
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

12-2023

Developing Blind-Bidding Auctions to Explore Fully Homomorphic Developing Blind-Bidding Auctions to Explore Fully Homomorphic

Encryption Encryption

Adeline Moll

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Moll, Adeline, "Developing Blind-Bidding Auctions to Explore Fully Homomorphic Encryption" (2023).
Culminating Projects in Computer Science and Information Technology. 47.
https://repository.stcloudstate.edu/csit_etds/47

This Thesis is brought to you for free and open access by the Department of Computer Science and Information
Technology at The Repository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in
Computer Science and Information Technology by an authorized administrator of The Repository at St. Cloud State.
For more information, please contact tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/csit_etds/47?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F47&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

 Developing Blind-Bidding Auctions to Explore Fully Homomorphic Encryption

 by

 Adeline Moll

 A Thesis

 Submitted to the Graduate Faculty of

 St. Cloud State University

 in Partial Fulfillment of the Requirements

 for the Degree

 Master of Science in

 Computer Science

 December 2023

 Thesis Paper Committee:
 Akalanka Mailewa, Chairperson

 Dale Buske
 Mark Schmidt

 Aleksandar Tomovic

 2

 Abstract

 In blind-bidding auctions, determining the winner requires processing bids without revealing
 non-winning bid information. This study explores the use of Fully Homomorphic Encryption
 (FHE) as a solution for this challenge. FHE permits operations like addition and multiplication
 on encrypted data, enabling potentially arbitrary computations without exposing underlying
 values. Hower, leveraging FHE for blind-bidding auctions is not straightforward. Classic sorting
 algorithms are not directly applicable due to FHE’s constraints. This thesis presents our approach
 to designing a blind-bidding auction using FHE, focusing specifically on determining the
 maximum bid within the given computational boundaries.

 3

 Acknowledgements

 I would like to thank Dr. Akalanka Mailewa for his time and input as the chair of my thesis

 committee. I would also like to thank the other members of my thesis committee, Dr. Dale

 Buske, Dr. Mark Schmidt, and Dr. Alek Tomovic. I would like to thank St. Cloud State

 University, the Department of Computer Science, and all the professors in said department.

 4

 Table of Contents

 Page

 List of Tables .. 6

 List of Figures .. 7

 Chapter

 Chapter 1: Introduction .. 8

 1.1 Explanation of Blind Bidding .. 8

 1.2 Fully Homomorphic Encryption .. 8

 1.3 Objectives of the Study .. 9

 1.4 Research Questions .. 10

 Chapter 2: Literature Review: Background of Homomorphic Encryption 12

 2.1 Theoretical Introduction to Privacy Homomorphisms .. 12

 2.1.1 Mathematical Representation of a Homomorphism ... 13

 2.1.2. Example of a Theoretical Privacy Homomorphism ... 14

 2.2 Learning with Errors .. 14

 2.2.1 Mathematical Basis of LWE ... 15

 2.2.2 Example of a Simple LWE System of Linear Equations .. 16

 2.3 Somewhat Homomorphic Encryption .. 17

 2.4 Gentry’s Fully Homomorphic Encryption Scheme .. 18

 2.4.1. Bootstrapping ... 19

 2.5 Reductions to the Bootstrapping Cost .. 19

 5

 Chapter ... Page

 2.5.1 Reducing Bootstrapping Costs with Modulus Switching ... 20

 2.5.2 Bootstrapping in Quasilinear Time ... 21

 2.5.4 TFHE: Fast Fully Homomorphic Encryption over the Torus 22

 Chapter 3: Blind-Bidding Auction ... 25

 3.1. System Requirements .. 25

 3.2. Methods ... 25

 3.2.1 Justification for Tool Selection ... 26

 3.3 Implementation and Challenges ... 26

 3.3.1 Data Input and Pre-Processing .. 27

 3.3.2 Bidding Logic Implementation ... 27

 Chapter 4: Results .. 38

 4.1 Computation Times .. 38

 4.1.1 Program Initialization for Different Parameters ... 38

 4.1.2 Influence of Parameters on compute_max_min() ... 40

 4.1.3 Average vs. Theoretical Computation Time of identify_max_bids() 41

 4.2 Accuracy .. 44

 4.2.1 Fluctuation in Accuracy with Changes in n and i ... 44

 4.2.2 Fluctuation in Accuracy with Changes in Initial Configuration of Bids 46

 Chapter 5: Discussion .. 49

 5.2 Parameter Selection & Accuracy ... 49

 6

 Chapter ... Page

 5.2.1 Accuracy Based on Starting Configuration .. 49

 5.2.2 Speed ... 54

 5.3 Practicality for Use .. 55

 Chapter 6: Conclusion .. 56

 References .. 57

 Appendices ... 61

 Appendix A: System Settings, Build, and Compilation .. 61

 Appendix B: Cargo.toml .. 61

 Appendix C: mair.rs ... 61

 Appendix D: create_bid.rs ... 63

 Appendix E: libr.s .. 64

 7

 List of Tables

 Table ... Page

 1. Computation time required to build the KSK and BSK for different sets

 of parameters. ... 39

 2. Computation time required to perform the compute_max_min() function

 for different sets of parameters. ... 41

 3. Expected vs. Actual Computation Times for Given n and i Values. 43

 4. Accuracy of Results of Winning Bids, for Given n and i Values 45

 5. Distribution of Comparisons Among Encrypted Values for Different

 Starting Configurations .. 47

 6. Number of Comparisons for Each Value, with an Ascending Starting

 Configuration ... 51

 7. Number of Comparisons for Each Value, with an Descending Starting

 Configuration ... 52

 8. Initial Configuration of Bids and the Distribution of Comparisons 53

 8

 List of Figures

 Figure ... Page

 1. Number of Comparisons in the identify_max_bids() function based on

 the total number of bids and the number of tie winning bids for arrays

 of size 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100. .. 35

 2. Number of Comparisons in the identify_max_bids() function based on

 the total number of bids and the number of tie winning bids for all arrays

 between 1 and 100. .. 36

 3. For n=9, Accuracy of Results for i values between 1 and 9. ... 45

 4. Accuracy of Results Based on the Number of Times Compared 48

 9

 Chapter 1: Introduction

 1.1 Explanation of Blind Bidding

 Alice, Bob, and Charlie are taking part in a blind bidding auction. Each one of them aims

 to make the highest bid. Each of them wants to keep their bid private. Each of them also wants to

 be confident that the winning bid was selected by the auction owner, without favoritism. The

 winning bid, and who made that bid, should be made public, but no other information should be

 determinable. This includes the ordering of the non-winning bids.

 1. Everyone should be able to see the value of the winning bid.

 2. No information should be revealed about non-winning bids.

 With the rise of digital auctions, ensuring privacy and fairness is important. In this study,

 we use Fully Homomorphic Encryption (FHE) to set up a blind-bidding auction system.

 1.2 Fully Homomorphic Encryption

 A Homomorphic Encryption scheme is a scheme in which an operation can be performed

 on encrypted data. Fully Homomorphic Encryption (FHE) schemes are homomorphic encryption

 schemes that are both multiplicatively and additively homomorphic. Since all circuits can be

 expressed using only multiplication and addition, a FHE scheme allows for arbitrary

 computations to be performed on encrypted data.

 Homomorphic Encryption was introduced in a theoretical sense by Rivest, Adleman, and

 Dertouzos in 1978 under the name of Privacy Homomorphisms [1]. They illustrated the types of

 privacy homomorphisms that might exist, though, as they acknowledged at that time, their

 examples were weak cryptographically.

 The first known implementation of a FHE Scheme was by Gentry [2] in 2008. Gentry’s

 scheme was based on lattices, which support efficient evaluation for circuits of an arbitrary

 10

 depth. The scheme was built on the hardness of lattices and learning with errors (LWE) [3, 4].

 This first scheme introduced by Gentry involved an expensive bootstrapping step. Since then,

 many advances have been made to reduce the cost of bootstrapping [5, 6, 7, 8, 9].

 Over the years, various techniques and optimizations have been introduced, significantly

 reducing bootstrapping time, from the original scheme introduced by Gentry in 2008 to the

 notable reduction to 127 ms in 2017 [2, 10, 11, 12].

 In July of 2022 the Zama Team released Concrete by Zama [30]. This open source

 framework is built on a variant of TFHE [13], and introduces a programmable bootstrapping

 technique, where a function can be evaluated during the bootstrapping process. The Concrete

 library is the FHE library used in this project.

 As we approach the quantum era, the importance of FHE is becoming more evident. FHE

 is a candidate for post-quantum security. Quantum computing holds the potential to undermine

 the security of many current encryption schemes, leaving currency security infrastructure

 vulnerable. By continuing to advance FHE, we are paving a way for security in the quantum

 future.

 1.3 Objectives of the Study

 In this work, we set up a blind-bidding auction system to explore the nuances of FHE. In

 the auction, bidders are assigned a bidder ID. The bids in the auction encode the bid value as the

 more significant bits, while the bidder ID is stored in the least significant bits. The auction takes

 encrypted bids, and outputs the highest bid. In the case of multiple tie bids, all tie bids are output

 by the system.

 The blind-bidding auction system serves as a testbed to explore FHE. The primary

 objective of this study is to work with FHE data and explore the intricacies of the encryption

 11

 scheme and operation upon FHE data. We don’t expect that the blind-bidding auction will be

 practical for actual implementation, but instead expect to develop further insight into the

 intricacies of FHE.

 The reason the blind-bidding auction serves as such an apt testbed for studying FHE is its

 detailed requirement of needing to reveal a precise amount of information, but nothing more.

 Additionally, because we don’t quite need to sort the full array of bids, but neither can we just

 compute the maximum, considering the best way to accomplish this provides an interesting

 problem to tackle in the context of FHE. We need to consider how we can reveal some unknown

 number of tied maximum bids, without ever decrypting or revealing additional information about

 non-winning bids.

 In this study, we present a sorting system specifically tailored to blind-bidding auctions.

 Unlike traditional sorting systems, our system is designed to prioritize confidentiality of bids.

 The primary innovation lies in the ability to identify an undetermined number of highest bids,

 without revealing any information about the non-winning bids.

 The scope of this study is only small bids, ranging between 0-2, and for no more than 100

 bids. All computations should be able to be done on an average personal computer. The

 implementation and testing is specifically on a MacBook Pro with an Apple M1 chip and 8 GB

 memory, and most tested computation times were under one hour of computation time.

 1.4 Research Questions

 In implementing a FHE scheme to set up the blind-bidding auction system, the following

 are studied:

 ● The impact of initial parameters on the computation time and accuracy.

 ● How changes to the initial arrangement of a set of bids impacts the accuracy.

 12

 ● How accurately can we estimate computation times based on the number of bids and

 potential tied winning values?

 ● For what sizes of input bids, if any, the blind-bidding auction is practical.

 Based on our methodologies, we expect to gain a clearer understanding of how initial

 parameters impact computation time and accuracy. We also expect to be able to accurately

 estimate computation time based on the number of comparisons required in the auction.

 We aim to not only expand technical knowledge surrounding encrypted data computation

 but also shed light on practical challenges and considerations when working with

 homomorphically encrypted data.

 13

 Chapter 2: Literature Review: Background of Homomorphic Encryption

 2.1 Theoretical Introduction to Privacy Homomorphisms

 In 1978, Rivest et al. [1] theoretically studied the concept of what they termed a “privacy

 homomorphism.” They proposed a scenario: suppose a small loan company would like to

 securely store their encrypted data on a time-sharing device. The company would also like to be

 able to answer questions such as

 ● What is the average loan size?

 ● What is the expected income from loans in the next month?

 ● How many loans over some value v have been granted?

 The small company can consider the following possibilities for answering these questions:

 ● Reject the idea of the time-shared service, and purchase and in-house system.

 ● Use the time-sharing service for storing encrypted files only, and have a system in-house

 for decryption and computation.

 ● The time-sharing company can use modified hardware which allows brief decryption

 within the CPU, which is not externally accessible.

 ● Use a special privacy homomorphism to encrypt data, so that the time-shared computer

 can operate on the data without decrypting it first.

 The first two options don’t allow efficient use of remote storage of data, if that data needs

 to be computed on. The third option is workable, but requires a special cooperation of the

 time-sharing company. The fourth option, however, would be ideal, but requires a privacy

 homomorphism. Rivest et al. [1] propose that a privacy homomorphism could theoretically be a

 solution.

 14

 2.1.1 Mathematical Representation of a Homomorphism

 A homomorphism is a mathematical concept which describes a structure-preserving map

 between two algebraic structures. A homomorphism can translate one set of operations in one

 structure to another set of operations in another structure, while maintaining the relationship

 between elements. Let be sets with operations and . The function is a 𝐴 , 𝐶 ◦
 𝐴

◦
 𝐶

 𝑓

 homomorphism from to if for all , . 𝐴 𝐶 𝑥 , 𝑦 ∈ 𝐶 𝑓 (𝑥 ◦
 𝐶
 𝑦) = 𝑓 (𝑥)◦

 𝐴
 𝑓 (𝑦)

 Suppose we want to perform some operation + on . Consider a decryption and 𝑥 ' , 𝑦 ' ∈ 𝐴

 encryption pair of operations, and , respectively, and some function ϕ− 1 : 𝐴 → 𝐶 ϕ: 𝐶 → 𝐴 +
 𝐶

 such that is a homomorphism. That is, we want ϕ: 𝐶 → 𝐴

 . ϕ(𝑥 +
 𝑐
 𝑦) = ϕ(𝑥) + ϕ(𝑦) = 𝑥 ' + 𝑦 '

 If we identify an encryption and decryption scheme that is homomorphic, it theoretically

 allows for calculations on encrypted data. This means data sent to a third-party and operations

 can be performed on it in its encrypted state.

 There are some immediate restrictions to such a homomorphism that would prevent it

 from being cryptographically secure. For example, Rivest et al. [1] point out some inherent

 restrictions that limit the utility of privacy homomorphisms. For example, if there is a predicate

 operation “ ” which allows for total order of arbitrary constants, there is no secure privacy ≤

 homomorphism from to . 𝐶 𝐴

 If there is a predicate operation such as “ ”, any encryption can easily be decoded by ≤ 𝑑
 𝑖

 systematically comparing encryptions of known values to the encryption of , to find where 𝑑
 𝑖

 𝑑
 𝑖

 fits into the sequence. That is a malicious user can decode by computing , ϕ− 1 (𝑑
 𝑖
) ϕ− 1 (1) = 1'

 15

 , , and so on, until finding a such that ϕ− 1 (2) = 1' + 1' ϕ− 1 (4) = ϕ− 1 (2) + ϕ− 1 (2) 𝑘

 . Using this strategy can be computed exactly [1]. ϕ− 1 (2 𝑘) ≥ ϕ− 1 (𝑑
 𝑖
) 𝑑

 𝑖

 2.1.2. Example of a Theoretical Privacy Homomorphism

 Rivest et al. [1] give an example to illustrate that such privacy homomorphisms might

 exist in theory (though they acknowledged that their examples were weak cryptographically)

 Consider , the system of integers modulo with the operations 𝐴 =< 𝑍
 𝑝 − 1

; +
 𝑝 − 1

, −
 𝑝 − 1

> 𝑝 − 1

 of addition and subtraction, where is a prime number. We may choose , the 𝑝 𝐶 =< 𝑍
 𝑛
; ×

 𝑛
; ÷

 𝑛
>

 integers modulo where , the product and and a large prime . Let be a generator 𝑛 𝑛 = 𝑝𝑞 𝑝 𝑞 𝑔

 modulo . Then we choose 𝑝

ϕ− 1 (𝑥) ≡ 𝑔 𝑥 (𝑚𝑜𝑑 𝑛)

 and the decoding function is the inverse “mod(p) logarithm, base g” function. By laws of

 exponents, is a homomorphism. If is difficult to factor (both and are large) and the prime ϕ 𝑛 𝑝 𝑞

 is such that logarithms modulo can be efficiently computed, then the computer system can 𝑝 𝑝

 give both and without fear of compromising the security of the data. 𝑔 𝑛

 While this example, and the others given by Rivest et al. [1] aren’t necessarily strong

 cryptographically, they illustrate that privacy homomorphisms , which have turned into what we

 now call homomorphic encryption , are possible in theory. This led to a search for secure,

 homomorphic encryption schemes.

 2.2 Learning with Errors

 The Homomorphic Encryption schemes that were to come would be built on the

 mathematics and security of Learning with Errors (LWE). The LWE problem was introduced by

 16

 Oded Regev in 2005 [3], [4], and later extended to Rings by Lyubashevesky, Peikert, and Regev

 [14].

 The security of LWE is based on the hardness of worst-case problems on ideal lattices.

 This means that if there is an efficient algorithm to solve the average LWE problem, there is also

 an efficient algorithm to solve the worst-case problem on ideal lattices [3]. Since the hardness of

 the ideal lattice problem is well documented [4, 15], this gives a strong indication of the hardness

 of the LWE problem.

 We discuss the mathematics of LWE now, and then later introduce the FHE schemes built

 with LWE.

 2.2.1 Mathematical Basis of LWE

 LWE is based on a system of linear equations, with an error introduced to prevent the

 system prom being truly uniform.

 Regev presents the cryptosystem parameterized by integers (the security parameter), 𝑛 𝑚

 (number of equations), (modulus), and a real (noise parameter). A choice that 𝑞 𝛼 > 0

 guarantees both security and correctness [3] is as follows. Choose to be a prime between 𝑞 𝑛 2

 and , , and . Below is a description of the scheme. All 2 𝑛 2

 additions are performed modulo . 𝑞

 Private Key: The private key is a vector chosen uniformly from .

 Public Key: The public key consists of samples form the LWE distribution with 𝑚

 secret , modulus , and error parameter . 𝑞 𝛼

 17

 Encryption: For each bit of the message, do the following. Choose a random set uniformly 𝑆

 among all subsets of . The encryption is if the bit is 0 and 2 𝑚 [𝑚]

 if the bit is 1.

 Decryption: The decryption of a pair is 0 if is closer to 0 than to modulo

 and 1 otherwise. 𝑞

 2.2.2 Example of a Simple LWE System of Linear Equations

 We now provide an example to illustrate the mathematics above.

 Let , , , . Using a 𝑛 = 5 5 2 ≤ 𝑞 = 29 ≤ 50

 uniform distribution from , we use the private key .

 We generate a random set of 8 samples from the LWE distribution with secret key ,

 modulus , and add the error parameter . We end up with the following in the Public Key 𝑞 = 29 𝛼

 set. Note that we have separated the error for the sake of clarity with the example.

 24 𝑠
 0

+ 22 𝑠
 1

+ 1 𝑠
 2

+ 2 𝑠
 3

+ 11 𝑠
 4

= 14 + 1 (𝑚𝑜𝑑 29)

 11 𝑠
 0

+ 15 𝑠
 1

+ 5 𝑠
 2

+ 18 𝑠
 3

+ 10 𝑠
 4

= 14 + 0 (𝑚𝑜𝑑 29)

 11 𝑠
 0

+ 20 𝑠
 1

+ 9 𝑠
 2

+ 25 𝑠
 3

+ 8 𝑠
 4

= 17 + 2 (𝑚𝑜𝑑 29)

 22 𝑠
 0

+ 1 𝑠
 1

+ 23 𝑠
 2

+ 3 𝑠
 3

+ 23 𝑠
 4

= 20 + 0 (𝑚𝑜𝑑 29)

 17 𝑠
 0

+ 22 𝑠
 1

+ 10 𝑠
 2

+ 1 𝑠
 3

+ 1 𝑠
 4

= 25 + 0 (𝑚𝑜𝑑 29)

 6 𝑠
 0

+ 20 𝑠
 1

+ 14 𝑠
 2

+ 0 𝑠
 3

+ 17 𝑠
 4

= 27 + 0 (𝑚𝑜𝑑 29)

 13 𝑠
 0

+ 12 𝑠
 1

+ 7 𝑠
 2

+ 13 𝑠
 3

+ 10 𝑠
 4

= 20 + 2 (𝑚𝑜𝑑 29)

 17 𝑠
 0

+ 19 𝑠
 1

+ 12 𝑠
 2

+ 3 𝑠
 3

+ 20 𝑠
 4

= 11 + 1 (𝑚𝑜𝑑 29)

 18

 Encryption: For each bit we wish to encrypt, choose a random subset, in this case the

 elements 0, 1, 2, 3, 6. Add these equations together modulo 29. Note that without errors, the right

 hand side is 27. The added error of 5 results in the right hand side being 3.

 23 𝑠
 0

+ 12 𝑠
 1

+ 16 𝑠
 2

+ 3 + 4 𝑠
 4

= 3 (𝑚𝑜𝑑 29)

 If we wish to send an encrypted 0 bit, we send this equation as-is. If we wish to send an

 encrypted 1 bit, we need to add , and so should instead send

 23 𝑠
 0

+ 12 𝑠
 1

+ 16 𝑠
 2

+ 3 + 4 𝑠
 4

= 17 (𝑚𝑜𝑑 29)

 Decryption: The decryption of a pair is 0 if is closer to 0 than .

 In the first equation, . This is closer to 0 than to 14, so this bit

 would decrypt as 0.

 In the case of the second equation, . This is closer to 14 than

 to 0, so decrypts as a 1.

 The FHE schemes to come were built on the mathematics and the hardness assumptions

 of the LWE problem and its variations.

 2.3 Somewhat Homomorphic Encryption

 Following the introduction of the idea, homomorphic encryption changed from a

 theoretical idea to implemented schemes. The first schemes developed were Somewhat

 Homomorphic Encryption (SHE) schemes, meaning they were homomorphic on addition or

 homomorphic on multiplication, but not on both, or, they were homomorphic for some number

 of operations, but eventually contained too much noise decrypt accurately.

 The first semantically secure homomorphic encryption scheme was proposed by

 Goldwasser and Micali [16] in 1982. Their scheme is additively homomorphic. In 2006, Boneh,

 Goh, and Nissim [17] introduced a homomorphic encryption scheme that was homomorphic

 19

 under addition, along with one multiplication operation. This allows for evaluation of 2-DNF

 circuits (that is, two or-circuits combined by one and circuit). Their construction allows for

 unlimited additions, one multiplication, followed by unlimited additions.

 The scheme relies on the subgroup decisions problems , on a new hardness problem put

 forward by Bohen et al., in which they prove that given an element of a group of composite order

 , it is infeasible to decide whether it belongs a subgroup of order . 𝑛 = 𝑞
 1
 𝑞

 2
 𝑞

 1

 The scheme built by Boneh et al. [17] takes polynomial time in the size of the message

 space , so can only be used to encrypt short messages. 𝑇

 2.4 Gentry’s Fully Homomorphic Encryption Scheme

 In 2008, Gentry pioneered the first Fully Homomorphic Encryption (FHE) Scheme. This

 means that the scheme allowed for unbounded use of both multiplication and addition, meaning

 that any function could technically be computed.

 The scheme built by Gentry is broken down into three steps: a general “bootstrapping”

 result, an “initial construction” using ideal lattices, and a technique to “squash the decryption

 circuit” to permit bootstrapping.

 In Gentry’s scheme, a ciphertext has the form where is the ideal lattice and is 𝑣 + 𝑥 𝑣 𝑥

 an “error” or “offset” vector. The ideal lattice scheme follows from the LWE, as they are

 isomorphic [3]. On its own, the scheme is only homomorphic for shallow circuits due to the

 linear growth of the “error” vector with addition and its exponential growth with multiplication.

 As explained in the LWE section above, the purpose for the “error” vector, or noise, in FHE

 schemes is because the noise is what guarantees the security of the fresh encryption. To address

 the issue of noise growth, a bootstrapping step is necessary [5].

 20

 2.4.1. Bootstrapping

 The idea behind the bootstrapping step is, after some number of operations, to reduce the

 amount of noise back to the “original” amount to allow for larger circuits. If the noise grows too

 large, the ciphertext will reach a point where it no longer is able to be decrypted. When the limit

 is being reached, a bootstrapping step can be performed to reduce the amount of noise.

 A scheme is termed “bootstrappable” if it can homomorphically evaluate its own decryption

 circuit and still handle at least one more operation. That is, the bootstrapping scheme

 homomorphically decrypts the ciphertext. In normal decryption, the secret key is used to output a

 plaintext. With bootstrapping, the encrypted secret key is used to output a new encryption, and

 this new encryption has a smaller “error” vector (or less noise) that the original ciphertext.

 The reason that the bootstrapping operation must perform an additional non-trivial

 operation is because otherwise, the eliminated noise will be canceled out when performing the

 subsequent operation.

 The fact that Gentry’s scheme is bootstrappable is what made it a FHE scheme.

 Unlimited multiplication and addition were theoretically possible. However, the bootstrapping

 step is expensive, so while Gentry’s scheme is quite practical for shallow circuits, due to the

 computational overhead of the bootstrapping operation, Gentry’s scheme becomes less practical

 for applications requiring numerous multiplications [5].

 2.5 Reductions to the Bootstrapping Cost

 The central technique of Gentry’s scheme was Bootstrapping . This is what allowed

 Gentry to make the breakthrough scheme from somewhat to fully homomorphic encryption.

 With the introduction of bootstrapping, Gentry found a way to address the growth of noise. The

 bootstrapping allowed for homomorphically evaluation of the SHE’s decrypting function on the

 21

 ciphertext with too much noise. This reset the noise, thus allowing for further computation [11].

 With Gentry’s technique, there were no longer any theoretical limitations to what computations

 can be performed on the ciphertext. However, the time requirements were the bottleneck

 preventing the scheme from being feasible in practice [11].

 Because of this, reductions to bootstrapping costs have been one of the major areas of

 research in FHE. [5, 6, 10, 11, 19, 20]. Some of these advancements are described below.

 2.5.1 Reducing Bootstrapping Costs with Modulus Switching

 Works such as Gentry’s addressed the issue of noise by using the bootstrapping step to

 “squash” the noise [5]. In 2012, Brakerski and Vaikuntanthan introduced a novel technique,

 dimension-modulus reduction . This method reduced the decryption complexity by shortening

 ciphertexts without necessitating additional assumptions.

 While Gentry’s construction for SHE was rooted in the complexity of problems on ideal

 lattices, Brakerski and Vaikuntathan constructed a SHE whose security relied on the hardness of

 arbitrary lattices, not just ideal lattices [10]. This advancement was built on the LWE problem.

 Encryptions were represented by linear functions with noise. Though addition was

 straightforward, multiplication rapidly expanded the size of ciphertexts [10].

 To counteract this, Brakerski and Vaikuntanthan introduced “ re-linearization .” This

 technique allowed multiplied ciphertexts to be expressed with a size roughly the same as the

 initial ciphertexts. The process entailed creating a chain of encrypted linear and quadratic terms,

 which, upon re-linearization, generated a function representing the multiplication of the initial

 two ciphertexts. This re-linearization process used a chain of secret keys. With repeated

 multiplication, noise growth necessitated a bootstrapping technique to convert the scheme from

 “somewhat” to “fully” homomorphic [10].

 22

 To achieve full homomorphism, Gentry’s bootstrapping depended on the hardness of the

 sparse subset-sum problem. The purpose of the bootstrapping step was to reduce the noise

 introduced during addition and multiplication. Gentry’s scheme used “squashing” to reduce

 decryption complexity, but at the cost of introducing the sparse subset problem assumption. In

 contrast, Brakerski and Vaikuntathan’s scheme had similar homomorphic capacity, but a more

 compact decryption circuit. Crucially, their method did not introduce any additional assumptions,

 relying solely on LWE [10].

 They did so by using dimension-modulus reduction . The core idea was converting a

 ciphertext with parameters (n , log q) to another representing the identical message but with

 altered parameters (k , log p), without compromising the message's integrity. This transformation,

 akin to the re-linearization process, used a series of public parameters for ciphertext conversion.

 This new bootstrapping technique relied only on the LWE assumption, improving the scheme’s

 efficiency [10].

 2.5.2 Bootstrapping in Quasilinear Time

 In 2013, Alperin-Sheriff and Peikert [11] were able to find a faster bootstrapping method

 with polynomial error. Their bootstrapping algorithm provided methods that were in quasilinear

 time for both “packed” and “non-packed” ciphertexts. The main technique that they used was to

 enhance the “ring-switching” procedure of Gentry et al. In their algorithm, they enhance the

 “ring-switching” procedure to support switching between two rings where either is a subring of

 the other. This allowed them to provide more efficient homomorphic methods for evaluating

 many linear transformations, including the decryption function [11].

 The algorithm by Alperin-Sheriff and Peikert was algorithmically simpler than previous

 methods. Their method for non-packed ciphertexts used only cyclotomic rings having

 23

 power-of-two index, which allow for a fast implementation [11]. For the packed ciphertext

 method, their procedure drew on high-level ideas from [7, 8], but the actual implementation was

 different conceptually. It avoided permutation networks and permutations of plaintext slots, as

 well as avoided relying on general-purpose compilers for evaluating homomorphic circuits, but

 instead introduced new procedures for homomorphically mapping between encrypted texts and

 plaintext slots. [11]

 In addition to improving the time of the bootstrapping procedures, their method was

 entirely algebraic and the full procedure could be described as elementary operations from the

 native instruction set of the SHE scheme. This simplicity affected the concrete efficiency of the

 bootstrapping procedure [11]. Their method also decoupled the algebraic structures of the SHE

 plaintext ring versus the ring needed for bootstrapping [11].

 2.5.4 TFHE: Fast Fully Homomorphic Encryption over the Torus

 In 2015, Ducas and Micciancio [12] presented a very fast bootstrapping procedure, of

 about .69 seconds, which was a big step towards practical FHE for arbitrary circuits. They began

 by analyzing bootstrapping in vitro , or in the simplest possible setting: with two encrypted bits

 and , they wanted to obtain the encrypted result in a form similar to the 𝐸 (𝑏
 1
) 𝐸 (𝑏

 2
) 𝐸 (𝑏

 1
 ⊼ 𝑏

 2
)

 input bits. The encryption they used is a standard lattice encryption scheme, so are noisy 𝐸 (𝑏
 𝑖
)

 encryptions and the output ciphertext is bootstrapped to reduce its noise level. Their 𝐸 (𝑏
 1
 ⊼ 𝑏

 2
)

 new bootstrapping method allowed for performing the computation in less than a second on

 consumer grade personal computers [12].

 Ducas and Micciancio achieve these results based on two main techniques. First, they

 introduce a novel homomorphic NAND operation. With two encryptions and , one 𝐸 (𝑚
 1
) 𝐸 (𝑚

 2
)

 24

 can compute a noisier . Instead of working in modulo 2, they extend this to 𝐸 (𝑚
 1

+ 𝑚
 1
)

 arithmetic modulo 4, to achieve a logical NAND operation. The outcome is that can 𝐸 (𝑚
 1
 ⊼ 𝑚

 1
)

 be obtained with a simple transformation. This new homomorphic NAND operation introduces

 less noise than previous techniques, simplifying the bootstrapping process [12].

 Their second contribution is an enhancement of bootstrapping. Building off of the work

 from [11], they use a homomorphic cryptosystem that encrypts integers mod q for efficient scalar

 product calculation. They also introduce a ring variant to the method used by [11]. By directly

 encoding cyclic groups and using the structure of lattices, they can represent cyclic group

 elements with just one ciphertext [12].

 In 2016, Chillotti, Gama, Georgieva, and Izabachène further improved the bootstrapping

 procedure. Their FHE scheme involves using polynomials over the real torus, and combines the

 Scale-Invariant-LWE problem of [20] or the LWE normal form of [21] with the General-LWE

 problem of [22]. They call their scheme TLWE, and it is a unified representation of LWE

 ciphertexts, which encode polynomials over the Torus [18]. Their scheme extends the work of [9,

 23, 12], and the efficiency comes from combining TLWE and TGSW. This technique was also

 used independently by [24].

 Chillotti et al. expand on the previous work like this. A TGSW sample is essentially a

 matrix whose individual rows are TLWE samples, and so the external product of TGSW times

 TLWE is quicker than the internal product TGSW times TGSW used in previous work. This is

 akin to comparing the speed of computing a matrix-vector product to a matrix-matrix product.

 As a result, their bootstrapping procedure is 12 times faster than the previously most efficient

 bootstrapping procedure [12], and runs at less than 0.052s [18].

 25

 Chillotti et al. continued to develop their TFHE scheme. In 2017, they released a paper

 that included techniques for packing several bits of information and using the compact

 representations to either batch multiple or speed-up single operations. This helped to address one

 of the drawbacks of FHE schemes, which is the huge expansion factor of ciphertexts to

 plaintexts. For example, in some cases they reduced the expansion from where it was between

 6400 in output and 384000 in input to an expansion of about 64. Using their packing technique,

 and packing both vertically and horizontally, they were able to reduce bootstrapping to 137 ms

 [19].

 Over the course of the years since Gentry first introduced his Fully Homomorphic

 Encryption Scheme in 2008, there has been a lot of work done to reduce the bootstrapping

 requirements. Many FHE implementations have been built, including HElib [25], Microsoft

 SEAL[26], TFHE [13], and OpenFHE [27] to name a few. Zama [28, 30] has developed a

 framework that contains a TFHE Compiler to make the process of writing FHE programs easier

 for developers. These advances have resulted in FHE schemes that can be implemented on

 personal devices, and in the next section, implementing Concrete by Zama to build a

 blind-bidding auction is discussed.

 26

 Chapter 3: Blind-Bidding Auction

 In a blind bidding auction, each participant in the auction wants to win with the highest

 bid, but all bids should be kept private through the entire bidding process. The only bid that

 should be revealed is the winning bid. All information about all other bids should remain private.

 There may be multiple winning bids which are tied. In this case, all of these bids should be

 revealed.

 We now explain the blind-bidding auction we have developed. In this section, we outline

 the system requirements, methods, and implementation of our blind-bidding auction.

 3.1. System Requirements

 The blind-bidding auction is designed with the following system requirements:

 ● Each bid contains two parts: The bid value and a bidder ID (for identifying the owner of

 the winning bid).

 ● The maximum bid(s) are calculated. If there is more than one maximum, then all tied

 maximums will be output. These maximum bids will be decrypted. Nothing else will be

 decrypted. The decrypted values reveal both the bid values and the bidder IDs for these

 bids.

 ● No information is learned about any other bids.

 3.2. Methods

 The methodology used is experimental research. We implement the bidding system under

 various parameter settings and document the performance metrics such as computational time

 and accuracy under each setting.

 27

 We build the blind-bidding auction using Rust, using the Concrete Fully Homomorphic

 Library by Zama. We use a function from Optalysys [29] for computing the maximum between

 two encrypted values, which utilizes Concrete’s programmable bootstrapping.

 3.2.1 Justification for Tool Selection

 Concrete by Zama is a Rust-based, open source framework enabling developers to use

 homomorphic encryption without needing to understand all of the cryptography. The Zama Team

 released Concrete officially on July 7, 2022. Zama is a company specializing in

 privacy-preserving technologies. Concrete addresses three of the major issues in FHE: too slow,

 too hard to use, and too limited in functionality.

 There are two main approaches to FHE. The “leveled” approach attempts to only do as

 many computations as possible before noise overflows into the data. The “bootstrapped”

 approach adds in a bootstrapping operation to reduce noise (but increase computation time).

 Concrete implements a variant of TFHE [13] that supports both leveled and fast bootstrapped

 operations, as well as approximate or exact evaluation of arbitrary functions.

 Concrete is the first framework to introduce programmable bootstrapping, a technique

 where a univariate function can be computed for free during the bootstrapping operation.

 However, this comes at the tradeoff of small precision, currently limited to 16 bits [28, 30].

 3.3 Implementation and Challenges

 In this section, we describe the implementation of the blind-bidding auction. One of the

 challenges of FHE is that the complexity quickly increases as size increases. Because of this, the

 focus of this study is on implementing the blind-bidding auction for small values, particularly

 focusing on the needed logic for working with the encrypted data.

 28

 While the auction serves as a testbed to better understand the complexity and nuances of

 FHE, it is not intended to be a production-level implementation. The auction described below

 does not work for sufficiently large values to make it practical, but does help reveal the many

 challenges and nuances of FHE. Of particular interest in this section is the algorithm used to

 compute the maximum bid(s), without revealing any information about any losing bids.

 3.3.1 Data Input and Pre-Processing

 Each bidder is assigned a bidder ID. Based on the number of bidders, a sufficient number

 of the least significant bits will be reserved for storing the bidder ID. The remaining bits will

 store the bid value.

 For example, if there are 9 bidders, they will be assigned bidder IDs between 1–9

 (nobody will be assigned 0). The right-most digit (base 10) will be used to store the bidder ID.

 The remaining digits will be used to store the bid value. If the bidder with bidder ID 5 would like

 to submit a bid of 76, their bid value in plaintext will be 765.

 In a production implementation of the blind-bidding auction, implementation would need

 to be added to allow for the sharing of the public key, and for individual bidders to securely

 encrypt their bids via the public key. The focus of this study is on the feasibility of using FHE to

 sort and output only the winning bid(s), after they are encrypted. So, for the sake of this study,

 bids are all accepted and encrypted via the same program used for sorting the bids. In the next

 section, we explore the implementation of the bidding logic.

 3.3.2 Bidding Logic Implementation

 When considering the most efficient way to calculate the winning bid, we need to

 consider the constraints of FHE. We cannot use any logic such as directly comparing whether

 for some encrypted . The process of testing for the maximum between two pairs and 𝑎 < 𝑏 𝑎 , 𝑏 𝑎

 29

 results in the values and , where we know, for example, that , but can’t determine 𝑏 𝑐 𝑑 𝑐 < 𝑑

 whether and or and . 𝑐 = 𝑎 𝑑 = 𝑏 𝑐 = 𝑏 𝑑 = 𝑎

 Due to the specific limitations of FHE, traditional algorithms for finding the maximum

 values may not be directly applicable. Instead, we utilize a homomorphic

 compute_max_min() function which we describe below. The compute_max_min()

 function comes from a paper by Optalysys [29], a company that is developing a silicon-photonic

 chip specialized to speed up FHE operations. Following this, we describe our method for finding

 the maximum bids. A comprehensive analysis of this method's performance can be found in the

 Performance Results section below.

 3.3.3.1 Homomorphically computing the maximum and minimum of a pair

 Finding the maximum values in the array of bids relies on the

 compute_max_min() function. This function is from the implementation by Optalysys [29]. The

 computation of the maximum and minimum values happen during a programmable bootstrap

 operation. We first explain the simple algorithm of computing the maximum and minimum, and

 then describe the implications of computing this algorithm in the context of homomorphic

 encryption.

 The algorithm's logic is simple. If you have two ciphertexts and , you can compute 𝑐
 1

 𝑐
 2

 the maximum and the minimum as shown in Algorithm 1.

 Algorithm 1

 Computing the maximum and the minimum values given two encrypted ciphertexts

 compute_max_min()

 1 difference <- cipher2 - cipher1
 2 if difference > 0
 3 differencePositive <- difference

 30

 4 else
 5 differencePositive <- 0
 6 end if
 7 maximum <- cipher1 + differencePositive
 8 minimum <- cipher2 - differencePositive

 We present a numerical example to demonstrate this algorithm. First for the case of

 cipher1>cipher2 .

 Let cipher1=5 and cipher2=2 . We now compute maximum and minimum based on

 this algorithm. We compute difference as cipher2 - cipher1 = 2-5 = -3 .

 Because difference is not > 0, we set differencePositive to 0 . We then find

 maximum and minimum by setting maximum=5+0=5 and minimum=2-0=2 .

 Now let's do the same thing with the cipher values swapped, where cipher1=2 and

 cipher2=5 . We compute difference as cipher2 - cipher1 = 5-2 = 3 . Because

 difference > 0 , we set differencePositive = difference = 3 . We then find

 maximum and minimum by setting maximum=2+3=0 and minimum=5-3=2 .

 As you can see, the correct minimum and maximum values are returned in both the case

 of cipher1>cipher2 and cipher1<cipher2 . Having seen the algorithm in action with a

 numerical example, let’s describe the underlying reasons for setting it up in such a way.

 The reason to set the algorithm up in this fashion is due to the homomorphic encryption

 and the possibility for the programmable bootstrap step. We need to recall that at each step, when

 everything is encrypted homomorphically, any operation result is also encrypted. In line 1 of

 Algorithm 1, the difference that is computed between cipher2 and cipher1 is an encrypted

 value. Thus, we can’t simply use logic at that point to return the maximum and minimum values.

 31

 Instead, in the setup of this function, Optalysys utilized programmable bootstrap [29]. In

 Concrete, there is a function bootstrap_with_function() . The function computes a

 bootstrap and applies an arbitrary function to the LWE ciphertext. In addition to a bootstrapping

 key, f, a function to apply, is given as an argument to bootstrap_with_function() . The

 output bootstrap_with_function() is the encrypted evaluation of f [29].

 It is of importance to us that we can compute a function within the bootstrapping

 computation. First, cipher_diff , the difference between cipher1 and cipher2 is

 computed. The function that we compute within the bootstrapping computation allows us to

 check if cipher_diff . If it is, the function returns a new encryption of ≥ 0

 cipher_diff . If it is not, it returns an encryption of 0. Even though this is encrypted, we now

 don’t need to know what the value of this returned value is, and can still apply it to our

 algorithm, to compute the maximum and minimum.

 As we describe our identify_max_bids() function in the next section, it is

 important to recall that, while compute_max_min() returns an encryption of the maximum

 and the minimum values, these two returned values are indecipherable from the input cipher1

 and cipher2 values. This inability to know whether the starting encryption cipher1 or

 cipher2 is larger impacts the decisions made in implementing the

 identify_max_bids() algorithm which we describe in the next section.

 3.3.2.2 Finding the Maximum Values

 We find the maximum values using a modified version of bubble sorting. In a bubble sort,

 going from left to right, two values are compared to each other. If the value on the left is larger

 than the one on the right, they are swapped. Then that current right value is compared to the

 32

 value on its right. After one iteration through the array, the maximum value is moved in the

 rightmost position.

 If the goal is to use bubble sort to sort an array completely, the process would continue

 until the 2nd largest value is in the second rightmost position, the 3rd largest value is in the third

 rightmost position, and so on, until the array is fully sorted. In our case, we don’t necessarily

 need to sort the full array, we only need to find the winning bid, or, the tied winning bids.

 For the sake of explanation, let’s discuss a hypothetical set of bids, {21, 22, 13, 14}. In

 this case, there are three bidders. Their IDs are 1, 2, 3, and 4. Bidders with ID’s 1 and 2 have bid

 2, and bidders with ID’s 3 and 4 have bid 1.

 After looping through the array fully the first time, it ends up in the arrangement of {21,

 13, 14, 22}. At this point the highest bid is guaranteed to be the rightmost position. If there are

 tie bids (which there is in this case), then the value in the right most position is the tied bid with

 the highest bidder ID.

 Since we know that 22 is a winning bid (because the rightmost bid must be the highest),

 we can decrypt it. However, we now need a way to determine if there are any tie bids.

 Remember, we are working with encrypted data. We don’t know anything about which bids are

 2s and which bids are 1s. The initial thought might be to just sort the array again for the n-1

 elements, and check the second highest bid. However, we need to be careful–we don’t want to

 learn any information about losing bids. If we do this second sort, and it turns out we only have

 one high bid, then we’ll learn information that is confidential by decrypting the second largest

 value.

 33

 So, what we do is we reserve the bidder ID of 0 as a marker. We remove the bidder ID by

 taking the last digit off of 22 and replacing it with 0, giving us 20. We encrypt this 20, and use it

 as our marker for the maximum bid value.

 We do the sort again on the array for the second largest bid. The result is the array {13,

 14, 21}. Next, we use the compute_max_min() function, which returns the maximum of two

 encrypted pairs, to compute the maximum of the current highest (21), and our marker value (20).

 Since 21>20, when we decrypt the result we see 21. This means we’re not done. We need to do

 another loop through the array to sort and check the next smallest value. This time, we are

 calling compute_max_min() on 14 and 20. Since 20>14, we will get 20 when we decrypt the

 maximum. At this point, we know we have found all maximum values, because whatever the

 minimum value is, it is less than 20, and therefore not a winning bid.

 As the winning bids are found (22, 21), they are added to an array of maximum bids. The

 final output of this function is the array of the decrypted values of maximum values.

 Algorithm 2: identify_max_bids()

 Given a set of bids encrypted as ciphertexts, return an array with the winning bid(s)

 Function identify_max_bids()
 Round <- 0
 MaxArray <- Empty List
 Results <- Ciphers // Initialize Results as a copy of Ciphers
 Results <- sort_for_max(Results, Round)
 CurrentMasterMaxValue <- decrypt last value of Results
 Push CurrentMasterMaxValue to MaxArray
 MasterMaxValue <- remove_bidder_id(CurrentMasterMaxValue)
 MasterMaxValueEnc <- encrypt(MasterMaxValue)
 Done <- false

 While not Done && Round < length(Ciphers) do
 Results <- sort_for_max(Results, Round)
 TempMaxDec <-

 compute_max_min(Results[Length-Round-1],MasterMaxValueEnc)

 34

 if TempMaxDec > MasterMaxValue then
 Push TempMaxDec to MaxArray
 Round += 1

 else
 Done=true

 end if
 end while
 return MaxArray

 End Function

 Function sort_for_max(Results, Round)
 if length(Ciphers) < 2 OR Round >= length(Ciphers) - 1

 return Ciphers
 end if
 Results <- Ciphers // Initialize Results as a copy of Ciphers
 for i from 0 to (length(Ciphers) - 2 - Round) do

 (C_max, C_min) <- compute_max_min(Results[i],
 Results[i+1], KSK, BSK, Encoder)

 Results[i] <- C_min
 Results[i+1] <- C_max

 end for
 return Results

 End Function

 3.3.2.3 Computation Complexity of the identify_max_bids() Algorithm.

 In this section we analyze the computational complexity of the

 identify_max_bids() function, emphasizing its dependence on both the number of total

 bids and the number of tied maximum bids.

 The identify_max_bids() function has a computational complexity of . The 𝑂 (𝑛 2)

 total run time of the function is dependent on both the total length of the array, and the number of

 tied winning bids. Because the compute_max_min() function is computationally heavy, we

 care about how many times this function is called. Let be the total size of the array, and be the 𝑛 𝑖

 total number of tied maximum bids to be found.

 35

 Figure 1. Number of Comparisons in the identify_max_bids() function based on the total number
 of bids and the number of tie winning bids for arrays of size 10, 20, 30, 40, 50, 60, 70, 80, 90,

 and 100.

 To begin, the algorithm iterates through the array, putting the minimum of each pair on

 the left, and the maximum on the right. This takes moves. Each of these comparisons is a 𝑛 − 1

 call to the compute_max_min() function.

 The algorithm always iterates through the array a second time, taking moves in 𝑛 − 2

 round 2. Then, the value at position must be compared to the master max value. Each of 𝑛 − 2

 these comparisons is a call to the compute_max_min() function. If this computation shows

 that the value in position is less than the master maximum, we are done sorting. 𝑛 − 2

 The algorithm then repeats this some number of times, dependent on . In the end, after 𝑖

 the initial sort, the function will be sorted a total of more times. With each of those sorts, the 𝑖

 number of comparisons being made decreases by one.

 36

 Figure 2. Number of Comparisons in the identify_max_bids() function based on the total number
 of bids and the number of tie winning bids for all arrays between 1 and 100.

 Sorting the array completely takes comparisons. After comparison 1, we sort an 𝑛 (𝑛 − 1)
 2

 array whose size decreases by one each time, until we have done so a total of additional times. 𝑖

 This leaves a total of loops not done in the initial n loops expected. The total number 𝑛 − 𝑖 − 1

 of computations to be removed from a complete sort is . After each loop, we also (𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)
 2

 need to compare the current max with the master max value. This comparison happens a total of

 37

 times. Thus, we get the following formula to calculate the total number of times that the 𝑖

 compute_max_min() function is called:

 𝑛 (𝑛 − 1)
 2 − (𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)

 2 + 𝑖

 In Figures 1 and 2, we can visualize the number of comparisons for fluctuations in and 𝑛

 . Each line in the graph represents a distinct value. Which is being represented by an 𝑖 𝑛 𝑛

 individual line can be identified by the x-axis value at the end point of the line. All values 𝑛

 between 1 and 100 are shown in Figure 2. Fewer are shown in Figure 1 for a clearer view of

 individual lines. For a given value along the x-axis, you can see on the line representing a given 𝑖

 value, the total number of comparisons. You can see in the chart that as increases, the total 𝑛 𝑛

 computational complexity increases exponentially. For a given , as increases, the amount of 𝑛 𝑖

 additional computation for each additional is less then for the previous . 𝑖 𝑖

 38

 Chapter 4: Results

 In this section, we analyze the computational aspects of the FHE scheme and the

 blind-bidding auction, examining the effects of parameter modifications on computation times

 and auction accuracy.

 4.1 Computation Times

 In FHE, computation times can vary significantly depending on the parameters chosen.

 These are discussed below.

 4.1.1 Program Initialization for Different Parameters

 There are multiple parameters that need to be set in the Concrete FHE scheme. These

 include a LWE and RLWE key. We never changed the parameters of the LWE key, always using

 128 bits of security, and a polynomial of size 2048. For the RLWE key, we tested for different

 variations on the security bit and the polynomial size.

 We also tested variations with the Key Switching Key (KSK) and Bootstrapping Key

 (BSK) Initializing the KSK and the BSK both take 2 arguments, base log and levels.

 You can view the results for how the initialization speed fluctuates based on changes in

 the parameters in Table 1.

 Using Table 1, we make some observations about the effect of different parameters of the

 computation time for initiating the KSK and BSK.

 Bits of Security: Looking at lines 0 and 5, all parameters stay the same with the

 exception of the bits of security. Changing from 80 to 128 bits of security had a negligible impact

 on the time required to initiate the KSK, but increased the time required to initiate the BSK by

 28.5%.

 39

 Table 1

 Computation time required to build the KSK and BSK for different sets of parameters.

 RLWE
 Bits of

 Security

 RLWE
 Polynomial

 Size

 (base log, levels) Computation Time to
 Initiate

 KSK BSK KSK BSK

 0
 80 2048

 (4, 5) (4, 5) 2274 ms 170655 ms

 1 (6, 6) (6,6) 2706 ms 210067 ms

 2 (3, 28) (3, 28) 12599 ms 968697 ms

 3

 128

 1024

 (4, 5) (4, 5)

 1188 ms 48371 ms

 4
 2048

 2327 ms 177160 ms

 5 2264 ms 238741 ms

 6

 4096

 4604 ms 652111 ms

 7 4500 ms 671387 ms

 8 (3, 7) (3, 7) 6480 ms 924656 ms

 9 (4, 7) (4, 7) 6519 ms 970439 ms

 Base Log: Looking at lines 8 and 9, all parameters stay the same with the exception of

 the base log for the KSK and BSK. Increasing the log from 3 to 4 increased the build time of the

 KSK by 0.6% and the BSK by 4.7%. Compared to some other variations, this parameter's impact

 is quite negligible on the build time of the KSK and BSK.

 40

 Levels: Making a drastic change in the number of levels also results in a drastic change

 in the initialization time. Jumping the levels from 5 to 28, even while lowering the log base from

 4 to 3 increased the initialization time of KSK by 82% and BSK by 82.3%. While this has a big

 impact in initialization time, such a high level was never actually used past gathering these

 results, so its impact on accuracy and computation time during the run of the program is

 unknown.

 Changing both Base Log and Levels: Looking at lines 0 and 1, the increasing the values

 of both the log base and levels increased the KSK initialization time by 16% and the BSK by

 18.8%.

 Changing the Polynomial Size of the RLWE: Looking at lines 3, 5, and 7, we can see

 the impact in computation time from changing the polynomial size from 1024 to 2048 to 4096.

 When changing from 1024 to 2048, it increases the initialization time of the KSK by 47.5% and

 the BSK by 79.7%. When changing from 2048 to 4069, it increases the initialization time of

 KSK by 49.7% and of BSK by 64.4%. Overall, to go from a polynomial size of 1024 up to 4096,

 it increases the computation time of the KSK by 73.6% and the BSK by 92.8%.

 Making changes to the polynomial size of the RLWE by far has the greatest overall

 impact on a whole. It increases initialization time, and, as is shown in later sections, also

 increases the overall computation time quite significantly.

 4.1.2 Influence of Parameters on compute_max_min()

 Of greater significance than startup speed is the speed of our compute_max_min()

 function. This function is essential for comparing any two encrypted values. Thus, the time to

 compute maximum values is directly related to the time to run compute_max_min() . In

 Table 2 is a list of the average run time of compute_max_min() for a variety of parameters.

 41

 Table 2

 Computation time required to perform the compute_max_min() function for different sets

 of parameters.

 RLWE
 Polynomial

 Size
 Encoder

 (base log, levels) Computation of
 compute_max_min() KSK BSK

 1024 (0.0, 1.0, 4, 2) (4, 5) (4, 5) 564 ms

 2048 (0.0, 16.0, 5, 2) (4, 5) (4, 5) 1116 ms

 4096

 (0.0, 31.0, 6, 2) (4, 5) (4, 5) 2459 ms

 (0.0, 50.0, 6, 2) (4, 5) (4, 5) 2450 ms

 (0.0, 63.0, 6, 2)
 (4, 5) (4, 5) 2459 ms

 (3,7) (3,7) 2968 ms

 (4, 7) (4, 7) 3202 ms

 You can see from these results that, on its own, the RLWE Polynomial has a big impact

 on the computation time of compute_max_min() . However, the other parameters also impact

 the computation time. Making adjustments to the size of values that the encoder handles and to

 the levels and log base also affect the computation time.

 From our exploration of different RLWE polynomial values, it is evident that increasing

 the size of the polynomial has significant impacts on the computation time. Regardless, to

 accurately compute large values, it is necessary to do so.

 4.1.3 Average vs. Theoretical Computation Time of identify_max_bids()

 The following section contains an analysis of computation time of

 identify_max_bids() , which relies on the computation time of the

 compute_max_min() function analyzed in the previous section. In the following analysis,

 42

 these are the parameters at which the program was run. RLWE polynomial size: 4096; Encoder:

 min: 0.0, max: 31.0, bits: 6, padding: 2; KSK: base log: 4, levels:5, BSK: base log: 4, levels: 5.

 With these parameters, the average time to perform the compute_max_min()

 function was 2305.857 ms. This number comes from the average of 77 calls of

 compute_max_mix() . The timing is calculated using Rust Instant::now() directly

 before and after calling comput_max_min() .

 The time required to calculate the array of maximum bids was tested, and those results

 are compared to the theoretical time expected to perform the calculation. As mentioned in

 section 3.3.2.3, the number of total comparisons in the identify_max_bids function is

 dependent on n (the size of the array) and i (the total number of tie bids). That equation is

 𝑛 (𝑛 − 1)
 2 − (𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)

 2 + 𝑖

 Based on this formula and the average computation time of compute_max_min() ,

 estimated run times for identify_max_bids() are calculated and compared to actual run

 times in Table 3. All averages in the table come from a sample size of 5.

 There were notable outliers in expected vs. actual computation times in the cases when

 and . Including the major outliers in these two cases, the mean 𝑛 = 50 , 𝑖 = 40 𝑛 = 50 , 𝑖 = 50

 average percentage error (MAPE) is 7.86%. Removing the outlier data points and recalculating

 the MAPE gives a value of 2.26%.

 In the intended behavior of the identify_max_bids() function, the maximum value

 from the first round of sorting is set as the master maximum value. However, discrepancies arose

 in the aforementioned cases due to a fluctuation in the accuracy during computation. As

 computations are performed on encrypted values, the associated noise of these values increases.

 43

 Table 3

 Expected vs. Actual Computation Times for Given and Values. 𝑛 𝑖

 n i Comparisons Expected
 compute time

 Average Actual
 compute time

 Percentage
 error

 9

 1 16 36894 ms 37225 ms 0.90%

 2 23 36894 ms 53950 ms 1.73%

 3 29 53035 ms 66690 ms 0.27%

 4 34 66870 ms 77673 ms 0.93%

 5 38 78399 ms 85534 ms 2.38%

 6 41 87623 ms 91301 ms 3.43%

 7 43 94540 ms 95950 ms 3.23%

 8 44 99152 ms 98946 ms 2.48%

 9 44 101458 ms 98737 ms 2.68%

 50

 5 284 101458 ms 635354 ms 2.98%

 15 679 654863 ms 1543963 ms 1.39%

 25 974 1565677 ms 2146301 ms 4.43%

 40 1229 2245905 ms 1471268 ms *48.08%

 50 1274 2833898 ms 1864774 ms *36.52%

 40 1229 2245905 ms **2718565 ms 4.07%

 50 1274 2833898 ms **2958624 ms 0.71%

 * These two values are outliers. The explanation of the outliers is below

 ** Recalculation of the average, removing outliers

 After 49 comparisons made in the first round of sorting for , the cumulative noise 𝑛 = 50

 caused the true maximum value of 29 to be mistakenly decrypted as 30. Given that all other tie

 bids were valued at 2, they became lesser than the master maximum value, which was now

 44

 inaccurately set at 30 (that is, a bid value of 3). As a consequence, the

 identify_max_bids() function concluded after just one loop iteration, as opposed to the

 expected 40 and 49 iterations, respectively. This premature termination resulted in the actual

 computation time being significantly shorter than the projected computation time. Such

 discrepancies underscore the challenges of maintaining accuracy in computations involving

 encrypted values.

 4.2 Accuracy

 The accuracy of the blind-bidding auction depends on a combination of parameters and

 configurations. Some of these can be influenced by the auction operator. In this section, we

 explore how different bidding configurations can affect accuracy.

 4.2.1 Fluctuation in Accuracy with Changes in and 𝑛 𝑖

 We focus on the variations in accuracy stemming from variations in (the total number 𝑛

 of bidders), and (the number of tied maximum bids). Selected results are shown in Table 5. It is 𝑖

 worth noting, due to currency parameter constraint, the auction can only accommodate a

 maximum of 9 unique bidder IDs.

 The accuracy tends to decrease as increases for a given , reflecting the fact that more 𝑖 𝑛

 comparisons–and thus more opportunities for noise growth–are required for higher values. As 𝑖

 shown in Figure 3, the relationship between accuracy and the size of has an value of .6592. 𝑖 𝑅 2

 This suggests that around 66% of the variation in accuracy is attributed to the increase in and its 𝑖

 associated increase in the number of comparisons. To better understand the sources of the

 remaining variation, we examined not just the total number of comparisons needed to determine

 the maximum bids, but also the distribution of how many times each individual bid is being

 compared.

 45

 Table 4

 Accuracy of Results of Winning Bids, for Given and Values 𝑛 𝑖

 𝑛 𝑖 Accuracy

 9 1 100%

 9 2 100%

 9 3 80%

 9 4 79%

 9 5 84%

 9 6 73%

 9 7 74%

 9 8 79%

 9 9 73%

 Figure 3. For n=9, Accuracy of Results for i values between 1 and 9.

 46

 4.2.2 Fluctuation in Accuracy with Changes in Initial Configuration of Bids

 In the auction, each participant is assigned a bidder ID. The bidder ID is not secret, and

 the initial positioning of bids in the array can be facilitated based on the values of the bidder

 IDs–either in ascending or descending order. As highlighted in section 3.3.2.2, each bid

 undergoes at least one comparison with another bid in the process of determining the maximum.

 Such comparisons result in the re-encryption of the bid, rendering it unrecognizable from its

 original form. Therefore, the order in which the bids are initially placed in the array, based on

 bidder IDs, does not compromise the system's security. Moreover, publicly associating original

 encrypted bids with specific participants doesn’t leak any sensitive information.

 This section contains an analysis of how the starting configuration of the bids impacts the

 accuracy of the output. Depending on the initial location of a bid, it may be compared more or

 fewer times before ending up in its final position, where it is no longer being compared to other

 bids. We look further into this for sets of 8 bids. We set up three distinct arrays, with bids from

 the set . We then arranged these in three different way in 𝐵 = { 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 }

 arrays: With bidder ID in ascending order where , descending 𝐵
 𝑎

= [21 22 23 24 25 26 27 28]

 order where , and randomly where 𝐵
 𝑑

= [28 27 26 25 24 23 22 21]

 . We checked the provided maximum bids for ten iterations of 𝐵
 𝑟

= [25 23 21 28 22 27 24 26]

 the program for each of these configurations. For the accuracy was .87, for the accuracy 𝐵
 𝑎

 𝐵
 𝑑

 was .93, and for the accuracy was .9. As you can see, the accuracy is highest when the bids 𝐵
 𝑟

 started in the configuration , and this configuration was 6% more accurate than starting 𝐵
 𝑑

 configuration . 𝐵
 𝑎

 47

 For each of these variations in starting configuration, there were an equivalent total

 number of comparisons needed to find the maximum bids. However, the number of times each

 given encrypted bid was compared to another bid is different for the different configurations. In

 Table 5 we show the number of times that each encrypted value was compared to the different

 arrangements. σ is the Standard Deviation of the number of comparisons.

 Table 5

 Distribution of Comparisons Among Encrypted Values for Different Starting

 Configurations

 Starting
 Configuration

 Total Number of Times the Given Encrypted Value was Compared

 28 27 26 25 24 23 22 21 σ

 𝐵
 𝑎

 1 4 6 8 10 12 14 8 4.224

 𝐵
 𝑑

 7 8 8 8 8 8 8 8 0.354

 𝐵
 𝑟

 5 5 4 11 7 12 11 8 3.137

 Considering the fluctuation in the number of comparisons per value in and , we also 𝐵
 𝑎

 𝐵
 𝑟

 look at accuracy of, based on the number of times the bid was compared, how likely it is to

 accurately hold its correct value. We show these results in Figure 4. The relationship between the

 number of times that a value is compared and the accuracy on decryption (how often it decrypts

 correctly) has an value of .7644, suggesting that around 76% of the variation in accuracy is 𝑅 2

 attributed to how often the value was compared. This data suggests that as the number of

 comparisons increases, the accuracy of a bid decreases. Thus, finding ways to distribute the

 comparisons among all values will improve overall accuracy. This is discussed further in the

 discussion section below.

 48

 Figure 4. Accuracy of Results Based on the Number of Times Compared

 The results underscore the complexities inherent in using a FHE scheme. Operations are

 notably longer, and accumulation of noise significantly impacts the final accuracy of

 computations. In the ensuing discussion we consider these accuracy nuances and consider the

 practicality of the blind-bidding auction.

 49

 Chapter 5: Discussion

 5.2 Parameter Selection & Accuracy

 In a FHE scheme, the potential growth of the error should be tracked well enough that

 you never end up with inaccurate data, and all noise is taken care of during bootstrapping.

 Concrete is both a FHE scheme and a Leveled Homomorphic Encryption scheme. With a leveled

 scheme, there are a set number of levels before each bootstrapping step. With perfect starting

 configuration of parameters, the auction should have been accurate each time. However, we were

 not able to achieve this level of accuracy. FHE schemes are complicated, and changes to each

 parameter impact other parameters.

 Due to challenges with maintaining accuracy, interesting patterns show up with regards to

 how the array is initially configured. This was briefly touched upon in the results in 4.3.2, but we

 expand on this in the next section.

 5.2.1 Accuracy Based on Starting Configuration

 As seen in 4.3.2, there is a strong correlation between the number of times an encrypted

 value is compared and the accuracy of the result. Encrypted values that were compared more

 times are less likely to still be accurate upon decryption. This raises the question, is there

 anything the auction owner can do with bidder IDs to optimize the distribution of the

 comparisons?

 As the number of comparisons increases for each individual value, the accuracy

 decreases. We will delve deeper into how this manifests itself for three unique configurations of

 the same data. Recall above that the total number of times that compute_max_min() is called

 is

 . 𝑛 (𝑛 − 1)
 2 − (𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)

 2 + 𝑖

 50

 For the majority of these calls, the two values being compared are two full bids.

 However, for each loop within identify_max_bids() , the current max is being compared

 to the new encryption of the master max value, minus its bid ID. In our equation above, the was 𝑖

 added to the end accounts for this comparison. So, if we let

 , 𝐶 = 𝑛 (𝑛 − 1)
 2 − (𝑛 − 𝑖 − 1)(𝑛 − 𝑖 − 2)

 2

 we can compute the sum of the total number of comparison for each individual bid using the

 equation

 . 𝐶 * 2 + 𝑖

 However, if , the total number of comparisons in equivalent to when . 𝑖 = 𝑛 𝑖 = 𝑛 − 1

 To account for this difference, we calculate the sum of all comparisons as

 , for 𝐶 * 2 − 𝑖 𝑖 < 𝑛

 , for 𝐶 * 2 − (𝑖 − 1) 𝑖 = 𝑛

 Now we further analyze the case of different starting orientations, whose results we gave

 in 4.3.2. Let a set of bids be . This set contains bids from 𝐵 = { 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 }

 bidders with ID’s 1-8. Consider three variations , , and . In , the bids are entered with 𝐵
 𝑎

 𝐵
 𝑑

 𝐵
 𝑟

 𝐵
 𝑎

 bidder IDs in numerical order. In bids are entered with bidder IDs in reverse numerical order. 𝐵
 𝑏

 In bids are entered in a random order. We discuss how these configurations affect the accuracy 𝐵
 𝑟

 of the sorted outcome.

 Let . We calculate how many times each of these bids is 𝐵
 𝑎

= [21 22 23 24 25 26 27 28]

 compared to another bid.

 First, 21 is compared to 22. They don’t swap. 22 is compared to 23. They don’t swap.

 This process continues until 27 is compared to 28.

 51

 At this point, 28 is added to the array of winning bids, and it is replaced with an

 encryption of 20. This is the winning bid (28) without its bidder ID.

 During the next round, the same process happens, but the comparisons only go up to 27.

 Then, the highest bid (27) is compared to the encrypted 20. Since 27 is bigger, it is added to the

 array of winning bids. Then, the loop runs again.

 As you can see, in the first round, the first and last values are compared once and all

 others twice. This is the case for each round, but since the lower values are still in the array for

 more rounds, they are being compared for more rounds. In the end, you end up with this

 distribution of comparisons:

 Table 6

 Number of Comparisons for Each Value, with an Ascending Starting Configuration

 Total Number of Times Encrypted Value was Compared

 Starting Position 21 22 23 24 25 26 27 28

 Number of times
 compared

 8 14 12 10 8 6 4 1

 Now we compare the ascending configuration to the descending configuration. Let

 . 𝐵
 𝑑

= [28 27 26 25 24 23 22 21]

 In the first round, 28 is compared to 27, and they are swapped. Then 28 is compared to 26

 and they are swapped. 28 continues to be swapped, and thus continues to be compared to each

 value until it ends up all the way on the right. This is a total of 7 comparisons.

 Just like last time, at this point 28 is added to the array of winning bids, and it is replaced

 with an encryption of 20. This is the winning bid (28) without its bidder ID.

 52

 In round two, 27 is compared to 26 and they are swapped. Then it is compared to 25, and

 they are swapped. This continues until the array is in this configuration:

 26 25 24 23 22 21 27 20

 So far, 27 has been compared 7 times, once with the 28 to begin with, and now with each

 other bid. It gets compared one more time, with 20, to determine if it is one of the maximums. It

 is, so it gets added to the array of max bids, and the loop continues.

 If we track how many times 26 is compared, it is also 8 total. As with all the other values,

 until 21. Using the starting configuration of bids in descending order, we get the distribution of

 comparisons shown in Table 7.

 Table 7

 Number of Comparisons for Each Value, with an Descending Starting Configuration

 Total Number of Times Encrypted Value was Compared

 Starting Position 28 27 26 25 24 23 22 21

 Number of times
 compared

 7 8 8 8 8 8 8 8

 We can see that using the descending configuration gives a much more uniform

 configuration. In this case, where everyone has bid the same value, our results will be more

 accurate if the starting configuration is with bidder IDs in descending order.

 However, is this still the case if we go to the opposite extreme, where we only have one

 winning bid? First, does the starting configuration have the same impact, where bids in

 descending order lead to a more even distribution of comparisons? Second, what about the

 winning bid specifically, is it better for that bid to be in ascending or descending order? In Table

 8 we show the distribution of comparisons for some different sets of bids, in ascending versus

 descending bidder ID starting configuration.

 53

 Table 8

 Initial Configuration of Bids and the Distribution of Comparisons

 Starting Configuration σ

 Ascending 11 12 13 14 15 16 17 28
 1.785

 3 6 6 7 5 5 5 1

 Descending 28 17 16 15 14 13 12 11
 2.395

 7 8 2 2 2 2 2 2

 Ascending 21 12 13 14 15 16 17 18
 1.714

 9 3 5 5 4 4 4 4

 Descending 18 17 16 15 14 13 12 21
 2.736

 9 7 2 2 2 2 2 1

 Ascending 21 22 13 14 15 26 17 18
 2.027

 9 9 4 6 6 3 5 5

 Descending 18 17 26 15 14 13 22 21
 2.368

 11 8 6 6 4 4 4 4

 Ascending 21 22 13 24 15 26 17 18
 2.222

 10 10 5 7 7 3 6 6

 Descending 18 17 26 15 24 13 22 21
 2.332

 12 9 6 6 6 5 5 5

 Ascending 21 22 13 24 15 26 17 28
 3.120

 11 11 6 8 9 5 8 1

 Descending 28 17 26 15 24 13 22 21
 1.576

 7 11 8 8 7 6 6 6

 54

 As we begin to observe for a larger variety of winning values, it seems that the strategy of

 placing bids in decreasing bidder ID order does not remain the most uniform distribution when

 there are fewer winning bids. Based on these examples, it appears that for fewer winning bids,

 bidder IDs in increasing order leaves a more uniform distribution.

 Based on this information, we are unable to conclusively say if there is an advantage on

 average for starting with bids configured in the ascending bidder ID or descending bidder ID

 order. This is left as an extension to this work. From the data we have collected, our initial

 thought is that using the descending bidder ID starting configuration is more valuable, because it

 leads to a more uniform distribution in the case where there are many ties for maximum. The

 case with many ties for maximum is also the case with the most comparisons in total, and

 therefore, optimizing that extreme over the extreme of only one winning bid will likely lead to

 better results overall.

 5.2.2 Speed

 For the cases in which we produce accurate data, the speeds are high, but not prohibitive.

 For example, running the blind-bidding auction for a set of 50 bids, where there are 5 tie bids

 took an average of 635354 ms to run. Computing the same thing on unencrypted data in Python

 took .207 ms. The markup in speed is of the magnitude of 3 million times longer. So, while the

 speed is not in fact prohibitive for a very small use case, as the number of bids increases, and the

 computation time increases exponentially, that markup in speed very quickly can become

 prohibitive.

 However, as discussed in section 2.5, there have been enormous improvements to FHE

 computation in the past 15 years, and it continues to be an area of research. Concrete, the FHE

 implementation used for this project, was just released in 2022 [28, 30]. There continues to be

 55

 work on increasing speeds of FHE, such as the work by Optasysis. The compute_max_min()

 function used in this project is from a paper by Optalysys [29]. In that paper, they introduce work

 being done by their company to develop a silicon-photonic chip to compute the Fourire

 transform, a main bottleneck in FHE operation, more efficiently. As indicated by their optical

 simulator, sorting an array which took more than 6s to compute electronically would take .05 s

 on their silicone-optical chip.

 5.3 Practicality for Use

 Based on the current status of this program, the program is not practical for actual

 implementation. The maximum value for which some level of accuracy in results can be

 achieved is when input is between 0-32, with 6 bits of information. Even then, the smallest bit

 cannot be used while still achieving accurate results. That means you have 5 bits to store both the

 bid and bidder information. Leaving at least 1 bit for the bid, you can have up to 16 bidders.

 Using up to 4 bits for bid leaves you with only 1 bit for storing the bidder. These sizes aren’t

 practical for actual implementation of the blind-bidding auction.

 56

 Chapter 6: Conclusion

 6.1 Deliverables

 6.2 Deliverables

 There are many future extensions to this work. As discussed in the analysis of the

 accuracy, as the number of comparisons for one particular encrypted value increases, its accuracy

 decreases. One notable future extension to this work is to analyze further if there are any patterns

 for starting configurations of the bidder ID’s that can lead to less computations per winning bid.

 This work analyzes the use case of having multiple tied maximum bids. In such a case, using the

 initial bid configuration of bidder IDs being in descending order is optimal. However, finding the

 optimal solution for any ratio of tied maximum bids and total bidders is left to future work.

 Other future directions for this work are to implement the same algorithms using other

 FHE schemes such as HElib [25], Microsoft SEAL [26], or OpenFHE [27], or exploring

 different algorithms for the sorting of the highest bid.

 While the current implementation of the blind-bidding auction using FHE has its

 challenges, it serves as a foundation to realizing secure and blind auctions in the digital age. Our

 exploration into the intricacies of FHE, particularly in the context of sorting algorithms, has

 unveiled both the potential and the hurdles in implementing a blind-bidding auction with FHE.

 As research of Fully Homomorphic Encryption continues to evolve, we are optimistic that the

 issues of speed, accuracy, and computational intensity will continue to be improved. This road

 ahead of Fully Homomorphic Encryption is promising and filled with potential.

 57

 References

 [1] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks and privacy

 homomorphisms,” in Foundations of Secure Computation, Academia Press , pp. 169–179,

 1978.

 [2] C. Gentry and D. Boneh, “A fully homomorphic encryption scheme,” Stanford University,

 2009.

 [3] O. Regev, "The Learning with Errors Problem," in IACR Cryptology ePrint Archive , 2009.

 [Online]. Available: https://cims.nyu.edu/~regev/papers/lwesurvey.pdf. [Accessed: Oct. 14,

 2023].

 [4] O. Regev, "On Lattices, Learning with Errors, Random Linear Codes, and Cryptography," in

 IACR Cryptology ePrint Archive, 2009. [Online]. Available:

 https://cims.nyu.edu/~regev/papers/qcrypto.pdf. [Accessed: Oct. 14, 2023].

 [5] C. Gentry, "Fully homomorphic encryption using ideal lattices," in Proceedings of the

 forty-first annual ACM symposium on Theory of computing , pp. 169-178, 2009.

 [6] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption

 over the integers,” in IACR Cryptology ePrint Archive , p. 616, 2009.

 [7] C. Gentry, S. Halevi, and N. P. Smart, "Better bootstrapping in fully homomorphic

 encryption," in Proceedings of Public Key Cryptography , pp. 1–16, 2012.

 [8] C. Gentry, S. Halevi, and N. P. Smart, "Fully homomorphic encryption with polylog

 overhead," in Proceedings of EUROCRYPT , pp. 465–482, 2012.

 [9] C. Gentry, A. Sahai, and B. Waters, "Homomorphic encryption from learning with errors:

 Conceptually-simpler, asymptotically-faster, attribute-based," in Crypto’13 , 2013.

 58

 [10] Z. Brakerski and V. Vaikuntanathan, "Efficient fully homomorphic encryption from

 (standard) LWE," in 2011 IEEE 52nd Annual Symposium on Foundations of Computer

 Science , pp. 97-106, 2011.

 [11] J. Alperin-Sheriff and C. Peikert, "Faster bootstrapping with polynomial error," in Annual

 Cryptology Conference , Springer, pp. 297-314, 2013.

 [12] L. Ducas and D. Micciancio, "FHEW: Bootstrapping Homomorphic Encryption in Less

 Than a Second," in Advances in Cryptology -- EUROCRYPT 2015 , E. Oswald and M.

 Fischlin, Eds., vol. 9056, Lecture Notes in Computer Science. Berlin, 2015.

 https://doi.org/10.1007/978-3-662-46800-5_24

 [13] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, "TFHE: Fast Fully Homomorphic

 Encryption over the Torus," GitHub. [Online]. Available: https://github.com/tfhe/tfhe.

 [Accessed: Oct. 14, 2023].

 [14] V. Lyubashevsky, C. Peikert, and O. Regev, "On Ideal Lattices and Learning with Errors

 over Rings," in Advances in Cryptology – EUROCRYPT 2010 , H. Gilbert, Eds., Springer,

 2010, vol. 6110, doi: 10.1007/978-3-642-13190-5_1.

 [15] C. Peikert, "Public-key cryptosystems from the worst-case shortest vector problem," in

 Proceedings of the 41st ACM Symposium on Theory of Computing (STOC) , 2009, pp.

 333-342.

 [16] S. Goldwasser, S. Micali, “Probabilistic encryption & how to play mental poker keeping

 secret all partial information,” in P roceedings of the Fourteenth Annual ACM Symposium on

 Theory of Computing, pp. 365–377, 1982.

 [17] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on Ciphertexts,” in

 Theory of Cryptography , pp. 325–341, 2005.

 59

 [18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, "Faster fully homomorphic

 encryption: Bootstrapping in less than 0.1 seconds," in International Conference on the

 Theory and Application of Cryptology and Information Security , Springer, pp. 3-33, 2016.

 [19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, "Faster packed homomorphic

 operations and efficient circuit bootstrapping for TFHE," in International Conference on the

 Theory and Application of Cryptology and Information Security , Springer, Cham, pp.

 377-408, 2017.

 [20] J. H. Cheon and D. Stehlé, "Fully homomorphic encryption over the integers revisited," in

 Advances in Cryptology–EUROCRYPT 2015 . Springer. 2015, pp. 513–536.

 [21] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, "A homomorphic LWE based

 e-voting scheme," in Post-Quantum Cryptography . Springer. 2016, pp. 245–265.

 [22] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, "(Leveled) fully homomorphic encryption

 without bootstrapping," in ITCS , 2012, pp. 309–325.

 [23] F. Benhamouda, T. Lepoint, C. Mathieu, and H. Zhou, "Optimization of bootstrapping in

 circuits," in ACM-SIAM , 2017, pp. 2423–2433.

 [24] Z. Brakerski and R. Perlman, "Lattice-based fully dynamic multi-key FHE with short

 ciphertexts," in Advances in Cryptology - CRYPTO 2016 - 36th Annual International

 Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I.

 2016, pp. 190–213.

 [25] S. Halevi and V. Shoup, "HElib," GitHub. [Online]. Available:

 https://github.com/homenc/HElib. [Accessed: Oct. 14, 2023].

 [26] Microsoft Research, "Microsoft SEAL," GitHub. [Online]. Available:

 https://github.com/microsoft/SEAL. [Accessed: Oct. 14, 2023].

 60

 [27] OpenFHE, "OpenFHE - Open-Source Fully Homomorphic Encryption Library," GitHub.

 [Online]. Available: https://github.com/openfheorg/openfhe-development. [Accessed: Oct.

 14, 2023].

 [28] Zama, "What is Concrete?" Zama.ai, Oct. 12, 2023. [Online]. Available:

 https://docs.zama.ai/concrete. [Accessed: Oct. 14, 2023].

 [29] F. Michel, J. Wilson, and E. Cottle, "Max, min, and sort functions using Programmable

 Bootstrapping in Concrete FHE," Optalysys, Mar. 24, 2022. [Online]. Available:

 https://medium.com/optalysys/max-min-and-sort-functions-using-programmable-bootstrapp

 ing-in-concrete-fhe-ac4d9378f17d. [Accessed: Oct. 14, 2023].

 [30] Zama Team, "Introducing the Concrete Framework," Zama, July 7, 2022. [Online].

 Available: https://www.zama.ai/post/introducing-the-concrete-framework. [Accessed: Oct.

 10, 2023].

 61

 Appendices

 Appendix A: System Setting, Build, and Compilation

 This code was built, compiled, and run on a 2020 M1 MacBook Pro with an Apple M1 chip and
 8GB memory. The code was built using the command cargo build --release
 --target x86_64-apple-darwin and run with the command cargo run
 --release --target x86_64-apple-darwin

 Appendix B: Cargo.toml

 [package]
 name = "homomorphic_min_max"
 version = "0.1.0"
 edition = "2021"

 [dependencies]
 concrete = "0.1.11"
 bincode = "1.3.3"
 rand = "0.8"
 concrete-csprng = "0.3.0"
 serde = { version = "1.0", features = ["derive"] }
 concrete-core = "^1.0.2"
 float-cmp = "0.8.0"
 rug = "1.10.0"

 Appendix C: main.rs

 use homomorphic_min_max ::*;
 use std :: io ;
 use std :: fs ;
 mod create_bid ;
 use std :: fs :: File ;
 use std :: io :: BufReader ;
 //use std::io::Read;
 use bincode ;
 use float_cmp :: approx_eq ;
 use std :: time :: Instant ;

 // Parts of main() are borrowed from [29]
 fn main () -> Result <(), Box < dyn std :: error :: Error >> {

 use crate :: create_bid :: public_bid ;

 // START BORROWED CODE [29]

 let sk_rlwe = RLWESecretKey :: new (& RLWE128_1024_1);
 let sk_in = LWESecretKey :: new (& LWE128_1024);
 let sk_out = sk_rlwe . to_lwe_secret_key ();
 let encoder : Encoder = Encoder :: new (0.0 , 30.0 , 6 , 2)?;

 // key switching key
 // Set timer
 let start_time_ksk = Instant :: now ();
 let ksk = LWEKSK :: new (& sk_out , & sk_in , 4 , 6);
 let end_time_ksk = Instant :: now ();
 let elapsed_time_ksk = end_time_ksk . duration_since (start_time_ksk);
 println! ("Elapsed time KSK: {} ms" , elapsed_time_ksk . as_millis ());

 62

 // bootstrapping key
 // Set timer
 let start_time_bsk = Instant :: now ();
 let bsk = LWEBSK :: new (& sk_in , & sk_rlwe , 4 , 6);
 let end_time_bsk = Instant :: now ();
 let elapsed_time_bsk = end_time_bsk . duration_since (start_time_bsk);
 println! ("Elapsed time BSK: {} ms" , elapsed_time_bsk . as_millis ());

 // END BORROWED CODE [29]

 // Create empty ciphers vector
 let mut ciphers : Vec < LWE > = Vec :: new ();

 // Initialize number of bids to 0
 let mut num_bids : usize = 0 ;

 // Ask for the nuber of bids
 println! ("Enter the number of bidders: ");
 let mut input_line = String :: new ();
 io :: stdin ()
 . read_line (& mut input_line)
 . expect ("Failed to read line");
 let num_bids_i32 : i32 = input_line . trim (). parse (). expect ("Input not an

 integer");

 if num_bids_i32 >= 0 {
 num_bids = num_bids_i32 as usize ;
 } else {
 // Handle the case where the index is negative
 eprintln! ("Negative index is not allowed.");
 }

 // CREATE THE BID ARRAY
 let file_path = "bid.bin" ;

 // Check if file exists
 if fs :: metadata (file_path). is_ok () {
 // If file exists, delete it
 if let Err (e) = fs :: remove_file (file_path) {

 eprintln! ("Failed to delete {} : {} " , file_path , e);
 }
 }

 // CALL public_bid() one time for each bid
 for _b in 0 .. num_bids {
 let _ = public_bid (& sk_in , & encoder);
 }

 println! ("Done collecting bids: ");

 //READ THE ENCRYPTED MESSAGE FROM CREAT_BID
 let file_path = "bid.bin" ;

 // Try to open the file
 let file = File :: open (file_path)?;

 // Deserialize the content
 let mut bid_file = BufReader :: new (file);
 ciphers = bincode :: deserialize_from (& mut bid_file)?;

 // Call max array
 // Set timer

 63

 let start_time_max_array = Instant :: now ();

 let max_array = identify_max_bids (& ciphers , & ksk , & bsk , & encoder , & sk_in)?;

 let end_time_max_array = Instant :: now ();
 let elapsed_time_max_array =

 end_time_max_array . duration_since (start_time_max_array);
 println! ("Elapsed time Max Array: {} ms" , elapsed_time_max_array . as_millis ());

 // Calculate the Winning Bid Value, and who made that bid

 // Format the bid
 let max_bid_value = (max_array [0]/ 10.0). floor () as f64 ;
 let mut max_bid_array = max_array . clone ();
 // For all values in max_bid_array
 for i in 0 .. max_bid_array . len () {
 // Subtract the bid value
 max_bid_array [i]= max_bid_array [i]- max_bid_value * 10.0 ;
 }

 // Print the bid value
 println! ("Winning Bid Value: {} " , max_bid_value);
 // Print who made the bid
 println! ("Winning Bidder ID: {:?} " , max_bid_array);

 fn round_to (value : f64 , places : i32) -> f64 {
 let factor = 10.0_f64 . powi (places);
 (value * factor). round () / factor
 }

 let value = 1.23456789 ;
 let rounded_value = round_to (value , 1);
 assert! (approx_eq! (f64 , rounded_value , 1.2 , ulps = 2));

 let file_path = "bid.bin" ;
 if let Err (e) = fs :: remove_file (file_path) {
 eprintln! ("Failed to delete file {} : {} " , file_path , e);
 }

 Ok (())
 }

 Appendix D: creat_bid.rs

 use homomorphic_min_max ::*;
 use std :: io :: BufReader ;
 use std :: io ;
 use std :: fs ;
 use bincode ;

 pub fn public_bid (sk_in : & LWESecretKey , encoder : & Encoder) -> Result <(), Box < dyn
 std :: error :: Error >> {

 println! ("Enter your bid (0-2): ");
 let mut input_line = String :: new ();
 io :: stdin ()
 . read_line (& mut input_line)
 . expect ("Failed to read line");
 let bid_input : f64 = input_line . trim (). parse (). expect ("Input not an integer");

 println! ("Enter your ID number (1-9): ");
 let mut input_line = String :: new ();
 io :: stdin ()

 64

 . read_line (& mut input_line)
 . expect ("Failed to read line");
 let id_input : f64 = input_line . trim (). parse (). expect ("Input not an integer");

 //Combine the message nad the bid value.

 //The bids can be between 0-2, and the ID can be between 1-9
 let message : f64 = bid_input * 10.0 + id_input ;

 // encrypt the messages
 let cipher = match LWE :: encode_encrypt (sk_in , message , & encoder) {
 Ok (c) => c ,
 Err (e) => {

 println! ("An error occurred: {:?} " , e);
 return Err (Box :: new (e));
 }

 };

 let file_path = "bid.bin" ;

 // Check if file exists
 let data : Vec < LWE > = if fs :: metadata (file_path). is_ok () {
 // Try to read and deserialize the file
 let file = fs :: File :: open (file_path). expect ("Failed to open file");
 let mut buf_reader = BufReader :: new (file);
 match bincode :: deserialize_from (& mut buf_reader) {

 Ok (content) => content ,
 Err (_) => Vec :: new (), // If deserialization fails, initialize with an

 empty Vec
 }
 } else {
 Vec :: new () // If file doesn't exist, initialize with an empty Vec
 };

 // Add the new value to the array
 let new_value = cipher ;
 let mut updated_data : Vec < LWE >= data ;
 updated_data . push (new_value);

 let bid_file =
 std :: io :: BufWriter :: new (std :: fs :: File :: create (file_path). unwrap ());

 bincode :: serialize_into (bid_file , & updated_data). unwrap ();

 Ok (())
 }

 Appendix E: lib.rs

 pub use concrete ::*;

 // START BORROWED CODE [29]
 pub fn compute_max_min (cipher_1 : &LWE, cipher_2 : &LWE, ksk : &LWEKSK, bsk : &LWEBSK,
 encoder : & Encoder)

 -> Result <(LWE , LWE), CryptoAPIError >
 {

 // difference between the two ciphers
 let cipher_diff = cipher_2 . sub_with_padding (& cipher_1)?;

 // programmable bootstrap to check if the difference is positive
 let mut cipher_diff_pos = cipher_diff . bootstrap_with_function (bsk ,

 | x | if x >= 0 . { x } else
 { 0 . },

 65

 encoder)?;

 // change the key back to the original one
 cipher_diff_pos = cipher_diff_pos . keyswitch (ksk)?;

 // add the result to cipher_1
 let mut result_max = cipher_1 . add_with_padding (& cipher_diff_pos)?;

 // subtract the result from cipher_2
 let mut result_min = cipher_2 . sub_with_padding (& cipher_diff_pos)?;

 // reset the encoder
 result_max = result_max . bootstrap_with_function (bsk , | x | x , encoder)?;
 result_min = result_min . bootstrap_with_function (bsk , | x | x , encoder)?;
 result_max = result_max . keyswitch (ksk)?;
 result_min = result_min . keyswitch (ksk)?;

 Ok ((result_max , result_min))
 }
 // END BORROWED CODE [29]

 pub fn sort_for_max (ciphers : &[LWE], ksk : &LWEKSK, bsk : &LWEBSK, encoder : & Encoder ,
 round : usize)

 -> Result < Vec < LWE >, Box < dyn std :: error :: Error >>
 {

 // if ciphers contains less than two elements, just return it
 if ciphers . len () < 2 || round >= ciphers . len ()- 1 {
 return Ok (ciphers . to_vec ())
 }

 let mut results = ciphers . to_vec ();
 // Compare values from left to right, swapping always putting larger on right
 // Will not result in a fully sorted vector, but will end up with the larges

 value at the end
 for i in 0 ..(ciphers . len ()- 1 - round) {
 let (c_max , c_min) = compute_max_min (& results [i], & results [i + 1], ksk , bsk ,

 encoder)?;
 results [i] = c_min ;
 results [i + 1] = c_max ;
 }

 Ok (results)
 }

 pub fn identify_max_bids (ciphers : &[LWE], ksk : &LWEKSK, bsk : &LWEBSK, encoder :
 & Encoder , sk_in : & LWESecretKey)

 -> Result < Vec < f64 >, Box < dyn std :: error :: Error >>
 {

 // RUN THIS UNTIL ALL DUPLICATE BIDS HAVE BEEN DETERMINED
 // Create max array
 let mut round : usize = 0 ;
 let mut max_array : Vec < f64 > = Vec :: new ();

 // Copy ciphers into results array
 let mut results = ciphers . to_vec ();

 // To begin, call sort_for_max for the full array.
 // The largest value will end up in the right-most position
 results = sort_for_max (& results , ksk , bsk , encoder , round)?;

 // Decrypt that value and see what it is. Remove the voter ID

 66

 let temp_master_max_value =
 (& results [ciphers . len ()- 1]. decrypt_decode_round (sk_in)?). round ();

 // Add (with voter ID, to the max array)
 max_array . push (temp_master_max_value);
 let master_max_value = remove_voter_id (temp_master_max_value)?;

 // Encrypted master_max_value is the highest bid, with no voter ID
 let master_max_value_enc = LWE:: encode_encrypt (sk_in , master_max_value ,

 & encoder)?;

 let mut done = false ;
 round += 1 ;
 // Then, while not done:
 while ! done && round < ciphers . len (){
 // Call sort_for_max for the array, but only for the left-most n-1 values
 results = sort_for_max (& results , ksk , bsk , encoder , round)?;

 // Call compute_max_min on the right-most minus n value and the re-encrypted
 max without voter ID.

 let (temp_max , _temp_min) = compute_max_min (& results [ciphers . len ()- 1 - round],
 & master_max_value_enc , ksk , bsk , encoder)?;

 let temp_max_dec = temp_max . decrypt_decode_round (sk_in)?. round ();
 if temp_max_dec > master_max_value {

 // If the max of this round is greater than the master_max_value, add
 temp_max to the max_array. Continue the loop

 // Add temp_max to max_array
 max_array . push (temp_max_dec);
 round += 1 ;

 }
 else {

 // We're done
 done = true ;

 }
 }

 Ok (max_array)

 }

 pub fn remove_voter_id (val : f64)
 -> Result < f64 , Box < dyn std :: error :: Error >>

 {
 // println!("Value: {}", val);
 let mut val = val . clone ();
 val = (val / 10.0). floor ()* 10.0 ;
 // print val
 // println!("Value: {}", val);
 Ok (val)

 }

	Developing Blind-Bidding Auctions to Explore Fully Homomorphic Encryption
	Recommended Citation

	tmp.1702001442.pdf.2iCuZ

