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‭Abstract‬

‭In blind-bidding auctions, determining the winner requires processing bids without revealing‬
‭non-winning bid information. This study explores the use of Fully Homomorphic Encryption‬
‭(FHE) as a solution for this challenge. FHE permits operations like addition and multiplication‬
‭on encrypted data, enabling potentially arbitrary computations without exposing underlying‬
‭values. Hower, leveraging FHE for blind-bidding auctions is not straightforward. Classic sorting‬
‭algorithms are not directly applicable due to FHE’s constraints. This thesis presents our approach‬
‭to designing a blind-bidding auction using FHE, focusing specifically on determining the‬
‭maximum bid within the given computational boundaries.‬
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‭Chapter 1: Introduction‬

‭1.1 Explanation of Blind Bidding‬

‭Alice, Bob, and Charlie are taking part in a blind bidding auction. Each one of them aims‬

‭to make the highest bid. Each of them wants to keep their bid private. Each of them also wants to‬

‭be confident that the winning bid was selected by the auction owner, without favoritism. The‬

‭winning bid, and who made that bid, should be made public, but no other information should be‬

‭determinable. This includes the ordering of the non-winning bids.‬

‭1.‬ ‭Everyone should be able to see the value of the winning bid.‬

‭2.‬ ‭No information should be revealed about non-winning bids.‬

‭With the rise of digital auctions, ensuring privacy and fairness is important. In this study,‬

‭we use Fully Homomorphic Encryption (FHE) to set up a blind-bidding auction system.‬

‭1.2 Fully Homomorphic Encryption‬

‭A Homomorphic Encryption scheme is a scheme in which an operation can be performed‬

‭on encrypted data. Fully Homomorphic Encryption (FHE) schemes are homomorphic encryption‬

‭schemes that are both multiplicatively and additively homomorphic. Since all circuits can be‬

‭expressed using only multiplication and addition, a FHE scheme allows for arbitrary‬

‭computations to be performed on encrypted data.‬

‭Homomorphic Encryption was introduced in a theoretical sense by Rivest, Adleman, and‬

‭Dertouzos in 1978 under the name of Privacy Homomorphisms [1]. They illustrated the types of‬

‭privacy homomorphisms that might exist, though, as they acknowledged at that time, their‬

‭examples were weak cryptographically.‬

‭The first known implementation of a FHE Scheme was by Gentry [2] in 2008. Gentry’s‬

‭scheme was based on lattices, which support efficient evaluation for circuits of an arbitrary‬
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‭depth. The scheme was built on the hardness of lattices and learning with errors (LWE) [3, 4].‬

‭This first scheme introduced by Gentry involved an expensive bootstrapping step. Since then,‬

‭many advances have been made to reduce the cost of bootstrapping [5, 6, 7, 8, 9].‬

‭Over the years, various techniques and optimizations have been introduced, significantly‬

‭reducing bootstrapping time, from the original scheme introduced by Gentry in 2008 to the‬

‭notable reduction to 127 ms in 2017 [2, 10, 11, 12].‬

‭In July of 2022 the Zama Team released Concrete by Zama [30]. This open source‬

‭framework is built on a variant of TFHE [13], and introduces a programmable bootstrapping‬

‭technique, where a function can be evaluated during the bootstrapping process. The Concrete‬

‭library is the FHE library used in this project.‬

‭As we approach the quantum era, the importance of FHE is becoming more evident. FHE‬

‭is a candidate for post-quantum security. Quantum computing holds the potential to undermine‬

‭the security of many current encryption schemes, leaving currency security infrastructure‬

‭vulnerable. By continuing to advance FHE, we are paving a way for security in the quantum‬

‭future.‬

‭1.3 Objectives of the Study‬

‭In this work, we set up a blind-bidding auction system to explore the nuances of FHE. In‬

‭the auction, bidders are assigned a bidder ID. The bids in the auction encode the bid value as the‬

‭more significant bits, while the bidder ID is stored in the least significant bits. The auction takes‬

‭encrypted bids, and outputs the highest bid. In the case of multiple tie bids, all tie bids are output‬

‭by the system.‬

‭The blind-bidding auction system serves as a testbed to explore FHE. The primary‬

‭objective of this study is to work with FHE data and explore the intricacies of the encryption‬
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‭scheme and operation upon FHE data. We don’t expect that the blind-bidding auction will be‬

‭practical for actual implementation, but instead expect to develop further insight into the‬

‭intricacies of FHE.‬

‭The reason the blind-bidding auction serves as such an apt testbed for studying FHE is its‬

‭detailed requirement of needing to reveal a precise amount of information, but nothing more.‬

‭Additionally, because we don’t quite need to sort the full array of bids, but neither can we just‬

‭compute the maximum, considering the best way to accomplish this provides an interesting‬

‭problem to tackle in the context of FHE. We need to consider how we can reveal some unknown‬

‭number of tied maximum bids, without ever decrypting or revealing additional information about‬

‭non-winning bids.‬

‭In this study, we present a sorting system specifically tailored to blind-bidding auctions.‬

‭Unlike traditional sorting systems, our system is designed to prioritize confidentiality of bids.‬

‭The primary innovation lies in the ability to identify an undetermined number of highest bids,‬

‭without revealing any information about the non-winning bids.‬

‭The scope of this study is only small bids, ranging between 0-2, and for no more than 100‬

‭bids. All computations should be able to be done on an average personal computer. The‬

‭implementation and testing is specifically on a MacBook Pro with an Apple M1 chip and 8 GB‬

‭memory, and most tested computation times were under one hour of computation time.‬

‭1.4 Research Questions‬

‭In implementing a FHE scheme to set up the blind-bidding auction system, the following‬

‭are studied:‬

‭●‬ ‭The impact of initial parameters on the computation time and accuracy.‬

‭●‬ ‭How changes to the initial arrangement of a set of bids impacts the accuracy.‬
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‭●‬ ‭How accurately can we estimate computation times based on the number of bids and‬

‭potential tied winning values?‬

‭●‬ ‭For what sizes of input bids, if any, the blind-bidding auction is practical.‬

‭Based on our methodologies, we expect to gain a clearer understanding of how initial‬

‭parameters impact computation time and accuracy. We also expect to be able to accurately‬

‭estimate computation time based on the number of comparisons required in the auction.‬

‭We aim to not only expand technical knowledge surrounding encrypted data computation‬

‭but also shed light on practical challenges and considerations when working with‬

‭homomorphically encrypted data.‬
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‭Chapter 2:  Literature Review: Background of Homomorphic Encryption‬

‭2.1 Theoretical Introduction to Privacy Homomorphisms‬

‭In 1978, Rivest et al. [1] theoretically studied the concept of what they termed a “privacy‬

‭homomorphism.” They proposed a scenario: suppose a small loan company would like to‬

‭securely store their encrypted data on a time-sharing device. The company would also like to be‬

‭able to answer questions such as‬

‭●‬ ‭What is the average loan size?‬

‭●‬ ‭What is the expected income from loans in the next month?‬

‭●‬ ‭How many loans over some value‬‭v‬‭have been granted?‬

‭The small company can consider the following possibilities for answering these questions:‬

‭●‬ ‭Reject the idea of the time-shared service, and purchase and in-house system.‬

‭●‬ ‭Use the time-sharing service for storing encrypted files only, and have a system in-house‬

‭for decryption and computation.‬

‭●‬ ‭The time-sharing company can use modified hardware which allows brief decryption‬

‭within the CPU, which is not externally accessible.‬

‭●‬ ‭Use a special privacy homomorphism to encrypt data, so that the time-shared computer‬

‭can operate on the data without decrypting it first.‬

‭The first two options don’t allow efficient use of remote storage of data, if that data needs‬

‭to be computed on. The third option is workable, but requires a special cooperation of the‬

‭time-sharing company. The fourth option, however, would be ideal, but requires a‬‭privacy‬

‭homomorphism.‬‭Rivest et al. [1] propose that a privacy‬‭homomorphism could theoretically be a‬

‭solution.‬
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‭2.1.1 Mathematical Representation of a Homomorphism‬

‭A‬‭homomorphism‬‭is a mathematical concept which describes a structure-preserving map‬

‭between two algebraic structures. A homomorphism can translate one set of operations in one‬

‭structure to another set of operations in another structure, while maintaining the relationship‬

‭between elements. Let‬ ‭be sets with operations‬ ‭and‬ ‭. The function‬ ‭is a‬‭𝐴‬, ‭ ‬‭𝐶‬ ◦
‭𝐴‬

◦
‭𝐶‬

‭𝑓‬

‭homomorphism from‬ ‭to‬ ‭if for all‬ ‭,‬ ‭.‬‭𝐴‬ ‭𝐶‬ ‭𝑥‬, ‭𝑦‬ ∈ ‭𝐶‬ ‭𝑓‬(‭𝑥‬◦
‭𝐶‬
‭𝑦‬) = ‭𝑓‬(‭𝑥‬)◦

‭𝐴‬
‭𝑓‬(‭𝑦‬)

‭Suppose we want to perform some operation + on‬ ‭. Consider a decryption and‬‭𝑥‬‭'‬, ‭𝑦‬‭'‬ ∈ ‭𝐴‬

‭encryption pair of operations,‬ ‭and‬ ‭, respectively, and some function‬ϕ−‭1‬: ‭𝐴‬→ ‭𝐶‬ ϕ: ‭𝐶‬→ ‭𝐴‬ +
‭𝐶‬

‭such that‬ ‭is a homomorphism. That is, we want‬ϕ: ‭𝐶‬→ ‭𝐴‬

‭.‬ϕ(‭𝑥‬+
‭𝑐‬
‭ ‬‭𝑦‬) = ϕ(‭𝑥‬) + ϕ(‭𝑦‬) = ‭𝑥‬‭'‬ + ‭𝑦‬‭'‬

‭If we identify an encryption and decryption scheme that is homomorphic, it theoretically‬

‭allows for calculations on encrypted data. This means data sent to a third-party and operations‬

‭can be performed on it in its encrypted state.‬

‭There are some immediate restrictions to such a homomorphism that would prevent it‬

‭from being cryptographically secure. For example, Rivest et al. [1] point out some inherent‬

‭restrictions that limit the utility of privacy homomorphisms. For example, if there is a predicate‬

‭operation “‬ ‭” which allows for total order of arbitrary constants, there is no secure privacy‬≤

‭homomorphism from‬ ‭to‬ ‭.‬‭𝐶‬ ‭𝐴‬

‭If there is a predicate operation such as “‬ ‭”, any encryption‬ ‭can easily be decoded by‬≤ ‭𝑑‬
‭𝑖‬

‭systematically comparing encryptions of known values to the encryption of‬ ‭, to find where‬‭𝑑‬
‭𝑖‬

‭𝑑‬
‭𝑖‬

‭fits into the sequence. That is a malicious user can decode‬ ‭by computing‬ ‭,‬ϕ−‭1‬(‭𝑑‬
‭𝑖‬
) ϕ−‭1‬(‭1‬) = ‭1'‬
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‭,‬ ‭, and so on, until finding a‬ ‭such that‬ϕ−‭1‬(‭2‬) = ‭1'‬ + ‭1'‬ ϕ−‭1‬(‭4‬) = ϕ−‭1‬(‭2‬) + ϕ−‭1‬(‭2‬) ‭𝑘‬

‭. Using this strategy‬ ‭can be computed exactly [1].‬ϕ−‭1‬(‭2‬‭𝑘‬) ≥ ϕ−‭1‬(‭𝑑‬
‭𝑖‬
) ‭𝑑‬

‭𝑖‬

‭2.1.2. Example of a Theoretical Privacy Homomorphism‬

‭Rivest et al. [1] give an example to illustrate that such privacy homomorphisms might‬

‭exist in theory (though they acknowledged that their examples were weak cryptographically)‬

‭Consider‬ ‭, the system of integers modulo‬ ‭with the operations‬‭𝐴‬ =< ‭𝑍‬
‭𝑝‬−‭1‬

; ‭ ‬+
‭𝑝‬−‭1‬

, −
‭𝑝‬−‭1‬

> ‭𝑝‬ − ‭1‬

‭of addition and subtraction, where‬ ‭is a prime number. We may choose‬ ‭, the‬‭𝑝‬ ‭𝐶‬ =< ‭𝑍‬
‭𝑛‬
; ×

‭𝑛‬
; ÷

‭𝑛‬
>

‭integers modulo‬ ‭where‬ ‭, the product and‬ ‭and a large prime‬ ‭. Let‬ ‭be a generator‬‭𝑛‬ ‭𝑛‬ = ‭𝑝𝑞‬ ‭𝑝‬ ‭𝑞‬ ‭𝑔‬

‭modulo‬ ‭. Then we choose‬‭𝑝‬

ϕ−‭1‬(‭𝑥‬) ≡ ‭𝑔‬‭𝑥‬(‭𝑚𝑜𝑑‬‭ ‬‭𝑛‬)

‭and the decoding function is the inverse “mod(p) logarithm, base g” function. By laws of‬

‭exponents,‬ ‭is a homomorphism. If‬ ‭is difficult to factor (both‬ ‭and‬ ‭are large) and the prime‬ϕ ‭𝑛‬ ‭𝑝‬ ‭𝑞‬

‭is such that logarithms modulo‬ ‭can be efficiently computed, then the computer system can‬‭𝑝‬ ‭𝑝‬

‭give both‬ ‭and‬ ‭without fear of compromising the security of the data.‬‭𝑔‬ ‭𝑛‬

‭While this example, and the others given by Rivest et al. [1] aren’t necessarily strong‬

‭cryptographically, they illustrate that‬‭privacy homomorphisms‬‭,‬‭which have turned into what we‬

‭now call‬‭homomorphic encryption‬‭, are possible in theory.‬‭This led to a search for secure,‬

‭homomorphic encryption schemes.‬

‭2.2 Learning with Errors‬

‭The Homomorphic Encryption schemes that were to come would be built on the‬

‭mathematics and security of Learning with Errors (LWE). The LWE problem was introduced by‬
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‭Oded Regev in 2005 [3], [4], and later extended to Rings by Lyubashevesky, Peikert, and Regev‬

‭[14].‬

‭The security of LWE is based on the hardness of worst-case problems on ideal lattices.‬

‭This means that if there is an efficient algorithm to solve the average LWE problem, there is also‬

‭an efficient algorithm to solve the worst-case problem on ideal lattices [3]. Since the hardness of‬

‭the ideal lattice problem is well documented [4, 15], this gives a strong indication of the hardness‬

‭of the LWE problem.‬

‭We discuss the mathematics of LWE now, and then later introduce the FHE schemes built‬

‭with LWE.‬

‭2.2.1 Mathematical Basis of LWE‬

‭LWE is based on a system of linear equations, with an error introduced to prevent the‬

‭system prom being truly uniform.‬

‭Regev presents the cryptosystem parameterized by integers‬ ‭(the security parameter),‬‭𝑛‬ ‭𝑚‬

‭(number of equations),‬ ‭(modulus), and a real‬ ‭(noise parameter). A choice that‬‭𝑞‬ ‭𝛼‬ > ‭0‬

‭guarantees both security and correctness [3] is as follows. Choose‬ ‭to be a prime between‬‭𝑞‬ ‭𝑛‬‭2‬

‭and‬ ‭,‬ ‭, and‬ ‭. Below is a description of the scheme. All‬‭2‬‭𝑛‬‭2‬

‭additions are performed modulo‬ ‭.‬‭𝑞‬

‭Private Key:‬‭The private key is a vector‬ ‭chosen‬‭uniformly from‬ ‭.‬

‭Public Key:‬‭The public key consists of‬ ‭samples‬ ‭form the LWE distribution with‬‭𝑚‬

‭secret‬ ‭, modulus‬ ‭, and error parameter‬ ‭.‬‭𝑞‬ ‭𝛼‬



‭17‬

‭Encryption:‬‭For each bit of the message, do the following. Choose a random set‬ ‭uniformly‬‭𝑆‬

‭among all‬ ‭subsets of‬ ‭. The encryption is‬ ‭if the bit is 0 and‬‭2‬‭𝑚‬ [‭𝑚‬]

‭if the bit is 1.‬

‭Decryption:‬‭The decryption of a pair‬ ‭is 0 if‬ ‭is closer to 0 than to‬ ‭modulo‬

‭and 1 otherwise.‬‭𝑞‬

‭2.2.2 Example of a Simple LWE System of Linear Equations‬

‭We now provide an example to illustrate the mathematics above.‬

‭Let‬ ‭,‬ ‭,‬ ‭,‬ ‭. Using a‬‭𝑛‬ = ‭5‬ ‭5‬‭2‬ ≤ ‭𝑞‬ = ‭29‬ ≤ ‭50‬

‭uniform distribution from‬ ‭, we use the private key‬ ‭.‬

‭We generate a random set of 8 samples from the LWE distribution with secret key‬ ‭,‬

‭modulus‬ ‭, and add the error parameter‬ ‭. We end up with the following in the Public Key‬‭𝑞‬ = ‭29‬ ‭𝛼‬

‭set. Note that we have separated the error for the sake of clarity with the example.‬

‭24‬‭𝑠‬
‭0‬

+ ‭22‬‭𝑠‬
‭1‬

+ ‭1‬‭𝑠‬
‭2‬

+ ‭2‬‭𝑠‬
‭3‬

+ ‭11‬‭𝑠‬
‭4‬

= ‭14‬ + ‭1‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭11‬‭𝑠‬
‭0‬

+ ‭15‬‭𝑠‬
‭1‬

+ ‭5‬‭𝑠‬
‭2‬

+ ‭18‬‭𝑠‬
‭3‬

+ ‭10‬‭𝑠‬
‭4‬

= ‭14‬ + ‭0‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭11‬‭𝑠‬
‭0‬

+ ‭20‬‭𝑠‬
‭1‬

+ ‭9‬‭𝑠‬
‭2‬

+ ‭25‬‭𝑠‬
‭3‬

+ ‭8‬‭𝑠‬
‭4‬

= ‭17‬ + ‭2‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭22‬‭𝑠‬
‭0‬

+ ‭1‬‭𝑠‬
‭1‬

+ ‭23‬‭𝑠‬
‭2‬

+ ‭3‬‭𝑠‬
‭3‬

+ ‭23‬‭𝑠‬
‭4‬

= ‭20‬ + ‭0‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭17‬‭𝑠‬
‭0‬

+ ‭22‬‭𝑠‬
‭1‬

+ ‭10‬‭𝑠‬
‭2‬

+ ‭1‬‭𝑠‬
‭3‬

+ ‭1‬‭𝑠‬
‭4‬

= ‭25‬ + ‭0‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭6‬‭𝑠‬
‭0‬

+ ‭20‬‭𝑠‬
‭1‬

+ ‭14‬‭𝑠‬
‭2‬

+ ‭0‬‭𝑠‬
‭3‬

+ ‭17‬‭𝑠‬
‭4‬

= ‭27‬ + ‭0‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭13‬‭𝑠‬
‭0‬

+ ‭12‬‭𝑠‬
‭1‬

+ ‭7‬‭𝑠‬
‭2‬

+ ‭13‬‭𝑠‬
‭3‬

+ ‭10‬‭𝑠‬
‭4‬

= ‭20‬ + ‭2‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭17‬‭𝑠‬
‭0‬

+ ‭19‬‭𝑠‬
‭1‬

+ ‭12‬‭𝑠‬
‭2‬

+ ‭3‬‭𝑠‬
‭3‬

+ ‭20‬‭𝑠‬
‭4‬

= ‭11‬ + ‭1‬‭ ‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)
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‭Encryption: For each bit we wish to encrypt, choose a random subset, in this case the‬

‭elements 0, 1, 2, 3, 6. Add these equations together modulo 29. Note that without errors, the right‬

‭hand side is 27. The added error of 5 results in the right hand side being 3.‬

‭23‬‭𝑠‬
‭0‬

+ ‭12‬‭𝑠‬
‭1‬

+ ‭16‬‭𝑠‬
‭2‬

+ ‭3‬ + ‭4‬‭𝑠‬
‭4‬

= ‭3‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭If we wish to send an encrypted 0 bit, we send this equation as-is. If we wish to send an‬

‭encrypted 1 bit, we need to add‬ ‭, and so should instead‬‭send‬

‭23‬‭𝑠‬
‭0‬

+ ‭12‬‭𝑠‬
‭1‬

+ ‭16‬‭𝑠‬
‭2‬

+ ‭3‬ + ‭4‬‭𝑠‬
‭4‬

= ‭17‬‭ ‬(‭𝑚𝑜𝑑‬‭ ‬‭29‬)

‭Decryption: The decryption of a pair‬ ‭is 0 if‬ ‭is‬‭closer to 0 than‬ ‭.‬

‭In the first equation,‬ ‭. This is closer to 0 than‬‭to 14, so this bit‬

‭would decrypt as 0.‬

‭In the case of the second equation,‬ ‭. This is closer‬‭to 14 than‬

‭to 0, so decrypts as a 1.‬

‭The FHE schemes to come were built on the mathematics and the hardness assumptions‬

‭of the LWE problem and its variations.‬

‭2.3 Somewhat Homomorphic Encryption‬

‭Following the introduction of the idea, homomorphic encryption changed from a‬

‭theoretical idea to implemented schemes. The first schemes developed were Somewhat‬

‭Homomorphic Encryption (SHE) schemes, meaning they were homomorphic on addition or‬

‭homomorphic on multiplication, but not on both, or, they were homomorphic for some number‬

‭of operations, but eventually contained too much noise decrypt accurately.‬

‭The first semantically secure homomorphic encryption scheme was proposed by‬

‭Goldwasser and Micali [16] in 1982. Their scheme is additively homomorphic. In 2006, Boneh,‬

‭Goh, and Nissim [17] introduced a homomorphic encryption scheme that was homomorphic‬
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‭under addition, along with‬‭one‬‭multiplication operation. This allows for evaluation of 2-DNF‬

‭circuits (that is, two or-circuits combined by one and circuit). Their construction allows for‬

‭unlimited additions, one multiplication, followed by unlimited additions.‬

‭The scheme relies on the‬‭subgroup decisions problems‬‭,‬‭on a new hardness problem put‬

‭forward by Bohen et al., in which they prove that given an element of a group of composite order‬

‭, it is infeasible to decide whether it belongs a subgroup of order‬ ‭.‬‭𝑛‬ = ‭𝑞‬
‭1‬
‭𝑞‬

‭2‬
‭𝑞‬

‭1‬

‭The scheme built by Boneh et al. [17] takes polynomial time in the size of the message‬

‭space‬ ‭, so can only be used to encrypt short messages.‬‭𝑇‬

‭2.4 Gentry’s Fully Homomorphic Encryption Scheme‬

‭In 2008, Gentry pioneered the first Fully Homomorphic Encryption (FHE) Scheme. This‬

‭means that the scheme allowed for unbounded use of both multiplication and addition, meaning‬

‭that any function could technically be computed.‬

‭The scheme built by Gentry is broken down into three steps: a general “bootstrapping”‬

‭result, an “initial construction” using ideal lattices, and a technique to “squash the decryption‬

‭circuit” to permit bootstrapping.‬

‭In Gentry’s scheme, a ciphertext has the form‬ ‭where‬ ‭is the ideal lattice and‬ ‭is‬‭𝑣‬ + ‭𝑥‬ ‭𝑣‬ ‭𝑥‬

‭an “error” or “offset” vector. The ideal lattice scheme follows from the LWE, as they are‬

‭isomorphic [3]. On its own, the scheme is only homomorphic for shallow circuits due to the‬

‭linear growth of the “error” vector with addition and its exponential growth with multiplication.‬

‭As explained in the LWE section above, the purpose for the “error” vector, or noise, in FHE‬

‭schemes is because the noise is what guarantees the security of the fresh encryption. To address‬

‭the issue of noise growth, a bootstrapping step is necessary [5].‬
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‭2.4.1. Bootstrapping‬

‭The idea behind the bootstrapping step is, after some number of operations, to reduce the‬

‭amount of noise back to the “original” amount to allow for larger circuits. If the noise grows too‬

‭large, the ciphertext will reach a point where it no longer is able to be decrypted. When the limit‬

‭is being reached, a bootstrapping step can be performed to reduce the amount of noise.‬

‭A scheme is termed “bootstrappable” if it can homomorphically evaluate its own decryption‬

‭circuit and still handle at least one more operation. That is, the bootstrapping scheme‬

‭homomorphically decrypts the ciphertext. In normal decryption, the secret key is used to output a‬

‭plaintext. With bootstrapping, the encrypted secret key is used to output a new encryption, and‬

‭this new encryption has a smaller “error” vector (or less noise) that the original ciphertext.‬

‭The reason that the bootstrapping operation must perform an additional non-trivial‬

‭operation is because otherwise, the eliminated noise will be canceled out when performing the‬

‭subsequent operation.‬

‭The fact that Gentry’s scheme is bootstrappable is what made it a FHE scheme.‬

‭Unlimited multiplication and addition were theoretically possible. However, the bootstrapping‬

‭step is expensive, so while Gentry’s scheme is quite practical for shallow circuits, due to the‬

‭computational overhead of the bootstrapping operation, Gentry’s scheme becomes less practical‬

‭for applications requiring numerous multiplications [5].‬

‭2.5 Reductions to the Bootstrapping Cost‬

‭The central technique of Gentry’s scheme was‬‭Bootstrapping‬‭.‬‭This is what allowed‬

‭Gentry to make the breakthrough scheme from somewhat to fully homomorphic encryption.‬

‭With the introduction of bootstrapping, Gentry found a way to address the growth of noise. The‬

‭bootstrapping allowed for homomorphically evaluation of the SHE’s decrypting function on the‬
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‭ciphertext with too much noise. This reset the noise, thus allowing for further computation [11].‬

‭With Gentry’s technique, there were no longer any theoretical limitations to what computations‬

‭can be performed on the ciphertext. However, the time requirements were the bottleneck‬

‭preventing the scheme from being feasible in practice [11].‬

‭Because of this, reductions to bootstrapping costs have been one of the major areas of‬

‭research in FHE. [5, 6, 10, 11, 19, 20]. Some of these advancements are described below.‬

‭2.5.1 Reducing Bootstrapping Costs with Modulus Switching‬

‭Works such as Gentry’s addressed the issue of noise by using the bootstrapping step to‬

‭“squash” the noise [5]. In 2012, Brakerski and Vaikuntanthan introduced a novel technique,‬

‭dimension-modulus reduction‬‭. This method reduced the‬‭decryption complexity by shortening‬

‭ciphertexts without necessitating additional assumptions.‬

‭While Gentry’s construction for SHE was rooted in the complexity of problems on ideal‬

‭lattices, Brakerski and Vaikuntathan constructed a SHE whose security relied on the hardness of‬

‭arbitrary lattices, not just ideal lattices [10]. This advancement was built on the LWE problem.‬

‭Encryptions were represented by linear functions with noise. Though addition was‬

‭straightforward, multiplication rapidly expanded the size of ciphertexts [10].‬

‭To counteract this, Brakerski and Vaikuntanthan introduced “‬‭re-linearization‬‭.” This‬

‭technique allowed multiplied ciphertexts to be expressed with a size roughly the same as the‬

‭initial ciphertexts. The process entailed creating a chain of encrypted linear and quadratic terms,‬

‭which, upon re-linearization, generated a function representing the multiplication of the initial‬

‭two ciphertexts. This re-linearization process used a chain of secret keys. With repeated‬

‭multiplication, noise growth necessitated a bootstrapping technique to convert the scheme from‬

‭“somewhat” to “fully” homomorphic [10].‬
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‭To achieve full homomorphism, Gentry’s bootstrapping depended on the hardness of the‬

‭sparse subset-sum problem. The purpose of the bootstrapping step was to reduce the noise‬

‭introduced during addition and multiplication. Gentry’s scheme used “squashing” to reduce‬

‭decryption complexity, but at the cost of introducing the sparse subset problem assumption. In‬

‭contrast, Brakerski and Vaikuntathan’s scheme had similar homomorphic capacity, but a more‬

‭compact decryption circuit. Crucially, their method did not introduce any additional assumptions,‬

‭relying solely on LWE [10].‬

‭They did so by using‬‭dimension-modulus reduction‬‭.‬ ‭The core idea was converting a‬

‭ciphertext with parameters (‬‭n‬‭, log‬‭q‬‭) to another representing‬‭the identical message but with‬

‭altered parameters (‬‭k‬‭, log‬‭p‬‭), without compromising‬‭the message's integrity. This transformation,‬

‭akin to the re-linearization process, used a series of public parameters for ciphertext conversion.‬

‭This new bootstrapping technique relied only on the LWE assumption, improving the scheme’s‬

‭efficiency [10].‬

‭2.5.2 Bootstrapping in Quasilinear Time‬

‭In 2013, Alperin-Sheriff and Peikert [11] were able to find a faster bootstrapping method‬

‭with polynomial error. Their bootstrapping algorithm provided methods that were in quasilinear‬

‭time for both “packed” and “non-packed” ciphertexts. The main technique that they used was to‬

‭enhance the “ring-switching” procedure of Gentry et al. In their algorithm, they enhance the‬

‭“ring-switching” procedure to support switching between two rings where either is a subring of‬

‭the other. This allowed them to provide more efficient homomorphic methods for evaluating‬

‭many linear transformations, including the decryption function [11].‬

‭The algorithm by Alperin-Sheriff and Peikert was algorithmically simpler than previous‬

‭methods. Their method for non-packed ciphertexts used only cyclotomic rings having‬
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‭power-of-two index, which allow for a fast implementation [11]. For the packed ciphertext‬

‭method, their procedure drew on high-level ideas from [7, 8], but the actual implementation was‬

‭different conceptually. It avoided permutation networks and permutations of plaintext slots, as‬

‭well as avoided relying on general-purpose compilers for evaluating homomorphic circuits, but‬

‭instead introduced new procedures for homomorphically mapping between encrypted texts and‬

‭plaintext slots. [11]‬

‭In addition to improving the time of the bootstrapping procedures, their method was‬

‭entirely algebraic and the full procedure could be described as elementary operations from the‬

‭native instruction set of the SHE scheme. This simplicity affected the concrete efficiency of the‬

‭bootstrapping procedure [11]. Their method also decoupled the algebraic structures of the SHE‬

‭plaintext ring versus the ring needed for bootstrapping [11].‬

‭2.5.4 TFHE: Fast Fully Homomorphic Encryption over the Torus‬

‭In 2015, Ducas and Micciancio [12] presented a very fast bootstrapping procedure, of‬

‭about .69 seconds, which was a big step towards practical FHE for arbitrary circuits. They began‬

‭by analyzing bootstrapping‬‭in vitro‬‭, or in the simplest possible setting: with two encrypted bits‬

‭and‬ ‭, they wanted to obtain the encrypted result‬ ‭in a form similar to the‬‭𝐸‬(‭𝑏‬
‭1‬
) ‭𝐸‬(‭𝑏‬

‭2‬
) ‭𝐸‬(‭𝑏‬

‭1‬
‭⊼‬‭𝑏‬

‭2‬
)

‭input bits. The encryption they used is a standard lattice encryption scheme, so‬ ‭are noisy‬‭𝐸‬(‭𝑏‬
‭𝑖‬
)

‭encryptions and the output ciphertext‬ ‭is bootstrapped to reduce its noise level. Their‬‭𝐸‬(‭𝑏‬
‭1‬
‭⊼‬‭𝑏‬

‭2‬
)

‭new bootstrapping method allowed for performing the computation in less than a second on‬

‭consumer grade personal computers [12].‬

‭Ducas and Micciancio achieve these results based on two main techniques. First, they‬

‭introduce a novel homomorphic NAND operation. With two encryptions‬ ‭and‬ ‭, one‬‭𝐸‬(‭𝑚‬
‭1‬
) ‭𝐸‬(‭𝑚‬

‭2‬
)
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‭can compute a noisier‬ ‭. Instead of working in modulo 2, they extend this to‬‭𝐸‬(‭𝑚‬
‭1‬

+ ‭𝑚‬
‭1‬
)

‭arithmetic modulo 4, to achieve a logical NAND operation. The outcome is that‬ ‭can‬‭𝐸‬(‭𝑚‬
‭1‬
‭⊼‬‭𝑚‬

‭1‬
)

‭be obtained with a simple transformation. This new homomorphic NAND operation introduces‬

‭less noise than previous techniques, simplifying the bootstrapping process [12].‬

‭Their second contribution is an enhancement of bootstrapping. Building off of the work‬

‭from [11], they use a homomorphic cryptosystem that encrypts integers mod‬‭q‬‭for efficient scalar‬

‭product calculation. They also introduce a ring variant to the method used by [11]. By directly‬

‭encoding cyclic groups and using the structure of lattices, they can represent cyclic group‬

‭elements with just one ciphertext [12].‬

‭In 2016, Chillotti, Gama, Georgieva, and Izabachène further improved the bootstrapping‬

‭procedure. Their FHE scheme involves using polynomials over the real torus, and combines the‬

‭Scale-Invariant-LWE problem of [20] or the LWE normal form of [21] with the General-LWE‬

‭problem of [22]. They call their scheme TLWE, and it is a unified representation of LWE‬

‭ciphertexts, which encode polynomials over the Torus [18]. Their scheme extends the work of [9,‬

‭23, 12], and the efficiency comes from combining TLWE and TGSW. This technique was also‬

‭used independently by [24].‬

‭Chillotti et al. expand on the previous work like this. A TGSW sample is essentially a‬

‭matrix whose individual rows are TLWE samples, and so the external product of TGSW times‬

‭TLWE is quicker than the internal product TGSW times TGSW used in previous work. This is‬

‭akin to comparing the speed of computing a matrix-vector product to a matrix-matrix product.‬

‭As a result, their bootstrapping procedure is 12 times faster than the previously most efficient‬

‭bootstrapping procedure [12], and runs at less than 0.052s [18].‬
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‭Chillotti et al. continued to develop their TFHE scheme. In 2017, they released a paper‬

‭that included techniques for packing several bits of information and using the compact‬

‭representations to either batch multiple or speed-up single operations. This helped to address one‬

‭of the drawbacks of FHE schemes, which is the huge expansion factor of ciphertexts to‬

‭plaintexts. For example, in some cases they reduced the expansion from where it was between‬

‭6400 in output and 384000 in input to an expansion of about 64. Using their packing technique,‬

‭and packing both vertically and horizontally, they were able to reduce bootstrapping to 137‬‭ms‬

‭[19].‬

‭Over the course of the years since Gentry first introduced his Fully Homomorphic‬

‭Encryption Scheme in 2008, there has been a lot of work done to reduce the bootstrapping‬

‭requirements. Many FHE implementations have been built, including HElib [25], Microsoft‬

‭SEAL[26], TFHE [13], and  OpenFHE [27] to name a few. Zama [28, 30] has developed a‬

‭framework that contains a TFHE Compiler to make the process of writing FHE programs easier‬

‭for developers. These advances have resulted in FHE schemes that can be implemented on‬

‭personal devices, and in the next section, implementing Concrete by Zama to build a‬

‭blind-bidding auction is discussed.‬
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‭Chapter 3: Blind-Bidding Auction‬

‭In a blind bidding auction, each participant in the auction wants to win with the highest‬

‭bid, but all bids should be kept private through the entire bidding process. The only bid that‬

‭should be revealed is the winning bid. All information about all other bids should remain private.‬

‭There may be multiple winning bids which are tied. In this case, all of these bids should be‬

‭revealed.‬

‭We now explain the blind-bidding auction we have developed. In this section, we outline‬

‭the system requirements, methods, and implementation of our blind-bidding auction.‬

‭3.1. System Requirements‬

‭The blind-bidding auction is designed with the following system requirements:‬

‭●‬ ‭Each bid contains two parts: The bid value and a bidder ID (for identifying the owner of‬

‭the winning bid).‬

‭●‬ ‭The maximum bid(s) are calculated. If there is more than one maximum, then all tied‬

‭maximums will be output. These maximum bids will be decrypted. Nothing else will be‬

‭decrypted. The decrypted values reveal both the bid values and the bidder IDs for these‬

‭bids.‬

‭●‬ ‭No information is learned about any other bids.‬

‭3.2. Methods‬

‭The methodology used is experimental research. We implement the bidding system under‬

‭various parameter settings and document the performance metrics such as computational time‬

‭and accuracy under each setting.‬
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‭We build the blind-bidding auction using Rust, using the Concrete Fully Homomorphic‬

‭Library by Zama. We use a function from Optalysys [29] for computing the maximum between‬

‭two encrypted values, which utilizes Concrete’s programmable bootstrapping.‬

‭3.2.1 Justification for Tool Selection‬

‭Concrete by Zama‬‭is a Rust-based, open source framework‬‭enabling developers to use‬

‭homomorphic encryption without needing to understand all of the cryptography. The Zama Team‬

‭released Concrete officially on July 7, 2022. Zama is a company specializing in‬

‭privacy-preserving technologies. Concrete addresses three of the major issues in FHE: too slow,‬

‭too hard to use, and too limited in functionality.‬

‭There are two main approaches to FHE. The “leveled” approach attempts to only do as‬

‭many computations as possible before noise overflows into the data. The “bootstrapped”‬

‭approach adds in a bootstrapping operation to reduce noise (but increase computation time).‬

‭Concrete implements a variant of TFHE [13] that supports both leveled and fast bootstrapped‬

‭operations, as well as approximate or exact evaluation of arbitrary functions.‬

‭Concrete is the first framework to introduce programmable bootstrapping, a technique‬

‭where a univariate function can be computed for free during the bootstrapping operation.‬

‭However, this comes at the tradeoff of small precision, currently limited to 16 bits [28, 30].‬

‭3.3 Implementation and Challenges‬

‭In this section, we describe the implementation of the blind-bidding auction. One of the‬

‭challenges of FHE is that the complexity quickly increases as size increases. Because of this, the‬

‭focus of this study is on implementing the blind-bidding auction for small values, particularly‬

‭focusing on the needed logic for working with the encrypted data.‬
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‭While the auction serves as a testbed to better understand the complexity and nuances of‬

‭FHE, it is not intended to be a production-level implementation. The auction described below‬

‭does not work for sufficiently large values to make it practical, but does help reveal the many‬

‭challenges and nuances of FHE. Of particular interest in this section is the algorithm used to‬

‭compute the maximum bid(s), without revealing any information about any losing bids.‬

‭3.3.1 Data Input and Pre-Processing‬

‭Each bidder is assigned a bidder ID. Based on the number of bidders, a sufficient number‬

‭of the least significant bits will be reserved for storing the bidder ID. The remaining bits will‬

‭store the bid value.‬

‭For example, if there are 9 bidders, they will be assigned bidder IDs between 1–9‬

‭(nobody will be assigned 0). The right-most digit (base 10) will be used to store the bidder ID.‬

‭The remaining digits will be used to store the bid value. If the bidder with bidder ID 5 would like‬

‭to submit a bid of 76, their bid value in plaintext will be 765.‬

‭In a production implementation of the blind-bidding auction, implementation would need‬

‭to be added to allow for the sharing of the public key, and for individual bidders to securely‬

‭encrypt their bids via the public key. The focus of this study is on the feasibility of using FHE to‬

‭sort and output only the winning bid(s), after they are encrypted. So, for the sake of this study,‬

‭bids are all accepted and encrypted via the same program used for sorting the bids. In the next‬

‭section, we explore the implementation of the bidding logic.‬

‭3.3.2 Bidding Logic Implementation‬

‭When considering the most efficient way to calculate the winning bid, we need to‬

‭consider the constraints of FHE. We cannot use any logic such as directly comparing whether‬

‭for some encrypted‬ ‭. The process of testing for the maximum between two pairs‬ ‭and‬‭𝑎‬ < ‭𝑏‬ ‭𝑎‬, ‭𝑏‬ ‭𝑎‬



‭29‬

‭results in the values‬ ‭and‬ ‭, where we know, for example, that‬ ‭, but can’t determine‬‭𝑏‬ ‭𝑐‬ ‭𝑑‬ ‭𝑐‬ < ‭𝑑‬

‭whether‬ ‭and‬ ‭or‬ ‭and‬ ‭.‬‭𝑐‬ = ‭𝑎‬ ‭𝑑‬ = ‭𝑏‬ ‭𝑐‬ = ‭𝑏‬ ‭𝑑‬ = ‭𝑎‬

‭Due to the specific limitations of FHE, traditional algorithms for finding the maximum‬

‭values may not be directly applicable. Instead, we utilize a homomorphic‬

‭compute_max_min()‬‭function which we describe below.‬‭The‬‭compute_max_min()‬

‭function comes from a paper by Optalysys [29], a company that is developing a silicon-photonic‬

‭chip specialized to speed up FHE operations. Following this, we describe our method for finding‬

‭the maximum bids. A comprehensive analysis of this method's performance can be found in the‬

‭Performance Results‬‭section below.‬

‭3.3.3.1 Homomorphically computing the maximum and minimum of a pair‬

‭Finding the maximum values in the array of bids relies on the‬

‭compute_max_min()‬‭function. This function is from the‬‭implementation by Optalysys [29]. The‬

‭computation of the maximum and minimum values happen during a programmable bootstrap‬

‭operation. We first explain the simple algorithm of computing the maximum and minimum, and‬

‭then describe the implications of computing this algorithm in the context of homomorphic‬

‭encryption.‬

‭The algorithm's logic is simple. If you have two ciphertexts‬ ‭and‬ ‭, you can compute‬‭𝑐‬
‭1‬

‭𝑐‬
‭2‬

‭the maximum and the minimum as shown in Algorithm 1.‬

‭Algorithm 1‬

‭Computing the maximum and the minimum values given two encrypted ciphertexts‬

‭compute_max_min()‬

‭1 difference <- cipher2 - cipher1‬
‭2 if difference > 0‬
‭3‬ ‭differencePositive <- difference‬
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‭4 else‬
‭5‬ ‭differencePositive <- 0‬
‭6 end if‬
‭7 maximum <- cipher1 + differencePositive‬
‭8 minimum <- cipher2 - differencePositive‬

‭We present a numerical example to demonstrate this algorithm. First for the case of‬

‭cipher1>cipher2‬‭.‬

‭Let‬‭cipher1=5‬‭and‬‭cipher2=2‬‭. We now compute maximum‬‭and minimum based on‬

‭this algorithm. We compute‬‭difference‬‭as‬‭cipher2 -‬‭cipher1 = 2-5 = -3‬‭.‬

‭Because‬‭difference‬‭is not > 0, we set‬‭differencePositive‬‭to‬‭0‬‭. We then find‬

‭maximum‬‭and‬‭minimum‬‭by setting‬‭maximum=5+0=5‬‭and‬‭minimum=2-0=2‬‭.‬

‭Now let's do the same thing with the cipher values swapped, where‬‭cipher1=2‬‭and‬

‭cipher2=5‬‭. We compute‬‭difference‬‭as‬‭cipher2 - cipher1‬‭= 5-2 = 3‬‭. Because‬

‭difference > 0‬‭, we set‬‭differencePositive‬‭=‬‭difference‬‭= 3‬‭. We then find‬

‭maximum‬‭and‬‭minimum‬‭by setting‬‭maximum=2+3=0‬‭and‬‭minimum=5-3=2‬‭.‬

‭As you can see, the correct minimum and maximum values are returned in both the case‬

‭of‬‭cipher1>cipher2‬‭and‬‭cipher1<cipher2‬‭. Having seen‬‭the algorithm in action with a‬

‭numerical example, let’s describe the underlying reasons for setting it up in such a way.‬

‭The reason to set the algorithm up in this fashion is due to the homomorphic encryption‬

‭and the possibility for the programmable bootstrap step. We need to recall that at each step, when‬

‭everything is encrypted homomorphically, any operation result is also encrypted. In line 1 of‬

‭Algorithm 1, the difference that is computed between‬‭cipher2‬‭and‬‭cipher1‬‭is an encrypted‬

‭value. Thus, we can’t simply use logic at that point to return the maximum and minimum values.‬
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‭Instead, in the setup of this function, Optalysys utilized programmable bootstrap [29]. In‬

‭Concrete, there is a function‬‭bootstrap_with_function()‬‭. The function computes a‬

‭bootstrap and applies an arbitrary function to the LWE ciphertext. In addition to a bootstrapping‬

‭key,‬‭f,‬‭a function to apply, is given as an argument‬‭to‬‭bootstrap_with_function()‬‭. The‬

‭output‬‭bootstrap_with_function()‬‭is the encrypted‬‭evaluation of‬‭f‬ ‭[29].‬

‭It is of importance to us that we can compute a function within the bootstrapping‬

‭computation. First,‬‭cipher_diff‬‭, the difference between‬‭cipher1‬‭and‬‭cipher2‬‭is‬

‭computed. The function that we compute within the bootstrapping computation allows us to‬

‭check if‬ ‭cipher_diff‬ ‭. If it is, the function returns a new encryption of‬≥ ‭0‬

‭cipher_diff‬‭. If it is not, it returns an encryption‬‭of 0. Even though this is encrypted, we now‬

‭don’t need to know what the value of this returned value is, and can still apply it to our‬

‭algorithm, to compute the maximum and minimum.‬

‭As we describe our‬‭identify_max_bids()‬‭function in‬‭the next section, it is‬

‭important to recall that, while‬‭compute_max_min()‬‭returns an encryption of the maximum‬

‭and the minimum values, these two returned values are indecipherable from the input‬‭cipher1‬

‭and‬‭cipher2‬‭values. This inability to know whether‬‭the starting encryption‬‭cipher1‬‭or‬

‭cipher2‬‭is larger impacts the decisions made in implementing‬‭the‬

‭identify_max_bids()‬‭algorithm which we describe in‬‭the next section.‬

‭3.3.2.2 Finding the Maximum Values‬

‭We find the maximum values using a modified version of bubble sorting. In a bubble sort,‬

‭going from left to right, two values are compared to each other. If the value on the left is larger‬

‭than the one on the right, they are swapped. Then that current right value is compared to the‬
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‭value on its right. After one iteration through the array, the maximum value is moved in the‬

‭rightmost position.‬

‭If the goal is to use bubble sort to sort an array completely, the process would continue‬

‭until the 2nd largest value is in the second rightmost position, the 3rd largest value is in the third‬

‭rightmost position, and so on, until the array is fully sorted. In our case, we don’t necessarily‬

‭need to sort the full array, we only need to find the winning bid, or, the tied winning bids.‬

‭For the sake of explanation, let’s discuss a hypothetical set of bids, {21, 22, 13, 14}. In‬

‭this case, there are three bidders. Their IDs are 1, 2, 3, and 4. Bidders with ID’s 1 and 2 have bid‬

‭2, and bidders with ID’s 3 and 4 have bid 1.‬

‭After looping through the array fully the first time,  it ends up in the arrangement of {21,‬

‭13, 14, 22}. At this point the highest bid is guaranteed to be the rightmost position. If there are‬

‭tie bids (which there is in this case), then the value in the right most position is the tied bid with‬

‭the highest bidder ID.‬

‭Since we know that 22 is a winning bid (because the rightmost bid must be the highest),‬

‭we can decrypt it. However, we now need a way to determine if there are any tie bids.‬

‭Remember, we are working with encrypted data. We don’t know anything about which bids are‬

‭2s and which bids are 1s. The initial thought might be to just sort the array again for the n-1‬

‭elements, and check the second highest bid. However, we need to be careful–we don’t want to‬

‭learn any information about losing bids. If we do this second sort, and it turns out we only have‬

‭one high bid, then we’ll learn information that is confidential by decrypting the second largest‬

‭value.‬
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‭So, what we do is we reserve the bidder ID of 0 as a marker. We remove the bidder ID by‬

‭taking the last digit off of 22 and replacing it with 0, giving us 20. We encrypt this 20, and use it‬

‭as our marker for the maximum bid value.‬

‭We do the sort again on the array for the second largest bid. The result is the array {13,‬

‭14, 21}. Next, we use the‬‭compute_max_min()‬‭function,‬‭which returns the maximum of two‬

‭encrypted pairs, to compute the maximum of the current highest (21), and our marker value (20).‬

‭Since 21>20, when we decrypt the result we see 21. This means we’re not done. We need to do‬

‭another loop through the array to sort and check the next smallest value. This time, we are‬

‭calling‬‭compute_max_min()‬‭on 14 and 20. Since 20>14,‬‭we will get 20 when we decrypt the‬

‭maximum. At this point, we know we have found all maximum values, because whatever the‬

‭minimum value is, it is less than 20, and therefore not a winning bid.‬

‭As the winning bids are found (22, 21), they are added to an array of maximum bids. The‬

‭final output of this function is the array of the decrypted values of maximum values.‬

‭Algorithm 2:‬‭identify_max_bids()‬

‭Given a set of bids encrypted as ciphertexts, return an array with the winning bid(s)‬

‭Function identify_max_bids()‬
‭Round <- 0‬
‭MaxArray <- Empty List‬
‭Results <- Ciphers // Initialize Results as a copy of Ciphers‬
‭Results <- sort_for_max(Results, Round)‬
‭CurrentMasterMaxValue <- decrypt last value of Results‬
‭Push CurrentMasterMaxValue to MaxArray‬
‭MasterMaxValue <- remove_bidder_id(CurrentMasterMaxValue)‬
‭MasterMaxValueEnc <- encrypt(MasterMaxValue)‬
‭Done <- false‬

‭While not Done && Round < length(Ciphers) do‬
‭Results <- sort_for_max(Results, Round)‬
‭TempMaxDec <-‬

‭compute_max_min(Results[Length-Round-1],MasterMaxValueEnc)‬
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‭if TempMaxDec > MasterMaxValue then‬
‭Push TempMaxDec to MaxArray‬
‭Round += 1‬

‭else‬
‭Done=true‬

‭end if‬
‭end while‬
‭return MaxArray‬

‭End Function‬

‭Function sort_for_max(Results, Round)‬
‭if length(Ciphers) < 2 OR Round >= length(Ciphers) - 1‬

‭return Ciphers‬
‭end if‬
‭Results <- Ciphers // Initialize Results as a copy of Ciphers‬
‭for i from 0 to (length(Ciphers) - 2 - Round) do‬

‭(C_max, C_min) <- compute_max_min(Results[i],‬
‭Results[i+1], KSK, BSK, Encoder)‬

‭Results[i]   <- C_min‬
‭Results[i+1] <- C_max‬

‭end for‬
‭return Results‬

‭End Function‬

‭3.3.2.3 Computation Complexity of the‬‭identify_max_bids()‬‭Algorithm.‬

‭In this section we analyze the computational complexity of the‬

‭identify_max_bids()‬‭function, emphasizing its dependence‬‭on both the number of total‬

‭bids and the number of tied maximum bids.‬

‭The‬‭identify_max_bids()‬‭function has a computational complexity of‬ ‭. The‬‭𝑂‬(‭𝑛‬‭2‬)

‭total run time of the function is dependent on both the total length of the array, and the number of‬

‭tied winning bids. Because the‬‭compute_max_min()‬‭function‬‭is computationally heavy, we‬

‭care about how many times this function is called. Let‬ ‭be the total size of the array, and‬ ‭be the‬‭𝑛‬ ‭𝑖‬

‭total number of tied maximum bids to be found.‬
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‭Figure 1. Number of Comparisons in the identify_max_bids() function based on the total number‬
‭of bids and the number of tie winning bids for arrays of size 10, 20, 30, 40, 50, 60, 70, 80, 90,‬

‭and 100.‬

‭To begin, the algorithm iterates through the array, putting the minimum of each pair on‬

‭the left, and the maximum on the right. This takes‬ ‭moves. Each of these comparisons is a‬‭𝑛‬ − ‭1‬

‭call to the‬‭compute_max_min()‬‭function.‬

‭The algorithm always iterates through the array a second time, taking‬ ‭moves in‬‭𝑛‬ − ‭2‬

‭round 2. Then, the value at position‬ ‭must be compared to the master max value. Each of‬‭𝑛‬ − ‭2‬

‭these comparisons is a call to the‬‭compute_max_min()‬‭function. If this computation shows‬

‭that the value in position‬ ‭is less than the master maximum, we are done sorting.‬‭𝑛‬ − ‭2‬

‭The algorithm then repeats this some number of times, dependent on‬ ‭. In the end, after‬‭𝑖‬

‭the initial sort, the function will be sorted a total of‬ ‭more times. With each of those sorts, the‬‭𝑖‬

‭number of comparisons being made decreases by one.‬
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‭Figure 2. Number of Comparisons in the identify_max_bids() function based on the total number‬
‭of bids and the number of tie winning bids for all arrays between 1 and 100.‬

‭Sorting the array completely takes‬ ‭comparisons. After comparison 1, we sort an‬‭𝑛‬(‭𝑛‬−‭1‬)
‭2‬

‭array whose size decreases by one each time, until we have done so a total of‬ ‭additional times.‬‭𝑖‬

‭This leaves a total of‬ ‭loops not done in the initial n loops expected. The total number‬‭𝑛‬ − ‭𝑖‬ − ‭1‬

‭of computations to be removed from a complete sort is‬ ‭. After each loop, we also‬(‭𝑛‬−‭𝑖‬−‭1‬)(‭𝑛‬−‭𝑖‬−‭2‬)
‭2‬

‭need to compare the current max with the master max value. This comparison happens a total of‬
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‭times. Thus, we get the following formula to calculate the total number of times that the‬‭𝑖‬

‭compute_max_min()‬‭function is called:‬

‭𝑛‬(‭𝑛‬−‭1‬)
‭2‬ − (‭𝑛‬−‭𝑖‬−‭1‬)(‭𝑛‬−‭𝑖‬−‭2‬)

‭2‬ + ‭𝑖‬

‭In Figures 1 and 2, we can visualize the number of comparisons for fluctuations in‬ ‭and‬‭𝑛‬

‭. Each line in the graph represents a distinct‬ ‭value. Which‬ ‭is being represented by an‬‭𝑖‬ ‭𝑛‬ ‭𝑛‬

‭individual line can be identified by the x-axis value at the end point of the line. All‬ ‭values‬‭𝑛‬

‭between 1 and 100 are shown in Figure 2. Fewer are shown in Figure 1 for a clearer view of‬

‭individual lines. For a given‬ ‭value along the x-axis, you can see on the line representing a given‬‭𝑖‬

‭value, the total number of comparisons. You can see in the chart that as‬ ‭increases, the total‬‭𝑛‬ ‭𝑛‬

‭computational complexity increases exponentially. For a given‬ ‭, as‬ ‭increases, the amount of‬‭𝑛‬ ‭𝑖‬

‭additional computation for each additional‬ ‭is less then for the previous‬ ‭.‬‭𝑖‬ ‭𝑖‬
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‭Chapter 4: Results‬

‭In this section, we analyze the computational aspects of the FHE scheme and the‬

‭blind-bidding auction, examining the effects of parameter modifications on computation times‬

‭and auction accuracy.‬

‭4.1 Computation Times‬

‭In FHE, computation times can vary significantly depending on the parameters chosen.‬

‭These are discussed below.‬

‭4.1.1 Program Initialization for Different Parameters‬

‭There are multiple parameters that need to be set in the Concrete FHE scheme. These‬

‭include a LWE and RLWE key. We never changed the parameters of the LWE key, always using‬

‭128 bits of security, and a polynomial of size 2048. For the RLWE key, we tested for different‬

‭variations on the security bit and the polynomial size.‬

‭We also tested variations with the Key Switching Key (KSK) and Bootstrapping Key‬

‭(BSK) Initializing the KSK and the BSK both take 2 arguments, base log and levels.‬

‭You can view the results for how the initialization speed fluctuates based on changes in‬

‭the parameters in Table 1.‬

‭Using Table 1, we make some observations about the effect of different parameters of the‬

‭computation time for initiating the KSK and BSK.‬

‭Bits of Security:‬‭Looking at lines 0 and 5, all parameters‬‭stay the same with the‬

‭exception of the bits of security. Changing from 80 to 128 bits of security had a negligible impact‬

‭on the time required to initiate the KSK, but increased the time required to initiate the BSK by‬

‭28.5%.‬
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‭Table 1‬

‭Computation time required to build the KSK and BSK for different sets of parameters.‬

‭RLWE‬
‭Bits of‬

‭Security‬

‭RLWE‬
‭Polynomial‬

‭Size‬

‭(base log, levels)‬ ‭Computation Time to‬
‭Initiate‬

‭KSK‬ ‭BSK‬ ‭KSK‬ ‭BSK‬

‭0‬
‭80‬ ‭2048‬

‭(4, 5)‬ ‭(4, 5)‬ ‭2274 ms‬ ‭170655 ms‬

‭1‬ ‭(6, 6)‬ ‭(6,6)‬ ‭2706 ms‬ ‭210067 ms‬

‭2‬ ‭(3, 28)‬ ‭(3, 28)‬ ‭12599 ms‬ ‭968697 ms‬

‭3‬

‭128‬

‭1024‬

‭(4, 5)‬ ‭(4, 5)‬

‭1188 ms‬ ‭48371 ms‬

‭4‬
‭2048‬

‭2327 ms‬ ‭177160 ms‬

‭5‬ ‭2264 ms‬ ‭238741 ms‬

‭6‬

‭4096‬

‭4604 ms‬ ‭652111 ms‬

‭7‬ ‭4500 ms‬ ‭671387 ms‬

‭8‬ ‭(3, 7)‬ ‭(3, 7)‬ ‭6480 ms‬ ‭924656 ms‬

‭9‬ ‭(4, 7)‬ ‭(4, 7)‬ ‭6519 ms‬ ‭970439 ms‬

‭Base Log:‬‭Looking at lines 8 and 9, all parameters‬‭stay the same with the exception of‬

‭the base log for the KSK and BSK. Increasing the log from 3 to 4 increased the build time of the‬

‭KSK by 0.6% and the BSK by 4.7%. Compared to some other variations, this parameter's impact‬

‭is quite negligible on the build time of the KSK and BSK.‬
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‭Levels:‬‭Making a drastic change in the number of levels also results in a drastic change‬

‭in the initialization time. Jumping the levels from 5 to 28, even while lowering the log base from‬

‭4 to 3 increased the initialization time of KSK by 82% and BSK by 82.3%. While this has a big‬

‭impact in initialization time, such a high level was never actually used past gathering these‬

‭results, so its impact on accuracy and computation time during the run of the program is‬

‭unknown.‬

‭Changing both Base Log and Levels:‬‭Looking at lines‬‭0 and 1, the increasing the values‬

‭of both the log base and levels increased the KSK initialization time by 16% and the BSK by‬

‭18.8%.‬

‭Changing the Polynomial Size of the RLWE:‬‭Looking‬‭at lines 3, 5, and 7, we can see‬

‭the impact in computation time from changing the polynomial size from 1024 to 2048 to 4096.‬

‭When changing from 1024 to 2048, it increases the initialization time of the KSK by 47.5% and‬

‭the BSK by 79.7%. When changing from 2048 to 4069, it increases the initialization time of‬

‭KSK by 49.7% and of BSK by 64.4%. Overall, to go from a polynomial size of 1024 up to 4096,‬

‭it increases the computation time of the KSK by 73.6% and the BSK by 92.8%.‬

‭Making changes to the polynomial size of the RLWE by far has the greatest overall‬

‭impact on a whole. It increases initialization time, and, as is shown in later sections, also‬

‭increases the overall computation time quite significantly.‬

‭4.1.2 Influence of Parameters on‬‭compute_max_min()‬

‭Of greater significance than startup speed is the speed of our‬‭compute_max_min()‬

‭function. This function is essential for comparing any two encrypted values. Thus, the time to‬

‭compute maximum values is directly related to the time to run‬‭compute_max_min()‬‭. In‬

‭Table 2 is a list of the average run time of‬‭compute_max_min()‬‭for a variety of parameters.‬
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‭Table 2‬

‭Computation time required to perform the compute_max_min() function for different sets‬

‭of parameters.‬

‭RLWE‬
‭Polynomial‬

‭Size‬
‭Encoder‬

‭(base log, levels)‬ ‭Computation of‬
‭compute_max_min()‬‭KSK‬ ‭BSK‬

‭1024‬ ‭(0.0, 1.0, 4, 2)‬ ‭(4, 5)‬ ‭(4, 5)‬ ‭564 ms‬

‭2048‬ ‭(0.0, 16.0, 5, 2)‬ ‭(4, 5)‬ ‭(4, 5)‬ ‭1116 ms‬

‭4096‬

‭(0.0, 31.0, 6, 2)‬ ‭(4, 5)‬ ‭(4, 5)‬ ‭2459 ms‬

‭(0.0, 50.0, 6, 2)‬ ‭(4, 5)‬ ‭(4, 5)‬ ‭2450 ms‬

‭(0.0, 63.0, 6, 2)‬
‭(4, 5)‬ ‭(4, 5)‬ ‭2459 ms‬

‭(3,7)‬ ‭(3,7)‬ ‭2968 ms‬

‭(4, 7)‬ ‭(4, 7)‬ ‭3202 ms‬

‭You can see from these results that, on its own, the RLWE Polynomial has a big impact‬

‭on the computation time of‬‭compute_max_min()‬‭. However,‬‭the other parameters also impact‬

‭the computation time. Making adjustments to the size of values that the encoder handles and to‬

‭the levels and log base also affect the computation time.‬

‭From our exploration of different RLWE polynomial values, it is evident that increasing‬

‭the size of the polynomial has significant impacts on the computation time. Regardless, to‬

‭accurately compute large values, it is necessary to do so.‬

‭4.1.3 Average vs. Theoretical Computation Time of‬‭identify_max_bids()‬

‭The following section contains an analysis of computation time of‬

‭identify_max_bids()‬‭, which relies on the computation‬‭time of the‬

‭compute_max_min()‬‭function analyzed in the previous‬‭section. In the following analysis,‬
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‭these are the parameters at which the program was run. RLWE polynomial size: 4096; Encoder:‬

‭min: 0.0, max: 31.0, bits: 6, padding: 2; KSK: base log: 4, levels:5, BSK: base log: 4, levels: 5.‬

‭With these parameters, the average time to perform the‬‭compute_max_min()‬

‭function was 2305.857 ms. This number comes from the average of 77 calls of‬

‭compute_max_mix()‬‭. The timing is calculated using‬‭Rust‬‭Instant::now()‬‭directly‬

‭before and after calling‬‭comput_max_min()‬‭.‬

‭The time required to calculate the array of maximum bids was tested, and those results‬

‭are compared to the theoretical time expected to perform the calculation. As mentioned in‬

‭section 3.3.2.3, the number of total comparisons in the‬‭identify_max_bids‬‭function is‬

‭dependent on‬‭n‬‭(the size of the array) and‬‭i‬‭(the‬‭total number of tie bids). That equation is‬

‭𝑛‬(‭𝑛‬−‭1‬)
‭2‬ − (‭𝑛‬−‭𝑖‬−‭1‬)(‭𝑛‬−‭𝑖‬−‭2‬)

‭2‬ + ‭𝑖‬

‭Based on this formula and the average computation time of‬‭compute_max_min()‬‭,‬

‭estimated run times for‬‭identify_max_bids()‬‭are calculated‬‭and compared to actual run‬

‭times in Table 3. All averages in the table come from a sample size of 5.‬

‭There were notable outliers in expected vs. actual computation times in the cases when‬

‭and‬ ‭. Including the major‬‭outliers in these two cases, the mean‬‭𝑛‬ = ‭50‬, ‭ ‬‭𝑖‬ = ‭40‬ ‭𝑛‬ = ‭50‬, ‭ ‬‭𝑖‬ = ‭50‬

‭average percentage error (MAPE) is 7.86%. Removing the outlier data points and recalculating‬

‭the MAPE gives a value of 2.26%.‬

‭In the intended behavior of the‬‭identify_max_bids()‬‭function, the maximum value‬

‭from the first round of sorting is set as the master maximum value. However, discrepancies arose‬

‭in the aforementioned cases due to a fluctuation in the accuracy during computation. As‬

‭computations are performed on encrypted values, the associated noise of these values increases.‬
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‭Table 3‬

‭Expected vs. Actual Computation Times for Given‬ ‭and‬ ‭Values.‬‭𝑛‬ ‭𝑖‬

‭n‬ ‭i‬ ‭Comparisons‬ ‭Expected‬
‭compute time‬

‭Average Actual‬
‭compute time‬

‭Percentage‬
‭error‬

‭9‬

‭1‬ ‭16‬ ‭36894 ms‬ ‭37225 ms‬ ‭0.90%‬

‭2‬ ‭23‬ ‭36894 ms‬ ‭53950 ms‬ ‭1.73%‬

‭3‬ ‭29‬ ‭53035 ms‬ ‭66690 ms‬ ‭0.27%‬

‭4‬ ‭34‬ ‭66870 ms‬ ‭77673 ms‬ ‭0.93%‬

‭5‬ ‭38‬ ‭78399 ms‬ ‭85534 ms‬ ‭2.38%‬

‭6‬ ‭41‬ ‭87623 ms‬ ‭91301 ms‬ ‭3.43%‬

‭7‬ ‭43‬ ‭94540 ms‬ ‭95950 ms‬ ‭3.23%‬

‭8‬ ‭44‬ ‭99152 ms‬ ‭98946 ms‬ ‭2.48%‬

‭9‬ ‭44‬ ‭101458 ms‬ ‭98737 ms‬ ‭2.68%‬

‭50‬

‭5‬ ‭284‬ ‭101458 ms‬ ‭635354 ms‬ ‭2.98%‬

‭15‬ ‭679‬ ‭654863 ms‬ ‭1543963 ms‬ ‭1.39%‬

‭25‬ ‭974‬ ‭1565677 ms‬ ‭2146301 ms‬ ‭4.43%‬

‭40‬ ‭1229‬ ‭2245905 ms‬ ‭1471268 ms‬ ‭*48.08%‬

‭50‬ ‭1274‬ ‭2833898 ms‬ ‭1864774 ms‬ ‭*36.52%‬

‭40‬ ‭1229‬ ‭2245905 ms‬ ‭**2718565 ms‬ ‭4.07%‬

‭50‬ ‭1274‬ ‭2833898 ms‬ ‭**2958624 ms‬ ‭0.71%‬

‭* These two values are outliers. The explanation of the outliers is below‬

‭** Recalculation of the average, removing outliers‬

‭After 49 comparisons made in the first round of sorting for‬ ‭, the cumulative noise‬‭𝑛‬ = ‭50‬

‭caused the true maximum value of 29 to be mistakenly decrypted as 30. Given that all other tie‬

‭bids were valued at 2, they became lesser than the master maximum value, which was now‬
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‭inaccurately set at 30 (that is, a bid value of 3). As a consequence, the‬

‭identify_max_bids()‬‭function concluded after just‬‭one loop iteration, as opposed to the‬

‭expected 40 and 49 iterations, respectively. This premature termination resulted in the actual‬

‭computation time being significantly shorter than the projected computation time. Such‬

‭discrepancies underscore the challenges of maintaining accuracy in computations involving‬

‭encrypted values.‬

‭4.2 Accuracy‬

‭The accuracy of the blind-bidding auction depends on a combination of parameters and‬

‭configurations. Some of these can be influenced by the auction operator. In this section, we‬

‭explore how different bidding configurations can affect accuracy.‬

‭4.2.1 Fluctuation in Accuracy with Changes in‬ ‭and‬‭𝑛‬ ‭𝑖‬

‭We focus on the variations in accuracy stemming from variations in‬ ‭(the total number‬‭𝑛‬

‭of bidders), and‬ ‭(the number of tied maximum bids).‬‭Selected results are shown in Table 5. It is‬‭𝑖‬

‭worth noting, due to currency parameter constraint, the auction can only accommodate a‬

‭maximum of 9 unique bidder IDs.‬

‭The accuracy tends to decrease as‬ ‭increases for‬‭a given‬ ‭, reflecting the fact that more‬‭𝑖‬ ‭𝑛‬

‭comparisons–and thus more opportunities for noise growth–are required for higher‬ ‭values. As‬‭𝑖‬

‭shown in Figure 3, the relationship between accuracy and the size of‬ ‭has an‬ ‭value of .6592.‬‭𝑖‬ ‭𝑅‬‭2‬

‭This suggests that around 66% of the variation in accuracy is attributed to the increase in‬ ‭and‬‭its‬‭𝑖‬

‭associated increase in the number of comparisons. To better understand the sources of the‬

‭remaining variation, we examined not just the total number of comparisons needed to determine‬

‭the maximum bids, but also the distribution of how many times each individual bid is being‬

‭compared.‬
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‭Table 4‬

‭Accuracy of Results of Winning Bids, for Given‬ ‭and‬ ‭Values‬‭𝑛‬ ‭𝑖‬

‭𝑛‬ ‭𝑖‬ ‭Accuracy‬

‭9‬ ‭1‬ ‭100%‬

‭9‬ ‭2‬ ‭100%‬

‭9‬ ‭3‬ ‭80%‬

‭9‬ ‭4‬ ‭79%‬

‭9‬ ‭5‬ ‭84%‬

‭9‬ ‭6‬ ‭73%‬

‭9‬ ‭7‬ ‭74%‬

‭9‬ ‭8‬ ‭79%‬

‭9‬ ‭9‬ ‭73%‬

‭Figure 3. For n=9, Accuracy of Results for i values between 1 and 9.‬
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‭4.2.2 Fluctuation in Accuracy with Changes in Initial Configuration of Bids‬

‭In the auction, each participant is assigned a bidder ID. The bidder ID is not secret, and‬

‭the initial positioning of bids in the array can be facilitated based on the values of the bidder‬

‭IDs–either in ascending or descending order. As highlighted in section 3.3.2.2, each bid‬

‭undergoes at least one comparison with another bid in the process of determining the maximum.‬

‭Such comparisons result in the re-encryption of the bid, rendering it unrecognizable from its‬

‭original form. Therefore, the order in which the bids are initially placed in the array, based on‬

‭bidder IDs, does not compromise the system's security. Moreover, publicly associating original‬

‭encrypted bids with specific participants doesn’t leak any sensitive information.‬

‭This section contains an analysis of how the starting configuration of the bids impacts the‬

‭accuracy of the output. Depending on the initial location of a bid, it may be compared more or‬

‭fewer times before ending up in its final position, where it is no longer being compared to other‬

‭bids. We look further into this for sets of 8 bids. We set up three distinct arrays, with bids from‬

‭the set‬ ‭. We then‬‭arranged these in three different way in‬‭𝐵‬ = {‭21‬, ‭ ‬‭22‬, ‭ ‬‭23‬, ‭ ‬‭24‬, ‭ ‬‭25‬, ‭ ‬‭26‬, ‭ ‬‭27‬, ‭ ‬‭28‬}

‭arrays: With bidder ID in ascending order where‬ ‭, descending‬‭𝐵‬
‭𝑎‬

= [‭21‬‭ ‬‭22‬‭ ‬‭23‬‭ ‬‭24‬‭ ‬‭25‬‭ ‬‭26‬‭ ‬‭27‬‭ ‬‭28‬]

‭order where‬ ‭, and‬‭randomly where‬‭𝐵‬
‭𝑑‬

= [‭28‬‭ ‬‭27‬‭ ‬‭26‬‭ ‬‭25‬‭ ‬‭24‬‭ ‬‭23‬‭ ‬‭22‬‭ ‬‭21‬]

‭. We checked the‬‭provided maximum bids for ten iterations of‬‭𝐵‬
‭𝑟‬

= [‭25‬‭ ‬‭23‬‭ ‬‭21‬‭ ‬‭28‬‭ ‬‭22‬‭ ‬‭27‬‭ ‬‭24‬‭ ‬‭26‬]

‭the program for each of these configurations. For‬ ‭the accuracy was .87, for‬ ‭the accuracy‬‭𝐵‬
‭𝑎‬

‭𝐵‬
‭𝑑‬

‭was .93, and for‬ ‭the accuracy was .9. As you‬‭can see, the accuracy is highest when the bids‬‭𝐵‬
‭𝑟‬

‭started in the configuration‬ ‭, and this configuration‬‭was 6% more accurate than starting‬‭𝐵‬
‭𝑑‬

‭configuration‬ ‭.‬‭𝐵‬
‭𝑎‬
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‭For each of these variations in starting configuration, there were an equivalent total‬

‭number of comparisons needed to find the maximum bids. However, the number of times each‬

‭given encrypted bid was compared to another bid is different for the different configurations. In‬

‭Table 5 we show the number of times that each encrypted value was compared to the different‬

‭arrangements. σ is the Standard Deviation of the number of comparisons.‬

‭Table 5‬

‭Distribution of Comparisons Among Encrypted Values for Different Starting‬

‭Configurations‬

‭Starting‬
‭Configuration‬

‭Total Number of Times the Given Encrypted Value was Compared‬

‭28‬ ‭27‬ ‭26‬ ‭25‬ ‭24‬ ‭23‬ ‭22‬ ‭21‬ ‭σ‬

‭𝐵‬
‭𝑎‬

‭1‬ ‭4‬ ‭6‬ ‭8‬ ‭10‬ ‭12‬ ‭14‬ ‭8‬ ‭4.224‬

‭𝐵‬
‭𝑑‬

‭7‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭0.354‬

‭𝐵‬
‭𝑟‬

‭5‬ ‭5‬ ‭4‬ ‭11‬ ‭7‬ ‭12‬ ‭11‬ ‭8‬ ‭3.137‬

‭Considering the fluctuation in the number of comparisons per value in‬ ‭and‬ ‭, we also‬‭𝐵‬
‭𝑎‬

‭𝐵‬
‭𝑟‬

‭look at accuracy of, based on the number of times the bid was compared, how likely it is to‬

‭accurately hold its correct value. We show these results in Figure 4. The relationship between the‬

‭number of times that a value is compared and the accuracy on decryption (how often it decrypts‬

‭correctly) has an‬ ‭value of .7644, suggesting‬‭that around 76% of the variation in accuracy is‬‭𝑅‬‭2‬

‭attributed to how often the value was compared. This data suggests that as the number of‬

‭comparisons increases, the accuracy of a bid decreases. Thus, finding ways to distribute the‬

‭comparisons among all values will improve overall accuracy. This is discussed further in the‬

‭discussion section below.‬
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‭Figure 4. Accuracy of Results Based on the Number of Times Compared‬

‭The results underscore the complexities inherent in using a FHE scheme. Operations are‬

‭notably longer, and accumulation of noise significantly impacts the final accuracy of‬

‭computations. In the ensuing discussion we consider these accuracy nuances and consider the‬

‭practicality of the blind-bidding auction.‬
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‭Chapter 5: Discussion‬

‭5.2 Parameter Selection & Accuracy‬

‭In a FHE scheme, the potential growth of the error should be tracked well enough that‬

‭you never end up with inaccurate data, and all noise is taken care of during bootstrapping.‬

‭Concrete is both a FHE scheme and a Leveled Homomorphic Encryption scheme. With a leveled‬

‭scheme, there are a set number of levels before each bootstrapping step. With perfect starting‬

‭configuration of parameters, the auction should have been accurate each time. However, we were‬

‭not able to achieve this level of accuracy. FHE schemes are complicated, and changes to each‬

‭parameter impact other parameters.‬

‭Due to challenges with maintaining accuracy, interesting patterns show up with regards to‬

‭how the array is initially configured. This was briefly touched upon in the results in 4.3.2, but we‬

‭expand on this in the next section.‬

‭5.2.1 Accuracy Based on Starting Configuration‬

‭As seen in 4.3.2, there is a strong correlation between the number of times an encrypted‬

‭value is compared and the accuracy of the result. Encrypted values that were compared more‬

‭times are less likely to still be accurate upon decryption. This raises the question, is there‬

‭anything the auction owner can do with bidder IDs to optimize the distribution of the‬

‭comparisons?‬

‭As the number of comparisons increases for each individual value, the accuracy‬

‭decreases. We will delve deeper into how this manifests itself for three unique configurations of‬

‭the same data. Recall above that the total number of times that‬‭compute_max_min()‬‭is called‬

‭is‬

‭.‬‭𝑛‬(‭𝑛‬−‭1‬)
‭2‬ − (‭𝑛‬−‭𝑖‬−‭1‬)(‭𝑛‬−‭𝑖‬−‭2‬)

‭2‬ + ‭𝑖‬
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‭For the majority of these calls, the two values being compared are two full bids.‬

‭However, for each loop within‬‭identify_max_bids()‬‭,‬‭the current max is being compared‬

‭to the new encryption of the master max value, minus its bid ID. In our equation above, the‬ ‭was‬‭𝑖‬

‭added to the end accounts for this comparison. So, if we let‬

‭,‬‭𝐶‬ = ‭𝑛‬(‭𝑛‬−‭1‬)
‭2‬ − (‭𝑛‬−‭𝑖‬−‭1‬)(‭𝑛‬−‭𝑖‬−‭2‬)

‭2‬

‭we can compute the sum of the total number of comparison for each individual bid using the‬

‭equation‬

‭.‬‭𝐶‬ * ‭2‬ + ‭𝑖‬

‭However, if‬ ‭, the total number of comparisons‬‭in equivalent to when‬ ‭.‬‭𝑖‬ = ‭𝑛‬ ‭𝑖‬ = ‭𝑛‬ − ‭1‬

‭To account for this difference, we calculate the sum of all comparisons as‬

‭, for‬‭𝐶‬ * ‭2‬ − ‭𝑖‬ ‭𝑖‬ < ‭𝑛‬

‭, for‬‭𝐶‬ * ‭2‬ − (‭𝑖‬ − ‭1‬)‭ ‬ ‭𝑖‬ = ‭𝑛‬

‭Now we further analyze the case of different starting orientations, whose results we gave‬

‭in 4.3.2. Let a set of bids be‬ ‭. This set contains bids from‬‭𝐵‬ = {‭21‬, ‭ ‬‭22‬, ‭ ‬‭23‬, ‭ ‬‭24‬, ‭ ‬‭25‬, ‭ ‬‭26‬, ‭ ‬‭27‬, ‭ ‬‭28‬}

‭bidders with ID’s 1-8. Consider three variations‬ ‭,‬ ‭, and‬ ‭. In‬ ‭, the bids are entered‬‭with‬‭𝐵‬
‭𝑎‬

‭𝐵‬
‭𝑑‬

‭𝐵‬
‭𝑟‬

‭𝐵‬
‭𝑎‬

‭bidder IDs in numerical order. In‬ ‭bids are‬‭entered with bidder IDs in reverse numerical order.‬‭𝐵‬
‭𝑏‬
‭ ‬

‭In‬ ‭bids are entered in a random order. We‬‭discuss how these configurations affect the accuracy‬‭𝐵‬
‭𝑟‬
‭ ‬

‭of the sorted outcome.‬

‭Let‬ ‭. We calculate‬‭how many times each of these bids is‬‭𝐵‬
‭𝑎‬

= [‭21‬‭ ‬‭22‬‭ ‬‭23‬‭ ‬‭24‬‭ ‬‭25‬‭ ‬‭26‬‭ ‬‭27‬‭ ‬‭28‬]

‭compared to another bid.‬

‭First, 21 is compared to 22. They don’t swap. 22 is compared to 23. They don’t swap.‬

‭This process continues until 27 is compared to 28.‬
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‭At this point, 28 is added to the array of winning bids, and it is replaced with an‬

‭encryption of 20. This is the winning bid (28) without its bidder ID.‬

‭During the next round, the same process happens, but the comparisons only go up to 27.‬

‭Then, the highest bid (27) is compared to the encrypted 20. Since 27 is bigger, it is added to the‬

‭array of winning bids. Then, the loop runs again.‬

‭As you can see, in the first round, the first and last values are compared once and all‬

‭others twice. This is the case for each round, but since the lower values are still in the array for‬

‭more rounds, they are being compared for more rounds. In the end, you end up with this‬

‭distribution of comparisons:‬

‭Table 6‬

‭Number of Comparisons for Each Value, with an Ascending Starting Configuration‬

‭Total Number of Times Encrypted Value was Compared‬

‭Starting Position‬ ‭21‬ ‭22‬ ‭23‬ ‭24‬ ‭25‬ ‭26‬ ‭27‬ ‭28‬

‭Number of times‬
‭compared‬

‭8‬ ‭14‬ ‭12‬ ‭10‬ ‭8‬ ‭6‬ ‭4‬ ‭1‬

‭Now we compare the ascending configuration to the descending configuration. Let‬

‭.‬‭𝐵‬
‭𝑑‬

= [‭28‬‭ ‬‭27‬‭ ‬‭26‬‭ ‬‭25‬‭ ‬‭24‬‭ ‬‭23‬‭ ‬‭22‬‭ ‬‭21‬]

‭In the first round, 28 is compared to 27, and they are swapped. Then 28 is compared to 26‬

‭and they are swapped. 28 continues to be swapped, and thus continues to be compared to each‬

‭value until it ends up all the way on the right. This is a total of 7 comparisons.‬

‭Just like last time, at this point 28 is added to the array of winning bids, and it is replaced‬

‭with an encryption of 20. This is the winning bid (28) without its bidder ID.‬
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‭In round two, 27 is compared to 26 and they are swapped. Then it is compared to 25, and‬

‭they are swapped. This continues until the array is in this configuration:‬

‭26 25 24 23 22 21 27 20‬

‭So far, 27 has been compared 7 times, once with the 28 to begin with, and now with each‬

‭other bid. It gets compared one more time, with 20, to determine if it is one of the maximums. It‬

‭is, so it gets added to the array of max bids, and the loop continues.‬

‭If we track how many times 26 is compared, it is also 8 total. As with all the other values,‬

‭until 21. Using the starting configuration of bids in descending order, we get the distribution of‬

‭comparisons shown in Table 7.‬

‭Table 7‬

‭Number of Comparisons for Each Value, with an Descending Starting Configuration‬

‭Total Number of Times Encrypted Value was Compared‬

‭Starting Position‬ ‭28‬ ‭27‬ ‭26‬ ‭25‬ ‭24‬ ‭23‬ ‭22‬ ‭21‬

‭Number of times‬
‭compared‬

‭7‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬ ‭8‬

‭We can see that using the descending configuration gives a much more uniform‬

‭configuration. In this case, where everyone has bid the same value, our results will be more‬

‭accurate if the starting configuration is with bidder IDs in descending order.‬

‭However, is this still the case if we go to the opposite extreme, where we only have one‬

‭winning bid? First, does the starting configuration have the same impact, where bids in‬

‭descending order lead to a more even distribution of comparisons? Second, what about the‬

‭winning bid specifically, is it better for that bid to be in ascending or descending order? In Table‬

‭8 we show the distribution of comparisons for some different sets of bids, in ascending versus‬

‭descending bidder ID starting configuration.‬
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‭Table 8‬

‭Initial Configuration of Bids and the Distribution of Comparisons‬

‭Starting Configuration‬ ‭σ‬

‭Ascending‬ ‭11‬ ‭12‬ ‭13‬ ‭14‬ ‭15‬ ‭16‬ ‭17‬ ‭28‬
‭1.785‬

‭3‬ ‭6‬ ‭6‬ ‭7‬ ‭5‬ ‭5‬ ‭5‬ ‭1‬

‭Descending‬ ‭28‬ ‭17‬ ‭16‬ ‭15‬ ‭14‬ ‭13‬ ‭12‬ ‭11‬
‭2.395‬

‭7‬ ‭8‬ ‭2‬ ‭2‬ ‭2‬ ‭2‬ ‭2‬ ‭2‬

‭Ascending‬ ‭21‬ ‭12‬ ‭13‬ ‭14‬ ‭15‬ ‭16‬ ‭17‬ ‭18‬
‭1.714‬

‭9‬ ‭3‬ ‭5‬ ‭5‬ ‭4‬ ‭4‬ ‭4‬ ‭4‬

‭Descending‬ ‭18‬ ‭17‬ ‭16‬ ‭15‬ ‭14‬ ‭13‬ ‭12‬ ‭21‬
‭2.736‬

‭9‬ ‭7‬ ‭2‬ ‭2‬ ‭2‬ ‭2‬ ‭2‬ ‭1‬

‭Ascending‬ ‭21‬ ‭22‬ ‭13‬ ‭14‬ ‭15‬ ‭26‬ ‭17‬ ‭18‬
‭2.027‬

‭9‬ ‭9‬ ‭4‬ ‭6‬ ‭6‬ ‭3‬ ‭5‬ ‭5‬

‭Descending‬ ‭18‬ ‭17‬ ‭26‬ ‭15‬ ‭14‬ ‭13‬ ‭22‬ ‭21‬
‭2.368‬

‭11‬ ‭8‬ ‭6‬ ‭6‬ ‭4‬ ‭4‬ ‭4‬ ‭4‬

‭Ascending‬ ‭21‬ ‭22‬ ‭13‬ ‭24‬ ‭15‬ ‭26‬ ‭17‬ ‭18‬
‭2.222‬

‭10‬ ‭10‬ ‭5‬ ‭7‬ ‭7‬ ‭3‬ ‭6‬ ‭6‬

‭Descending‬ ‭18‬ ‭17‬ ‭26‬ ‭15‬ ‭24‬ ‭13‬ ‭22‬ ‭21‬
‭2.332‬

‭12‬ ‭9‬ ‭6‬ ‭6‬ ‭6‬ ‭5‬ ‭5‬ ‭5‬

‭Ascending‬ ‭21‬ ‭22‬ ‭13‬ ‭24‬ ‭15‬ ‭26‬ ‭17‬ ‭28‬
‭3.120‬

‭11‬ ‭11‬ ‭6‬ ‭8‬ ‭9‬ ‭5‬ ‭8‬ ‭1‬

‭Descending‬ ‭28‬ ‭17‬ ‭26‬ ‭15‬ ‭24‬ ‭13‬ ‭22‬ ‭21‬
‭1.576‬

‭7‬ ‭11‬ ‭8‬ ‭8‬ ‭7‬ ‭6‬ ‭6‬ ‭6‬
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‭As we begin to observe for a larger variety of winning values, it seems that the strategy of‬

‭placing bids in decreasing bidder ID order does not remain the most uniform distribution when‬

‭there are fewer winning bids. Based on these examples, it appears that for fewer winning bids,‬

‭bidder IDs in increasing order leaves a more uniform distribution.‬

‭Based on this information, we are unable to conclusively say if there is an advantage on‬

‭average for starting with bids configured in the ascending bidder ID or descending bidder ID‬

‭order. This is left as an extension to this work. From the data we have collected, our initial‬

‭thought is that using the descending bidder ID starting configuration is more valuable, because it‬

‭leads to a more uniform distribution in the case where there are many ties for maximum. The‬

‭case with many ties for maximum is also the case with the most comparisons in total, and‬

‭therefore, optimizing that extreme over the extreme of only one winning bid will likely lead to‬

‭better results overall.‬

‭5.2.2 Speed‬

‭For the cases in which we produce accurate data, the speeds are high, but not prohibitive.‬

‭For example, running the blind-bidding auction for a set of 50 bids, where there are 5 tie bids‬

‭took an average of  635354 ms to run. Computing the same thing on unencrypted data in Python‬

‭took .207 ms. The markup in speed is of the magnitude of 3 million times longer. So, while the‬

‭speed is not in fact prohibitive for a very small use case, as the number of bids increases, and the‬

‭computation time increases exponentially, that markup in speed very quickly can become‬

‭prohibitive.‬

‭However, as discussed in section 2.5, there have been enormous improvements to FHE‬

‭computation in the past 15 years, and it continues to be an area of research. Concrete, the FHE‬

‭implementation used for this project, was just released in 2022 [28, 30]. There continues to be‬
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‭work on increasing speeds of FHE, such as the work by Optasysis. The‬‭compute_max_min()‬

‭function used in this project is from a paper by Optalysys [29]. In that paper, they introduce work‬

‭being done by their company to develop a silicon-photonic chip to compute the Fourire‬

‭transform, a main bottleneck in FHE operation, more efficiently. As indicated by their optical‬

‭simulator, sorting an array which took more than 6s to compute electronically would take .05 s‬

‭on their silicone-optical chip.‬

‭5.3 Practicality for Use‬

‭Based on the current status of this program, the program is not practical for actual‬

‭implementation. The maximum value for which some level of accuracy in results can be‬

‭achieved is when input is between 0-32, with 6 bits of information. Even then, the smallest bit‬

‭cannot be used while still achieving accurate results. That means you have 5 bits to store both the‬

‭bid and bidder information. Leaving at least 1 bit for the bid, you can have up to 16 bidders.‬

‭Using up to 4 bits for bid leaves you with only 1 bit for storing the bidder. These sizes aren’t‬

‭practical for actual implementation of the blind-bidding auction.‬



‭56‬

‭Chapter 6: Conclusion‬

‭6.1 Deliverables‬

‭6.2 Deliverables‬

‭There are many future extensions to this work. As discussed in the analysis of the‬

‭accuracy, as the number of comparisons for one particular encrypted value increases, its accuracy‬

‭decreases. One notable future extension to this work is to analyze further if there are any patterns‬

‭for starting configurations of the bidder ID’s that can lead to less computations per winning bid.‬

‭This work analyzes the use case of having multiple tied maximum bids. In such a case, using the‬

‭initial bid configuration of bidder IDs being in descending order is optimal. However, finding the‬

‭optimal solution for any ratio of tied maximum bids and total bidders is left to future work.‬

‭Other future directions for this work are to implement the same algorithms using other‬

‭FHE schemes such as HElib [25], Microsoft SEAL [26], or OpenFHE [27], or exploring‬

‭different algorithms for the sorting of the highest bid.‬

‭While the current implementation of the blind-bidding auction using FHE has its‬

‭challenges, it serves as a foundation to realizing secure and blind auctions in the digital age. Our‬

‭exploration into the intricacies of FHE, particularly in the context of sorting algorithms, has‬

‭unveiled both the potential and the hurdles in implementing a blind-bidding auction with FHE.‬

‭As research of Fully Homomorphic Encryption continues to evolve, we are optimistic that the‬

‭issues of speed, accuracy, and computational intensity will continue to be improved. This road‬

‭ahead of Fully Homomorphic Encryption is promising and filled with potential.‬
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‭Appendices‬

‭Appendix A: System Setting, Build, and Compilation‬

‭This code was built, compiled, and run on a 2020 M1 MacBook Pro with an Apple M1 chip and‬
‭8GB memory. The code was built using the command‬‭cargo‬‭build --release‬
‭--target x86_64-apple-darwin‬‭and run with the command‬‭cargo run‬
‭--release --target x86_64-apple-darwin‬

‭Appendix B: Cargo.toml‬

‭[package]‬
‭name = "homomorphic_min_max"‬
‭version = "0.1.0"‬
‭edition = "2021"‬

‭[dependencies]‬
‭concrete = "0.1.11"‬
‭bincode = "1.3.3"‬
‭rand = "0.8"‬
‭concrete-csprng = "0.3.0"‬
‭serde = { version = "1.0", features = ["derive"] }‬
‭concrete-core = "^1.0.2"‬
‭float-cmp = "0.8.0"‬
‭rug = "1.10.0"‬

‭Appendix C: main.rs‬

‭use‬‭homomorphic_min_max‬‭::*;‬
‭use‬‭std‬‭::‬‭io‬‭;‬
‭use‬‭std‬‭::‬‭fs‬‭;‬
‭mod‬‭create_bid‬‭;‬
‭use‬‭std‬‭::‬‭fs‬‭::‬‭File‬‭;‬
‭use‬‭std‬‭::‬‭io‬‭::‬‭BufReader‬‭;‬
‭//use std::io::Read;‬
‭use‬‭bincode‬‭;‬
‭use‬‭float_cmp‬‭::‬‭approx_eq‬‭;‬
‭use‬‭std‬‭::‬‭time‬‭::‬‭Instant‬‭;‬

‭// Parts of main() are borrowed from [29]‬
‭fn‬‭main‬‭() ->‬‭Result‬‭<(),‬‭Box‬‭<‬‭dyn‬‭std‬‭::‬‭error‬‭::‬‭Error‬‭>>‬‭{‬

‭use‬‭crate‬‭::‬‭create_bid‬‭::‬‭public_bid‬‭;‬

‭// START BORROWED CODE [29]‬

‭let‬‭sk_rlwe‬‭=‬‭RLWESecretKey‬‭::‬‭new‬‭(&‬‭RLWE128_1024_1‬‭);‬
‭let‬‭sk_in‬‭=‬‭LWESecretKey‬‭::‬‭new‬‭(&‬‭LWE128_1024‬‭);‬
‭let‬‭sk_out‬‭=‬‭sk_rlwe‬‭.‬‭to_lwe_secret_key‬‭();‬
‭let‬‭encoder‬‭:‬‭Encoder‬‭=‬‭Encoder‬‭::‬‭new‬‭(‬‭0.0‬‭,‬‭30.0‬‭,‬‭6‬‭,‬‭2‬‭)?;‬

‭// key switching key‬
‭// Set timer‬
‭let‬‭start_time_ksk‬‭=‬‭Instant‬‭::‬‭now‬‭();‬
‭let‬‭ksk‬‭=‬‭LWEKSK‬‭::‬‭new‬‭(&‬‭sk_out‬‭, &‬‭sk_in‬‭,‬‭4‬‭,‬‭6‬‭);‬
‭let‬‭end_time_ksk‬‭=‬‭Instant‬‭::‬‭now‬‭();‬
‭let‬‭elapsed_time_ksk‬‭=‬‭end_time_ksk‬‭.‬‭duration_since‬‭(‬‭start_time_ksk‬‭);‬
‭println!‬‭(‬‭"Elapsed time KSK:‬‭{}‬‭ms"‬‭,‬‭elapsed_time_ksk‬‭.‬‭as_millis‬‭());‬
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‭// bootstrapping key‬
‭// Set timer‬
‭let‬‭start_time_bsk‬‭=‬‭Instant‬‭::‬‭now‬‭();‬
‭let‬‭bsk‬‭=‬‭LWEBSK‬‭::‬‭new‬‭(&‬‭sk_in‬‭, &‬‭sk_rlwe‬‭,‬‭4‬‭,‬‭6‬‭);‬
‭let‬‭end_time_bsk‬‭=‬‭Instant‬‭::‬‭now‬‭();‬
‭let‬‭elapsed_time_bsk‬‭=‬‭end_time_bsk‬‭.‬‭duration_since‬‭(‬‭start_time_bsk‬‭);‬
‭println!‬‭(‬‭"Elapsed time BSK:‬‭{}‬‭ms"‬‭,‬‭elapsed_time_bsk‬‭.‬‭as_millis‬‭());‬

‭// END BORROWED CODE [29]‬

‭// Create empty ciphers vector‬
‭let‬‭mut‬‭ciphers‬‭:‬‭Vec‬‭<‬‭LWE‬‭> =‬‭Vec‬‭::‬‭new‬‭();‬

‭// Initialize number of bids to 0‬
‭let‬‭mut‬‭num_bids‬‭:‬‭usize‬‭=‬‭0‬‭;‬

‭// Ask for the nuber of bids‬
‭println!‬‭(‬‭"Enter the number of bidders: "‬‭);‬
‭let‬‭mut‬‭input_line‬‭=‬‭String‬‭::‬‭new‬‭();‬
‭io‬‭::‬‭stdin‬‭()‬
‭.‬‭read_line‬‭(&‬‭mut‬‭input_line‬‭)‬
‭.‬‭expect‬‭(‬‭"Failed to read line"‬‭);‬
‭let‬‭num_bids_i32‬‭:‬‭i32‬‭=‬‭input_line‬‭.‬‭trim‬‭().‬‭parse‬‭().‬‭expect‬‭(‬‭"Input‬‭not an‬

‭integer"‬‭);‬

‭if‬‭num_bids_i32‬ ‭>=‬‭0‬‭{‬
‭num_bids‬‭=‬‭num_bids_i32‬‭as‬‭usize‬‭;‬
‭}‬‭else‬‭{‬
‭// Handle the case where the index is negative‬
‭eprintln!‬‭(‬‭"Negative index is not allowed."‬‭);‬
‭}‬

‭// CREATE THE BID ARRAY‬
‭let‬‭file_path‬‭=‬‭"bid.bin"‬‭;‬

‭// Check if file exists‬
‭if‬‭fs‬‭::‬‭metadata‬‭(‬‭file_path‬‭).‬‭is_ok‬‭() {‬
‭// If file exists, delete it‬
‭if‬‭let‬‭Err‬‭(‬‭e‬‭) =‬‭fs‬‭::‬‭remove_file‬‭(‬‭file_path‬‭) {‬

‭eprintln!‬‭(‬‭"Failed to delete‬‭{}‬‭:‬‭{}‬‭"‬‭,‬‭file_path‬‭,‬‭e‬‭);‬
‭}‬
‭}‬

‭// CALL public_bid() one time for each bid‬
‭for‬‭_b‬‭in‬‭0‬‭..‬‭num_bids‬‭{‬
‭let‬‭_‬‭=‬‭public_bid‬‭(&‬‭sk_in‬‭, &‬‭encoder‬‭);‬
‭}‬

‭println!‬‭(‬‭"Done collecting bids: "‬‭);‬

‭//READ THE ENCRYPTED MESSAGE FROM CREAT_BID‬
‭let‬‭file_path‬‭=‬‭"bid.bin"‬‭;‬

‭// Try to open the file‬
‭let‬‭file‬‭=‬‭File‬‭::‬‭open‬‭(‬‭file_path‬‭)?;‬

‭// Deserialize the content‬
‭let‬‭mut‬‭bid_file‬‭=‬‭BufReader‬‭::‬‭new‬‭(‬‭file‬‭);‬
‭ciphers‬‭=‬‭bincode‬‭::‬‭deserialize_from‬‭(&‬‭mut‬‭bid_file‬‭)?;‬

‭// Call max array‬
‭// Set timer‬
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‭let‬‭start_time_max_array‬‭=‬‭Instant‬‭::‬‭now‬‭();‬

‭let‬‭max_array‬‭=‬‭identify_max_bids‬‭(&‬‭ciphers‬‭, &‬‭ksk‬‭, &‬‭bsk‬‭, &‬‭encoder‬‭, &‬‭sk_in‬‭)?;‬

‭let‬‭end_time_max_array‬‭=‬‭Instant‬‭::‬‭now‬‭();‬
‭let‬‭elapsed_time_max_array‬‭=‬

‭end_time_max_array‬‭.‬‭duration_since‬‭(‬‭start_time_max_array‬‭);‬
‭println!‬‭(‬‭"Elapsed time Max Array:‬‭{}‬‭ms"‬‭,‬‭elapsed_time_max_array‬‭.‬‭as_millis‬‭());‬

‭// Calculate the Winning Bid Value, and who made that bid‬

‭// Format the bid‬
‭let‬‭max_bid_value‬‭= (‬‭max_array‬‭[‬‭0‬‭]/‬‭10.0‬‭).‬‭floor‬‭()‬‭as‬‭f64‬‭;‬
‭let‬‭mut‬‭max_bid_array‬‭=‬‭max_array‬‭.‬‭clone‬‭();‬
‭// For all values in max_bid_array‬
‭for‬‭i‬‭in‬‭0‬‭..‬‭max_bid_array‬‭.‬‭len‬‭() {‬
‭// Subtract the bid value‬
‭max_bid_array‬‭[‬‭i‬‭]=‬‭max_bid_array‬‭[‬‭i‬‭]-‬‭max_bid_value‬‭*‬‭10.0‬‭;‬
‭}‬

‭// Print the bid value‬
‭println!‬‭(‬‭"Winning Bid Value:‬‭{}‬‭"‬‭,‬‭max_bid_value‬‭);‬
‭// Print who made the bid‬
‭println!‬‭(‬‭"Winning Bidder ID:‬‭{:?}‬‭"‬‭,‬‭max_bid_array‬‭);‬

‭fn‬‭round_to‬‭(‬‭value‬‭:‬‭f64‬‭,‬‭places‬‭:‬‭i32‬‭) ->‬‭f64‬‭{‬
‭let‬‭factor‬‭=‬‭10.0_f64‬‭.‬‭powi‬‭(‬‭places‬‭);‬
‭(‬‭value‬‭*‬‭factor‬‭).‬‭round‬‭() /‬‭factor‬
‭}‬

‭let‬‭value‬‭=‬‭1.23456789‬‭;‬
‭let‬‭rounded_value‬‭=‬‭round_to‬‭(‬‭value‬‭,‬‭1‬‭);‬
‭assert!‬‭(‬‭approx_eq!‬‭(‬‭f64‬‭,‬‭rounded_value‬‭,‬‭1.2‬‭,‬‭ulps‬‭=‬‭2‬‭));‬

‭let‬‭file_path‬‭=‬‭"bid.bin"‬‭;‬
‭if‬‭let‬‭Err‬‭(‬‭e‬‭) =‬‭fs‬‭::‬‭remove_file‬‭(‬‭file_path‬‭) {‬
‭eprintln!‬‭(‬‭"Failed to delete file‬‭{}‬‭:‬‭{}‬‭"‬‭,‬‭file_path‬‭,‬‭e‬‭);‬
‭}‬

‭Ok‬‭(())‬
‭}‬

‭Appendix D: creat_bid.rs‬

‭use‬‭homomorphic_min_max‬‭::*;‬
‭use‬‭std‬‭::‬‭io‬‭::‬‭BufReader‬‭;‬
‭use‬‭std‬‭::‬‭io‬‭;‬
‭use‬‭std‬‭::‬‭fs‬‭;‬
‭use‬‭bincode‬‭;‬

‭pub‬‭fn‬‭public_bid‬‭(‬‭sk_in‬‭: &‬‭LWESecretKey‬‭,‬‭encoder‬‭: &‬‭Encoder‬‭)‬‭->‬‭Result‬‭<(),‬‭Box‬‭<‬‭dyn‬
‭std‬‭::‬‭error‬‭::‬‭Error‬‭>> {‬

‭println!‬‭(‬‭"Enter your bid (0-2): "‬‭);‬
‭let‬‭mut‬‭input_line‬‭=‬‭String‬‭::‬‭new‬‭();‬
‭io‬‭::‬‭stdin‬‭()‬
‭.‬‭read_line‬‭(&‬‭mut‬‭input_line‬‭)‬
‭.‬‭expect‬‭(‬‭"Failed to read line"‬‭);‬
‭let‬‭bid_input‬‭:‬‭f64‬‭=‬‭input_line‬‭.‬‭trim‬‭().‬‭parse‬‭().‬‭expect‬‭(‬‭"Input‬‭not an integer"‬‭);‬

‭println!‬‭(‬‭"Enter your ID number (1-9): "‬‭);‬
‭let‬‭mut‬‭input_line‬‭=‬‭String‬‭::‬‭new‬‭();‬
‭io‬‭::‬‭stdin‬‭()‬
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‭.‬‭read_line‬‭(&‬‭mut‬‭input_line‬‭)‬
‭.‬‭expect‬‭(‬‭"Failed to read line"‬‭);‬
‭let‬‭id_input‬‭:‬‭f64‬‭=‬‭input_line‬‭.‬‭trim‬‭().‬‭parse‬‭().‬‭expect‬‭(‬‭"Input not an integer"‬‭);‬

‭//Combine the message nad the bid value.‬

‭//The bids can be between 0-2, and the ID can be between 1-9‬
‭let‬‭message‬‭:‬‭f64‬‭=‬‭bid_input‬‭*‬‭10.0‬‭+‬‭id_input‬‭;‬

‭// encrypt the messages‬
‭let‬‭cipher‬‭=‬‭match‬‭LWE‬‭::‬‭encode_encrypt‬‭(‬‭sk_in‬‭,‬‭message‬‭,‬‭&‬‭encoder‬‭) {‬
‭Ok‬‭(‬‭c‬‭) =>‬‭c‬‭,‬
‭Err‬‭(‬‭e‬‭) => {‬

‭println!‬‭(‬‭"An error occurred:‬‭{:?}‬‭"‬‭,‬‭e‬‭);‬
‭return‬‭Err‬‭(‬‭Box‬‭::‬‭new‬‭(‬‭e‬‭));‬
‭}‬

‭};‬

‭let‬‭file_path‬‭=‬‭"bid.bin"‬‭;‬

‭// Check if file exists‬
‭let‬‭data‬‭:‬‭Vec‬‭<‬‭LWE‬‭> =‬‭if‬‭fs‬‭::‬‭metadata‬‭(‬‭file_path‬‭).‬‭is_ok‬‭()‬‭{‬
‭// Try to read and deserialize the file‬
‭let‬‭file‬‭=‬‭fs‬‭::‬‭File‬‭::‬‭open‬‭(‬‭file_path‬‭).‬‭expect‬‭(‬‭"Failed‬‭to open file"‬‭);‬
‭let‬‭mut‬‭buf_reader‬‭=‬‭BufReader‬‭::‬‭new‬‭(‬‭file‬‭);‬
‭match‬‭bincode‬‭::‬‭deserialize_from‬‭(&‬‭mut‬‭buf_reader‬‭)‬‭{‬

‭Ok‬‭(‬‭content‬‭) =>‬‭content‬‭,‬
‭Err‬‭(‬‭_‬‭) =>‬‭Vec‬‭::‬‭new‬‭(),‬‭// If deserialization‬‭fails, initialize with an‬

‭empty Vec‬
‭}‬
‭}‬‭else‬‭{‬
‭Vec‬‭::‬‭new‬‭()‬‭// If file doesn't exist, initialize‬‭with an empty Vec‬
‭};‬

‭// Add the new value to the array‬
‭let‬‭new_value‬‭=‬‭cipher‬‭;‬
‭let‬‭mut‬‭updated_data‬‭:‬‭Vec‬‭<‬‭LWE‬‭>=‬‭data‬‭;‬
‭updated_data‬‭.‬‭push‬‭(‬‭new_value‬‭);‬

‭let‬‭bid_file‬‭=‬
‭std‬‭::‬‭io‬‭::‬‭BufWriter‬‭::‬‭new‬‭(‬‭std‬‭::‬‭fs‬‭::‬‭File‬‭::‬‭create‬‭(‬‭file_path‬‭).‬‭unwrap‬‭());‬

‭bincode‬‭::‬‭serialize_into‬‭(‬‭bid_file‬‭, &‬‭updated_data‬‭).‬‭unwrap‬‭();‬

‭Ok‬‭(())‬
‭}‬

‭Appendix E: lib.rs‬

‭pub‬‭use‬‭concrete‬‭::*;‬

‭// START BORROWED CODE [29]‬
‭pub‬‭fn‬‭compute_max_min‬‭(‬‭cipher_1‬‭: &LWE,‬‭cipher_2‬‭: &LWE,‬‭ksk‬‭: &LWEKSK,‬‭bsk‬‭: &LWEBSK,‬
‭encoder‬‭: &‬‭Encoder‬‭)‬

‭->‬‭Result‬‭<(‬‭LWE‬‭,‬‭LWE‬‭),‬‭CryptoAPIError‬‭>‬
‭{‬

‭// difference between the two ciphers‬
‭let‬‭cipher_diff‬‭=‬‭cipher_2‬‭.‬‭sub_with_padding‬‭(&‬‭cipher_1‬‭)?;‬

‭// programmable bootstrap to check if the difference is positive‬
‭let‬‭mut‬‭cipher_diff_pos‬‭=‬‭cipher_diff‬‭.‬‭bootstrap_with_function‬‭(‬‭bsk‬‭,‬

‭|‬‭x‬‭|‬‭if‬‭x‬‭>=‬‭0‬‭. {‬‭x‬‭}‬‭else‬
‭{‬‭0‬‭. },‬
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‭encoder‬‭)?;‬

‭// change the key back to the original one‬
‭cipher_diff_pos‬‭=‬‭cipher_diff_pos‬‭.‬‭keyswitch‬‭(‬‭ksk‬‭)?;‬

‭// add the result to cipher_1‬
‭let‬‭mut‬‭result_max‬‭=‬‭cipher_1‬‭.‬‭add_with_padding‬‭(&‬‭cipher_diff_pos‬‭)?;‬

‭// subtract the result from cipher_2‬
‭let‬‭mut‬‭result_min‬‭=‬‭cipher_2‬‭.‬‭sub_with_padding‬‭(&‬‭cipher_diff_pos‬‭)?;‬

‭// reset the encoder‬
‭result_max‬‭=‬‭result_max‬‭.‬‭bootstrap_with_function‬‭(‬‭bsk‬‭,‬‭|‬‭x‬‭|‬‭x‬‭,‬‭encoder‬‭)?;‬
‭result_min‬‭=‬‭result_min‬‭.‬‭bootstrap_with_function‬‭(‬‭bsk‬‭,‬‭|‬‭x‬‭|‬‭x‬‭,‬‭encoder‬‭)?;‬
‭result_max‬‭=‬‭result_max‬‭.‬‭keyswitch‬‭(‬‭ksk‬‭)?;‬
‭result_min‬‭=‬‭result_min‬‭.‬‭keyswitch‬‭(‬‭ksk‬‭)?;‬

‭Ok‬‭((‬‭result_max‬‭,‬‭result_min‬‭))‬
‭}‬
‭// END BORROWED CODE [29]‬

‭pub‬‭fn‬‭sort_for_max‬‭(‬‭ciphers‬‭: &[LWE],‬‭ksk‬‭: &LWEKSK,‬‭bsk‬‭: &LWEBSK,‬‭encoder‬‭: &‬‭Encoder‬‭,‬
‭round‬‭:‬‭usize‬‭)‬

‭->‬‭Result‬‭<‬‭Vec‬‭<‬‭LWE‬‭>,‬‭Box‬‭<‬‭dyn‬‭std‬‭::‬‭error‬‭::‬‭Error‬‭>>‬
‭{‬

‭// if ciphers contains less than two elements, just return it‬
‭if‬‭ciphers‬‭.‬‭len‬‭() <‬‭2‬‭||‬‭round‬‭>=‬‭ciphers‬‭.‬‭len‬‭()-‬‭1‬‭{‬
‭return‬‭Ok‬‭(‬‭ciphers‬‭.‬‭to_vec‬‭())‬
‭}‬

‭let‬‭mut‬‭results‬‭=‬‭ciphers‬‭.‬‭to_vec‬‭();‬
‭// Compare values from left to right, swapping always putting larger on right‬
‭// Will not result in a fully sorted vector, but will end up with the larges‬

‭value at the end‬
‭for‬‭i‬‭in‬‭0‬‭..(‬‭ciphers‬‭.‬‭len‬‭()-‬‭1‬‭-‬‭round‬‭) {‬
‭let‬‭(‬‭c_max‬‭,‬‭c_min‬‭) =‬‭compute_max_min‬‭(&‬‭results‬‭[‬‭i‬‭],‬‭&‬‭results‬‭[‬‭i‬‭+‬‭1‬‭],‬‭ksk‬‭,‬‭bsk‬‭,‬

‭encoder‬‭)?;‬
‭results‬‭[‬‭i‬‭] =‬‭c_min‬‭;‬
‭results‬‭[‬‭i‬‭+‬‭1‬‭] =‬‭c_max‬‭;‬
‭}‬

‭Ok‬‭(‬‭results‬‭)‬
‭}‬

‭pub‬‭fn‬‭identify_max_bids‬‭(‬‭ciphers‬‭: &[LWE],‬‭ksk‬‭: &LWEKSK,‬‭bsk‬‭: &LWEBSK,‬‭encoder‬‭:‬
‭&‬‭Encoder‬‭,‬‭sk_in‬‭: &‬‭LWESecretKey‬‭)‬

‭->‬‭Result‬‭<‬‭Vec‬‭<‬‭f64‬‭>,‬‭Box‬‭<‬‭dyn‬‭std‬‭::‬‭error‬‭::‬‭Error‬‭>>‬
‭{‬

‭// RUN THIS UNTIL ALL DUPLICATE BIDS HAVE BEEN DETERMINED‬
‭// Create max array‬
‭let‬‭mut‬‭round‬‭:‬‭usize‬‭=‬‭0‬‭;‬
‭let‬‭mut‬‭max_array‬‭:‬‭Vec‬‭<‬‭f64‬‭> =‬‭Vec‬‭::‬‭new‬‭();‬

‭// Copy ciphers into results array‬
‭let‬‭mut‬‭results‬‭=‬‭ciphers‬‭.‬‭to_vec‬‭();‬

‭// To begin, call sort_for_max for the full array.‬
‭// The largest value will end up in the right-most position‬
‭results‬‭=‬‭sort_for_max‬‭(&‬‭results‬‭,‬‭ksk‬‭,‬‭bsk‬‭,‬‭encoder‬‭,‬‭round‬‭)?;‬

‭// Decrypt that value and see what it is. Remove the voter ID‬
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‭let‬‭temp_master_max_value‬‭=‬
‭(&‬‭results‬‭[‬‭ciphers‬‭.‬‭len‬‭()-‬‭1‬‭].‬‭decrypt_decode_round‬‭(‬‭sk_in‬‭)?).‬‭round‬‭();‬

‭// Add (with voter ID, to the max array)‬
‭max_array‬‭.‬‭push‬‭(‬‭temp_master_max_value‬‭);‬
‭let‬‭master_max_value‬‭=‬‭remove_voter_id‬‭(‬‭temp_master_max_value‬‭)?;‬

‭// Encrypted master_max_value is the highest bid, with no voter ID‬
‭let‬‭master_max_value_enc‬‭= LWE::‬‭encode_encrypt‬‭(‬‭sk_in‬‭,‬‭master_max_value‬‭,‬

‭&‬‭encoder‬‭)?;‬

‭let‬‭mut‬‭done‬‭=‬‭false‬‭;‬
‭round‬‭+=‬‭1‬‭;‬
‭// Then, while not done:‬
‭while‬‭!‬‭done‬‭&&‬‭round‬‭<‬‭ciphers‬‭.‬‭len‬‭(){‬
‭// Call sort_for_max for the array, but only for the left-most n-1 values‬
‭results‬‭=‬‭sort_for_max‬‭(&‬‭results‬‭,‬‭ksk‬‭,‬‭bsk‬‭,‬‭encoder‬‭,‬‭round‬‭)?;‬

‭// Call compute_max_min on the right-most minus n value and the re-encrypted‬
‭max without voter ID.‬

‭let‬‭(‬‭temp_max‬‭,‬‭_temp_min‬‭) =‬‭compute_max_min‬‭(&‬‭results‬‭[‬‭ciphers‬‭.‬‭len‬‭()-‬‭1‬‭-‬‭round‬‭],‬
‭&‬‭master_max_value_enc‬‭,‬‭ksk‬‭,‬‭bsk‬‭,‬‭encoder‬‭)?;‬

‭let‬‭temp_max_dec‬‭=‬‭temp_max‬‭.‬‭decrypt_decode_round‬‭(‬‭sk_in‬‭)?.‬‭round‬‭();‬
‭if‬‭temp_max_dec‬‭>‬‭master_max_value‬‭{‬

‭// If the max of this round is greater than the master_max_value, add‬
‭temp_max to the max_array. Continue the loop‬

‭// Add temp_max to max_array‬
‭max_array‬‭.‬‭push‬‭(‬‭temp_max_dec‬‭);‬
‭round‬‭+=‬‭1‬‭;‬

‭}‬
‭else‬‭{‬

‭// We're done‬
‭done‬‭=‬‭true‬‭;‬

‭}‬
‭}‬

‭Ok‬‭(‬‭max_array‬‭)‬

‭}‬

‭pub‬‭fn‬‭remove_voter_id‬‭(‬‭val‬‭:‬‭f64‬‭)‬
‭->‬‭Result‬‭<‬‭f64‬‭,‬‭Box‬‭<‬‭dyn‬‭std‬‭::‬‭error‬‭::‬‭Error‬‭>>‬

‭{‬
‭// println!("Value: {}", val);‬
‭let‬‭mut‬‭val‬‭=‬‭val‬‭.‬‭clone‬‭();‬
‭val‬‭= (‬‭val‬‭/‬‭10.0‬‭).‬‭floor‬‭()*‬‭10.0‬‭;‬
‭// print val‬
‭// println!("Value: {}", val);‬
‭Ok‬‭(‬‭val‬‭)‬

‭}‬
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