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Abstract 
 

Contaminants of emerging concern (CECs), including personal care products, pharmaceuticals, 
industrial agents and agricultural runoff, have shown adverse effects on reproduction and 
behavior in aquatic species, such as fathead minnow. Since the reproductive system and the 
immune system are tightly linked, it is critical to investigate effects of CECs on the immune 
system.  An innate immunity, which is characterized by a specific cell type, neutrophils, 
represents an important branch of fish immune system.  A decrease in innate immune functions 
could lead to an increase of infections, with a consequent impact on fish survival.  We 
developed a neutrophil functional assay (myeloperoxidase degranulation assay, MPO), and a 
quantitative measurement of neutrophil-specific mRNA abundance (myeloid-specific 
peroxidase, elastase 2 and NADPH oxidase) by the reverse-transcription quantitative 
polymerase chain reaction (qPCR).  Anterior kidneys, as a main source of fish neutrophils, were 
analyzed by the MPO assay and the qPCR after a 96-hour flow-through exposure of male adult 
fathead minnows containing 8 individual compounds, which are commonly detected urban 
CECs, and their mixture.  Chemical concentrations were based on those found in over 500 water 
samples collected by the United States Geological Survey as a part of the Great Lakes 
Restoration Initiative. A significant increase in degranulation was found in the preliminary 
experiments using estrogenic compounds, estrone and bisphenol A in particular concentrations. 
Urban CECs, such as ibuprofen, sulfamethoxazole and the urban mixture, increased the 
degranulation of neutrophils. Fexofenadine showed a significant increase in both degranulation 
and mpo mRNA abundance. 5-methyl-1H-benzotriazole was the only CEC to show a decrease in 
degranulation. Observed impact of studied CECs on the innate immune system might provide a 
novel insight in the ecotoxicology and expand our knowledge of CECs’ influence on the innate 
immune system of aquatic species.  
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Chapter 1: Introduction 

Contaminants of emerging concern (CECs), consisting of chemicals, pharmaceuticals, 

personal care products, industrial agents and hormones that have previously not been detected 

or have newly found effects, are ubiquitous in aquatic systems all over the world. With the 

increase in detection at low levels in surface waters, these chemicals are requiring additional 

consideration on how water quality affects aquatic ecosystems. Defined as “any synthetic or 

naturally occurring chemical or any microorganism that is not commonly monitored in the 

environment but has the potential to enter the environment and cause known or suspected 

adverse ecological and/or human health effects,” by the United States Geological Survey 

(USGS), CECs are already known to have adverse effects on behavior (Saaristo, Craft, Lehtonen, 

& Lindström, 2009; Schoenfuss et al., 2016; Schultz et al., 2011; Weinberger & Klaper, 2014; 

Wibe, Rosenqvist, & Jenssen, 2002), development (Brown, Adams, Cyr, & Eales, 2004; Xia, 

Zheng, & Zhou, 2017), reproduction (Flippin, Huggett, & Foran, 2007; Liang et al., 2014), 

physiology (Lee, Barber, & Schoenfuss, 2014; Schoenfuss et al., 2016; Schultz et al., 2011) and 

resource allocation (Lee et al., 2014; Wang, Guo, Chen, Sun, & Fan, 2017).Their mechanism of 

action is proposed to be associated with aryl hydrocarbon receptor activation (Andreasen et al., 

2002; Hu, Sorrentino, Denison, Kolaja, & Fielden, 2007; Meucci & Arukwe, 2006) and endocrine 

disruption (Liang et al., 2014; Wang et al., 2017; Wibe et al., 2002).  

To address this rising issue of human activity and growth contaminating aquatic systems 

with potentially harmful chemicals, 11 federal agencies initiated the Great Lakes Restoration 

Initiative (GLRI). Introduced in 2010, the GLRI analyzed over 290 water and 80 bottom-sediment 
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samples of the surrounding Great Lakes’ tributaries for CEC presence. The results showed the 

presence of 28 chemicals in 30% of total samples (Elliott et al., 2017; Lee et al., 2012). CECs can 

be separated into two main categories - agricultural or urban, with chemicals not being 

exclusive to either category. Agricultural contaminants, including pesticides, hormones and 

fertilizers, represented those commonly found in samples collected at sites where the 

surrounding land is designated for agricultural use. Urban contaminants include those 

commonly found in developed areas, such as pharmaceuticals, industrial byproducts and 

personal care products. Urban CECs have become a special concern, because of the financial 

limitations to remove all chemicals from waste water treatment plants (Perkins et al., 2017). 

Chemicals observed at urban sites not only showed higher concentrations of chemicals than at 

agricultural sites, but had a more diverse mixture of chemicals (Elliott et al., 2017). 

 The immune system is a network of organs, cells and proteins specialized to protect the 

host from foreign entities. There are two distinct branches of the immune system in respects to 

vertebrates, the innate (natural) and adaptive (acquired) immunity. Innate immunity is the 

organisms’ first line of defense, responsible for the initial recognition and attack of foreign 

molecules, as well as activation and recruitment of other, more specialized immune cells. 

Anatomical barriers provide the first defense base of the innate immune system. Epithelial 

surfaces block the entry of most pathogens, creating a physical layer. This includes the skin, and 

mucosal surfaces of the respiratory, gastrointestinal and genitourinary tracks. Complementing 

the physical barriers, these surfaces also contain so-called chemical barriers, including the 

acidic pH, and numerous enzymes and anti-microbial peptides and proteins, such as lysozyme 
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and defensins, that contribute in destruction of pathogens (Kindt, Goldsby, Osborne, & Kuby, 

2013). If anatomical and chemical barriers fail, there is an assembly of innate immunity cells. 

Specifically, neutrophils are the most abundant innate immune cell and the first cell to migrate 

to the scene of inflammation (Kindt et al., 2013). Immune cells can be categorized by their 

explicit functions. Phagocytes are cells that ingest pathogens through endocytosis to degrade 

pathogens, including neutrophils, macrophages and dendritic cells. Phagocytosis, after 

destruction of pathogen, allows the presentation of antigens by the major histocompatibility 

complex molecules (MHCs). Antigen presenting cells (APCs), including macrophages and 

dendritic cells, digest pathogens through a process of phagocytosis/endocytosis, and present 

them as antigenic peptides by MHC to activate the adaptive immune system. 

Polymorphonuclear leukocytes (PMNs), or granulocytes, are white blood cells, characterized by 

multi-lobulated nucleus and the presence of cytosolic granules. Granules are specialized 

vesicles that contain proteins, released through a process called degranulation, responsible for 

the allergic responses, inflammation and the destruction of pathogens. PMNs include 

neutrophils, basophils, and eosinophils.    

Innate immune cells provide a non-specific immune response, due to the promiscuity of 

their receptors, and an array of pathogens they recognize. Innate immune cells possess 

receptors, pattern recognition receptors (PRRs), that recognize pathogen-associated molecular 

patterns (PAMPs), and damage-associated molecular patterns (DAMPs), toll-like receptors 

(TLRs) being the most renowned (Kindt et al., 2013). PAMPs are conserved microbial features, 

such as carbohydrates (lipopolysaccharides, mannose), nucleic acids (dsRNA, DNA), and a broad 
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range of surface proteins from flagellin to heat shock proteins (Akira, Uematsu, & Takeuchi, 

2006). DAMPs are host cell stress signals or intracellular molecules that recruit the innate 

immune system to lyse and/or clean up damaged cells. 

 Innate immune cells are responsible for the inflammatory response. Neutrophils are the 

first cell type to arrive at the site of inflammation. Cytokines, such as interleukin 1, interleukin 6 

and tumor necrosis factor alpha are released by innate immune cells as a response to PAMPs 

and DAMPs recognition. These cytokines cause vasodilation and increase permeability of blood 

capillaries, allowing an increased fluid leakage as well as the extravasation of immune cells and 

other molecules to the site of inflammation. Among the serum molecules pooling to the 

inflammatory site is a group of proteins that make up the complement system. The 

complement system consists of 30-40 serum proteins, pro-enzymes, designated C1-C9. The 

three pathways of the complement system activation, classical, alternative and lectin, all 

produce the same final product, the membrane attack complex (MAC). MAC forms a 

transmembrane channel that causes the loss of membrane integrity, resulting with cell lysis 

(Kindt et al., 2013). 

In contrast to the innate immune system, the adaptive immune system is antigen- 

specific. The adaptive immune cells, lymphocytes – T and B cells, are responsible for the 

memory response that allows for a stronger response to recognized antigens in the future 

exposures. To initiate an adaptive immune response, T cells need to be activated by antigens 

processed and presented in the context of MHC by an APC. Once activated, T cells differentiate 

into effector and memory cells. Effector T cells have a wide range of functions, from helping 
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(activating) other cells (T helpers), regulating immune responses (regulatory T cells), to killing 

infected host cells (cytotoxic T cells). In contrast to T cells, B cells can directly recognize 

antigens, which causes activation into effector and memory B cells. Effector B cells release the 

antibodies that assist the innate immunity by marking pathogens for phagocytosis, a process 

called opsonization (van Kesse, Bestebroer, & van Strijp, 2014). 

   Even though mammals and teleost have been diverging for 450 million years, much of 

the immune system is conserved between them (Carradice & Lieschke, 2008; Lieschke, Oates, 

Crowhurst, Ward, & Layton, 2001; Nonaka & Smith, 2000). The main lymphoid organs in teleost 

consist of the anterior (head) kidney, thymus, and the spleen (Zapata, Diez, Cejalvo, Gutiérrez-

de Frías, & Cortés, 2006). Whereas bone marrow is the lymphoid organ responsible for 

hematopoiesis in mammals, the anterior kidney exhibits this function in teleost (Traver et al., 

2003). Since fish do not have lymph nodes, the secondary lymphoid organs crucial for providing 

an environment for innate-adaptive immunity interactions, the anterior kidney and the spleen 

in teleost replace that role allowing the presentation of antigens to the cells of adaptive 

immunity (Iliev, Thim, Lagos, Olsen, & Jørgensen, 2013). 

 The innate immune response, in comparison to adaptive, is considered as critical for 

fish, due to the limitations of the adaptive immunity. It was not until animals became 

homeothermic that they acquired higher adaptive immunity specialization (Tort, Balasch, & 

Mackenzie, 2003). Innate immunity in teleost can also be divided into three categories, 

comparable to other vertebrates, consisting of anatomical, chemical, and cellular barriers. 

Anatomical barriers include flakes, skin mucus and gills. Besides trapping pathogens, skin mucus 
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contains a repertoire of antimicrobial peptides, enzymes and lectins; comparable to 

mammalian chemical barriers (Alexander & Ingram, 1992; Ellis, 2001; Hellio, Pons, Beaupoil, 

Bourgougnon, & Gal, 2002). Considering cellular immunity, all innate immune cell types present 

in mammals are also found in zebra fish (Traver et al., 2003). The main phagocytic cells are also 

neutrophils and macrophages. Dendritic cells and macrophages exhibit APC functions, however, 

neutrophils have shown to upregulate MHC when stimulated, assisting adaptive immunity in 

antigen presentation in Atlantic salmon (Iliev et al., 2013). 

 The key components of inflammation are present in teleost, when using mammals as a 

baseline (Grayfer & Belosevic, 2012). The main difference is there is no systemic raise in body 

temperature as a response to inflammatory process, since teleost are poikilothermic. Instead of 

this physiological reaction, fish move toward warmer water (Gräns, Rosengren, Niklasson, & 

Axelsson, 2012). The complement system in fish is also similar to the mammals’. However, it is 

suggested that complement plays a more prominent role in the innate immunity in teleost 

(Nonaka & Smith, 2000; Sunyer, Zarkadis, Sahu, & Lambris, 1996) since there are three isotypes 

of C3 component, the driving factor of the complement system, while in mammals there is only 

one (Sunyer et al., 1996). 

Neutrophils are the primary innate immunity cell defensive mechanism of vertebrates 

against bacterial, viral and fungal infections, and are also the main effector of inflammation 

(Havixbeck, Rieger, Wong, Hodgkinson, & Barreda, 2016). Teleost neutrophils possess the same 

morphological and physiological characteristics as mammals’ neutrophils, except in their 

circulatory concentrations. In mammals, neutrophils represent 50-70% of total leukocytes 
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(Kindt et al., 2013), while in healthy teleost (Carassius auratus), they represent around five 

percent of white blood cells. However,  once a fish is exposed to a pathogen, neutrophil counts 

increase to 50% of blood cells (Havixbeck et al., 2016).   

Neutrophils possess numerous specialized functions, one of them being degranulation. 

They contain primary (azurophilic), secondary (specific), and tertiary granules, characterized by 

a specific assortment of proteins. The primary granules contain enzymes responsible for 

generation of the reactive oxygen species (ROS) during degranulation. One of these enzymes is 

myeloperoxidase (MPO). MPO is a neutrophil-specific enzyme that is only expressed in the 

primary granules (Amanzada et al., 2011). It produces hypochlorous acid and superoxide 

molecules from hydrogen peroxide, generated by NADPH oxidase during a respiratory burst 

(Hampton, Kettle, & Winterbourn, 1998). Elastase 2 (ELANE), or neutrophil elastase, is another 

neutrophil-specific enzyme found in primary granules.  ELANE and MPO’s products, released 

during degranulation process, exhibit direct antimicrobial properties. Secondary granules’ most 

prominent component is lysozyme, released to destroy the cell wall of gram-positive bacteria. 

In addition, NADPH oxidase, a multi-component electron-transfer complex, is located in 

secondary granules that fuse with phagosomes during phagocytosis. NADPH catalytic, electron-

transfer portion, is a membrane-bound flavohemoprotein cytochrome b558, a heterodimer 

made up of two subunits, p22
phox 

and gp91
phox 

(also known as NOX2), that is responsible for 

the production of hydrogen peroxide (Bylund, Brown, Movitz, Dahlgren, & Karlsson, 2010). 

Tertiary granules contain cathepsin and collagenase that target extracellular protein structures.  
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Neutrophil function is essential for the normal development and survival of an animal 

population (Segal, 2005). A decrease in neutrophil counts (neutropenia), or neutrophil 

disorders, make the host highly susceptible to infections, while over-activation of neutrophils 

leads to an oxidative stress of surrounding tissues that can induce acute and chronic 

inflammation (Wheeler, Martin, & Lawrence, 2013). 

It has been shown that an array of exogenous chemicals, including the industrial 

compounds, act as aryl hydrocarbon receptors (AhR) activators (Billiard et al., 2002; Meucci & 

Arukwe, 2006; Muusse, 2015). AhRs are nuclear hormone receptor complexes consisting of a 

heat shock protein 90 (hsp90), prostaglandin E synthase 3 (p23) heterodimer, and a AhR 

interacting protein (AIP). Once a ligand (AhR activator) binds to the receptor, there is a 

conformation change, where AIP disassociates, creating an active state. Once activated, the 

complex heterodimer is transported into the nucleus where it interacts with specific promoter 

sequences on DNA, directly influencing gene expression. It has been shown that AhR-activating 

compounds influence the immune system (Hanieh, 2014; Stockinger, Hirota, Duarte, & 

Veldhoen, 2011). Specifically, neutrophils have been shown to infiltrate the infected tissues in 

influenza A-infected mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a strong 

activator of AhRs, (Teske, Bohn, Regal, Neumiller, & Lawrence, 2005). Another study showed 

that influenza A-infected mice exposed to TCDD had a significant increase in interferon gamma 

(IFN-γ), driven by excessive expression of IFN-γ in phagocytes, (Neff-LaFord, Teske, Bushnell, & 

Lawrence, 2007). IFN-γ is a cytokine that plays a critical role in inflammation and is known to 

mediate tissue damage when over-expressed (Geiger et al., 1994; Laskin, Fakhrzadeh, & Laskin, 
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2001; Toyonaga et al., 1994). However, it has been shown that neutrophils are not directly 

stimulated by AhR activators, but affected through TCDD-induced Th17 differentiation. 

(Nakahama et al., 2013). 

 Endocrine disrupting compounds (EDCs) are a category of chemicals, defined by the EPA 

as “an exogenous agent that interferes with synthesis, secretion, transport, metabolism, 

binding action, or elimination of natural blood-borne hormones that are present in the body 

and are responsible for homeostasis, reproduction, and developmental process” (United States 

Environmental Protection Agency). In the past two decades, researchers have clearly shown the 

effects of EDCs on the innate immune system (Bartoskova et al., 2013; Milla, Depiereux, & 

Kestemont, 2011; Tellez-Bañuelos, Santerre, Casas-Solis, Bravo-Cuellar, & Zaitseva, 2009). EDCs, 

such as a xenoestrogen bisphenol A (BPA), have shown to increase expression of oxidative 

species, causing oxidative stress of the host immune cells (Jin, Chen, Liu, & Fu, 2010). Another 

study looking at BPA and nonylphenol (NP), confirmed EDCs causing oxidative stress, but also 

showed altered expression in TLR pathway molecules (Xu, Yang, Qiu, Pan, & Wu, 2013). 

Multiple EDCs have been suggested to inhibit macrophage function, by inhibiting a MyD88-

independent TLR4 signaling pathway (Ohnishi, Yoshida, Igarashi, Muroi, & Tanamoto, 2008). C3 

has shown expression sensitivity to xenoestrogens in rats (Heikaus, Winterhager, Traub, & 

Grümmer, 2002). 

 Contamination with pharmaceuticals is becoming a larger concern because of 

expansions of developed areas. Developed to sustain a biologically active state, 

pharmaceuticals do not degrade rapidly. High concentrations of accumulated pharmaceuticals 
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have been found at waste water treatment plants before being expelled into waterways 

(Kostich, Batt, & Lazorchak, 2011). Various pharmaceuticals, such as sulfa drugs and 

tetracyclines, commonly used antibiotics, have been discovered as AhR activators through a 

large scale screening of AhR biomarker expression (Hu et al., 2007), have shown estrogenic 

effects (Kang, Choi, Kim, & Kim, 2006). Some pharmaceuticals directly affect immune pathways. 

For example, ibuprofen, a frequently used anti-inflammatory drug, affects neutrophil function 

by inhibiting prostaglandin production through inhibition of cyclooxygenase activity.  

              Fathead minnows have been used as a toxicological model since the 1950s (Ankley & 

Villeneuve, 2006), and has recently emerged as a model organism in immunotoxicology 

(Thornton et al., 2017). Since fathead minnows exhibit ability to tolerate a broad range of 

environmental variables, survivability in a laboratory setting and ubiquitous presence in the 

waters of North America (Isaak, 1961), they represent the optimal model organism for studying 

the effects of water contaminants of the Great Lakes. 
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Chapter 2: Aim and Hypothesis 

There is a gap in currently available information regarding the immunotoxic potential of 

CECs toward aquatic organisms. Due to the fact that aquatic animals live their entire lives in 

water being chronically exposed to CECs, the immunotoxic effects of CECs are even of greater 

concern than for terrestrial or semi-terrestrial species. Therefore, there is a critical need to 

obtain basic data on the acute effects of complex urban mixtures, and their discrete 

components, on the innate immune system of fathead minnow. As neutrophils are the first 

innate immune cells that contribute to the host protection, they have been chosen as the target 

cells in this study. While the fathead minnow is a widely-accepted model organism in aquatic 

toxicological studies, there are no available adequate research tools to study immune 

parameters in that organism. Thus, the general aim of this research is to A) develop tools, 

specifically primers, and modify an existing functional assay, that will allow for the quantitative 

assessment of neutrophil-specific gene expression and neutrophil function, respectively, and B) 

to use these tools for an assessment of the impact of acute exposures to complex urban 

mixtures, and their discrete components, on the innate immunity of fathead minnows.  

Based on literature findings on effects of particular pharmaceuticals on innate immunity 

of other species, it was hypothesized that: 

1. Exposures to anti-inflammatory compounds will decrease neutrophil function in 

fathead minnows. 

2. Exposures to aryl hydrocarbon receptor-active compounds will increase neutrophil 

function in fathead minnows. 
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3. Exposures to antibacterial compounds will decrease neutrophil function in fathead 

minnows. 

4. Exposures to serotonin-norepinephrine reuptake inhibitors will decrease neutrophil 

function in fathead minnows. 

To test these hypotheses, several specific objectives were developed: 

1. Define an optimal lymphoid organ for neutrophil evaluation in fathead minnow. 

2. Generate/optimize PCR primers that would allow quantification of mRNA abundance 

of the following neutrophil-specific genes in fathead minnow – myeloperoxidase 

(mpo), NADPH oxidase (nox2) and elastase 2 (ela2). 

3. Develop myeloperoxidase-based (MPO) assay for an assessment of neutrophil 

degranulation function in an individual fathead minnow. 

4. Test effects of the exposures to individual urban CECs on the mRNA abundance of 

neutrophil-specific genes of fathead minnow.  

5. Test effects of the exposures to individual urban CECs on the function of fathead 

minnow’s neutrophils using MPO assay.  

6.  Test effects of the exposures to complex urban mixtures on the mRNA abundance 

of neutrophil-specific genes of fathead minnow. 

7. Test effects of the exposures to complex urban mixtures on the function of fathead 

minnow’s neutrophils using MPO assay.  
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Chapter 3: Materials and Methods 

3.1. Animals 

Adult male fathead minnows (Pimephales promelas), 3-month of age, were purchased 

from Environmental Consulting and Testing (Superior, WI), and maintained at Aquatic 

Toxicology Laboratory at St. Cloud State University (SCSU) under the approval of the SCSU 

Institutional Animal Care and Use Committee (IACUC). Fish were kept in 20-gallon tanks, fed 

twice a day with a brine shrimp, blood worm mix, exposed to 16:8 light to dark cycle, and 

treated for 96-hours using a flow through system. All procedures performed on alive fish were 

approved by SCSU IACUC (#8-107, Schoenfuss). 

3.2. Experimental Design 

Fish were exposed to 9 different exposures, containing 8 individual compounds and one 

mixture. Five groups of fish per exposure, six animals per group, were exposed at different 

concentrations for 96-hours using a flow through system. Each exposure consisted of a control, 

ultra-low, low, medium, and high concentration treatment. Control fish were exposed to SCSU 

well water. Medium treatment fish were exposed to environmentally relevant concentrations 

of compounds (Appendix, Table 8.1.) (Elliott et al., 2017), whereas low and ultra-low treatment 

fish were exposed to 1/10 and 1/100 concentrations of environmentally relevant 

concentrations, respectively. High treatment fish were exposed to concentrations ten times 

higher than environmental concentrations. 
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3.3. Collection of Lymphatic Organs 

Fathead minnows were caught using a net and immediately euthanized by immersion in 

8% w/v tricaine methanesulfonate (MS-222) buffered with equal parts sodium bicarbonate. 

Whole spleens and approximately 1/10 of the anterior kidney were isolated and preserved into 

1.5 ml tubes with 500 µL of RNA later (#AM7020, Invitrogen, Thermo Fisher Scientific, Waltham, 

MA) for gene expression analyses.  The rest of the anterior kidney was dissected into 50-mL 

tubes containing 12 mL of Hank’s Balanced Salt Solution (HBSS) without calcium, magnesium 

and phenol red (HBSSwo; #21-022, Corning, Corning, NY).  Kidneys were pooled into their 

appropriate treatment 50-mL tubes with HBSS for a neutrophil isolation and a functional test.  

Tissues collected in RNA later were incubated at 4°C overnight and stored at -80°C until use. 

3.4. RNA Extraction and Purification 

Total RNA was extracted by an acid guanidinium thiocyanate-phenol-chloroform 

method (Green, 2012).  RNA later-preserved tissue was homogenized with 700 µL of lysis 

reagent (1.9 M guanidinium thiocyanate, 12 mM sodium citrate, 0.24% (w/v) sodium N-lauroyl 

sarcosine, 95 mM sodium acetate, 50 mM β-mercaptoethanol) and a 6 mm metal bead using a 

Retsch MM400 bead mill (Haan, Germany) at a frequency of 30 per second for 40 seconds.  

Homogenates were incubated at room temperature for 5 minutes, and 140 µL of chloroform 

was added to a homogenate.  After 3 minutes incubation, the samples were centrifuged for 15 

minutes at 12,000 x g at 4°C.   

The aqueous layer was purified on a column with silica membranes (Epoch, Sugar Land, 

TX) using solutions of SV total RNA isolation system (Promega, Madison, WI), following a 
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manufacture’s protocol of miRNeasy Mini isolation system (Qiagen, Germantown, MD).  An 

aqueous layer was transferred into a new 1.5 mL tube, and mixed with 1.5 volumes of 100% 

ethanol (#2716, Decon Labs inc., King of Prussia, PA).  The mixture was transferred into a 

column and centrifuged at 10,000 x g for 20 seconds at room temperature.  A flow through was 

discarded.  Seven hundred µL of RNA wash solution (65 mM potassium acetate, 10 mM Tris-HCl, 

60% ethanol) was added to the column and centrifuged at 10,000 x g for 20 seconds, flow 

through being discarded.  The same procedure was repeated with 500 µL of SV RNA wash 

solution, twice, for 15 seconds and 2 minutes, respectively.  A washed column was transferred 

into a new 1.5 mL tube and RNA eluted with 30 µL of diethyl pyrocarbonate- (DEPC; #97062, 

Amresco, VWR, Radnor, PA) treated ultra-pure water and a centrifuge at 10,000 x g for 1 

minute at room temperature. Ultrapure water was obtained from a Millipore Synergy UV-R 

water system (MilliQ; Loveland, CO).  RNA samples were stored at -80°C. 

3.5. RNA Quality Check using Electrophoresis 

Each RNA quality was evaluated using agarose gel electrophoresis (Masek, Vopalensky, 

Suchomelova, & Pospisek, 2005).  Two µl of RNA was mixed with ten µL of RNA Loading mix 

(4.35% glycerol, 1.45 mM EDTA, 0.036% bromophenol blue, 85.5% formamide, 10x SYBR Green-

II (#S7564, Invitrogen, Thermo Fisher Scientific), and heat denatured at 65-70°C for 10 minutes. 

Immediately after, the sample was placed directly on ice for 1 minute and spun down.  A 

denatured RNA was run on a 1.5% agarose gel in TAE (Tris-acetate-EDTA) buffer at 100 V for 25 

minutes.  The gel was visualized with an Aplegen Omega Lum G imaging system Gel Company 
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(San Francisco, CA).  RNA was evaluated with band densities of 28S and 18S ribosomal RNA 

(rRNA), and 1:1 illumination between the 28S and 18S rRNA bands was considered satisfactory.   

3.6. DNase Treatment 

RNA was treated with DNase to remove genomic DNA contaminations, that could lead 

to unwanted amplification during reverse-transcription polymerase chain reaction (RT-PCR), 

using TURBO DNA-free kit (#AM1907, Invitrogen, Thermo Fisher Scientific) according to the 

manufacturer’s protocol.  RNA extracts were diluted to <200 ng/µL with DEPC treated ultra-

pure water.  DNase master mix was made (per reaction; 2 µL 10x TURBO DNase buffer, 0.4 µL 

TURBO DNase) and 2.4 µL was added to 17.6 µL of RNA sample.  Samples were briefly vortexed 

and incubated at 37°C for 30 minutes, and DNase was inactivated by adding the inactivation 

reagent.  The samples were incubated at room temperature for 5 minutes, intermittently 

mixing by flicking to disperse reagent.  Samples were centrifuged for 2 minutes at 10,000 x g, 

and approximately 18 µL of purified RNA extract was transferred to a new tube.  Purified RNA 

was stored at -80°C. 

3.7. DNA Contamination Check 

A quantitative PCR (qPCR) without RT reaction was run using purified RNA extract as a 

template to check for any germinal DNA contamination on CFX96 touch real-time PCR detection 

system (Bio-Rad, Hercules, CA).  A primer pair, forkhead box protein L2 (foxl2) that has been 

designed and optimized without an intron, was used to check for germinal DNA contamination 

(Table 1).  Ultra-pure water and a subcloned PCR product of foxl2 were used as a positive and 

negative control, respectively.   
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3.8. cDNA Synthesis 

Using prepared RNA (2 µg) as templates, cDNA was synthesized in 15 µL of reaction, 

after heat-denaturing RNA at 70°C for 10 minutes, using High Capacity cDNA Reverse 

Transcription Kit (#4368814; Applied Biosystems, Thermo Fisher Scientific) according to the 

manufacturer’s protocol.  A reaction mixture was incubated for 10 min at 25°C, for 120 min at 

37°C and for 5 minutes at 85°C.  The cDNA was stored at -20°C. 

3.9. Primer Design and Optimization  

Although fathead minnow genome has been sequenced (Burns et al., 2016), the 

annotation has not been completed (Saari, Schroeder, Ankley, & Villeneuve, 2017).  However, 

neutrophil-specific sequence, such as myeloid-specific peroxidase (mpx), neutrophil elastase 

(ela2) and NADPH oxidase (nox2) have been published, based on the annotation of 20 immune 

genes for the assessment of toxicological effects on gene expression in fathead minnow 

(Jovanović, Anastasova, Rowe, & Palić, 2011) (Table 1).  To normalize target gene expressions, 

three housekeeping genes were evaluated for best stability, which were ribosomal protein L8 

(rpl8), hypoxanthine phosphoribosyltransferase 1 (hprt1) and TATA box binding protein (tbp) 

(Table1).  Three housekeeping genes were used to find the most stable housekeeping gene for 

normalization. NormFinder was used to find the most stable housekeeping gene or a 

housekeeping gene combination (Andersen et al., 2004). 
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Table 3.1. Primer sequences for quantitative RT-PCR amplification 

  Sequence Position Tm GenBank Accession 
# 

ela2 Forward  316 ATCGTGCATGAGAACTGGGA 66.2 DT350430 

 Reverse 593 ATGAGGTTGGTCACGAGGTT   

foxl2 Forward  569 TTAACGTGAAAGGCTTCACC 62 (Saari, Schroeder, 
Ankley, & 
Villeneuve, 2017) 

 Reverse 668 CTCATGCCGTTGTAAGAGTT   

hprt1 Forward  507 ATCTGTCCACACTCACAGGA 64 DT085800 

 Reverse 647 TCCTCTTCACCAGCAAACTG   

mpx Forward  466 TGTCTGCAACAACAGGAGGA 64 DT092840 

 Reverse 746 TGCTTGGTGAGTTGGGTGTA   

nox2 Forward  94 CGGCATCAATGCGTTTCTCT - DT188783 

 Reverse 351 TAGGCCACCAGTTTGTGGAA   

rpl8 Forward  375 CCCACAATCCTGAGACCAAG 64 AY919670 

 Reverse 473 TTGTCAATACGACCACCACC   

tbp Forward  792 CATTCGATTAGAGGGCCTGG 62 (Saari, Schroeder, 
Ankley, & 
Villeneuve, 2017) 

 Reverse 861 CCTGGGAAATAACTCTGGTTCA   

 

 PCR primers were obtained from Eurofins Scientific (Louisville, KY), and their annealing 

temperatures optimized in qPCR with a temperature gradient from 60-70°C using CFX96 real-

time PCR system.  A specificity of each qPCR reaction was confirmed by analyzing a melting 

temperature of each amplicon and sequencing a representative amplicon.  Since a primer pair 

for nox2 had non-specific amplification, it was excluded from a further analysis.   

Each qPCR product was sub-cloned and sequenced using pGEM-T Easy Vector System 

(#A3610; Promega, Madison, WI) according to manufacturer’s protocol.  Plasmid DNA was 

isolated using Wizard Plus Minipreps DNA Purification System (Promega) followed by a 

polyethylene glycol (PEG) precipitation.  Plasmid sequence was obtained from Eurofins using 

the standard Sanger cycle sequencing method.  To use cloned plasmid as standard samples for 
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qPCR, PEG precipitated plasmid was serially diluted with a dilution buffer (5 ng/µl tRNA in Tris-

EDTA buffer, pH 8.0) from 108 through 101 copy/µL. 

3.10. Quantitative Polymerase Chain Reaction  

In comparison with samples of unknown “copies,” through PCR starting concentrations 

can be quantified.  qPCR was run using a homemade SYBR Green reaction mix containing 20 

mM Tris-HCl (pH 7.75), 50 mM KCl, 3 mM MgCl2, 0.5% Glycerol, 0.5% Tween-20, 0.5x SYBR 

Green-I (#S7563, Invirtogen), 0.2 mM dNTP mix (Takara Bio, Mountain View, CA) and 0.01 U/µL 

Ampli Taq Gold (Applied Biosystems, Thermo Fisher Scientific) with 0.2 µM each primer and 

1/25 volume of template.   Samples were briefly centrifuged and each sample was loaded onto 

a Hardshell PCR plate (#HSP9655, Bio-Rad) in triplicates of 15 µL each with Microseal ‘B’ seals 

(#MSB1001, Bio-Rad).  Thermocycler was set at two-step amplification and melting curve 

protocol (1 cycle at 95°C for 5 minutes; 40 cycles at 95°C for 15 seconds, optimal annealing 

temperature (see Table 1) for 45 seconds, plate read; 95°C for 10 seconds; melting curve 65°C 

to 95°C in 0.5°C increments, 5 seconds and plate read at each temperature; end).  All data and 

starting concentration calculations were generated using CFX Manager 3.1 software (Bio-Rad).  

For samples to be compared, cDNA synthesis has to be created at the same time, with the same 

RT master mix and run using the same qPCR master mix.   

3.11. Statistical Analysis 

 All statistical analysis was performed using JMP software by SAS Institute. Arcsin 

transformation was used for analyzing degranulation data sets. A distribution analysis was 

performed using a goodness of fit test to check for normality.  Parametric data were analyzed 
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by ANOVA followed by Dunnett’s test with control if ANOVA was positive.  Non-parametric data 

were analyzed using Kruskal-Wallis test followed by Steel method if Kruskal-Wallis test was 

positive. 

3.12. Neutrophil Isolation  

Kidneys were extracted from 5-6 fish per sample, pooled in a 50-mL tube containing 5 

mL of HBSSwo, and homogenized with a tissue grinder using 10-15 strokes. The obtained single 

cell suspension was filtered through a 40-µm nylon strainer and centrifuged for 15 minutes at 

250 x g at room temperature with no brake. The supernatant was discarded, and pellet 

resuspended in 6 mL of HBSS without calcium and magnesium, with phenol red (#21-021, 

Mediatech-Cellgro, Corning), 50 µl of that suspension was used for determination of total cell 

counts and cell viability by hemocytometer using a Trypan blue (TB; #17-92E, Lonza, Basal, 

Switzerland) exclusion method.  The suspension was laid over 5 ml of lymphocyte separation 

medium with the specific gravity of 1.078 g/mL (Lymphocyte separation media 1078, #25-072, 

Mediatech-Cellgro, Corning) in a 15-mL tube, and centrifuged for 30 min at 400 x g with no 

brake. Cells formed at the gradient interface were removed, resuspended in HBSSwo, and 

centrifuged for 15 minutes at 400 x g with no brake. Final cell suspension was prepared in 1 mL 

of HBSSwo and used for determination of total cell counts and cell viability by Trypan blue 

exclusion method. Finally, the appropriate number of cells was used for cytochemical staining 

and neutrophil degranulation (MPO) functional assay. 
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3.13. Neutrophil Degranulation Functional Assay 

 A degranulation assay, that measures myeloperoxidase (MPO) exocytosis from 

neutrophils primary granules (Palić, Andreasen, Menzel, & Roth, 2005), was performed after 

the particular CEC (or CEC’s mixture) treatment, on a day when all fish exposed to such a CEC 

were sacrificed, and their neutrophils isolated from anterior kidneys, as described in the 

Neutrophil isolation chapter.  The MPO assay was run in a 96-well flat-bottomed microtiter 

plates. Contaminant treatment groups consisted of the control, ultra-low-, low-, medium-, and 

high-contaminant concentrations. The MPO assay contained three different treatments of the 

same sample: control (cells lysed to assess complete enzyme presence in the sample), 

background (assess any background enzyme release without the stimulation; cells kept in  

Hank’s Balanced Salt Solution with calcium and magnesium without phenol red (HBSSw; #21-

023, Mediatech-Cellgro, Corning), and stimulated treatment (assessment of degranulation by a 

stimulation with calcium ionophore), each run in triplicates. The stimulated wells were loaded 

with 75 µL of HBSSw and 50 µl of 5 µg/mL calcium ionophore (#C7522, Sigma-Aldrich), 

background wells contained 125 µL of HBSSw, and control wells contained 125 µL of 0.02% 

hexadecyltrimethylammonium bromide (CTAB; #H5882, Sigma-Aldrich). Then, 25 µL of cells at 

the concentration of 2 x 10^7 cells/mL were added into each well. The plate was incubated at 

room temperature for 20 minutes. After incubation, 100 µL of room temperature 3,3’,5,5’-

tetramethylbenzidine (TMB) (#T4319, Sigma-Aldrich) was added to all wells, stopping the 

reaction after 2 minutes by adding 25 µL of 1 N sulfuric acid. The plate was centrifuged at 600 x 

g for 2 minutes. 200 µL of the supernatant from each well was transferred to a new 96-well 
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plate. Absorbance was read at 405 nm using a GeneMate microtiter plate spectrophotometer. 

The percent release of MPO was calculated using the following formula: 

% 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 =
(𝑂𝐷𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝑂𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑂𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑂𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 

3.14. Cytospin and Cytochemistry 

 Cells isolated as described in Neutrophil isolation chapter were diluted in HBSSwo with 

10% fetal bovine serum to 10^6 cells/mL. Two hundred µL of each sample was loaded into a 

cytospin column, with Shandon filter cards from Thermo Scientific.  Samples we spun in a 

Cytospin3 (Shendon, Thermo Scientific), at 500 rpm for 5 minutes. Slides were laid to dry for 30 

minutes before staining. Hemacolor staining kit from Harleco (#65044, Millipore) was used to 

stain the nucleus and cytoplasm of isolated cells for cell type differentiation, allowing for typical 

neutrophil’s lobulated nucleus morphology to be observed. Sudan Black B Staining System from 

Sigma-Aldrich (#380B-1KT) was used to stain primary granules containing MPO for neutrophil 

semi-quantification. Slides were analyzed under a light microscope at 1000 x for neutrophil 

differentiation; 100 counted cells on each stained slide. Cells were considered as neutrophils 

based on their multi-lobulated nucleus morphology (Hemacolor staining) or their granules 

stained black (Sudan Black staining). 
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Chapter 4: Results 

4.1. Defining Lymphoid Organ as a Neutrophil Source in Fathead Minnow 

 Preliminary experiments were performed in order to determine the type of the lymphoid 

organ that can be used as a source of neutrophils, and to establish a reproducible isolation 

procedure for obtaining the adequate number of viable neutrophils in fathead minnow.  

          Spleen and anterior kidney were considered as the candidate lymphoid organs. Neutrophil 

content was evaluated by Sudan black staining of cytospin preparation of cells, obtained from 

the spleen and kidney of fathead minnows via lymphoprep gradient purification.  Figure 1. 

shows that kidneys exhibited a significantly higher neutrophil purity of 62.8 ± 6.5 % compared 

to 10.5 ± 6.2 % obtained from the spleens.  Figure 2. shows a representative image of 

neutrophil, obtained either by staining with (A) hemacolor or (B) Sudan black post-gradient 

isolation. Typical neutrophil nucleus morphology, indented and/or lobulated, with a moderate 

nucleus to cytoplasm ratio, can be seen after the hemacolor staining of cytospin cell 

preparation (Figure 2.A), while brownish-black staining in the cytoplasm, specific for neutrophil 

granules, can be observed by Sudan black staining (Figure 2.B).   
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Figure 1. Neutrophil content (%) evaluated in cytospin preparation of cells post-isolation of 

kidney and splenic cells of fathead minnow. Neutrophils were detected using Sudan black 

staining, with a sample size of n=5 for both organs. Statistical significance represented by *, 

p=0.01. 

 

 

Figure 2. Neutrophils of fathead minnow obtained from the kidney by staining with (A) 

hemacolor and (B) Sudan black (1000x magnification). 

 

          After figuring out the neutrophil content in cytospin preparation of lymphoid organs of 

fathead minnows, the expression of mpo gene, a crucial neutrophil-specific gene of interest in 

our study, was assessed in the kidneys versus spleens. The results, shown in Figure 3., point out 

that the anterior kidney of fathead minnows has significantly higher mpo mRNA abundance 

compared to the spleen, confirming the anterior kidney of fathead minnow as the optimal 

lymphoid organ for assessing neutrophils.   
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Figure 3.  mpo mRNA abundance in kidneys and spleens of fathead minnows. Sample size of 

kidney and spleen groups were six and five, respectively; mpo mRNA abundance was 

normalized using gene expression of hprt1. Statistical significance (p=0.003) represented by *.  

 

4.2. Neutrophil Isolation from Kidneys of Fathead Minnow 

 Next question was whether neutrophil isolation from anterior kidney would deliver 

consistent, reproducible results regarding the number, viability and purity of neutrophils, and 

whether one kidney (obtained from a single fish) would provide sufficient number of 

neutrophils for further testing. The consistently visible layer of cells on the gradient, in 

conjunction with the cell numbers, were obtainable by pooling the kidneys from six fish. The 

results in Figure 4. were obtained from eight experiments, with six kidneys pooled per sample; 

the kidney cell suspension pre-gradient averaged 61.7 ± 12.2 x 106 cells, and cell count 

recovered post-gradient averaged 23.3 ± 4.2 x 106 cells (Figure 4A). These cells recovered post-

gradient exhibited 91.1 ± 3.8 % viability and 62.7 ± 3.9 % neutrophil purity (Figure 4B). 
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Figure 4. Assessment of neutrophil isolation quality: cell counts, cell viability and neutrophil 

yield. (A) Cell counts obtained before the gradient (Pre-gradient) and after the gradient (Post-

gradient) by hemocytometer and 0.1% trypan blue staining. (B) Cell viability and neutrophil 

purity evaluated post-gradient by 0.1% trypan blue and Sudan black staining, respectively; 

expressed as percentage. Sample size of eight for each assessment.  

 

4.3. Myeloperoxidase Assay for Assessment of Neutrophil Function 

            Further experiments were performed in order to establish an assay for evaluation of 

neutrophil function. A rapid, direct myeloperoxidase (MPO) assay (originally developed by Palić 

et al., 2005) was considered. Each individual experimental trial (labeled from 1 to 8) was 

performed on isolated neutrophils obtained from six pooled kidneys of non-treated fathead 

minnows (Figure 5.). The calculated percentage of degranulation showed a range from 27.4 % 

to 37.2 % among those eight trials, with an average degranulation of 31.5 ± 4.7 % (Figure 5). 
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Figure 5. Preliminary myeloperoxidase (MPO) functional assay trials presented as percentage of 

degranulation. Each MPO assay (labeled from 1 to 8) was performed on neutrophils isolated 

from six pooled fathead minnow kidneys; last column represents an average degranulation 

percentage ± SEM of 8 trials. 

   

The effects of exposures to estrone and BPA, known xenoestrogen, were tested in MPO 

assay. Single cell suspensions from kidneys, obtained after the purification, exhibited 60.3 ± 2.7 

% and 67.4 ± 3.5 % neutrophil purity, with 97.8 ± 0.9 % and 96.8 ± 1.6 % cell viability for estrone 

and BPA exposures, respectively. Exposures to estrone showed a significant increase in 

degranulation compared to the control in the high-concentration (p=0.0084) treatment groups, 

while BPA exposures showed an increase of degranulation in the low- (p=0.0041) and high-

concentration (p=0.0275) treatment groups, compared to the control. 

 

 



35 
 

 

 

Figure 6. The effect of estrogenic compounds on neutrophil degranulation isolated from 

fathead minnow kidneys. (A) Estrone and (B) bisphenol A(BPA) exposures to kidneys. Sample 

size per treatment group for estrone and BPA MPO assay are pseudo-replicates of three. 

Significant difference from control (Estrone; High-concentration, p=0.0084)(BPA; Low-

concentration, p=0.0041; High-concentration, p=0.0275) represented by *. 

 

4.4. Effects of Urban CEC Exposures on Neutrophil Function and mpo mRNA Abundance 

The effects of urban CECs on fathead minnow neutrophils were tested by assessing 

neutrophil function and mpo mRNA abundance in anterior kidneys of fathead minnows acutely 

exposed over the period of 5 days to the following drugs: 5-methyl-1H-benzotriazole, 

desvenlafaxine, fexofenadine, fluoranthene, ibuprofen, metformin, sulfamethoxazole, triclosan 

and a mixture of all the individual drugs (urban mixture). The anterior kidney obtained from 

each exposed and control fish was divided in a such way that about 1/10 of a sample was 

prepared for mpo mRNA abundance assessment, while the other 9/10 was pooled with other 

kidney samples from the same experimental group and used for MPO functional assay 

(degranulation assay). Thus, all the results for mpo mRNA abundance were obtained from the 

individual fish and then summarized, while results of MPO assays were obtained from a 5-6 

anterior kidney pooled samples and assessed in a triplicate (pseudo-triplicates).   
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4.4.1. 5-methyl-1H-benzotriazole 

The kidney cell suspensions obtained after the purification via lymphoprep gradient 

exhibited 71.6 ± 3.6% neutrophil purity and 94.5 ± 3.7% cell viability. Exposures to 5-methyl-1H-

benzotriazole of different concentrations showed a significant decrease in neutrophil 

degranulation for the medium-concentration treatment (p<0.001) compared to the control. 

There was no significance found for mpo mRNA abundance in the kidneys of exposed fish.  

 

Figure 7. The effects of 5-methyl-1H-benzotriazole exposures on kidney neutrophils of fathead 

minnows. (A) Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per 

treatment group for MPO assay is a pseudo-replicate of three. Sample size per treatment group 

for mpo mRNA abundance is n=6, except for ultra-low (n=5) and medium treatment group 

(n=5); mpo mRNA abundance was normalized using the geometric mean of mRNA abundances 

of hprt1 and tbp. Significant difference from control (p<0.001) represented by *.  

 

4.4.2. Desvenlafaxine 

Single cell suspensions from kidneys obtained after the purification exhibited 73.6 ± 3.4 

% neutrophil purity and 95.4 ± 1.3 % cell viability. Desvenlafaxine exposures of different 

concentrations showed no significant difference in neutrophil degranulation when compared to 

the controls. The mpo mRNA abundance was not different in the kidneys of exposed and 

control fish.  
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Figure 8. The effects of desvenlafaxine exposures on kidney neutrophils of fathead minnows. 

(A) Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment 

group for MPO assay is a pseudo-replicate of three. Sample size per treatment group for mpo 

mRNA abundance is n=6, except for low (n=5) and medium treatment group (n=5); mpo mRNA 

abundance was normalized using the geometric mean of mRNA abundance of rpl8 and hprt1. 

 

4.4.3. Fexofenadine 

The kidney cell suspensions, collected after the neutrophil isolation from kidneys in the 

experiments where fish was exposed to fexofenadine, exhibited 73.5 ± 2.9 % neutrophil purity 

and 96.1 ± 2.0 % cell viability. Exposures to different concentrations of fexofenadine showed a 

significant increase in neutrophil degranulation for the low-concentration (p=0.0094) and high- 

concentration treatment (p=0.011), compared to the control. Low-concentration treatment 

group also showed a significant increase compared to control (p=0.0001) for mpo mRNA 

abundance in the kidneys of exposed fish.  
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Figure 9. The effects of fexofenadine exposures on kidney neutrophils of fathead minnows. (A) 

Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment group 

for MPO assay is a pseudo-replicate of three, except for control (n=2). Sample size per 

treatment group for mpo mRNA abundance is n=6, except for low-dose group (n=5). mpo mRNA 

abundance was normalized using the geometric mean of mRNA abundance of hprt1 and tbp. 

Significant difference from control (MPO; Low-concentration, p=0.0094; High-concentration, 

p=0.0001) (mpo; Low-concentration, p=0.005) represented by *. 

 

4.4.4. Fluoranthene 

The purified kidney cell suspensions, obtained from fish exposed to fluoranthene and 

their respective controls, exhibited 96.2 ± 1.9 % cell viability. The purity of samples was not 

determined in this experiment. Exposures to fluoranthene of different concentrations showed 

no significant difference in neutrophil degranulation compared to the control. Due to collection 

error, mpo mRNA abundance could not be assessed. 
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Figure 10. The effects of fluoranthene exposures on kidney neutrophils of fathead minnows on 

neutrophil degranulation. Sample size per treatment group for MPO assay is pseudo-replicate 

of three.  

 

4.4.5. Ibuprofen 

Isolated kidney neutrophils in this exposure group exhibited 73.3 ± 2.2 % purity and 98.0 

± 0.7 % viability. Different concentration exposures of ibuprofen showed a significant increase 

in neutrophil degranulation for the low treatment (p=0.0059) and high treatment (p=0.0191), 

compared to the control. The mpo mRNA abundance in the kidneys of ibuprofen-exposed fish 

did not show any significant differences when compared to the control.  
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Figure 11. The effects of ibuprofen exposures on kidney neutrophils of fathead minnows. (A) 

Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment group 

for MPO assay is a pseudo-replicate of three, except for control (n=2). Sample size per 

treatment group for mpo mRNA abundance is n=6, except for control (n=12) and ultra-low 

treatment group (n=5); mpo mRNA abundance was normalized using the geometric mean of 

mRNA abundance of rpl8 and tbp. Significant difference from control (MPO; Low-concentration, 

p=0.0059; High-concentration, p=0.0191) represented by *.  

 

4.4.6. Metformin 

The purified kidney cell suspensions, obtained from fish exposed to metformin and their 

respective controls, exhibited 97.0 ± 1.8 % cell viability. Neutrophil purity was not assessed for 

this dataset. Exposures to metformin of different concentrations showed no significance when 

compared to the control for neutrophil degranulation. There was no significance found in the 

mpo mRNA abundance in the kidneys of exposed fish. 
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Figure 12. The effects of metformin exposures on kidney neutrophils of fathead minnows. (A) 
Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment group 
for MPO assay is pseudo-replicate of three. Sample size per treatment group for mpo mRNA 
abundance is n=6, except for control (n=16); mpo mRNA abundance was normalized using 
mRNA abundance of rpl8.  
 
4.4.7. Sulfamethoxazole 

Sulfamethoxazole exposures of different concentrations, when compared to the control, 

showed a significant difference in high treatment group (p=0.0168) for the neutrophil 

functional assays. Neutrophil purity was 72.1 ± 2.4 % and viability 97.1 ± 1.0 %. There was also 

no significant difference found in the mpo mRNA abundance in the kidneys of exposed fish 

compared to controls. 
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Figure 13. The effects of sulfamethoxazole exposures on kidney neutrophils of fathead 

minnows. (A) Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per 

treatment group for MPO assay is pseudo-replicate of three, except for ultra-low (n=2) and 

medium treatments (n=2). Sample size per treatment group for mpo mRNA abundance is n=6, 

except for low (n=4) and high treatment group (n=5); mpo mRNA abundance was normalized 

using mRNA abundance of tbp. Significant difference from control (MPO; High-concentration, 

p=0.0168) represented by *. 

 

4.4.8. Triclosan 

The kidney neutrophils, obtained after the isolation from the kidney cell suspensions, 

exhibited 70.3 ± 5.0 % neutrophil purity and 96.9 ± 3.0 % cell viability. MPO assays of fish 

neutrophils exposed to different concentrations of triclosan were not different from controls. 

No significant difference was found in the mpo mRNA abundance in the kidneys of exposed fish 

compared to controls. 
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Figure 14. The effects of triclosan exposures on kidney neutrophils of fathead minnows. (A) 

Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment group 

for MPO assay is pseudo-replicate of three. Sample size per treatment group for mpo mRNA 

abundance is n=6, except for medium-dose (n=5); mpo mRNA abundance was normalized using 

the geometric mean of mRNA abundance of tbp.  

 

4.4.9. Urban mixture 

Kidney single cell suspensions exhibited 76.0 ± 3.0 % neutrophil purity and 97.1 ± 1.2 % 

cell viability post purification over the gradient. Out of all urban mixtures exposures of different 

concentrations, only the ultra-low treatment group showed a significant increase (p=0.0062) in 

MPO assay compared to the control. There was no significant difference found in the mpo 

mRNA abundance in the kidneys of exposed fish.  
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Figure 15. The effects of urban mixture exposures on kidney neutrophils of fathead minnows. 

(A) Degranulation and (B) mpo mRNA abundance in the kidneys. Sample size per treatment 

group for MPO assay is pseudo-replicate of three. Sample size per treatment group for mpo 

mRNA abundance is n=6, except for control (n=12) and ultra-low treatment group (n=5); mpo 

mRNA abundance was normalized using the geometric mean of mRNA abundance of rpl8 and 

tbp. Significant difference from control (p=0.0062) represented by *. 

 

In conclusion, this study found, based on the high number of neutrophils detected by 

Sudan black staining, as well as by high mRNA abundance of neutrophil-specific mpo gene, that 

the anterior kidney is the optimal lymphoid organ for assessing neutrophils in fathead 

minnows. Preliminary experiments of neutrophil isolation showed desirable cell counts, viability 

and neutrophil purity post lymphoprep gradient separation. The consistent results of neutrophil 

degranulation were obtained by MPO assay, validating its use in assessing neutrophil function. 

Although not all intended PCR primers were usable (nox2 and ela2), mpo PCR primer set was 

successfully confirmed for quantification of mpo mRNA abundance. These test methods were 

then used to assess the effects of exposures to a complex urban mixture, as well as the 

individual compounds it is comprised of. 

Exposures to particular concentrations of urban CEC mixture, and some of its individual 

compounds, such as fexofenadine, ibuprofen, and sulfamethoxazole, increased degranulation 
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of neutrophils, while exposure to 5-methyl-1H-benzotriazole decreased it. Interestingly, only 

one drug – fexofenadine, used in medium concentration, increased mRNA abundance of mpo 

compared to the control group. Following drugs, desvenlafaxine, fluoranthene, metformin and 

triclosan, did not affect either neutrophil function nor mpo mRNA abundance. There were no 

dose-response changes observed in MPO assays/mpo mRNA abundance for any of the tested 

urban CECs. Fexofenadine was the only drug that induced both an increase in degranulation as 

well as mpo mRNA abundance. The results obtained in our study do not support any of the 

proposed hypotheses.  

  



46 
 

 

Chapter 5: Discussion 

5.1 General Discussion 

The progressive conversion of land use into urbanized areas brings a larger concern for 

investigation of fresh water contaminations.  CECs have already been found at alarming 

concentrations around the Great Lakes’ tributaries (Elliott et al., 2017), and North America’s 

river systems (Bradley et al., 2017). Many of these compounds found in urbanized runoff, may 

have effects on local organisms that have yet to be studied. Common use of pharmaceuticals, 

developed to maintain a biologically active state, become concentrated and expelled into rivers 

(Kostich et al., 2011).  

To assess how urbanized runoff could potentially affect the innate immune system of 

aquatic organism, specifically the neutrophils of a model organism, the fathead minnow, 

research tools for studying neutrophils needed to be developed. Firstly, it was asked which 

lymphoid organ was the optimal organ for assessing neutrophils, the “first responder” and most 

abundant cell of the innate immune system. After the optimal lymphoid organ was addressed, 

an assay for a reliable assessment of neutrophil function needed to be developed and 

optimized. To evaluate proteins involved in neutrophils ability to defend its host from foreign 

entities, PCR primers were optimized for the evaluation of granule-specific proteins. Once these 

research tools were optimized, they were used to assess the effects of urban mixtures, and 

their individual compounds, on neutrophil function (degranulation) and mRNA abundance of 

granule-specific genes.  
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Cells isolated from the anterior kidney of fathead minnow showed a tenfold increase in 

mRNA abundance of neutrophil-specific gene mpo compared to spleen.  Also, kidneys exhibited 

significantly higher neutrophil purity in comparison to spleens. These results confirmed that the 

anterior kidney is the optimal lymphoid organ for an assessment of neutrophils in fathead 

minnows. Our results agree with previously published data regarding the expression level of 

mpo (Jovanović et al., 2011) as well as the high neutrophil content  in the anterior kidney of 

fathead minnow (Palić, Andreasen, Frank, Menzel, & Roth, 2005). 

Preliminary assessment of neutrophil isolation from anterior kidney of fathead 

minnows, based on the procedure developed by Palić, Andreasen, Frank, Menzel, & Roth 

showed consistent results for cell viability and neutrophil purity (2005). The purity was 

evaluated by MPO-specific Sudan black staining of neutrophils, isolated using a gradient and 

processed by cytospin. This study showed a post-gradient cell viability of 91.1 ± 3.8% and a 

neutrophil purity of 62.7 ± 3.9%, which is similar to previously published data of 95.4 ± 1.1% cell 

viability and 72.0 ± 7.9% purity (Palić, Andreasen, Frank, et al., 2005). Our intention was to 

obtain a sufficient number of neutrophils post isolation from an anterior kidney of a single fish. 

However, we were not able to obtain it. Thus, six kidneys were pooled in order to get the 

number of cells necessary for performing a degranulation assay, confirming Palic’s previous 

observation (Palić, Andreasen, Menzel, et al., 2005).  Using the calcium ionophore method for 

stimulation of control (not-treated) fathead minnow neutrophils, we obtained 31.5% 

degranulation, compared to 47.7% observed by Palić, Andreasen, Menzel, & Roth (2005). 
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Overall, preliminary results showed that the protocols developed to isolate and assess 

neutrophil function provided reproducible results comparable to published ones. 

Women are thought to have a more active immune system, which can lead to a stronger 

immune system (response), as well as to a higher prevalence of autoimmune diseases 

(Jacobson, Gange, Rose, & Graham, 1997). Estrogen is often linked to this reasoning. Estrogen 

has been shown to increase neutrophil infiltration (Chung et al., 2017; Plackett, Deburghraeve, 

Palmer, Gamelli, & Kovacs, 2016), recruitment (Robinson, Hall, Nilles, Bream, & Klein, 2014) and 

degranulation (Chiang, Parthasarathy, & Santanam, 2004) in mammals. As part of our 

preliminary study in control not-treated fathead minnow, not only did estrone show a 

significant increase in neutrophil degranulation, but the xenoestrogen BPA as well. This can give 

some confidence when comparing neutrophil function in fish with published findings on 

neutrophil function in mammals. 

 Due to the limitations of sample collection and use of pseudo-replicates, only one 

conclusion can be made from the results of the neutrophil myeloperoxidase assay. Similar 

protocols used for bovine (Quade & Roth, 1997) and human neutrophils (Mengazzi, Zabucchi, 

Knowles, Cramer, & Patriarca, 1992) allowed for the use of total MPO, based on the assumption 

that it reflected the total cell counts of a particular sample.  However, in our case, total MPO 

between the treatment groups could not be assessed, as a single anterior kidney was always 

divided between the sample for RNA extraction and a sample for neutrophil isolation. In order 

to preserve the cell viability for MPO assay, the kidneys were not weighted. Thus, the total cells 

per kidney could not be accurately obtained. 
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Selected PCR primers for assessing neutrophils were chosen based on a variety of 

variables. Ideally, the selected genes not only had to be specific for neutrophils, but also have 

published PCR primers. Jovanovic & Palic developed an assortment of PCR primers for 

evaluation of general immune proteins, as well as neutrophil-specific proteins of fathead 

minnows, such as myeloperoxidase, NADPH oxidase and elastase 2 (neutrophil elastase) (2011).  

These three target genes were selected for our study, as they represent neutrophil’s granules-

specific genes.  Myeloperoxidase produces the high amount of ROSs, thus assessing its 

expression could give insight on how environmental pollutants affect the mRNA abundance of 

gene that encodes such an important enzyme involved in ROS production. In addition, mpo 

mRNA abundance was assessed in parallel with the neutrophil functional assay, that evaluated 

degranulation based on released MPO. Although MPO assay (degranulation) and mpo mRNA 

abundance were run in parallel, the analysis of each test is exclusive and cannot be connected.  

Literature shows that in mpo-deficient humans, degranulation is significantly increased in the 

neutrophils collected and isolated from healthy adults (Dri, Cramer, Menegazzi, & Patriarca, 

1985). NADPH oxidase fuels myeloperoxidase’s ROS production by producing hydrogen 

peroxide, which alone is used by neutrophils to degrade exogenous entities. Elastase 2, one of 

the three proteases produced by neutrophils, is used to kill bacteria, degrade biological toxins 

and convert chemokines to more potent chemoattractants (Pham, 2006). Although the PCR 

primer sequences for all the mentioned genes were published, only one PCR primer set turned 

out to be usable under our study laboratory condition. During initial development and testing 

of PCR primers for NADPH oxidase, more than one product was produced, making this primer 



50 
 

 

set not usable for quantification. Elastase 2 PCR primer pair, during initial testing, did not 

demonstrate high enough mRNA abundance of elastase 2 to allow a reliable quantification.  

This shows that even published PRC primers need to be tested for reproducibility. Low mRNA 

abundance of elastase 2 compared to mpo mRNA abundance could suggest that 

myeloperoxidase is expressed at higher level than elastase 2 in neutrophils of fathead minnows. 

 Although at the start of this study there were three possible genes of interest, involved 

in degranulation or the elimination of pathogens, only one (mpo) gene could be successfully 

assessed. Gene mRNA abundance of mpo could be different because of two possibilities. Firstly, 

an increase or decrease in mpo mRNA abundance could be observed from a change in cell 

population in the tissue. Each CEC treatment has the potential to increase or decrease 

neutrophil numbers either directly or indirectly through other physiological means, affecting 

the total presence of mpo mRNA. The second scenario could be that the CEC treatment affects 

the mRNA abundance of mpo in an existing neutrophil population, without perturbation in cell 

numbers. If both scenarios were to happen simultaneously, the result could have masked their 

individual effects.  

5.2. Urban CEC Exposures 

 When studying the effects of CECs’ exposures, no significant difference was found for 

either neutrophil function or mpo mRNA abundance in desvenlafaxine, fluoranthene, 

metformin and triclosan exposures compared to controls.  

             The function of desvenlafaxine is to increase the amount of serotonin and epinephrine 

in a biological system. Serotonin, often linked to the central nervous system as a 
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neurotransmitter, controlling mood, sleep and appetite, has a second life as a peripheral 

hormone (Walther & Bader, 2003). One of the leading theories is that serotonin interrupts the 

function of MPO, acting as a scavenger of ROSs (Huether, Fettkötter, Keilhoff, & Wolf, 1995). 

However, serotonin inhibition was reported in 2010 to only be seen in lymphocytes, not in 

neutrophil isolates (Prachařová, Okénková, Lojek, & Číž, 2010).  

 Fluoranthene is an AhR-active compound. Besides the direct metabolism of xenobiotics, 

AhRs are involved in immune responses. AhR-deficient mice have a reduced rate of cell 

proliferation and different morphology (Ma & Whitlock, 1996). Many studies on AhRs and 

neutrophils do not show a direct response, but suggest an indirect response through other 

cells’ AhR response. During influenza infection, a TCDD treatment showed neutrophilia in the 

lungs of mice, but the mechanism of AhR-mediated neutrophilia did not involve elevated levels 

of neutrophil chemoattractants, adhesion molecules, delayed apoptosis, or vascular damage 

(Teske, Bohn, Hogaboam, & Lawrence, 2008).  

 Metformin helps control type 2 diabetes through decreasing production of glucose by 

the liver, non-competitively inhibiting the redox shuttle enzyme mitochondrial 

glycerophosphate dehydrogenase (Madiraju et al., 2014). Metformin increases activation of 

AMPK, which has been shown to have anti-inflammatory effects through inhibition of pro-

inflammatory cytokines and transcription factors (Cameron et al., 2016).  

             Originally used as an additive in medical devices for its ability to inhibit bacterial growth 

in wounds (Ming, Nichols, & Rothenburger, 2007), triclosan is now used mainly in consumer 

products. Although triclosan has been shown to be tolerated by humans (DeSalva, Kong, & Lin, 
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1989), there has been an association with triclosan levels in urine and aero-allergenic/food 

sensitization (Savage, Matsui, Wood, & Keet, 2012). 

5.2.1. 5-methyl-1H-benzotriazole 

 Exposure of fathead minnows to a medium concentration of 5-methyl-1H-benzotriazole 

(M1HB) showed an inhibitory effect on neutrophil degranulation. No significant differences 

were found following M1HB exposure for mpo mRNA abundance between the treatment 

groups and controls.  

 M1HB is an anti-icing agent used by commercial airlines, and an industrial anti-corrosive 

used for copper and brass. Literature on M1HB effects on the immune system is lacking; in 

respect to the innate immune system, no citation could be found. Some speculations can be 

made from the research linking HIV-1 reactivation by benzotriazole treatment through the 

inactivation of STAT5 (Bosque et al., 2017). STAT5 is a transcription factor, activated by cytokine 

signal transduction involved in activation of regulatory genes controlling cell growth/death, 

proliferation and differentiation. In respect to neutrophils, STAT5 is responsible for the 

maturation and differentiation of granulocyte progenitor cells. In STAT5-/- mice, the mice were 

unable to maintain homeostasis of neutrophils, resulting in neutrophilia (Fiévez et al., 2007). In 

our case, it could be speculated that M1HB affected maturation of neutrophils; these 

“immature granulocytes” would not be able to release MPO post stimulation of degranulation. 

Since MPO is produced at all stages of neutrophil maturation (Naeim et al., 2013), this would 

add to the “total” MPO in the testing wells, and would have no effect on neutrophil purity 

observed by Sudan black staining.   
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5.2.2. Fexofenadine 

 Post fexofenadine exposure, medium and high treatment groups showed a significant 

increase in degranulation compared to the control group. The medium treatment group also 

showed a significant increase in mpo mRNA abundance compared to the control group.  

              Fexofenadine is a commonly used anti-histamine, known as H1-receptor antagonist, 

which acts by blocking histamine binding to H1 receptor. By supressing histamine-induced 

stimulation through H1 receptor, fexofenadine inhibits the allergic response caused by 

allergens. Blocking histamine interaction with its H1 receptor has many effects on the immune 

system, such as  decreasing migration of immune cells and cytokine production (Shimizu et al., 

2004). In respect to neutrophils, Benbarek et al. found that supraphysiological doses of 

histamine showed an increase in production of superoxide anion and/or hydroxyl radicals in 

horse neutrophils, while H1-receptor antagonists decreased it (1999). Azelastine, a second 

generation H1-antagonist, showed a decrease in production of three ROSs, superoxide anion 

radical, hydrogen peroxide and hydroxyl radical, in human neutrophils (Akamatsu, Miyachi, 

Asada, & Niwa, 1991). Studies have shown an inhibitory effect of H1-antagonist on oxidative 

burst on isolated neutrophils of humans (Akamatsu et al., 1991; Mikawa et al., 1999), but 

degranulation has not been assessed. Besides these inhibitory effects of H1-antagonist, other 

studies have shown controversial data regarding the effects of histamine and histamine 

antagonist inhibition on neutrophil function (Číž & Lojek, 2013), even suggesting that certain 

H1-inhibitors interact with intracellular increase of calcium (Mikawa et al., 1999). Our data 

appear to agree with these studies. 
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5.2.3. Ibuprofen 

Low- and high-concentration treatment ibuprofen groups showed a significant increase 

in degranulation compared to the control. There was no significant difference found between 

treatment groups for mpo mRNA abundance. 

Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used to treat inflammation 

through the inhibition of prostaglandin production by decreasing cyclooxygenase activity. An 

increase in prostaglandins leads to increase in blood flow and white blood cell recruitment to 

afflicted tissues. It was suggested that NSAIDs reduce inflammation by inhibiting neutrophil 

activation (Altman, 1990). Another NSAID, piroxicam, inhibited three functions of human 

neutrophils in vitro, aggregation, lysosomal enzyme release and superoxide production 

(Abramson S, 1989). In the same study, ibuprofen exhibited an inhibition of neutrophil 

aggregation and lysosomal enzyme release. Although all NSAIDs share the commonality of 

inhibiting prostaglandin production, by individual compounds showing different results of 

neutrophil inhibition supports the claim of non-prostaglandin mechanisms of anti-inflammatory 

effects.  

Described effects of ibuprofen on neutrophil function have been researched in 

mammals. The finding in this study, about an increase of neutrophil function, does not support 

data obtained in mammals about its inhibition. However, direct comparison is impossible, not 

only because of different species that were studied, but also because of assessment of different 

neutrophil functions.  
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5.2.4. Sulfamethoxazole 

 The high-concentration exposure group of sulfamethoxazole showed a significant 

increase in degranulation compared to the control. There was no significant difference found 

between treatment groups for mpo mRNA abundance.  

Sulfamethoxazole is a bacteriostatic antibiotic commonly used for urinary tract 

infections and bronchitis, which prevents the growth of gram negative and positive bacteria by 

interfering with the bacteria’s ability to synthesize folic acid and DNA. 

Very few studies have investigated sulfamethoxazole effects on the immune system in 

any organism. Sulfamethoxazole is often paired with trimethoprim, another antibiotic, in 

medical practice and in research studies. Trimethoprim is suggested to be responsible for the 

found effects (Bjornson, McIntyre, Harvey, & Tauber, 1986). Sulfamethoxazole has been shown 

to inhibit neutrophil hydrogen peroxide production in humans, without affecting other 

neutrophil functions (Anderson, Grabow, Oosthuizen, Theron, & Van Rensburg, 1980).  

5.2.5. Urban mixture 

 As stated at the beginning of the discussion chapter, CECs are being found at alarming 

rates in aquatic environments. Although testing the individual compounds of the environmental 

mixture is useful, it is known that these CECs exist together in a particular environment and that 

they interact in a complex way (Binderup et al., 2003). The urban mixture, which contained all 

the individual compounds at four different concentrations, was assessed in this study. The 

exposure to urban mixture showed a significant increase in degranulation for the ultra-low 

treatment group when compared to the control. No significant difference was found for mpo 
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mRNA abundance.  Of all the significant effects on neutrophil function observed in this study, 

beside BTA, there is a common trend of increased degranulation in neutrophils of fathead 

minnows. The mixture of these compounds does not seem to interact in a way that biologically 

amplifies the effects of individual chemicals.  

5.3. Adverse Outcome Pathways 

 Following the trend of a statistically significant increase in degranulation post CEC 

exposures, this change in neutrophil function could lead to generally compromised health 

status of the organism being affected. Upon stimulation of neutrophil degranulation, pro-

inflammatory cytokines are released alongside the classical granules in preformed, distinct 

secretory vesicles (Pellmé et al., 2006). Pro-inflammatory cytokines IL-6, IL-12, and CXCL2 are 

suggested to be stored within tertiary granules (Denkers, Del Rio, & Bennouna, 2003). Not only 

do neutrophil granule contents protect the host from pathogens, but can also cause oxidative 

damage to surrounding tissues. Damaging surrounding tissues, specifically epithelial cells, can 

cause those cells to release pro-inflammatory cytokines (Stadnyk, 1994), escalating the 

inflammatory process. Pairing indirect oxidative damage with cytokine production from 

neutrophils, an increase in degranulation could lead to increased acute or chronic 

inflammation. Inversely, decreasing neutrophil function may decreases inflammation, yet it is 

equally as threating to the host. A decrease in degranulation can be compared to the human 

diseases, Chediak-Higashi syndrome (CHS) and neutrophil-specific granule deficiency (SGD). As 

neutrophils are mainly responsible for the initial clearance of pathogens and debris, it is not 

surprising that CHS and SGD drastically increase the risk of infection of afflicted host (Kaplan, De 
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Domenico, & Ward, 2008; McIlwaine, Parker, Sandilands, Gallipoli, & Leach, 2013). The immune 

system is a finely balanced system; a disturbance in this balance, by increasing or decreasing 

neutrophil function, can be catastrophic to the host. 
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Chapter 6: Conclusion 

 Disturbing neutrophil function through urban CEC exposure could have potentially 

harmful effects on aquatic organisms. Even though exposures to these urban compounds in our 

experimental setting lasted only 96 hours, a significant increase in degranulation was found in 

the preliminary experiments using exposures to particular concentrations of estrogenic 

compounds (estrone and BPA) as well as urban CECs, such as, ibuprofen, sulfamethoxazole and 

the urban mixture. Fexofenadine exposure showed a significant increase in both degranulation 

and mpo mRNA abundance. BTA was the only CEC to show a decrease in degranulation.  Finding 

significant effects on degranulation and mpo mRNA abundance in fish acutely exposed to 

pharmaceuticals suggest that functional and gene expression studies of MPO might serve as an 

early endpoint for evaluation of CECs’ effects on neutrophils of fathead minnows. 

Immunotoxicology in fish is a relatively new field of study and is rarely used in 

ecotoxicology risk assessments. With the immune system being a diverse, sophisticated 

network, present in almost all tissues, the immune system is exposed to exogenous chemicals 

as much or even more than most other systems of an organism. One of the main challenges of 

immunotoxicology is how to assess toxicants ability to stimulate or inhibit immune function, 

and if these effects even have adverse outcomes. As of now, there is no aquatic 

immunotoxicology tests that shows a response to all chemicals that shows an effect on 

different aspects of the immune system (Rehberger, 2017). There are still major gaps in the 

assessment of toxicants on immune function, concealing the larger picture. With potentially 
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toxic chemicals being found in aquatic systems at higher concentrations, assessing immune 

function should be a focus for future ecotoxicology studies. 
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Appendix 

Table A.1. Compound classes and their environmentally relevant concentrations. 

Compound Class Sub-class 
Environmentally 

relevant concentration 
(ng/L) 

5-methyl-1H-
benzotriazole 

industrial AhR active 6680 

Bisphenol A plasticizer ER active 600 

Desvenlafaxine pharmaceutical Antidepressant 583 

Estrone pharmaceutical ER active 24 

Fexofenadine pharmaceutical antihistamine 1,000 

Metformin pharmaceutical Antidiabetic 1,210 

Sulfamethoxazole pharmaceutical antibiotic 559 

Fluoranthene PAH AhR active 0.1 

Triclosan 
personal care 

products 
Antibacterial 0.5 

Ibuprofen pharmaceutical Anti-inflammatory 440 
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