Retain Existing Business Process with the 3rd Party Supplier

Swati Gupta
St. Cloud State University

Follow this and additional works at: https://repository.stcloudstate.edu/mme_etds

Recommended Citation
https://repository.stcloudstate.edu/mme_etds/39
Retain Existing Business Process with the 3rd Party Supplier

by

Gupta Swati

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree
Masters of Engineering Management

May, 2016

Starred Paper Committee:
Ben Baliga, Chairperson
Hiral Shah
Balasubramanian Kasi
Abstract

Conveo was XYZ’s partner and announced its intention to disengage from the partnership. XYZ made a decision to change its partner from Conveo to CGX for print and order fulfillment of their marketing materials.

XYZ self-accessed the sales tax with Conveo and provided Cenveo a MN direct pay permit so Cenveo had the proper documentation to omit sales tax from the invoices sent to XYZ. The business process described above was intended to be leveraged with the transition to CGX. During the transition of suppliers from Cenveo to CGX, CGX was purchased by RRD, which is also a 3rd party business supplier of XYZ. The existing business process between XYZ and RRD for print materials, warehouse inventory, and order fulfillment services does not utilize the direct pay permit for tax.

Since XYZ was not allowed to have two different processes of applying sales tax with a single supplier, there was a need to have a consistent process. A decision was made to discontinue using the MN direct pay permit with RRD.

The intent of the project is to implement a standard process for calculating sales tax for the print, order fulfillment, and related services of marketing and verify the results by doing extensive testing using Quality Center Testing includes vendor’s sales tax assessment for all activity completed for XYZ. The objective of the testing is to ensure XYZ’s “approved” business and system requirements have been satisfied through the combination of various application interactions and business processes.
Acknowledgement

I would like to thank my advisor Dr. Ben Baliga for his support, guidance and cooperation for helping me in my capstone project. Who has always been a source of encouragement and knowledge for me, guided me in every step, and shared his knowledge. He has been most generous and understanding with his time to read this paper carefully and make insightful comments and suggestions.

I would also like to thank Dr. Hiral Shah and Dr. Balsy Kasi for their guidance and encouragement throughout the entire study.

I would also like to thank the Engineering Management Department for providing the resources.

Last but not least, I would also like to thank my friends and family for all their guidance and support for the successful completion of my Master’s program.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>List of Figures</td>
<td>7</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>8</td>
</tr>
<tr>
<td>Nature and Significance of the Problem</td>
<td>9</td>
</tr>
<tr>
<td>Objective of the Project</td>
<td>9</td>
</tr>
<tr>
<td>Project Questions</td>
<td>9</td>
</tr>
<tr>
<td>Assumptions</td>
<td>10</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>10</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>2. Background and Review of Literature</td>
<td>12</td>
</tr>
<tr>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>Background and Literature Related to the Problem</td>
<td>12</td>
</tr>
<tr>
<td>Literature Related to Methodology</td>
<td>14</td>
</tr>
<tr>
<td>Summary</td>
<td>16</td>
</tr>
<tr>
<td>3. Methodology</td>
<td>17</td>
</tr>
<tr>
<td>Introduction</td>
<td>17</td>
</tr>
<tr>
<td>Design of Study</td>
<td>17</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Milestones Identified for the Project</td>
<td>16</td>
</tr>
<tr>
<td>4.1 Business Requirements</td>
<td>29</td>
</tr>
<tr>
<td>4.2 User Requirements</td>
<td>30</td>
</tr>
<tr>
<td>4.3 Scenarios</td>
<td>31</td>
</tr>
<tr>
<td>4.4 Test Scripts</td>
<td>32</td>
</tr>
<tr>
<td>4.5 RAID Log</td>
<td>38</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Communication Plan</td>
<td>18</td>
</tr>
<tr>
<td>3.2 Test Stages</td>
<td>19</td>
</tr>
<tr>
<td>4.1 Information Flow Diagram of RRD Sales Tax Project</td>
<td>28</td>
</tr>
<tr>
<td>4.2 Requirements for the Project</td>
<td>33</td>
</tr>
<tr>
<td>4.3 Test Plan for the Project</td>
<td>34</td>
</tr>
<tr>
<td>4.4 Test Cases Executed</td>
<td>35</td>
</tr>
<tr>
<td>4.5 Test Cases Passed/Failed</td>
<td>36</td>
</tr>
<tr>
<td>4.6 Defects Logged</td>
<td>37</td>
</tr>
<tr>
<td>4.7 JAD Sessions for Data Analysis</td>
<td>39</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

Introduction

The purpose of this project is to retain the organization’s existing business process with the new 3rd party business supplier and verify the results by doing extensive testing using Quality center. Project is concentrated on implementing a standard process for calculating sales tax for the print, order fulfillment, and related services of marketing materials. Quality Center is used as a tool to capture the business requirements, user requirements, test Scripts, defects and to provide traceability from user requirements to business requirements & test scripts to user requirements.

Problem Statement

Conveo was XYZ’s partner and announced its intention to disengage from the partnership. XYZ made a decision to change its partner from Conveo to CGX for print and order fulfillment of their marketing materials.

XYZ self-accessed the sales tax with Conveo for print and order fulfillment of their marketing materials. XYZ provided Cenveo a MN direct pay permit so Cenveo had the proper documentation to omit sales tax from the invoices sent to XYZ.

The business process described above was intended to be leveraged with the transition to CGX. During the transition of suppliers from Cenveo to CGX, CGX was purchased by RRD, which is also a 3rd party business supplier of XYZ. The existing business process between XYZ and RRD for print materials, warehouse inventory, and order fulfillment services does not utilize the direct pay permit for tax.
Since XYZ was not allowed to have two different processes of applying sales tax with a single supplier, there was a need to have a consistent process. A decision was made to discontinue using the MN direct pay permit with RRD.

The intent of the project is to implement a standard process with RRD for calculating sales tax for the print, order fulfillment, and related services of marketing materials no later than 01/31/2016.

Nature and Significance of the Problem

Having two different methods for calculating tax with a single supplier would result in system inconsistencies. So there was a need to use one synchronized process for calculating tax.

Objective of the Project

The objective of the project is to implement a standard process for calculating sales tax for the print, order fulfillment, and related services of marketing materials and verify the results by doing extensive testing using Quality Center.

Testing includes vendor’s sales tax assessment for all activity completed for XYZ. The objective of the testing is to ensure XYZ’s “approved” business and system requirements have been satisfied through the combination of various application interactions and business processes.

Project Questions

The following questions will be answered at the end of this study:

- How should these changes be introduced so as to most effectively leverage departmental/organizational strengths, weaknesses, and culture?
- How many cycles of testing will be required to capture results?
- Which business applications will be affected?
- What is the current process for calculating tax?
- What are the different types of testing that will be required to capture information flow?

Assumptions

Business and vendor subject matter experts’ availability will not be an obstacle to eliciting business requirements, identifying and solving for gaps, and developing or executing the transition plan.

Definition of Terms

Element: An element is an individual unit of code that comprises the application.

Unit Testing: A series of tests that examine the smallest new or modified individual units of a system. A unit test is also called a module test because individual units of code that comprise the application are also known as programs or modules (Schulmeyer, 2007).

Vendor QA Testing: A series of tests performed by the vendor in the E2 environment which entails complete functional testing prior to turning the environment over to XYZ (Horch, 2003).

System Integration Testing: System Integration testing is a series of tests that verify that all components and modules that form a complete application work appropriately together to deliver the application’s required functionality and fulfills
non-functional requirements. The integration testing is a series of tests that examine a group of immediately neighboring units within a single system to make sure they communicate correctly and work together as a group. A group of related units is known as a component of a system. A system is divided into components that in turn are made up of units or modules (Horch, 2003).

User Acceptance Testing: A series of tests conducted by the business users of the new or changed application to confirm that the system delivers required functionality and newly defined business processes satisfy the business needs.

JAD (Joint Application Development) is a methodology that involves the client or end user in the design and development of an application, through a succession of collaborative workshops called JAD sessions.

RAID log: Risks, Assumptions, Issues and Dependencies log: It is a tool to track anything impacting your project now or in the future. Log is kept up-to-date through weekly reviews and team meetings. The log includes descriptions of each issue, its impact, its seriousness and actions needed to contain and remove it (Weinberg, 1997).

Summary

In this chapter nature and significance of the problem, objective of the project and definition of the terms were discussed. Background related to the problem, literature related to the problem and methodology used for implementing the project will be discussed in the next chapter.
Chapter 2: Background and Review of Literature

Introduction

This chapter outlines the description of the company and the background related to the problem. It further describes the methodology used to analyze the problem and approach followed for the work to be completed.

Background and Literature Related to the Problem

XYZ is a global financial leader. XYZ has been helping millions of clients invest towards their financial goals and dreams.

Conveo was a key XYZ outsourced partner and announced its intention to disengage from this partnership. As a result, XYZ made a decision to change suppliers from 3rd party vendor to CGX for print and order fulfillment of their marketing materials.

Conveo Background: In the business relationship with Cenveo, XYZ purchased the print materials from Conveo and stored them in the Cenveo warehouses. In addition to printing the materials and managing this inventory, they held inventory from third parties within their warehouse. Cenveo also performed an order fulfilment and distribution of these materials, sometime in the future, based requests of sale reps and independent advisors. Since XYZ didn’t know the final destination of the materials at the time of purchase, XYZ self-accessed the sales tax on these materials at the time of purchase based on allocation methodologies. In addition, XYZ self-accessed sales tax on the inventory warehousing fees and order fulfillment fees based on these same allocation methodologies. XYZ provided
Cenveo a MN direct pay permit so Cenveo had the proper documentation to omit sales tax the invoices to XYZ for the print materials, Inventory warehousing fees, or order fulfillment fees.

In this business process XYZ owned the inventory that was stored in the Cenveo warehouse. Cenveo provided detailed files to XYZ that were used in various systems that distributed charges to the proper departments based on employee, or advisor, who requested the material to be distribution. These detailed files were also used by the commissions systems to adjust advisor commissions for sales tax and other fees based on who requested the materials to be distributed. There are a number of business systems and processes designed to support this business model.

CGX Background: The business process described above was intended to be leveraged with the transition to CGX. However, during the transition of suppliers from Cenveo to CGX, CGX was purchased by RRD, which is also a 3rd party business supplier of XYZ. The existing business process between XYZ and RRD for print materials, warehouse inventory, and order fulfillment services does not utilize the direct pay permit for tax.

Since XYZ was not allowed to have two different processes of applying sales tax with a single supplier, a consistent process must be applied. A decision was made to discontinue using the MN direct pay permit with RRD and implement a standard process for calculating sales tax for the print, order fulfillment, and related services of marketing materials no later than 01/31/2016
Literature Related to Methodology

The approach reviewed each business process within the scope of the project and documented the current process. Reviewed the business processes with the XYZ and RRD team to fully understand the business process of taxable products and services. The RRD team presented the current process of calculating sales tax on products and services within the scope of this project. The XYZ tax team documented the current services performed and documented the details behind the taxable activity.

The business team SME’s reviewed in detail each of the business process flows and identified each taxable service and event. In addition, the team documented the detailed business requirements for each of the business process flows and the related tax services within each business process. These business requirements and specifications were shared with the XYZ business and technical team as well as shared with the RRD technology team.

The XYZ technology teams used the business requirements to determine the technical requirements and drafted the technical solutions to bridge the GAP from the current and future process. Test Plan and Test Execution Plans were created.

Test Planning: Identified test stages and conditions from the user requirements and system requirements which were used as the foundation for the verification testing. Deliverables from this phase were:

- Test Plan
- Test Design Specification for each test stage
Test Cases and Test Scripts

Traceability back to requirements

Test Execution: Execution of the overall Test Plan, by test stage, included verification of expected results compared to actual results, documentation of defects encountered while executing tests, and the corresponding re-testing. Deliverables from this phase were:

- Completed test cases with actual results
- Test Defect Report
- Deferred Defect Log and Their Ultimate Disposition
- Testing Summary Report

The RRD business and technology team also reviewed the XYZ business requirements and collaborated with the XYZ technology team to reach a solution to bridge the GAP. The primary focus was to provide a systemic solution that will minimize the impact on the current information exchange, and enhance the information exchange to the level of detail to support the sales tax transaction needs.
Table 2.1: Milestones Identified for the Project

<table>
<thead>
<tr>
<th>Milestones</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved - Project Charter</td>
<td>This was a formal document which describes the project at a high level, formally authorizes the project, and provides the Project Manager with the authority to allocate resources.</td>
</tr>
<tr>
<td>High Level Requirements</td>
<td>Documentation of the specifications to bridge the GAP from the Use tax model to the Sales Tax Model</td>
</tr>
<tr>
<td>Process Design</td>
<td></td>
</tr>
<tr>
<td>Technical Design</td>
<td></td>
</tr>
<tr>
<td>Technical Development</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>Trained SME on the process changes</td>
</tr>
<tr>
<td>Testing 7 Cycles</td>
<td>Final Testing Cycle.</td>
</tr>
<tr>
<td>Project Go live</td>
<td>Implemented the changes of the new sales tax process.</td>
</tr>
<tr>
<td>Post Go Live</td>
<td>Post go live support for both the IT and process changes (45 Days)</td>
</tr>
<tr>
<td>Project final closing</td>
<td>The process to complete the final analysis and review of the project deliverables to either transfer to Operations, the closed activities or extend work to a new project.</td>
</tr>
</tbody>
</table>

Summary

In this chapter, literature related to the problem, study and methodology used were discussed. Framework of the study, data collection process, techniques used to analyze the data will be discussed in the next chapters.
Chapter 3: Methodology

Introduction

This chapter provides a detailed description of techniques used for data collection and analysis and the necessary actions taken to improve the efficiency.

Design of Study

Project is carried out in 5 steps and briefly they are like

- Analysis—current state “As Is”, Gap Analysis with POA Vendors, Business Requirements, System Requirements
- Design
- Build
- Test
- Implementation

Data Collection

The data was collected for each of the actions described below:

1. Gathered the details of the processes, systems, and data exchanges provided within the automated and non-automated interfaces (flow of information or physical materials) POD
2. Determined the RRD deliverables of the current process and how they plan to transition to the new process
3. Drafted XYZ’s future process through business requirements
4. Closed gaps between as is process and the to be process with tools and XYZ’s business requirements
5. Designed and developed any process and systemic changes needed to support the new sales tax process.

6. Evaluated the full impact of this change to business process and the cost impact.

7. Tested the planned solutions in a controlled test environment.

8. Planned transition of the current process and determine any one-time transition impact/costs and mitigate the transition risks.

9. Executed the process transition conversion

Communication Plan was created for data collection to be successful.

Figure 3.1: Communication Plan
Different test stages were identified for carrying out the process:

Overview of test stages.

![Test Stages Diagram]

Test techniques. The following test techniques were performed:

- **Boundary-Value Analysis**—Test data for this technique are chosen such that each edge of the equivalence class is the subject of a test case. If the input condition specifies a range of values, test cases are developed for the end of the range, and “invalid-input” test cases are developed for situations just beyond the ends. If the input condition specifies a number of values, test cases are developed for the minimum value, for the maximum value, for one below the minimum value and for one above the maximum value.

- **Component**—A technique used to ensure related modules or units (that form a component) perform satisfactorily as a group.

- **Error exit**—A method of ensuring that the input of invalid data or attempts to perform unfit procedures result in a clean exit with an appropriate error message. An example of a test may be attempting to open a file that does
not exist on the drive and checking whether the system crashes or whether it exits and an error message displays.

- **Functional**—A form of Black-Box Testing that bases its test cases on the specifications of the software component under examination. Functional Testing covers most of the System Testing stage and involves identification of differences between test results and test design documents. Functional Testing may also employ Equivalence Partitioning and Boundary-Value Analysis techniques. Functional Testing typically involves five steps:
 - The identification of functions that the software is expected to perform.
 - The creation of input data based on the function's specifications.
 - The determination of output based on the function's specifications.
 - The execution of the test case.
 - The comparison of actual and expected outputs.

- **Integration**—An examination of all the components and modules that are new, changed, affected by a change, or needed to form a complete system. Integration Testing also examines interfaces with other applications, including those owned by an outside vendor, external partners, or the customer. When a defect is discovered during Integration Testing, not all previously executed tests have to be rerun after the repair is made. Rather, only those tests with a connection to the defect must be rerun. However, retesting must start at the point of repair if it is before the point of failure.
• **Interface**—A method of verifying the integrity of communications among related and/or dependent applications. Interface Testing may also include the verification of processing cycles (e.g., monthly, annual) associated with program interfaces.

• **Negative**—A method of using valid input to verify how a program handles errors. Negative testing concentrates on what a system should NOT do.

• **Performance**—A form of validation used to understand the scalability of an application or website—or to benchmark the reliability of third-party products under consideration. Performance (e.g., response time) primarily is monitored at expected or normal-range volumes, including expected peak usage load or peak throughput volumes. Performance Testing is particularly useful to identify bottlenecks in high-use applications. It is commonly done on web-based applications in the final stage of testing just prior to Production implementation. Performance Testing generally involves an automated test suite to more easily simulate a variety of normal, peak, and exceptional load conditions.

• **Re-testing**—The practice of executing failed test cases to verify the success of corrective actions. The test case and test steps typically are documented in a Test Defect Report.

• **System plus testing**—Additional testing done during the system test stage, where business users help validate the results. All testing should be positive testing, as negative testing can impact the results of accounting
during this stage. Testing scope should be limited and predetermined, and test cases should be written prior to the start of testing. The goal is to execute a portion of the testing in advance of the formal UAT stage so that additional time is allowed for managing the defects found during this time. A mix of business users with varying degrees of experience and subject matter expertise need to actively participate in a controlled environment. Tests need to be designed and conducted in a manner that reflects activities and conditions seen in normal business usage. Business users participate in evaluating the results.

- **Validation**—The practice of examining and providing objective evidence that the requirements for a specific intended use or application have been met.

Defect management.

- All defects related to testing must be logged on the testing defect report.

- Defects can be technical, functional or non-functional. All fields of the testing defect report must be filled with detailed information to allow the assigned resource to quickly understand the defect and expedite a resolution.

Defect tracking.

- The test lead will hold daily meetings to review Severity Level 1 and 2 defects. The meeting will also be used to alert the testing teams that
certain defects are fixed and ready to be moved into a new environment for re-test.

- The Test Lead will facilitate the following discussions with the test team members:
 - Review of all severity Level 1 and 2 defects.
 - Review new defects and make assignments to the appropriate technology group.
 - Review the timing of the defect fixes and alert testers to when they can re-test a defect.
 - Hold a discussion on test schedule revisions.

Defect fixes. All defects need to be fixed within the designated timeframes determined by the Project Team unless prior agreement is reached:

- **Critical (Severity 1):** Critical is defined as very serious or degrading conditions within the application or environment, which results in NOT being able to move to the next step of the test case, or to another test case until a fix is applied. This would include the workstation being locked up, requiring a reboot or power down to recover.

- **High (Severity 2):** High is defined as serious or degrading conditions within the application or environment which might result in NOT being able to move to the next step of the test case, or to another test case until a fix is applied.
- **Medium (Severity 3):** Medium is defined as processes that have a business workaround identified, a test case that can be skipped, or a step in the test case that can be skipped without halting test execution.

- **Low (Severity 4):** Issues with minimal impact on the user experience and/or a workaround exists. However these issues can be fixed with a simple change, thereby having minimal impact on the test case.

Defect metrics. The Project will produce and report metrics of the final defect results on the Test Summary Report. Following are the metrics to be gathered by test stage:

Defects by severity.

<table>
<thead>
<tr>
<th>Defect definitions: Defect Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Request</td>
<td>The defect is deemed not valid (e.g., the code is working as designed) and a change request is required to update requirements and/or traceability documentation.</td>
</tr>
<tr>
<td>Closed</td>
<td>The defect has been resolved and requires no further work.</td>
</tr>
<tr>
<td>Deferred</td>
<td>The defect will not be fixed as part of the current release but as part of a future release, as determined by the project team.</td>
</tr>
<tr>
<td>Failed Retest</td>
<td>The fixed defect did not perform as expected under examination.</td>
</tr>
<tr>
<td>Monitor</td>
<td>The defect cannot be recreated or recurrence is unpredictable. A defect may retain Monitor status throughout the entire testing stage and even throughout the pilot phase.</td>
</tr>
<tr>
<td>New</td>
<td>The initial status of all Defects when they are first reported and waiting to be assigned.</td>
</tr>
<tr>
<td>Open</td>
<td>The initial status of all defects when they are first reported and waiting to be assigned.</td>
</tr>
<tr>
<td>Passed</td>
<td>The defect has been successfully re-tested.</td>
</tr>
<tr>
<td>Ready to Retest</td>
<td>The code defect has been fixed and/or the defect has been moved into the test environment. This status confirms that the code/package may be tested again.</td>
</tr>
<tr>
<td>Working as Designed</td>
<td>The code or functionality operates as defined by requirements (i.e., the defect is not inherent in the program but rather due to incongruent business and/or technical specifications).</td>
</tr>
</tbody>
</table>

Guidelines followed to collect the Project Requirements.
Business Requirements:

- Ensured the future consolidated process created a minimized business impact, related to the cost of implementing the solution and business cost of the solution, while providing a sustainable solution moving forward.
- Implemented the solution that meets the tax business needs, regulatory requirements, and minimize any impact to the business process, information needed to manage the business, or impact to the end users, independent or internal advisors.
- Minimized the impact of the business process of the marketing print, order fulfillment, and other services related either the RRD or 3rd party supplies.
- At a minimum, maintained the same level of detail and summary transactional information in order to run the business without impacting the accounting operations or the business close cycle.
- At a minimum, maintained the same level of detail and summary transactional information in order to complete the procure-to-pay process minimizing impacts to accounts payable, accounting operations, or the business close cycle.
- Ensured the change in the inventory process takes into consideration the liability impact related to the change in the process.

Sales/Use tax requirements:

- The data transfer inbound and outbound to XYZ systems and processes contained the proper content, at the proper detailed level, and proper
frequency to meet the tax department’s capabilities to manage the sales and use tax for XYZ and meet the level of detail information to satisfy the requirements of sales/use regulatory audits.

- Transaction line level detailed information collected (RRD & 3rd Party) to drive and book the proper tax charges and expenses to the external and internal advisors.

- Implemented a consistent sales/use tax process across all business units within XYZ.

- Consistent line level detail information collected on every transaction (RRD & 3rd Party) that will support the tax calculation and charge submitted through the G/L transactions.

- All sales tax were calculated by RRD

- Related processes such as direct shipping process with UPS and USPS direct postage charging process were not be impacted

Technology requirements:

- All changes in interfaces were supported by technical specification requirements.

- All information exchanged between XYZ and RRD followed the existing ‘system exchange, balancing and controls, and security protocols’.

Data Analysis

Data was analyzed by conducting Joint Application Development sessions with the vendor, stakeholders and the business.
Timeline

- Data Analysis – July 1, 2015
- UAT Test Scenarios Completed – July 22, 2015
- Weekly UAT test meetings in place – July 1, 2015
- UAT Test Scripts Completed – July 22 through Aug 31
- Final UAT Test Design Specifications document – Aug 24, 2015
- UAT Communication Plan – Aug 10, 2015
- Final UAT Operational Plan and Cycle Planning documents – Aug 30, 2015
- UAT Kick off meeting – Sept 5, 2015
- Test Scripts in Quality Center – Aug 30, 2015
- UAT1 Start – Sept 1, 2015 (vendor QA 8/3-8/31)
- UAT2 Start – Oct 1, 2015
- SIT Start – Nov 1, 2015
- Go Live – Jan 31, 2016

Summary

This chapter summarized the methodology used, and also explained in detail how different guidelines were used to collect the data. Data collection and analysis will be discussed in the next chapter.
Chapter 4: Data Presentation and Analysis

Introduction

This chapter will focus on the data presentation and analysis. It describes the different steps associated with the data collection process.

Data Presentation

Data were collected from the requirements guidelines. Scenarios were written based on the user requirements. Below are the snapshots of data that was collected. Column values were filled by cross-referencing various business documents and collaborating with the different stakeholders involved in the project.

Transition to the new process.

Figure 4.1: Information Flow Diagram of RRD Sales Tax Project
Business Requirements: Business Requirements were collected by having meetings with the business and the stakeholders involved in the project.

Business requirements.

Table 4.1: Business Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Name*</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business requirement -1</td>
<td>Ensure the future consolidated process creates a minimized business impact, related to the cost of implementing the solution and business cost of the solution, while providing a sustainable solution moving forward.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Status</th>
<th>Requirement Priority</th>
<th>Stability</th>
<th>Source</th>
<th>Traceability</th>
<th>Bus/Tech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accepted</td>
<td>Mandatory</td>
<td>Stable</td>
<td></td>
<td></td>
<td>Business</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Developed by</th>
<th>Business Function</th>
<th>Category*</th>
<th>Packaged Solutions</th>
<th>Owner</th>
<th>Stakeholder</th>
<th>Author</th>
<th>Business Case Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>John Pawlowski</td>
<td>Primary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custom</th>
<th>Target Release</th>
<th>WorkStream*</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User requirement were written down based on the business requirements.
User Requirements.

Table 4.2: User Requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Name* NOTE: Maximum 255 Characters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tax File Backup</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UR-TAX-1</td>
<td>Vendor must provide XYZ all required data (see attached) for all activity coming from the vendor</td>
</tr>
<tr>
<td></td>
<td>UR-TAX-1.1</td>
<td>Vendor must calculate Sales Tax on all applicable activities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Script Needed</th>
<th>Responsible Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAT</td>
<td>Yes</td>
<td>Swati, Mike, Joyce</td>
</tr>
<tr>
<td>UAT1</td>
<td>Yes</td>
<td>Swati, Mike, Joyce</td>
</tr>
</tbody>
</table>

Scenarios were then created from the user requirements. There was a one to many relationships between the UR’s and the Scenarios.
Scenarios.

Table 4.3: Scenarios

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Customer/Advisor Type (ordering)</th>
<th>SSO ID</th>
<th>Password</th>
<th>Customer/Advisor Type (charge to)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UR-Tax 1.1 – Vendor must calculate Sales Tax on all applicable activities</td>
<td></td>
<td>canfou125 (AAG Staff)</td>
<td>may@2015</td>
<td>Area Office</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Product Description</th>
<th>Material Type</th>
<th>Notes</th>
<th>Item Priced (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order priced item material type Stationery with rush fee and customization fee (change ship to information)</td>
<td>Standard Business Card – 1 Sided (Franchise)</td>
<td>232615</td>
<td>Ordering this as AAG Staff (Changed product from 232618 to 232615)</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price of items</th>
<th>Rush Fee</th>
<th>Customization Fee</th>
<th>Order Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Test scripts were then written from the Scenarios:

Table 4.4: Test Scripts

<table>
<thead>
<tr>
<th>Scenario No.</th>
<th>Requirement</th>
<th>Subject *</th>
<th>Test ID</th>
<th>Test Case ID</th>
<th>Test Case Name*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>UR-Tax 1.1 - Vendor must calculate Sales Tax on all applicable activities</td>
<td>Quality Center</td>
<td>TS_000</td>
<td>TC_SageTax000</td>
<td>verify that user is able to place order for material no. 231740</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Test Priority*</th>
<th>Step #*</th>
<th>Description (step instructions)</th>
<th>Expected Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>verify that user is able to place order for Order priced item material type PickPack with rush fee</td>
<td></td>
<td>1</td>
<td>Open the default browser and enter URL: https://xyzstage.worksmartsuite.com/UserContentStart.aspx</td>
<td>Prompted to enter login details.</td>
</tr>
</tbody>
</table>
All the data was uploaded in quality center for traceability purpose.

Project was carried out by performing 7 cycles of UAT and 3 cycles of SIT testing. Defects were captured in Quality center and communicated to the stakeholders through the RAID log. Daily Defect calls were set up with the business and the 3rd party vendor and all the defects were resolved by the end of UAT cycle 6.

Project was executed in QC and defects were logged:

Step 1: All the user requirements collected and approved by business were entered in QC.

Project requirements.
Step 2: The Test cases were written in the test plan and were traced back to the requirements.

Test plan.

![Test Plan for the Project](image)

Figure 4.3: Test Plan for the Project

Step 3: The test cases were then executed in the test lab.
Test cases.

Figure 4.4: Test Cases Executed
Test case execution grid.

Figure 4.5: Test Cases Passed/Failed

Step 4: The Defects were logged
Defects.

Defects were communicated to the vendor and the business through the RAID log document. Daily UAT calls were set up to discuss the issues listed in RAID log and find the best possible solution to resolve them. The failed cases were re-executed in the next cycles until all the test cases passed. The defects were closed with the closing comments.

Raid log: The defects captured in Quality center were communicated to the 3rd party vendor through the RAID log excel document.
RAID log.

Table 4.5: RAID Log

<table>
<thead>
<tr>
<th>Status (↓)</th>
<th>ID</th>
<th>Title</th>
<th>Issue Description</th>
<th>Assigned To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>PGL1</td>
<td>STBF- Tech</td>
<td>The Sum Amount value is zero. ETL job has failed and will not generate any feed for GL.</td>
<td>Suman/Ravi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Due date</th>
<th>Custom Field</th>
<th>Resolution</th>
<th>RRD comments</th>
<th>XYZ Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/14/2015</td>
<td></td>
<td>ETL will do the code change and migrate to E3. Suhas will confirm when the migration is complete.</td>
<td></td>
<td>The should not be an error as it is possible there will not be any tax charged, however this should be a message send out indicating the nightly run didn't produce any tax activity. ETL is creating an incident which is not required. A configuration change will be done.</td>
</tr>
</tbody>
</table>

Data Analyses

The data were analyzed by conducting 1:1 and group meetings with the business and filtering out based on their response as to which ones are valid and invalid user requirements and scenarios. The invalid user requirements and scenarios were discarded and approval was gained for the valid user requirements and scenarios prior to writing scripts.
Join application development sessions.

Figure 4.7: JAD Sessions for Data Analysis

Summary

In this chapter techniques used to collect and analyze the data were discussed. Results of the project, conclusion and recommendations will be discussed in the next chapter.
Chapter 5: Results, Conclusion, and Recommendations

Introduction

In this chapter the results of the project, conclusion and recommendations will be discussed.

Results

After considering all the requirements a standard process for calculating sales tax for the print, order fulfillment, and related services of marketing materials was implemented.

Project questions answered:

- How many cycles of testing will be required to capture results?
 - UAT 7 cycles and SIT 3 cycles
- Which business applications will be affected?
 - GL and TAX
- What is the current process for calculating tax?
 - 3rd party vendor will now do all tax calculations
- What are the different types of testing that will be required to capture information flow?
 - UT, UAT and SIT

Conclusion

The study was about Using Quality Center to ensure that the Existing Business Process is retained with the new 3rd party supplier.
By conducting several cycles of testing it was verified that the process used by vendor for calculating tax is now in synchronization with the XYZ and RRD existing business process.

Recommendations

Although the project was a success but for sharing information with the 3rd party vendor an online (Google?) way of sharing information during testing would have been easier than distributing an Excel file daily. XYZ has a system “Organize” that could be used for this in the future to exchange documents with 3rd parties.
References

