St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2017

Optumzmg Key Management within a Crypto-
System using Aggregate Keys

Vinay Kumar Ananthu
vkananthu@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation
Ananthu, Vinay Kumar, "Optimizing Key Management within a Crypto-System using Aggregate Keys" (2017). Culminating Projects in

Information Assurance. 28.
https://repository.stcloudstate.edu/msia_etds/28

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/28?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Optimizing Key Management within a Crypto-System using Aggregate Keys

by

Vinay Kumar Ananthu

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of Requirements
for the Degree of
Master of Science

in Information Assurance

May, 2017

Starred Paper Committee:
Dr. Jim Q Chen, Chairperson
Dr. Dennis Guster
Dr. Bala Subramaniam

Abstract

Sharing data with peers is an important functionality in cloud storage. This is a study and
analysis of secure, efficient, and flexible sharing of data with other users in cloud storage. The
new public key encryptions which produce constant-size ciphertexts in such a way that effective
delegation of decryption rights given to any set of ciphertexts are described in this paper. The
novelty of the mechanism is that someone can aggregate any number of secret keys and turn
them into a small single key, but combine the power of all the keys being grouped. To describe,
in other words, the secret key holder could release a constant-size aggregate key for more
flexible choices of ciphertext set in cloud storage, but different encrypted files outside of the set
remain confidential. The aggregate compact key can be sent to others with ease or saved in a
smart card with very less secure storage. In this paper, we discuss various such mechanisms and
demonstrate the topic with a project. Some of the papers written by other authors in the area are
analyzed in this paper. The project in this paper is a partial implementation of the proposed

Crypto System.

Table of Contents

Page

S) T U= SRS SR 5
Chapter

L INEFOTUCTION ...ttt b et 6

Problem STAIEMENT ..o 6

The SCOPE OF WOTK ...ttt 7

[, LITEratUure REVIEW.eiiiiiiiiiet ettt 8

T o 3 1[0 ISV (1 . SR 14

Cryptographic Keys for a Predefined Hierarchyccccocovveiiiiii i 14

Compact Key in Symmetric-Key ENCryptioncccccveveiiieiicie i 14

Compact Key in Identity-Based Encryption (IBE).........ccccccivviviiiiciiccececeece e 14

Attribute-Based Encryption (ABE).........ccooi i 14

Proxy Re-ENCryption (PRE)ccoiiiiiie ittt 15

DiISAUVANTAQGESveevveivieiie ettt ettt s r et et e e e re e b e seesteebeaneesraeneenes 15

IV. The PropoSed SYSIEIM........cc.iiiiiieie ittt et sra e sre et e ba e teeneesreas 16

Cryptographic Key Management..........ccocveiieieiieiee e se e sae e 17

Compact Key in Symmetric-Key ENCryptioncccccveveiieieeie s 19

Compact Key in Identity-Based Encryption (IBE).........ccocoviiiiiiiiiiiice e, 20

Other ENCryption SCNEMEScoiiieiie et 21

AAVANTAGES. ...ttt ettt et e e et e et e e sae e e be e e te e e nreennaeareeanne s 22

V. SYSIEM DBSION ..ottt et e et e b e et e e sae e e e e e re e e taenrae e reeanre s 23

Chapter Page
PropoSed MOGUIES.........cuiiieiieie ettt esneenne e 23

[dentity TOKEN ISSUANCEocvviiieeie et 23

Identity ToKen RegiStrationcccccceiveiiiieiiese e 23

Data Encryption and Uploading...........ccocceiieiiiieiiciicc e 23

Data View and DeCryPlioN.........c.cceiieiiiiieiieie e sae e sae e 24

Encryption Evolution Managementc.cccvieiieieiie e 24

SYSIEM DESIGN ..ottt et e et e st sr e e et a e reenreenaenre s 25

USE CaSE DIAGIAM.....cueeiiieiiiieeiie et ettt ste e e e sae et e s beebeaneesne s 26

(08 F T DT o - 1o USSR 27

SEQUENCE DIAGIAMeeiieiicec ettt e e e sae e s reeee e 28

ACHIVILY DIGQIAIM ..o re e e nne s 29

o (0] 1= SO SSSUSOOP 29

TOOIS ANd TECNNIGUESvvevieiicieeeie ettt re e 29

Data BASEceviiiiiiiiiiee i 32

PrOJECE SCrEENSNOLSccuviiiieciicie ettt sre e ers 33

VL CONCIUSTON ..k b et b ettt bbb n e 39
FULUIE WOTK ...ttt 39
RETEIENCES ...t bbbttt b et bbbt 40

F AN o] o 1= o [USSR ROPRSUPPRR 42

Figure
1.

2.

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

List of Figures

Page
Data Encryption and DEeCIYPLIONcc.ecieiieiecie e 19
FIOWCRAIT ...t 25
(O O LTI B I To] - OSSPSR 26
(08 1T DT To | - oo SR 27
SEAUENCE DIAGIAMeevieeie sttt ettt e e e s b e e teese e s beente e e e saeesreeneennes 28
ACHIVILY DIGQIAIM ..ot ettt e e seesbeesneenesneenre e 29
FOIART STIUCTUIE ...t 32
DAtabase TaADIEScvoiiiiiiieiee e 33
WWEICOME SCIBEIN ...ttt b bbbt b e 33
YT L0 O 1ol (1 USRS 34
LOGIN SCIEEIN ...ttt ettt et e e e s b e et e e ae e st e e tesnsesaeesteenneeneeneeens 34
HOME SCIBEN ...t 35
INDOX SCIBEIN ...ttt b 35
DeCrypted MESSAQE SCIEENcviivieiieeie ettt ettt te et sre et st e st e e e sreeste e s e sreeee e 36
VLTS To (o [T od £ T o TP PR TR 36
MESSAQE SENE SCIBEN.......iiie ettt e st e et e e snbeeeanreas 37
0T [0 L AT od £ o R PRUPROUPRPRRS 37
Registration FaIled SCrEENccoi it 38

LOQON FAIEA SCIEEN ...ttt e be et e ne e 38

Chapter I: Introduction

Cloud storage has gained huge popularity lately. The hike in demand for data outsourcing
in enterprise settings helps in the strategic management of corporate data. This is used even as
the primary technology behind many online web applications and services for personal
applications. These days, it is effortless to apply for free email accounts, photo albums, remote
access and file sharing, with storage size more than 25 Gigabytes. Combined with the present
wireless technology, customers can access nearly all their emails and files with a mobile phone
in every corner of the world. Considering security concerns, a conventional way to ensure the
privacy of data is to rely on the server to enforce the access-control after authentication. This
implies any unexpected privilege escalation will be exposing data.

Problem Statement

In a shared-tenancy distributed cloud computing environment, securing data is more
challenging. Information from various clients can be hosted on different virtual machines (VMs)
but resides on one physical machine. Information in the target VM can easily be stolen by
instantiating another VM co-occupant with the target one. In some corporate sectors, securing
private data is of utmost priority. For example, many firms in Healthcare and Pharmacy benefit
manager groups keep their data with third-party vendors who are responsible for the security of
the data. On the other hand, few cloud users would not believe that cloud-server is doing a great
job regarding practicing confidentiality. In the existing system, in applications like photo sharing
and social networking which are based on a cloud environment, it is required to share multiple
keys for multiple files which require more bandwidth. An encryption solution with proven

security relied on number and theoretic-assumptions would be more desirable.

The Scope of Work

Data-sharing is an essential functionality in distributed cloud environment. To illustrate,
bloggers usually allow their friends to view a sub-set of their private pictures; a corporate
enterprise can grant their employees access to a portion of sensitive data. The biggest concern is
how to share encrypted data effectively. Of course, users may download encrypted data from the
storage, decrypt it, send them to their friends for sharing, but it loses the significance of a cloud-
storage. Users must be allowed to delegate the access rights of the sharing data to other users so
that they can access such data directly from the server. However, finding a secure and efficient

manner to share partial data in cloud storage is not of less importance.

Chapter I1: Literature Review

As indicated by Cui, Liu, and Wang (2015), the capacity of specially encoded
information to various clients through openly distributed storage might ease security worries
over coincidental information spills in the cloud incredibly. A crucial test to outlining such
encryption plans lies in the proficient administration of encryption keys. The coveted
adaptability of offering any gathering of chosen reports to any group of clients requests unique
encryption keys which are to be utilized for various records. This, likewise, suggests the need of
safely conveying to clients an expansive number of keys for both encryption and decryption.
Those customers will need to store the keys safely, and similarly present a vast number of
catchphrase trapdoors. They should also focus on the end goal to perform and seek the common
information (Zhu, Jiang, & Jiang, 2013). The suggested requirement for secure correspondence,
stockpiling, and many-sided quality plainly renders the methodology unfeasible.

In his paper, he also addressed this functional issue, which is to a large degree ignored in
writing. He proposed the novel idea of key aggregate searchable encryption (KASE) and
instantiating the design through a solid KASE plan. In the plan, an information proprietor just
needs to circulate a single key to a client for sharing a substantial number of reports. The client
just needs to present a single trapdoor to the cloud for questioning the mutual records. The
security investigation and execution assessment both affirm that our proposed plans are provably
secure and productive.

Ruj, Nayak, and Stojmenovic (2011) proposed another propelled deduplication
framework which supports approved copy check. In this new deduplication framework, a half-

breed cloud design rightly deals with the challenges. The individual keys for benefits are not

released to clients in a straightforward manner. Instead, they are kept protected by the private
cloud server. Here, the clients cannot share their secret keys to their peers in the proposed
development, which means that it can sustain the benefit key sharing among customers in a
highly-developed environment. To find a document token, the client needs to transmit a
solicitation to the private cloud server. To execute the copy, check for some document that the
customer demands to make and record which can be copied from the private cloud server. The
private cloud server will likewise match the client’s key before issuing the document token to the
node. The approved copy check for this record can be performed by the customer with people in
general cloud before transferring this material. Considering the aftereffects of copy-check, the
client either assigns this document or runs PoW.

Lewko and Waters (2011) proposed a Multi-Authority Attribute-Based Encryption
(ABE) framework. In our general account, any gathering can turn into power, and there is no
requirement for any global coordination other than the output of an underlying system of
standard reference parameters. A group can typically go around as an ABE power by hitting an
open key and issuing private keys to several clients that mirror their traits. A client can encode
information regarding any boolean equation over characteristics released from any special set of
abilities. Finally, our framework does not call for any focal power. In developing our framework,
our biggest specialized obstacle is to make the arrangement safe. Earlier Attribute-Based
Encryption frameworks accomplished agreement resistance when the ABE framework power
“tied” together diverse parts (speaking to various tones) of a client’s private key by randomizing
the key. On the other hand, every part of our framework will develop from a conceivably

distinctive power, where we accept no coordination between such forces.

10

Lewko and Waters (2011) created new methods to tie key segments together and forestall
intrigue assaults between clients with various worldwide identifiers. They demonstrated a secure
utilization of double frame encryption technique where the security verification works by
changing the ciphertext and private keys to a semi-practical structure and later contending
security. We assume that after a slow variation of the second framework, an evidence procedure
given by Lewko and Waters helps us assemble our framework by utilizing bilinear gatherings of
the composite request. We demonstrate security under comparative static suppositions in this
paper with the arbitrary prophetic model.

An article by Boneh and Hamburg (2008) gave a general structure to building a character
based encryption framework and telecast it. Specifically, we get a general encryption framework
called spatial encryption from which various frameworks with a mixture of properties take place.
The ciphertext size in each of these frameworks is autonomous of clients included and it has only
three gathering components. Once the purpose of these outcomes is given, the principle shows
HIBE framework with short ciphertexts. Tele-HIBE takes care of the issue with personality
based scrambled email.

Another research paper by Bitar, Gringeri, and Xia (2013) says that cloud today confront
a few difficulties when facilitating line-of-business applications in the cloud. Fundamental to
many of these challenges is the restricted backing for control over cloud system capacities. For
example, the ability to guarantee security, execution sureties or separation and too adaptable
middleboxes intervene in application organizations. In this paper, we show the configuration and
usage of a new cloud organizing framework called CloudNaaS. Clients can influence CloudNaaS

to convey applications expanded with a rich and extensible arrangement of system capacities, for

11
example, virtual system seclusion, custom tending, separation of administration, and adaptable
intervention of different middleboxes. CloudNaaS primitives are precisely executed inside the
cloud framework itself by utilizing active programmable system components thus making
CloudNaaS very productive. We assess an Open Flow-based model of CloudNaaS and observe
that it can be used to instantiate a mixed bag of system capacities in the cloud and that its
execution is helpful despite vast quantities of provisioned administrations and disappointments
caused by connected gadgets.

According to Ramgovind, Eloff, and Smith (2010, August), cloud computing has raised
IT as high as possible by offering the business environment, information stockpiling. It also
limits adaptable and versatile energy to match flexible request and supply while lessening capital
use. However, the open-door expense of a fruitful execution of Cloud registering is to deal with
the security in the cloud applications successfully. Security cognizance and concerns emerge
when one starts to run applications past the assigned firewall and tries to move closer to the
general population space. The motivation behind the paper is to give a general security point of
view of Cloud processing with the expectation to highlight the security worries that ought to be
tended appropriately and to figure out how to understand the maximum capacity of Cloud
registering. Gartner’s rundown on cloud security issues and discoveries from the International
Data Corporation venture board are studied here. The cloud dangers given by study will be
examined in this paper.

A research by Oberheide, Veeraraghavan, Cooke, Flinn, and Jahanian (2008) said mobile
phones keep advancing in their capacities and extensibilities like those of standard desktop PCs.

Thus, these gadgets are starting to face many security dangers as desktops. As of now, portable

12
security arrangements reflect the conventional desktop display in which they run identification
benefits on the gadget. This methodology is sophisticated and asset concentrated in both
processing and storing.

This paper proposes another model where a versatile antivirus usefulness is moved to an
off-gadget system administration utilizing various virtualized malware location motors. Our
contention is that, it is conceivable to spend data transfer capacity assets to lessen on-gadget’s
CPU and Memory essentially. We show how our in-cloud model improves portable security and
decreases on-gadget programming unpredictability, while taking into consideration new
administrations, for example, behavioral examination motors.

Our benchmarks on Nokia’s N800 and N95 cell phones demonstrate that our portable
specialists devour a request of greatness, less CPU and memory. Likewise, expending less power
in similar situations contrasted with existing on-gadget antivirus programming.

Cloud computing is generally considered as an appealing administration model which
follows the client’s responsibilities for venture thus operations are minimized, and expenses are
in immediate connection with utilization and interest (Schoo et al., 2011).

When organizing angles for circulated lists are considered, there is little room for back
up, and the exertion is frequently disparaged. The venture SAIL tends to form cloud environment
as the blend of administration for distributed computing and basic systems administration
capacities between disseminated cloud assets are included to enhance the management of both.
This position exhibits new security challenges when we consider SAIL for guaranteeing actual

utilization of cloud systems, administration assets, and aversion of abuse.

13

According to Nurmi et al. (2009), distributed computing frameworks on a very basic
level give access to expansive pools of information and computational assets. This takes place
through a mixture of interfaces comparable in soul to existing lattice and HPC asset
administration and programming frameworks. This kind of frameworks offer another
programming focus for adaptable application designers. They have picked up prevalence during
recent years. In any case, most distributed computing frameworks in operation today are
restrictive and they depend upon a base that is undetectable to the exploration group. They are

not actually intended to be instrumented and changed by frameworks scientists.

14
Chapter I11: Existing System
Cryptographic Keys for a Predefined Hierarchy
e Cryptographic key assignment plans intend to reduce the expenses in storing and
managing private keys for general cryptographic utilization. Using a tree-structure, a
key for a given branch can be utilized to determine the keys of its descendant nodes.
e More sophisticated cryptographic key assignment plans support access policy that can
be modeled by a cyclic graph or an acyclic graph.
Compact Key in Symmetric-Key Encryption

An encryption plan which is initially proposed for concisely transmitting a huge number
of keys in broadcast scenarios.

Compact Key in Identity-Based Encryption (IBE)

IBE is a kind of public key encryption where the public key of a user can be set as an
identity string of the user. There is a trusted party known as the private key generator in IBE
which holds a master secret key (main key) and generates a secret key to each user in perspective
of the user identity. The encryptor may receive the public parameter and concerned user identity
to convert (encrypt) a message. The recipient can convert it back (decrypt this ciphertext) with
the help of his secret key.

Attribute-Based Encryption (ABE)
ABE allows each ciphertext to be associated with an attribute, and the master secret key
holder can extract a private key for a policy of these attributes so that a ciphertext can be

decrypted with the use of this key if its associated attribute conforms to the related policy.

15
Proxy Re-Encryption (PRE)

In order to assign the decryption force of some ciphertexts without sending the secret key
(private) to the delegate, a valuable primitive is proxy re-encryption (PRE). A PRE-plan permits
the sender to delegate the server’s (proxy) ability to convert the ciphertexts encrypted under their
public key into plain texts for the receiver.

Disadvantages

e Cryptographic Keys for a predefined hierarchy are usually costlier than symmetric
key operations like a pseudorandom function.

e Compact-Key in Symmetric Key Encryption is designed for the symmetric-key
setting instead. The encryptor should get the corresponding private or secret keys to
encrypt the data, which is usually not suitable for most applications. Since this
method is used to produce a secret value rather than a pair of public/private keys, it is
unclear about the way in which this idea is planned for public-key encryption.

e IBE mainly increases the expenses of saving and transmitting ciphertexts, which is
not very practical in most of the situations such as shared cloud-storage.

e In ABE, either the length of the key often increases linearly with the number of
attributes it encompasses, or the length of ciphertext is not constant.

e Using PRE, we can simply move the secure and secret key storage requirement to the
proxy from the delegate. So, it is undesirable to let the proxy reside on the storage

server.

16
Chapter IV: The Proposed System

To learn more about making a decryption key powerful in a way that it allows
decryption of any number of ciphertexts, without expanding its size.
To outline an effective public-key encryption scheme which helps adaptable
delegation in such a way that any subset of ciphertexts is decryptable by a decryption
key of constant-size.
Introduce a unique type of public key encryption which is known as key-aggregate
cryptosystem (KAC).
In KAC, users usually encrypt a message with the use of a public-key, as well as an
identifier of ciphertext called class. That implies the ciphertexts are further classified
into different classes. The key proprietor holds a master secret key, which can be
utilized to derive secret keys for various classes.
More essentially, the derived key can be an aggregate key which is compact like a
secret key for a single class, yet aggregates the power of numerous such keys, i.e., the
decryption power for some subsets of such ciphertext classes.
A secure email can be used to send the Aggregate key to the receiver. The encrypted

content can be downloaded by the receiver and decrypted by using this aggregate key.

Information can be scrambled through Encryption by any individual who additionally

chooses what ciphertext class is connected with the plaintext message to be encoded. The

information proprietor can utilize the expert mystery key pair to create a total unscrambling key

for an arrangement of ciphertext classes through Extract. The created keys can go to delegates

safely through secure messages or secure gadgets Finally, any client with a total key can decode

17
any ciphertext gave that the ciphertexts class is contained in the total key using Decrypt. Key
total encryption plans comprise of five polynomial time calculations as takes after:

1. Setup (1A, n): The data owner establishes public system parameter via Setup. On input
of a security level parameter 1A and number of ciphertext classes n, it outputs the
public system parameter param

2. KeyGen: It is executed by the data owner to randomly generate a public/ master secret
key pair (Pk, msk).

3. Encrypt (pk, i, m): It is executed by data owner and for message m and index I, it
computes the ciphertext as C.

4. Extract (msk, S): It is executed by data owner for delegating the decrypting power for a
certain set of ciphertext classes, and it outputs the aggregate key for set S denoted by
Ks.

5. Decrypt (Ks, S, 1, C): It is executed by a delegate who received, an aggregate key Ks
generated by Extract. On input Ks, set S, an index | denoting the ciphertext class
ciphertext C belongs to and output is decrypted result m (Krishna et al. 2015)

Cryptographic Key Management
Cryptographic key assignment schemes aim to minimize the cost for storage and
management of secret keys for regular cryptographic use. By using a tree-structure, a key of a
given branch can be utilized to generate the keys of their descendant nodes (but not in the other
way around). By simply granting the parent key, all the keys of its descendant nodes are granted
implicitly. Sandhu (Dutta & Annappa, 2014) proposed a strategy to derive a tree hierarchy of

symmetric keys by utilizing recurring evaluations of pseudorandom function or a block cipher on

18
a fixed secret. The idea can be generalized to a graph from a tree. More sophisticated
cryptographic key assignment schemes help in accessing the policy that can be designed by a
cyclic graph or an acyclic graph (Krishna & Prasd, 2015; Wu, Zhou, Wang, Pan, & Chen, 2014).
Most of the mentioned schemes generate keys for symmetric key encryptions, even though the
key generations may need modular arithmetic as used in public key encryptions, which are
usually costlier than symmetric-key operations like “pseudorandom functions.”

Let us take the tree structure to illustrate. Firstly, Alice can categorize the ciphertext
classes by their subjects. Every node in the tree represents a private (secret) key, while the keys
for individual ciphertext classes is represented by the leaf nodes. The keys for the classes to be
delegated are represented by filled circles and the keys to be granted are represented by circles
circumvented by dotted lines. Note that the keys of descendant nodes can be derived from every
key of the non-leaf node. If Alice likes to share all the files in her personal category, only the
key for the node “personal” needs to be granted by her, which automatically grants the keys for
all the descendant nodes (“music,” “photo”). This makes it an ideal case, where most classes
which must be shared belong to the same branch, and so, their parent key is good enough. In
anyways, it is still not easy for usual cases. If Alice wants to share her demo music with a
colleague at work who also possesses the rights to view some of her personal data, she needs to
provide more keys, leading to an increase in the total size of the key. One can see that this
approach is not adaptable when the categorizations are more complex, and she needs to share
different sets of documents to different people. For the person in our example, the number of
secret keys to be granted becomes the same as the number of different classes. Generally,

hierarchical approaches may solve the issues partially if someone intends to share all the files

19
under a particular branch in their hierarchy. In this way, the number of keys increases as the
number of branches increases. It is not easy to come up with some hierarchy that should save a
total number of keys to be granted to all the individuals (which have access privileges to a
different set of leaf nodes) simultaneously.

Compact Key in Symmetric-Key Encryption

Propelled by the same concern of supporting adaptable hierarchy in decryption power
delegation (but with the symmetric key setting), Benaloh et al. (as cited in Reddy & Yadav,
2015) presented a cryptosystem which is initially proposed for concise transmission of some
keys in a broadcast scenario. The development is simple, and we quickly review its key
generation process here for a solid description of the desired properties we like to achieve. The
generation of the key for a set of classes (a subset of all possible ciphertext classes) is as
described below: A composite mod N ¥ p - q is selected where p and g are two large random

prime numbers. A master secret key Y is selected at random using ZZ.

Alice Bob
a,4q0p P, A > b

A =g* mod p &P B =g"mod p
K=B* 1 B [—1 k=A

K = A® = (g" mod p)° = g* mod p = (g° mod p)* = B

Figure 1. Data Encryption and Decryption
N. Each class relates to a distinct prime i.e. All these prime numbers can be placed in

public framework parameter. A steady size key for set SO can be created (with the learning of

20
ONP) As a solid illustration, a key for classes represented by el; e2; e3 can be produced as Y
1=0el e2 e3p, from which each of Y 1=el, Y 1=e2, and Y 1=e3 can be inferred without much
effort (while giving no data about keys to some other class, say, e4). This approach accomplishes
similar properties and performances as our plans. In anyways, it is intended for the symmetric-
key setting. The encryptor needs to get the relating mystery keys to encode information, which is
not reasonable for some applications. Since their technique is utilized to produce a secret value
rather than a couple of public/secret keys, it is vague on how to apply this idea for public key
encryption scheme.

At last, we take a note that there are plans which attempt to lessen the key size for
accomplishing verification in symmetric-key encryption, for instance (Reddy & Yadav, 2015). In
any case, sharing of decryption power is not an issue in these schemes.

Compact Key in Identity-Based Encryption (IBE)

IBE is a sort of open key encryption in which public key of a client can be set as an
identity string of the client (e.g., an email address). There is a trusted party called private key
generator in IBE which holds a secret master key and issues a secret key to every client as for the
client identity. The encryptor can take the public parameter and a client identity to encrypt a
message. The beneficiary can decrypt this ciphertext by his secret key. Guo et al. attempted to
build IBE with key accumulation (Lewko & Waters, 2011; Reddy & Yadav, 2015). One of their
plans assumes random oracles. However, another does not (Ruj, Nayak, & Stojmenovic, 2011).
In their plans, key aggregation is compelled in such a way that all keys to be collected must
originate from various “identity divisions.” While there are an exponential number of identities

and thus secret keys, just a polynomial number of them can be accumulated. In particular, their

21
key-accumulation (Cui et al., 2015; Reddy & Yadav, 2015) comes to the detriment of Odnb sizes
for both ciphertexts and the public parameter, where n is the number of secret keys which can be
aggregated into a consistent size one. This enormously builds the expenses of saving and
transmitting cyphertexts, which is unrealistic. For example, shared distributed storage. As we
specified, our plans highlight steady ciphertext measure, and their security holds in the standard
model. In fluffy, (Reddy & Yadav, 2015) IBE one single reduced secret key can decode
ciphertexts encrypted under numerous identities which are shut in a specific metric space, yet not
for a subjective arrangement of identities and, therefore, it doesn’t coordinate with our concept of
key aggregation (Reddy & Yadav, 2015).

Other Encryption Schemes

Attribute-based encryption (ABE) (Cui et al., 2015; Okuhara, Shiozaki, & Suzuki, 2010)
permits each cyphertext to relate to quality, and the master secret key holder can separate a secret
key for a policy of these attributes so that a ciphertext can be decrypted by this key if its related
attribute fits in with the strategy. For instance, with the secret key for the strategy 62 3 6 _
8p, one can decrypt ciphertext labeled with class 2, 3, 6, or 8. However, the significant concern
in ABE is collusion resistance, however not the compact nature of secret keys. Indeed, the length
of the key frequently increments linearly with the quantity of attributes it envelops, or the
ciphertext size is not constant.

To designate the decryption-power of some ciphertexts without transmitting the secret
key to the delegate, a valuable primitive is proxy re-encryption (PRE) A PRE-plot permits Alice
to delegate to the server (intermediary) the capacity to convert the ciphertexts encrypted under

her public key into ones for Bob. PRE is well known for having various applications including

22
cryptographic file system (Ruj et al., 2011). Nevertheless, Alice needs to believe the proxy that it
just converts ciphertexts as per her guideline, which is the thing that we need to maintain a
strategic distance from at the primary spot. It gets even worse if the proxy connives with Bob—
Alice’s secret key can be recovered which can decode Alice’s (convertible) ciphertexts without
Bob’s further help. This likewise implies that the transformation key of proxy ought to be much
secured. The secure key storage requirement is moved from the delegate to the proxy by using
PRE. Itis, in this way, undesirable to give the proxy a chance to reside in the capacity server.

Advantages
e Constant key size
e Less overhead for key storage

e High security

23
Chapter V: System Design
Proposed Modules

Identity Token Issuance

IDPs are trusted third parties that issue identity tokens to Users based on their identity
attributes. It should be noted that IDPs need not be online after they issue identity tokens.
Identity Token Registration

Users register their token to obtain secrets to later decrypt the data they are allowed to
access. Users register their tokens related to the attribute conditions in ACC with the Owner, and
the rest of the identity tokens related to the attribute conditions in ACB/ACC with the Cloud.
When Users register with the Owner, the Owner issues them two sets of secrets for the attribute
conditions in ACC that are also present in the sub-ACPs in ACPB Cloud. The Owner keeps one
set and gives the other set to the Cloud. Two different sets are used to prevent the Cloud from
decrypting the Owner encrypted data.
Data Encryption and Uploading

The Owner first encrypts the data based on the Owner’s sub-ACPs to hide the content
from the Cloud and then uploads them along with the public information generated by the AB-
GKM:: KeyGen algorithm and the remaining sub-ACPs to the Cloud. The Cloud, in turn,
encrypts the data based on the keys generated using its AB-GKM:: KeyGen algorithm. Note that
the AB-GKM:: KeyGen at the Cloud takes the secrets issued to Users and the sub-ACPs given

by the Owner into consideration to generate keys.

24

Data View and Decryption

Users download encrypted data from the Cloud and decrypt twice to access the data.
First, the Cloud generated public information tuple is used to derive the OLE key, and then the
Owner generated public information tuple is used to derive the ILE key using the AB-GKM::
KeyDer algorithm. These two keys allow a User to decrypt a data item only if the User satisfies
the original ACP applied to the data item.
Encryption Evolution Management

Over time, either ACPs or user credentials may change. Further, already encrypted data
may go through frequent updates. In such situations, data already encrypted must be re-encrypted
with a new key. As the Cloud performs the access control enforcing encryption, it simply re-

encrypts the affected data without the intervention of the Owner.

System Design

C START >

IDPS SENDING TOKEN TO USER

USER REGISTER TOKEN

| OWNER l SEND SECRET KEY

| ENCRYPTION

| CLOUD l l SEND SECRET KEY

| ENCRYPTION l

DOWNLOAD/DECRYPT

|

ENCRY PT/UPLOAD

—>(sToP)

Figure 2. Flowchart

25

26

Use Case Diagram

@’
s/
REGISTER TOKEN

T > M

CLOUD
IDPs

>

A
UPLOAD
\/
[
S SECRET KEY GENERATION

DOWNLOAD
USER
£X

OWNER

Figure 3. Use Case Diagram

Class Diagram

Figure 4. Class Diagram

27

Sequence Diagram

IDPs

SEND TOKEN

USER OWNER

REGISTER TOKEN

ENCRYPT

UPLOAD

CLOUD

SEND SECRET KEY

SEND BECRET KEY

RE ENCRYPT

REGISTER TOKEN

DQWNLOAD

DECRYPT

ENCRYRT/UPLOAD

Figure 5. Sequence Diagram

28

Activity Diagram

IDPS SENDING TOKEN TO USER

USER REGISTER TOKEN

S

| OWNER | CLOUD
| ENCRYPTION

/

| DOWNLOAD/DECRYPT |
SEND SECRET KEY

| ENCRYPT/UPLOAD |

—
)

Figure 6. Activity Diagram

Project
Tools and Techniques
Hardware requirements:
Processor Any Processor above 500 MHz

Ram 256Mb.

29

Hard Disk
Compact Disk
Input device

Output device

Software requirements:

Operating System
Language

Database server
ORM Tool

Front End

Front End CSS
Encryption Algorithm

Application Server

30
10 GB.
650 Mb.
Standard Keyboard and Mouse.

VGA and High-Resolution Monitor.

Windows Family.

JDK 1.5 or above
MySQL 5.0

Hibernate 5.4

HTML, JSP, JavaScript
LibraryBootstrap
Caesar Cipher

Apache Tomcat

Following are the reasons | chose the above techniques.

Java: Because Java is a secure language and portable across all platforms. Java’s

code is (each program) is translated to Java Byte code which is robust. As there can

be a JVM (Java Virtual Machine) in each machine, it can execute Java byte code.

MySQL.: Because it is an open source database which has handy server to store back

end data. Database is the back bone of any project.

Hibernate ORM: Hibernate is a very cool ORM (Object relational Mapping) tool. It

makes us free of JDBC driver connections and Statement/Prepared Statement classes

to query. It also prevents SQL Injection without any effort.

31
Modified Caesar Cipher: Caesar cipher is one of the basic and old encryption
techniques, But, | just wanted to start the project with this as it is just a beginning and
at a later point, I would modify the project with some more effective encryption
techniques.
Bootstrap: Bootstrap is very good library to have when we want to design a good
looking web application. It gives us a large variety of inbuilt CSS libraries, which
give us a wide variety of navigation bars, buttons, texting styles etc., with very less
effort.
Besides all these, Eclipse IDE can integrate all these libraries and servers and make

the work easy.

E.J workspace - Java EE - EncryptionWeb/WebContent/regFail jsp - Eclipse
File Edit Navigate Search Project Run Window Help

v @ BN SR G O @R vO R BE A vl vi v
& Project Explorer = E&|s v=0O
~ 2 EncryptionWeb, A

&1 Deployment Descriptor: EncryptionWeb
2 JAX-WS Web Services
v Java Resources
v 2 src
v i# org.vny
) CryptoSecurity java
| Datalnsertion.java
1 DecryptMessage java
HibernateUtil java
LoginCheck.java
Message.java
#1 MessageService.java
RegisterCheck java
1 Sample java
SendMessage.java
User java
hibernate.cfg.xml
message.hbm.xml
¥ userhbm.xml
&\ Libraries
=i JavaScript Resources
& build
v i WebContent
= images
= META-INF
= WEB-INF
2 DecryptMessage.jsp
i errorjsp
£ homejsp
2 inboxjsp

Figure 7. Folder Structure
Data Base
There are two major tables.
1. user_info:
To store the users information like first name, last name.

Model class: User.java

32

2. message_info:

To store the conversations between the users.

Model class: Message.java

Figure 8. Database Tables
Project Screenshots

Following are the Project screenshots.

Figure 9. Welcome Screen

33

[Registration Page

& C | © localhost

Username

2

Password

Firstname

2

Lastname

Figure 10. Signup Screen

3 login page

C | ® localhost

Username

§ 3

Password

Figure 11. Login Screen

w 81 @

34

C O localhost8081/Encryption\ er s Y% 51 O oge

Welcome Vinay Ananthu

List of Friends

User ID First Name Last Name Options

vny.anant Kumar Abhi e

praveen.p Praveen Pasupu

abhinay.anan Abhinay A

denis.guster Denis Guster P

F C' | ® localhost:8081/EncryptionWeb/inbox jsp % 5 B DA 9

& Home

Here are your messages:
??

— denis.guster

Key: decrypt

Figure 13. Inbox Screen

35

Here are the decrypted messages:

hi

— denis.guster

Figure 14. Decrypted Message Screen

C' | @ localhost:8081/EncryptionWeb/sendMessage jsp?param=praveen.p % 5 & 0o a2 9

Send your messages to praveen.p

Figure 15. Message Screen

36

ssageSent x "\

() l@ localhost:8081/EncryptionWeb/MessageSent.jsp ‘ﬁl SN o0 Q |

@ vour message was successfully sent!

Figure 16. Message Sent Screen

Logged Out X N\

(@ ‘@ localhost:8081/EncryptionWeb/logout.jsp ﬁ‘ &~ @ @] & Q m

You have been ed out successfully. Visit again, go Secure!

Figure 17. Logout Screen

B Registration failed %

g C' | @ localhost:8081/EncryptionWeb/regFail jsp % 51 D (o - S

X Registration failed due to one of the following reasons:
- Username already exists
name is invalid

swword is invalid

Try Again

Figure 18. Registration Failed Screen

B Error Login X

= C' | ® localhost:8081/EncryptionWeb/error jsp w 8 ® Q l!% S}

® Login Unsucces

Login failed Try Again

Figure 19. Logon Failed Screen

38

39
Chapter VI: Conclusion

Protecting user’s data is the main concern of cloud computing today. As more and more
cryptographic and mathematical tools are being used to generate multiple keys to access single
application, they also become more complex. So the idea of compressing these multiple keys into
a single master key obtained from different secret keys for various ciphertext classes in cloud is a
considerable alternative. The main advantage of this concept is that the aggregate master key
would be of constant size. This concept is more adaptable than canonical key distribution
because it saves lot of space when all key-owners need same set of user privileges.

Future Work

In the current project, | used a simple and easy cipher key generation technique which is
a derivation of Caesar cipher. In the future, the encryption technique can be more complicated,
likely a choice from RSA or SHA key encryption techniques. Also, the aggregation of keys is not

implemented in the current project. There is a scope to create aggregation of keys in future.

40
References

Bitar, N., Gringeri, S., & Xia, T. J. (2013). Technologies and protocols for data center and cloud
networking. Communications Magazine, IEEE, 51(9), 24-31.

Boneh, D., & Hamburg, M. (2008). Generalized identity based and broadcast encryption
schemes. In J. Peiprzyk (Ed.), Advances in cryptology-ASIACRYPT 2008 (Vol. 5350).
Berlin Heidelberg, Germany: Springer

Cui, B., Liu, Z., & Wang, L. (2015). Key-aggregate searchable encryption (KASE) for group
data sharing via cloud storage. Computers, IEEE Transactions On, PP(99), 1-1.

Dutta, R., & Annappa, B. (2014). Protection of data in unsecured public cloud environment with
open, vulnerable networks using threshold-based secret sharing. Network Protocols and
Algorithms, 6(1), 58-75.

Krishna, N. S. R., & Prasd, Y. V. (2015). A novel system for scalable data sharing in cloud
storage using key-aggregate. IJSEAT, 3(9), 461-465.

Lewko, A., & Waters, B. (2011). Decentralizing attribute-based encryption. In Advances in
Cryptology—-EUROCRYPT 2011 (pp. 568-588). Berlin Heidelberg, Germany: Springer.

Nurmi, D., Wolski, C., Grzegorczyk, G., Obertelli, S., Soman, L., . .. Zagordonov, D. (2009).
The eucalyptus open-source cloud-computing system. Proceedings of 2009 ACM/IEEE
International Conference on Grid Computing (pp. 124-131).

Oberheide, J., Veeraraghavan, K., Cooke, E., Flinn, J., & Jahanian, F. (2008). Virtualized in-
cloud security services for mobile devices. Proceedings of the First Workshop on

Virtualization in Mobile Computing (pp. 31-35).

41
Okuhara, M., Shiozaki, T., & Suzuki, T. (2010). Security architecture for cloud computing.

Fujitsu Sci. Tech. J, 46(4), 397-402.

Ramgovind, S., Eloff, M. M., & Smith E. (2010). The management of security in cloud
computing. Retrieved from
http://uir.unisa.ac.za/bitstream/handle/10500/3883/ramgovind.pdf?sequence=1

Reddy, M. S. K., & Yadav, T. S. (2015). Public-key patient-controlled encryption for flexible
data sharing in cloud storage. International Journal of Innovative Technologies, 3(1),
0005-0007.

Ruj, S., Nayak, A., & Stojmenovic, I. (2011, November). Dacc: Distributed access control in
clouds. In Trust, Security and Privacy in Computing and Communications (TrustCom),
2011 IEEE 10th International Conference on (pp. 91-98). IEEE.

Schoo, P., Fusenig, V., Souza, V., Melo, M., Murray, P., Debar, H., . .. Zeghlache, D. (2011).
Challenges for cloud networking security. Paper presented at the International
Conference on Mobile Networks and Management (pp. 298-313). Berlin Heidelberg,
Germany: Springer.

Wu, T. Y., Zhou, C., Wang, E. K., Pan, J. S., & Chen, C. M. (2014). Towards time-bound
hierarchical key management in cloud computing. In Intelligent Data Analysis and Its
Applications, Volume | (pp. 31-38). New York, NY: Springer International Publishing.

Zhu, Z., Jiang, Z., & Jiang, R. (2013). The attack on Mona: Secure multi-owner data sharing for
dynamic groups in the cloud. Proceedings of the 2013 International Conference on

Information Science and Cloud Computing Companion (pp. 514-519).

42
Appendix

hibernate.cfg.xml:

<?xml version="1.0" encoding=“UTF-8 "?>
<hibernate-configuration>
<session-factory>

<property name="‘“connection.driver_class ">com.mysql.jdbc.Driver</property>
<property name=“connection.url ”>jdbc:mysql://localhost:3306/mydb</property>
<property name= “connection.username “>root</property>
<property name=‘“‘connection.password ">Password@123</property>

<!-- JDBC connection pool (use the built-in) -->
<property name= “connection.pool_size ">1</property>

<!I-- SQL dialect -->
<property name="dialect ">
org.hibernate.dialect. MySQLDialect
</property>
<I-- Enable Hibernate ’s automatic session context management -->
<property name="‘current_session_context_class ">thread</property>

<property
name= “cache.provider_class “>org.hibernate.cache.NoCacheProvider</property>
<I-- Echo all executed SQL to stdout -->
<property name="‘show_sql ">true</property>
<!I--<property name=“dialect ">org.hibernate.dialect. MySQLDialect</property> -->
<I-- Drop existing tables and create new one -->
<property name=“hbm2ddl.auto ">update</property>
<I--<mapping class= “org.vnyseries.hibernate.Student_Info ’/>-->
<mapping resource= “user.hbm.xml />
<mapping resource=“message.hbm.xml />

</session-factory>
</hibernate-configuration>

message.hbm.xml:

<?xml version="1.0" encoding=“UTF-8 "?>

<hibernate-mapping>

<class name=“org.vny.Message " table=“message_info ">
<id name="msg_id” column="msg_id ">
<generator class=“assigned” />
</id>

<property name="‘"message ” column="message ” />
<property name="“fromUname " column=“fromUname” />
<property name="“toUname ” column=“toUname ” />
</class>
</hibernate-mapping>

user.hbm.xml:

<?xml version="1.0" encoding=“UTF-8 "?>

<IDOCTYPE hibernate-mapping PUBLIC
“-/[Hibernate/Hibernate Mapping DTD 3.0//EN”
“http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd ">

<hibernate-mapping>
<class name="org.vny.User " table="“user_info ">
<id name=“user_id” column="“id ">
<generator class=“assigned” />
</id>

<property name="‘“user_name” column="“name” />
<property name="“password "’ column="“password " />
<property name="“fname” column="fname” />
<property name="“Iname” column="Iname” />
</class>
</hibernate-mapping>

CryptoSecurity.java:

package org.vny;

import java.security.Security;

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;

public class CryptoSecurity {
public static void main(String[] args) throws Exception {
String cipher = new CryptoSecurity().encryptString(“Helloo 123 ???!7,12);

43

System.out.printin(cipher);
String plain = new CryptoSecurity().decryptString(cipher,12);
System.out.printIn(plain);

}

public String encryptString(String plainText,int key){
StringBuffer input = new StringBuffer(plainText);
for(int i=0;i<input.length();i++){
int temp=0;
temp=(int)input.charAt(i);
temp=temp*key;
input.setCharAt(i, (char)temp);
}
String decipher = input.toString();
return decipher;

}

public String decryptString(String cipherText,int key){

System.out.printin(“Decrypting “+cipherText+ " with “+key);
StringBuffer input = new StringBuffer(cipherText);
for(int i=0;i<input.length();i++){

int temp=0;

temp=(int)input.charAt(i);

temp=temp/key;

input.setCharAt(i, (char)temp);
}
String plain = input.toString();
System.out.printin(“Decrypted Text: "+plain);
return plain;

}
}

Datalnsertion.java:

package org.vny;

import java.util.ArrayList;
import java.util.List;

import org.hibernate.Session;

import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import org.hibernate.query.Query;

44

public class Datalnsertion {

public static void main(String[] args) {
}

public void insertInfo(User user) {
Session session = HibernateUtil.openSession();
Transaction tx = null;
try {
tx = session.getTransaction();
tx.begin();
session.saveOrUpdate(user);
tx.commit();
} catch (Exception ex) {
System.out.printin(ex);
if (tx 1= null) {
tx.rollback();
}

} finally {
session.close();
}

}

public User getUserInfo() {
Session session = HibernateUtil.openSession();
Transaction tx = null;
User user = null;
try {
tx = session.getTransaction();
tx.begin();
user = session.get(User.class, 2);
tx.commit();
} catch (Exception ex) {
if (tx 1= null) {
tx.rollback();
}

} finally {
session.close();
}

return user;

45

public Boolean validatePassword(String usn, String pwd) {
User user = getUserByUserName(usn);
if (user = null && user.getUser_name().equals(usn) &&
user.getPassword().equals(pwd)) {
return true;

}else {

return false;
}

}

public Boolean checkUserNameExists(String usn) {
Session session = HibernateUtil.openSession();
Transaction tx = null;
List<User> users = null;
try {
tx = session.getTransaction();
tx.begin();
Query query = session.createQuery(“from User where user_name = +
“Utusn+);
users = (List<User>) query.hst();
tx.commit();
} catch (Exception ex) {
if (tx '=null) {
tx.rollback();
}

} finally {
session.close();
}

if (users.size() '=0){
return false;

}else {

return true;
}

}

public User getUserByUserName(String uname) {
Session session = HibernateUtil.openSession();
Transaction tx = null;
List<User> users = null;
try {
tx = session.getTransaction();
tx.begin();

46

Query query = session.createQuery(“from User where user_name = +

“““+ uname + “°);
users = (List<User>) query.dist();

session.getTransaction().commit();
} catch (Exception ex) {
if (tx 1= null) {
tx.rollback();
}

} finally {
session.close();
}

return users.get(0);

}

public List<User> getListOfUsers() {
List<User> list = new ArrayList<User>();
Session session = HibernateUtil.openSession();
Transaction tx = null;
try {
tx = session.getTransaction();
tx.begin();

list = session.createQuery(“from User) Jist();

tx.commit();
} catch (Exception e) {
if (tx 1= null) {
tx.rollback();

e.printStackTrace();
} finally {

session.close();
}

return list;

}

DecryptMessage.java

package org.vny;

import java.io.IOException;
import javax.servlet.ServletException;

47

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**

* Servlet implementation class DecryptMessage

*/

@WebServlet(“/DecryptMessage)
public class DecryptMessage extends HttpServlet {

private static final long serialVersionUID = 1L;

/**
* HttpServlet#HttpServlet()
*/
public DecryptMessage() {
super();
I Auto-generated constructor stub
}

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.getWriter().append(““Served at: “).append(request.getContextPath());

}

/**

* HttpServlet#doPost(HttpServletRequest request, HttpServletResponse
* response)

*/

protected void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

MessageService messageService = new MessageService();

CryptoSecurity crypto = new CryptoSecurity();

int key = Integer.parselnt(request.getParameter(“key ”));

String cypherText = (String) request.getParameter(“param”);

String decryptMessage = crypto.decryptString(cypherText, key);

request.getSession().setAttribute(“decryptMessage ”, decryptMessage);

response.sendRedirect(““DecryptMessage.jsp ”);

HibernateUtil.java:

48

49
package org.vny;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class HibernateUtil {
private static final SessionFactory sessionFactory;
static {
try {
sessionFactory = new Configuration().configure().buildSessionFactory();
} catch (Throwable ex) {

System.err.printIn(“Initial SessionFactory creation failed.” + ex);
throw new ExceptionininitializerError(ex);

}

public static Session openSession() {
return sessionFactory.openSession();
}

LoginCheck.java

package org.vny;

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Servlet implementation class LoginCheck
*/
@WebServlet(“/LoginCheck ™)
public class LoginCheck extends HttpServlet {
private static final long serialVersionUID = 1L;

/**

50

* @see HttpServlet#HttpServlet()

*/
public LoginCheck() {
super();
/[TODO Auto-generated constructor stub
}
/**

* @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse
* response)
*/
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// TODO Auto-generated method stub
response.getWriter().append(“Served at: “).append(request.getContextPath());

}
/**

* @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse
* response)
*/
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// TODO Auto-generated method stub
/I doGet(request, response);
User user = null;
String uname = request.getParameter(“uname”);
String password = request.getParameter(“password ”);
Datalnsertion data = new Datalnsertion();
if (1data.checkUserNameExists(uname) && !password.equals(null) &&
luname.equals(null)) {
user = data.getUserByUserName(uname);
if (data.validatePassword(uname, password)) {
request.getSession().setAttribute(“user ”, user);
response.sendRedirect(“member.jsp ”);

}else {

response.sendRedirect(“error.jsp”);
}

}else {

response.sendRedirect(“error.jsp ”);
}

Message.java:

package org.vny;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.ld;

import javax.persistence.Table;

@Entity
@Table(name = “message_info)
public class Message {
@Id
@GeneratedValue(strategy = GenerationType. AUTO)
private int msg_id;
private String message;
private String fromUname;
private String toUname;

public int getMsg_id() {

return msg_id;
}

public String getMessage() {
return message;
}

public void setMessage(String message) {
this.message = message;
}

public void setMsg_id(int msg_id) {
this.msg_id = msg_id;
}

public String getFromUname() {

return fromUname;
}

public void setFromUname(String fromUname) {
this.fromUname = fromUname;
}

public String getToUname() {
return toUname;

51

}

public void setToUname(String toUname) {

}

this.toUname = toUname;

MessageService.java:

package org.vny;

import java.util.List;

import org.hibernate.Session;
import org.hibernate.Transaction;
import org.hibernate.query.Query;

public class MessageService {
public static void main(String[] args) {

}

I Auto-generated method stub
Message msg = new Message();
msg.setFromUname(“vny.anan”);
msg.setToUname(“praveen.p”);

/Il msg.setMessage(“Hi Praveen ”);

new MessageService().deleteMessage(msg);

public void insertMessage(Message msg) {

Session session = HibernateUtil.openSession();
Transaction tx = null;
try {
tx = session.getTransaction();
tx.begin();
session.saveOrUpdate(msg);
tx.commit();
} catch (Exception ex) {
System.out.printin(ex);
if (tx '=null) {
tx.rollback();

}
} finally {
session.close();
}

52

}

public void deleteMessage(Message msg) {
Session session = HibernateUtil.openSession();
Transaction tx = null;
List<Message> mesgs = null;
Message mesg = null;
try {
tx = session.getTransaction();
tx.begin();
Query query = session.createQuery(“from Message where fromUname
=+ “““+ msg.getFromUname()
+ ““AND toUname =“ + “““ + msg.getToUname() +
AND message =“ + “““ + msg.getMessage() + ““);
mesgs = (List<Message=>) query.}st();
mesg = session.get(Message.class, mesgs.get(0).getMsg_id());
session.delete(mesg);
tx.commit();
} catch (Exception ex) {
System.out.printin(ex);
if (tx 1= null) {
tx.rollback();

}
} finally {
session.close();
}

}

public List<Message> getMessagesByUserName(String toUSN) {
Session session = HibernateUtil.openSession();
Transaction tx = null;
List<Message> messages = null;
try {
tx = session.getTransaction();
tx.begin();
Query query = session.createQuery(“from Message where toUname =
“ 4+ toUSN + <)
messages = (List<Message>) query.hist();

session.getTransaction().commit();
} catch (Exception ex) {
if (tx '=null) {
tx.rollback();
}

53

+

} finally {
session.close();
}

return messages;

ReqisterCheck.java:

package org.vny;

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet(“/RegisterCheck)
public class RegisterCheck extends HttpServlet {

private static final long serialVersionUID = 1L;

public RegisterCheck() {

super();
}
/**
* HttpServlet#doGet(HttpServletRequest request, HttpServletResponse
* response)
*/

protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
Il Auto-generated method stub
response.getWriter().append(“Served at: “).append(request.getContextPath());
}
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
String uname = request.getParameter(“uname ”);
String password = request.getParameter(“password ”);
String fname = request.getParameter(“fname ”);
String Iname = request.getParameter(“Iname ”);
User user = new User();
Il user.setUser_id(1);

54

user.setUser_name(uname);

user.setPassword(password);

user.setLname(Iname);

user.setFname(fname);

Datalnsertion data = new Datalnsertion();

if (data.checkUserNameExists(uname) && 'uname.equals(“*) &&

Ipassword.equals(““)) {

data.insertInfo(user);
response.sendRedirect(“regSuccess.jsp);

}else {

response.sendRedirect(“‘regFail.jsp ”);
}

SendMessage.java:

package org.vny;

import java.io.lOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
* Servlet implementation class SendMessage
*/
@WebServlet(“/SendMessage)
public class SendMessage extends HttpServlet {
private static final long serialVersionUID = 1L;

/**
* HttpServlet#HttpServlet()
*/
public SendMessage() {
super();
/l Auto-generated constructor stub
}

/**

* @see HttpServlet#doGet(HttpServletRequest request, HttpServletResponse
* response)
*/
protected void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// TODO Auto-generated method stub
response.getWriter().append(“Served at: “).append(request.getContextPath());

}
/**

* @see HttpServlet#doPost(HttpServletRequest request, HttpServletResponse
* response)
*/
protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// TODO Auto-generated method stub
/I doGet(request, response);
String msg = (String) request.getParameter(“message ”);
System.out.printin(“Message: ” + msg);
MessageService messageService = new MessageService();
Message message = new Message();
intkey = 1;
CryptoSecurity cryptoSec = new CryptoSecurity();
if (Imsg.equals(““)) {
System.out.printIn((String) request.getParameter(“toUSN ”));
System.out.printIn((String) request.getParameter(“fromUSN ”));
message.setFromUname((String) request.getParameter(“fromUSN ”));
message.setToUname((String) request.getParameter(“toUSN ”));
String mesg = request.getParameter(“message ”);
if (request.getParameter(“key) 1= null) {
key = Integer.parselnt(request.getParameter(“key));

}else{
key =1;
}
if (key <1){
key = 1;
}

message.setMessage(cryptoSec.encryptString(mesg, key));
/I message.setSkey(key);
messageService.insertMessage(message);
response.sendRedirect(““MessageSent.jsp);

}else {

response.sendRedirect(“error.jsp”);
}

56

User.java:
package org.vny;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.ld;
import javax.persistence.Table;
@Entity
@Table(name=“user_info ")
public class User {
@Id @GeneratedValue(strategy = GenerationType. AUTO)
private int user_id;
private String user_name;
private String password;
private String fname;
private String Iname;
public int getUser_id() {
return user_id;
}

public void setUser_id(int user_id) {
this.user_id = user _id;
}

public String getUser_name() {
return user_name;
}

public void setUser_name(String user_name) {
this.user_name = user_name;
}

public String getPassword() {
return password;
}

public void setPassword(String password) {
this.password = password;
}

public String getFname() {
return fname;
}

57

58

public void setFname(String fname) {
this.fname = fname;
}

public String getLname() {
return Iname;

public void setLname(String Iname) {
this.Iname = Iname;
}

Front End Code:

DecryptMessage.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“ISO-8859-1 %>

<%@page import="“java.util.List %>

<%@page import=“org.vny.* "%>

<% @page import=“java.util.Date "%>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "’

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">

<title>Insert title here</title>

<link rel="stylesheet”
href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”
integrity= “sha384-

BVYiiSIFeK1dGmJRAKkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u ”
crossorigin=“anonymous ">

<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css
integrity=“sha384-

rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">

<script
src=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js”
integrity=“sha384-

Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7I12mCWNIpGIMGCD8wWGNIcPD7Txa”
crossorigin=“anonymous ”></script>

</head>

<body>

59

<%
try{
if(session.getAttribute(“user ”)!=null)
{
0/0>

<nav class= “navbar navbar-inverse ’>
<div class=‘“‘container ">
<div class= “navbar-header ">
 Decrypted Message | Security
Web-App.
</div>

<ul class="nav navbar-nav navbar-right ">
 Back to
Inbox
 Back to
Home

Logout

</div>
</nav>
<div class=“container ">
<h4>Here are the decrypted messages:</h4>
</div>
<%
/IString plainMessage = (String)session.getAttribute(“decryptMessage ”);
MessageService messageService = new MessageService();
CryptoSecurity crypto = new CryptoSecurity();
int skey = Integer.parselnt(request.getParameter(““skey ”));
User user = (User) session.getAttribute(“‘user ”);
List<Message> list =
messageService.getMessagesByUserName(user.getUser _name());
String message = “““;
for (Message m : list) {

%>
<div class=“container >

<blockquote>
<p class="hg-success ">

<%=crypto.decryptString(m.getMessage(), skey)%=>

<%-- <%
int skey= Integer.parselnt(request.getParameter(“key));
CryptoSecurity crypto = new CryptoSecurity();
String decryptedMsg = crypto.decryptString(m.getMessage(), skey);
%> --%>
</p>

<footer><%=m.getFromUname()%=></footer>
</blockquote>
</div>

<%

_}
elsef

1
lcatch(Exception E}{

response.sendRedirect(“login.jsp);
1

response.sendRedirect(“login.jsp);

//String decryptMessage= crypto.decryptString(cypherText, key);

%>

</body>
</html>

error.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 "%>

<html>

<head>

<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">

<title>Error Login</title>

<link rel="stylesheet”

href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css

60

integrity=“sha384-
BVYiiSIFeK1dGmJRAkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u”
crossorigin=“anonymous ">
<link rel="stylesheet”
href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css ”
integrity=“sha384-
rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">
<script
src=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js
integrity=“sha384-
Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7I2mCWNIpGIMGCD8WGNIcPD7Txa ”
crossorigin=“anonymous "></script>
</head>
<body>

<nav class= “navbar navbar-inverse >
<div class=‘‘container ">
<div class=‘“navbar-header ">
 Login
Unsuccessful | Security
Web-App.
</div>

<ul class="nav navbar-nav navbar-right ">
 Signup

 Login
<la>

</div>
</nav>

<div class=‘‘container bg-danger ">
<h4>Login failed Try Again</h4>
</div>
</body>
</html>

home.jsp:

62

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 "%>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "’
“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="Content-Type ” content= “text/html; charset=1SO-8859-1 ">

<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”
integrity= “sha384-

BVYiiSIFeK1dGmJRAKkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u ”
crossorigin=“anonymous ">

<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css ”
integrity=“sha384-

rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">

<script
src= “https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js ”’
integrity= “sha384-

Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA712mCWNIpGIMGCD8wWGNIcPD7Txa ”
crossorigin=“anonymous "></script>

<link rel="shortcut icon " href="/images/BG.png " type= “image/x-icon” />

<title=Welcome Page</title>
</head>
<body background="“images/BG7.jpg ">

<nav class=“navbar navbar-default ”>
<div class=‘“‘container ">
<div class=“navbar-header >
Welcome to this Security
Web-App.
</div>

<ul class=‘“nav navbar-nav navbar-right ">
 Sign
Up
<span

63

class= “glyphicon glyphicon-log-in ">
Login

</div>
</nav>
</body>
</html>

inbox.jsp

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>

<%@page import=“org.vny.* "%>

<% @page import=“java.util.List %>

<%@page import=“org.vny.* "%>

<% @page import=“java.util.Date "%>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "’

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">

<title>Inbox</title>

<link rel="stylesheet”
href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”
integrity= “sha384-

BVYiiSIFeK1dGmJRAKycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u ”
crossorigin=“anonymous ">

<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css ”
integrity=“sha384-

rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=‘“anonymous ">

<script
src= “https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js”’
integrity=“sha384-

Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7I12mCWNIpGImMGCD8wWGNIcPD7Txa”
crossorigin=“anonymous ”></script>

<script type=“text/javascript ">

function load_DecryptMsg(clicked_id)

{

valuel=document.getElementByld(“‘skey ").value;

64

window.location= “http://localhost:8081/EncryptionWeb/DecryptMessage.jsp?param= “+clicke
d_id+ "&skey="“+valuel;
}
</script>
</head>
<%try{
if(session.getAttribute(“user ”)!=null)

{

00>

<body>

<nav class= “navbar navbar-inverse >
<div class=“container ’>
<div class= “navbar-header ">
 Home | Security
Web-App.
</div>

<ul class=‘“nav navbar-nav navbar-right ">
 Back to
Home

Logout

</div>
</nav>

<div class=‘‘container ">
<%
User user = (User) session.getAttribute(“user”);
MessageService messageService = new MessageService();
List<Message> list =
messageService.getMessagesByUserName(user.getUser _name());
String message = “*;
if(list.isEmpty()){%>
<h4>Your inbox is empty.</h4>
<%

}

65

if(Mist.isEmpty()){
for (Message m : list) {
message = message + " “+ m.getMessage();
%>
<h4>Here are your messages:</h4>
</div>

<div class=“container >

<blockquote>
<p class=“bg-info ">
<%=m.getMessage()%>

</p>

<footer><%=m.getFromUname()%=></footer>
</blockquote>

<%

if(ist.isEmpty()){
%>

Key: <input type= “text ” id="‘skey ">

<I-- -->

<button id="“<%=message%=> “ class= “btn btn-primary ”
onclick="load_DecryptMsg(this.id) ">decrypt</button>

</div>
</body>
<%}
}
Yelse{
response.sendRedirect(“login.jsp);
}

Ycatch (Exception E){
response.sendRedirect(“login.jsp);
}

%>
</html>

login.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 "%>
<html>
<head>
<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">
<title=login page</title>
</head>
<body background="images/BG9.jpg ">

<div class=‘‘container ">
<nav class=“navbar navbar-default ”>
<div class=“navbar-header ">
 Login | Welcome to Security
Web-App
</div>
<ul class=‘nav navbar-nav navbar-right ’>
 Sign Up
 Login

</nav>
<div id="loginbox ” style=“margin-top: 50px; ”
class=“mainbox col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2 ">
<div class=“panel panel-info ">
<div class=“panel-heading ">
<div class=“panel-title ">Sign In</div>
<div style="float: right; font-size: 80%; position: relative; top: -10px ">
Forgot password?
</div>
</div>
<div style="padding-top: 30px” class=‘“‘panel-body ">
<form class=“form-horizontal ” method=“post " action="“LoginCheck ">
<fieldset>
<label class=“control-label ” for=“uname ">Username</label>
<div style="“margin-bottom: 10px” class= “input-group ">
<i>
logout.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>

66

67

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "’
“http://www.w3.0rg/TR/html4/loose.dtd ">
<html>
<head>
<meta http-equiv="Content-Type ” content= “text/html; charset=1SO-8859-1 ">
<title>=Logged Out</title>
</head>
<body background="images/BG10.jpg ” class= “img-responsive ">

<nav class=“navbar navbar-inverse ">
<div class=‘‘container ">
<div class=“navbar-header ">
 Logged
out | Security
Web-App.
</div>

<ul class="nav navbar-nav navbar-right ">
 Sign
Up
 Login Again

</div>
</nav>
<%
session.setAttribute(“user ”,null);
session.invalidate();
%>
<div class=‘‘container ">
<div class=“bg-success ">
<h4> You have been logged out successfully. Visit again, go Secure!</h4>
</div>
</div>
</body>
</html>

Member.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>
<%@page import=“org.vny.* %>

68

<% @page import="“java.util.List %>
<%@page import="org.vny.* "%>
<% @page import=“java.util.Date "%>
<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "
“http://www.w3.0rg/TR/html4/loose.dtd ">
<html>
<head>
<meta http-equiv="Content-Type ” content= “text/html; charset=1SO-8859-1 ">
<title>Welcome page</title>
<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”
integrity= “sha384-
BVYiiSIFeK1dGmJRAKkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u ”
crossorigin=“anonymous ">
<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css ”
integrity=“sha384-
rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">
<script
src= “https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js ”’
integrity= “sha384-
Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA712mCWNIpGIMGCD8wWGNIcPD7Txa ”
crossorigin=“anonymous "></script>
<script type= “text/javascript ’>
function load_SendMsg(clicked _id) {
window.location =
“http://localhost:8081/EncryptionWeb/sendMessage.jsp?param= *
+ clicked_id;
}

</script>

<style type="“text/css ">

.black-background {
background-color: #000000;

}

.white {
color: #ffffff;
}

</style>
</head>
<body>
<%
try {

69

if (session.getAttribute(“user”) '=null) {
%>

<nav class= “navbar navbar-inverse ’>
<div class=‘‘container ">
<div class=“navbar-header ’>
 Home Page |
Security
Web-App
</div>

<ul class="nav navbar-nav navbar-right ">

Inbox

Logout

</div>
</nav>

<%
User user = (User) session.getAttribute(“user);
%>

<div class=“container”” id=“container >
<div class=“row >

<div class=‘col-md-9 ">
<h3>
<u>Welcome <%=user.getFname() + “ “ +
user.getLname()%></u>

</h3>
</div>
</div>
<div class=“row ">

<div class=“col-md-9 ">
<h3>
<small>List of Friends:</small>

70

</h3>
</div>
<%-- <div class=“col-md-3"><%=new Date()%></br></div> --%>
</div>
</div>
<div class=‘“container ">
<table class= “table table-hover ">

<thead>
<tr>
<th>User ID</th>
<th>First Name</th>
<th>Last Name</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<%

Datalnsertion data = new Datalnsertion();
List<User> list = data.getListOfUsers();
for (User u : list) {
if
('u.getUser_name().equals(user.getUser_name())) {
%>

<tr>
<td><%-=u.getUser_name()%></td>
<td><%=u.getFname()%></td>
<td><%-=u.getLname()%></td>
<%
session.setAttribute(“fromUSN ",
user.getUser_name());
%>
<td>
<button id="<%-=u.getUser_name()%=> *
class= “btn btn-primary black-background
white ”

onclick="load_SendMsg(this.id) ">Message</button>
</td>
</tr>
<%

}

00>

}

71

<tbody>
</table>

</div>
<%
}else {
response.sendRedirect(“login.jsp);
}
} catch (Exception E) {
response.sendRedirect(“login.jsp);
}
%>
</body>
</html>

MessageSent.jsp

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">

<title=MessageSent</title>

<link rel="stylesheet” href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-

theme.min.css” integrity="sha384-

rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”

crossorigin=‘“anonymous ">

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js ”

integrity=“sha384-

Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7I2mCWNIpGIMGCD8WGNIcPD7Txa ”

crossorigin=“anonymous "></script>

</head>
<%if(session.getAttribute(“user ”)!=null){%>
<body>
<nav class=“navbar navbar-inverse ">
<div class=“container ">
<div class=“navbar-header ’>
<span

72

class="‘glyphicon glyphicon-ok-circle ”> Message
sent | Security
Web-App.
</div>

<ul class="nav navbar-nav navbar-right ">
 back to home
 back to
inbox

</div>

</nav>

<div class=‘container bg-success ">

<div class=“bg-success ">

<p> Your message was successfully
sent!</p>

</div>

</div>
</body>
<%} else{

response.sendRedirect(“login.jsp ”);
} %>
</html>

regFail.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>
<html>
<head>
<meta http-equiv="Content-Type ~ content= “text/html; charset=1SO-8859-1 ">
<title>Registration failed</title>
</head>
<%
try {
%>
<body>

<div class=‘‘container ">

<nav class= “navbar navbar-inverse ">

<div class=“navbhar-header >

<span

class="“glyphicon glyphicon-remove "> Security Web-

App
</div>
</nav>
</div>
<div class=‘‘container ">
<div>
<h4>
<dI>
<dt>
Registration
failed due to one of the following reasons:

</dt>
<small><dd>- Username already exists</dd>
<dd>- Username is invalid.</dd>
<dd>- Passwword is invalid.</dd></small>
</dI>
</h4>
</div>
<div>
<form method=“post " action="“register.jsp ">
<button type=“submit” class= “btn ">Try Again</button>
</form>
</div>
</div>
</body>
<%
} catch (Exception E) {
response.sendRedirect(“login.jsp);
}
%>
</html>
Register.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

73

74

<head>
<meta http-equiv="Content-Type ” content= “text/html; charset=1SO-8859-1 ">
<title>Registration Page</title>

<link rel="stylesheet”
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”
integrity=“sha384-

BVYiiSIFeK1dGmJRAkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u ”
Crossorigin=“anonymous ">

<link rel="stylesheet”
href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css
integrity= “sha384-

rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">

<script
src=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js
integrity=“sha384-

Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7I2mCWNIpGIMGCD8WGNIcPD7Txa ”
crossorigin=“anonymous "></script>

</head>
<body>
<div class=“container ’>

<nav class= “navbar navbar-inverse ’>
<div class=“navbar-header ">
 Register | Security
Web-App
</div>
<ul class=‘“nav navbar-nav navbar-right ’>
 Login
 Sign Up

</nav>

<div id="loginbox "~ style=“margin-top: 50px; ”

class="“mainbox col-md-6 col-md-offset-3 col-sm-8 col-sm-offset-2 ">
<div class=“panel panel-info ">

<div class=‘“panel-heading ">

<div class=“panel-title ">Register</div>

</div>

<div style="padding-top: 30px” class=‘“panel-body ">
<form class="form-horizontal ” method=“post " action=“RegisterCheck ">
<fieldset>
<label class=“control-label ” for="“uname ">Username</label>
<div style="margin-bottom: 10px” class= “input-group ">
<i
class= “glyphicon glyphicon-user "></i> <input
id=“login-
username ” type=“text”” class=‘form-control
name=“uname” value=“* placeholder= “username ">
</div>

<label class=“control-label ” for=“password “">Password</label>
<div style="margin-bottom: 10px” class=“input-group ">
<i
class=“glyphicon glyphicon-lock "></i> <input
id="login-password " type= “password ” class= “form-control ”
name=“password ” placeholder=“password ">
</div>

<label class=“control-label ” for=“uname ">Firstname</label>
<div style="margin-bottom: 10px” class=“input-group ">
<i
class=“glyphicon glyphicon-user "></i> <input
id="login-username ” type= “text ” class= “form-control ”
name=“fname " value=“* placeholder="firstname ">
</div>

<label class= “control-label ” for=“uname ">Lastname</label>

<div style="margin-bottom: 10px” class=“input-group ">

<i
class=“glyphicon glyphicon-user "></i> <input
id="login-username ” type= “text ” class= “form-control ”
name=“Iname ” value="* placeholder=“Lastname ’>

</div>

<div class= “input-group >

<div class=“‘checkbox ">

<label> <input id="“login-remember ” type=“checkbox

name=“remember ” value=“1"> Remember me

</label>

</div>

</div>

<div class=“controls >

76

<button class=“btn btn-primary ">Signup</button>
</div>
</fieldset>
<div class=“form-group ">
<div class=“col-md-12 control ">
<div
style="border-top: 1px solid #888; padding-top: 15px; font-size: 85% ">
Already signed Up ? <a href="login.jsp”’
onClick=“$(#loginbox).hide(); $(#signupbox’).show() ">
Log-in

</div>
</div>
</div>
</form>
</div>
</div>
</div>
</div>
</div>
</div>

</body>
</html>

reqSuccess.jsp:

<%@ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“1SO-8859-1 %>

<%@page import=“org.vny.*” %>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN "’

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="“Content-Type ” content= “text/html; charset=1SO-8859-1 ">

<title>Successful Registration</title>

</head>

<%try{ %>

<body>

<div class=“container >

<nav class= “navbar navbar-inverse ">
<div class=“navbar-header >

 Security Web-App
</div>
</nav>
</div>
<div class=‘‘container ">
<div>
<h4>
 Registration Successful.

</h4>
</div>
<div>
<form method=“post” action="login.jsp ">
<button type=“submit” class= “btn ">Log in</button>
</form>
</div>
</div>
</body>
<%}catch(Exception E)X{
response.sendRedirect(“login.jsp);
}%=
</html>

sendMessage.jsp:

<% @ page language=“java” contentType= “text/html; charset=1SO-8859-1"
pageEncoding=“ISO-8859-1 %>

<IDOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN

“http://www.w3.0rg/TR/html4/loose.dtd ">

<html>

<head>

<meta http-equiv="“Content-Type ” content= “text/html; charset=1SO-8859-1 ">

<title=Send Message</title>

<link rel="stylesheet”

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css ”

integrity=“sha384-

BVYiiSIFeK1dGmJRAkycuHAHRg320mUcww70on3RYdg4Va+PmSTsz/K68vbdEjh4u

crossorigin=‘“anonymous ">

77

<link rel="stylesheet” href=“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-

theme.min.css” integrity=“‘sha384-
rHyoN1iRsVXV4nD0JutinGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwI/Sp ”
crossorigin=“anonymous ">

78

<script src="“https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js
integrity= “sha384-
Tc51Qib027qvyjSMfHjOMaLkfuWVxZxUPnCJA712mCWNIpGIMGCD8wWGNIcPD7Txa”
crossorigin= “anonymous ”></script>

</head>

<body>

<%

try{

if(session.getAttribute(“user ”)!=null)

{

%>

<nav class= “navbar navbar-inverse >
<div class=“container ’>
<div class= “navbar-header ">
 Decrypted Message | Security
Web-App.
</div>

<ul class="nav navbar-nav navbar-right ">
 Back to
Home

Logout

</div>
</nav>

<div class = “container ">
<form method="post " action=“SendMessage ">
<%
String var = request.getParameter(“param ”);
session.setAttribute(“toUSN ”, var);
%>
<h4 class= “text-center ">Send your messages to <%-=session.getAttribute(“toUSN) %><h4>

<div_class=‘row >
<div class=‘col-mid-6 ” style=“margin-bottom: 10px >
<input id="msg " type= “text” class= “form-control ”
name=“message "’ placeholder="Plain Message for <%=session.getAttribute(“toUSN ”) %> “>

79

</div>

<div class="col-mid-2 ” style=“margin-bottom: 10px ">
<input id=“key ” type=“text ” class=“* name=“key ”

placeholder=“Give cipher key of <%=session.getAttribute(“toUSN ") %> ">

</div>

</div>

<input type = “hidden” name = “toUSN”’
value=“<%-=session.getAttribute(“toUSN)%= >

<input type = “hidden” name = “fromUSN "~
value="“<%=session.getAttribute(“fromUSN ”)%=> “>

<input type =“submit” class= “btn btn-primary” value =
“Send ">

</form>
</div>
<%

}

else{

}
}catch(Exception E){

response.sendRedirect(“login.jsp);

response.sendRedirect(“login.jsp);

}

00>
</body>
</html>

	St. Cloud State University
	theRepository at St. Cloud State
	5-2017

	Optimizing Key Management within a Crypto-System using Aggregate Keys
	Vinay Kumar Ananthu
	Recommended Citation

	tmp.1495754759.pdf.ZKcEY

