St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2017

Enhancing Cloud Security by a Series of Mobile
Applications That Provide Timely and Process
Level Intervention of Real-Time Attacks

Rageeb Abdul
St. Cloud State University, raqeebabdul10@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Abdul, Rageeb, "Enhancing Cloud Security by a Series of Mobile Applications That Provide Timely and Process Level Intervention of
Real-Time Attacks" (2017). Culminating Projects in Information Assurance. 43.

https://repository.stcloudstate.edu/msia_etds/43

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.


https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/43?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F43&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Enhancing Cloud Security by a Series of Mobile Applications That Provide Timely and

Process Level Intervention of Real-Time Attacks

by
Rageeb Abdul

A Starred Paper
Submitted to the Graduate Faculaty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in Information Assurance

December, 2017

Committee Members:
Dennis Guster, Chairperson
Lynn Collen
Kasi Balasubramanian



Abstract

Cyber threat indicators that can be instantly shared in real-time may often be the only
mitigating factor between preventing and succumbing to a cyber-attack. Detecting threats in
cloud computing environment can be even more of a challenge given the dynamic and
complex nature of hosts as well as the services running. Information security professionals
have long relied on automated tools such as intrusion detection/prevention systems, SIEM
(security information and event management), and vulnerability scanners to report system,
application and architectural weaknesses. Although these mechanisms are widely accepted
and considered effective at helping organizations stay more secure, each can also have unique
limitations that can hinder in this regard. Therefore, in addition to utilizing these resources, a
more proactive approach must be incorporated to bring to light possible attack vectors and
hidden places where hackers may infiltrate.

This paper shares an insightful example of such lessor known attack vectors by closely
examining a host routing table cache, which unveiled a great deal of information that went
unrecognized by an intrusion detection system. Furthermore, the author researched and
developed a robust mobile app tool that has a multitude of functions which can provide the
information security community with a low-cost countermeasure that can be used in a variety
of infrastructures (e.g., cloud, host-based etc.). The designed mobile app also illustrates how
system administrators and other IT leaders can be alerted of brute force attacks and other
rogue processes by quickly identifying and blocking the attacking IP addresses. Furthermore,
it is an Android based application that also uses logs created by the Fail2Ban intrusion
prevention framework for Linux. Additionally, the paper will also familiarize readers with
indirect detection techniques, ways to tune and protect the routing cache, the impact of low
and slow hacking techniques, as well as the need for mobile app management in a cloud.
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Chapter I: Introduction
Problem Statement

Cloud computing supported by the UNIX operating system can be quite complex. This
is borne out by the fact that information stored on the system is quite frequently stored in
multiple places. In some cases, this process is automatically accomplished by the operating
system when a related event occurs. Such is the case when an attempt is made to log into the
secure shell service on a virtual machine (VM) in a cloud. Typically, the first hop of the route
being used is recorded in the dynamic routing cache table. In most configurations of UNIX or
variants such as LINUX (which is used in the study) this table addition occurs automatically
on the server side and there is little an attacking client process can do to stop it (Benvenuti,
2006). Detailed information regarding the configuration, operation, and tuning of router cache
is available from Bernat (2011a) and provides the flexibility to tune the cache to be more
effective beyond the default settings in identifying attacking routes. Of course, the cache itself
could be attacked and possibly disabled by a denial of service attack so mechanisms need to
be in place to protect it Bernat, 2011b). Therefore, its internal settings need to be well thought
out. For example, the garbage collector settings need to be optimized so the number of cached
routes cannot grow too large (Nguyen, 2004).

Nature and Significance of the Problem

To illustrate this problem, a simplistic example will be delineated below using the
author’s cloud based VM test-bed. First, an abbreviated routing cache table with numeric
addresses appears below. In the source column, the value is compared to the whitelist of Ipv4
addresses. In the first row, the value observed is in the whitelist category as having a valid IP

within the cloud. However, the value in the second row is not in the whitelist. A lookup of this



IP address via the whois command indicates that it is leased through Digital Ocean. This low
cost internet service has been used in the past by hackers to devise and test new techniques
(Munsell, 2014) so it follows that further investigation is warranted. Please note, however,
that the record includes a contact to report abuse so the ISP is taking some responsibility in

the event their services are misused.

buster@bros:/rhome/classes$ route -Cn | more
Kernel IP routing cache

Source Destination ~ Gateway Flags Metric Ref  Use Iface
199.17.59.234 199.17.59.195 199.17.59.195 0 1 4776eth0
188.226.139.158 199.17.59.234 199.17.59.234 I 0 O 3lo

buster@bros:~$ cat whitelist_rt.local

IP for cloud 199.17.59.0 # Public Class C for all cloud zones
IP for Parent org 199.17.0.0 # Public Class Cs for parent org

IP for lo 127.0.0.0 # Loop back on VM

IP for internal 10.0.0.0 # Private Class A for internal nets
Ip for internal 192.0.0.0 # Private Class C for internal nets

buster@bros:~$ whois 188.226.139.158 | more
% Information related to '188.226.128.0 - 188.226.191.255'
% Abuse contact for '188.226.128.0 - 188.226.191.255' is ‘abuse@digitalocean.com'’

inetnum: 188.226.128.0 - 188.226.191.255
netname: DIGITALOCEAN-AMS-4
descr: Digital Ocean, Inc.

country: NL

Figure 1. Abbreviated Routing Cache Table

The most prevalent type of attack on this VM is a brute force secure shell attack.
Which, for the sake of simplicity, we can assume is detected by and logged by the Fail2Ban

sub-process within the syslog facility. The event logic to log is simply three failed login



attempts and once this occurs the offending IP address is locked for 10 minutes. In the

example below, an address starting with 222 met the intrusion status twice.

log for Fail2Ban v0.8.6

2016-01-03 09:05:05,677 Fail2Ban.actions: WARNING [ssh] Ban 222.186.21.73
2016-01-03 09:15:06,569 Fail2Ban.actions: WARNING [ssh] Unban 222.186.21.73
2016-01-03 09:16:59,760 Fail2Ban.actions: WARNING [ssh] Ban 222.186.21.73
2016-01-03 09:27:00,679 Fail2Ban.actions: WARNING [ssh] Unban 222.186.21.73

Figure 2. Failed Login Attempts Log

However, the 188 address described above does not appear in this log at all, meaning
that based on this basic logic it is not defined as a security breach event. A quick analysis of
the authentication log reveals that it tried to connect via the secure shell daemon, but did not
get back a value from the service that could be capitalized upon and so it never returned an
authentication response. This scenario was repeated three times within a couple of hour’s
space between the events. This slow and low volume attack scenario is consistent with
sophisticated hacking techniques designed to minimize the attack footprint (Dev, 2014).
Further, there were 32 instances of attacks from networks beginning with 188.226 so it may

be wise to filter out all of that network traffic on a firewall level.

buster@bros:/var/log$ sudo cat Fail2Ban.log | grep 188
buster@bros:/var/log$

buster@bros:/var/log$ sudo cat auth.log | grep 188.226.139
Jan 510:49:21 bros sshd[5189]: Did not receive identification string from 188.226.139.158
Jan 512:50:13 bros sshd[6835]: Did not receive identification string from 188.226.139.158

Jan 5 15:35:49 bros sshd[8780]: Did not receive identification string from 188.226.139.158

buster@bros:/var/log$ sudo cat auth.log | grep 188.226. jwc -1 32

Figure 3. Slow and Low Volume Attack Scenario



So, based on the scenario described above, it is clear that evaluating the router cache
can provide an additional tool to identify hacking attacks that may not be picked up by an
intrusion detection system that might not be tuned to be overly sensitive in attempts to
minimize false positives. As one would expect, developing a methodology that compliments
existing intrusion detection strategies and provides quick alerts when a non-whitelisted site is
detected could be a valuable addition to a cloud based security strategy.

Objective of the Study

Therefore, this paper will build on the basic attack methodology depicted above and
implement a mobile application to remotely manage scripts that will evaluate the routing
cache in relation to a whitelist in real time, send out alerts, log the offending events and
provide basic performance information about the routing cache. This performance information
such as table size, hit efficiency, and initial round trip time will be used in part to evaluate
whether the cache itself has been potentially compromised. While this paper presents an
interesting security problem, it also provides a series of pertinent hands-on scenarios that
could be used in an educational environment. For example, the concept of a dynamic table
look-up is certainly pertinent herein, but permeates throughout computing and computing
security and once a basic understanding is attained that know ledge could be easily transferred

to another scenario such as a dynamic ARP table.
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Chapter I1: Background and Review of Literature

Indirect Detection Techniques

One of the problems in devising an effective security strategy on a dynamic system
such as a cloud is make sure that the detection system is quick and adaptable. In other words,
attacks against a dynamic system are best detected by another dynamic system. This concept
is supported by Jichkar and Chandak (2014) in their implementation of a security detection
system that due to the dynamic topology of the networks any static configuration would not be
sufficient. The work of Cho, Qu, and Wu (2012) built on this concept by placing the trust
evaluation from their security schema on a series of dynamic systems they referred to as
watchdog nodes. These nodes monitor and collect other sensors’ behavior information and are
tuned to dynamically spot problems within the trust interrelationships.

The work of Shuo, Jun, Kalbarczyk, and lyer (2006) used a finite-state machine (FSM)
approach to decompose programs into multiple elementary activities and used an indirect
analysis of those activities to ascertain the vulnerability of the originating program. This is
consistent with the prior references in this section in that a finite state machine can be used to
model complex logic in dynamic systems. In this case, the FSM analysis pinpoints common
characteristics among a broad range of security vulnerabilities: predictable memory layout,
unprotected control data, and pointer taintedness. As one would expect, the solution lies in a
more dynamic resource allocation approach which would randomize vulnerable areas such as
memory layout.

The work of Saha, Lukyanenko, and Yla-Jaaski (2015), while not directly security

related, is very pertinent to the core purpose of this paper. This work proposed and
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implemented a new distributed architecture to efficiently use network-wide cache storage
space based on a distributed caching algorithm. In the current paper the indirect detection
system is based only on the router cache of a single host. In systems, which used the proposed
method of Saha et al. (2015), the scope could easily be expanded form a single host to an
entire cloud. The white list of known networks would just need to expand beyond those
trusted by the host to those trusted by the cloud.

Tuning the Routing Cache

For quite some time, hackers have seen the value in attacking the routing structure
within internets (Meyer & Partan, 2003). One simple ploy would be to launch some type of
denial of service attack. Besides sound isolation of the routing tables, a good strategy to
combat this scenario is to keep the cache well-tuned. This is in part measurable by looking at
the percent of requests that are actually handled by the routing cache and do not require that
packets be sent out to resolve the route, which is much slower. An abbreviated example from
the author’s cloud below reveals that the cache is tuned fairly efficiently because ~95% of the
incoming requests are being cached (100 - (2053864 / 43539507) *100)). The outgoing

requests reach a similar efficiency with a hit percentage of ~97%.

buster@bros:~$ Instat -s1 -i1 -c-1 -f rt_cache
[rt_cachelrt_cache| [rt_cachelrt_cache|

| in_hitjin_slow_| | out_hit|out_slow]|
|43539507| 2053864|  |11315044| 325675|

Figure 4. Tuned Routing Cache
The work of Snader and Borisov (2008) provided an excellent example of what can

happen if hacker attacks disrupt the expected routing performance. Specifically, they found
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that when routing tunnels are allocated with limited resources this allows a malicious router
operator to attack such tunnels. If the tuning metrics used are insensitive to relative load, the
system does not adequately respond to changing conditions. This situation results in unreliable
performance which may drive many users away.

While Bernat (2011a) stated that when Linux is used as a router, the inefficiency of the
route cache can hinder the performances of your host he also states that information on how to
tune that cache is scarce and it is difficult to find up-to-date information on how the route
cache works. Of course, this makes tuning it problematic. As often is the case with mundane
computing topics, O’Reilly Publishing comes to the rescue with “Understanding Linux
Network Internals” (Benventuti, 2006). Specifically, Chapter 33 deals with these issues.
However, Bernat (2011a) provided a decent overview in regard to the basic of tuning router
cache to help ensure secure operations. Specifically, decisions need to be made in regard to
setting the hash table size, target average length of the queue, delay between garbage
collection runs and when to remove an outdated entry. Of special note from a security
perspective is the importance of tuning the garbage collection process which helps makes sure
that unused resources are recovered in real time which lessens the impact of a denial of
service attack.

Protecting the Routing Cache

Authors Zhang, Mao, and Wang (2007) discussed the need to protect against routing
misbehaviors by using route normalization to protect local network traffic from erroneous and
malicious routing traffic. Backbone network elements such as intrusion detection systems,

firewalls, and routers all depended on the integrity and cleanliness of mechanisms like the
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routing cache. If it goes awry, then the whole network can be compromised, therefore, it’s
paramount to protect routing caches due to its inherent trustworthiness. Zhang et al. (2007)
also explain how using a RouteNormalizer that mitigates violations with routing loops,
missing mandatory attributes, nexthop violations, and export policy violations can mitigate
and detect routing anomalies too.

Impact of Low and Slow Hacking Techniques

Even the most robust intrusion detection systems can be deceived by the low and slow
hacking techniques that stay just enough under the radar yet often do the most damage. This
is one of the main reasons why tuning and protecting the routing cache is vital to seeking out
hidden places malicious hackers can lurk. An example of such surreptitious tactics is found in
advanced persistent threats (APT’s). APT’s take “a low-and-slow approach” using social
engineering “to gain access to a network and steal information quietly” (Teller, 2012).
Symantec (n.d.) described APT’s as, “An advanced persistent threat uses multiple phases to
break into a network, avoid detection, and harvest valuable information over the long term.
This information below details the attack phases, methods, and motivations that differentiate
APTs from other targeted attacks” (f 1). Symantec further explained how APT’s are carried
out using the following methodology:

1. Incursion. Attackers break into network by using social engineering to deliver
targeted malware to vulnerable systems and people.

2. Discovery. Once in, the attackers stay very much under the radar to avoid
detection. They then map the organization’s defenses from the inside and create a

battle plan and deploy multiple parallel kill chains to ensure success.
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3. Capture. Attackers then access unprotected systems and capture information over
an extended period. They may also install malware to secretly acquire data or
disrupt operations.
4.  Exfiltration. Captured information is sent back to attack team’s home base for
analysis and further exploitation fraud and/or worse.

Larry Clinton, President of Internet Security Alliance (2013), described APT’s as
highly skilled, day job hackers who are going to get into systems and they are very persistent.
Additionally, Clinton (2013) described how they “stay for dinner and breakfast and don’t ever
go away. They’re going to go quiet and companies will think they’re gone but they are not.
They’re not interested necessarily in taking down a system but rather using and gathering
information about company systems and will “call home” with new information to advance
their threat. They are very skilled at hiding under the radar of anti-virus software. They are
usually going after a company’s Internet Protocol (TCP/IP), interested in identity thefts, wire
fraud and harvesting other types of classified information (Clinton, 2013)

Need for Mobile App Management in a Cloud

Given that attacks against routing resources can be disastrous and must be dealt with
in a timely manner, the interface used to alert the system administrator to such attacks must be
agile (Cho et al., 2012). Therefore, the goal of any remote system administration management
software should be to facilitate ease of use, speed and security. Because equipment rooms are
seldom staffed anymore, the logical solution is to provide management capabilities from a
mobile device. In the paper herein, the examples are based on Linux platforms and it therefore

is logical to evaluate the available mobile apps that are compatible with Linux systems. There
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are several mobile apps available, but typically they depend on ssh or some type of remote
virtual terminal program to gain access to the operating system. This situation would require
that the appropriate command be entered, which may not be all that fast given the keyboard
characteristics of some mobile devices (Geier, 2015). However, as previously stated a mobile
device will be critical in an obtaining an effective solution because it is readily available and
easily accessible.

The primary goals in adapting a mobile device to support the remote identification (via
the router cache) and mitigation of brute force attacks are typically related to identifying and
quickly blocking the attacking IP addresses, the ease of use, and, of course, added security. In
the case of not meeting these goals, then the solution would provide limited value. A similar
security APP was devised by Guster, Abdul, and Rice (2015) except it was designed to
identify and mediate rogue processes.

In that case, the challenge was to protect the system while a true decision about the
offending rogue process was being made by the system admin. Of course, this decision will
take time certainly the mobile APP approach would minimize some of the end-to-end delay
associated with logging in remotely via a virtual terminal program or a browser. In such cases
there will be some degree of asynchronous human think time. In Guster et al. (2015), a
strategy was pursued to just suspend the rogue process, and then if required, killed by the sys
admin via the mobile app. A similar approach will be applied herein where the block is

temporary and can be made permanent if desired by the system administrator.
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Chapter 111: Methodology

Because quickness of analysis is critical, the Android mobile application strategy

facilitates the availability of information pertaining to basic router cache performance

information, incursions recorded in logs, and the efficiency of the routing cache configuration.

To evaluate the implementation in an effective manner, the design will be presented in the

following modules:

=

Efficiency of the router cache

2. Evaluating Routing cache from a mobile application

3. Authentication logs

4.  Fail2Ban logs

a.

b.

Push notification for Fail2Ban Logs

Inserting records to database

5. Mitigating VM Denial of Service from a mobile application.

a.

b.

Identifying Sub-Targets

Tying the Sub-Targets Together with a PID

Identifying a Strategy for Killing PIDs from a Mobile Device
Proactively Identify a Rogue Process

Server side

Client Side

6.  Authentication and Encryption for accessing mobile application
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Figure 5. Mobile App — Routing Cache

All the modules above are discussed from two different perspectives: the client side
(Mobile application) and Server side (Linux Host). The server side is implemented using shell
scripts and PHP scripts.

Efficiency of the Router Cache

The router cache efficiency can be determined for outgoing and incoming connections.
So the efficiency of the router cache is calculated on the server side. The PHP script on the
server side fetches the cache from the following location “/proc/net/stat/rt_cache.” The output
is not structured. So, to parse this data, we have identified common delimiters like a comma,
dot, pipe, etc. This PHP script also exposes a REST API so as to consume it on the mobile

application. The REST API returns the data in JSON format.
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URL: http://<server>/performance.php

Method: GET

URL Params: <none>

Header: Authorization: Basic + Base64(encrypt(username):encrypt(password))

Response: {"in_efficency":"100","out_efficency":"100"}

Figure 6. PHP Script for Efficiency of Router Cache

Below, the strategy for calculating the in and out router cache efficiency is implemented in the
REST API.

Incoming efficiency:

in_efficiency = 100 — (rt_cache_in_slow_tot/rt_cache_in_hit)*100

Outgoing efficiency:

Out_efficiency = 100 — (rt_cache_out_slow_tot/rt_cache_out_hit)*100

Evaluating Routing Cache from a Mobile Application

Red Pocket & @ 00 v 4537

i1 Remotecache

Flags:|
Iface:lo
Metric:0
Use:701605

Flags:

Iface:lo

Figure 7. Mobile App — Evaluating the Routing Cache
The routing cache can be viewed by commands “route -Cn” or “netstat -Cnre”. The

whitelist_rt.local file has all the networks that are trusted on the cloud level which can
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basically be considered as Whitelisted IP addresses. Those networks not listed may or may not
become a blacklisted address, but this APP would alert the system administrator to evaluate
their presence (typically via a script).The initial evaluation of routing cache is done by
comparing source ip address from output of “route -Cn” with the IPs that are listed in
whitelist_rt.local. Since, the data is not structured we use the same strategy as above to parse
the data. The PHP script exposes a REST API which returns the data in JSON format, which

allows us to work with objects.

URL: http://<server>/cache.php

Method: GET

URL Params: <none>

Header: Authorization: Basic + Base64(encrypt(username):encrypt(password))

Response: [{"src™:"199.17.59.245","dst™":"199.17.59.195","gateway":"199.17.59.195","flags":"-

" "metric”:"0","ref":"1" "use":"1058", "iface":"eth0","blacklisted":0},{"src":"110.77.138.151","dst":"199.17.59.245
" "gateway":"199.17.59.245" "flags™:"I","metric":"0","ref":"0","use":"2" "iface":"lo","blacklisted":1}]

The script below provides the logic and implementation strategy for evaluating the

routing cache:

function parse ip(S$ip)
{
$ret=1;
$data = shell exec('cat whitelist rt.local);
$datal = explode("\n",Sdata);
foreach ($datal as $value){
if(strlen($value)=1)
$ips[] =preg_replace("N.{2,}/","." str_replace(".0","." ,preg_replace("/["0-9.]/","",$value)));
}
foreach ($ips as $addr) {
if (strpos($ip, $addr) ===0) {
Sret =0;
}
}

return $ret;

Figure 8: PHP Script for Evaluating the Routing Cache
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The above parse_ip function takes only a single argument such as the IP address and
then compares it with the IPs stored in ‘whitelist_rt.local’. The comparison is done by
checking the net portion of whitelisted IP address against the source IP address in the router
cache. In PHP the strops (string operations) returns the first occurrence of the substring. If the
IP address is not a substring then it is listed as blacklisted for this phase. It returns a ‘1’ if the
IP is blacklisted and ‘0’ if not.
Authentication Logs
The authentication logs are useful for evaluating user login patterns and determining
when sudo commands are invoked. This “auth log” file can be accessed at /var/log/auth.log. In
addition this log is useful for identifying malicious activities. Besides the convenience
displaying information on a mobile application is better approach because the auth.log data is
not structured. Of course, it is easy to impose structure within the mobile app display. The
strategy for parsing the data is similar to the examples above which use delimiters like space,

periods, pipes and so forth. The server also uses a REST API which returns a JSON array.

URL: http://<server>/auth_log.php

Method: GET

URL Params: <none>

Header: Authorization: Basic + Base64(encrypt(username):encrypt(password))

Response: [{"timestamp™:"Feb 1 11:01:02","log":"phpl CRON[5453] pam_unix(cron session) session closed for
user smmsp"},{"timestamp™:"Feb 1 11:09:01","log":"phpl CRON[5473] pam_unix(cron session) session opened
for user root by (uid=0)"}]



The response is structured into basically timestamp and log.

Red Pocket =] & O v 4 @ 532

A
®! Remotecache

Dst:php1 sudo pam_unix(sudo session)

L

Dst:php1 sudo www-data
TTY=unknown ; PWD=/var/www/html|/
student/paperz USER=root ;

Dst:php1 CRON[3330] pam_unix(cron
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Figure 9. Imposing Structure for Authentication Logs on the Mobile App

Fail2Ban Logs

The Fail2Ban logs are created by Fail2Ban intrusion prevention framework. These

logs can be found on /var/logs/Fail2Ban.log. Also, these logs are unstructured. So, to make
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this log meaningful and secure, we have created a script which copies of records to a MySQL

database. To do this in Fail2Ban framework, we need to create an action that will trigger a

script which writes data to MySQL whenever a ban or unbanned event has occurred. This

configuration file is located at /etc/Fail2Ban/action.d. For the project herein, the configuration

file below was created.
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student@php1:/etc/Fail2Ban/action.d$ cat qshield.conf
[Definition]
actionstart =
actionstop =
actioncheck =
actionban = iptables -I INPUT -j DROP -s <ip=
sudo php /var/www/html/student/paper2/ban.php <ip=
actionunban = iptables -D INPUT -j DROP -s <ip>
sudo php /var/'www/html/student/paper2/unban.php <ip>

Figure 10. Configuration File for Fail2Ban

The above configuration will call ban.php and unban.php whenever ban and unban of
IPs occur respectively. Both the scripts evaluate one argument: ip-address.
Lastly, we transfer the information in “qshield.conf” into “jail.local” which is the
configuration file for the Fail2Ban framework. This configuration file has jails for various
protocols like http,ftp,ssh etc. Since this paper is concerned about ssh, we have created a jail

only to ban ssh. Below is a sample the configuration file.

[ssh]

enabled = true

port =ssh

filter =sshd

logpath = /var/log/auth.log
maxretry = 3

action = gshield

These logs are integrated into the mobile application by using a REST API. In this
case, the log files didn’t need to be parsed because they are already stored on the database. So,

a simple “get” query could be used to retrieve the data.

URL: http://<server>/Fail2Ban.php

Method: GET

URL Params: <none>

Header: Authorization: Basic + Base64(encrypt(username):encrypt(password))

Response: [{"id":"16","status":"ban","ip":"199.17.59.234" "timestamp":"'2016-02-06
14:05:53","OrgName":"Minnesota State Colleges and Universities","Address":"30 7th Street East, Suite
350","City":"St.

Paul","StateProv":"MN","PostalCode":"55101","Country":"US"},{"id":"17","status": "ban","ip":""199.17.59.234" "ti
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mestamp™:"'2016-02-06 14:15:53","OrgName":"Minnesota State Colleges and Universities","Address™:"30 7th
Street East, Suite 350","City":"St. Paul","StateProv":"MN","PostalCode":"55101","Country":"US"}]
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Figure 11. Configuration File Integrated into the Mobile App

Push notification for Fail2Ban Logs. The push notification is a message which is
delivered by the server to the mobile application automatically without any need for a request
from the mobile application. In the implementation herein, the push notification is used to
notify the user about the bans and unbans of the IP address. This is also useful in identifying

false positives.

Insers record
Google Cloud
Messaging MySal
App will Server
register with S~
the GCM After sucessful &
registration, GCM will
return a device id
Server Fetches
¥ device ids
. ) to send
Android App > register.php|  junregister.php notificatior
App will send a
request to server to
insert device id in DB notify php €

Figure 12. Push Notification Architecture
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The mobile device will register with the Google Cloud Messaging server (GCM) upon

successful login to the application. If the registration is successful, the GCM will return a
device id which is a unique id to identify the device and application within the cloud. To send
a notification to a mobile application, this device ID is imperative. To facilitate future
development and in the spirit of event logging this device ID is being saved in a MySQL
database. This process is accomplished when the registration API is called. To send
notifications, a script called notify.php was created which in turn has a function called
“notify” containing the arguments message and the IP-address that are captured from
Fail2Ban.The ban.php and unban.php files which are discussed above call this “notify”
function along with the arguments message and IP-address. Below is the format of a request

to the GCM server.

URL:https://android.googleapis.com/gcm/send

Method: POST

URL Params: <none>

Header: Authorization: key=YOUR_API_KEY, Content-Type: application/json

Parameters: registration_ids = <array of device ids>, data = <array of key value pair>

Response:
{"multicast_id":6123852703457412158,"success":3,"failure™:0,"canonical_ids":2,"results":[{"message_id":"0:1454
882086684937%39ad5476f9fd7ecd"},{ registration_id":"APA91bGD3SNy6XfBr0o8x9d6Eh_TPSKRVjDfO8IHM
mNqIfkXZjxaQKZqrr-

DQywAO07rJypbNcXhnEznAjsluVBuw780w6QgxPY VesIFg79ZHt55_0FNmXBuXhg3bvo26 TArThKho2ras","me
ssage_id™":"0:1454882086684941%39ad5476f9fd7ecd"}]}
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Figure 13. Push Notifications for Fail2Ban Logs

Inserting records to database. The idea behind this strategy is to secure the logs. It is
similar to taking backups of Fail2Ban logs. This strategy will be more efficient if the database
is on some other remote server. But, in our design, for the sake of convenience, we have used
same host as where Fail2Ban is installed. This database can be used to create the REST API
that can be consumed on the mobile application. To make this data more meaningful, we have
included the location, host organization, etc. of the IP-address. To achieve this we have used
“dig” command. Below is the function that takes the one argument 1P-address and returns the

array of details.
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function getLoc($ip){
$data = shell exec("whois ".$ip." | grep
'OrgNam)\|City'\|Address\|StateProv\|PostalCode'|Country™);
$datal = explode("\n",$data);
foreach($datal as $value){
$data2 = explode(":",$value);
if(sizeof($data2)>=2)
$output[$data2[0]] = trim($data2[1]);
}

return $output;
}

Figure 14. Inserting Records To Database
Mitigating VM Denial of Service from a Mobile Application

Identifying sub-targets. Denial of Service attacks (DoS) are relatively easy to launch
and if the target is not prepared, can be very effective. Therefore, it is critical that a potential
target site devises a well thought out and timely strategy to combat such attacks. DoS have
been around some time and have become easier to launch with the advent of the Internet
(Hafner & Lyon, 1996). The Internet, in effect, gave the hacking world the access needed to
launch DoS attacks remotely with no need to gain physical access to the computer room of the
target. There are certainly many classi cations of attacks that could originate from the network
and foundations of which are described by Cheswick and Bellovin (1994). However, all
attacks will become instantiated in the operating system under one or more process identi
cation numbers (PID). Properly identifying such attacks requires a sound monitoring strategy

(Kargl, Mair, Schlott, & Weber, 2001). Monitoring the PID provides a common element that
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can tie together the different system resources that might be affected by a DoS attack.
Commonly, these resources fall into four categories: CPU, memory, storage, and network.

Tying the sub-targets together with a PID. To illustrate this interrelationship, a
temperature conversion service (which converts Fahrenheit to Centigrade) has been
instantiated on a VM within a cloud. The Linux netstat (network statistics) command output
given reveals that it is running on network port 18002 and available from all networks (:::)

assigned to that host and has been given PID 3224.

dguster@eros:~$ netstat -apeen | grep java
tcp6 0 0::18002 ::* LISTEN 1004536945 26213822 3224/java

The next command, ps (display processes) as seen below provides us with the memory
(MEM) and CPU usage, in both cases they are well below 1% which indicates that this

process in its present state is not causing either a memory or CPU DoS.

dguster@eros:~$ ps -aux | grep 3224
USER  PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
dguster 3224 0.3 0.4 2245236 17656 pts/3 Sl+ 14:03 0:02 java TempServer

However, in a cloud architecture using virtualization and symmetric multiprocessing,
the CPU resources may be distributed across many physical devices. The second ps —~ALF
command below shows us that the original PID 3224 has been broken down into 14 “light
weight processes” and are assigned to four different processors (PSR) numbered 0-3. While
the original process 3224 retains the same PID number for the light weight process ID, each
subsequent light weight process receives a new and different LWP number. However, because
these are assigned hierarchically. if one were to kill the root level process, in this case 3224,
the whole process stack would be removed. This fact will become important later in the paper

where mitigating a DoS attack as quickly as possible becomes imperative. A quick side note
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about this type of architecture and DoS attack is that the ability to multi-thread tasks and bring
multiple processors into the fray when a DoS attack occurs makes it much more difficult for a
DosS attack to be successful. Further, it lengthens the time a system administrator has to kill

the offending process(s) and mitigate the attack.

dguster@eros:~$ ps -ALF | grep 3224

uiD PID PPID LWP CNLWP SZ RSSPSRSTIMETTY TIME CMD
dguster 3224 3120 3224 14561309 17672 3 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3225 0 14561309 17672 0 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3228 0 14561309 17672 1 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3229 0 14561309 17672 2 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3230 0 14561309 17672 3 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3231 0 14561309 17672 0 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3232 0 14561309 17672 0 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3233 0 14561309 17672 2 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3234 0 14561309 17672 3 14:03 pts/3  00:00:00 java TempServer
dguster 3224 3120 3235 0 14561309 17672 1 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3236 0 14561309 17672 1 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3237 0 14561309 17672 2 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3238 0 14561309 17672 1 14:03 pts/3 00:00:00 java TempServer
dguster 3224 3120 3239 0 14561309 17672 114:03 pts/3 00:00:02 java TempServer

[eNeoNoloNolololoNoelolNoloNolNe)

Last, the Isof command (list open files) provides a way of linking the process to
storage resources. Below we are able to see respectively: the path to a directory on secondary
storage, a library loaded from secondary storage into memory, a temporary file system
workspace in memory but writable as a file to secondary storage, a UNIX socket which allows
the java class to be linked to the operating system and finally a IP version 6 network
connection linked to port 18002. A bottom up approach would require that each of these
elements linked to PID 3224 be deleted independently which would more than likely not be
quick enough to mitigate a modern DoS attack. Therefore, an effective method would be to
kill the root process, in this case PID 3224, and all sub-processes (sometimes referred to as

children) would then be eliminated as well.

dguster@eros:~$ Isof -p 3224
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 3224 dguster cwd DIR 0,21 24576 786911 /rhome/dguster/javaclass



29

java 3224 dguster 2u CHR 136,3 0t0 6 /dev/pts/3
java 3224 dguster mem REG 8,1 149280 715938 /lib/x86_64-linux-gnu/ld 2.15.s0
java 3224 dguster mem REG 8,1 32768 525582 /tmp/hsperfdata_dguster/3224

java 3224 dguster 12u unix 0x0000000000000000  Ot0 26213820 socket
java 3224 dguster 13u IPv6 26213822 0t0 TCP *:18002 (LISTEN)
Killing the Primary and Secondary PIDs with a Kill Command

Below we see that the process 3224 is killed. Then, a search using the ps —aux “display
process command” reveals only the search argument using the grep filter. Further, a list of
open files query returns nothing. So therefore 3224 and its children are no longer instantiated

on the VM.

dguster@eros:~$ kill 3224

dguster@eros:~$ ps -aux | grep 3224

dguster 6051 0.0 0.0 6500 624 pts/0 S+ 15:22 0:00 grep --color=auto 3224
dguster@eros:~$ Isof -p 3224

Identifying a strategy for killing PIDs from a mobile device. The primary goals in
adapting a mobile device to support the remote mitigation of DoS attacks are typically related
to identifying and quickly eliminating rogue PIDs, the ease of use, and, of course, added
security. If any one of these goals are not met, then the solution would provide limited value.
In terms of identifying rogue processes there are certain parameters that can be monitored and
a simple example appears below. A java class is writing a large file into memory and is taking
up 98.5% of the available memory available for this type of application. Therefore, if this
mobile management strategy is to be effective this obvious violation has to be identified and
the associated process (PID 12023) killed in a timely manner. Writing a script or scripts to
identify such a violation and sending an alert to the mobile device of a system admin would be

a major step in the success of this type of project.

dguster@eros:~$ ps -aux | grep java

dguster 12023 98.5 21.0 3271356 850956 pts/0 Sl+ 09:52 0:22 java MemoryMappedFilelnJava2



30
In terms of Killing the process, once it is identified the problem will then be greatly
affected by end-to-end transmission delay. Once the command is executed and transmitted to
the host the delay is relatively minimal, as can be seen in the output below. The task itself
takes ~ 3.65 milliseconds to run and the elapsed time from command to response is ~ 7.11

milliseconds.

dguster@eros:~$ perf stat -B kill -9 12161

Performance counter stats for 'kill -9 12161";

3.651294 task-clock # 0.514 CPUs utilized
1 context-switches # 0.000 M/sec
1 CPU-migrations # 0.000 M/sec
183 page-faults # 0.050 M/sec

<not counted> cycles
0 stalled-cycles-frontend # 0.00% frontend cycles idle
0 stalled-cycles-backend # 0.00% backend cycles idle
0 instructions # 0.00 insns per cycle
0 branches # 0.000 M/sec [19.34%)]
<not counted> branch-misses

0.007110059 seconds time elapsed

dguster@eros:~$ ps -aux | grep java
dguster 12184 0.0 0.0 6500 624 pts/3 S+ 10:02 0:00 grep --color=auto java

The challenge then will be to protect the system while a true decision about the
offending rogue process is being made by the system admin. Once again, this decision will
take time, although the mobile app approach should minimize some of the end-to-end delay
associated with logging in remotely via a virtual terminal program or a browser there still will
be some degree of asynchronous human think time. Therefore, a strategy needs to be pursued
to have the potentially rogue process suspended by the identifying script and if determined to
be a rogue process, then killed by the sys admin via the mobile app. In cases in which the
process is determined not to be a rogue process then it could be restarted from the same APP.

While suspending a process stops it from using CPU resources, the memory content remains
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in place but cannot grow. The LINUX command series in Figure 8 shows how a given process
can be temporarily disabled and restarted using the kill command. A PID (14439) from a
potentially rogue process is identified and disabled with the signal stop switch via the kill
command. When the process is then displayed its status flag changes from S (suspended
waiting for resources) to T (stopped). In the last part of the results below it is then changed
back to S (if indeed it is not a rogue process), but of course it could also be killed if it truly is
a rogue process. This type of logic will need to be incorporated into the design of the mobile

app to minimize the effect of false positives.

dguster@eros:~$ ps -aux | grep java

dguster 14439 38.6 25.7 3271356 1043744 pts/0 S+ 12:45 0:11 java MemoryMappedFilelnJava2
dguster 14455 0.0 0.0 6500 624 pts/3 S+ 12:46 0:00 grep --color=auto java
dguster@eros:~$ kill -SIGTSTP 14439

dguster@eros:~$ ps -aux | grep java

dguster 14439 8.8 25.7 3271356 1043744 pts/0 TI 12:45 0:12 java MemoryMappedFilelnJava2
dguster 14463 0.0 0.0 6500 624 pts/3 S+ 12:47 0:00 grep --color=auto java
dguster@eros:~$ kill -SIGCONT 14439

dguster@eros:~$ ps -aux | grep java

dguster 14439 7.3 25.7 3271356 1043744 pts/0 S| 12:45 0:12 java MemoryMappedFilelnJava2
dguster 14490 0.0 0.0 6500 620 pts/3 S+ 12:48 0:00 grep --color=auto java

Proactively identifying a rogue process. In order to effectively manage DoS
processes it is important to devise a proactive rather than a reactive policy. As state earlier
there are four main categories of denial of service: CPU, memory, disk and the network. For
the sake of simplicity, we will focus on the CPU. There are many ways of using the Linux
tools to identify a process that is overusing CPU resources, but in most cases they are a
variant of the ps command. To illustrate this process, we picked the method from How to Find

Which Process is Causing High CPU Usage (Newpaint, 2015), and the results appear below:



dguster@eros:~/javaclass$ ps -eo pcpu,pid,user,args | sort -k1 -r | head -10

%CPU PID USER COMMAND

82.8 3748 dguster java MemoryMappedFilelnJava2

12.0 3764 root  [flush-0:21]

0.1 1395 root /usr/sbin/vmtoolsd

0.0 31281 root  [kworker/0:0]

0.0 30824 root  /usr/lib/policykit-1/polkitd --no-debug

0.0 30757 root  /usr/sbin/console-kit-daemon --no-daemon
0.0 30697 syslog rsyslogd -c5

0.0 30344 root  /usr/sbin/sshd -D

0.0 29030 root  [kworker/3:2]

The resulting list displays the 10 processes that are using the most memory. The first
entry in the list is really problematic in that it is using 82.8% of available memory. Note that
the Linux operating system has processes in place to help safeguard against a denial of
service. For example, in the list above, the flush process is freeing memory by writing dirty
memory pages out to disk.
Server side. The host in this case is using a popular release of Linux called Ubuntu.
The services on this host are provided by an Apache Web Server. This service facilitates the
communication with the mobile application. Also, on this host a MySQL database has been
configured to provide secondary storage to store the mobile device IDs. Of course a modular
approach has been used to create the code. Below are all the components of the server which
are used to implement this application:

cProc.sh: This bash script is used to restart the stopped process
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register.php: This is the rest APl exposed to mobile app used to store the device id of

the Android Phone in the MySql DB.

This API accepts the GET Method and takes ‘id’ as an argument.

unregister.php: This is the rest APl exposed to the mobile app used to delete the

device id of the Android Phone in the MySql DB.
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This API accepts the GET Method and takes ‘id’ as an argument.
db_config.php: This file has the configuration used to connect to the MySQL DB.
This is not an API and it is used internally by other files which need to connect to DB.
cronjob.sh: This is a bash script which basically acts a cronjob which calls the
process.sh every five seconds.
MCrypt.php: This is a library which uses AES-128 internally for encrypting and
decrypting data. This is not exposed as APl and it is only used internally with other
files.
startProcess.php: This is a Rest APl which is displayed to the user by the mobile
application. This is used to start the process. It will internally call the ‘cProc.sh’
internally.
This API accepts the GET Method and takes the ‘pid’ as an argument.
stopProcess.php: This is a Rest APl which is displayed to the user by the mobile
application. This is used to stop the process. It will internally call the ‘sProc.sh’
internally.
This API accepts the GET Method and takes the ‘pid’ as an argument.
sProc.sh: This bash script is used to stop the running process.
killProcess.php: This is a Rest APl which is displayed to the user by the mobile
application. This is used to kill the process. It will internally call the ‘kProc.sh’
internally.

kProc.sh: This bash script is used to kill the running process.



34
process.sh: This is a bash script which is used to identify the process with a high CPU
usage. This will also call the ‘kill.sh’ to suspend the process.
kill.sh: This is a bash script which actually suspends the process and calls the
‘notify.php’.
auth.php: This is not an API and it is the authentication library which contains the
code for HTTP Basic Authentication along with AES-128 encryption. The credentials
are transmitted as encrypted data.
notify.php: This is API calls the GCM (Goggle Cloud Messaging) to send the push
notification. It gets the device ids from the MySQL DB.

Client side. In our design, the client is an Android Application. This Application has
two screens i.e. the Login Screen and the Administration screen which appear below as

screenshots in Figure 2.
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Figure 16. Administration Screen

The Login Screen is simply used to authenticate the application with the server. The
login screen will be shown only once,. i.e., when the user installs the application. Therefore,
when the user opens the APP for the second time it will not show the login screen again,
instead the administration screen would then be displayed. Also, when the user logs in
successfully for the first time the credentials are encrypted using AES-128 and then stored on
the mobile device to support future communications.

Push Notifications for Rouge Process

Figure 17 illustrates how the push notification is used within this application.
The push notification, also called the server push notification, is the delivery of information
from a software application to a computing device, without a specific request from the client.
In our design, push notifications are used to alert the user about the existence of a rogue

process.
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After a successful login, the mobile device will register with the GCM, upon a successful
registration, the GCM will then return a device id to the mobile application. This ID will be
used to uniquely identify the device within the cloud. The mobile application will then send a
request to the server along with this device id and then store it in the database (at this point the

register.php api is called).

Inserts record
Google Cloud
Messaging
App will Server
register with
the GCM After sucessful A
registration, GCM will
return a device id Server Fokhes
Y device ids
) 0 send
Android App » | |registerohp)  lunregisterphp| | |notificatior
App will send a
requestto serverto
insert device id in DB notify.php %

Figure 17. Architecture of Push Notification of Rouge Process

Next, when the server finds any rogue process it can, it will then send the push
notification using the device id (again the notify.php api is called to notify the registered
devices). Of course the object Notify.php has the code needed to send the request to the GCM.

Below is an example of a request to the GCM:

GCM API : https://android.googleapis.com/gcm/send

Method : POST

Parameters:

registration_ids : is the array of device ids

data : is the array of key value pair (Ex: “message” =>"Rogue process found”)
Header : Authorization: key="This key can be found on the Google API Console

Below, in Figure 18, is an example of the Android mobile device screenshot after the

rogue process has been killed.
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Figure 18. Rouge Process Killed

Encryption

Because this project attempted to use object oriented programming whenever possible
a well-respected library [9] was used for encryption on both the mobile app and the server
(GitHub, 2014). This library makes use of AES 128. When the mobile application sends a
request to the server the data is encrypted before being transmitted. For example, one of the
parameters to be passed would be the process ID which could be considered to be sensitive
data. So, under this scenario, every process ID is encrypted and then sent over the REST API,
of course then the, REST API is capable of decrypting the data.

The Initial Vector and Key both are initially shared between mobile app and the

server. Below is a sample implementation of the Encryption on the mobile app.
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String credentials = MCrypt.bytesToHex(mcrypt.encrypt(“rageeb™)) + ":"+
MCrypt.bytesToHex(mcrypt.encrypt("superman2"));

The decryption on the server side is accomplished with the logic below:

$mcrypt = new MCrypt();
$username =$mcrypt->decrypt($user);
$password = $mcrypt->decrypt($pass);

Authentication for Accessing Mobile Application

In this application, authentication is done by the HTTP Basic Auth routine in
conjunction with the AES-128 encryption class. The main file for handling the authentication
and login API on the server is “auth.php.” Every request from the mobile app is then
authenticated using that HTTP Basic Auth routine. Following is the example of adding the
Auth header to the mobile application. Below is the sample java code for a request on client
side:

credentials = MCrypt.bytesToHex(mcrypt.encrypt(“'rageeb™)) + ":" +
MCrypt.bytesToHex(mcrypt.encrypt(“superman2"));

String credBase64 = Base64.encodeToString(
credentials.getBytes(), Base64.DEFAULT).replace("\n","");
HttpClient httpclient = new DefaultHttpClient();

HttpGet httpGet = new HttpGet(params[0]);
httpGet.setHeader("Authorization", "Basic " + credBase64);
HttpResponse response = httpclient.execute(httpGet);

The above credentials are stored in the persistent memory of mobile device once the user has
successfully logged in. This facilitates efficiency when evaluating future requests to the

server. Figure 19 shows the sample PHP code used to handle the authentication requests.
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function pc_validate($Suser,$pass) {

$merypt = new MCrypt();

$username =$mcrypt-=decrypt(Suser);
$password = $Smerypt->=decrypt($pass);
$pass md5 = md5($password);

$query = "select * from vsers where username = 'Susername’ and password
='$pass_md5"";

$result=mysql_query($query);
$count=mysql num_rows($result);

if($count==1)
{

}

else

{
return false;

}

return true;

Figure 19. PHP Code Used for Authentication Requests

To achieve better security, the username and password have also been encrypted using
the AES-128 class before being transmitted to the server. In turn, the server will handle this
request by decrypting and following the rest of the authentication process. A much needed
future addition to this project would be implementing an administration control panel for
controlling user accounts within the mobile application. Keeping this in mind the users are
being stored in a MYSQL table called ‘users’. To ensure added security the passwords are

stored as a MD5 hash.
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Chapter IV: Conclusion and Future Work

The results generally indicate that an indirect measurement strategy such as using the
router cache can detect attacks that may not trip an intrusion detection system. This is due in
part to trying to minimize false positives within intrusion detection system and the fact that
hacker have learned to utilize less intense attacks to minimize the probability of getting caught
and to minimize their foot print from a forensics point of view. The data evaluated revealed
that scenario. There were typically about 10 attacks per hour that did not trip the intrusion
detection system, but were caught by the router cache. However, there were also several
events per hour where the IP address was not on the whitelist and hence was mistakenly
identified as an attack. Future research by the authors needs to address how the whitelist can
be expanded beyond the list of current trusted domains. In many cases, outside address are
related to a service provider such as Charter and Charter related client addresses in the
authors’ service area could be added to the white list. Also, use of reoccurring client addresses
if used ethically could be added as well.

Using the router cache for this purpose places an additional burden on that cache in the
sense it will get read more often. So it will be important to make sure the cache is well tuned.
On the authors’ system the virtual machine tested was getting an excellent hit ratio of about
95% in each direction. This is a good indicator of the health of the configuration and
hopefully can be maintained when the router cache is also used to identify intrusions.

Last, for this technique to be viable, a quick and convenient interface is required. It
makes sense to develop this interface as a mobile app. Equipment rooms are seldom manned

24/7 anymore, so assuming that a systems administrator carried a smart phone at all times,
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intrusion could be identified and dealt with remotely. Certainly, this remote management
would require that sensitive information travel the airways. Therefore, the design presented
herein attempted to use encryption mechanisms to ensure secure transmission of data. Further,
it was clear that this security tool could be just one of many that could be managed via a
mobile app. In fact this is the second tool developed by the authors, see Guster et al. (2015).
To accommodate such a mission, creating the MY SQL data base as a depository of security
related data will allow the sharing of such data across multiple security tools deployed as
mobile apps.

Hackers are consistently use a dynamic strategy; in other words, they are constantly
devising new attack techniques and are aware of the importance of minimizing their attack
fingerprint. Indirect methods such as this can be effective because adding to the routing cache
table can be viewed as a subsequent event to a primary event such as attacking the secure shell
daemon. This is an unconventional strategy and a hacker would really need to think outside
the box to thwart its effectiveness. Ultimately, this makes it more difficult for a hacker to: go

undetected, cover their tracks and ultimately succeed.
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Appendix
Application Name: Router Cache Android Application

Login.java

package com.bcrl.rcache;

import java.io.BufferedReader;
import java.io.InputStream;

import java.io.InputStreamReader;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONEXxception;

import org.json.JSONODbject;

import com.bcrl.rcache.MainActivity.WebRequest;

import com.bcrl.rcache.R;

import android.app.Activity;

import android.content.Intent;
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import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.os.AsyncTask;

import android.os.Bundle;

import android.preference.PreferenceManager;
import android.util.Base64;

import android.util.Log;

import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.EditText;

import android.widget. Toast;

public class Login extends Activity {

Button loginBtn;

String SERVER_URL = "http://10.31.7.11/student/paper2/";
WebReq_Return returninterface;

MCrypt mcrypt;

EditText ukt, pEt;

String username, password,;

SharedPreferences settings;
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@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.login);
settings = PreferenceManager
.getDefaultSharedPreferences(getApplicationContext());
String user = settings.getString("username”, null);

String pass = settings.getString("password", null);

if(user '= null && pass = null){
Intent intent = new Intent(Login.this,
MainActivity.class);
startActivity(intent);

finish();

final Editor edit = settings.edit();

loginBtn = (Button) findViewByld(R.id.buttonl);
mcrypt = new MCrypt();

uEt = (EditText) findViewByld(R.id.editTextl);

pEt = (EditText) findViewByld(R.id.editText2);
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loginBtn.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

createLogin();

bk

returninterface = new WebReq_Return() {
@Override
public void setResult(String result) {
try {
JSONODbiject jo = new JSONODbject(result);
String code = jo.getString(*'code™);
if (Integer.parselnt(code) == 200) {
runOnUiThread(new Runnable() {
public void run() {
edit.putString(*'username",

username);
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edit.putString(“password",
password);
edit.commit();

Intent intent = new

Intent(Login.this,

MainActivity.class);
startActivity(intent);

finish();

b
}else {

runOnUiThread(new Runnable() {

public void run() {

Toast.makeText(getApplicationContext(),

"Invalid

credentials",

Toast. LENGTH_SHORT).show();

bk
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}
} catch (JSONEXxception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

public void createLogin() {
try {

username = MCrypt.bytesToHex(mcrypt.encrypt(uEt.getText()
.toString()));

password = MCrypt.bytesToHex(mcrypt.encrypt(pEt.getText()
.toString()));

Log.d("url", SERVER_URL + "auth.php?user=" + username +

"&pass="

+ password);

WebRequest wr = new WebRequest();

wr.execute(SERVER_URL + "auth.php?user="+ username +

"&pass="



+ password);

} catch (Exception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

public class WebRequest extends AsyncTask<String, Void, Void> {

@Override

protected Void doInBackground(String... params) {
/l TODO Auto-generated method stub
InputStream isr = null;
String result =",

long start, end;

start = System.currentTimeMillis();

try {

/I create HttpClient

HttpClient httpclient = new DefaultHttpClient();
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1), 8);

HttpGet httpGet = new HttpGet(params[0]);

HttpResponse response = httpclient.execute(httpGet);

/I receive response as inputStream

isr = response.getEntity().getContent();

/[ convert inputstream to String
BufferedReader reader = new BufferedReader(

new InputStreamReader(isr, "is0-8859-

StringBuilder sb = new StringBuilder();
String line = null;
while ((line = reader.readLine()) '= null) {

sh.append(line + "\n");

isr.close();

result = sb.toString();

Log.d("output”, result);

end = System.currentTimeMuillis();

} catch (Exception ex) {
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Log.d("exception”, ex.toString());

end = System.currentTimeMillis();

¥

returninterface.setResult(result);

return null;

public interface WebReqg_Return {

void setResult(String date);

}

MainActivity.java

package com.bcrl.rcache;

import java.io.BufferedReader;
import java.io.InputStream;

import java.io.InputStreamReader;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;
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import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONEXxception;

import org.json.JSONODbject;

import com.google.android.gcm.GCMRegistrar;

import com.bcrl.rcache.R;

import android.app.Activity;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.Bundle;

import android.util.Base64;
import android.util.Log;

import android.view.Menu;
import android.view.Menultem;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget. TextView;

import android.widget. Toast;



public class MainActivity extends Activity {

EditText pidET,;

String SERVER_URL = "http://10.31.7.11/student/paper2/";
Button perBtn, authBtn, Fail2BanBtn, cacheBtn;

TextView in_eff, out_eff;

WebReq_Return returninterface;

MCrypt mcrypt;

String credentials, username, password;

@Override

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity _main);
GCMRegistrar.checkDevice(this);
GCMRegistrar.checkManifest(this);
final String regld = GCMRegistrar.getRegistrationld(this);
GCMRegistrar.register(getApplicationContext(),

GCMIntentService. SENDER_ID);

perBtn = (Button) findViewByld(R.id.button3);
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Fail2BanBtn = (Button) findViewByld(R.id.button2);
authBtn = (Button) findViewByld(R.id.buttonl);
cacheBtn = (Button) findViewByld(R.id.button4);
in_eff = (TextView) findViewByld(R.id.textView4);

out_eff = (TextView) findViewByld(R.id. TextView01);

mcrypt = new MCrypt();

perBtn.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

fetchPerformance();

i

Fail2BanBtn.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

Intent intent = new Intent(MainActivity.this,
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Fail2Ban.class);
intent.putExtra("type", "fail");

startActivity(intent);

H

authBtn.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {
Intent intent = new Intent(MainActivity.this,
Fail2Ban.class);
intent.putExtra("type", "auth™);

startActivity(intent);

i

cacheBtn.setOnClickListener(new OnClickListener() {

@Override
public void onClick(View v) {

Intent intent = new Intent(MainActivity.this,
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Fail2Ban.class);

intent.putExtra(type", "cache");

startActivity(intent);

H

returninterface = new WebReq_Return() {
@Override
public void setResult(final String result) {
runOnUiThread(new Runnable() {

public void run() {

Toast.makeText(getApplicationContext(),

result,

Toast. LENGTH_LONG).show();

bk
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if (getintent().getExtras() '= null) {

String message = getIntent().getExtras().getString("name");

public void fetchPerformance() {

try {

credentials = MCrypt.bytesToHex(mcrypt.encrypt(“rageeb™)) +

+
MCrypt.bytesToHex(mcrypt.encrypt("superman2"));
Log.d("url", SERVER_URL + "performance.php™);
WebRequest wr = new WebRequest();
wr.execute(SERVER _URL + "performance.php");
} catch (Exception e) {
/I TODO Auto-generated catch block

e.printStackTrace();



public class WebRequest extends AsyncTask<String, Void, String> {

@Override
protected void onPostExecute(String result) {
try {
JSONODbject jo = new JSONObiject(result);
in_eff.setText("In efficiency:" +
jo.getString(*'in_efficency")
+ "%");
out_eff.setText("Out efficiency:"
+ jo.getString("out_efficency") + "%");
} catch (JSONEXxception e) {
/I TODO Auto-generated catch block

e.printStackTrace();

@Override
protected String doInBackground(String... params) {

// TODO Auto-generated method stub
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InputStream isr = null;

String result =",

long start, end;

start = System.currentTimeMillis();

try {

Base64.DEFAULT).replace("\n",

credBase64);

String credBase64 = Base64.encodeToString(

credentials.getBytes(),

"),

/I create HttpClient

HttpClient httpclient = new DefaultHttpClient();

HttpGet httpGet = new HttpGet(params[0]);

httpGet.setHeader(*"Authorization", "Basic " +

HttpResponse response = httpclient.execute(httpGet);

/I receive response as inputStream

isr = response.getEntity().getContent();

/I convert inputstream to String

BufferedReader reader = new BufferedReader(
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new InputStreamReader(isr, "is0-8859-
1%), 8);
StringBuilder sb = new StringBuilder();
String line = null;
while ((line = reader.readLine()) '= null) {

sh.append(line + "\n");

isr.close();

result = sb.toString();

Log.d("output”, result);
end = System.currentTimeMillis();
} catch (Exception ex) {
Log.d("exception", ex.toString());
end = System.currentTimeMillis();
}
String resp = "Response Time" + (end - start) + " millis";
returninterface.setResult("CMD exe time -" + resp);

return result;



GCMIntentService.java

package com.bcrl.rcache;

import java.util. Timer;

import java.util. TimerTask;

import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;

import org.apache.http.impl.client.DefaultHttpClient;

import android.app.Notification;

import android.app.NotificationManager;
import android.app.Pendinglintent;
import android.content.Context;

import android.content.Intent;

import android.os.PowerManager;

import android.util.Log;
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import com.google.android.gcm.GCMBaselntentService;

import com.bcrl.rcache.R;

public class GCMIntentService extends GCMBaselntentService {

private static final String TAG = "GCM Tutorial::Service";

private static final String SUrl = "http://10.31.7.11/student/paper2/";

I/l ' Use your PROJECT ID from Google API into SENDER_ID

public static final String SENDER_ID = "1037879414870";

public GCMiIntentService() {

super(SENDER_ID);

@Override

protected void onRegistered(Context context, String registrationld) {

Log.i(TAG, "onRegistered: registrationld=" + registrationid);

HttpClient mClient = new DefaultHttpClient();
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registrationld);
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HttpGet get = new HttpGet(SUrl + "/register.php?id=" + registrationld);

try {

mClient.execute(get);

HttpResponse res = mClient.execute(get);

} catch (Exception e) {

// TODO: handle exception

@Override

protected void onUnregistered(Context context, String registrationld) {

Log.i(TAG, "onUnregistered: registrationld=" + registrationid);

HttpClient mClient = new DefaultHttpClient();

HttpGet get = new HttpGet(SUrl + "/unregister.php?id=" +

try {

mClient.execute(get);
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HttpResponse res = mClient.execute(get);

} catch (Exception e) {

// TODO: handle exception

@Override

protected void onMessage(Context context, Intent data) {
String message;
String messagel;

String message2;

/I Message from PHP server
message = data.getStringExtra("message");
messagel = data.getStringExtra("messagel™);

message2 = data.getStringExtra("message2");

/[ Starts the activity on notification click
int icon = R.drawable.ic_launcher;

long when = System.currentTimeMillis();
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/I NotificationManager notificationManager = (NotificationManager)
context.getSystemService(Context. NOTIFICATION_SERVICE);

Notification notification = new Notification(icon, message, when);

String title = context.getString(R.string.app_name);

Intent notificationIntent = new Intent(context, MainActivity.class);
notificationIntent.putExtra("name", message);
notificationIntent.putExtra("pid"”, messagel);

notificationIntent.putExtra("link", message2);

/] set intent so it does not start a new activity
notificationIntent.setFlags(Intent. FLAG_ACTIVITY_CLEAR_TOP
| Intent.FLAG_ACTIVITY_SINGLE_TOP);
PendinglIntent intent = Pendinglntent.getActivity(context, 0,
notificationIntent,
Pendingintent. FLAG_UPDATE_CURRENT);
notification.setLatestEventIinfo(context, title, message, intent);

notification.flags |= Notification.FLAG_AUTO_CANCEL;

/I Play default notification sound

notification.defaults |= Notification.DEFAULT_SOUND;
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/I Vibrate if vibrate is enabled

notification.defaults |= Notification.DEFAULT_VIBRATE;

I notificationManager.notify(0, notification);

NotificationManager manager = (NotificationManager)
getSystemService(NOTIFICATION_SERVICE);

manager.notify(R.string.app_name, notification);

// Wake Android Device when notification received

PowerManager pm = (PowerManager) context

.getSystemService(Context. POWER_SERVICE);
final PowerManager.WakeLock mWakelock =
pm.newWakeLock(
PowerManager.FULL_WAKE_LOCK
|
PowerManager. ACQUIRE_CAUSES_WAKEUP, "GCM_PUSH");

mWakelock.acquire();

/I Timer before putting Android Device to sleep mode.

Timer timer = new Timer();



TimerTask task = new TimerTask() {
public void run() {

mWakelock.release();

}

timer.schedule(task, 5000);

@Override

protected void onError(Context arg0, String errorld) {

Log.e(TAG, "onError: errorld=" + errorld);

MCrypt.java

/*

*/
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package com.bcrl.rcache;

import java.security.NoSuchAlgorithmException;

import javax.crypto.Cipher;

import javax.crypto.NoSuchPaddingException;

import javax.crypto.spec.lvParameterSpec;

import javax.crypto.spec.SecretKeySpec;

public class MCrypt {

static char[] HEX_CHARS = {'0','1",'2",'3''4','5''6','7",'8','9",'a','v",'c’,'d",'e",'f'};

private String iv = "fedcba9876543210";//Dummy iv (CHANGE IT!)

private lvParameterSpec ivspec;

private SecretKeySpec keyspec;

private Cipher cipher;

private String SecretKey = "0123456789abcdef";//Dummy secretkKey (CHANGE

public MCrypt()



ivspec = new lvParameterSpec(iv.getBytes());

keyspec = new SecretKeySpec(SecretKey.getBytes(), "AES");

try {
cipher = Cipher.getInstance("AES/CBC/NoPadding");

} catch (NoSuchAlgorithmException e) {
/l TODO Auto-generated catch block
e.printStackTrace();

} catch (NoSuchPaddingException €) {

/l TODO Auto-generated catch block

e.printStackTrace();

public byte[] encrypt(String text) throws Exception

{
if(text == null || text.length() == 0)

throw new Exception("Empty string");

byte[] encrypted = null,
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try {

cipher.init(Cipher.ENCRYPT_MODE, keyspec, ivspec);

encrypted = cipher.doFinal(padString(text).getBytes());

} catch (Exception e)

{

throw new Exception("[encrypt] " + e.getMessage());

return encrypted;

public byte[] decrypt(String code) throws Exception

{
if(code == null || code.length() == 0)

throw new Exception("Empty string");

byte[] decrypted = null,

try {

cipher.init(Cipher.DECRYPT_MODE, keyspec, ivspec);



decrypted = cipher.doFinal(hexToBytes(code));
/[Remove trailing zeroes
if( decrypted.length > 0)
{
int trim = 0;

for(int i = decrypted.length - 1; i >=0; i-- ) if( decrypted[i] ==0)

trim++;
if(trim>0)
{
byte[] newArray = new byte[decrypted.length - trim];
System.arraycopy(decrypted, 0, newArray, 0, decrypted.length -
trim);

decrypted = newArray;

}
}
} catch (Exception e)
{
throw new Exception("[decrypt] " + e.getMessage());
}

return decrypted,
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public static String bytesToHex(byte[] buf)

{

char[] chars = new char[2 * buf.length];
for (inti = 0; i < buf.length; ++i)

{

chars[2 * i] = HEX_CHARSJ[(buf[i] & 0xF0) >>> 4];

chars[2 * i + 1] = HEX_CHARS[buf[i] & 0x0F];

}

return new String(chars);

public static byte[] hexToBytes(String str) {
if (str==null) {
return null;
} else if (str.length() < 2) {
return null;

} else {

int len = str.length() / 2;
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{

byte[] buffer = new byte[len];
for (int i=0; i<len; i++) {
buffer[i] = (byte) Integer.parselnt(str.substring(i*2,i*2+2),16);

}

return buffer;

rivate static String padString(String source)

char paddingChar = 0;
int size = 16;
int X = source.length() % size;

int padLength = size - x;

for (inti = 0; i < padLength; i++)

{

source += paddingChar;
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return source;

k
k

FObject.java

package com.bcrl.rcache;

public class FObject {

public String status;

public String ip;

public String timestamp;

public String orgname;
public String address;
public String city;
public String state;
public String pcode;

public String country;

Fail2Ban.java
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package com.bcrl.rcache;

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util. ArrayList;

import java.util.Collection;

import java.util.Collections;

import java.util.List;

import org.apache.http.HttpResponse;

import org.apache.http.client.HttpClient;

import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONArray;

import org.json.JSONEXxception;

import org.json.JSONODbject;

import com.bcrl.rcache.MainActivity.WebRequest;

import android.app.Activity;

import android.os.AsyncTask;

78



import android.os.Bundle;
import android.util.Base64;
import android.util.Log;

import android.widget.ListView;

public class Fail2Ban extends Activity {
String credentials;
MCrypt mcrypt;
String SERVER_URL = "http://10.31.7.11/student/paper2/";
List<FObject> data;
List<CObject> cdata;
List<AODbject> adata;

ListView lv;

@Override

protected void onCreate(Bundle savedInstanceState) {
// TODO Auto-generated method stub
super.onCreate(savedInstanceState);
setContentView(R.layout.Fail2Ban);
Iv = (ListView) findViewByld(R.id.listview);
mcrypt = new MCrypt();

data = new ArrayList<FObject>();
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cdata = new ArrayList<CObject>();

adata = new ArrayList<AObject>();

if (getintent().getExtras() '= null) {

if (getintent().getExtras().getString(“type™).equals("fail")) {

callFail2Ban();

if (getintent().getExtras().getString("type™).equals(“auth™)) {

callAuth();

if (getintent().getExtras().getString("type™).equals("cache")) {

callCache();

public void callFail2Ban() {

try {

WebRequest wr = new WebRequest();
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credentials = MCrypt.bytesToHex(mcrypt.encrypt(“rageeb™)) +

+
MCrypt.bytesToHex(mcrypt.encrypt(“superman2"));
wr.execute(SERVER_URL + "/Fail2Ban.php");
} catch (Exception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

public void callAuth() {

try {

WebRequest wr = new WebRequest();

credentials = MCrypt.bytesToHex(mcrypt.encrypt(“rageeb™)) +

+
MCrypt.bytesToHex(mcrypt.encrypt("superman2"));
wr.execute(SERVER_URL + "/auth_log.php™);
} catch (Exception e) {
/I TODO Auto-generated catch block

e.printStackTrace();
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public void callCache() {

try {

WebRequest wr = new WebRequest();

credentials = MCrypt.bytesToHex(mcrypt.encrypt(“rageeb™)) +

+

MCrypt.bytesToHex(mcrypt.encrypt(“superman2"));

wr.execute("http://studentweb.bcrl.stcloudstate.edu/~raqueeb.abdul/cache.php™);
} catch (Exception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

public void parseFail2Ban(JSONArray ja) {
for (inti=ja.length()-1;i>=0;i--) {
try {
JSONONDbject job = ja.getJISONODbject(i);
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FODbject fa = new FObject();
fa.status = job.getString("status™);
fa.ip = job.getString("ip");
fa.timestamp = job.getString("timestamp");
fa.orgname = job.getString("OrgName");
fa.address = job.getString("Address");
fa.city = job.getString("City");
fa.state = job.getString("'StateProv");
fa.pcode = job.getString(*"PostalCode™);
fa.country = job.getString("Country");
data.add(fa);

} catch (JSONEXxception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

}

Log.d("test", "test");
Fadapter fa = new Fadapter(getApplicationContext(), data);

Iv.setAdapter(fa);



public void parseAuth(JSONArray ja) {

ja = reverseJSON(ja);
for (inti = 1; i <= 20; i++) {
try {
JSONODbject job = ja.getJISONODbject(i);
AObject fa = new AObject();
fa.log = job.getString("log");
fa.timestamp = job.getString(""timestamp");

adata.add(fa);

} catch (JSONEXxception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

}

AAdapter ca = new AAdapter(getApplicationContext(), adata);

Iv.setAdapter(ca);

public void pareCache(JSONArray ja) {

for (inti = 0; i <ja.length(); i++) {
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try {

JSONODbject job = ja.getJISONODbject(i);

if (job.getString("blacklisted™).equals("1")) {
CObject fa = new CODbject();
fa.blacklist = job.getString("blacklisted");
fa.src = job.getString("src");
fa.dst = job.getString("dst");
fa.flags = job.getString(*'flags");
fa.metric = job.getString("metric");
fa.ref = job.getString("'ref");
fa.gateway = job.getString(*gateway");
fa.user = job.getString("use");
fa.iface = job.getString("iface");
cdata.add(fa);

}

} catch (JSONEXxception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

¥

CAdapter ca = new CAdapter(getApplicationContext(), cdata);



Iv.setAdapter(ca);

public class WebRequest extends AsyncTask<String, Void, String> {

@Override
protected void onPostExecute(String result) {
try {
JSONArray ja = new JSONArray(result);
if
(getintent().getExtras().getString("type™).equals(*"fail")) {

parseFail2Ban(ja);

if
(getintent().getExtras().getString("type™).equals(*auth™)) {

parseAuth(ja);

if
(getIntent().getExtras().getString("type™).equals(*cache™)) {

pareCache(ja);
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} catch (JSONEXxception e) {
/l TODO Auto-generated catch block

e.printStackTrace();

@Override
protected String doInBackground(String... params) {
/l TODO Auto-generated method stub
InputStream isr = null;
String result =",
long start, end;
start = System.currentTimeMuillis();
try {
String credBase64 = Base64.encodeToString(
credentials.getBytes(),
Base64.DEFAULT).replace("\n",
");
/I create HttpClient

HttpClient httpclient = new DefaultHttpClient();



credBase64);

1), 8);

HttpGet httpGet = new HttpGet(params[0]);

httpGet.setHeader(*"Authorization™, "Basic " +

HttpResponse response = httpclient.execute(httpGet);

I/ receive response as inputStream

isr = response.getEntity().getContent();

/[ convert inputstream to String
BufferedReader reader = new BufferedReader(

new InputStreamReader(isr, "is0-8859-

StringBuilder sb = new StringBuilder();
String line = null;
while ((line = reader.readLine()) '= null) {

sh.append(line + "\n");

isr.close();

result = sh.toString();
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Log.d("output”, result);
end = System.currentTimeMillis();
} catch (Exception ex) {
Log.d("exception", ex.toString());

end = System.currentTimeMillis();

return result;

public JSONArray reverseJSON(JSONArray ja) {
JSONArray newlJsonArray = new JSONArray();
for (inti=ja.length()-1;i>=0;i--) {
try {
newJsonArray.put(ja.get(i));
} catch (JSONEXxception e) {
/I TODO Auto-generated catch block

e.printStackTrace();



return newJsonArray;

}

FAdapter.java

package com.bcrl.rcache;

import java.util.List;

import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.LinearLayout;
import android.widget.ListAdapter;

import android.widget. TextView;

public class Fadapter extends BaseAdapter {
Context context;
List<FObject> data;

private static LayoutInflater inflater = null;
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public Fadapter(Context c, List<FObject> listArray) {
this.context = c;
this.data = listArray;
inflater = (LayoutInflater) c

.getSystemService("layout_inflater");

@Override
public int getCount() {
/l TODO Auto-generated method stub

return this.data.size();

@Override
public Object getltem(int paramint) {
// TODO Auto-generated method stub

return this.data.get(paramint);

@Override
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public long getltemId(int paramint) {
/l TODO Auto-generated method stub

return paramint;

@Override
public View getView(int paramint, View paramView, ViewGroup
paramViewGroup) {
TextView
ip,timestamp,status,orgname,address,city,state,pcode,country;
LinearLayout messageView;
View localView = paramView;
if (localView == null) {
localView = inflater.inflate(R.layout.fadapter, null);
}
ip = (TextView) localView.findViewByld(R.id.ip);
timestamp = (TextView) localView.findViewByld(R.id.timestamp);
status = (TextView) localView.findViewByld(R.id.status);
orgname = (TextView) localView.findViewByld(R.id.orgname);
address = (TextView) localView.findViewByld(R.id.address);
city = (TextView) localView.findViewByld(R.id.city);

state = (TextView) localView.findViewByld(R.id.state);



pcode = (TextView) localView.findViewByld(R.id.pcode);

country = (TextView) localView.findViewByld(R.id.country);

timestamp.setText("TimeStamp:"+data.get(paramInt).timestamp);
ip.setText("IP:"+data.get(paramint).ip);
status.setText(*'Status:"+data.get(paramint).status);
orgname.setText("OrgName:"+data.get(paramint).orgname);
address.setText("Address:"+data.get(paramint).address);
city.setText("City:"+data.get(paramint).city);
state.setText("State:"+data.get(paramint).state);
pcode.setText("Pcode:"+data.get(paramint).pcode);
country.setText("Country:"+data.get(paramint).country);

return localView;

CObject.java

package com.bcrl.rcache;

public class CObject {
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public String src;
public String dst;
public String gateway;
public String flags;
public String metric;
public String ref;
public String user;
public String iface;

public String blacklist;

CAdapter.java

package com.bcrl.rcache;

import java.util.List;

import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

import android.widget.BaseAdapter;

94



import android.widget.LinearLayout;
import android.widget.ListAdapter;

import android.widget. TextView;

public class CAdapter extends BaseAdapter {
Context context;
List<CObject> data;

private static LayoutInflater inflater = null;

public CAdapter(Context c, List<CObject> listArray) {
this.context = c;
this.data = listArray;

inflater = (LayoutInflater) c.getSystemService("layout_inflater");

@Override
public int getCount() {
// TODO Auto-generated method stub

return this.data.size();
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@Override
public Object getltem(int paramint) {
/l TODO Auto-generated method stub

return this.data.get(paramint);

@Override
public long getltemId(int paramint) {
/l TODO Auto-generated method stub

return paramint;

@Override
public View getView(int paramint, View paramView, ViewGroup
paramViewGroup) {
TextView ip, timestamp, status, orgname, address, city, state, pcode,
country;
LinearLayout messageView;
View localView = paramView;
if (localView == null) {

localView = inflater.inflate(R.layout.fadapter, null);
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AODbiject.java

97
ip = (TextView) localView.findViewByld(R.id.ip);
timestamp = (TextView) localView.findViewByld(R.id.timestamp);
status = (TextView) localView.findViewByld(R.id.status);
orgname = (TextView) localView.findViewByld(R.id.orgname);
address = (TextView) localView.findViewByld(R.id.address);
city = (TextView) localView.findViewByld(R.id.city);
state = (TextView) localView.findViewByld(R.id.state);
pcode = (TextView) localView.findViewByld(R.id.pcode);
country = (TextView) localView.findViewByld(R.id.country);
timestamp.setText("Src:" + data.get(paramint).src);
ip.setText("Dst:" + data.get(paramint).dst);
status.setText("Gateway:" + data.get(paramint).gateway);
orgname.setText("Flags:" + data.get(paramint).flags);
address.setText("Iface:" + data.get(paramint).iface);
city.setText("Metric:" + data.get(paramint).metric);
state.setText("Use:" + data.get(paramint).user);
pcode.setText("Ref:" + data.get(paramint).ref);
country.setText("Blacklist:" + data.get(paramInt).blacklist);

return localView;



package com.bcrl.rcache;

public class AObject {

public String timestamp;

public String log;

}

AAdapter.java

package com.bcrl.rcache;

import java.util.List;

import android.content.Context;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;
import android.widget.BaseAdapter;
import android.widget.LinearLayout;

import android.widget. TextView;

public class AAdapter extends BaseAdapter {

Context context;
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List<AObject> data;

private static Layoutinflater inflater = null;

public AAdapter(Context ¢, List<AObject> listArray) {
this.context = c;
this.data = listArray;

inflater = (LayoutInflater) c.getSystemService("layout_inflater");

@Override
public int getCount() {
// TODO Auto-generated method stub

return this.data.size();

@Override
public Object getltem(int paramint) {
// TODO Auto-generated method stub

return this.data.get(paramint);

99



100
@Override
public long getltemId(int paramint) {
/l TODO Auto-generated method stub

return paramint;

@Override
public View getView(int paramint, View paramView, ViewGroup
paramViewGroup) {
TextView log, timestamp;
LinearLayout messageView;
View localView = paramView;
if (localView == null) {
localView = inflater.inflate(R.layout.aadapter, null);
}
log = (TextView) localView.findViewByld(R.id.log);
timestamp = (TextView) localView.findViewByld(R.id.timestamp);
timestamp.setText("Src:" + data.get(paramInt).timestamp);

log.setText("Dst:" + data.get(paramint).log);

return localView;
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}

Login.xml

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"

android:orientation="vertical" >

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"

android:orientation="vertical" >

<TextView
android:id="@+id/textView1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:layout_marginTop="20dp"
android:text="Routing Cache"

android:textAppearance="?android:attr/textAppearanceLarge" />
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<EditText
android:id="@+id/editText1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="30dp"
android:ems="10"

android:hint="Username" >

<requestFocus />

</EditText>

<EditText
android:id="@+id/editText2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="30dp"
android:ems="10"
android:hint="Password"

android:inputType="textPassword" />

</LinearLayout>
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<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"

android:orientation="vertical" >

<Button
android:id="@++id/button1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Login"
android:layout_gravity="center_horizontal" />

</LinearLayout>

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:orientation="vertical"

android:layout_weight="0.5" >

<TextView
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android:id="@+id/textView2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:text="D. Guster, L. Lebentritt and A. Rageeb"

android:textColor="#000" />

<TextView
android:id="@+id/textView3"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:text="Saint Cloud State University"
android:textColor="#000"

android:textSize="18sp" />

</LinearLayout>
</LinearLayout>
Fail2Ban.xml
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmins:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"



android:layout_height="match_parent"

android:orientation="vertical" >

<ListView
android:id="@+id/listview"
android:layout_width="match_parent"
android:layout_height="match_parent" >

</ListView>

</LinearLayout>

FAdapter.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:padding = "10dp"

android:orientation="vertical" >

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"

android:background="@drawable/gradient"
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android:orientation="vertical" >

<TextView
android:id="@+id/timestamp"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@++id/ip"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@++id/status"
android:layout_width="wrap_content"

android:layout_height="wrap_content"



107
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@++id/orgname™
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@+id/address"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView

android:id="@+id/city"
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android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@++id/state"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"
android:textColor="#000" />

<TextView
android:id="@+id/pcode"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"

android:textColor="#000" />
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<TextView
android:id="@++id/country"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textSize="18sp"

android:textColor="#000" />

</LinearLayout>

</LinearLayout>

Activity mail.xml

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"

android:orientation="vertical" >

<LinearLayout

android:layout_width="match_parent"
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android:layout_height="wrap_content"
android:layout_weight="1"

android:orientation="vertical" >

<TextView
android:id="@+id/textView1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_marginTop="20dp"
android:gravity="center_horizontal"
android:text="Routing Cache"
android:textAppearance="?android:attr/textAppearanceLarge" />

</LinearLayout>

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"

android:orientation="vertical" >

<LinearLayout

android:layout_width="match_parent"
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android:layout_height="wrap_content"
android:layout_weight="1"

android:orientation="horizontal" >

<Button
android:id="@+id/button3"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="30dp"
android:layout_weight="1"

android:text="Reload" />

<Button
android:id="@+id/button4"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:layout_margin="30dp"

android:text="Cache" />

</LinearLayout>
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<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:gravity="center"

android:orientation="vertical" >

<TextView
android:id="@+id/TextView01"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"

android:text="0ut Efficiency:" />

<TextView
android:id="@+id/textView4"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center"
android:text="In Efficiency:" />
</LinearLayout>

</LinearLayout>
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<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="1"

android:orientation="horizontal" >

<Button
android:id="@++id/button1"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="30dp"
android:layout_weight="1"

android:text="Auth" />

<Button
android:id="@+id/button2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_margin="30dp"
android:layout_weight="1"

android:text="Fail2Ban" />
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</LinearLayout>

<LinearLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_weight="0.5"

android:orientation="vertical" >

<TextView
android:id="@+id/textView2"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"
android:text="D. Guster, L. Lebentritt and A. Rageeb"

android:textColor="#000" />

<TextView
android:id="@+id/textView3"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:gravity="center_horizontal"

android:text="Saint Cloud State University"
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android:textColor="#000"
android:textSize="18sp" />

</LinearLayout>

</LinearLayout>

AAdapter.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlIns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"

android:padding="10dp" >

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="@drawable/gradient"

android:orientation="vertical" >

<TextView
android:id="@+id/timestamp"

android:layout_width="wrap_content"



android:layout_height="wrap_content
android:padding="5dp"
android:text="TextView"
android:textColor="#000"

android:textSize="18sp" />

<TextView
android:id="@+id/log"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5dp"
android:text="TextView"
android:textColor="#000"

android:textSize="18sp" />

</LinearLayout>

</LinearLayout>

cache.php
<?php

header('Content-Type: application/json’);

$cmd = "netstat -Cnre";
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$data = shell_exec($cmd);

$datal = explode("\n",$data);

$data2 = array_slice($datal,2);

foreach($data2 as $value){

$output[] = array_values(array_filter(explode(" ",$value),'not_empty_string’));

¥

for($i=0;$i<count(Soutput)-1;$i++)

{
$arrayOutput['src’] = $output[$i][0];
$arrayOutput['dst] = $output[$i][1];
$arrayOutput['gateway'] = Soutput[$i][2];
if(count($output[$i])==8){
$arrayOutput['flags'] = $output[$i][3];
$arrayOutput['metric'] = $output[$i][4];
$arrayOutput['ref'] = $output[$i][5];
$arrayOutput['use'] = $output[$i][6];
$arrayOutput['iface’] = $Soutput[$i][7];
Yelse{
$arrayOutput['flags] = "-";
$arrayOutput['metric'] = $Soutput[$i][3];
$arrayOutput['ref'] = $output[$i][4];

$arrayOutput['use'] = $output[$i][5];
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$arrayOutput['iface'] = $output[$i][6];
¥
$arrayOutput['blacklisted] = parse_ip($output[$i][0]);

$final_output[] = $arrayOutput;

echo json_encode($final_output);

function not_empty_string($s) {

return $s 1=="";

}

function parse_ip($ip){

$ret = 1;
$data = shell_exec('cat whitelist_rt.local'’);

$datal = explode("\n",$data);

foreach ($datal as $value){
if(strlen($value)>1)
$ips[] =preg_replace("N\.{2,}/","." str_replace(".0","." ,preg_replace("/["0-

9.)/"," $value)));
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foreach ($ips as $addr) {
if (strpos($ip, $addr) === 0) {

$ret =0;

return $ret;

}

7>

Performance.php

<?php

include 'auth.php’;

/IvalidateAuth();

$cmd ='Instat -s1 -il -f rt_cache’;
$data = shell_exec($cmd);

$datal = explode("\n", $data);
$output = $datal[sizeof($datal)-2];
$result = str_replace(™ ", ", $output);
$datal = explode("|", $result);

$rtcache_in = $datal[1];



$rtcache_in_tot = $datal[2];
$rtcache_out = $datal[8];

$rtcache_out_tot= $datal[9];

if($rtcache_in == 0){

$in_efficency = "100";

else

$in_efficency=100-($rtcache_in_tot/$rtcache_in)*100;

}
if($rtcache_out == 0){

$out_efficency = "100";

}

else{

$out_efficency=100-($rtcache_out_tot/$rtcache_out)*100;

$final["in_efficency"]=$in_efficency;

$final["out_efficency"]=$out_efficency;

echo json_encode($final);
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2>
notify.php
<?php
function notify($message,$pid){
include 'db_config.php’;
$con= mysql_connect($host,$username,$password);
$location = getLoc($pid);
if(1$con)
{
die(‘couldnot connect'.mysql_error());
}
mysql_select_db("results1",$con);
$result=mysql_query("select regid from gcmReg");
while($row=mysql_fetch_assoc($result))
{
$Soutput[]=$row['regid’;
}
$url = 'https://android.googleapis.com/gcm/send’;
$fields = array(

'registration_ids' =>$output,
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'data’ => array( "message" => $message,""'messagel" => $pid
,"message2” => "jntu" ),

);

$headers = array(
‘Authorization: key=AlzaSyA-
XeA33yWCWA_ KHwQATfxah02cb7hrHPNo',

‘Content-Type: application/json’

// Open connection

$ch = curl_init();

/I Set the url, number of POST vars, POST data

curl_setopt( $ch, CURLOPT_URL, $url);

curl_setopt( $ch, CURLOPT_POST, true );
curl_setopt( $ch, CURLOPT_HTTPHEADER, $headers);
curl_setopt( $ch, CURLOPT_RETURNTRANSFER, true );

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt( $ch, CURLOPT_POSTFIELDS, json_encode( $fields ) );
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/I Execute post

$result = curl_exec($ch);

/I Close connection

curl_close($ch);

echo $result;

Ilprint_r($location);

$stmt = "INSERT INTO "Fail2Ban("status’,
‘ip’,"OrgName’,"Address’, City", StateProv', PostalCode", Country’) VALUES
(‘ban',".$pid.","" $location["OrgName"].","" $location["Address"].""," . $location["City"]."",".$

location["StateProv"].","" $location["PostalCode"].™," .$location["Country"]."")";

if (mysqgl_query($stmt, $con)) {

}else {

echo "Error: " . $stmt . "<br>". mysql_error($con);

mysql_close($con);
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function getLoc(Sip){
$data = shell_exec("whois ".$ip." | grep
'‘OrgNam\|City\|Address\|StateProv\|PostalCode\|Country™);
$datal = explode("\n",$data);
foreach($datal as $value){
$data2 = explode(":",$value);
if(sizeof($data2)>=2)

$Soutput[$data2[0]] = trim($data2[1]);

return $output;

}

7>

Fail2Ban.php

<?php

header('Content-Type: application/json’);
include 'db_config.php';

include 'auth.php’;

/IvalidateAuth();

$con= mysql_connect($host,$username,$password);



if(1$con)

{

die(‘couldnot connect'.mysql_error());

¥

mysql_select_db("results1",$con);
$queryStr = "select * from Fail2Ban;";

$result=mysql_query($queryStr);

while($row=mysql_fetch_assoc($result))

{

$output[]=$row;

}

echo json_encode($output);

>
auth_log.php
<?php

header('Content-Type: application/json’);
error_reporting( 0 );

include 'auth.php’;

/IvalidateAuth();

$cmd = "sudo cat /var/log/auth.log";

125
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if(isset($_GET["query"])){
$cmd=$cmd."”| grep ". $_GET["query"];

¥

$data = shell_exec($cmd);
$datal = explode("\n",$data);

$data2 = array_slice($datal,2);

foreach($data2 as $value){
Soutput_1 = explode(™:",$value);
Stimestamp_part = explode(™ ", $output_1[2]);

$timestamp = $output_1[0].":".$output_1[1].":".$timestamp_part[0];

$log = $timestamp_part[1]." ".$timestamp_part[2]." ".$output_1[3]." ".Soutput_1[4];
if(sizeof($output_1) == 6){

$log = $log." ".$output_1[5];

}

$result["timestamp"]=$timestamp;

$result["log"]=$log;

$output[]=$result;



echo json_encode($output);

7>

unban.php

<?php
ini_set('display_errors', 1);
include 'notify.php’;

$pid = Sargv[1];

$message = $pid." was unbanned.";

notify($message,$pid);

7>

ban.php

<?php

ini_set('display_errors', 1);
include 'notify.php’;

$pid = $argv[1];

$message = $pid." was banned.";

notify($message,$pid);
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7>

auth.php

<?php

include 'MCrypt.php’;

include 'db_config.php’;

ini_set('display_errors', 1);

$con= mysql_connect($host,$username,$password);
if(1$con)

{

die(‘couldnot connect'.mysql_error());

}

mysql_select_db("results1",$con);

function validateAuth(){

if (! pc_validate($_SERVER[PHP_AUTH_USER', $ SERVER[PHP_AUTH_PWY)) {
header("'WWW-Authenticate: Basic realm="My Website™);
header("HTTP/1.0 401 Unauthorized");
echo "You need to enter a valid username and password.";

exit;
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function pc_validate($user,$pass) {
$mcrypt = new MCrypt();
$username =$mcrypt->decrypt($Suser);
$password = $mcrypt->decrypt($pass);

$pass_md5 = md5($password);

$query = "select * from users where username = '$username' and password =

'$pass_md5"";

$result=mysql_query($query);

$count=mysqgl_num_rows($result);

if(Scount==1)

{

return true;

else

{

return false;

¥



130
if(lempty($_GET['user]))

login();

function login(){
if(pc_validate($_GET['user'],$_GET['passT){
$resultData['code’] = 200;
¥
else{

$resultData['code’] = 401;

echo json_encode($resultData);

}

>
dbconfig.php
<?php

$host = "localhost:3306";
$username = "root";
$password = "Manhattan@123"

7>

Mcrypt.php

<?php
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class MCrypt

{
private $iv = 'fedcha9876543210'; #Same as in JAVA

private $key = '0123456789abcdef'; #Same as in JAVA

function __construct()

[
* @param string $str
* @param bool $isBinary whether to encrypt as binary or not. Default is: false
* @return string Encrypted data
*/
function encrypt($str, $isBinary = false)
{
$iv = $this->iv;

$str = $isBinary ? $str : utf8_decode(S$str);

$td = mcrypt_module_open('rijndael-128', '*, 'chc’, $iv);
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mcrypt_generic_init($td, $this->key, $iv);

$encrypted = mcrypt_generic($td, $str);

mcrypt_generic_deinit($td);

mcrypt_module_close($td);

return $isBinary ? $encrypted : bin2hex($encrypted);

[Hx
* @param string $code
* @param bool $isBinary whether to decrypt as binary or not. Default is: false
* @return string Decrypted data
*/
function decrypt($code, $isBinary = false)
{
$code = SisBinary ? $code : $this->hex2bin($code);

$iv = $this->iv;

$td = mcrypt_module_open('rijndael-128', '*, ‘chc’, $iv);



mcrypt_generic_init($td, $this->key, $iv);

$decrypted = mdecrypt_generic($td, $code);

mcrypt_generic_deinit($td);

mcrypt_module_close($td);

return $isBinary ? trim($decrypted) : utf8_encode(trim($decrypted));

protected function hex2bin($hexdata)

{

$bindata = ";

for ($i = 0; $i < strlen($hexdata); $i +=2) {

$bindata .= chr(hexdec(substr($hexdata, $i, 2)));

return $bindata;

7>
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unregister.php
<?php
include 'db_config.php’;
$id =$ REQUESTT'id1;
$con= mysql_connect($host,$username,$password);
if(1$con)
{
die(‘couldnot connect'.mysql_error());
}
mysql_select_db("results1",$con);

$queryStr = "DELETE FROM gcmReg WHERE regid="$id";";
$result=mysql_query($queryStr);
mysql_close($con);
7>
register.php
<?php
include 'db_config.php';
$con= mysql_connect($host,$username,$password);
$id =$ REQUESTT'id1;
if(1$con)
{

die('couldnot connect'.mysql_error());
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¥
mysql_select_db("results1",$con);
$queryStr = "insert into gcmReg set regid="$id";";
$result=mysql_query($queryStr);
mysql_close($con);

7>
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