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Abstract 
 

Unified Modeling Language (UML) class diagrams are widely used throughout software design 

lifecycle to model the Software Requirement Specifications in developing any software. In many 

cases these class diagrams are initially drawn, as well as subsequently revised using hand in a piece 

of paper, or a whiteboard. Although these hand-drawn class diagrams capture most of the 

specifications, they need a lot of revision and visual inspection by the software architects for 

verification of the captured requirements, of the system being modeled. Manually verifying the 

correctness and completeness of the class diagrams involves a lot of redundant work, and can raise 

issues due to human errors, for e.g., diagrams not drawn to scale, typeface issues, unclear 

handwriting, and even missing requirements etc. In this paper, we propose a state-of-the-art 

technique that pipelines the object detection, text extraction and replication phase to parse 

requirements incorporated within the user-drawn class diagrams. The parsed output from the 

proposed system, can be used to keyword-match the requirements in the Software Requirement 

Specification (SRS) document. We show that the proposed system can localize the UML classes 

and relationships in the diagram with 100% accuracy and can identify the localized objects of each 

type with maximum mean Average Precision of 0.8584. We also show that the text can be 

efficiently parsed from the diagrams with the character error rate of 0.3043.      
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Chapter 1: Introduction 

 

 

In this proposal, we will extend on the applications of highly developed field of Computer 

Vision, and Neural Networks to develop an idea and implement the process of parsing a hand-

drawn UML class diagram to obtain the requirement specifications captured within the diagram, 

for validating the completeness of software requirement specification. We intend to take several 

samples of hand-drawn class diagrams —i.e., image— and try to efficiently parse and convert the 

diagram into their digital equivalent and output the analysis of requirements contained within the 

diagram. 

 

1.1 Problem Statement 

UML is a broadly accepted mechanism for modeling software system, at present. However, 

with the ability to model complex systems, also comes the vast specifications that is needed to 

represent these models. Software architects usually model the software systems in multiple pass, 

and this also requires updating the UML diagram consistently throughout the modeling. As the 

software design cycle progresses from architecture design, to detailed design, and finally to 

development phase, there would be numerous changes that needs to be accommodated in all these 

design artifacts (such as specifications, use cases, uml diagrams, test cases etc.). While all these 

design artifacts are always documented and stored in a digital format, it is usually first done using 

hand-written/ hand-drawn artifacts. The requirements that the hand-drawn diagram depicts may 

not be analogous to the original design specifications, mainly due to human errors in drawing these 

draft of class diagrams. Moreover, all these artifacts need to be digitized, and continually adding 

revisions can prove to be arduous and time-consuming task. It may seem that a simple image of 
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these artifacts be sufficiently able in digitizing it, however there are still problems that can rise 

from unclear writings, partially drawn structures, typeface issues — bold, italic, and underlines —

etc. that can result in unclear documentations.  

 

1.2 Proposed Solution 

Recent developments in neural networks have enabled us to identify and localize objects, 

as well as to parse textual information in an image. However, validating both the structural as well 

as textual information in an image is observed as a standalone process till date. To verify the 

completeness of UML diagrams in capturing the software requirement specifications, we propose 

a workflow-based system that consists of different states such as preprocessing, object detection, 

object segmentation, and text extraction. Each of these states have their own logic to perform a 

specific task and can additionally have child workflows to accommodate for any new changes and 

decoupling sub-tasks. Although, the proposed system is distributed (states corresponds with 

subsequent states directly), a centralized workflow controller can also be added to manage 

complexities in future work and enhancements.   

 

1.3 Key Concepts      

We discuss few key concepts which are required for understanding of the problem 

statement as well as for following the implementation of proposed solution in this paper.                                           

1.3.1 Unified Modeling Language (UML) Class Diagram 

Unified Modeling Language (UML) is the standard in modeling the software artifacts using 

various set of diagrams that helps software and system engineers to specify, visualize, and 

implement these artifacts, mainly in the object-oriented development paradigm. UML is used to 
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efficiently model large and complex systems and is based on the best engineering practices. UML 

defines a set of diagrams that can be broadly classified into structural and behavioral diagrams. 

All these diagrams are made up of components (i.e., classifiers), that represent conceptual or 

physical aspects of the model. Few examples of classifiers include class, interface, association 

types etc. Classifiers are represented by a solid-outline rectangles containing the classifier’s name, 

and optionally with compartments separated by horizontal lines containing features, or other 

members of the classifiers.   

A UML class is a classifier, that describes a set of objects with common features (attributes 

and methods), constraints, and semantics. A sample Project class is as shown below in Figure 1. 

If a class is represented with 3 different compartments inside a rectangle, the top compartment 

holds the class name — centered text, bold face with the first letter of class name capitalized —, 

middle compartment holds the attributes of class with their respective types, and the bottom 

compartment holds the methods of class with input parameters’ type, and respective return types 

of these methods. Each attribute and method of class can be preceded by a visibility operator which 

can be one of +, −, or # that represents public, private, and protected visibility respectively. 

 

 

Figure 1.  Sample UML class 
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Table 1. UML Relationships 

 

 

Dependency 

 
Realization 

 

Association 

 

Aggregation 

 

Composition 

 

Generalization 

 

Containment 

 

 

A UML relationship is an abstract element that intends to depict dependency between the 

UML elements.  Different types of relationships can exist between classes, as listed in Table 1 

above. Further, relationships also establish associated multiplicity between classes which are 

related with each other (usually written on each end of arrows). 

A class diagram is a static structural diagram, which is used for the conceptual modeling 

of an application to describe classes and their relationships. Class diagram promotes abstraction 

— one of the many principles of Object-Oriented Modeling and Design — by enabling us to design 

the system at high level, while hiding the implementation details. A sample class diagram for 

course registration system in university is as shown in Figure 2 below.  
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Figure 2.  Sample class diagram for course registration system in university 
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1.3.2 Neural Networks  

Neural Networks, also known as Artificial Neural Networks (ANNs) are the subset of 

Machine Learning Algorithms, that are modeled loosely after the human brain. These algorithms 

are powerful in recognizing the underlying relationships in a set of data. Neural Networks are 

widely used today for classification (binary classification, multiclass classification as well as 

regression), and clustering of data. 

A neuron −building block of Artificial Neural Network−, is a mathematical function that 

takes a set of inputs and multiplies them with their corresponding weights. These input-weights 

products are then summed, and the final value is passed through some non-linear activation 

function [1]. The purpose of using non-linear activation function is to approximate complex 

function by introducing non-linearities in our decision boundary [2].  If the output of the activation 

function is greater than some threshold 0 = <  𝑡 ≤  1,  then the neuron is said to be fired or 

activated. For a single input with n features (attributes), this can be represented by the equation,    

 

𝑦 =  𝜑(∑ 𝑤𝑖𝑥𝑖  +  𝑏
𝑛
𝑖 = 1 )      (1) 

 

where y is the output, 𝑥𝑖 is the ith input feature, 𝑤𝑖 is the weight for corresponding feature, b is the 

bias, and 𝜑 is non-linear activation function (sigmoid [20], RELU [19] etc.).  

For multiple real-valued inputs (training examples), the inputs can be arranged in a 2D 

matrix where each column represents a single input with n features, and there are total m columns 

for all the training examples. For e.g. 
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Figure 3. Neural Network with a single neuron [9] 

 

𝑾 = [

𝑤11
𝑤21
⋮
𝑤𝑛1

𝑤12
𝑤22
⋮
𝑤𝑛2

⋯ 𝑤1𝑚
… 𝑤2𝑚

⋮
… 𝑤𝑛𝑚

]     𝑿 =  [

𝑥11
𝑥21
⋮
𝑥𝑛1

𝑥12
𝑥22
⋮
𝑥𝑛2

⋯ 𝑥1𝑚
… 𝑥2𝑚

⋮
… 𝑥𝑛𝑚

]    

 

 Then the output of a single neuron for multiple training examples can be written as,                 

𝑦 =  𝜑(𝑊𝑇 𝑋 +  𝑏)        (2) 

 

where, 𝑾𝑻 is the transpose of weight matrix 𝑾 , 𝑿 is the input matrix and 𝜑 is the activation 

function. 

A neural network is a network of several neurons stacked together in multiple layers. The 

network consists of a single input layer, single or multiple output layers and several hidden layers. 

If the number of hidden layers is more than 3, which is usually the case in modern applications to 

solve specific problem, it is termed as Deep Neural Networks. In this type of stacked neural 
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network, the output of each layer is the input to subsequent layers. Training a neural network 

means  

 

Figure 4. Deep neural network with multiple hidden layers [14] 

 

continuously readjusting the weights and biases of input features, usually through backpropagation 

[10],  by calculating the gradient of the error function 𝐸(𝑋, 𝜃) where 𝜽  collectively denotes the 

weights W and, bias b of all the inputs in the network. A sample diagram of neural network is as 

shown in Figure 4. 

1.3.3 Computer Vision 

Computer vision is a field of Artificial Intelligence (AI), that helps us derive high-level 

understanding and meaningful information from digital artifacts such as images and, videos. While 

Image processing is mainly related to performing transformations in a digital image to enhance or 

simplify a given image(pre-processing), computer vision is primarily concerned with image 

https://brilliant.org/wiki/backpropagation/
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understanding that includes a wide range of applications such as object detection, 3D modeling, 

surveillance, optical character recognition, human computer interaction and so on. One key 

concept that plays a major role in both Image Processing as well as computer vision is Convolution. 

In mathematical terms, Convolution is an operator that takes two functions f and g, and 

outputs a third function (f * g), that expresses how the shape of one is modified by the other. The 

term convolution refers to both the result function and the process of computing it [11]. 

Convolution for two functions f(a) and g(b) at point c is given by the equation, 

  

   (𝑓 ∗ 𝑔)(𝑐) = ∑ 𝑓(𝑎) ∗ 𝑔(𝑐 − 𝑎)𝑎
    (3) 

  

In computer vision’s perspective, Convolution simply refers to sliding a kernel (small 

matrix) over an image to achieve different effects in image such as sharpening, blurring, edge 

detection etc. This is shown in the Figure 5 below.  

 

Figure 5. Convolution with padding and no strides [13] 
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Chapter 2: Related Work 

 

Object detection has existed for a while and can be done using either traditional approach 

of classification using Support Vector Machines (SVMs) or a modern Neural- Network 

Architecture to automatically detect and learn objects in given image. It is very important that the 

input image is free of noise and have clearly defined edges for us to detect the contours. Image 

preprocessing steps in [5], discusses algorithms for histogram equalization, edge detection, edge 

thinning, and Hough transform. These algorithms for pre-processing of image can be used out-of-

box from open-source libraries such as OpenCV, ImageJ etc. The algorithm in [17], provides 

efficient way of detecting the contours in an image, by finding fewer points (i.e., pixels), that 

represents the input curve and approximating different kind of Polygons which is of interest to the 

users that can be validated using Cross co-relation or Correlation coefficient. The modern way of 

object detection, however, uses a Region Proposal Convolutional Neural Networks (RCNN) [4] or 

Faster RCNN [3] to approximate a region such as rectangles, ovals, or any different kind of 

polygons.  

 

2.1 Convolutional Neural Networks (CNN) 

A Convolutional Neural Network is a deep neural network in which the hidden layers 

perform convolution (a dot product of the convolution kernel with layer’s input matrix), by sliding 

the convolution kernel along the input matrix to generate a feature map, which is usually passed 

as input to the next layer [12]. Pre-processing on CNN doesn’t require hand-engineered kernel (or, 

filters) as with traditional classification algorithms, and these kernels are automatically learned 

while training the network.   
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Figure 6. Architecture of CNN [15] 

 

Input to CNN is a tensor of shape no_of_inputs * input_height * input_width * 

no_channels. The ability of convolving the input tensor without having to flatten the image into a 

single dimension −as with the case in feedforward neural networks−, helps capture the spatial and 

temporal dependencies in the image, through the application of relevant filters. The convolution 

layer enables us to extract lower-level features in given image such as edges, gradient orientation, 

color etc. With subsequent convolution layers, the network can learn high level features, thus 

giving us full understanding of image. This convolution layer is then followed by pooling layers, 

fully connected layers, and normalization layers. The architecture of Convolutional Neural 

Network is as shown in Figure 6. 

 

2.2 Region Proposal Convolutional Neural Network (RCNN) 

CNNs are widely used for classification problems. However, object detection requires 

localization of objects in given image. Traditional way of object detection using CNNs, usually 

have 2 convolution layers and pooling layers to maintain high spatial resolution.  
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Figure 7. Architecture of Region Proposal CNN [2] 

 

CNNs are usually combined with sliding window detectors to detect the portions of image 

that constitute the object, typically on constrained object categories such as pedestrians and faces. 

This method of localizing objects uses exhaustive search to search in all possible windows even 

for a smaller image, which is computationally very expensive. To solve the localization problem 

in traditional CNN, RCNN [2] uses a paradigm known as “recognition using regions” that are 

proven successful for object recognition and semantic segmentation [1]. RCNN uses three modules 

to detect the objects within an image. The first module generates category-independent region 

proposals (2000 approximately), which define the set of candidate detections available to detector. 

The regions proposals on RCNN are generated using a technique known as selective search where 

an image is initially sub-segmented into many regions, and recursively merged using a greedy 

approach based on similarity in color, texture, size and fill. This is followed by affine image 

warping to compute fixed-size CNN input from each region’s proposal. The second module is a 

large convolutional neural network −5 convolution layers with large receptive fields (195 * 195 

pixels) and strides (32 * 32 pixels) – that extracts a fixed length feature vector from each region, 

and the third module classifies each region with category-specific linear SVMs. The architecture 

of RCNN is as shown in Figure 7. 
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2.3 Faster Region Proposal Convolutional Neural Network (Faster-RCNN) 

Fast-RCNN [3] (not, Faster-RCNN), address two main downsides of RCNN that affects 

the speed and accuracy of object detection; All the region proposals must be processed for object 

localization; and candidate object location only provides rough localization and needs to be refined 

to output the precise localization. Fast-RCNN works by feeding the input image to CNN to 

generate a convolutional feature map, as opposed to traditional RCNN which feeds the regional 

proposals to CNN layers. This convolutional feature map is then used to identify the regions of 

proposal, and with the help of ROI pooling layer −uses max pooling to reduce the feature inside 

any valid regions of interest into a smaller feature map−, the feature map is reshaped into a fixed 

size so that it can be fed into a fully connected layer. This process avoids the network to process 

all ≈2000 region proposals, and thus saves the speed.  

 

Figure 8. Faster-RCNN Architecture [4] 
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Faster RCNN [4] on the other hand, improves upon both RCNN, and Fast-RCNN in that it 

doesn’t use selective search to generate region proposals. Instead, a separate region proposal 

network (RPN) is used to predict the region proposals, each with an objectness score. Faster-

RCNN shares the same convolutional feature map with RPN and the object detector network (Fast-

RCNN) thereby enabling nearly cost-free region proposals. Faster-RCNN develops on the idea of 

attention networks and let RPN module tell the Fast-RCNN module where to look for region 

proposals.  The regions proposals are then used by ROI pooling layer to reshape into fixed size 

regions. The regions are classified, and offsets values for the bounding box are calculated. The 

architecture of Faster- RCNN is as shown in Figure 8 where the Region Proposal Network acts as 

the “attention” of the unified network. 

 

2.4 Character Region Awareness for Text Detection (CRAFT) 

Identifying text in an image, requires us to detect text regions before text could be retrieved 

and parsed from given image. Since text can be curved, lengthy and deformed which can be 

difficult to detect at word-level within the scope of single bounding box, the Character Region 

Awareness for Text Detection (CRAFT) [8] framework, proposes a character-awareness text 

detection method. CRAFT works by detecting individual character regions and links the detected 

characters to a text instance. It does so by training a convolutional neural network in weakly-

supervised manner to localize individual character in the image using region scores −probability 

that the given pixel is the center of character− and group each character into single instance using 

affinity score −center probability of the space between adjacent character−. CRAFT uses heatmap 

representation to learn both region scores, and affinity scores due to its high flexibility when  
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Figure 9. Ground Truth generation process of CRAFT architecture [8] 

 

dealing with ground-truth regions that are not rigidly bounded. The ground truth generation 

process of CRAFT framework is as shown in Figure 9. 

 

2.5 Convolutional Recurrent Neural Network (CRNN) 

After suitable  text regions are detected for given image, scene-text-recognition for the 

identified regions of interest can be performed with very high accuracy using a CRNN architecture 

[5], by training the neural networks to learn different numbers of filters representing   hierarchical 

feature maps, which is then combined with bi-direction Long Short-Term Memory [6], and a dense 

neural network layer to output a probability of each word in the input scene — a small sub-part in 

our image —, using Connectionist Temporal Classifier (CTC) as a loss function. The detected 

contour for a region-of-interest and the true region are evaluated using evaluation metrices such as 

Intersection of Union (IOU) [16], and the Structural Similarity Index (SSI) [7].   
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Chapter 3: Design 

 

To efficiently identify and replicate classifiers −UML classes and Relationships− using a 

software system, we use the techniques in computer vision to read and, pre-process the image. The 

pre-processing, among many things, includes size adjustment, brightness and contrast adjustments, 

noise removal, and contour detection. The image is then passed to Faster-RCNN detector to detect 

and localize the classifiers present in the image.  After all relevant classifiers has been identified, 

the next step is to parse the text, present inside those classifiers. Parsing textual information in 

given image can be best executed, with the help of Convolutional Recurrent Neural Networks 

(CRNN) with very high accuracy. The final step would be to replicate the same structure and text, 

in a digital format using a graphics library. The proposed architecture for this design is as shown 

in Figure 10. 

 

 

Figure 10. Proposed Architecture for parsing structural and textual information from hand-drawn     

UML Class Diagrams 
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3.1 Research Questions 

The following research questions are studied and evaluated in this research. 

a) RQ-1: How accurately does our model identify the UML classes in given input images? 

Description about RQ-1: This RQ is aimed at evaluating our proposed methods on how 

accurately they can perform object detection and localization from different image 

samples. The performance of an object detector is typically evaluated using mean Average 

Precision (mAP) over classes, which is based on ranking of detection scores of each class. 

The area under the precision-recall (PR) curve gives the average precision for each object 

class. What is the mAP for our classifier objects? 

 

b) RQ-2: How does our proposed model performs in detecting UML class diagrams when 

drawn by computer tool, by hand, and by smart inking?   

Description about RQ-2: What would be the mAP difference between feeding hand-drawn, 

smart-inked and computer graphics version of UML class diagrams to Faster-RCNN 

architecture? 

 

c) RQ-3: How does the CRNN based architecture performs for text detection inside a class 

diagram?  

Description about RQ-3: How accurately does the scene text detection and recognition 

model detects text-regions and recognizes the text inside the UML Class diagram? What is 

the word error rate(WRR) and character error rate(CRR) between the original text and the 

detected text? 
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3.2 Experiment Design  

 

 

Figure 11. Experiment Design 

 

The experiments consist of series of steps such as data collection, data annotation, training 

an object detector and using a text recognition model, each of which are described in detail below.  

3.2.1 Data Collection 

Data collection involves acquiring images of hand-drawn samples of UML class diagrams, 

drawn either in paper with ink, or a digital version using a stylus. The collected samples are tested 

for their readability, quality, and correctness. To reduce the complexity in preparing data for 

labelling, several design considerations are proposed to verify the correctness of the input image, 

which are listed below. 

a) Two different types of images are collected for a single class diagram, one with just the 

outline of the class diagram without any content inside or around the classifiers, and one 

with all the contents. 

b) All the UML relationships are drawn in disjoint fashion i.e., single arrow extending to more 

than two classes are drawn separately and are not merged in any way. 
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c)  All classifier and relationship are drawn without overlapping any other classifier or 

relationships such that each of these objects are individually selectable using a rectangular 

bounding-box. 

3.2.2 Label Images 

The collected images of UML class diagrams are labelled by selecting them using a 

rectangular selection box and tagging their respective names. The outputs of labelled images are 

stored in XML format, that records the position of each of these selections using xmin, ymin, xmax 

and ymax. 

3.2.3 Train Faster RCNN Detector 

Both the image file, as well as XML file which has the ground truth label for the position 

of objects in given image, are passed into the Faster-RCNN Model to train for object recognition 

and localization. Each image, and corresponding XML file are a single training example for the 

model. If we consider all the images, then there would be total of m training examples. After a 

model has converged, the output of the model would be a list that has the xmin, ymin, xmax and 

ymax co-ordinates for each bounding box and their respective labels, that the model detected and 

localized as one of the UML classifier and relationship. 

3.2.4 CRNN based scene text recognition model 

Each identified objects from RCNN detector are given a unique object id. In case the 

classifier can be segmented into compartments (for e.g., UML class can be segmented into 3 

compartments, namely the className compartment, attributes compartment, and methods 
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compartment), then each of these compartments are tagged with segment names. The identified 

regions for the UML class and relationship are then passed into text detector and CRNN based 

scene text recognizer, which would output the text present inside those classifiers.  

3.2.5 Replicate Image 

After all the classes and relationships are identified with all the texts inside and around 

them, the next step is to re-create the image using Graphics Library.   

 

3.3 Evaluation Metrics 

We use the industry-wide adopted metrices to evaluate the performance of the Faster-

RCNN model on our dataset for object detection as well as for our CRNN based scene text 

recognizer. The metrices are described in detail below. 

3.3.1 Faster-RCNN Evaluation Metrices 

For object detection, the commonly used metric to compare the model’s predicted 

bounding box to that of ground-truth bounding box, is Intersection over Union (IOU). IOU 

evaluates the overlap between two bounding boxes and is calculated as overlapping area between 

the ground-truth and predicted bounding box divided by the area of union between them. This is 

shown in Equation 4. 

  

𝐼𝑂𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
     (4) 
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IOU is then used to measure the number of, 

a) True Positive (TP): Correct detection indicated with IOU ≥ threshold (0.5) 

b) False Positive (FP): Incorrect detection indicated with IOU < threshold (0.5)  

c) False Negative (FN): A ground truth that is not detected. 

 

Using the values of TP, FP and FN we can calculate Precision, which gives the percentage 

of the prediction which are correct. Recall gives the percentage of True Positives detected among 

all relevant ground-truth. Then, the Average Precision (AP) is the area under the Precision-Recall 

curve (PR curve). Finally, the mean Average precision (mAP) can be calculated by taking the 

mean AP over all classes. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
     (5) 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
       (6) 

      

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

11
∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖)𝑅𝑒𝑐𝑎𝑙𝑙 (𝑖)   (7) 

 

3.3.2 CRNN based Scene Text Evaluation Metrices 

CRNN based Scene Text Recognition model uses two main metrics to evaluate the 

performance of the model: Character Error Rate (CER) and Word Error Rate (WER). The character 

error rate and word error rate measure the amount of text in the given handwriting, that the model 

did not read correctly. The lower the CER and WER value, the better the performance of the model 

in recognizing hand-written text. 
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𝐶𝐸𝑅 =  
𝑆 + 𝐷 + 𝐼

𝑆 + 𝐷 + 𝐶
      (8) 

 

 

where, S is the number of Substitutions, D is the number of deletions, I is the number of insertions, 

and C is the number of correct characters. 

In addition to that, we use Levenshtein distance [18] — edit distance —, between original 

text string a , and predicted text string b  to measure the rate of correctly predicted characters in 

our input image. 

𝐿𝑒𝑣(𝑎, 𝑏) =

{
 
 

 
 
|𝑎|                                       𝑖𝑓 ⌊𝑏⌋  =  0
|𝑏|                                       𝑖𝑓 |𝑎|  =  0
𝑙𝑒𝑣 ( 𝑡𝑎𝑖𝑙(𝑎),      𝑡𝑎𝑖𝑙(𝑏) )              𝑖𝑓 𝑎[0] = 𝑏[0]

1 + 𝑚𝑖𝑛 {

𝑙𝑒𝑣( 𝑡𝑎𝑖𝑙(𝑎) ,𝑏 )                                       

𝑙𝑒𝑣 (𝑎,𝑡𝑎𝑖𝑙(𝑏) )                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑙𝑒𝑣 (𝑡𝑎𝑖𝑙(𝑎),𝑡𝑎𝑖𝑙(𝑏) )                             

    (9) 

 

where, tail (x) for some string x is the string of all characters of x, except for the first character. 
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Chapter 4: Implementation 

 

4.1 Environment Setup 

Training a neural network for custom object detection (UML classifiers, in our case) 

requires significant resources in terms of Disk, Memory, CPU, GPU and TPU. It is also crucial to 

have provision, for interactive inspection of model output as well as the code. We used the well-

known Jupyter Notebook, in Google colab platform to do all our developments. Python (v. 3.7) is 

used as the programming language of choice, because of its exceptional computational ability, out 

of box code optimizations and, broader open-source community along with availability of many 

libraries and frameworks. 

 

# Setup and check python version in Google Colab 

!type python 

!python --version  

 

 

 
 

 

 

4.2 Libraries Installation 

We used detecto framework for training out custom Faster-RCNN model, to detect UML 

classes and relationships. easyocr framework is used for text recognition and detection. Both 

frameworks are written in Pytorch — an open-source machine learning framework based on Torch 

library, developed by Meta—, and promotes speedy development. We used Opencv library, for 

performing several image transformations and matplotlib for visualization of results. 
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# Install "detecto" framework to train our Faster-RCNN model  

import sys 

sys.executable 

!{sys.executable} -m pip install --quiet detecto 

 

# Install all other the required libraries 

! pip install --quiet "torch==1.10.0" "torchmetrics" "lightning-

bolts" "pytorch-lightning" "torchvision" "opencv-python-

headless==4.1.2.30" "easyocr" 

 

 

 

4.3 Input Data Set Preparation 

The training and testing dataset (images) are hosted in Google Drive. Both datasets are 

annotated with their respective class labels using labelImg annotation tool.  

 

from google.colab import drive 

drive.mount('/content/drive') 

 

 

 

 
 

 

 

4.3.1 Data Set for Training 

Training dataset consists of total 68 input images, with their respective 68 annotations on 

PascalVOC format. 
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Figure 12. Sample image (1) of the training dataset with color coded annotations 

 

 

 

 

 

 

Figure 13. Sample image (2) of the training dataset with color coded annotations 
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4.3.2 Data Set for Testing 

Testing dataset consists of 3 identical UML class diagrams drawn using computer graphics, 

hand, and smart ink respectively. 

 

 
 

Figure 14. Test image (1) drawn using computer- graphics 
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Figure 15. Test image (2) drawn using hand 

 

 
 

Figure 16. Test image (3) drawn using smart ink 
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4.4 Train Object detection model  

We trained the object detection model using detecto —which internally uses state-of-art 

Faster RCNN model for training object detectors—, with 12 different class labels. We did not use 

validation set to compare performance between different models trained using varying 

hyperparameters. The default values for hyperparameters that were used to train the model, are as 

shown below. 

epochs 10 

learning rate 0.005 

momentum 0.9 

weight_decay 0.0005 

gamma 0.1 

lr_step_size 3 

 

from detecto import core, visualize, utils 

from detecto.core import Dataset, DataLoader 

 

train_dataset = core.Dataset('/content/drive/My Drive/Train') 

test_dataset = Dataset('/content/drive/My Drive/Test') 

 

# Use the validation dataset, to tune in the hyperparamaters of the model  

# and get more control over the model prediction 

# validation_dataset = core.Dataset('/content/drive/My Drive/Validation') 

 

loader = core.DataLoader(train_dataset, batch_size= 5, shuffle= True) 

 

# label '0' always represents the background class 

labels_map = {  'class': 1, 

                'association': 2, 

                'aggregation': 3, 

                'realization': 4, 

                'dependency': 5, 

                'u-association': 6, 

                'inheritance': 7, 

                'composition': 8, 

                'agg-depy-agg': 9, 
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                'aggregation-association': 10, 

                'box': 11, 

                'oval': 12 

              } 

model = core.Model([*labels_map.keys()]) 

model.fit(train_dataset) 

 

# Training while specifying the hyperparameters(epochs, learning rate, and

# val. dataset) results in CUDA out of memory, when training on limited  

# GPU on colab. 

# Use the code below to train your model if you have sufficient GPU. 

 

# model.fit(loader, verbose= True) 

# losses = model.fit(loader, validation_dataset, epochs= 15,  

#                    learning_rate= 0.001, verbose= True) 

# plt.plot(losses) 

# model.save("uml_weights.pth") 

# uml_model = model.get_internal_model() 

# print(type(uml_model)) 

 

model.save("uml_weights.pth") 

 

4.4.1 Accuracy thresholding for predictions.  

The output predictions from trained model were filtered using accuracy_score > 0.25. The 

initial predicted bounding boxes, as well as filtered bounded boxes using the accuracy score, are 

shown in Figure 17 and Figure 18. 

 

 

import numpy as np 

image=utils.read_image('/content/drive/My Drive/Test/test_handwritten.jpg'

) 

print("Image Shape: ", image.shape) 

 

predictions = model.predict(image) 

labels, boxes, scores = predictions 

 

# Show all the predictions, without filtering  
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print("Initial predictions, w/o supression of overlapping bbox and accurac

y filter") 

print("Total number of preictions: ", len(boxes), "\n") 

visualize.show_labeled_image(image, boxes, labels) 

print("\n\n") 

 

# Filter the predictions, based on the accuracy of predictions 

acc_threshold = 0.25 

confident_idx = [idx for idx, entry in enumerate(scores) if entry >= acc_t

hreshold] 

 

labels = [labels[idx] for idx in confident_idx] 

boxes, scores = boxes[confident_idx], scores[confident_idx] 

 

print("Filtered predictions after threshodling, i.e, accuracy > 0.25.") 

print("Total number of preictions: ", len(boxes), "\n") 

visualize.show_labeled_image(image, boxes, labels) 

print("\n") 

for category, pred, confidence in zip(labels, boxes, scores): 

  print(pred, confidence, category) 

 

# print(labels) 

 

 

 

 
 

Figure 17. Unfiltered predictions for the hand-drawn test diagram. 
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Figure 18. Filtered prediction for the hand-drawn test diagram with respect to the accuracy score 

 

4.4.2 Non-max suppression for overlapping predictions. 

To eliminate overlapping bounding boxes with same or different prediction labels, we used 

non-max suppression algorithm —calculates the area of overlap between overlapping bounding 

boxes and merges the bounding boxes into a single box if the amount of overlap is greater than 

given threshold value—, with the Intersection over Union (IOU) threshold of 0.5. The results after 

suppressing overlapping boxes are shown in Figure 19.   
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import torchvision 

import torch 

from pprint import pprint 

from torchmetrics.detection.map import MAP 

 

# "ops.nms" returns the index (dec. ord of scores) of all bboxes that we   

# should keep after performing the non-max suppression. 

#  

# Batched NMS does not supress overlapping boxes of different classes. 

# Usually, best practice is to not supress boxes with different class 

# labels and instead classify them as False positives (FP. 

 

# Discards all overlapping boxes with IoU > iou_threshold 

 

int_labels = torch.tensor(list(map(labels_map.get, labels)), dtype= torch.

int) 

keep = torchvision.ops.nms(boxes, scores, iou_threshold= 0.5) 

 

filtered_boxes, filtered_scores = boxes[keep], scores[keep] 

filtered_labels = [labels[idx] for idx in keep] 

 

print("Filtered predictions after non-

max suppression of overlapping bboxes, IOU > 0.5") 

print("Total number of preictions: ", len(filtered_boxes), "\n") 

visualize.show_labeled_image(image, filtered_boxes, filtered_labels) 

print("\n") 

for fb, fl, fs in zip(filtered_boxes, filtered_labels, filtered_scores): 

  print(fb, fl, fs) 
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Figure 19. Filtered predictions after non-max suppression of overlapping bounding boxes. 

 

 

 

4.5 Evaluate object detection model 

The final predictions obtained after accuracy thresholding and non-max suppression of 

bounding boxes are used to calculate mean Average Precision (mAP) and mean Average Recall 

(mAR) for the trained object detection model. The Average Precision (AP) is calculated by 

comparing ground truth values with prediction results, with respect to varying IOU threshold range 

(for eg., mAP_25, mAP_50 etc.) for all individual classes. The Average Precision over all the 

classes are then averaged to calculate the mAP.  The calculated metric to test performance our 

object detection model is as shown in Figure 20. 
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# Generates the mean Average Precision of the Object Detection over all   

# the classes.  

# Prediction labels should be '0' indexed whereas target should be '1'  

# indexed. 

# 

# https://torchmetrics.readthedocs.io/en/latest/references/modules.html#ma

p 

 

# If we require MAP for multiple test images, add a new entry to pred and  

# target list. The number of entries in pred and target need to be same. 

preds = [ 

     dict( 

       boxes= filtered_boxes, 

       scores= filtered_scores, 

       labels= torch.tensor(list(map(lambda x: labels_map.get(x), filtered

_labels)), dtype= torch.int) 

     ) 

     ] 

 

# im_num is the index position of the test image in the test_dataset. 

# For different test_image change imnum constant accordingly 

imnum = 1 

_, ground_truth = test_dataset[imnum] 

gt_boxes, gt_labels = ground_truth["boxes"], ground_truth["labels"] 

 

target = [ 

     dict( 

       boxes= gt_boxes, 

       labels= torch.tensor(list(map(labels_map.get, gt_labels)), dtype= t

orch.int) 

     ) 

     ] 

 

# print(preds, target) 

# Mean Average Precision of detected classes 

metric = MAP(class_metrics= True)   

metric.update(preds, target)   

pprint(metric.compute())   
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Figure 20. Performance metric of object detection model, for hand-drawn test diagram 

 

 

 

 

4.6 Segment UML Class 

Each predicted bounding box that are labelled as class are further segmented into 3 

compartments that holds class name, attributes, and methods of that UML class, respectively. We 

used morphological operations to detect all separators (straight horizontal lines that run across the 

UML class), and iteratively merged area bounded by 2 separators at different y-position, into a 

single compartment. To detect lines, which are otherwise not perfectly straight as in the case of 

hand-drawn figures, we define the width of desired straight line (str_element_width) to be 7% of 

the total width of class. This reduction in width of structuring element, can result in multiple 

detected lines for a single horizontal separator. If there are multiple straight lines that are detected 

for a single horizontal separator, the lines are merged as a single line given that the distance 

between any 2 lines is within a vertical_threshold of 30%. 
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import cv2 

import matplotlib.pyplot as plt 

import time 

 

def segment_uml_class(image, coordinates): 

     

    xmin, ymin, xmax, ymax = map(int, coordinates) 

    img = image.copy()[ymin: ymax, xmin: xmax] 

 

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

    thresh = cv2.threshold(img_gray, 127, 255,  

                           cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]) 

 

    # Structuring element dimensions (width * height).  

    # We take 7 % width for our mentioned bbox co-ordinate 

    # Str El. Width can vastly differentiate the number of st.lines,  

    # we detect. 

    # More zigzag lines means, width should be kept low. 

     

    temp = int(0.5 * len(img[0])) 

    str_element_width = int(0.07 * len(img[0])) 

    str_element_height = 1 

 

    # Detect horizontal lines 

 

# MORPH_OPEN work by first eroding the image(removing the small blobs) 

# and then dilation of the image(adding small blobs) 

    horizontal_kernel = cv2.getStructuringElement(cv2.MORPH_RECT,  

                                  (str_element_width, str_element_height)) 

    detect_horizontal = cv2.morphologyEx(thresh, cv2.MORPH_OPEN,  

 horizontal_kernel, iterations= 1) 

    cnts = cv2.findContours(detect_horizontal, cv2.RETR_EXTERNAL,  

             cv2.CHAIN_APPROX_SIMPLE) 

    cnts = cnts[0] if len(cnts) == 2 else cnts[1] 

 

    # 'cnts' is a numpy.ndarray with shape N * 1 * 2  

    # -> where N is the number of points 

    # We need to merge the contours that is near each other in  

    # vertical axis. 

    # We represent the vertical threshold, as difference between 2  
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    # contours, expressed a percentage 

 

     

    vertical_threshold = .3 

    count = 0 

    reduced_cnts = [] 

  

    for c in cnts: 

        cv2.drawContours(img, [c], -1, (12, 255, 36), 1) 

        x, y, w, h = cv2.boundingRect(c) 

        y = y + (h // 2) 

  

        if not reduced_cnts: 

            reduced_cnts.append(y) 

        else: 

          if abs(reduced_cnts[-1] - y) / 100 <= vertical_threshold: 

              reduced_cnts[-1] = (reduced_cnts[-1] + y) // 2 

          else: 

              reduced_cnts.append(y) 

 

    imgplot = plt.imshow(img) 

    plt.show() 

 

    print(reduced_cnts) 

    return reduced_cnts 

 

# For each of the bboxes that are labelled as class, segment the UML class 

# Index the bboxes segments, with their respective (xmin, xmax) 

 

bbox_segments = {} 

captured_reln = [] 

 

for fb, fl in zip(filtered_boxes, filtered_labels): 

  if fl == 'class': 

    # fb has data in order [xmin, ymin, xmax, ymax] 

    key = (int(fb[0]), int(fb[2])) 

    y_diff = int(fb[1]) 

 

    # Rescale the y-cordinates to the original image co-ordinates 

    y_pts = list(map(lambda x : x + y_diff, segment_uml_class(image, fb))) 

    class_segment = [] 
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    for i in range(1, len(y_pts)): 

      class_segment.append([y_pts[i-1], y_pts[i]]) 

 

    bbox_segments[key] = class_segment 

 

  else: 

    captured_reln.append(fl) 

 

# Catch Exception for IndexError because, contours may not have length 4  

# for every detected class, and classes that are falsely identified 

 

# Plot all the class segments for each of the detected classes in image. 

for k, v in bbox_segments.items(): 

  fig, axs = plt.subplots(1, 3) 

  try: 

    for i in range(len(v)): 

      axs[i].imshow( 

                      image[v[i][1]: v[i][0], k[0]: k[1]] 

                    ) 

  except IndexError: 

    print("Exception occured in parsing UML class. \n \ 

           Reasons could be, \n \ 

              [wrong identification,\n \ 

              threshold for merging contours,\n \ 

              missing attributes or methods for class]\n \ 

          ") 

    pass 
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Figure 21. Straight lines (green) detected in test hand drawn image for UML class Dog (left) and, 

Person (right)  

 

 

 

 

 

 

 
 

Figure 22. Straight lines (green) detected in test hand drawn image for UML class Retriever (left), 

Shepherd (middle) and, Family (right) 
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Figure 23. Segmented compartments for detected UML classes 

 

4.7 Text Extraction from segmented UML Class 

All UML class segments are then passed through the text extraction framework easyocr, 

which uses CRAFT [8] to detect text regions in each of these segments, and CRNN [5] to recognize 

the text present inside the text regions. We used the pre-trained text recognition model —

automatically downloaded, when invoking the Reader method—, to recognize the texts. The output 

text shown in Figure 24, are in the order of class methods, class attributes and class name for each 
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UML class. Further, all identified relationships between the UML classes are also depicted in 

Figure 24. 

import easyocr 

from torchmetrics.text.wer import WER 

from torchmetrics.text.cer import CharErrorRate 

 

text_ground_truth = ['+ play(): bool + bark(): bool',  

                     '+ name: str + breed: str + color: Color',  

                     'Dog', '# getOccupation(): Job # setOccupation(Job): 

bool',  

                     '+ name: str - age: int + gender: Enum',  

                     'Person',  

                     '+ chewClothes(): int',  

                     '+ retrievalSpeed: int',  

                     'Retriever',  

                     '+ gotoDuty(): Time',  

                     '+ aggresiveScore: int', 'Shepherd',  

                     '+ address: Address - members: int',  

                     'Family'] 

 

# This needs to run only once to load the model into memory 

# Subsequent calls to "Reader" method would not download pretrained model 

# again. 

reader = easyocr.Reader(['en'])  

print("Text-prediction in detected objects: \n") 

text_predictions = [] 

for k, v in bbox_segments.items(): 

  text_in_each_class = [] 

  for i in range(len(v)): 

    temp = reader.readtext(image[v[i][1]: v[i][0], k[0]: k[1]],  

    detail = 0, x_ths = 10, paragraph = True) 

     

    print(temp) 

     

    text_in_each_class.extend(temp) 

   

  print("\n") 

 

  text_predictions.extend(text_in_each_class) 

 

print("Captured Relationships: ", captured_reln, "\n\n") 
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Figure 24. Recognized text for all the class segments of each detected UML class 

 

4.8 Evaluate text extraction and recognition model 

We computed the Character Error Rate (CRR) and Word Error Rate (WRR) for all 

recognized text, by comparing it with the ground truth text, in the input image. The results are as 

shown in Figure 25. 
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# Compute the word error rate, and char error rate of the handwriting  

# recognition 

word_metric = WER() 

word_error = word_metric(text_predictions, text_ground_truth) 

print("Word error rate: ", word_error) 

 

char_metric = CharErrorRate() 

char_error = char_metric(text_predictions, text_ground_truth) 

print("Character error rate: ", char_error) 

 

 

 
 

Figure 25.  Word error rate and Character error rate for detected and recognized text 
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Chapter 5: Results 

 

We evaluated the performance of our object detection model using mean Average Precision 

(mAP) and mean Average Recall (mAR). These metrics are computed as aggregate for entire 

model, as well as for each detected class type on our input data. Further, we also compared the 

model performance between 3 types of inputs i.e., hand drawn, smart-ink and, computer graphics 

generated UML class diagrams. To evaluate the performance of pre-trained text recognition model 

for detecting and recognizing text in our input, we calculated the Character Error Rate (CER) and 

Word Error Rate (WER). The model performance for each of these metrics on different sources of 

test data, is shown in Figure 26.  

 

 

 

Figure 26. Comparison of Average Precision and Average Recall for all the test diagrams.  
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As labelled in the diagram, the green, orange, and blue legend represents the corresponding 

metric for hand-drawn, smart-ink and computer graphics generated diagrams respectively. We 

observed that the mean average precision for computer-generated image i.e., 0.4129, is much 

greater than the hand-drawn image (0.2547) and the smart-ink image (0.3005). This means that the 

trained model performed very well in determining accurate class labels out of all predicted class 

labels, for the computer graphics generated image as compared to the hand-drawn image. 

Although, any of these scores may not be good enough to be perceived as an average model 

performance, this is largely due to the small data samples which skewed the results. We can justify 

this by looking at the results of MAP Per Class for UML class, which is greater than 0.84 

for all 3 types of inputs. The MAP for INHERITANCE class (especially the score of hand-drawn, 

0.1424), is the primary contributor to the lower score for the overall MAP for the given type of 

input image. We can also see that, the Faster-RCNN trained model was able to accurately filter 

out correct class labels out of all real class labels present in image, by looking at MAR Per Class 

for UML class having score greater than 0.86 for all types of inputs. The lower score for overall 

MAR can be justified with same reasoning as with the overall MAP for the corresponding inputs.  

We also calculated the CER and WER of the text recognition model to be 0.3043 and 

1.0377 respectively. The lower the value of CER, the better the performance of the recognition 

system. In our case, the character error rate of 0.3043 can be observed as a good result. However, 

the word error rate of 1.0377 being greater than 1, signifies that the recognition system did not 

accurately predicted the words at all. This is because unlike characters, words are of different 

lengths and do not allow a clear comparison (a word is incorrectly recognized, if just one characters 

fails to match). Hence, Word Error Rate can be avoided to characterize the value of a model.     
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Chapter 6: Conclusion and Future Work 

 

Training a neural network for any sort of learning task requires large amount of data. The 

network can learn correct and distinctive features in the dataset, as well as identify co-relations 

between learned features. However, our dataset for training object detection model is significantly 

less than what is required for high precision identification of UML classifiers. Despite this, the 

trained model performed very well in terms of detecting most of the model classes (UML classes 

and inheritance). To improve model accuracy, in addition to collecting more data from disparate 

sources, we can perform data augmentation to populate new data points and pre-process our input 

to remove noise, enhance handwritten text and contours, scale image data to appropriate resolution 

etc. Further, we can leverage image processing techniques to approximate contours in the dataset 

and match those contours with output predictions from the model for high accuracy output and 

eliminate false positives. Our use case of parsing information from hand-drawn UML class 

diagrams involves complications such as, the need to segment and differentiate between similar 

UML classifiers and handle highly unstructured erroneous data. But, given that UML is a standard 

specification, it should be feasible to develop logic to handle most of these cases.  

The pre-trained CRAFT + CRNN based text recognition model performed well to 

recognize text, in the test diagram. Since the model was trained on natural language rather than 

structured language (UML in our case) it incurred added complexity of trying to predict next 

character/word in the sequence by establishing dependency between current character/word in the 

sequence, which does not serve our use case very well. This is because, UML has specific 

standards on how to write attributes and behavior inside the UML class (For eg., access specifier 

(+ / - / #) attribute/ behavior: data type/ return type) which contrasts with free-flowing natural 
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language. Therefore, we could have an additional text recognition model trained specific to this 

use case, to consider only minimal or entirely no state specific information flowing from previous 

state, by manipulating the state propagation variable. 

The ability to parse structural and textual information has lot of applications in requirement 

engineering. The object and text data can be converted into natural language and keyword-matched 

with software requirement specification document, to determine if the requirements are captured 

correctly in the design diagram. The parsed information can also be used, to compile automatic 

computer-graphics generated UML diagrams for documentation and future edits, using graphics 

library tools such as Graphviz. Moreover, this information can also be used to generate code 

templates in any desired programming language to speed up the development process and, reduce 

the complexity to manually verify the relationships between classes in same or different code 

modules. 
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