
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

12-2022

Effective Detection of Local Languages for Tourists Based on Effective Detection of Local Languages for Tourists Based on

Surrounding Features Surrounding Features

Tobenna Eze

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Eze, Tobenna, "Effective Detection of Local Languages for Tourists Based on Surrounding Features"
(2022). Culminating Projects in Computer Science and Information Technology. 40.
https://repository.stcloudstate.edu/csit_etds/40

This Starred Paper is brought to you for free and open access by the Department of Computer Science and
Information Technology at The Repository at St. Cloud State. It has been accepted for inclusion in Culminating
Projects in Computer Science and Information Technology by an authorized administrator of The Repository at St.
Cloud State. For more information, please contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/40?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F40&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Effective Detection of Local Languages for Tourists Based on Surrounding Features

by

Tobenna Eze

A Starred Paper

Submitted to the Graduate Faculty of

Saint Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Computer Science

December, 2022

Starred Paper Committee:
Maninder Singh, Chairperson

Mark Petzold
Shakour Abuzneid

 2
Abstract

The tourism industry is a trillion-dollar industry with many governments investing heavily in
making their countries attractive enough to entice potential visitors. People engage in tourism
due to different reasons which could range from business, education, leisure, medical or
ancestral reasons. Communication between intending visitors and locals is essential, given the
non-homogeneity that occurs across cultures and borders. In this paper, we focus on
developing a cross-platform mobile application that listens to surrounding conversations, is
able to pick certain keywords, automatically switch to the local language of its location and
then offer translation capabilities to facilitate conversations. To implement this, we depend on
the Google translate API for the translation capabilities of the application, starting with the
English language as our base language. To provide the input (speech) for translation, we solely
employ speech recognition software using the Speech-to-Text package available on Flutter. The
output with the correct pronunciation (and local accent) of the translation is done with the
Text-to-Speech package. If the application does not recognize any keywords, the local language
can be determined using the geographical parameters of the user. Finally, we utilize the cross-
platform competence of the Flutter software development kit and the Dart programming
language to build the application.

 3
Acknowledgement

I would like to sincerely thank my advisor Dr. Maninder Singh, for his guidance,

mentorship, and whose expertise in the subject matter provided clarity for me and helped

make this work a reality. I would like to express my immense gratitude to the members of the

committee, Dr. Mark Petzold and Dr. Shakour Abuzneid, whose input and positive feedback

contributed a great deal to achieving this work.

A special thanks goes to the Dean of the faculty of Computer Science and Information

Technology (CSIT), Dr. Ramnath Sarnath, and every faculty member for their contributions to

my academic development and competence. I would also like to extend my gratitude to Mr.

Clifford Moran, for his continuous and invaluable help throughout the entirety of my program

with registration of classes, scheduling meetings etc.

Finally, I also want to thank my parents, Mr. Nnaemeka and Dr. Nkechi Eze for their

continuous prayers, support, and words of encouragement towards my success and goals. I also

want to thank my friends for their help in completing this work timely.

 4
Table of Contents

Page

List of Figures .. 7

List of Tables ... 9

Chapter

1. Introduction .. 10

1.1 Overview .. 10

1.2 Problem Statement .. 11

1.3 Motivation ... 11

1.4 Proposed Solution... 12

2. Background Research and Proposed Approach ... 13

2.1 Overview .. 13

2.2 Google Translate ... 13

2.2.1 Google Neural Machine Translation (GNMT) .. 14

2.3 Microsoft Translator ... 15

2.4 High Frequency Key Words in Tourism English in Newspapers: A Corpus-Based

Approach ... 16

2.5 Corpus-based Creation of Tourism, Hotel, and Airline Business Word Lists 20

2.6 Proposed Approach .. 21

2.7 Speech Preprocessing .. 22

2.8 Conversion to Text .. 22

2.9 Text Translation .. 23

 5
Chapter Page

2.10 Output Text and Speech Conversion to Local Language ... 23

2.11 WordList Creation ... 23

3. Experiment Design .. 28

3.1 Overview .. 28

3.2 Research Questions .. 28

3.3 Data Collection .. 29

3.4 Evaluation Metrics .. 30

4. Experiment Procedure .. 31

4.1 Overview .. 31

4.2 Overall System Procedure ... 32

4.3 Install libraries ... 33

4.4 Build User Interface (UI) of the application .. 34

4.5 Build Speech-to-Text function .. 35

4.6 Build Translate function ... 37

4.7 Build Text-to-Speech function .. 37

4.8 Build Geolocator function .. 38

4.9 Algorithmic Steps for RQ-1 .. 39

5. Results and Discussions .. 42

5.1 Overview .. 42

5.2 Results .. 42

5.3 Discussion .. 51

 6
Chapter Page

5.4 Surveys and Feedback .. 53

5.5 Scalability and Accuracy ... 55

6. Conclusions and Future Discussions ... 56

6.1 Conclusion .. 56

6.2 Future Discussions .. 56

References .. 57

Appendices ... Error! Bookmark not defined.

A. Application Code ... 59

B. Pubspec.yaml ... 64

C. Info.plist.. 65

D. AndroidManifest.xml ... 67

E. WordLists .. 68

 7
List of Figures

Figure Page

1. Research procedures taken .. 17

2. Proposed steps in Speech translation .. 22

3. Overall System Procedure .. 32

4. Packages imported into program .. 33

5. Dependencies added to pubspec.yaml file .. 34

6. Application User Interface (UI) .. 35

7. Code Snippet of Asynchronous Function for listening to speech 36

8. Code Snippet of Asynchronous Function for Translation .. 37

9. Code Snippet of asynchronous function for speech .. 38

10. Code Snippet of asynchronous function to determine location...................................... 38

11. Flowchart for Algorithm ... 41

12. Participant 1's sentence captured by the system .. 42

13. Translation of Participant 1's sentence ... 43

14. Participant 2's sentence captured by the system .. 43

15. Translation of Participant 2's sentence ... 44

16. Participant 3's sentence captured by the system .. 44

17. Translation of Participant 3's sentence ... 45

18. Participant 4's sentence captured by the system .. 45

19. Translation of participant 4's sentence ... 45

20. Participant 5's sentence captured by the system .. 46

 8
Figure Page

21. Translation of participant 5's sentence ... 46

22. Participant 6's sentence captured by the system .. 47

23. Translation of participant 6's sentence ... 47

24. Participant 7's sentence captured by the system .. 48

25. Translation of participant 7's sentence ... 48

26. Participant 8's sentence captured by the system .. 49

27. Translation of participant 8's sentence ... 49

28. Participant 9's sentence captured by the system .. 50

29. Translation of participant 9's sentence ... 50

30. Participant 10's sentence captured by the system .. 51

31. Translation of Participant 10's sentence ... 51

32. Bar chart of responses to first survey question ... 53

33. Responses to the third survey question .. 54

34. Responses to the fifth survey question ... 55

 9
List of Tables

Table Page

1. The Top 30 Most Frequently Occurring Tourism Key Words of the Tourism English

Corpus (TEC) .. 18

2. The Top 30 Most Frequently Occurring Tourism Key Words of the Tourism English

Corpus (TEC) .. 20

3. Number of Words in the 3 Word Lists Using the 6Fs... 26

 10
Chapter 1: Introduction

1.1 Overview

Natural Language Processing is a neoteric interdisciplinary field that examines the

interaction between computers and human languages. It continues to expand and can be used

in a multitude of applications such as email filters, predictive text, and language translation.

Speech recognition is a subset of this field. Speech recognition, also known as Automatic

Speech Recognition (ASR) can be defined as the capacity for a machine or computer program to

analyze and process speech or a person’s spoken words, understand it, and convert it into

readable text. Nowadays, speech recognition finds its use in a variety of forms. One of which is

in mobile phones through speech recognition software like the Google assistant in android

devices, Siri in iOS devices and it is also used in the Amazon virtual assistant, Alexa.

As mentioned earlier, speech recognition being a subset of Natural Language Processing

can be used in language translation. The ability of text to be translated automatically by a

computer is known as Machine Translation. “Machine translation (MT) was first developed in

the mid-20th century” (Tongpoon-Patanasorn & Griffith, 2020). The main aim of MT

development was to replace human translation due to the hindrances of deliberate translating

processes and possibly expensive translation costs (Brown et al., 1990). Statistical MT was first

presented as a research project by IBM (Brown et al., 1990).

 This could be used in tourism where we have travelers traversing different countries and

continents, which provides a need for an effective electronic means of language translation

facilitated by speech recognition software.

 11
1.2 Problem Statement

The tourism industry is an evolving industry that continues to enjoy rapid expansion and

growth. People embark on tourism for a myriad of reasons, these could be for business

purposes, relaxation, medical, exploratory, and religious purposes. Due to cultural, linguistic,

and social differences, visitors to host countries (or various tourist destinations) experience

difficulty when communicating with locals. This communication gap greatly impacts the

experience for the tourist because it limits the ability to interact with the host culture. Learning

a new language is time-consuming and is a difficult task to expect from potential visitors, given

the limited amount of time they usually spend in their tourist destination. In this project, we

aim to develop a mobile application which utilizes speech recognition technology to translate

phrases or sentences made by a tourist, to the local language of their surroundings. This is done

with the ability to switch to the local language by listening out for high frequency key words (or

salutation words).

1.3 Motivation

The potential of Machine Translation assisting with automatic recognition of a

surrounding language has led to a lot of research being performed in this field. This has served

as a motivation towards solving this problem in the tourism industry. We intend for this mobile

application to be an efficient, reliable resource for tourists, and for it to also be easily accessible

for those of them that are not very tech-savvy. Cohen & Cooper (1986) posit that, “Language

barriers are, as everyone knows, an important obstacle to transcultural communication” (p.

534). Due to this barrier, Cohen & Cooper (1986) also assert that communication plays a

considerable role in the choice of destination for tourists (p. 534). Studies show that tourists

 12
tend to pick destinations that are culturally similar to theirs when making decisions in relation

to travel. Mobile translation applications that offer a smooth conversational experience for the

tourist could bridge this gap. This makes the choice of where to vacation less daunting for the

tourists due to issues arising from language or cultural differences.

1.4 Proposed Solution

Recent developments in Machine Translation have provided the possibility of more

accurate translations for languages. We leverage on that technology, in particular, Neural

Machine Translation systems which are more accurate than its predecessor, Statistical Machine

Translation systems. We implement a cross-platform mobile application that listens to

surrounding conversations, is able to pick certain keywords, automatically switch to the local

language of its location and then offer translation capabilities to facilitate conversations.

 13
Chapter 2: Background Research and Proposed Approach

2.1 Overview

This chapter provides a background on the approaches taken by extant translation

applications. We also look at extant research done on tourism words as a subset of English for

Special Purposes (ESP).

Machine Translation (MT) is the ability of text to be translated automatically by a

computer.

The main aim of MT is to create and enhance automatic translation from one language

to another. The main approach of MT employs a corpus-based method in which words

or text of the input language are translated by comparing them with samples of

languages collected in the database, or parallel corpus. The translations are selected

based on a statistical method in order to reduce variables in the translation process and

to improve the accuracy of the translation. This approach is very effective in translating

words with multiple meanings. MT adopts various models such as the reordering model,

word translation model, and phrase translation model (Tongpoon-Patanasorn &

Griffith, 2020, p. 135).

2.2 Google Translate

Google Translate (GT) is arguably the most popular machine translation software. As of

2022, it supports 133 languages with plans to expand to more languages. “Google Translate was

launched in 2006 as a statistical machine translation service, and it uses United Nations and

 14
European Parliament documents and transcripts to gather linguistic data” (Google Translate,

2022).

Google translate is the most popular machine translation program because it relies on a

huge database, resulting in a higher rate of translation accuracy compared to other machine

translation applications (Tongpoon-Patanasorn & Griffith, 2020; Anazawa et al., 2012; Groves &

Mundt, 2015; Puangthong, 2015). Previously, GT used to operate as a phrase-based MT

software which meant that it translated input text to the output language on a phrase-by-

phrase basis. Currently, GT employs the use of a Neural Machine Translation engine called –

Google Neural Machine Translation (GNMT) – which translates “whole sentences at a time,

rather than just piece by piece. It uses this broader context to help it figure out the most

relevant translation, which it then rearranges and adjusts to be more like a human speaking

with proper grammar”(Turovsky, 2016).

2.2.1 Google Neural Machine Translation (GNMT)

The Google Neural Machine Translation is built off of the NMT framework. Neural

Machine Translation (NMT) is a system for mapping input text to associated output text in an

end-to-end fashion (Wu et al., 2016, p. 1). It translates words on a sentential level which is in

contrast to the phrase-based translation model. Some drawbacks of NMT are that it has a slow

training and inference speed, it is ineffective at dealing with rare words and occasionally fails to

translate all the words in the source sentence. This often results in a lower accuracy value than

phrase-based translation systems. The architecture of NMT consists of two recurrent neural

networks (RNNs), one to consume the input text sequence and one to generate the output text

 15
(Wu et al., 2016, p. 1). GNMT consists of 8 layers of Long Short-Term Memory (LSTM) RNNs

which helps it address the shortcomings of the NMT. Wu et al. (2016) found that, to improve

inference time, GNMT utilizes low-precision arithmetic, advanced with the Tensor Processing

Unit (TPU) (p. 2). Secondly, it efficiently deals with rare words by implementing sub-word units

which are also referred to as wordpieces. “Using wordpieces gives a good balance between the

flexibility of single characters and the efficiency of full words for decoding, and also sidesteps

the need for special treatment of unknown words” (Wu et al., 2016, p. 2). Finally, GNMT

addresses the occasional failure of NMT to translate whole sentences by using a beam search

technique that includes a normalization procedure for comparing hypotheses of different

lengths and a coverage penalty to encourage coverage of the entire input (Wu et al., 2016, p.

2).

2.3 Microsoft Translator

Microsoft Translator was developed by the Microsoft Research team in the early 2000’s

(Microsoft Translator, 2022). As of 2022, it supports 110 languages (Microsoft Translator, 2022).

Microsoft Translator was developed based on the idea of semantic predicate-argument

structures known as logical forms (LF) which was spun from Microsoft Word grammar

correction feature (Translator Text API, 2019). Microsoft Translator implementation of

Statistical Machine Translation (SMT) was built on more than a decade of natural-language

research at Microsoft. “Rather than writing hand-crafted rules to translate between languages,

modern translation systems approach translation as a problem of learning the transformation

of text between languages from existing human translations and leveraging recent advances in

applied statistics and machine learning” (Machine Translation, 2019).

 16
Like the Google translate, Microsoft translator now makes use of the Neural Machine

Translation. “Leveraging the scale and power of Microsoft’s AI supercomputer, specifically the

Microsoft Cognitive Toolkit, Microsoft Translator now offers neural network (LSTM) based

translation that enables a new decade of translation quality improvement” (Machine

Translation, 2019).

2.4 High Frequency Key Words in Tourism English in Newspapers: A Corpus-Based Approach

Tourism is a rapidly growing industry, and this has been the case since the 20th century.

In Thailand, the tourism industry is one fundamental part of income for the country as it

involved Thailand’s economy by promoting foreign exchange earnings, creating new jobs,

broadening the distributions of income, increasing rural development. “In order to

communicate with tourists around the world, language is used to represent people or things

and to aid the creation of thoughts” (Holmes, 1998). Quirk et al. (1985) assert that English is the

world’s most greatly used language.

Essentially, in this study, Junnak & Juajamsai (2017) analyze the most frequent and

important vocabulary in the tourism field. They extracted data from a corpus of 246,601 words

which were compiled from a program “Wordsmith Tool” and the tourism section of online

Newspapers in Thailand.

 17
Figure 1

Research Procedures Taken

From figure 1, the first step in this research was extracting words from the tourism section of

online articles, which were collected over a one-month period. These words were then inserted

into Microsoft Word, and they surmounted to a total of 90 files. The next step was to check for

The tourism articles in HTML (online)

Inserting text into Microsoft word

Checking the errors and spelling

WordSmith Tools Version 6

High Frequency Words

Identifying Tourism keywords

Top 30 most frequently occurring tourism key words

 18
spelling errors and mistakes, after which the processed news articles were inserted into the

“WordSmith Tool Version 6”. This tool was used in analyzing the most frequent words in the

Tourism English Corpus (TEC). After receiving the most frequently occurring words of the

Tourism Corpus, the frequency word list was checked by using the Longman Business English

Dictionary manually to identify the technical vocabulary. Then, the top 30 most frequently

occurring tourism key words were obtained (Junnak & Juajamsai, 2017).

Table 1

The Top 30 Most Frequently Occurring Tourism Key Words of the Tourism English Corpus (TEC)

Rank Word F Pos Rank Word F Pos

1 tourism 189 n. 16 domestic 46 adj.

2 million 89 n. 17 industry 46 n.

3 travel 76 n./v 18 local 45 adj.

4 government 75 n. 19 place 43 n./v

5 hotel 75 n. 20 area 42 n.

6 business 71 n. 21 private 42 adj.

7 ASEAN 66 n. 22 sector 41 n.

8 economic 61 adj. 23 development 40 n.

9 market 57 n. 24 visa 39 n.

10 price 55 n. 25 high 38 n./v

11 growth 53 n. 26 president 38 n.

12 City 51 n. 27 money 37 n.

13 center 49 n. 28 resort 36 n.

 19

From Table 1 we see a list of the top 30 most frequently occurring words of the TEC. The

total of the frequency in this table were calculated from the 1st rank up to 150th rank. “There

were 1,659 occurrences of the whole corpus” (Junnak & Juajamsai, 2017, p.4). It is to be

expected that high frequency words in the corpus were nouns and adjectives. From this, Junnak

& Juajamsai (2017) are able to show that, the top five high frequency words were “tourism”

which showed up 186 times, “million” 89 times, “travel” 76 times, “government” 75 times, and

“hotel” 75 times. “Moreover, the above data indicated that the parts of speech of most key

words in tourism were noun and the rest are adjectives. Yet, some words can be used both as

noun and as verb (3rd rank), and as noun, adjective and as adverb (25th rank)” (Junnak &

Juajamsai, 2017, p. 4).

This study had a few limitations which were noted by the researchers. One of which was

a relatively low sample size consisting of only 90 online articles which meant that the findings

were not applicable to hotel and rental services. Another limitation was that the study only

focused on a limited number of linguistic features that are only content words. This meant that

other linguistic features like tense, voice and clause modal verbs, imperatives, personal

pronouns, and adjectival premodifiers were overlooked.

14 time 47 n. 29 plan 35 n./v

15 billion 46 n. 30 area 34 n.

 20
2.5 Corpus-based Creation of Tourism, Hotel, and Airline Business Word Lists

In creating a word list based on tourism, hotel and airline business words, the

researchers first had to develop a corpus. Prior to creating this corpus, they surveyed a group of

graduate students using a Google form. The form was shared to a private Facebook group

comprising of more than 4500 members consisting of lecturers, students, and graduates of one

of the hospitality programs in Thailand. The requirements to participate were that the

respondents must have worked in tourism, hotel, or airline business for over a year. After this, a

majority of responses from this survey showed that the respondents adjudged that the ability

to understand English in websites related to tourism, hotel, or airline business was crucial since

tourists always asked questions about the information in websites. Some other recommended

sources for data collation included magazines, news, and work operation manuals.

Table 2

The Top 30 Most Frequently Occurring Tourism Key Words of the Tourism English Corpus (TEC)

HOSPITALITY
BUSINESS CORPUS

SOURCES NUMBER OF
SOURCES

TOKENS

TOURISM BUSINESS
CORPUS (TBC)

Official tourism
websites

Tourism magazines

152 31,701,430

HOTEL BUSINESS
CORPUS (HBC)

Official hotel
websites

Hotel business news

124 4,835,926

AIRLINE BUSINESS
CORPUS (ABC)

Official airline
websites

Airline work
operation manuals

120 15,542,604

 21
From Table 2, the Tourism Business Corpus comprises 31,701,430 running words from

152 different sources as follows:

1. 100 official tourism websites of the first 100 countries with the largest number of

travelers ranked by the United Nations World Tourism Organization (2017)

(Laosrirattanachai & Ruangjaroon, 2021).

2. 52 tourism magazines published from 2017 to 2018 (Laosrirattanachai & Ruangjaroon,

2021).

The Hotel Business Corpus was compiled by collecting data from 100 official hotel

websites ranked as the best 100 hotels in 2017, and hotel news from 2017 to 2018. “As a result,

the Hotel Business Corpus contained 4,835,926 running words” (Laosrirattanachai &

Ruangjaroon, 2021, p. 58).

The Airline Business Corpus was compiled by collecting data from 100 official airline

business websites which were rated as the best 100 airlines in 2017 and from airline work

operation manuals (Laosrirattanachai & Ruangjaroon, 2021). This resulted in the corpus having

15,542,604 running words (Laosrirattanachai & Ruangjaroon, 2021).

2.6 Proposed Approach

Our approach to this project involves: data collection of speech; preprocessing of that

speech; conversion of the speech to text with a Speech-to-Text converter; translation of that

text to the local language; and finally, conversion of the translated text to speech via a Text-to-

Speech converter.

 22
Figure 2

Proposed Steps in Speech Translation

As an example, in collecting data, we take the English statement, “I am glad to be

American”, spoken into our application which is then translated to Spanish. Below are the next

steps taken on the phrase, henceforth referred to as the “speech.”

2.7 Speech Preprocessing

After the data (speech) has been collected, the system analyzes this data, and this is

done on web servers being used by the system. In this project, we are using a Flutter package

called Speech-to-Text (STT). The system breaks the sound (speech) into very little parts referred

to as phonemes. In the case of the English language, there are 44 phonemes. The software

takes into cognizance, context, usage of each word to derive the best match for the word

spoken. The software then matches the word to the set of words in its database (in the STT

package, a method called “recognizedwords” is used) and a confidence score is attached to

each word. This is then returned to the system as the probable spoken word.

2.8 Conversion to Text

At the conclusion of the speech preprocessing phase, the analyzed words which were

matched and returned (in this case: “I”, “am”, “glad”, “to”, “be”, “American”) are then

converted to text to be translated. A function to check if the converted text contains a keyword

 23
is called. If a keyword is detected, a variable that is set as the language code of the keyword is

passed into the function responsible for translation and also to the function responsible for

text-to-speech output.

2.9 Text Translation

Here, the text translation is performed using the Flutter Google translate package. This

package is powered by a Neural Machine Translation engine known as the Google Neural

Machine Translation (GNMT). Essentially, the GNMT takes the text (which was converted from

speech sounds) and translates it to the detected language.

2.10 Output Text and Speech Conversion to Local Language

In this final step, the translated text is displayed in the local language detected in the

first listen function. The output is also passed through a text-to-speech function (also called

“speech”) which is achieved using the Flutter Text-to-Speech (TTS) package. The goal of the TTS

function is to provide better understanding of the translated text and it achieves this by

pronouncing the translated text with a local accent. The translated text results in a Spanish

sentence that reads, “Me allegro de ser estadounidense”.

2.11 WordList Creation

In creating the Tourist, Airline and Hotel business wordlists we study in this project, the

researchers proposed a method they called the Six Filters (6F). They include:

1. Filter Lexical Frequency – This was the first filter used to create the word lists.

Coxhead’s frequency criterion was applied in this study (Coxhead, 2000). “In her

study, Coxhead compiled a corpus of 3,500,000 tokens, and any word that

 24
appeared at least 100 times was considered as passing the frequency criterion”

(Laosrirattanachai & Ruangjaroon, 2021, p. 58).

2. Filter Lexical Range – This was the second filter, and the range criterion of

Coxhead (2000) was applied. In the study, words that appeared in at least 50 per

cent of the total sources passed this criterion (Laosrirattanachai & Ruangjaroon,

2021). “Therefore, words that appeared at least 76, 62, and 60 times in the TBC,

HBC, and ABC, respectively, passed the criterion and tended to be included in the

word lists” (Laosrirattanachai & Ruangjaroon, 2021, p. 59).

3. Filter Lexical Profiling – Laosrirattanachai & Ruangjaroon (2021) propose that the

main concept of lexical profiling is that a word should be put in only a single

word list . This helped the researchers eliminate irrelevant words from the

created word lists.

4. Filter Lexical Keyness – “This was used to consider unusually high-frequency

words appearing in the TBC, HBC, and ABC compared to the British National

Corpus (BNC) used as the reference corpora in this study based on the log-

likelihood applied in the Key-BNC program” (Graham, 2018).

5. Filter Expert Consultation – “The inputs and feedback from the experts and

specialists in the field were gathered to ensure that the word lists were well

designed and authentically used in the industry because they use ESP both

receptively and productively on a daily basis” (Laosrirattanachai & Ruangjaroon,

2021, p. 60). Their inputs helped decide which words were appropriate to be

 25
included in the word lists (Laosrirattanachai & Ruangjaroon, 2021; Chung &

Nation, 2004; Martinez et al., 2009).

6. Filter Lexical Difficulty – Given that a long list of words might cause recognition

difficulties for users, dividing such a list into shorter sub-word lists is one way to

solve this problem (Laosrirattanachai & Ruangjaroon, 2021). In the current study,

the researchers used the VocabProfile program (Cobb, 2018) to divide the three

main word lists into sub-word lists based on the difficulty of the words

(Laosrirattanachai & Ruangjaroon, 2021).

 26
Table 3

Number of Words in the 3 Word Lists Using the 6Fs

 TBWL TBWL HBWL HBWL ABWL ABWL
Research

Procedure

Satisfying

the filter

itself

Satisfying

itself and

previous

filter(s)

Satisfying

the filter

itself

Satisfying

itself and

previous

filter(s)

Satisfying

the filter

itself

Satisfying

itself and

previous

filter(s)

**Tokens to

Types

31,701,430 302,128 4,835,926 65,737 15,542,604 134,862

Filter Lexical

Frequency

2,465 2,465 3,548 3,548 2,381 2,381

Filter Lexical

Range

2,109 1.785 1,243 1,216 2,047 1,714

Filter Lexical

Profiling

273 273 178 178 176 176

Filter Lexical

Keyness

446 719 346 524 682 858

**Types to

Word

Families

719 672 524 403 858 606

Filter Expert

Consultation

378 378 274 274 245 245

Filter Lexical

Difficulty

378 words
separated into

13 sub-word lists

378 words
separated into
13 sub-word

lists

274 words
separated into 9

sub-word lists

274 words
separated into 9

sub-word lists

245 words
separated into 8

sub-word lists

245 words
separated into 8

sub-word lists

From table 3, we see that after using the Six filter (6Fs) procedure implemented by the

researchers, for the Tourism Business Word List (TBWL), 378 words separated into 13 sub-word

lists were developed. For the Hotel Business Word List (HBWL), we had 274 words separated

 27
into 9 sub-word lists. Finally, for the Airline Business Word List (ABWL), 245 words separated

into 8 sub-word lists.

 28
Chapter 3: Experiment Design

3.1 Overview

This chapter describes the steps involved in the design of a system for detecting speech

and translating that speech into the local or destination language. As shown in Figure 2 from

the previous chapter, first, the data (or speech) is collected or read. Second, this data then goes

through a preprocessing phase. Third, this preprocessed data is then matched to the

recognizable words found in the database with a confidence level attributed to each word.

Fourth, these recognized words are then translated word-for-word into the local language.

Finally, the translated words are converted from text to speech and output with the accent of

the local language.

3.2 Research Questions

Building off of the technologies discussed in the background research chapter, there

might be more optimal ways of accurately detecting the surrounding language. The following

research questions will be explored along with the execution of this experiment design.

a) RQ-1: How effectively can the program detect the surrounding language and

translate to that local language?

Description of RQ-1: This RQ is aimed at evaluating how effective our proposed

application is at detecting background language from the speech or conversation

between individuals when it is activated. The performance of a speech recognizer is

typically evaluated using metrics such as number of word-level insertions, deletions,

and mismatches. This basically measures how accurate our system is at capturing

 29
what was said on a word level. How many word-level insertions, deletions, and

mismatches did out system experience?

b) RQ-2: What are the important words used by tourists in emergency situations?

Description of RQ-2: This RQ is aimed at studying the tourism wordlists and

identifying which words could be used in emergency situations by tourists. We

define an emergency situation as a situation where a tourist could be in danger or

need assistance. This help could come in form of medical aid, help with directions,

assistance contacting law enforcement agents or help with a fire outbreak. What are

the useful words used in such situations?

3.3 Data Collection

There are two functions built to listen to speech in this application. The first listen

function (called “initialListen”) is built to listen for the keywords and the second function (called

“_listen”) is built to listen to the conversation the user is trying to translate. When the

application is launched, the first listen function is called. This function has a timer set to 40

seconds which means that after launch, the first function starts listening for 40 seconds trying

to catch any keywords in the discussion before it stops listening. The data used in this research

is from regular speech conversations. For the first listen function, the conversations should

contain salutation words (keywords) from the two languages which are the focus of this

experiment. The two languages are Spanish and French.

Some of the Spanish keywords are salutation words such as “buenos dias,” “buenas

tardes,” “bienvenidos”, “hola”, “buenos noches” etc. Alternatively, some of the French

 30
keywords are “bonjour”, “bonsoir”, “comment ca va?” etc. The second listen function is called

by clicking a button on the application.

In addressing RQ-2, we decided to study the wordlists developed by Laosrirattanachai &

Ruangjaroon (2021) in their paper titled, “Corpus-Based Creation of Tourism, Hotel, and Airline

Business Word Lists” and the wordlist developed by Junnak & Juajamsai (2017) in their paper

titled, “High Frequency Key Words in Tourism English in Newspapers: A Corpus-Based

Approach”. Our goal was to study the words in these wordlists that could be used in

emergencies. We defined an emergency as a situation where a tourist could be in danger or

require assistance.

3.4 Evaluation Metrics

The evaluation metric used for this research is the word error rate (WER). This consists

of substitutions (S), insertions (I), deletions (D), and total number of words spoken (N).

 WER = S+I+D/N (1)

With this metric, we are able to measure and determine the accuracy in our

translations. We compare the original text to what our system is able to pick up and measure

the number of substitutions, insertions and deletions present in the total words spoken.

For example:

Original text : “I have a lively and bubbly personality”

System capture : “I have a lively personality”

In this example, we can see that the system is able to correctly match five (5) out of seven (7)

words from the original text. This gives it an accuracy of 0.714 (5/7).

 31
Chapter 4: Experiment Procedure

4.1 Overview

This chapter describes the procedures involved in building a system for detecting speech

and translating that speech into the local language. As stated earlier in the experiment design

chapter, first, the data (or speech) is collected or read. Second, this data then goes through a

preprocessing phase. Third, this preprocessed data is then matched to the recognizable words

found in the database with a confidence level attributed to each word. Fourth, these

recognized words are then translated word-for-word into the local language. Finally, the

translated words are converted from text to speech and output with the accent of the local

language.

Here, we make use of a few technologies, libraries, and packages. We set up our

program using the cross-platform Flutter Software Development Kit (SDK) and the Dart

programming language. We make use the Android Studio as our preferred Integrated

Development Environment (IDE). Some of the libraries and packages we utilize are the Speech-

to-Text package, Google translate package, Geolocator package, Geocoding package, and the

Text-to-Speech package.

 32
4.2 Overall System Procedure

Figure 3

Overall System Procedure

 33
4.3 Install libraries

In the setup phase of our program, we install a few libraries and packages. We also add

the corresponding dependencies of these packages to the pubspec.yaml file. The packages

installed were: the avatarglow package which is responsible for the glow on the microphone

button to indicate the program is currently listening to speech; the Speech-to-Text package,

which is responsible for the conversion of speech to text; the translator package, which focuses

on the translation of the text; the Text-to-Speech package, which handles the conversion from

txt to speech; the geolocator and geocoding packages, primarily tasked with identifying the

location of the user.

Figure 4

Packages Imported Into Program

 34
Figure 5

Dependencies Added to pubspec.yaml file

4.4 Build User Interface (UI) of the application

This step involves building the user interface of the application. In this case, we used a

textbox to display the input speech converted into text and also to display the translated text.

We also have two floating action buttons, one with a microphone icon for listening to speech

and another with a translation icon for performing the translation.

 35
Figure 6

Application User Interface (UI)

4.5 Build Speech-to-Text function

We have to build two asynchronous functions for listening to audio input, and they

essentially operate the same way. The first function called the “initialListen” function is used to

listen out for the keywords in order to facilitate the switching to the language code of the local

 36
language. This function is invoked in the “initState” function, and it is initialized for a 40-second

period immediately the application is launched. The second listen function called “_listen” is

triggered when the microphone button is pressed, and it listens to audio inputs or speech

which is then converted to text.

Figure 7

Code Snippet of Asynchronous Function for Listening to Speech

 37
4.6 Build Translate function

In this step we build an asynchronous function for translation which essentially collects

the speech converted into text and translates it to the set local language. This is done using the

Google Neural Machine Translation engine. It then returns the translated text to the system

which is then displayed on the application.

Figure 8

Code Snippet of Asynchronous Function for Translation

4.7 Build Text-to-Speech function

We build another asynchronous function to handle the Text-to-Speech capabilities of

the application. This function takes the translated text and outputs it in the local language with

a local accent.

 38
Figure 9

Code Snippet of Asynchronous Function for Speech

4.8 Build Geolocator function

In this final step, we build a geolocator function that acts as a backup to our initialListen

function. This function is used to determine the location of the user and if the keywords are not

detected from the surrounding the language code is set to that generated from the location of

the user. This function, like the initialListen function is called in the initState function.

Figure 10

Code Snippet of Asynchronous Function to Determine Location

 39
4.9 Algorithmic Steps for RQ-1

RQ-1: How effectively can the program detect the surrounding language and translate

to that local language?

Description of RQ-1: This RQ is aimed at evaluating how effective our proposed

application is at detecting background language from the speech or conversation between

individuals when it is activated. The performance of a speech recognizer is typically evaluated

using metrics such as number of word-level insertions, deletions, and mismatches. This basically

measures how accurate our system is at capturing what was said on a word level. How many

word-level insertions, deletions, and mismatches did out system experience?

a.) Build UI and Include a header with application name, text box for display of translated

text and floating action buttons to initialize audio recording and translation.

b.) Import Speech-to-Text package and add corresponding dependency to pubspec.yaml

file.

c.) Add microphone permissions to both the Info.plist for iOS devices and

AndroidManifest.xml for Android devices.

d.) Add geolocator permissions to both the Info.plist for iOS devices and

AndroidManifest.xml for Android devices.

e.) Initialize an object instance of the Speech-to-Text package and then call this in the

initState() function. This is to initialize the Speech-to-Text functionality immediately the

app is opened.

f.) Write two asynchronous functions for listening to audio input. In the first function, we

initially check if the device can detect any keywords. In the second function we test if

 40
the device was set to listen to audio input (i.e. the microphone button is pressed) and if

true, we check if the words are available in the recognized word list. If the device is not

set to listen to audio input, we initialize the stop method.

g.) Import the Google Translator package and add corresponding dependency to

pubspec.yaml file.

h.) Initialize an object instance of the Google translator and write a translate function that

takes the words from the listen function and translates it to the desired local language.

i.) Import the Text-to-Speech package and add the corresponding dependency to the

pubspec.yaml file.

j.) Initialize an object instance of the Text-to-Speech package and write an asynchronous

speak function. This function is to produce the translated text in a local accent for easy

understanding.

k.) Import the Geolocator package and add the corresponding dependency to the

pubspec.yaml file.

l.) Write an asynchronous “getLocation” function to determine the exact location of the

user or device.

 41
Figure 11

Flowchart for Algorithm

 42
Chapter 5: Results and Discussions

5.1 Overview

In this chapter, we list results of the experiment procedure and then we further analyze

these results and provide some relevant discussions.

5.2 Results

In testing the efficiency of our application, we performed a usability test with 10

participants to capture how effective the application was at detecting the words spoken to it by

the participants. These participants were of different nationalities (China, Philippines, USA,

Nigeria, Nepal, India, Mexico) to cater for different accents and word pronunciations which in

turn, tests the robustness of the application. We got each participant to come up with a

sentence they would like to translate which was noted down. Then we had the participants

speak into the application and these were the results:

Participant 1: “How to go to the museum and the mall. What is the price for it? Can I combine

two?”

Figure 12

Participant 1's sentence captured by the system

 43
Figure 13

Translation of Participant 1's Sentence

To calculate our Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 19)

Comparing our input with the result in figure 12, we can say that the WER for this speech is 0.

Participant 2: “It’s very cold in Minnesota and I wish I knew this before, I would’ve gotten a

much warmer jacket.”

Figure 14

Participant 2's Sentence Captured by the System

 44
Figure 15

Translation of Participant 2's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 19)

Comparing our input with the result in figure 14, we can say that the WER for this speech is 0.

Participant 3: “Napoleon’s white horse is a stud”

Figure 16

Participant 3's Sentence Captured by the System

 45
Figure 17

Translation of Participant 3's sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 6)

Comparing our input with the result in figure 16, we can say that the WER for this speech is 0.

Participant 4: “I’m currently hungry, do you want to go out to eat?”

Figure 18

Participant 4's Sentence Captured by the System

Figure 19

Translation of Participant 4's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 11)

 46
Comparing our input with the result in figure 18, we can say that the WER for this speech is 0.

Participant 5: “I want to visit my family in Nepal, spend some time with them and then return

to the United States”.

Figure 20

Participant 5's Sentence Captured by the System

Figure 21

Translation of Participant 5's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 20)

Comparing our input with the result in figure 20, we can say that the WER for this speech is 0.

 47
Participant 6: “My favorite thing to do is go on walks around the lake”.

Figure 22

Participant 6's Sentence Captured by the System

Figure 23

Translation of Participant 6's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 12)

Comparing our input with the result in figure 22, we can say that the WER for this speech is 0.

Participant 7: “Being a counselor is a favorite part of what I learned at school, as I get to help

people.”

 48
Figure 24

Participant 7's Sentence Captured by the System

Figure 25

Translation of Participant 7's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 19). Comparing our input

from the participant with the result in figure 24, we can say that the WER for this speech is 0.

Participant 8: “I went to the store and picked up milk, oranges, bread and I walked around for

two hours, and I saw many people shopping for Halloween”.

 49
Figure 26

Participant 8's Sentence Captured by the System

Figure 27

Translation of Participant 8's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 26)

Comparing our input with the result in figure 26, we can say that the WER for this speech is 0.

Participant 9: “Depending on the time of day and traffic patterns, what is the best route to the

art museum?”

 50
Figure 28

Participant 9's Sentence Captured by the System

Figure 29

Translation of Participant 9's Sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 18)

Comparing our input from the participant with the result in figure 28, we can say that the WER

for this speech is 0.

Participant 10: “I need to get some bread for breakfast, how do I get to the grocery store?”

 51
Figure 30

Participant 10's Sentence Captured by the System

Figure 31

Translation of Participant 10's sentence

Given Word Error Rate, WER = S+I+D/N (where S = 0, I = 0, D = 0, N = 16)

Comparing our input from the participant with the result in figure 30, we can say that the WER

for this speech is 0.

5.3 Discussion

From figures 12-31, we notice a greeting at the beginning of each sentence spoken by

each participant. This was used as a keyword to switch to the prospective language which the

participant intended their sentence to be translated to. Taking our evaluation metrics of Word

 52
Error Rate (WER) into cognizance and calculating for each participant, we can see that there are

no Substitutions, Deletions, and Insertions for all sentences by each participant in this test. This

gives our average accuracy a value of >95% for recognizing each participant’s words.

A.) RQ-1: How effectively can the program detect surrounding language and translate to

that local language?

The results of our usability test demonstrate that with the use of key words such as

“Bien” and “Buenos dias”, our application successfully identifies these keywords,

switches to Spanish and then subsequently translates the sentence to Spanish. The case

is the same for the French language where we employ the keywords “Bonjour” and

“Bonsoir”. Our application is able to effectively detect these keywords and translate the

sentence to the local language, which in this case is French.

B.) RQ-2: What are the important words used by tourists in emergency situations?

From a close study of the wordlists developed by Laosrirattanachai & Ruangjaroon

(2021) and Junnak & Juajamsai’s (2017) paper on High frequency words in Tourism

English, we can create a sub-wordlist of the emergency words that fit our earlier

definition.

These words are: “danger”, “report”, “battery”, “secure”, “safe”, “assist”, “medical”,

“emergency”, “evacuate”, “exit”.

 53
5.4 Surveys and Feedback

At the end of our usability test, we sent out surveys to our participants to provide their

thoughts and impressions on the application. We had a set of questions which we asked each

participant, and their answers were collated. These are the questions below:

1. Were the instructions on how to use the app clear enough?

2. Would you use the application in real life?

3. What can be improved upon?

4. Were you satisfied with the functionality of the app?

5. What features would you like added to the app?

We got the following feedback for some of our questions

Figure 32

Bar Chart of Responses to First Survey Question

 54

Figure 33

Responses to the Third Survey Question

 55
Figure 34

Responses to the Fifth Survey Question

5.5 Scalability and Accuracy

The results show that the accuracy of the application is >95%. This means that when it

comes to detecting speech, the application is quite robust and effective. The application’s

scalability is also very high because we can extend this to a number of languages such as

Portuguese, Arabic, Igbo, Yoruba, German, Swahili, Russian etc. Given the effectiveness the

application has shown in detecting keywords, we anticipate that it can cater to more languages.

 56
Chapter 6: Conclusions and Future Discussions

6.1 Conclusion

Speech recognition finds it usage in numerous instances and the technology behind it is

continuing to improve. In this project, we built an application for detecting local languages,

switching to that local language, and easing conversations by providing translation services.

This was facilitated by the speech recognition software and machine translation. We made use

of the Speech-to-Text package offered as a Flutter package to develop our speech recognition

capability. We then utilized the Google translate package to perform our translation ability. This

was done using the Google Neural Machine Translation engine which is based off of the Neural

Machine Translation technology.

6.2 Future Discussions

In our project, we faced some limitations that were due to the lack of presently

available technologies. We were limited to a number of keywords which we could use for

language detection, and this was due to the unavailability of a multilingual speech recognizer.

Our speech recognizer primarily recognized words that were present in the English dictionary.

The keywords we were able to recognize were popular salutation words that overlapped into

the English dictionary or were borrowed from other languages. We also observed a dearth in

the amount of research done in Tourism English words. This was evidenced in our second

research question where we were able to generate just a list of few words that could be used in

emergencies. The functionality of our application can be further improved when we have a

system capable of multilingual speech recognition.

 57
References

Anazawa, R., Ishikawa, H., Park, M. J., & Kiuchi, T. (2012). Preliminary study of online machine

translation use of nursing literature: Quality evaluation and perceived usability. BMC

Research Notes, 5(1), Article 1. https://doi.org/10.1186/1756-0500-5-635

Brown, P., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., Mercer, R. L., &

Rossin, P. (1990). A statistical approach to machine translation. Computational

Linguistics, 16(2), pp. 76–85.

Chung, T., & Nation, P. (2004). Identifying technical vocabulary. System, 32(2), 251-263.

Cohen, E., & Cooper, R. L. (1986). Language and tourism. Annals of Tourism Research, 13(4),

533-563.

Cobb, T. (2018, June 22). Web Vocabprofile. [Online program]. http://www.lextutor.ca/vp/

Coxhead, A. (2000). A new academic word list. TESOL Quarterly, 34(2), 213-238.

Google Translate. (2022, September 19). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Google_Translate&oldid=1111081295

Graham, D. (2018). Key-BNC [Software]. http://crs2.kmutt.ac.th/Key-BNC/.

Groves, M., & Mundt, K. (2015). Friend or foe? Google translate in language for academic

purposes. English for Specific Purposes, 37, 112-121.

Holmes, S.W. (1998). Our Addiction to Attributive Adjective. Etc, 55(3), 299-302.

Junnak, C., & Juajamsai, L. (2017). High frequency key words in tourism English in newspapers:

A corpus-based approach. The Asian Conference on Arts & Humanities.

Laosrirattanachai, P., & Ruangjaroon, S. (2021). Corpus-Based creation of tourism, hotel, and

airline business word lists. LEARN Journal: Language Education and Acquisition Research

Network, 14(1), 50-86.

Machine Translation. (n.d.). Microsoft Translator for Business. Retrieved October 1, 2022, from

https://web.archive.org/web/20190902184351/https://www.microsoft.com/en-

us/translator/business/machine-translation/

https://en.wikipedia.org/w/index.php?title=Google_Translate&oldid=1111081295
https://web.archive.org/web/20190902184351/https:/www.microsoft.com/en-us/translator/business/machine-translation/
https://web.archive.org/web/20190902184351/https:/www.microsoft.com/en-us/translator/business/machine-translation/

 58
Martinez, I., Beck, S., & Panza, C. (2009). Academic vocabulary in agriculture research articles: A

corpus-based study. English for Specific Purposes, 28(3), 183-198.

Microsoft translator. (2022, August 7). In Wikipedia.

 https://en.wikipedia.org/w/index.php?title=Microsoft_Translator&oldid=1102879309

Puangthong, J. (2015). Effects of Google Translate on English-Thai Translation in Students

majoring in International Communication (English Program), Faculty of Arts,

Rajamangala University of Technology Suvarnabhumi. [Unpublished dissertation],

Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comparative grammar of the English

language. New York: Longman Group.

Tongpoon-Patanasorn, A., & Griffith, K. (2020). Google Translate and translation quality: A case

of translating academic abstracts from Thai to English. PASAA: Journal of Language

Teaching and Learning in Thailand, 60, 134-163.

Translator Text API. (2019). Microsoft Translator for Business. Retrieved October 1, 2022, from

https://web.archive.org/web/20190902184414/https://www.microsoft.com/en-

us/translator/business/translator-api/

Turovsky, B. (2016). Found in translation: More accurate, fluent sentences in Google

Translate. Google.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Dean, J. (2016).

Google's neural machine translation system: Bridging the gap between human and

machine translation. ArXiv preprint. https://doi.org/10.48550/arXiv.1609.08144

https://en.wikipedia.org/w/index.php?title=Microsoft_Translator&oldid=1102879309
https://web.archive.org/web/20190902184414/https:/www.microsoft.com/en-us/translator/business/translator-api/
https://web.archive.org/web/20190902184414/https:/www.microsoft.com/en-us/translator/business/translator-api/

 59
Appendix A: Application Code

import 'package:flutter/material.dart';

import 'package:speech_to_text/speech_to_text.dart' as stt;

import 'package:avatar_glow/avatar_glow.dart';

import 'package:highlight_text/highlight_text.dart';

import 'package:translator/translator.dart';

import 'package:flutter_tts/flutter_tts.dart';

import 'package:geolocator/geolocator.dart';

import 'package:geocoding/geocoding.dart';

import 'dart:async';

void main() {

 runApp(MyApp());

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 title: 'Whizz',

 debugShowCheckedModeBanner: false,

 theme: ThemeData(

 primarySwatch: Colors.red,

 visualDensity: VisualDensity.adaptivePlatformDensity,

),

 home: SpeechScreen(),

);

 }

}

class SpeechScreen extends StatefulWidget {

 @override

 _SpeechScreenState createState() => _SpeechScreenState();

}

class _SpeechScreenState extends State<SpeechScreen> {

 GoogleTranslator translator = GoogleTranslator();

 FlutterTts tts = FlutterTts();

 String langCode = "";

 translate() async{

 await translator.translate(_text, to: langCode).then((output) {

 setState(() {

 _text = output.toString();

 });

 });

 }

 60
 speak() async{

 await tts.setLanguage(langCode);

 await tts.setPitch(1.0);

 await tts.speak(_text);

 }

 final Map<String, HighlightedWord> _highlights = {

 'flutter': HighlightedWord(

 onTap: () => print('flutter'),

 textStyle: const TextStyle(

 color: Colors.blue,

 fontWeight: FontWeight.bold,

 fontSize: 32.0,

),

),

 };

 late stt.SpeechToText _speech;

 bool _isListening = false;

 String _text = 'Press the button and start speaking';

 double _confidence = 1.0;

 getLocation() async{

 LocationPermission permission;

 permission = await Geolocator.checkPermission();

 permission = await Geolocator.requestPermission();

 if(permission== LocationPermission.denied){

 //nothing

 }

 Position position = await Geolocator

 .getCurrentPosition(desiredAccuracy: LocationAccuracy.medium);

 List<Placemark> placemarks = await

placemarkFromCoordinates(position.latitude, position.longitude);

 print(position.latitude);

 print(position.longitude);

 print(placemarks[0].locality.toString());

 }

 @override

 void initState() {

 _speech = stt.SpeechToText();

 getLocation();

 initialListen();

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 appBar: AppBar(

 title: Text('Whizz!'),

),

 floatingActionButtonLocation: FloatingActionButtonLocation.centerFloat,

 floatingActionButton: AvatarGlow(

 endRadius: 75.0,

 61
 animate: _isListening,

 glowColor: Theme.of(context).primaryColor,

 duration: const Duration(milliseconds: 200),

 repeatPauseDuration: const Duration(milliseconds: 100),

 repeat: true,

 child: Row(

 mainAxisAlignment: MainAxisAlignment.spaceEvenly,

 children: [

 FloatingActionButton(

 onPressed: _listen,

 child: Icon(_isListening ? Icons.mic: Icons.mic_none),

),

 FloatingActionButton(

 onPressed: (){

 translate();

 Future.delayed(Duration(minutes: 0, milliseconds: 800), (){

 speak();

 });

 },

 child: Icon(Icons.translate),

),

],

),

),

 body: SingleChildScrollView(

 reverse: true,

 child: Container(

 padding: const EdgeInsets.fromLTRB(30.0, 30.0, 30.0, 150.0),

 child: TextHighlight(

 text: _text,

 words: _highlights,

 textStyle: const TextStyle(

 fontSize: 32.0,

 color: Colors.black,

 fontWeight: FontWeight.w400,

),

),

),

),

);

 }

 void _listen() async {

 if (!_isListening) {

 bool available = await _speech.initialize(

 onStatus: (val) => print('onStatus: $val'),

 onError: (val) => print('onError: $val'),

);

 if (available) {

 setState(() => _isListening = true);

 _speech.listen(

 onResult: (val) => setState(() {

 _text = val.recognizedWords;

 62
 if (val.hasConfidenceRating && val.confidence > 0) {

 _confidence = val.confidence;

 }

 }),

);

 }

 } else {

 setState(() => _isListening = false);

 _speech.stop();

 }

 }

 /// Determine the current position of the device.

 Future<Position> _determinePosition() async {

 bool serviceEnabled;

 LocationPermission permission;

 serviceEnabled = await Geolocator.isLocationServiceEnabled();

 if (!serviceEnabled) {

 return Future.error('Location services are disabled.');

 }

 permission = await Geolocator.checkPermission();

 if (permission == LocationPermission.denied) {

 permission = await Geolocator.requestPermission();

 if (permission == LocationPermission.denied) {

 return Future.error('Location permissions are denied');

 }

 }

 if (permission == LocationPermission.deniedForever) {

 return Future.error(

 'Location permissions are permanently denied, we cannot request

permissions.');

 }

 return await Geolocator.getCurrentPosition();

 }

 bool listening1 = false;

 initialListen() async {

 if (!listening1) {

 bool available = await _speech.initialize(

 onStatus: (val) => print('onStatus: $val'),

 onError: (val) => print('onError: $val'),

);

 if (available) {

 setState(() => listening1 = true);

 _speech.listen(

 listenFor: Duration(seconds: 40),

 63
 onResult: (val) =>

 setState(() {

 _text = val.recognizedWords;

 if (_text.contains("Hola") || _text.contains("Buenos dias")

|| _text.contains("buenos dias")) {

 setState((){langCode = "es";

 print(langCode);});

 }

 else if (_text.contains("Bonjour")) {

 setState((){langCode = "fr";

 print(langCode);});

 } else {

 setState((){langCode = "en";

 print(langCode);});

 }

 if (val.hasConfidenceRating && val.confidence > 0) {

 _confidence = val.confidence;

 }

 }),

);

 }

 else {

 setState(() => listening1 = false);

 _speech.stop();

 }

 }

 }

}

 64
Appendix B: Pubspec.yaml

version: 1.0.0+1

environment:

 sdk: ">=2.17.6 <3.0.0"

dependencies:

 flutter:

 sdk: flutter

 cupertino_icons: ^1.0.2

 speech_to_text: ^5.6.1

 avatar_glow: ^2.0.2

 highlight_text: ^1.4.1

 translator: ^0.1.7

 flutter_tts: ^3.5.3

 geolocator: ^9.0.1

 geocoding: ^2.0.5

dev_dependencies:

 flutter_test:

 sdk: flutter

 flutter_lints: ^2.0.0

flutter:

 uses-material-design: true

 65
Appendix C: Info.plist

 <?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>$(DEVELOPMENT_LANGUAGE)</string>

 <key>CFBundleDisplayName</key>

 <string>Whizz</string>

 <key>CFBundleExecutable</key>

 <string>$(EXECUTABLE_NAME)</string>

 <key>CFBundleIdentifier</key>

 <string>$(PRODUCT_BUNDLE_IDENTIFIER)</string>

 <key>CFBundleInfoDictionaryVersion</key>

 <string>6.0</string>

 <key>CFBundleName</key>

 <string>whizz</string>

 <key>CFBundlePackageType</key>

 <string>APPL</string>

 <key>CFBundleShortVersionString</key>

 <string>$(FLUTTER_BUILD_NAME)</string>

 <key>CFBundleSignature</key>

 <string>????</string>

 <key>CFBundleVersion</key>

 <string>$(FLUTTER_BUILD_NUMBER)</string>

 <key>LSRequiresIPhoneOS</key>

 <true/>

 <key>UILaunchStoryboardName</key>

 <string>LaunchScreen</string>

 <key>UIMainStoryboardFile</key>

 <string>Main</string>

 <key>UISupportedInterfaceOrientations</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

 <key>UISupportedInterfaceOrientations~ipad</key>

 <array>

 <string>UIInterfaceOrientationPortrait</string>

 <string>UIInterfaceOrientationPortraitUpsideDown</string>

 <string>UIInterfaceOrientationLandscapeLeft</string>

 <string>UIInterfaceOrientationLandscapeRight</string>

 </array>

 <key>NSMicrophoneUsageDescription</key>

 <string>This application needs to access your microphone</string>

 <key>NSSpeechRecognitionUsageDescription</key>

 <string>This application needs the speech recognition </string>

 <key>UIViewControllerBasedStatusBarAppearance</key>

 <key>CADisableMinimumFrameDurationOnPhone</key>

 <key>NSLocationWhenInUseUsageDescription</key>

 <string>This app needs access to location when open.</string>

 66
 <key>NSLocationAlwaysUsageDescription</key>

 <string>This app needs access to location when in the

background.</string>

</dict>

</plist>

 67
Appendix D: AndroidManifest.xml

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.whizz">

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <uses-permission android:name="android.permission.INTERNET"/>

 <uses-permission android:name="android.permission.BLUETOOTH"/>

 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN"/>

 <uses-permission android:name="android.permission.BLUETOOTH_CONNECT"/>

 <application

 android:label="whizz"

 android:name="${applicationName}"

 android:icon="@mipmap/ic_launcher">

 <activity

 android:name=".MainActivity"

 android:exported="true"

 android:launchMode="singleTop"

 android:theme="@style/LaunchTheme"

android:configChanges="orientation|keyboardHidden|keyboard|screenSize|smalles

tScreenSize|locale|layoutDirection|fontScale|screenLayout|density|uiMode"

 android:hardwareAccelerated="true"

 android:windowSoftInputMode="adjustResize">

 <!-- Specifies an Android theme to apply to this Activity as soon

as

 the Android process has started. This theme is visible to

the user

 while the Flutter UI initializes. After that, this theme

continues

 to determine the Window background behind the Flutter UI. --

>

 <meta-data

 android:name="io.flutter.embedding.android.NormalTheme"

 android:resource="@style/NormalTheme"

 />

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

 </activity>

 <!-- Don't delete the meta-data below.

 This is used by the Flutter tool to generate

GeneratedPluginRegistrant.java -->

 <meta-data

 android:name="flutterEmbedding"

 android:value="2" />

 </application>

</manifest>

 68
Appendix E: WordLists

The 1st sub-TBWL

accommodate culture lounge tour

airport depart luxury transport

arrive executive offer travel

atmosphere express private trip

available guest region visit

bay holiday relax welcome

book international request

capital ideal reserve

convenience journey serve

cuisine leisure service

The 2nd sub-TBWL

amaze climb forest

animal country found

art delicious garden

autumn discover green

bar double hall

bath east hill

beach experience history

camp fair hour

church farm huge

city fly internet

The 3rd sub-TBWL

island plenty shop

lake reach spacious

local rent spot

mileage rich spring

mountain river square

nature rock station

outdoor safe stay

park sail stone

place sea store

plan secure street

The 4th sub-TBWL

town advance classic

track adventure cliff

 69

train attend coast

view attract contact

weather beer decorate

wide brick delight

wild bridge desert

woods cable distance

access castle district

admire century dive

The 5th sub-TBWL

environment gather incredible

event giant invite

expense gift modern

famous golf mount

fantastic gorgeous mud

fascinate guide official

feature hire organize

flag hotel path

folk impress period

gate improve pine

The 6th sub-TBWL

planet scenic theatre

policy schedule ticket

pool season tip

popular shelter tower

port shore tradition

rare site traffic

royal surroundings typical

restaurant ski valley

recommend solid various

saint tent vehicle

The 7th sub-TBWL

village budget currency

wander capacity dedicate

abroad carve display

agriculture celebrate diverse

archaeological ceremony domestic

airline concert era

ancient conservation enhance

 70

annual cruise emergency

architect craft exhibit

border contemporary explore

The 8th sub-TBWL

extraordinary host numerous

facilitate ingredient museum

fee inhabitant ocean

festival insight overlook

gallery inspire pace

goods interior palace

harbor landscape palm

heritage legend participate

highlight lodge passion

holy marine peak

The 9th sub-TBWL

platform rural unique

preserve sculpture urban

prior stun vast

province summit arch

remote symbol array

republic territory authentic

resort theme avenue

resource trail bathe

retreat treasure bronze

route ultimate café

The 10th sub-TBWL

Calendar harvest recreation

canal infrastructure refresh

cathedral indigenous romance

cave inn sacred

dynamic marble spectacular

escort magnificent soak

exotic monument statue

ferry mineral steep

fort overnight stroll

habitat pearl superb

The 11th sub-TBWL

temple hike renown

 71

terrace iconic sanctuary

tropical inland spa

venue jewel surf

villa landmark terrain

volcanic memorable transit

altitude paradise vacation

courtyard passport visa

feast peninsula wilderness

globe renovate dune

The 12th sub-TBWL

ecosystem vibrant panorama

elegance boutique gourmet

excursion canyon itinerary

flora culinary kayak

hospitality fauna scuba

hub lagoon backpack

lush majestic campsite

plateau motel breathtaking

refund pristine coastline

trek picturesque countryside

The 13th sub-TBWL

downtown wildlife

limestone wheelchair

nightlife underwater

underground waterfall

sightseeing wellness

sunset oneway

The 1st sub-HBWL

accommodate culture lounge tour

airport depart luxury transport

arrive executive offer travel

atmosphere express private trip

available guest region visit

bay holiday relax welcome

book international request

capital ideal reserve

convenience journey serve

cuisine leisure service

 72
The 2nd sub-HBWL

amaze business dinner

art centre discover

bar check done

base club double

bath coffee drink

beach collect excite

beauty comfort experience

bed cook floor

breakfast couple garden

bring delicious heart

The 3rd sub-HBWL

history park stay

indoor rate table

inform rich treat

island river view

lake rock wedding

local room access

lunch sign attract

mountain spacious benefit

nature special casual

outdoor square ceiling

The 4th sub-HBWL

cheese dish impress

classic due improve

coast entertain include

complain event incredible

contact extend invite

create favour item

deck feature locate

decorate golf modern

design guide partner

desk hotel pool

The 5th sub-HBWL

property tradition corporate

provide twin custom

rare valley craft

register valuables contemporary

 73

restaurant various dedicate

scenic approximate distinct

shower architect diverse

site award expand

standard blend explore

surround celebrate extraordinary

The 6th sub-HBWL

facility intimate resort

fee landscape retreat

gallery legend stun

heritage menu sophisticate

ingredient ocean trail

host occupancy ultimate

innovate overlook unique

inquire passion vast

inspire reception adjacent

interior reside array

The 7th sub-HBWL

authentic marble suite

boast premier terrace

chef premium venue

champagne refine villa

destination refresh balcony

exotic romance butcher

fare signature cocktail

furnish sparkling complimentary

magnificent stroll exquisite

laundry spectacular gym

The 8th sub-HBWL

sumptuous bellhop housekeeper

yoga appetizer getaway

unwind bathroom lifestyle

utensil ballroom medium

cutlery babysit sunset

deluxe bartender walk-in

valet breathtaking wellness

toiletries busser wildlife

brunch doorman

 74

concierge fireplace

The 1st sub-ABWL

accommodate culture lounge tour

airport depart luxury transport

arrive executive offer travel

atmosphere express private trip

available guest region visit

bay holiday relax welcome

book international request

capital ideal reserve

convenience journey serve

cuisine leisure service

The 2nd sub-ABWL

allow charge hour

bag class inform

baggage clearance land

base comfort load

board country middle

business danger mile

call engine pass

card first prepare

carrier fly rate

carry flyer report

The 3rd sub-ABWL

responsible tax battery

return weather bound

rule window captain

safe adult cart

seat advance chief

secure advice claim

sign agent commit

space alcohol deck

special assist deliver

store attendant direct

The 4th sub-ABWL

 75

distance log port

duty loss provide

economy mask refuse

gate medical recommend

identify minor remain

individual operate require

instruct organize respect

instrument pat row

item plane schedule

length pocket seal

The 5th sub-ABWL

senior annual corporate

spare approve consult

ticket assign crew

tower capacity cruise

traffic charter currency

transfer climate custom

tray companion delay

accompany code device

aircraft consent disabled

airline compensate domestic

The 6th sub-ABWL

electronic pilot cabin

infant proceed cargo

excess prohibit carriage

facilitate republic comply

emergency restrict destination

jet route duration

liquid specify escort

numerous update evacuate

passenger weigh exit

permit zone fare

The 7th sub-ABWL

fleet aisle notify

haul altitude passport

immigrate automate ramp

overhead aviation runway

premium brace transit

 76

strap compartment turbulent

tag congestion vent

terminal fasten visa

upgrade disarm cockpit

airways complimentary hub

The 8th sub-ABWL

luggage purser layover

portable decompress legroom

refund airbus onboard

galley airside pregnant

aft armrest seatback

itinerary copilot seatbelt

lavatory headset takeoff

recline inflight taxiway

disembark jumpseat wheelchair

deplane landside

	Effective Detection of Local Languages for Tourists Based on Surrounding Features
	Recommended Citation

	tmp.1671127221.pdf.6jkLX

