross country in a continuous cycle with no apparent end.  While conducting this study, 

there are locations that offer support for the hypotheses made at the beginning of this 

study, but then there are other locations that invalidate the hypotheses.   

While this study only looked at a selection of surface release impoundments, the 

assumption was that they would each impact the lotic system in similar ways.  It is 

possible that, due to differences in construction, the impacts caused by these structures 

vary.  The impoundments were installed at varying lengths and heights, but they all 

obstruct the river in an analogous way.  

Another factor that is impossible to control in a complex system like this one is 

the input from tributary streams and rivers.  In the stretch of the Mississippi River that 

was observed, there are 17 named and unnamed tributaries, not including the many 

different storm drains and tile lines directed to the river for drainage purposes.  Each of 
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these tributaries contribute their own unique deposits into the Mississippi River.  It is 

highly possible that, do to this input of variation, results may have been skewed.   

Besides the many tributaries flowing into the system, at this point, the river may 

already be at such a size that it is less dependent on seasonal input of leaf litter as a 

primary source of nutrients.  As a stream increases in size and more light reaches the 

surface, primary and secondary production increase.  It is possible, that the study 

stretch of river has reached such a size that the input of martial originally related to a 

terrestrial system is not very significant to the food web.  In this study, no distinction was 

made to the source of FPOM traveling downstream.  This would include both material 

with terrestrial origins and that which is due to production within the aquatic system.   

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

Future Research 

To help gain a better understanding of this system, there are several research 

projects that need to be conducted.  We need to gain a better understanding on the 

impact on the C:P ratio surface-release impoundments may have on FPOM.  Due to 

issues with sampling and analysis, this study was not able to ascertain if there is such 

an impact. If there is an impact, there could be impacts that reverberate through the 

food-web.  Work also needs to be done to see how these changes occur year to year.  

There is no way to know if the results obtained in this study are indicative of the system 

or were just an anomaly due to unusual conditions.  It would also be very interesting to 

concentrate on the communities of invertebrate populations seen in this system.  Were 

the reservoirs of a sufficient size to begin to promote invertebrate populations that are 

normally only observed in lentic environments?  It would also be interesting to examine 

the food quality differences these divergent assemblages of organism provide.  Another 

factor that was not taken into consideration in this study would be flow data.  It would be 

very interesting to look at a range of different flow patterns to see how FPOM is 

impacted.  It is highly possible that variations in flow had an impact on this study.  

Finally, it would also be very interesting to examine the contents of the FPOM sampled 

and determine what it is composed of; are the samples made up of silt, fine sand and 

decaying allochthonous materials or are they primarily composed of zooplankton and 

phytoplankton?   
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