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Abstract 

 In this current research, protein-protein interactions with a putative Toxoplasma gondii 
cyclin, TGME49_266900 or "Cyc6," were discovered via a yeast two hybrid screen. Several 
putative interacting protein partners were isolated and described from a cDNA library of an 
asynchronous tachyzoite transcriptome. After false positives were weaned from the study, two 
proteins were identified as Cyc6 interacting partners. These two proteins are described from the 
toxodb.org bioinformatic database as a DJ-1 family protein (TGME49_214290) and a ThiF 
protein (TGME49_314890). Interestingly, the interacting DJ-1 protein has been shown in 
previous research to play a role in T. gondii microneme secretion. Additionally, ThiF proteins 
share distinct traits with E1 enzymes at the start of the ubiquitin pathway in eukaryotes. After no 
evidence of an interacting CDK partner for Cyc6 was obtained, a direct experiment was 
conducted testing for an interaction between Cyc6 and a putative CDK with expression levels 
notably higher in bradyzoites instead of tachyzoites. The outcome of this experiment showed no 
interaction between Cyc6 and the putative CDK. Although no interacting CDK partner was 
evident from this yeast two hybrid screen, two proteins were found to display a strong and 
biologically relevant interaction with the putative cyclin of interest. Future studies regarding 
Cyc6 should explore potential noncanonical roles for this putative cyclin in not only tachyzoites, 
but also bradyzoites and the purpose of Cyc6's interaction with the two proteins discovered from 
this screen. 
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Chapter I: Introduction 

Apicomplexa 

 Within recent years, the life stages and cell cycle of apicomplexans have been the focus 

of several research efforts. While apicomplexans share many conserved pathways and proteins 

with other eukaryotes, many novel apicomplexan proteins distinguish these parasites from other 

phyla. The apicomplexan phylum consists of more than 5,000 species, many of which are 

obligate parasites that cause toxoplasmosis, malaria and cryptosporidiosis (Lorenzi et al., 2016; 

Francia & Striepen, 2014). Apicomplexans form a diverse phylum of obligate parasites which 

contain an iconic apicomplast to allow penetration into a host’s cells. Other well known members 

in this phylum include the plasmodium and cryptosporidium genera.  One particular parasite, 

Toxoplasma gondii, has received attention worldwide within the past few years with the 

infamous case of Martin Shkreli and Turing Pharmaceuticals. 

Toxoplasma gondii 

 Similar to other apicomplexans, T gondii has an apicomplast (McFadden & Yeh, 2017) 

and other specialized organelles called micronemes to assist in host cell invasion (Sidik et al., 

2016). Most apicomplexan parasites are limited to a small range of hosts such as insects and 

mollusks, yet T. gondii by comparison, has adapted to invading a diverse range of hosts including 

all warm blooded animals and birds (Lorenzi et al., 2016). T. gondii's success as an intracellular 

parasite can be attributed to its remarkable ability to thrive in an abundance of hosts and habitats. 

 Within T. gondii, three major clonal lineages, I, II and III are prevalent in humans and 

domestic animals (Paredes-Santos et al., 2015). Each lineage has distinct features, but a few 

features of importance are the virulence and capacity to form tissue cysts. The type I strain is 
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reported to have the highest rates of virulence in mice as indicated by amount of tachyzoites and 

rates of replication (Dardé, 2008). In comparison to the other strains, type I parasites have an 

enhanced ability to migrate throughout the host which is an explanation for why type I strains are 

more commonly seen migrating greater distances and through barriers such as the placenta in 

infected hosts (Saeij et al., 2005). In many scenarios, it is beneficial for the parasite to remain 

incognito as dormant tissue cysts in the host, although rapid replication may serve to be 

beneficial in some cases. Type II is most common in humans in western countries and is 

characterized by a lower virulence and greater ability to form dormant tissue cysts (Sullivan & 

Jeffers, 2001).  In France, one of the countries with the highest rates of documented human 

toxoplasmosis, the type II strain reportedly compromises more than 90% of human 

toxoplasmosis cases (Ajzenberg et al., 2002). Type III strains also tend to be less virulent and 

form tissue cysts in comparison to type I but several samples from patients in South America and 

parts of Africa indicate parasites with a mixed genotype of type I and type III (Dardé, 2008; 

Sibley et al., 2009). Understanding the traits and transmission of the different strains of T. gondii 

help to track the pathogenesis of toxoplasmosis. 

Toxoplasmosis 

 Toxoplasma gondii, the causative agent of toxoplasmosis, has serious consequences on 

the immunocompromised and fetuses. Conditions associated with toxoplasmosis include still 

births or instantaneous abortions, retinochoroiditis and toxoplasmic encephalitis. Although 

30-50% of the world’s population is estimated to be infected with T. gondii, it typically is 

thought of as asymptomatic in immunocompetent individuals (Flegr et al., 2014). While physical 

symptoms may be nonexistent in the majority of individuals with toxoplasma tissue cysts, 
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infrequent but deadly outbreaks of toxoplasmosis have occurred in immunocompetent 

populations (Demar et al., 2007). Additionally, recent findings suggest correlations between T. 

gondii and mental illnesses such as schizophrenia (Esshili et al., 2016). While it is acknowledged 

that causation cannot be derived from correlation, there is an agreement within the scientific 

community that T. gondii requires additional research regarding its several enigmatic functions 

within itself and upon hosts.  

 Congenital toxoplasmosis. Toxoplasma gondii was first discovered in 1908 and gained 

medical importance in 1939 due to the first reported case of congenital toxoplasmosis (Dubey, 

2008). Toxoplasmosis represents a hazard to fetuses in utero if the mother becomes infected 

during pregnancy. Congenital toxoplasmosis refers to the condition when maternal transmission 

of toxoplasmosis to an unborn fetus occurs. Although most women residing in regions of a large 

toxoplasmosis seroprevalence have already been infected before pregnancy (Torgerson & 

Mastrolacovo, 2013) which equates to a strong maternal immunity (Sibley et al., 2009), the 

potential consequences on the fetus if the mother is infected mid pregnancy may be severe. More 

serious and pronounced congenital toxoplasmosis symptoms tend to manifest when the mother is 

infected in the earlier stages of pregnancy. Congenital toxoplasmosis is commonly associated 

with retinochroiditis, intracranial calcification and encephalitis (McAuley, 2014) besides fetal 

death.  

 Retinochoroiditis. Toxoplasma gondii is also responsible for up to 50% of the potentially 

blinding condition of retinochoroidits worldwide (Wallace & Stanford, 2008). Inflammation in 

the eye occurs when T. gondii tissue cysts rupture in the retina (Sibley et al., 2009) which will 

usually subside with vision restored in immunocompetent patients but may cause blindness with 
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recurring tissue cyst ruptures in immunocompromised patients (Wallace & Stanford, 2008). 

Interestingly, high rates of ocular diseases such as retinochoroiditis have been observed in 

immunocompetent adults living in regions such as Brazil, where recombinations of the type I 

genotype are frequent (Dardé, 2008). 

 Schizophrenia. Several studies indicate the correlation between cat ownership and 

schizophrenia (Fuller-Torrey et al., 2015). Since felines are the definitive hosts of T. gondii, it is 

hypothesized that oocysts shed by domestic cats in litter boxes are a method of infection in cat 

owners. Although additional longitudinal studies are needed to definitively conclude the 

causation of some cases of schizophrenia with T. gondii infection, many preliminary studies 

indicate a fair possibility of these two diseases having commonalities.  

Immune Responses   

 Toxoplasma gondii and the human immune system play a delicate game of checks and 

balances. If T. gondii tachyzoites begin to grow too rapidly, the immune system will respond 

promptly. Due to the necessary components of both innate and adaptive immune systems, the 

immunocompromised are at a clear disadvantage in combating this opportunistic parasite.  

 Initially, the innate immune system will recognize key parasitic traits with Toll Like 

Receptors (TLRs) (Dupont et al., 2012) which are located in several cell types such as 

leukocytes, lymphocytes, endothelial and epithelial cells. Upon activation of the TLRs from the 

invading parasite, production of the cytokine interleukin-12 from dendritic cells stimulates 

natural killer (NK) cells and also T lymphocytes to produce interferon gamma (IFNγ) 

(Mashayekhi et al., 2011). IFNγ stimulates macrophages to eliminate T. gondii parasites and also 

induces production of nitric oxide which helps to halt T. gondii replication. Additionally, IFNγ 
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also promotes tryptophan degradation in infected cells which is seemingly beneficial as T. gondii 

is a tryptophan auxotroph (Dupont et al., 2012).  

 The adaptive immune system is crucial for specific targeting of cells harboring T. gondii. 

Dendritic cells, when presenting T. gondii antigens, will activate the appropriate helper and 

cytotoxic T cells for a specific and effective immune response. Cytotoxic CD8 T cells bind to 

and directly kill cells infected with T. gondii by secreting perforins and granzymes which activate 

caspase pathways (Krishnamurthy et al., 2017). CD4 T helper cells are crucial in the eradication 

and continued resistance to T. gondii infection. For example, CD4 T cells provide crucial signals 

to activate CD8 T cells and B cells which produce antibodies to provide humoral immunity 

(Dupont et al., 2012). Without functional CD4 or CD8 T cells, T. gondii parasites have no 

consistent pressure to prevent uncontrolled replication (Wallace & Stanford, 2008). Therefore, it 

is apparent immunocompromised individuals, such as HIV/AIDS patients with a depleted CD4 T 

cell repertoire, will struggle to stifle T. gondii infections.  

 While all of these processes occur during the rapidly proliferating like stage of T. gondii, 

the formation of a slow growing nonimmunogenic tissue cyst helps to protect the parasite from 

detection from the immune system. Conversion from the slow growing bradyzoite tissue stage to 

the rapidly proliferating tachyzoite stage may occur without proper mediation from the immune 

system (Eaton et al., 2006).  

Current Treatments 

 Typically toxoplasmosis does not require intervention with antibiotics in 

immunocompetent hosts, but the immunocompromised and pregnant women rely on specific 

medications to combat the parasite. Medications such as a combination of pyrimethane and 
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sulfadiazine are used to combat acute toxoplasmosis, or the rapidly proliferating tachyzoite stage. 

Unfortunately, no medication is currently used to target the dormant bradyzoite stage (Sullivan & 

Jeffers, 2011) even though this stage can rapidly differentiate back into the tachyzoite stage as 

evidenced in HIV/AIDS patients and in mice (Skariah et al., 2010).  

Transmission 

 Toxoplasma gondii relies on warm blooded animals and birds as intermediate hosts to 

eventually make its way to its definitive host, felines. Several methods of transmission exist 

between felines, humans and other warm blooded hosts but all involve the ingestion of the 

parasite in some form or the parasite crossing into the placenta. The parasite must travel through 

the acidic gastric juices of all new hosts, which is commonly done in the bradyzoite life stage in 

which the parasite is in a protective capsule, called a parasitophorous vacuole (Skariah et al., 

2010). As the cysts travel through the stomach, the vacuole walls resist digestion in HCl but are 

destroyed in the presence of pepsin or trypsin (Dubey & Jones, 2008). Once inside the intestines, 

bradyzoites or sporozoites (if from sexual reproduction) will invade the host's intestinal 

epithelium and quickly differentiate into tachyzoites (Skariah et al., 2010).  

 To people. Humans are infected by T. gondii by several possible routes. Consuming 

undercooked meat of infected animals is a common cause of infection, especially in cultures 

where undercooked meat is commonly consumed, especially France (Hill & Dubey, 2002). Other 

possible routes of infection include ingestion of oocysts found in feline feces by cleaning litter 

boxes or consuming crops contaminated with fecal oocysts. In central and South America, high 

rates of toxoplasmosis have been attributed to environmental contamination and ingestion of 

oocysts, which is considered to be another common form of transmission (Dubey & Jones, 
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2008). When considering livestock operations, it is well known cats and farmers share a sort of 

mutualistic relationship. Cats live in barns for shelter from the elements, or perhaps other 

predators and return will hunt rodents which are considered to be a nuisance. Since felines are 

the definitive hosts for T. gondii, the abundance and proximity of oocysts in feline feces causes 

livestock to be at a greater risk to be infected with T. gondii (Dubey & Jones, 2008). As 

previously discussed, congenital toxoplasmosis is transmitted from pregnant women to fetuses, 

which was the first case of toxoplasmosis observed in humans in 1939 (Weiss & Dubey, 2009). 

In rare cases, toxoplasmosis has been transmitted through organ transplants of infected organs 

(Dubey & Jones, 2008).  Toxoplasma gondii's strategies in developing hardy oocysts that can 

maintain viability in the environment without a host and the robust cyst walls that resist 

degradation in stomach acid prove to be formidable tactics in host invasion.  

 To cats. Although T. gondii may cause havoc in humans, the ultimate goal of this parasite 

is to sexually reproduce within a feline host. Toxoplasma gondii has demonstrated the ability to 

manipulate the behavior of rodents to make them more accessible to be eaten by a feline 

predator. Such behavior changes in rodents include an increase in exploratory behavior and 

inhibition of fear of felines (Stock et al., 2017). Although the rodent host is more likely to be 

killed, the tissues containing T. gondii cysts are released in the intestines of the feline host which 

allows for parasitic sexual reproduction. Examination of brains of rodents infected with T. gondii 

indicate a noticeable accumulation of tissue cysts around the amygdala, which functions in fear 

responses (Vyas et al., 2007). Therefore, it is theorized rodents are inhibited towards sensing fear 

in the presence of one of their main predators, felines, which makes them easy targets for T. 

gondii's definitive host.  
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Life stages 

 Toxoplasma gondii has distinct life stages which allow the parasite to invade cells of 

hosts, evade host immune systems and to reproduce sexually and asexually (Figure 1). Life 

stages related to sexual reproduction, sporozoites and oocysts are present only in felines or 

directly shed from felines into the environment. Contaminating oocysts shed through feces or 

bradyzoites consumed through an infected intermediate host have a durable outer shield to 

protect the parasite until it is ingested by a new host. After an intermediate host is infected, 

signals are given to the cyst to enter the rapidly replicating tachyzoite stage. Due to its ability to 

form dormant tissue cysts, T. gondii may persist for the entirety of the host’s life (Pappas et al., 

2009). While T. gondii will usually exist in the bradyzoite stage in immunocompetent hosts, it 

has shown the ability to transition back into the tachyzoite stage in the same host (Huang et al., 

2017). Several studies indicate parasite replication is crucial for virulence and is an underlying 

factor for disease severity with apicomplexan parasitic infections (Gubbels et al., 2008). The 

ability for T. gondii parasites to oscillate between various life stages in to persist within hosts is a 

crucially important yet enigmatic area of research.  
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Figure 1: The Life Cycle of T. gondii. This apicomplexan's life cycle includes both sexual and 
asexual reproduction. Warm blooded animals or birds are the intermediate hosts for these 
parasites (image courtesy of Wikipedia Commons).  

  Sporozoites & Oocysts. After sexual reproduction and passage through feces in feline 

hosts, the stable oocyst, which contains sporozoites, may persist for months in the environment 

until it is able to infect a new host (Pappas et al., 2009). Infected felines may shed up to 55 

million oocysts per day for approximately eight days (Torrey & Yolken, 2013). Despite the 

multitude of oocysts and sporozoites produced within the feline host, there are rarely clinical 

signs of T. gondii infection in felines compared to intermediate hosts such as rodents and humans 

(Dubey, 1998). 

 Tachyzoites. After infecting an intermediate host, T. gondii enters the tachyzoite life 

stage, which is characterized by rapid cell replication. When an intermediate host becomes 

infected by consumption of oocysts or tissue cysts containing bradyzoites, the intestinal 

epithelium is invaded and differentiation to the tachyzoite stage occurs (Skariah et al., 2010). 
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Then rapid replication occurs by endodyogeny with two daughter cells forming within one 

mother cell (Sullivan & Jeffers, 2011). In immunocompetent hosts, an IFNγ dependent cell 

mediated immune response eradicates most of the parasite after infection. However, a few 

tachyzoites can escape the host’s immune system by localizing to areas of the central nervous 

system and muscle tissue (Skariah et al., 2010). Due to rapid proliferation, T. gondii tachyzoites 

have been used as model organisms to study the novel cell cycle in apicomplexans (Eaton et al., 

2006). Tachyzoites persist in this life stage in humans for approximately 10-14 days after 

infection before they differentiate into the bradyzoite life stage (Lyons et al., 2002).  

 Bradyzoites.  After rapid replication and relocating to specific host tissues, tachyzoites 

will typically differentiate into the dormant, or slow growing bradyzoite stage. This 

differentiation is characterized by slowed replication and metabolism, and expression of 

bradyzoite-specific proteins (Eaton et al., 2005) which direct the parasite to form dormant tissue 

cysts among other traits. Tissue cysts may be as small as 5 µm in diameter and only contain two 

bradyzoites or cysts may be as large as 70 µm in diameter and contain up to 1,000 bradyzoites 

(Dubey et al., 1998). Due to the formation of tissue cysts, slowed growth, and lack of 

immunogenicity, bradyzoites are able to evade detection from the host’s immune system to 

ensure long term viability in tissue (Kim, 2015). Bradyzoite tissue cysts are typically found in 

parts of the central nervous system, skeletal and cardiac muscles and the eyes but have also been 

found in organs including lungs, liver, kidneys and bone marrow (Skariah et al., 2010). While the 

tissue cysts are not immunogenic, periodic ruptures of these cysts releasing bradyzoites is 

thought to contribute to maintaining immunological memory against T. gondii in infected hosts 

(Filisetti & Candolfi, 2004).  
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 Interconversion between Tachyzoites and Bradyzoites. Pressure from the immune 

system and stress inducing environments promotes tachyzoite to bradyzoite differentiation. 

Tachyzoite to bradyzoite conversion is observed in the presence of nitric oxide, which is 

produced by inducible nitric oxide synthase (iNOS). One function of IFNγ is to stimulate 

macrophages to produce iNOS with which the production of nitric oxide asserts pressure on the 

parasite to slow replication and convert to the dormant bradyzoite stage (Dupont et al., 2012). A 

popular technique in lab studies involving bradyzoites is to expose cells infected with T. gondii 

tachyzoites to alkaline conditions to initiate the up regulation of bradyzoite specific proteins 

(Huang et al., 2017). Bradyzoite conversion is also achieved with heat shock, which may be 

caused by fevers within intermediate hosts (Lyons et al., 2002). However, T. gondii has been 

shown to transition back into tachyzoites from the bradyzoite life stage under appropriate 

conditions which can allow the parasite to invade new tissues only to transition back into 

bradyzoites. In the absence of IL-12, CD4 or CD8 T cells and IFNγ, bradyzoites have been 

observed to convert back into the tachyzoite life stage (Lyons et al., 2002; Dupont et al., 2012). 

This interconversion may be fatal to immunocompromised individuals, even those who had 

dormant tissue cysts for years before developing an immunodeficiency (Skariah et al., 2010). 

Recent research has focused on the pathways and factors governing the interconversion between 

these two life stages. 

Cell Cycle 

 One possible avenue to combat T. gondii infections is to investigate the cell cycle and 

determine possible strategies to disrupt or halt cell growth. Since host death is possibly due to the 

repeated cycles of parasitic replication, host cell invasion and host cell lysis, disrupting T. 



!20
gondii's cell cycle theoretically would prevent adverse symptoms or death in susceptible 

populations. T. gondii has a distinct cell cycle, that differs from most eukaryotes, which have 

four distinct cell cycle phases. Additionally similar to other novel apicomplexan cell division 

schemes, T. gondii replicates asexually by endodyogeny in addition to sexual reproduction. 

Although there are several differences between apicomplexan and other Eukaryotic cell cycles, a 

few core traits persist throughout the entire domain. Such traits include mitosis, dividing 

chromosome replicates into daughter cells, and regulatory cyclin and cyclin dependent kinases 

(Francia & Striepen, 2014). For example, three cyclin dependent kinase subfamilies, which have 

roles in the cell cycle, are only found in apicomplexans and not in other Eukaryotes (Talevich et 

al., 2011). Therefore, we cannot rely solely on bioinformatic queries to investigate and draw 

conclusions on the mechanisms and proteins involved in apicomplexan cell cycles.  

 Toxoplasma gondii Cell Cycle. Not only do apicomplexan cell cycles differ from other 

Eukaryotes in a few distinct ways, but within T. gondii itself, there are differences in cell cycles 

between life stages. The general pattern of Eukaryotic cell cycle phases in order are Gap 1 (G1), 

Synthesis (S), Gap 2 (G2), Mitosis (M) and Cytokinesis (C). A major difference between the 

typical Eukaryotic cell cycle and apicomplexa is that G2 phase of the cell cycle is seemingly 

absent in most apicomplexans (Alvarez & Suvorova, 2017) as seen in Figure 2. Interestingly, the 

G2 phase has been identified in T. gondii parasites transitioning from tachyzoites to bradyzoites 

(Gubbels et al., 2008).  
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Figure 2: Toxoplasma gondii Cell Cycle. The T. gondii cell cycle with specific cyclin related 
kinases each phase is shown above (Alvarez & Suvorova, 2017). 

 Specific features are used to mark the progression of T. gondii through the cell cycle 

which research has predominantly based on tachyzoite protein expression and morphologies due 

to bradyzoite cell cycle arrest in G0 or G1 phases (Gubbels et al., 2008). Since bradyzoites are 

halted at either of these stages they rarely progress, if at all through the cell cycle which 

necessitates studying the cell cycle via tachyzoites. The G1 phase of the T. gondii cell cycle 

accounts for nearly half of the total time tachyzoites spend in the active cell cycle (Alvarez & 

Suvorova, 2017). The G1 phase is characterized by preparation for chromosome replication and 

lastly centrosome replication which leads directly into the S phase (Francia & Striepan, 2014; 

Gubbels et al., 2008). Chromosome replication is the main event of S phase along with 

centrosome migration to the apical side of the nucleus (Gubbels et al., 2008). The G2 phase is 

mostly or completely bypassed as the cell moves into M phase. During mitosis, chromosome 

replication is completed and a set of chromosomes for the new daughter cells are pulled towards 
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spindle poles in separate areas in the apical side of the nucleus. Throughout cytokinesis, proteins 

involved in the inner membrane complex and formation of the daughter cell cytoskeletons are 

expressed (Gubbels et al., 2008). The final steps in cytokinesis mark the end of the cell cycle as 

the two newly formed daughter cells resolve from the mother cell and become two independent 

cells (Behnke et al., 2010). Throughout each phase, a set of cyclins and cyclin dependent kinases 

act as regulators determining the progression through the cell cycle (Kvaal et al., 2002).  

Cyclins and Cyclin Dependent Kinases 

 Cyclins and cyclin dependent kinases (CDKs) are two large, conserved families of 

proteins which regulate the cell cycle of Eukaryotes. Even though these protein families are 

conserved, there are several novel cyclins and CDKs in the apicomplexan phylum (Peixoto et al., 

2010). The term "cyclin" was coined due to the fluctuation, or cycling, of these proteins' 

expressions throughout the different stages of the cell cycle. Cyclin expression increases by 

regulation from specific transcription factors and their expression wanes with ubiquitin-directed 

destruction (Francia & Striepen, 2014). When a cyclin interacts with a corresponding CDK, the 

CDK structure reconfigures to reveal a molecule of ATP with which it is able to phosphorylate a 

target substrate. Phosphorylation by active CDKs may induce a multitude of pathways, many of 

which allow the cell to progress through the cell cycle (Morgan, 2007), but cyclin and CDK 

complexes are also known to have the ability to regulate transcription, RNA processing, 

translation and development (Alvarez & Suvorova, 2017). 

 Due to the importance of cyclin and CDK interactions in regulating cell cycle 

progression, an area of research that has the potential to provide solutions to parasitic infections 

and consequential illnesses is the identification and mapping of these specific protein-protein 
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interactions. However T. gondii does not have a fully annotated genome and many transcribed 

DNA sequences are labeled as "putative" or "hypothetical" proteins. Therefore, investigating 

protein interactions with proteins hypothesized to have a role in the cell cycle may provide 

clarity to the various enigmatic functions of T. gondii replication and allow additional annotation 

of the T. gondii genome.  

 TGME49_266900 . Due to the important role cyclins and cyclin dependent kinases play 

in regulating the cell cycle, proteins that appear to have these functions are prioritized in several 

studies. While many novel proteins exist in the apicomplexa phylum and in T. gondii, 

bioinformatic search engines provide starting points in protein-protein interaction experiments to 

hypothesize about a protein’s function and interacting partners. The protein chosen to screen in 

this current study has features that are characteristic of a specific type of cyclin and are identified 

by bioinformatic databases such as toxodb.org and NCBI. Due to overlapping acronyms 

throughout the Eukaryotic domain and confusion with similar proteins of other species, the most 

reliable way to refer to T. gondii proteins is by the toxoID which provides the strain of T. gondii 

and a specific number in each name for each gene in the genome. Although the protein focused 

on in this study, TGME49_266900, has yet to be confirmed a cyclin, for brevity's sake it will be 

referred to as "Cyc6," keeping consistency with previous but pertinent studies (Alvarez & 

Suvorova, 2017). 

 Several bioinformatic search engines and protein prediction software have indicated the 

amino acid sequence of Cyc6 shares a high degree of similarity to other N-terminus containing 

cyclins (toxodb.org, iTASSER). Cyclins are identifiable by a tertiary structure containing two 

domains of five alpha helices each (Figure 3). The first bundle of helices is typically about 100 
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amino acids long and is known as the cyclin box where CDK binding occurs (Morgan, 2007). 

Cyc6 has a discernible cyclin box region which spans the typical cyclin box length from amino 

acid position 96 to 194 (ToxoDB.org, Toxoplasma gondii ME49). Classifying Cyc6 as a cyclin is 

supported by the indication from bioinformatic software used in previous studies of a "D-box," 

or Death box motif which initiates protein degradation that contributes to the characteristic 

cycling expression pattern (Alvarez & Suvorova, 2017; Morgan, 2007). However the scope of 

identifying cyclins with bioinformatic searches relies mostly on these two traits (a conserved 

cyclin box and a destruction motif for ubiquitination) which are detected based on BLASTp 

query outputs. Beyond these two identifiable features, cyclins have great variability which 

generates classes of cyclins unique to different phyla. For example, canonical A, B, D or E types 

of cyclins, which are familiar to higher Eukaryotes, have not been identified in T. gondii. Instead, 

only cyclins that are related to P, H, L and Y types have been observed (Alvarez & Suvorova, 

2017). One interesting similarity between apicomplexa and other Eukaryotes is the presence of 

the conserved Y-type cyclin. 
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Figure 3: I-TASSER Cyc6 Model. Shown above is the predicted model of Cyc6 from iTASSER 
bioinformatic software. 

 Cyclin Y. According to analysis of bioinformatic software conducted by Alvarez and 

Suvorova in 2017, Cyc6 has similarities to the conserved Y-type cyclin. Despite being highly 

conserved, little is known about this recently discovered cyclin category (Liu et al., 2010). 

Among metazoan phyla, the Y-type cyclin is the most highly conserved cyclin besides cyclin C 

(Liu & Finley, 2010). To further demonstrate the high degree of conservation, the Y-type cyclin 

box has been identified in non-metazoan kingdoms such as plants and fungi. In addition, the Y-

type cyclin box is more closely conserved when comparing yeast and plant to human and 

Drosophila cyclin domains than any other type of cyclin (Liu et al., 2010).  

 The T. gondii protein Cyc6 has apparent similarities to other Y-type cyclins as indicated 

by BLASTp outputs. A key component needed to create a hypothesis regarding Cyc6 interactions 

is comparing Y-type cyclins and their protein interactions across phyla. When the amino acid 
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sequence of Cyc6 was queried in the I-TASSER server, bioinformatic software using multiple 

algorithms to generate models and function predictions of proteins, similarities between Cyc6 

and other cyclins were evident.  

 From the top 10 closely matching templates generated by the iTASSER server, two 

closely related yeast cyclins, PHO80 and Pcl10 were identified as being structurally similar to 

Cyc6. Both of these yeast cyclins belong to the PHO80p subfamily of cyclins that interact with 

PHO85, a multifunctional CDK (Andrews & Measday, 1998). While PHO85 is considered a 

non-essential CDK, it is involved in major roles such as phosphate metabolism, glycogen 

biosynthesis, actin regulation and cell cycle progression (Moffat et al., 2000).  

 Other CDK partners for Y-type cyclins have been identified throughout Eukaryotes. For 

example, the human Y-type cyclin was discovered in a yeast two hybrid screen conducted by 

Jiang et al. (2009) attempting to find a cyclin partner for PFTK1 or now referred to as CDK14. 

Additionally CDK16, a human CDK abundantly found in the Purkinje and pyramidal cells in the 

hippocampus, was found to interact with this cyclin (Mikolcevic, Rainer & Geley, 2012) and is 

essential for spermatogenesis (Mikolcevic et al., 2012). The cyclin Y homolog in Drosophila was 

found to be essential for development and played a role in Wg (WNT protein) signaling 

(Mikolcevic, Rainer & Geley, 2012). Eventually the link between cyclin Y and WNT protein 

signaling was established in vertebrates. Activation of a WNT co-receptor, LRP6, is achieved by 

phosphorylation from PFTK1/CDK14 kinases, which are activated by Y type cyclins (Davidson 

& Niehrs, 2010). A conserved trait among many eukaryotic Cyclin Y:CDK complexes is 

localization to the plasma membrane. The distinct N-terminal myristoylation signal of Cyc Y 

allows for localization of Y-type cyclins to the plasma membrane, where interacting CDK 
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partners are recruited to (Liu et al., 2010). While it cannot be expected a Y type cyclin from T. 

gondii would participate in homologous pathways or roles found in other Eukaryotic kingdoms, 

there may be parallels in established Y type cyclin protein interactions and apicomplexans. 

 AP2IX-4. Hemagglutinin tagged Cyc6 has been shown to be present during the 

tachyzoite stage with a peak expression during the G1 phase, yet in mutants without a functional 

Cyc6 protein, it was apparent that Cyc6 was not necessary for tachyzoite replication (Alvarez & 

Suvorova, 2017). However, no Additionally, Cyc6 did not interact with seven tested CDKs, or 

putative CDKs, in the tachyzoite cell cycle (Alvarez & Suvorova, 2017). Interestingly, Cyc6 was 

previously shown to be up regulated when transcription factor, AP2IX-4 was present. AP2IX-4 is 

up regulated when tachyzoites differentiate into bradyzoites during periods of cellular stress 

(Huang et al., 2017). lf Cyc6 is a cyclin, it is seemingly paradoxical that it would be up regulated 

in the slow growth stage yet be present in the G1 phase in tachyzoite growth. Therefore Cyc6 

may play an important role in the transition between life stages. 

Yeast Two Hybrid System 

 The yeast two hybrid system is a well established lab technique and is a relatively simple 

and cost efficient method for screening a genome for protein interactions. As the name suggests, 

this technique relies on phenotypic changes in attenuated two yeast strains to detect interacting 

proteins. Two interacting proteins will allow the GAL4 transcription factor binding and 

activating domains to come into close proximity to initiate transcription of a reporter gene to 

select for only interacting proteins as shown in Figure 4.  
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Figure 4: Schematic of the Yeast Two Hybrid System. The combination of both activating and 
binding domains of the GAL4 transcription factor allows for transcription of proteins in the 
biosynthetic pathway of histidine and adenine and for α-galactosidase, an enzyme which cleaves 
X-α-gal substrate to produce a blue hue.  

 Two attenuated strains of Saccharomyces cerevisiae are used to mate to produce diploids 

containing both the DNA insert of the protein of interest and a fragment of DNA from the cDNA 

library. Strains Y2HGold and Y187 are lacking functional genes for proteins in the biosynthetic 

pathways of tryptophan and leucine. By transformation with complimentary plasmids, the 

abilities to produce tryptophan and leucine are restored. Additionally, Y2HGold and Y187 are 

unable to produce histidine without a functional GAL4 transcription factor.  

 The yeast two hybrid system utilizes plasmids containing functional genes to complement 

the attenuated yeast strains as shown in Figure 5. Protein of interest inserts and cDNA library 

fragments are located in the multiple cloning sites of pGBKT7 and pGADT7 respectively. The 

protein of interest insert in pGBKT7 is cloned in frame with the binding domain of the GAL4 

transcription factor. The cDNA library fragments in pGADT7 are in open reading frame with the 
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GAL4 activating domain. When two proteins interact, the binding and activating domains of 

GAL4 come into close proximity to create a functional transcription factor.  

!  

Figure 5: Yeast Two Hybrid Plasmids. The bait and library (prey) vectors contain sequences for 
selectable markers and for either the binding or activating domain of GAL4. The pGBKT7 vector 
contains sequences for kanamycin resistance, production of a functional protein in the 
biosynthetic pathway for tryptophan and the binding domain of GAL4. The pGADT7 vector 
contains sequences for ampicillin resistance, production of a functional protein in the 
biosynthetic pathway of leucine and the activating domain of GAL4.  

Limitations 

 Bioinformatic technology has rapidly expanded in accuracy and availability within the 

past decade and the yeast two hybrid screen is a common and reliable lab technique. However, 

there are numerous limitations when relying on these strategies. Carefully planned methodology 

and experiments help to circumnavigate such pitfalls.  

 While the proteomes of many eukaryotes have been extensively studied and 

characterized, the apicomplexan phylum contains novel proteins that do not have homologies in 

any other eukaryotic phylum. Additionally, apicomplexans have a unique cell cycle which seems 
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to bypass the G2 phase (Gubbels et al., 2008). Due to this fundamental difference, novel 

apicomplexan cyclins without homologies in other eukaryotic phyla may provide misleading 

bioinformatic query results. While bioinformatic software may indicate key features in this 

proteins to characterize them into families, the user of such software must acknowledge that 

there is a possibility for error in computer derived predictions.  

 Several factors exist that may impact the results of yeast two hybrid screens and are of 

enough potential to disclose. There is substantial evidence that Cyc6 is up regulated in the 

bradyzoite stage of T. gondii. However the creation of the cDNA library in use was constructed 

from tachyzoites, not bradyzoites. Therefore any interactions between proteins up regulated 

during the bradyzoite stage or specific only to the bradyzoite stage may not be observed in this 

current yeast two hybrid screen. As Cyc6 is present during the tachyzoite stage but is down 

regulated after the G1 phase, it is expected to have at least one protein interaction involving its 

degradation expressed in the tachyzoite life stage which should be evident in this screen. A 

limitation of the yeast two hybrid system itself is that all of the interactions between Cyc6 and 

interacting protein partners must take place in the nucleus. If Cyc6 were to interact with a 

specific protein only in conditions outside of the parasitic nucleus, it may not be observed in the 

yeast two hybrid system. However it has been shown in the tachyzoite life stage that Cyc6 is 

localized to the nucleus (Alvarez & Suvorova, 2017) but it is uncertain if this information can be 

extrapolated to the bradyzoite life stage as well. Lastly, proteins often form interactions with 

more than one other protein at a time. For example, CDK inhibiting proteins bind to cyclin-CDK 

complexes (Morgan, 2007). Since only two T. gondii proteins are expressed in one diploid yeast 

cell at a time, such interactions may not be observed.  
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 There are limitations with using a cDNA library that need to be acknowledged. Due to the 

process of producing a cDNA library with reverse transcriptase, there is a limit to the length of 

cDNA fragments made. The possibility of a number of nucleotides in a continuous transcribed 

gene being greater than the maximum length created by reverse transcriptase is almost certain. 

Therefore the DNA inserts of protein sequences in the cDNA library will not be of all genes in 

full length; the inserts will be of fragments of genes too large in nucleotide length to be 

transcribed by reverse transcriptase. 

 Extra experiments may be carried out in order to avoid some implications of these 

potential limitations. A major goal of this current research is to investigate whether or not this 

putative cyclin is truly a cyclin or if there could be an error from bioinformatic calculations. 

Protein interactions detected by the yeast two hybrid screen provide additional evidence for the 

purpose of this protein of interest. For example, if a cyclin dependent kinase partner is 

discovered through this screen, it would support the bioinformatic software's predictions. 

However, a cyclin dependent kinase partner may not be discovered either due to 

misidentification of Cyc6 being a cyclin or a cyclin dependent kinase partner may exist, but due 

to the limitations of the yeast two hybrid screen, it may not be identified due to a false negative 

error. A future research project with this protein of interest could include screening against a 

cDNA library derived from a life stage other than tachyzoite. Additionally, it is possible to order 

synthetic, full length DNA sequences of proteins to test with Cyc6 to avoid the problem of 

truncated sequences from the cDNA library. However, ordering synthetic DNA sequences is 

costly; sequences must be carefully selected with solid reasoning. 



!32
Chapter II: Hypotheses 

 As explained previously, bioinformatic software has suggested Cyc6 may be a Y-type 

cyclin. Cyc6 is up-regulated when transcription factor, AP2IX-4, is expressed. Intriguingly, Cyc6 

is also not essential for tachyzoite growth but is seen to have a peak expression in the G1 phase 

of tachyzoites. By taking into account these unique traits associated with this putative cyclin, the 

following hypotheses have been derived: 

1. Cyc6 interacts with proteins localized in the nucleus during the tachyzoite life stage 

2. Cyc6 interacts with a kinase that has homology to CDKs in other organisms that also interact 

with a Y type cyclin, more specifically TGME49_285160 

 In order to maintain all hypotheses as falsifiable, it is necessary to exclude legitimate 

hypotheses pertaining to specific life stages that do not have accessible cDNA libraries. 

Therefore, hypothesis #2 specified a protein to directly test against Cyc6.  
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Chapter III: Materials and Methods 

Bait Plasmid Construction 

 The Cyc6 sequence in prey plasmid, pGADT7, was provided by Dr. Michael White and 

researchers from the University of South Florida. Primers containing restriction enzyme sites for 

NdeI and EcoRI and the 5’ and 3’ ends of the Cyc6 insert were designed to amplify the insert in 

the open reading frame: 

                                                      NdeI    
Forward Primer: 5’ GAG CAT CAT ATG GCT GAG GAT AGC GTT CC 3’ 

Reverse Primer: 5’ TTG AAT TCT CAG GAC ATT GTC TCG GC 3’  
                                         EcoRI    

 The insert was amplified via PCR. Gel electrophoresis of the amplified sample with a 

1.2% (w/v) gel was ran at 150V for one hour alongside an empty pGADT7 vector which 

confirmed successful amplification of the insert. The insert was extracted and purified from the 

agarose gel with a DNA Extraction Kit from IBI/MidSci. 

 To construct the bait plasmid, a 3:1 molar ratio of the pGBKT7 vector and amplified 

insert, respectively, were used. One hundred nanograms of the pGBKT7 vector and 60 ng of the 

amplified Cyc6 insert were digested with NEB EcoRI HF and NdeI restriction enzymes 

overnight at 37°C. The digested, linear vector and insert were ran in a 0.8% (w/v) agarose gel at 

200V for 80 minutes alongside a 1kb ladder and then excised by a razor blade. The vector was 

dephosphorylated with NEB shrimp alkaline phosphatase and ligated with the Cyc6 insert with 

NEB T4 DNA ligase.  
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 Successful subcloning of the Cyc6 insert into the pGBKT7 vector was indicated by 1.0% 

(w/v) agarose gel electrophoresis ran at 100V for 80 minutes following a double EcoRI HF and 

NdeI digest. Five hundred picograms of pGBKT7-Cyc6 plasmid were used to transform 100 µL 

of NEB E. coli strain DH5α competent cells. Successful transformations were selected by plating 

on LB agar containing ampicillin (50 µg/mL). The positive control with XPMC2 was supplied 

from NEB. The pGBKT7-Cyc6 plasmid was purified with an IBI mini-prep plasmid kit and then 

was assessed for purity and concentration at wavelengths of 260 nm and 280 nm with a 

Nanodrop 2000 spectrophotometer and software. 

 Bait Strain Transformation. Yeast strain Y2HG was transformed with the constructed 

bait plasmid. Cells from a glycerol stock of Y2HG were grown on YPDA agar for three days and 

three colonies (about 2-3 mm in diameter) were inoculated in 50 mL of liquid YPD and 

incubated at 30°C with shaking at 250 rpm overnight. From the overnight culture, 30 mL was 

added to 300 mL of fresh YPD and incubated at 30°C with shaking at 230 rpm. Cells were 

harvested after three hours by centrifugation at 1000xg for 5 minutes twice to consolidate the 

entire pellet. The resulting pellet was resuspended in 1.5 mL of 1x TE/LiAc. One hundred 

nanograms of pGBKT7-Cyc6 DNA was combined with 100 ng of Clontech carrier DNA to 

which 100 µL of the resuspended cell pellet was added and vortexed. Six hundred microliters of 

1x PEG/LiAc solution was added to the suspension and vortexed on high speed for ten seconds. 

The cells were incubated at 30°C for 30 minutes with shaking at 200 rpm. After incubation, 70 

µL of 100% DMSO was added and mixed by gentle inversion. The cells were heat shocked at 

42°C for 15 minutes then chilled on ice for two minutes. The cells were harvested at 14000xg for 
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five seconds, then resuspended in 0.5 mL of sterile 1x TE buffer. To select for transformed cells, 

serial dilutions of 1:1 to 1:10000 were plated on tryptophan dropout media.  

Yeast Two Hybrid Screen 

 For mating, a single three day old Y2HG pGBKT7-Cyc6 colony (approximately 3 mm in 

diameter) was selected and grown in 50 mL of tryptophan dropout media with added kanamycin 

(50 µg/mL) for 18 hours at 30°C while shaking at 250 rpm which gave an OD600nm of 1.28. The 

cells were pelleted at 1000xg for 5 minutes. The pellet was resuspended in 5 mL of tryptophan 

dropout media and then the cells were counted in a hemocytometer to ensure proper density of 

the bait strain. One milliliter of a glycerol stock of Saccharomyces cerevisiae cell strain Y187 

containing plasmids of the cDNA library in pGADT7, provided by the White lab of USF, were 

thawed at room temperature and 10 µL of the cDNA library were removed to prepare serial 

dilutions to plate on leucine dropout plates to check the prey strain viability. Forty five milliliters 

of 2x YPDA and kanamycin (50 µg/mL) were added to a sterile 2 L flask. Then 5 mL of the bait 

strain and 1 mL of the library strain were combined in the 2x YPDA. The vial containing the 

library strain was rinsed with 1 mL of 2x YPDA twice to ensure the maximum amount of cells 

were used in the mating. The 2 L flask was incubated at 30°C for 24 hours while shaking at 50 

rpm. The mated cells were pelleted at 1000xg for 5 minutes. The flask was rinsed twice with 50 

mL of 2x YPDA to ensure the maximum amount of mated cells were collected. The 2x YPDA 

that rinsed the 2 L flask was used to re-suspend the pelleted mated cells. The resuspended pellet 

was pelleted again at 1000xg for 10 minutes. The pellet was resuspended in 10 mL of 0.5x 

YPDA which gave a final volume of 12.2 mL. Ten microliters of mated cells were serially 

diluted (1:10, 1:100, 1:1000, 1:10000) then plated on DDO media and incubated for 3 days at 



!36
30°C to calculate the mating efficiency. Two hundred microliters of the mated cell suspension 

were plated on every QDO plate (150 x 15 mm size) until all of the suspension had been plated. 

The mated cells plated on QDO were incubated at 30°C for 72 hours. All formed colonies were 

transferred to secondary QDO plates. After another 72 hours, any new colonies on the primary 

QDO plates were also transferred to secondary QDO plates.  

Interaction Strengths 

 The protein interaction strengths of the colonies that resulted from the mating were tested 

by streaking onto X-α-gal plates. All colonies from the secondary QDO plates and a positive and 

negative control were streaked onto a tertiary QDO plate and also onto a QDO X-α-gal plate. 

The plates were incubated at 30°C for 3 days. The blueness produced by each diploid on tertiary 

QDO X-α-gal plates was ranked on a 0-3 scale. The negative control which had absolutely no 

growth or blueness served as a marker for 0 and the positive control which resulted in a vibrant 

blue was used as an example for a ranking of 3 as seen in Figure 7. Any colonies that were given 

a ranking of less than 1 were not chosen to proceed with plasmid purification. 
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Figure 6: Blue Intensity Ratings. Samples of interacting proteins and positive and negative 
controls were streaked on X-α-gal plates. The negative control's lack of blue color was used as 
the marker for a score of 0 and the positive control's strength of blue color as a score of 3. 
Intensity of blue hues falling in-between 0 and 3 were rated either a 1 or 2. After the number of 
samples decreased to a more manageable amount, a more descriptive 0-5 rating methodology of 
blue intensity was used. Ratings for all blue intensities were judged by two individuals; 
discrepancies were either mediated by giving half-scores or re-evaluation from both individuals. 
Ratings are shown for each sample above.  

Plasmid Purification 

 The selected colonies were grown by collecting a large pearl sized amount of yeast off of 

the tertiary QDO plates and suspending in 5 mL of YPD medium. The resuspension was grown 

at 30°C for 18 hours while shaking at 250 rpm. The overnight grown samples in 5 mL YPD were 

pelleted in 1.5 mL microfuge tubes by repeated pelleting at 14000xg for 10 seconds then 

decanting. After the samples were pelleted for the last time, 0.2 mL of yeast lysis solution (2% v/

v Triton, 1% w/v SDS, 100mM NaCl, 100mM Tris-HCl, 1mM EDTA), 0.2 mL of phenol-
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chloroform-isoamyl alcohol and 0.3 g of acid washed glass beads resuspended each pellet and 

lysed the cells. Then the samples were spun by a vortex for 2 minutes each. The samples were 

centrifuged at 14,000xg for 5 minutes, leaving the DNA in the supernatant. The supernatant was 

transferred to a new 1.5 mL tube and the DNA was precipitated by adding 34 µL of 3 M NaOAc 

and 850 µL of ethanol then centrifuging at 14000xg for 10 minutes. The supernatant was 

discarded and the DNA pellet was washed in 1 mL of 70% ethanol. The pellet was centrifuged at 

14000xg for 10 minutes and was allowed to dry. The resulting DNA pellet was resuspended in 50 

mL of TE buffer.  

 From the crude plasmid purification from yeast, 10 µL of each sample was combined 

with 100 µL of DH5α competent cells. The plasmids and cells were incubated together on ice for 

30 minutes then heat shocked at 42°C for 30 seconds then incubated on ice for another 5 

minutes. Afterwards, 890 µL of SOC was added to all samples which were then incubated at 

37°C for one hour while shaking at 250 rpm. The transformed cells were then plated in serial 

dilutions on LB plates containing ampicillin to select for the prey plasmid overnight. An IBI mini 

prep kit was used to isolate the plasmids from all successful transformations which were 

analyzed for concentration and purity using Nanodrop2000 equipment.  

HindIII Digest and Gel Electrophoresis 

 From all purified plasmid samples, 500 ng of plasmid DNA was digested with HindIII for 

at least one hour. The digested DNA was stained with EasyVision One dye and ran at 150 V in a 

1% (w/v) agarose gel with 0.5x TBE buffer for a minimum of 90 minutes. After all samples were 

digested and ran in electrophoresis gels, band sizes from all inserts were recorded which grouped 

inserts into categories for size. Additional samples were digested with HindIII and 
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electrophoresed in 2% (w/v) agarose gels at 100 V to identify small bands (<700 base pairs) to 

further separate samples into protein categories. 

Retransformation and Interaction Strength Testing 

 Individual samples from each insert size group were transformed into strain Y2HGold 

containing the bait plasmid. Transformed cells were selected for by plating on DDO media. After 

colony formation after three days, the transformed cells were re-streaked on QDO media 

containing X-α-gal. The resulting blue intensity of the colonies were rated on a more descriptive 

scale of 0 to 5, instead of 0 to 3. The re-transformation and blue intensity ratings were replicated 

with additional samples from each protein category to distinguish if there were different 

categories of proteins that were grouped into the same category initially.  

Sequencing 

 Eighteen samples total from ten different categories were chosen to sequence. The 18 

samples were chosen based on how many samples were in each category, strength of interactions 

and purity of samples and were sent to the University of South Florida for sequencing. 

Alignments of sequences and consensus sequences were generated in SeqManPro from 

DNASTAR bioinformatic software. The resulting consensus sequences were used in BLASTn 

searches in the toxodb.org database. The sequenced samples were aligned with the full sequence 

provided from the toxodb.org database to analyze what proportion of the ORF of the full 

sequence was included in the cDNA library which interacted with Cyc6.  

False Positive Testing 

 A sample from each contig group and each lone sample from the sequencing results were 

transformed along with the negative control, pGBKT7-lam, into Y2HGold. Transformed cells 
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and Y2HGold strain positive and negative controls were plated on DDO plates then streaked 

onto X-α-gal QDO plates at 30°C for 3 days each. False positives were indicative of formation of 

blue colonies in comparison to the controls. 

Selection of TGME49_285160 

 The sequence of TGME49_285160 was selected to test against Cyc6 due to similarities 

between other CDKs found in other Eukaryotic phyla. TGME49_285160 was selected due to no 

previous research being done on this protein relating to any screens or it being the resulting 

interacting partner of any known screens and due to its strong similarities to human CDK 14, 

CDK 16 and Eip63E found in Drosophila melanogaster. The apparent absence of 

TGME49_285160 during the tachyzoite life stage (toxodb.org; Alvarez & Suvorova, 2017) 

implied the yeast two hybrid system did not test this interaction. Selection criteria was based on 

the E scores obtained when the amino acid residue sequence was used in a BLAST search in a T. 

gondii genome database; the results of which are shown in Tables 1, 2 and 3. While other 

proteins had lower E-values, such proteins were already the subjects of other screens or directly 

tested with Cyc6 from previous studies.  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Table 1: BLASTp Query of Human CDK14. The FASTA sequence for Human CDK14 was 
provided by the UniProt database. The sequence was queried in the ToxoDB BLASTp feature. 
The top five hits are shown. 

Table 2: BLASTp Query of Human CDK14. The FASTA sequence for Human CDK16 was 
provided by the UniProt database. The sequence was queried in the ToxoDB BLASTp feature. 
The top five hits are shown. 

Table 3: BLASTp Query for Drosophila Eip63E. The FASTA sequence for Drosophila 
melanogaster Eip63E was provided by the UniProt database. The sequence was queried in the 
ToxoDB BLASTp feature. The top five hits are shown. 

ToxoID Predicted Product Score E-Value

TGME49_218220 CDK 285 1E-92

TGME49_285160 CDK5 208 4E-62

TGME49_304970 CDK 206 2E-57

TGME49_281450 CDK 189 3E-54

TGME49_233010 ERK7 163 5E-44

ToxoID Predicted Product Score E-Value

TGME49_218220 CDK 326 6E-108

TGME49_304970 CDK 202 1E-55

TGME49_285160 CDK5 198 4E-58

TGME49_281450 CDK 194 8E-56

TGME49_233010 ERK7 184 7E-51

ToxoID Predicted Product Score E-Value

TGME49_218220 CDK 280 1E-89

TGME49_304970 CDK 190 1E-51

TGME49_285160 CDK5 188 2E-54

TGME49_281450 CDK 181 9E-51

TGME49_233010 ERK7 169 1E-45
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TGME49_285160 Testing 

 The DNA sequence for TGME49_285160, with restriction sites for NdeI and EcoRI 

located at the 5' and 3' ends respectively, was purchased through BioMatik in vector, pBluescript 

II SK. NEB DH5-alpha E. coli were transformed with 100 ng of the pBluescript plasmid and 100 

ng of the positive control, puc19, and plated on LB-amp (50 µg/mL). Untransformed cells served 

as the negative control. After incubating overnight at 37°C, 3 colonies containing pBluescript-

TGME49_285160 were inoculated in 5 mL of LB liquid media containing 50 µg/mL ampicillin 

at 37°C while shaking at 250 rpm and harvested when OD600nm > 1.2. An IBI mini prep kit was 

used to purify the plasmids. The yield was determined with Nanodrop 2000 equipment.  

 TGME49_285160 Subcloning. The TGME49_285160 insert was removed from 

pBluescript by NEB EcoRI HF and NdeI digestion of 1 µg of DNA at 37°C for two hours. 

Simultaneously, 1 µg of empty pGADT7 vector was digested by the same process for one hour. 

The pGADT7 digest was heat shocked at 65°C for 20 minutes to inactivate the restriction 

enzymes. The digested pGADT7 vector was cooled down to 37°C and then was incubated with 1 

unit of NEB rSAP for 30 minutes. Twenty microliters of products from both digests were stained 

with EZ-Vision One dye and ran at 150 V in a 0.5x TBE 0.8% (w/v) agarose gel for varying 

lengths of time. The bands of the insert and linearized vector were excised from the gel after the 

representative bands had travelled at least 2/3 of the way down the 15 cm long agarose gel to 

ensure only digested vector DNA would be purified. The bands representing the insert and linear 

vector were excised from the agarose gel in quantities < 500 mg. The DNA was purified using an 

IBI DNA fragment extraction kit and quantified. A 3:1 molar ratio of insert to vector was used 
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for ligation, respectively. Four hundred units of NEB T4 DNA ligase was incubated with 100 ng 

of vector DNA and 37.5 ng of insert DNA at 20°C for 10 minutes. The reaction was chilled on 

ice then used to transform 50 uL of NEB DH5α E. coli cells following the NEB transformation 

protocol. Serial dilutions of 1:1 to 1:1000 of transformed cells were plated on LB agar containing 

50 µg/mL ampicillin selecting for successfully transformed cells. After incubation at 37°C 

overnight, transformation efficiency was calculated and three colonies were inoculated in 5 mL 

of LB liquid media containing 50 µg/mL ampicillin and were harvested when OD600nm  > 1.2. The 

plasmid DNA was purified using an IBI miniprep kit and quantified. The successful ligation of 

insert and pGADT7 was confirmed by performing a double restriction enzyme digest with NEB 

EcoRI HF and NdeI of pGADT7 with the TGME49_285160 insert and of an empty pGADT7 

vector. The products of each digestion were stained with EZ Vision One dye and ran on a 0.5x 

TBE, 1.2% (w/v) agarose gel at 150 V alongside a 1kb ladder for 120 minutes. The resulting 

fragment sizes confirmed successful ligation of the insert into pGADT7 represented by two 

respective bands.  

 TGME49_285160 & TGME49_266900 Interaction Tests. Three Y2HG colonies, 

approximately 2-3 mm in diameter, grown on agar YPD media were inoculated in 50 mL of YPD 

liquid media at 30°C while shaking at 250 rpm overnight. When the culture reached stationary 

phase (OD600nm >1.5), the cells were harvested and transformed with pGADT7-TGME49_285160 

following the same protocol used for Y2HG cells and the pGBKT7-Cyc6 transformation. 

Successful transformations were selected by plating transformed yeast in serial dilutions of 1:1 to 

1:10000 on leucine dropout media at 30°C for three days. Three of the larger colonies were 

inoculated in liquid leucine dropout media overnight at 30°C while shaking at 250 rpm and 
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harvested when OD600nm >1.5. To select for transformed cells containing both plasmids, the cells 

were plated on DDO for three days at 30°C in serial dilutions of 1:1 to 1:10000.  

 Colonies which contained both plasmids were streaked onto QDO agar plates. 

Additionally, positive control pGBKT7-p53 + pGADT7-T antigen and negative control 

pGBKT7-lam + pGADT7-T antigen were used to validate findings. After incubating for three 

days at 30°C, the presence or absence of colonies was noted.  

 To guarantee both inserts were present in the co-transformed colonies, PCR amplified 

both Cyc6 and TGME285160 inserts from their respective plasmids. The primers used to sub-

clone Cyc6 from pGADT7 to pGBKT7 and the T7 and 3' AD sequencing primers from Clontech 

were used to amplify the co-transformed yeast. As a positive control, Cyc6 and 

TGME49_285160 inserts were amplified from their respective plasmids.  
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Chapter IV: Results 

Overview 

 From this current yeast two hybrid screen, two likely protein interactions were identified 

with Cyc6: TGME49_214290 and TGME49_314890. Three proteins consisting of a ribosomal 

protein and two GRA proteins were identified and deemed to be false positives. Three other 

interacting proteins were classified as hypothetical proteins which had no conserved domains or 

well-aligned expression rates in life stages or cell cycle phases with Cyc6. When Cyc6 was 

directly tested with TGME49_285160, no protein-protein interaction was observed.  

Subcloning and Transformation 

 Successful subcloning of the Cyc6 insert was evident by the lengths of DNA bands in an 

electrophoresis gel corresponding to the expected sizes of a HindIII digest of pGADT7 and 

pGBKT7 both containing the Cyc6 insert as shown in Figure 7.  
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Figure 7: Subcloning of Cyc6 Insert. Successful subcloning of Cyc6 from pGADT7 to pGBKT7 
is shown in an 1% (w/v) agarose gel. The contents of lanes 1 to 9 contain uncut empty pGADT7, 
empty pGADT7 digested with HindIII, uncut pGADT7-Cyc6, pGADT7-Cyc6 digested with 
HindIII, 1 kb ladder, uncut empty pGBKT7, empty pGBKT7 digested with HindIII, uncut 
pGBKT7-Cyc6 and pGBKT7-Cyc6 digested with HindIII. 

Auto-activation Testing 

 Cyc6 was shown to not interact with the negative control (pGADT7-lam) as indicated by 

lack of growth on QDO. This indicates that Cyc6 is not a "sticky" protein. Y2HGold cells with 

only the bait plasmid indicated Cyc6 did not auto-activate when streaked on media lacking 

histidine and tryptophan as indicated by lack of growth.  
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Yeast Two Hybrid System Outcome Overview 

 The bait strain had a viability of 7.3x107 cfu/mL and the prey strain had a viability of 

3.1x107 cfu/mL. The mating efficiency of the yeast two hybrid system was 3.2x106 cfu/mL, or 

3.9x107 diploids total. The yeast two hybrid system produced 95 colonies of diploid cells 

containing proteins interacting with Cyc6 from the 3.9x107 diploids. After excluding all samples 

that did not produce a blue color rating of 1 or greater when grown on QDO X-α-gal plates, the 

number of viable samples decreased to 80 (Table 4). Of the 80 samples, 76 plasmids were able to 

be purified and transformed into E. coli.  

Table 4: Intensity of Blueness Rating Frequencies. Shown below are the frequency of interaction 
strength ratings from original 95 colonies. The 15 samples that produced blue intensities with a 
rating of less than one were excluded. 

Protein Groupings 

 Of the 76 plasmids, 70 were able to be visualized in 1% (w/v) agarose gels. The six 

plasmids that were unable to be seen in the agarose gel had significantly less DNA yield after 

purification or had A260/230 ratios that were significantly lower than other purified samples 

which suggests organic contamination from a previous step. After the initial digest and 1% (w/v) 

agarose gel electrophoresis, six different groups of proteins were apparent (Table 5). 

Rating # of Colonies

<1 15

1 15

2 26

3 39
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Table 5: Initial Six Protein Groups. The initial grouping of proteins from 1% (w/v) agarose gels 
is described below. When yeast were re-transformed with multiple samples from each category 
then ran HindIII digested plasmids on 2% (w/v) agarose gels, this table was shown to be 
inaccurate due to inconsistencies seen in interaction strength and inserts. 

     After retransforming back into yeast, five of the six groups had discrepancies in interaction 

strength ratings when grown on X-α-gal media. The secondary digests and electrophoresis on 2% 

agarose gels (Figure 8) provided evidence of 10 groups of proteins instead of only six which was 

distinguishable by differences in base pair amounts (Table 6). To find the length of just the insert, 

800 bp was subtracted from the total length of each insert due to 800 bp separating the two 

HindIII sites in the pGADT7 vector. Additionally, a few samples had multiple fragments which 

suggests there was a HindIII site in the insert. Although the new grouping of proteins allowed for 

a consensus for most protein groups and interaction strength rating, two inserts (fragment lengths 

of 2k bp and 2.4k bp) did not have a distinguishable size difference, but produced two different 

interaction strengths with two of its corresponding samples.  

Fragment(s) bp Insert Length bp # of Samples

1.2k 400 9

1.7k 900 5

2k 1.2k 7

2.4k 1.6k 34

2.6k 1.8k 13

1.2k, 800 1.2k 2
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Figure 8: Protein Categories by Insert Length. All 10 inserts were digested with HindIII and 
electrophoresed on a 2% (w/v) agarose gel. The 13 lanes from left to right consist of: 1 kb ladder, 
inserts of 1.1k + 650 bp, 1.3k bp, 1.2k + 700 bp, 1.3k + 900bp, 1.7k bp, 2k bp, 2k + 400 bp, 2.4k 
bp, 2.4k + 400 bp, 2.4k bp and 2.6k bp in length, and empty pGADT7 digested with HindIII, 
respectively. Lanes 9 and 11 could not be distinguished apart by size, but were from samples 
with different interaction strengths.  
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Table 6: Frequencies of Insert Lengths and Blue Intensity Ratings. Fragment lengths shown in 
column one correspond to the total length of the bands seen in a 2% (w/v) agarose gel before 
800bp was subtracted and any bands with multiple fragments were added together to get the total 
length of the insert. *These inserts could not be distinguished by size, but produced significantly 
different interaction strength ratings.  

  
 Interacting Proteins. After the all samples were categorized into one of the 10 possible 

groups and a representative 18 samples were sequenced, nine different interacting proteins were 

evident. From the 18 samples sequenced, five different contigs and four lone samples without 

contigs were aligned using the SeqManPro program from DNASTAR bioinformatic software as 

seen in Table 7.  

Fragment Length(s) (bp) Actual Insert Length (bp) # of Samples Interaction Strength(s) (1-5)

1.1k, 650 950 2 3

1.3k 500 5 5

1.2k, 700 1.1k 1 5

1.3k, 900 1.4k 1 2

1.7k 900 5 4

2k 1.2k 7 1, 5*

2k, 400 1.6k 1 1.5

2.4k 1.6k 40 2, 5*

2.4k, 400 2k 4 1

2.6k 1.8k 4 5
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Table 7: Contig Alignment and Insert Identification. Shown below are each of the contigs and 
lone sequences. After aligning, each contig or sequence was located in the Toxodb database by a 
BLASTn search. Each query generated one hit with an E-value of 0. The samples above in red 
boxes indicate biologically relevant relevant proteins. 

 Sticky proteins formed the largest contig (contig #5) and were excluded from further 

analysis. In total, eight different proteins were discovered to interact with Cyc6, excluding the 

sticky protein, from the yeast two hybrid screen. The degree of interaction strength of the 

proteins and Cyc6 varied from 1 to 5 on a scale of 0 to 5 rating the intensity of the blue color 

produced from X-α-gal.  

TGME49_285160 

 Strain Y2HGold was co-transformed with pGBKT7-Cyc6 and pGADT7-

TGME49_285160. Evidence of successful co-transformation was shown by growth on DDO 

media (Figure 9) and PCR amplification of the inserts directly from yeast (Figure 10) which 

correspond with the expected insert sizes. No growth of this co-transformed yeast was observed 

Contig # # of 
Sequences

Insert Length 
(bp)

Interaction 
Strength (1-5)

ToxoID 
(TGME49_#)

Predicted Protein 
Product

# of Amino 
Acids

1 2 2k 2.5 215220 GRA22 629

2 2 1.2k 1 226570 Hypothetical 139

3 2 1.4k 2.5 203358 Hypothetical 395

4 2 400 2 286450 GRA5 120

5 7 1.6k 5 - - -

Single 1 1 2.6k 5 266690 Hypothetical 1676

Single 2 1 1.6k 2 314890 ThiF Protein 2933

Single 3 1 1.1k 5 320050 Ribosomal RLP5 310

Single 4 1 900 5 214290 DJ-1 Family 
Protein

256
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on QDO (Figure 11) which indicated no interaction between Cyc6 and TGME49_285160 

occurred.  

!  

Figure 9: TGME49_285160 Co-transformation. Growth on DDO of co-transformed Y2HGold 
with pGBKT7-Cyc6 and pGADT7-TGME49_285160 is evident on the bottom section. Positive 
and negative controls are evident on the top left and right sections, respectively.  
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Figure 10: Affirmation of Presence of TGME49_285160 Insert. The two inserts of Cyc6 and 
TGME49_285160 (Lane 1) were amplified from yeast grown on DDO to further indicate 
successful transformation with the original primers used for sub-cloning Cyc6 into pGBKT7 and 
the T7 and 3'AD sequencing primers. Lane 2 represents a 1 kb ladder, Lane 3 is the Cyc6 insert 
from pGBKT7 amplified by the original primers used for sub-cloning and Lane 4 is the 
TGME49_285160 insert amplified from pGADT7 by the T7  & 3' AD sequencing primers 
provided by Clontech. 



!54

!  

Figure 11: Cyc6 and TGME49_285160 Interaction Testing. No growth was observed on QDO 
media with yeast co-transformed with pGBKT7-Cyc6 and pGADT7-TGME49_285160. Growth 
was observed with the positive control as seen in the lower left section and no growth occurred 
with the negative control in the lower right section.  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Chapter V: Discussion 

Interacting Proteins 

 Although only two proteins were able to be classified as Cyc6 interacting proteins with a 

high degree of certainty, six other proteins were excluded from analysis due to various reasons, 

such as their respective intracellular location within T. gondii, and lack of homologous 

expression in specific life stages. Despite TGME49_285160 sharing a high degree of homology 

with other Cyc Y interacting CDKs from other eukaryotes, no interaction was observed. The 

insert lengths of each interacting protein sequence were compared to the complete protein 

sequence from the toxodb.org database to analyze where Cyc6 interacts with each protein 

(Figure 12). No significant similarities between the DJ-1, ThiF or hypothetical proteins were 

found by BLASTp alignment. The span of the interacting cDNA of the hypothetical proteins are 

shown in Figure 13.  

!  

Figure 12: Insert Alignments and Locations in Sequences of Biologically Relevant Interactions. 
The span of the interacting cDNA inserts are shown above in proportion to the entire insert 
sequence length. The red fractions represent ORFs and the yellow fractions represent UTRs 
included in the interacting cDNA insert. The black and grey fractions represent the ORFs and 
UTRs, respectively, not included in the interacting cDNA insert.  

 The proportion of cDNA coverage of the ORF region between the DJ-1 and ThiF protein 

sequences varies due to the differing ORF lengths. The insert length corresponding to DJ-1 was 
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900 bp which provided all but the first 60 bp of the ORF (the first 20 amino acids) out of the 256 

amino acid protein length. However, the ThiF insert only covered approximately the last 533 

amino acids out of a total length of 2933 amino acids. The ORFs included in the interacting 

cDNA inserts of DJ-1 and ThiF did not align in NCBI's BLASTn program.  

!  

Figure 13: Insert Alignments and Locations in Sequences of Hypothetical Proteins. The three 
hypothetical proteins are shown above with the same colors representing the  ORFs and UTRs 
included in each cDNA insert. The ORFs and UTRs not included in the cDNA insert are shown 
in black and grey, respectively.  

 Although it is unknown if the three interacting hypothetical proteins pulled from this 

screen exist in vivo, the entire predicted ORF of TGME49_226570 and most of 

TGME49_203358's ORF were included in interacting cDNA inserts. A lesser proportion of 

TGME49_266690's ORF was included, but the corresponding insert length was a considerable 

1.8k bp long. No significant alignments were found when comparing the hypothetical, DJ-1 and 

ThiF sequences together in the NCBI BLASTn suite. Therefore, no common motifs or domains 

existed between the interacting proteins that had a role in Cyc6 interactions.  
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 TGME49_214290. One distinct protein as a Cyc6 interacting partner was identified as 

TGME49_214290, a DJ-1 family protein. More specifically, this protein in T. gondii has an 

apparent role in microneme secretion. Previous research suggests DJ-1 functions as a 

"noncanonical kinase-regulatory scaffold" and is necessary for successful T. gondii microneme 

secretion. This DJ-1 protein has been shown to have a direct interaction with a calcium 

dependent kinase, which microneme secretion is reliant on (Child et al., 2017). It is unknown 

what Cyc6's role regarding DJ-1 function or vice versa, but it is easy to speculate Cyc6 may play 

a role in a pathway allowing for microneme secretion.  

 TGME49_314890. The other interacting protein partner of Cyc6 was TGME49_314890, 

a ThiF protein, similar to E1 enzymes in the Eukaryotic ubiquitination pathway. The ThiS-ThiF 

protein complex has been described in E. coli to allow the transfer of sulfur for thiazole 

biosynthesis in the overarching thiamin biosynthesis pathway (Lehmann, Begley & Ealick, 

2006). Cyc6 may play a role in the ubiquitination pathway of specific proteins perhaps allowing 

the parasite to transition into the bradyzoite life stage. However, it is important to note that such 

protein-protein interactions must be studied in greater detail in order to draw conclusions about 

Cyc6's role in its interaction with the ThiF protein.  

Excluded Interacting Inserts 

 From the nine interacting inserts after sequence alignment, seven were excluded. When 

deciding which results were false positives, the limitations of the yeast two hybrid system were 

considered. The first sequence to be excluded was a promiscuous protein that produced blue 

colonies similar to the positive control when strain Y2HGold was co-transformed with pGBKT7 
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lam and pGADT7 containing the insert from contig #5. Due to the lack of specificity of this 

protein, it was considered a false positive.  

 One main critique of the yeast two hybrid system is the possibility of obtaining false 

positives of proteins that do interact in this system in a non-promiscuous manner, but that would 

not interact in T. gondii itself, perhaps due to the inconsistent localization of these proteins 

observed naturally in T. gondii. A ribosomal protein, RPL5 (TGME49_320050), was excluded 

due to the localization of this protein compared to Cyc6. Since RPL5 is localized in the 

ribosome, it does not seem feasible based on biological sense that this is a real result. Two other 

proteins, GRA5 and GRA22 (TGME49_286450 & TGME49_215220) are described in previous 

literature as dense granule proteins (cite). While it is possible Cyc6 may exit the nucleus upon T. 

gondii transitioning from tachyzoite to bradyzoite, GRA5 and GRA22 are located within the 

parasitophorous vacuole membrane, which is outside of the cell thus separated from Cyc6.  

Absence of Interaction with TGME49_285160 

 No interaction was observed with putative CDK TGME49_285160. Interestingly, this 

putative CDK does not have any cyclin partners described yet in previous research but is listed as 

a CDK Family 5 protein on toxodb.org due to conserved CDK specific domains identified by 

InterPro, a database for protein families, domains and functional sites (Finn et al., 2017). It is 

possible that Cyc6 interacts with a CDK expressed in greater proportions in the bradyzoite life 

stage compared to the tachyzoite life stage, but it can be concluded that TGME49_285160, a 

putative CDK with this quality, does not interact with Cyc6.  
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Limitations 

 The yeast two hybrid system is an efficient and reliable method for scanning 

transcriptomes for protein-protein interactions. This current study generated valuable information 

regarding Cyc6's protein interactions, or lack of. Even though no CDK partner was found, the 

existence of a CDK interacting with Cyc6 in a biologically real environment cannot be 

disproven. Additionally, there may be a variety of other proteins interacting with Cyc6 that were 

not evident from the yeast two hybrid screen. One limitation is the 3' end bias of inserts from the 

cDNA library. Oligo-dT primers were used in the initial creation of the cDNA library which 

implies there is a bias towards the C-terminus end of T. gondii proteins and in many cases, the N-

terminus may not have been included in the screen. As shown in Figure 12, the majority of the 

coding region for the ThiF protein is excluded, but according to the insert length and sequence 

alignment, Cyc6 interacts with a region towards the C-terminus of the ThiF protein. Due to the 3' 

end bias, several proteins that have an N-terminus interaction with Cyc6 may not have been 

accounted for in this current screen. One suggestion to fix this limitation would be to include 

random hexamer primers when creating a cDNA library (Cash, 2016). When testing 

TGME49_285160, this limitation did not need to be considered as the entire transcript was 

tested. 

Conclusions 

 It was hypothesized that Cyc6 would interact with a CDK either found from the yeast two 

hybrid screen or by a direct co-transformation of Y2HGold strain of Saccharomyces cerevisiae of 

both protein sequence inserts in their respective plasmids. No CDK partners, experimentally 

verified as CDKs or putative CDKs were found to interact with putative cyclin, Cyc6. This leads 
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to the question of whether Cyc6 even has a CDK partner, or perhaps Cyc6 plays a noncanonical 

role in other functions of T. gondii. However, it is possible a CDK partner does exist for Cyc6 

due to certain limitations of this current study, but there is no substantial evidence to support the 

existence of a CDK partner.  

 Despite the lack of evidence of a CDK partner, two biologically relevant proteins were 

found to interact with Cyc6: a DJ-1 protein and a ThiF protein. Any further analysis about these 

interactions will need further research to determine Cyc6's role in these interactions. However, if 

Cyc6 does play a role with DJ-1 and microneme secretion, an area of potential investigation 

could involve disruption of this interaction to prevent host cell invasion. If the parasite is unable 

to properly invade a host cell, it may remain an immunogenic target and would lose its Trojan 

Horse like mechanism of discreetly residing in host cells to allow its transportation into distant 

host cell tissues, such as the brain. Similar to the 2017 study done by Child et al., the interaction 

of Cyc6 and DJ-1 could be interrupted either by a molecular blocker or by creating a Cyc6 

knockout strain then measuring the impact, if any, by quantifying the secretion of proteins 

specific to micronemes, such as MIC proteins. On the other hand, examining the role of Cyc6's 

interaction with a ThiF protein may be more complicated as there is little research regarding 

ThiF proteins in T. gondii compared to DJ-1 proteins and their interactions with calcium 

dependent kinases and microneme secretion. If the ThiF protein pulled from this screen is found 

to play a role in the ubiquitination pathway of specific proteins, the question of Cyc6's 

involvement in this process can be investigated in a few ways. One potential experiment could 

involve blocking the interaction of Cyc6 and the ThiF protein, then monitor any changes in the 

amount of proteins present in the cell compared to wild type T. gondii. If Cyc6 does play a role in 
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differentiation to the bradyzoite life stage, Cyc6 could serve as a necessary component in the 

ubiquitination pathway of proteins specific to the tachyzoite life stage.  

 Although this current study only could confirm two Cyc6 protein interactions and not 

provide further conclusive data into Cyc6's involvement in cellular processes in T. gondii, the 

information generated creates several important questions that may lead to great advances in 

better understanding this enigmatic parasite. Although TGME49_285160, a putative CDK, did 

not interact with Cyc6, this poses another mystery: if Cyc6 was a protein of interest due to lack 

of an interacting CDK partner, the same could be said for a putative CDK without an interacting 

cyclin partner. To date, no research has found a cyclin that interacts with TGME49_285160, or 

has attempted to. TGME49_285160 has been classified as a CDK family 5 type of protein 

(toxodb.org), but if this annotation based on bioinformatic software is correct, this would imply 

that a cyclin must interact to allow this putative CDK to phosphorylate its target substrate. 

Therefore, future research should examine this "orphan" CDK to either find a cyclin partner or 

classify this protein as another type of kinase.  

 The aim of this study was to identify protein-protein interactions with putative cyclin, 

Cyc6. While a few protein partners were found, the lack of certain interactions further generates 

information about this putative cyclin. While it cannot be concluded with certainty Cyc6 does not 

have a CDK partner, this research continues the elimination of potential interacting CDK 

partners which may lead to a stronger focus on noncanonical cyclin functions, of which may play 

a crucial role in allowing T. gondii to be a notoriously successful parasite.  



!62
References 

Ajzenberg, D., Bañuls, A., Tibayrenc, M. & Dardé, M. L. (2002). Microsatellite analysis of  

Toxoplasma gondii shows considerable polymorphism structured into two main clonal 

groups. International Journal for Parasitology, 32, 27-38.  

Alvarez, C. A., & Suvorova, E. S. (2017). Checkpoints of apicomplexan cell division identified  

in Toxoplasma gondii. PLoS Pathogens, 13(7), e1006483. http://doi.org/10.1371/

journal.ppat.1006483.  

Andrews, B. & Measday, V. (1998) The cyclin family of budding yeast:abundant use of a good  

idea, Trends in Genetics 14(2), 66-72, ISSN 0168-9525, https://doi.org/10.1016/

S0168-9525(97)01322-X. 

Behnke, M. S., Wootton, J. C., Lehmann, M. M., Radke, J. B., Lucas, O., Nawas, J., Sibley, L. D.     

& White, M. W. (2010). Coordinated progression through two subtranscriptomes 

underlies the tachyzoite cycle of Toxoplasma gondii. PLoS ONE, 5(8), e12354. http://doi:

10.1371/journal.pone.0012354. 

Cash, B. (2016). "TgRCC1IV and AP2VIII-3 Are Putative Interactors of Organellar Division  

 Protein ECR2 in Toxoplasma gondii." Culminating Projects in Biology. 15. Retrieved  

 from: http://repository.stcloudstate.edu/biol_etds/15.  

Child, M., Garland, M., Foe, I., Madezelan, P., Treeck, M., van der Linden, W., Oresic Bender,  

K., Weerapana, E., Wilson, M., Boothroyd, J., Reese, M. & Bogyo, M. (2017). 

Toxoplasma DJ-1 regulates organelle secretion by a direct interaction with calcium-

dependent protein kinase 1. mBio 8(1), e02189-16. doi:10.1128/mBio.02189-16. 



!63
Dardé, M. L. (2008). Toxoplasma gondii, “new” genotypes and virulence. Parasite, 15, 366-371.  

Davidson, G. & Niehrs, C. (2010) Emerging links between CDK cell cycle regulators and Wnt  

signaling. Trends in Cell Biology 20(4), 453-60. doi:10.1016/j.tcb.2010.05.002.  

Dupont, C. D., Christian, D. A. & Hunter, C. A. (2012). Immune response and immunopathology  

during toxoplasmosis. Seminars in Immunopathology 34(6), 793-813. http://doi:10.1007/

s00281-012-0339-3.  

Dubey, J. P. (1998). Advances in the life cycle of Toxoplasma gondii. International Journal for  

Parasitology, 28, 1019-1024.  

Dubey, J. P. & Jones, J. L. (2008). Toxoplasma gondii infection in humans and animals in the  

United States. International Journal for Parasitology, 38, 1257-1278. http://doi:10.1016/

j.ijpara.2008.03.007.  

Eaton, M., Weiss, L. & Kim, K. (2006). Cyclic nucleotide kinases and tachyzoite-bradyzoite  

transition in Toxoplasma gondii. International Journal of Parasitology, 36(1), 107-114.  

Esshili, A., Thabet, S., Jemli, A., Trifa, F., Mechri, A., Zaafrane, F. Gaha, L., Babba, H. & Bel  

Hadj Jrad, B. (2016). Toxoplasma gondii infection in schizophrenia and associated 

clinical features. Psychiatry Research, 245, 327-332. http://dx.doi.org/10.1016/j.psychres.

2016.08.056.  

Filisetti, D. & Candolfi, E. (2004). Immune response to Toxoplasma gondii. Annali dell'Istituto  

Superiore di Sanità, 40(1), 71-80.  



!64
Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., Chang, H. Y.,  

Dosztányi, Z., El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G. L., Huang, H., 

Huang, X., Letunic, I., Lopez, R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, 

D. A., Necci, M., Nuka, G., Orengo, C. A., Park, Y., Pesseat, S., Piovesan, D., Potter, S. 

C., Rawlings, N. D., Redaschi, N., Richardson, L., Rivoire, C., Sangrador-Vegas, A., 

Sigrist, C., Sillitoe, I., Smithers, B,; Squizzato, S., Sutton, G., Thanki, N., Thomas, P. D., 

Tosatto, S. C., Wu, C. H., Xenarios, I., Yeh, L. S., Young, S. Y. & Mitchell, A. L. (2016). 

InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Research, 

45(D1): D190–D199. doi:10.1093/nar/gkw1107. 

Francia, M. E. & Striepen, B. (2014). Cell division in apicomplexan parasites. Nature Reviews  

Microbiology, 12, 125-135.  

Fuller-Torrey, E., Simmons, W. & Yolken, R. H. (2015). Is childhood cat ownership a risk factor  

for schizophrenia later in life? Schizophrenia Research, 165, 1-2. http://dx.doi.org/

10.1016/j.scres.2015.03.036.  

Gubbels, M., White, M. & Szatanek, T. (2008) The cell cycle and cell division: Tightly knit or  

loosely stitched? International Journal for Parasitology, 38(12), 1343-1358. http://

dx.doi.org/10.1016/j.ijpara.2008.06.004 

Hill, D. & Dubey, J. P. (2002). Toxoplasma gondii: transmission, diagnosis and prevention.  

Clinical Microbiology and Infection, 8(10), 634-640. doi: 10.1046/j.

1469-0691.2002.00485.x. 



!65
Huang, S., Holmes, M., Radke, J., Hong, D., Liu, T., White, M. and Sullivan, W. (2017).  

Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development. 

mSphere, 2(2) e00054-17. doi: 10.1128/mSphere.00054-17 

Jiang, M., Gao, Y., Yang, T., Zhu, X. & Chen, J. (2009). Cyclin Y, a novel membrane-associated  

cyclin, interacts with PFTK1. FEBS Letters, 583, 2171-2178.  

Kvaal, C., Radke, J., Guerini, M. & White, M. (2002). Isolation of a Toxoplasma gondii cyclin  

by yeast two-hybrid interactive screen. Molecular and Biochemical Parasitology 120(2), 

187-194. 

Kim, K. (2015). A bradyzoite is a bradyzoite is a bradyzoite? Trends in Parasitology, 31(12),  

610-612.  

Krishnamurthy, S., Konstantinou, E. K. Young, L. H., Gold, D. A. & Saeil, J. P. J. (2017). The  

human immune response to Toxoplasma: autophagy versus cell death. PLOS Pathogens 

13(3), doi:10.1371/journal.ppat.1006176.  

Lehmann, C., Begley, T. & Ealick, S. (2006). Structure of the Escherichia coli ThiS-ThiF  

complex, a key component of the sulfur transfer system in thiamin biosynthesis. 

Biochemistry 45(1), 11-19. doi:10.1021/bi051502y.  

Liu, D., & Finley, R. L. (2010). Cyclin Y Is a Novel Conserved Cyclin Essential for  

Development in Drosophila. Genetics, 184(4), 1025–1035. http://doi.org/10.1534/

genetics.110.114017.  

Liu, D., Guest, S., & Finley, R. L. (2010). Why cyclin Y?: A highly conserved cyclin with  

essential functions. Fly, 4(4), 278–282. http://doi.org/10.4161/fly.4.4.12881.  



!66
Lorenzi, H., Khan, A., Behnke, M., et al. (2016). Local admixture of amplified and diversified  

secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nature 

Communications, 

Lyons, R., McLeod, R. & Roberts, C. (2002) Toxoplasma gondii tachyzoite-bradyzoite  

interconversion. Trends in Parasitology, 18(5), 198-201.  

Malevich, E., Mirza, A. & Kannan, N. (2011) Structural and evolutionary divergence of  

eukaryotic protein kinases in Apicomplexa. BMC Evolutionary Biology, (11): 321. 

Mashayekhi, M., Sandau, M. M., Dunay, I. R., Frickes, E. M., Khan, A., Goldszmid, R. S., Sher,  

A., Ploegh, H. L., Murphy, T. L., Sibley, L. D. & Murphy, K. M. (2011). CD8a+ dendritic 

cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma 

gondii tachyzoites. Immunity 35(2), 249-259.  

McAuley, J. B. (2014). Congenital toxoplasmosis. Journal of the Pediatric Infectious Diseases  

Society, (3) Suppl 1, pp. S30–S35, http://doi:10.1093/jpids/piu077.  

McFadden, I. & Yeh, E. (2016). The apicoplast: now you see it, now you don’t. International  

Journal for Parasitology, 47. 137-144.  

Mikolcevic, P., Rainer, J. & Geley, S. (2012) Orphan kinases turn eccentric: A new class of  

cyclin Y-activated membrane-targeted CDKs. Cell Cycle, 11(20): 3758-3768. 

Mikolcevic, P., Sigl, R., Rauch, V., Hess, M. W., Pfaller, K. & Basic, M. (2012). Cyclin- 

dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for 

spermatogenesis. Mol. Cell Biol, 32: 868-879.  



!67
Moffat, J., Huang, D. & Andrews, B. (2000). Functions of Pho85 cyclin-dependent kinases in  

budding yeast. Progress in cell cycle research, 4: 97-106. 

Morgan, D. O. (2007). The cell cycle: Principles of control. Sunderland, MA: Sinauer  

Associates, Inc. Publishers.  

Pappas, G., Roussos, N. & Falagas, M. (2009). Toxoplasmosis snapshots: Global status of  

Toxoplasma gondii seroprevalence and implications for pregnancy and congenital 

toxoplasmosis. International Journal for Parasitology, 39 1385-1394.  

Peixoto, L. Chen, F., Harb, O., Davis, P., Beiting, D., Small Brownback, K., Ouloguem, D. &  

Roos, D. (2010). Integrative genomic approaches highlight a family of parasitic specific 

kinases that regulate host responses. Cell Host & Microbe, 8, 208-218.  

Saeij, J. P. J., Boyle, J. P. & Boothroyd, J. C. (2005) Differences among the three major strains of  

Toxoplasma gondii and their specific interactions with the infected host. Trends in 

Parasitology, 21(10), 476-481. http://doi:10.1016/j.pt.2005.08.001.  

Sibley, L. D., Khan, A., Ajioka, J. W. & Rosenthal, B. M. (2009). Genetic diversity of  

Toxoplasma gondii in animals and humans. Philosophical Transactions of the Royal 

Society 364, 2749-2761.  

Sidik, S., Huet, D., Ganesan, S., Huynh, M., Wang, T., Nasamu, A., Thiru, P., Saeij, J.,  

Carruthers, V., Niles, J. & Luourido, S. (2016). A genome-wide CRISPR screen in 

Toxoplasma identifies essential Apicomplexan genes. Cell, 167. 1-13.  

Skariah, S., McIntyre, M. K. & Mordue, D. G. (2010). Toxoplasma gondii: determinants of  

tachyzoite to bradyzoite conversion. Parasite Res. 2(107), 253-260.  



!68
Stock, A.-K., Dajkic, D., Köhling, H. L., von Heinegg, E. H., Fiedler, M., & Beste, C. (2017).  

Humans with latent toxoplasmosis display altered reward modulation of cognitive 

control. Scientific Reports, 7, 10170. http://doi.org/10.1038/s41598-017-10926-6.  

Sullivan, W. & Jeffers, V. (2011). Mechanisms of Toxoplasma gondii persistence and latency.  

FEMS Microbiology Reviews. 717-729.  

Torgerson, P. R. & Mastrociacovo, P. (2013). The global burden of congenital toxoplasmosis: a  

systematic review. Bulletin of the World Health Organization. (91): 7 501-508.  

Torrey, E. & Yolken, R. (2013). Toxoplasma oocysts as a public health problem. Trends in  

Parasitology, (29): 8. 380-384.  

Vyas, A., Kim, S. K., Giacomini, N., Boothroyd, J. C. & Sapolsky, R. M. (2007). Behavioral  

changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat 

odors. Proceedings of the National Academy of Science, USA. 104 (15): 6442-6447. 

http://doi:10.1073/pnas.0608310104.  

Wallace, G. R. & Stanford, M. R. (2008). Immunity and Toxoplasma retinochoroiditis. Clinical     

and Experimental Immunology (153), 309-315. http::/doi:10.1111/j.

1365-2249.2008.03692.x  

Weiss, L. M. & Dubey, J. P. (2009). Toxoplasmosis: a history of clinical observations.  

International Journal of Parasitology, 39(8), 895-901. http://doi:10.1016/j.ijpara.

2009.02.004. 

White, M. W., Radke, J. R. & Radke, J. B. (2014) Toxoplasma development- turn the switch on  

or off? Cellular Microbiology 16(4), 466-472.  



!69
Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. & Zhang, Y. (2012) The I-TASSER Suite: Protein        

structure and function prediction. Nature Methods, 12, 7-8.


	St. Cloud State University
	theRepository at St. Cloud State
	5-2018

	Yeast Two Hybrid Screen of a Putative Toxoplasma gondii Cyclin, TGME49_266900
	Anna L. Schorr
	Recommended Citation


	Super Important Final Copy Thesis

