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 Abstract 

 In blind-bidding auctions, determining the winner requires processing bids without revealing 
 non-winning bid information. This study explores the use of Fully Homomorphic Encryption 
 (FHE) as a solution for this challenge. FHE permits operations like addition and multiplication 
 on encrypted data, enabling potentially arbitrary computations without exposing underlying 
 values. Hower, leveraging FHE for blind-bidding auctions is not straightforward. Classic sorting 
 algorithms are not directly applicable due to FHE’s constraints. This thesis presents our approach 
 to designing a blind-bidding auction using FHE, focusing specifically on determining the 
 maximum bid within the given computational boundaries. 
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 Chapter 1: Introduction 

 1.1 Explanation of Blind Bidding 

 Alice, Bob, and Charlie are taking part in a blind bidding auction. Each one of them aims 

 to make the highest bid. Each of them wants to keep their bid private. Each of them also wants to 

 be confident that the winning bid was selected by the auction owner, without favoritism. The 

 winning bid, and who made that bid, should be made public, but no other information should be 

 determinable. This includes the ordering of the non-winning bids. 

 1.  Everyone should be able to see the value of the winning bid. 

 2.  No information should be revealed about non-winning bids. 

 With the rise of digital auctions, ensuring privacy and fairness is important. In this study, 

 we use Fully Homomorphic Encryption (FHE) to set up a blind-bidding auction system. 

 1.2 Fully Homomorphic Encryption 

 A Homomorphic Encryption scheme is a scheme in which an operation can be performed 

 on encrypted data. Fully Homomorphic Encryption (FHE) schemes are homomorphic encryption 

 schemes that are both multiplicatively and additively homomorphic. Since all circuits can be 

 expressed using only multiplication and addition, a FHE scheme allows for arbitrary 

 computations to be performed on encrypted data. 

 Homomorphic Encryption was introduced in a theoretical sense by Rivest, Adleman, and 

 Dertouzos in 1978 under the name of Privacy Homomorphisms [1]. They illustrated the types of 

 privacy homomorphisms that might exist, though, as they acknowledged at that time, their 

 examples were weak cryptographically. 

 The first known implementation of a FHE Scheme was by Gentry [2] in 2008. Gentry’s 

 scheme was based on lattices, which support efficient evaluation for circuits of an arbitrary 
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 depth. The scheme was built on the hardness of lattices and learning with errors (LWE) [3, 4]. 

 This first scheme introduced by Gentry involved an expensive bootstrapping step. Since then, 

 many advances have been made to reduce the cost of bootstrapping [5, 6, 7, 8, 9]. 

 Over the years, various techniques and optimizations have been introduced, significantly 

 reducing bootstrapping time, from the original scheme introduced by Gentry in 2008 to the 

 notable reduction to 127 ms in 2017 [2, 10, 11, 12]. 

 In July of 2022 the Zama Team released Concrete by Zama [30]. This open source 

 framework is built on a variant of TFHE [13], and introduces a programmable bootstrapping 

 technique, where a function can be evaluated during the bootstrapping process. The Concrete 

 library is the FHE library used in this project. 

 As we approach the quantum era, the importance of FHE is becoming more evident. FHE 

 is a candidate for post-quantum security. Quantum computing holds the potential to undermine 

 the security of many current encryption schemes, leaving currency security infrastructure 

 vulnerable. By continuing to advance FHE, we are paving a way for security in the quantum 

 future. 

 1.3 Objectives of the Study 

 In this work, we set up a blind-bidding auction system to explore the nuances of FHE. In 

 the auction, bidders are assigned a bidder ID. The bids in the auction encode the bid value as the 

 more significant bits, while the bidder ID is stored in the least significant bits. The auction takes 

 encrypted bids, and outputs the highest bid. In the case of multiple tie bids, all tie bids are output 

 by the system. 

 The blind-bidding auction system serves as a testbed to explore FHE. The primary 

 objective of this study is to work with FHE data and explore the intricacies of the encryption 



 11 

 scheme and operation upon FHE data. We don’t expect that the blind-bidding auction will be 

 practical for actual implementation, but instead expect to develop further insight into the 

 intricacies of FHE. 

 The reason the blind-bidding auction serves as such an apt testbed for studying FHE is its 

 detailed requirement of needing to reveal a precise amount of information, but nothing more. 

 Additionally, because we don’t quite need to sort the full array of bids, but neither can we just 

 compute the maximum, considering the best way to accomplish this provides an interesting 

 problem to tackle in the context of FHE. We need to consider how we can reveal some unknown 

 number of tied maximum bids, without ever decrypting or revealing additional information about 

 non-winning bids. 

 In this study, we present a sorting system specifically tailored to blind-bidding auctions. 

 Unlike traditional sorting systems, our system is designed to prioritize confidentiality of bids. 

 The primary innovation lies in the ability to identify an undetermined number of highest bids, 

 without revealing any information about the non-winning bids. 

 The scope of this study is only small bids, ranging between 0-2, and for no more than 100 

 bids. All computations should be able to be done on an average personal computer. The 

 implementation and testing is specifically on a MacBook Pro with an Apple M1 chip and 8 GB 

 memory, and most tested computation times were under one hour of computation time. 

 1.4 Research Questions 

 In implementing a FHE scheme to set up the blind-bidding auction system, the following 

 are studied: 

 ●  The impact of initial parameters on the computation time and accuracy. 

 ●  How changes to the initial arrangement of a set of bids impacts the accuracy. 
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 ●  How accurately can we estimate computation times based on the number of bids and 

 potential tied winning values? 

 ●  For what sizes of input bids, if any, the blind-bidding auction is practical. 

 Based on our methodologies, we expect to gain a clearer understanding of how initial 

 parameters impact computation time and accuracy. We also expect to be able to accurately 

 estimate computation time based on the number of comparisons required in the auction. 

 We aim to not only expand technical knowledge surrounding encrypted data computation 

 but also shed light on practical challenges and considerations when working with 

 homomorphically encrypted data. 



 13 

 Chapter 2:  Literature Review: Background of Homomorphic Encryption 

 2.1 Theoretical Introduction to Privacy Homomorphisms 

 In 1978, Rivest et al. [1] theoretically studied the concept of what they termed a “privacy 

 homomorphism.” They proposed a scenario: suppose a small loan company would like to 

 securely store their encrypted data on a time-sharing device. The company would also like to be 

 able to answer questions such as 

 ●  What is the average loan size? 

 ●  What is the expected income from loans in the next month? 

 ●  How many loans over some value  v  have been granted? 

 The small company can consider the following possibilities for answering these questions: 

 ●  Reject the idea of the time-shared service, and purchase and in-house system. 

 ●  Use the time-sharing service for storing encrypted files only, and have a system in-house 

 for decryption and computation. 

 ●  The time-sharing company can use modified hardware which allows brief decryption 

 within the CPU, which is not externally accessible. 

 ●  Use a special privacy homomorphism to encrypt data, so that the time-shared computer 

 can operate on the data without decrypting it first. 

 The first two options don’t allow efficient use of remote storage of data, if that data needs 

 to be computed on. The third option is workable, but requires a special cooperation of the 

 time-sharing company. The fourth option, however, would be ideal, but requires a  privacy 

 homomorphism.  Rivest et al. [1] propose that a privacy  homomorphism could theoretically be a 

 solution. 
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 2.1.1 Mathematical Representation of a Homomorphism 

 A  homomorphism  is a mathematical concept which describes a structure-preserving map 

 between two algebraic structures. A homomorphism can translate one set of operations in one 

 structure to another set of operations in another structure, while maintaining the relationship 

 between elements. Let  be sets with operations  and  . The function  is a  𝐴 ,     𝐶 ◦
 𝐴 

◦
 𝐶 

 𝑓 

 homomorphism from  to  if for all  ,  .  𝐴  𝐶  𝑥 ,  𝑦 ∈  𝐶  𝑓 ( 𝑥 ◦
 𝐶 
 𝑦 ) =  𝑓 ( 𝑥 )◦

 𝐴 
 𝑓 ( 𝑦 )

 Suppose we want to perform some operation + on  . Consider a decryption and  𝑥  ' ,  𝑦  ' ∈  𝐴 

 encryption pair of operations,  and  , respectively, and some function ϕ− 1 :  𝐴 →  𝐶 ϕ:  𝐶 →  𝐴 +
 𝐶 

 such that  is a homomorphism. That is, we want ϕ:  𝐶 →  𝐴 

 . ϕ( 𝑥 +
 𝑐 
    𝑦 ) = ϕ( 𝑥 ) + ϕ( 𝑦 ) =  𝑥  ' +  𝑦  ' 

 If we identify an encryption and decryption scheme that is homomorphic, it theoretically 

 allows for calculations on encrypted data. This means data sent to a third-party and operations 

 can be performed on it in its encrypted state. 

 There are some immediate restrictions to such a homomorphism that would prevent it 

 from being cryptographically secure. For example, Rivest et al. [1] point out some inherent 

 restrictions that limit the utility of privacy homomorphisms. For example, if there is a predicate 

 operation “  ” which allows for total order of arbitrary constants, there is no secure privacy ≤

 homomorphism from  to  .  𝐶  𝐴 

 If there is a predicate operation such as “  ”, any encryption  can easily be decoded by ≤  𝑑 
 𝑖 

 systematically comparing encryptions of known values to the encryption of  , to find where  𝑑 
 𝑖 

 𝑑 
 𝑖 

 fits into the sequence. That is a malicious user can decode  by computing  , ϕ− 1 ( 𝑑 
 𝑖 
) ϕ− 1 ( 1 ) =  1' 
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 ,  , and so on, until finding a  such that ϕ− 1 ( 2 ) =  1' +  1' ϕ− 1 ( 4 ) = ϕ− 1 ( 2 ) + ϕ− 1 ( 2 )  𝑘 

 . Using this strategy  can be computed exactly [1]. ϕ− 1 ( 2  𝑘 ) ≥ ϕ− 1 ( 𝑑 
 𝑖 
)  𝑑 

 𝑖 

 2.1.2. Example of a Theoretical Privacy Homomorphism 

 Rivest et al. [1] give an example to illustrate that such privacy homomorphisms might 

 exist in theory (though they acknowledged that their examples were weak cryptographically) 

 Consider  , the system of integers modulo  with the operations  𝐴 =<  𝑍 
 𝑝 − 1 

;    +
 𝑝 − 1 

, −
 𝑝 − 1 

>  𝑝 −  1 

 of addition and subtraction, where  is a prime number. We may choose  , the  𝑝  𝐶 =<  𝑍 
 𝑛 
; ×

 𝑛 
; ÷

 𝑛 
>

 integers modulo  where  , the product and  and a large prime  . Let  be a generator  𝑛  𝑛 =  𝑝𝑞  𝑝  𝑞  𝑔 

 modulo  . Then we choose  𝑝 

ϕ− 1 ( 𝑥 ) ≡  𝑔  𝑥 ( 𝑚𝑜𝑑     𝑛 )

 and the decoding function is the inverse “mod(p) logarithm, base g” function. By laws of 

 exponents,  is a homomorphism. If  is difficult to factor (both  and  are large) and the prime ϕ  𝑛  𝑝  𝑞 

 is such that logarithms modulo  can be efficiently computed, then the computer system can  𝑝  𝑝 

 give both  and  without fear of compromising the security of the data.  𝑔  𝑛 

 While this example, and the others given by Rivest et al. [1] aren’t necessarily strong 

 cryptographically, they illustrate that  privacy homomorphisms  ,  which have turned into what we 

 now call  homomorphic encryption  , are possible in theory.  This led to a search for secure, 

 homomorphic encryption schemes. 

 2.2 Learning with Errors 

 The Homomorphic Encryption schemes that were to come would be built on the 

 mathematics and security of Learning with Errors (LWE). The LWE problem was introduced by 
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 Oded Regev in 2005 [3], [4], and later extended to Rings by Lyubashevesky, Peikert, and Regev 

 [14]. 

 The security of LWE is based on the hardness of worst-case problems on ideal lattices. 

 This means that if there is an efficient algorithm to solve the average LWE problem, there is also 

 an efficient algorithm to solve the worst-case problem on ideal lattices [3]. Since the hardness of 

 the ideal lattice problem is well documented [4, 15], this gives a strong indication of the hardness 

 of the LWE problem. 

 We discuss the mathematics of LWE now, and then later introduce the FHE schemes built 

 with LWE. 

 2.2.1 Mathematical Basis of LWE 

 LWE is based on a system of linear equations, with an error introduced to prevent the 

 system prom being truly uniform. 

 Regev presents the cryptosystem parameterized by integers  (the security parameter),  𝑛  𝑚 

 (number of equations),  (modulus), and a real  (noise parameter). A choice that  𝑞  𝛼 >  0 

 guarantees both security and correctness [3] is as follows. Choose  to be a prime between  𝑞  𝑛  2 

 and  ,  , and  . Below is a description of the scheme. All  2  𝑛  2 

 additions are performed modulo  .  𝑞 

 Private Key:  The private key is a vector  chosen  uniformly from  . 

 Public Key:  The public key consists of  samples  form the LWE distribution with  𝑚 

 secret  , modulus  , and error parameter  .  𝑞  𝛼 
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 Encryption:  For each bit of the message, do the following. Choose a random set  uniformly  𝑆 

 among all  subsets of  . The encryption is  if the bit is 0 and  2  𝑚 [ 𝑚 ]

 if the bit is 1. 

 Decryption:  The decryption of a pair  is 0 if  is closer to 0 than to  modulo 

 and 1 otherwise.  𝑞 

 2.2.2 Example of a Simple LWE System of Linear Equations 

 We now provide an example to illustrate the mathematics above. 

 Let  ,  ,  ,  . Using a  𝑛 =  5  5  2 ≤  𝑞 =  29 ≤  50 

 uniform distribution from  , we use the private key  . 

 We generate a random set of 8 samples from the LWE distribution with secret key  , 

 modulus  , and add the error parameter  . We end up with the following in the Public Key  𝑞 =  29  𝛼 

 set. Note that we have separated the error for the sake of clarity with the example. 

 24  𝑠 
 0 

+  22  𝑠 
 1 

+  1  𝑠 
 2 

+  2  𝑠 
 3 

+  11  𝑠 
 4 

=  14 +  1    ( 𝑚𝑜𝑑     29 )

 11  𝑠 
 0 

+  15  𝑠 
 1 

+  5  𝑠 
 2 

+  18  𝑠 
 3 

+  10  𝑠 
 4 

=  14 +  0       ( 𝑚𝑜𝑑     29 )

 11  𝑠 
 0 

+  20  𝑠 
 1 

+  9  𝑠 
 2 

+  25  𝑠 
 3 

+  8  𝑠 
 4 

=  17 +  2       ( 𝑚𝑜𝑑     29 )

 22  𝑠 
 0 

+  1  𝑠 
 1 

+  23  𝑠 
 2 

+  3  𝑠 
 3 

+  23  𝑠 
 4 

=  20 +  0       ( 𝑚𝑜𝑑     29 )

 17  𝑠 
 0 

+  22  𝑠 
 1 

+  10  𝑠 
 2 

+  1  𝑠 
 3 

+  1  𝑠 
 4 

=  25 +  0       ( 𝑚𝑜𝑑     29 )

 6  𝑠 
 0 

+  20  𝑠 
 1 

+  14  𝑠 
 2 

+  0  𝑠 
 3 

+  17  𝑠 
 4 

=  27 +  0       ( 𝑚𝑜𝑑     29 )

 13  𝑠 
 0 

+  12  𝑠 
 1 

+  7  𝑠 
 2 

+  13  𝑠 
 3 

+  10  𝑠 
 4 

=  20 +  2       ( 𝑚𝑜𝑑     29 )

 17  𝑠 
 0 

+  19  𝑠 
 1 

+  12  𝑠 
 2 

+  3  𝑠 
 3 

+  20  𝑠 
 4 

=  11 +  1       ( 𝑚𝑜𝑑     29 )
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 Encryption: For each bit we wish to encrypt, choose a random subset, in this case the 

 elements 0, 1, 2, 3, 6. Add these equations together modulo 29. Note that without errors, the right 

 hand side is 27. The added error of 5 results in the right hand side being 3. 

 23  𝑠 
 0 

+  12  𝑠 
 1 

+  16  𝑠 
 2 

+  3 +  4  𝑠 
 4 

=  3    ( 𝑚𝑜𝑑     29 )

 If we wish to send an encrypted 0 bit, we send this equation as-is. If we wish to send an 

 encrypted 1 bit, we need to add  , and so should instead  send 

 23  𝑠 
 0 

+  12  𝑠 
 1 

+  16  𝑠 
 2 

+  3 +  4  𝑠 
 4 

=  17    ( 𝑚𝑜𝑑     29 )

 Decryption: The decryption of a pair  is 0 if  is  closer to 0 than  . 

 In the first equation,  . This is closer to 0 than  to 14, so this bit 

 would decrypt as 0. 

 In the case of the second equation,  . This is closer  to 14 than 

 to 0, so decrypts as a 1. 

 The FHE schemes to come were built on the mathematics and the hardness assumptions 

 of the LWE problem and its variations. 

 2.3 Somewhat Homomorphic Encryption 

 Following the introduction of the idea, homomorphic encryption changed from a 

 theoretical idea to implemented schemes. The first schemes developed were Somewhat 

 Homomorphic Encryption (SHE) schemes, meaning they were homomorphic on addition or 

 homomorphic on multiplication, but not on both, or, they were homomorphic for some number 

 of operations, but eventually contained too much noise decrypt accurately. 

 The first semantically secure homomorphic encryption scheme was proposed by 

 Goldwasser and Micali [16] in 1982. Their scheme is additively homomorphic. In 2006, Boneh, 

 Goh, and Nissim [17] introduced a homomorphic encryption scheme that was homomorphic 
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 under addition, along with  one  multiplication operation. This allows for evaluation of 2-DNF 

 circuits (that is, two or-circuits combined by one and circuit). Their construction allows for 

 unlimited additions, one multiplication, followed by unlimited additions. 

 The scheme relies on the  subgroup decisions problems  ,  on a new hardness problem put 

 forward by Bohen et al., in which they prove that given an element of a group of composite order 

 , it is infeasible to decide whether it belongs a subgroup of order  .  𝑛 =  𝑞 
 1 
 𝑞 

 2 
 𝑞 

 1 

 The scheme built by Boneh et al. [17] takes polynomial time in the size of the message 

 space  , so can only be used to encrypt short messages.  𝑇 

 2.4 Gentry’s Fully Homomorphic Encryption Scheme 

 In 2008, Gentry pioneered the first Fully Homomorphic Encryption (FHE) Scheme. This 

 means that the scheme allowed for unbounded use of both multiplication and addition, meaning 

 that any function could technically be computed. 

 The scheme built by Gentry is broken down into three steps: a general “bootstrapping” 

 result, an “initial construction” using ideal lattices, and a technique to “squash the decryption 

 circuit” to permit bootstrapping. 

 In Gentry’s scheme, a ciphertext has the form  where  is the ideal lattice and  is  𝑣 +  𝑥  𝑣  𝑥 

 an “error” or “offset” vector. The ideal lattice scheme follows from the LWE, as they are 

 isomorphic [3]. On its own, the scheme is only homomorphic for shallow circuits due to the 

 linear growth of the “error” vector with addition and its exponential growth with multiplication. 

 As explained in the LWE section above, the purpose for the “error” vector, or noise, in FHE 

 schemes is because the noise is what guarantees the security of the fresh encryption. To address 

 the issue of noise growth, a bootstrapping step is necessary [5]. 
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 2.4.1. Bootstrapping 

 The idea behind the bootstrapping step is, after some number of operations, to reduce the 

 amount of noise back to the “original” amount to allow for larger circuits. If the noise grows too 

 large, the ciphertext will reach a point where it no longer is able to be decrypted. When the limit 

 is being reached, a bootstrapping step can be performed to reduce the amount of noise. 

 A scheme is termed “bootstrappable” if it can homomorphically evaluate its own decryption 

 circuit and still handle at least one more operation. That is, the bootstrapping scheme 

 homomorphically decrypts the ciphertext. In normal decryption, the secret key is used to output a 

 plaintext. With bootstrapping, the encrypted secret key is used to output a new encryption, and 

 this new encryption has a smaller “error” vector (or less noise) that the original ciphertext. 

 The reason that the bootstrapping operation must perform an additional non-trivial 

 operation is because otherwise, the eliminated noise will be canceled out when performing the 

 subsequent operation. 

 The fact that Gentry’s scheme is bootstrappable is what made it a FHE scheme. 

 Unlimited multiplication and addition were theoretically possible. However, the bootstrapping 

 step is expensive, so while Gentry’s scheme is quite practical for shallow circuits, due to the 

 computational overhead of the bootstrapping operation, Gentry’s scheme becomes less practical 

 for applications requiring numerous multiplications [5]. 

 2.5 Reductions to the Bootstrapping Cost 

 The central technique of Gentry’s scheme was  Bootstrapping  .  This is what allowed 

 Gentry to make the breakthrough scheme from somewhat to fully homomorphic encryption. 

 With the introduction of bootstrapping, Gentry found a way to address the growth of noise. The 

 bootstrapping allowed for homomorphically evaluation of the SHE’s decrypting function on the 
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 ciphertext with too much noise. This reset the noise, thus allowing for further computation [11]. 

 With Gentry’s technique, there were no longer any theoretical limitations to what computations 

 can be performed on the ciphertext. However, the time requirements were the bottleneck 

 preventing the scheme from being feasible in practice [11]. 

 Because of this, reductions to bootstrapping costs have been one of the major areas of 

 research in FHE. [5, 6, 10, 11, 19, 20]. Some of these advancements are described below. 

 2.5.1 Reducing Bootstrapping Costs with Modulus Switching 

 Works such as Gentry’s addressed the issue of noise by using the bootstrapping step to 

 “squash” the noise [5]. In 2012, Brakerski and Vaikuntanthan introduced a novel technique, 

 dimension-modulus reduction  . This method reduced the  decryption complexity by shortening 

 ciphertexts without necessitating additional assumptions. 

 While Gentry’s construction for SHE was rooted in the complexity of problems on ideal 

 lattices, Brakerski and Vaikuntathan constructed a SHE whose security relied on the hardness of 

 arbitrary lattices, not just ideal lattices [10]. This advancement was built on the LWE problem. 

 Encryptions were represented by linear functions with noise. Though addition was 

 straightforward, multiplication rapidly expanded the size of ciphertexts [10]. 

 To counteract this, Brakerski and Vaikuntanthan introduced “  re-linearization  .” This 

 technique allowed multiplied ciphertexts to be expressed with a size roughly the same as the 

 initial ciphertexts. The process entailed creating a chain of encrypted linear and quadratic terms, 

 which, upon re-linearization, generated a function representing the multiplication of the initial 

 two ciphertexts. This re-linearization process used a chain of secret keys. With repeated 

 multiplication, noise growth necessitated a bootstrapping technique to convert the scheme from 

 “somewhat” to “fully” homomorphic [10]. 
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 To achieve full homomorphism, Gentry’s bootstrapping depended on the hardness of the 

 sparse subset-sum problem. The purpose of the bootstrapping step was to reduce the noise 

 introduced during addition and multiplication. Gentry’s scheme used “squashing” to reduce 

 decryption complexity, but at the cost of introducing the sparse subset problem assumption. In 

 contrast, Brakerski and Vaikuntathan’s scheme had similar homomorphic capacity, but a more 

 compact decryption circuit. Crucially, their method did not introduce any additional assumptions, 

 relying solely on LWE [10]. 

 They did so by using  dimension-modulus reduction  .  The core idea was converting a 

 ciphertext with parameters (  n  , log  q  ) to another representing  the identical message but with 

 altered parameters (  k  , log  p  ), without compromising  the message's integrity. This transformation, 

 akin to the re-linearization process, used a series of public parameters for ciphertext conversion. 

 This new bootstrapping technique relied only on the LWE assumption, improving the scheme’s 

 efficiency [10]. 

 2.5.2 Bootstrapping in Quasilinear Time 

 In 2013, Alperin-Sheriff and Peikert [11] were able to find a faster bootstrapping method 

 with polynomial error. Their bootstrapping algorithm provided methods that were in quasilinear 

 time for both “packed” and “non-packed” ciphertexts. The main technique that they used was to 

 enhance the “ring-switching” procedure of Gentry et al. In their algorithm, they enhance the 

 “ring-switching” procedure to support switching between two rings where either is a subring of 

 the other. This allowed them to provide more efficient homomorphic methods for evaluating 

 many linear transformations, including the decryption function [11]. 

 The algorithm by Alperin-Sheriff and Peikert was algorithmically simpler than previous 

 methods. Their method for non-packed ciphertexts used only cyclotomic rings having 
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 power-of-two index, which allow for a fast implementation [11]. For the packed ciphertext 

 method, their procedure drew on high-level ideas from [7, 8], but the actual implementation was 

 different conceptually. It avoided permutation networks and permutations of plaintext slots, as 

 well as avoided relying on general-purpose compilers for evaluating homomorphic circuits, but 

 instead introduced new procedures for homomorphically mapping between encrypted texts and 

 plaintext slots. [11] 

 In addition to improving the time of the bootstrapping procedures, their method was 

 entirely algebraic and the full procedure could be described as elementary operations from the 

 native instruction set of the SHE scheme. This simplicity affected the concrete efficiency of the 

 bootstrapping procedure [11]. Their method also decoupled the algebraic structures of the SHE 

 plaintext ring versus the ring needed for bootstrapping [11]. 

 2.5.4 TFHE: Fast Fully Homomorphic Encryption over the Torus 

 In 2015, Ducas and Micciancio [12] presented a very fast bootstrapping procedure, of 

 about .69 seconds, which was a big step towards practical FHE for arbitrary circuits. They began 

 by analyzing bootstrapping  in vitro  , or in the simplest possible setting: with two encrypted bits 

 and  , they wanted to obtain the encrypted result  in a form similar to the  𝐸 ( 𝑏 
 1 
)  𝐸 ( 𝑏 

 2 
)  𝐸 ( 𝑏 

 1 
 ⊼  𝑏 

 2 
)

 input bits. The encryption they used is a standard lattice encryption scheme, so  are noisy  𝐸 ( 𝑏 
 𝑖 
)

 encryptions and the output ciphertext  is bootstrapped to reduce its noise level. Their  𝐸 ( 𝑏 
 1 
 ⊼  𝑏 

 2 
)

 new bootstrapping method allowed for performing the computation in less than a second on 

 consumer grade personal computers [12]. 

 Ducas and Micciancio achieve these results based on two main techniques. First, they 

 introduce a novel homomorphic NAND operation. With two encryptions  and  , one  𝐸 ( 𝑚 
 1 
)  𝐸 ( 𝑚 

 2 
)
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 can compute a noisier  . Instead of working in modulo 2, they extend this to  𝐸 ( 𝑚 
 1 

+  𝑚 
 1 
)

 arithmetic modulo 4, to achieve a logical NAND operation. The outcome is that  can  𝐸 ( 𝑚 
 1 
 ⊼  𝑚 

 1 
)

 be obtained with a simple transformation. This new homomorphic NAND operation introduces 

 less noise than previous techniques, simplifying the bootstrapping process [12]. 

 Their second contribution is an enhancement of bootstrapping. Building off of the work 

 from [11], they use a homomorphic cryptosystem that encrypts integers mod  q  for efficient scalar 

 product calculation. They also introduce a ring variant to the method used by [11]. By directly 

 encoding cyclic groups and using the structure of lattices, they can represent cyclic group 

 elements with just one ciphertext [12]. 

 In 2016, Chillotti, Gama, Georgieva, and Izabachène further improved the bootstrapping 

 procedure. Their FHE scheme involves using polynomials over the real torus, and combines the 

 Scale-Invariant-LWE problem of [20] or the LWE normal form of [21] with the General-LWE 

 problem of [22]. They call their scheme TLWE, and it is a unified representation of LWE 

 ciphertexts, which encode polynomials over the Torus [18]. Their scheme extends the work of [9, 

 23, 12], and the efficiency comes from combining TLWE and TGSW. This technique was also 

 used independently by [24]. 

 Chillotti et al. expand on the previous work like this. A TGSW sample is essentially a 

 matrix whose individual rows are TLWE samples, and so the external product of TGSW times 

 TLWE is quicker than the internal product TGSW times TGSW used in previous work. This is 

 akin to comparing the speed of computing a matrix-vector product to a matrix-matrix product. 

 As a result, their bootstrapping procedure is 12 times faster than the previously most efficient 

 bootstrapping procedure [12], and runs at less than 0.052s [18]. 
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 Chillotti et al. continued to develop their TFHE scheme. In 2017, they released a paper 

 that included techniques for packing several bits of information and using the compact 

 representations to either batch multiple or speed-up single operations. This helped to address one 

 of the drawbacks of FHE schemes, which is the huge expansion factor of ciphertexts to 

 plaintexts. For example, in some cases they reduced the expansion from where it was between 

 6400 in output and 384000 in input to an expansion of about 64. Using their packing technique, 

 and packing both vertically and horizontally, they were able to reduce bootstrapping to 137  ms 

 [19]. 

 Over the course of the years since Gentry first introduced his Fully Homomorphic 

 Encryption Scheme in 2008, there has been a lot of work done to reduce the bootstrapping 

 requirements. Many FHE implementations have been built, including HElib [25], Microsoft 

 SEAL[26], TFHE [13], and  OpenFHE [27] to name a few. Zama [28, 30] has developed a 

 framework that contains a TFHE Compiler to make the process of writing FHE programs easier 

 for developers. These advances have resulted in FHE schemes that can be implemented on 

 personal devices, and in the next section, implementing Concrete by Zama to build a 

 blind-bidding auction is discussed. 
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 Chapter 3: Blind-Bidding Auction 

 In a blind bidding auction, each participant in the auction wants to win with the highest 

 bid, but all bids should be kept private through the entire bidding process. The only bid that 

 should be revealed is the winning bid. All information about all other bids should remain private. 

 There may be multiple winning bids which are tied. In this case, all of these bids should be 

 revealed. 

 We now explain the blind-bidding auction we have developed. In this section, we outline 

 the system requirements, methods, and implementation of our blind-bidding auction. 

 3.1. System Requirements 

 The blind-bidding auction is designed with the following system requirements: 

 ●  Each bid contains two parts: The bid value and a bidder ID (for identifying the owner of 

 the winning bid). 

 ●  The maximum bid(s) are calculated. If there is more than one maximum, then all tied 

 maximums will be output. These maximum bids will be decrypted. Nothing else will be 

 decrypted. The decrypted values reveal both the bid values and the bidder IDs for these 

 bids. 

 ●  No information is learned about any other bids. 

 3.2. Methods 

 The methodology used is experimental research. We implement the bidding system under 

 various parameter settings and document the performance metrics such as computational time 

 and accuracy under each setting. 
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 We build the blind-bidding auction using Rust, using the Concrete Fully Homomorphic 

 Library by Zama. We use a function from Optalysys [29] for computing the maximum between 

 two encrypted values, which utilizes Concrete’s programmable bootstrapping. 

 3.2.1 Justification for Tool Selection 

 Concrete by Zama  is a Rust-based, open source framework  enabling developers to use 

 homomorphic encryption without needing to understand all of the cryptography. The Zama Team 

 released Concrete officially on July 7, 2022. Zama is a company specializing in 

 privacy-preserving technologies. Concrete addresses three of the major issues in FHE: too slow, 

 too hard to use, and too limited in functionality. 

 There are two main approaches to FHE. The “leveled” approach attempts to only do as 

 many computations as possible before noise overflows into the data. The “bootstrapped” 

 approach adds in a bootstrapping operation to reduce noise (but increase computation time). 

 Concrete implements a variant of TFHE [13] that supports both leveled and fast bootstrapped 

 operations, as well as approximate or exact evaluation of arbitrary functions. 

 Concrete is the first framework to introduce programmable bootstrapping, a technique 

 where a univariate function can be computed for free during the bootstrapping operation. 

 However, this comes at the tradeoff of small precision, currently limited to 16 bits [28, 30]. 

 3.3 Implementation and Challenges 

 In this section, we describe the implementation of the blind-bidding auction. One of the 

 challenges of FHE is that the complexity quickly increases as size increases. Because of this, the 

 focus of this study is on implementing the blind-bidding auction for small values, particularly 

 focusing on the needed logic for working with the encrypted data. 
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 While the auction serves as a testbed to better understand the complexity and nuances of 

 FHE, it is not intended to be a production-level implementation. The auction described below 

 does not work for sufficiently large values to make it practical, but does help reveal the many 

 challenges and nuances of FHE. Of particular interest in this section is the algorithm used to 

 compute the maximum bid(s), without revealing any information about any losing bids. 

 3.3.1 Data Input and Pre-Processing 

 Each bidder is assigned a bidder ID. Based on the number of bidders, a sufficient number 

 of the least significant bits will be reserved for storing the bidder ID. The remaining bits will 

 store the bid value. 

 For example, if there are 9 bidders, they will be assigned bidder IDs between 1–9 

 (nobody will be assigned 0). The right-most digit (base 10) will be used to store the bidder ID. 

 The remaining digits will be used to store the bid value. If the bidder with bidder ID 5 would like 

 to submit a bid of 76, their bid value in plaintext will be 765. 

 In a production implementation of the blind-bidding auction, implementation would need 

 to be added to allow for the sharing of the public key, and for individual bidders to securely 

 encrypt their bids via the public key. The focus of this study is on the feasibility of using FHE to 

 sort and output only the winning bid(s), after they are encrypted. So, for the sake of this study, 

 bids are all accepted and encrypted via the same program used for sorting the bids. In the next 

 section, we explore the implementation of the bidding logic. 

 3.3.2 Bidding Logic Implementation 

 When considering the most efficient way to calculate the winning bid, we need to 

 consider the constraints of FHE. We cannot use any logic such as directly comparing whether 

 for some encrypted  . The process of testing for the maximum between two pairs  and  𝑎 <  𝑏  𝑎 ,  𝑏  𝑎 
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 results in the values  and  , where we know, for example, that  , but can’t determine  𝑏  𝑐  𝑑  𝑐 <  𝑑 

 whether  and  or  and  .  𝑐 =  𝑎  𝑑 =  𝑏  𝑐 =  𝑏  𝑑 =  𝑎 

 Due to the specific limitations of FHE, traditional algorithms for finding the maximum 

 values may not be directly applicable. Instead, we utilize a homomorphic 

 compute_max_min()  function which we describe below.  The  compute_max_min() 

 function comes from a paper by Optalysys [29], a company that is developing a silicon-photonic 

 chip specialized to speed up FHE operations. Following this, we describe our method for finding 

 the maximum bids. A comprehensive analysis of this method's performance can be found in the 

 Performance Results  section below. 

 3.3.3.1 Homomorphically computing the maximum and minimum of a pair 

 Finding the maximum values in the array of bids relies on the 

 compute_max_min()  function. This function is from the  implementation by Optalysys [29]. The 

 computation of the maximum and minimum values happen during a programmable bootstrap 

 operation. We first explain the simple algorithm of computing the maximum and minimum, and 

 then describe the implications of computing this algorithm in the context of homomorphic 

 encryption. 

 The algorithm's logic is simple. If you have two ciphertexts  and  , you can compute  𝑐 
 1 

 𝑐 
 2 

 the maximum and the minimum as shown in Algorithm 1. 

 Algorithm 1 

 Computing the maximum and the minimum values given two encrypted ciphertexts 

 compute_max_min() 

 1 difference <- cipher2 - cipher1 
 2 if difference > 0 
 3  differencePositive <- difference 
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 4 else 
 5  differencePositive <- 0 
 6 end if 
 7 maximum <- cipher1 + differencePositive 
 8 minimum <- cipher2 - differencePositive 

 We present a numerical example to demonstrate this algorithm. First for the case of 

 cipher1>cipher2  . 

 Let  cipher1=5  and  cipher2=2  . We now compute maximum  and minimum based on 

 this algorithm. We compute  difference  as  cipher2 -  cipher1 = 2-5 = -3  . 

 Because  difference  is not > 0, we set  differencePositive  to  0  . We then find 

 maximum  and  minimum  by setting  maximum=5+0=5  and  minimum=2-0=2  . 

 Now let's do the same thing with the cipher values swapped, where  cipher1=2  and 

 cipher2=5  . We compute  difference  as  cipher2 - cipher1  = 5-2 = 3  . Because 

 difference > 0  , we set  differencePositive  =  difference  = 3  . We then find 

 maximum  and  minimum  by setting  maximum=2+3=0  and  minimum=5-3=2  . 

 As you can see, the correct minimum and maximum values are returned in both the case 

 of  cipher1>cipher2  and  cipher1<cipher2  . Having seen  the algorithm in action with a 

 numerical example, let’s describe the underlying reasons for setting it up in such a way. 

 The reason to set the algorithm up in this fashion is due to the homomorphic encryption 

 and the possibility for the programmable bootstrap step. We need to recall that at each step, when 

 everything is encrypted homomorphically, any operation result is also encrypted. In line 1 of 

 Algorithm 1, the difference that is computed between  cipher2  and  cipher1  is an encrypted 

 value. Thus, we can’t simply use logic at that point to return the maximum and minimum values. 
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 Instead, in the setup of this function, Optalysys utilized programmable bootstrap [29]. In 

 Concrete, there is a function  bootstrap_with_function()  . The function computes a 

 bootstrap and applies an arbitrary function to the LWE ciphertext. In addition to a bootstrapping 

 key,  f,  a function to apply, is given as an argument  to  bootstrap_with_function()  . The 

 output  bootstrap_with_function()  is the encrypted  evaluation of  f  [29]. 

 It is of importance to us that we can compute a function within the bootstrapping 

 computation. First,  cipher_diff  , the difference between  cipher1  and  cipher2  is 

 computed. The function that we compute within the bootstrapping computation allows us to 

 check if  cipher_diff  . If it is, the function returns a new encryption of ≥  0 

 cipher_diff  . If it is not, it returns an encryption  of 0. Even though this is encrypted, we now 

 don’t need to know what the value of this returned value is, and can still apply it to our 

 algorithm, to compute the maximum and minimum. 

 As we describe our  identify_max_bids()  function in  the next section, it is 

 important to recall that, while  compute_max_min()  returns an encryption of the maximum 

 and the minimum values, these two returned values are indecipherable from the input  cipher1 

 and  cipher2  values. This inability to know whether  the starting encryption  cipher1  or 

 cipher2  is larger impacts the decisions made in implementing  the 

 identify_max_bids()  algorithm which we describe in  the next section. 

 3.3.2.2 Finding the Maximum Values 

 We find the maximum values using a modified version of bubble sorting. In a bubble sort, 

 going from left to right, two values are compared to each other. If the value on the left is larger 

 than the one on the right, they are swapped. Then that current right value is compared to the 
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 value on its right. After one iteration through the array, the maximum value is moved in the 

 rightmost position. 

 If the goal is to use bubble sort to sort an array completely, the process would continue 

 until the 2nd largest value is in the second rightmost position, the 3rd largest value is in the third 

 rightmost position, and so on, until the array is fully sorted. In our case, we don’t necessarily 

 need to sort the full array, we only need to find the winning bid, or, the tied winning bids. 

 For the sake of explanation, let’s discuss a hypothetical set of bids, {21, 22, 13, 14}. In 

 this case, there are three bidders. Their IDs are 1, 2, 3, and 4. Bidders with ID’s 1 and 2 have bid 

 2, and bidders with ID’s 3 and 4 have bid 1. 

 After looping through the array fully the first time,  it ends up in the arrangement of {21, 

 13, 14, 22}. At this point the highest bid is guaranteed to be the rightmost position. If there are 

 tie bids (which there is in this case), then the value in the right most position is the tied bid with 

 the highest bidder ID. 

 Since we know that 22 is a winning bid (because the rightmost bid must be the highest), 

 we can decrypt it. However, we now need a way to determine if there are any tie bids. 

 Remember, we are working with encrypted data. We don’t know anything about which bids are 

 2s and which bids are 1s. The initial thought might be to just sort the array again for the n-1 

 elements, and check the second highest bid. However, we need to be careful–we don’t want to 

 learn any information about losing bids. If we do this second sort, and it turns out we only have 

 one high bid, then we’ll learn information that is confidential by decrypting the second largest 

 value. 
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 So, what we do is we reserve the bidder ID of 0 as a marker. We remove the bidder ID by 

 taking the last digit off of 22 and replacing it with 0, giving us 20. We encrypt this 20, and use it 

 as our marker for the maximum bid value. 

 We do the sort again on the array for the second largest bid. The result is the array {13, 

 14, 21}. Next, we use the  compute_max_min()  function,  which returns the maximum of two 

 encrypted pairs, to compute the maximum of the current highest (21), and our marker value (20). 

 Since 21>20, when we decrypt the result we see 21. This means we’re not done. We need to do 

 another loop through the array to sort and check the next smallest value. This time, we are 

 calling  compute_max_min()  on 14 and 20. Since 20>14,  we will get 20 when we decrypt the 

 maximum. At this point, we know we have found all maximum values, because whatever the 

 minimum value is, it is less than 20, and therefore not a winning bid. 

 As the winning bids are found (22, 21), they are added to an array of maximum bids. The 

 final output of this function is the array of the decrypted values of maximum values. 

 Algorithm 2:  identify_max_bids() 

 Given a set of bids encrypted as ciphertexts, return an array with the winning bid(s) 

 Function identify_max_bids() 
 Round <- 0 
 MaxArray <- Empty List 
 Results <- Ciphers // Initialize Results as a copy of Ciphers 
 Results <- sort_for_max(Results, Round) 
 CurrentMasterMaxValue <- decrypt last value of Results 
 Push CurrentMasterMaxValue to MaxArray 
 MasterMaxValue <- remove_bidder_id(CurrentMasterMaxValue) 
 MasterMaxValueEnc <- encrypt(MasterMaxValue) 
 Done <- false 

 While not Done && Round < length(Ciphers) do 
 Results <- sort_for_max(Results, Round) 
 TempMaxDec <- 

 compute_max_min(Results[Length-Round-1],MasterMaxValueEnc) 
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 if TempMaxDec > MasterMaxValue then 
 Push TempMaxDec to MaxArray 
 Round += 1 

 else 
 Done=true 

 end if 
 end while 
 return MaxArray 

 End Function 

 Function sort_for_max(Results, Round) 
 if length(Ciphers) < 2 OR Round >= length(Ciphers) - 1 

 return Ciphers 
 end if 
 Results <- Ciphers // Initialize Results as a copy of Ciphers 
 for i from 0 to (length(Ciphers) - 2 - Round) do 

 (C_max, C_min) <- compute_max_min(Results[i], 
 Results[i+1], KSK, BSK, Encoder) 

 Results[i]   <- C_min 
 Results[i+1] <- C_max 

 end for 
 return Results 

 End Function 

 3.3.2.3 Computation Complexity of the  identify_max_bids()  Algorithm. 

 In this section we analyze the computational complexity of the 

 identify_max_bids()  function, emphasizing its dependence  on both the number of total 

 bids and the number of tied maximum bids. 

 The  identify_max_bids()  function has a computational complexity of  . The  𝑂 ( 𝑛  2 )

 total run time of the function is dependent on both the total length of the array, and the number of 

 tied winning bids. Because the  compute_max_min()  function  is computationally heavy, we 

 care about how many times this function is called. Let  be the total size of the array, and  be the  𝑛  𝑖 

 total number of tied maximum bids to be found. 
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 Figure 1. Number of Comparisons in the identify_max_bids() function based on the total number 
 of bids and the number of tie winning bids for arrays of size 10, 20, 30, 40, 50, 60, 70, 80, 90, 

 and 100. 

 To begin, the algorithm iterates through the array, putting the minimum of each pair on 

 the left, and the maximum on the right. This takes  moves. Each of these comparisons is a  𝑛 −  1 

 call to the  compute_max_min()  function. 

 The algorithm always iterates through the array a second time, taking  moves in  𝑛 −  2 

 round 2. Then, the value at position  must be compared to the master max value. Each of  𝑛 −  2 

 these comparisons is a call to the  compute_max_min()  function. If this computation shows 

 that the value in position  is less than the master maximum, we are done sorting.  𝑛 −  2 

 The algorithm then repeats this some number of times, dependent on  . In the end, after  𝑖 

 the initial sort, the function will be sorted a total of  more times. With each of those sorts, the  𝑖 

 number of comparisons being made decreases by one. 
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 Figure 2. Number of Comparisons in the identify_max_bids() function based on the total number 
 of bids and the number of tie winning bids for all arrays between 1 and 100. 

 Sorting the array completely takes  comparisons. After comparison 1, we sort an  𝑛 ( 𝑛 − 1 )
 2 

 array whose size decreases by one each time, until we have done so a total of  additional times.  𝑖 

 This leaves a total of  loops not done in the initial n loops expected. The total number  𝑛 −  𝑖 −  1 

 of computations to be removed from a complete sort is  . After each loop, we also ( 𝑛 − 𝑖 − 1 )( 𝑛 − 𝑖 − 2 )
 2 

 need to compare the current max with the master max value. This comparison happens a total of 
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 times. Thus, we get the following formula to calculate the total number of times that the  𝑖 

 compute_max_min()  function is called: 

 𝑛 ( 𝑛 − 1 )
 2 − ( 𝑛 − 𝑖 − 1 )( 𝑛 − 𝑖 − 2 )

 2 +  𝑖 

 In Figures 1 and 2, we can visualize the number of comparisons for fluctuations in  and  𝑛 

 . Each line in the graph represents a distinct  value. Which  is being represented by an  𝑖  𝑛  𝑛 

 individual line can be identified by the x-axis value at the end point of the line. All  values  𝑛 

 between 1 and 100 are shown in Figure 2. Fewer are shown in Figure 1 for a clearer view of 

 individual lines. For a given  value along the x-axis, you can see on the line representing a given  𝑖 

 value, the total number of comparisons. You can see in the chart that as  increases, the total  𝑛  𝑛 

 computational complexity increases exponentially. For a given  , as  increases, the amount of  𝑛  𝑖 

 additional computation for each additional  is less then for the previous  .  𝑖  𝑖 
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 Chapter 4: Results 

 In this section, we analyze the computational aspects of the FHE scheme and the 

 blind-bidding auction, examining the effects of parameter modifications on computation times 

 and auction accuracy. 

 4.1 Computation Times 

 In FHE, computation times can vary significantly depending on the parameters chosen. 

 These are discussed below. 

 4.1.1 Program Initialization for Different Parameters 

 There are multiple parameters that need to be set in the Concrete FHE scheme. These 

 include a LWE and RLWE key. We never changed the parameters of the LWE key, always using 

 128 bits of security, and a polynomial of size 2048. For the RLWE key, we tested for different 

 variations on the security bit and the polynomial size. 

 We also tested variations with the Key Switching Key (KSK) and Bootstrapping Key 

 (BSK) Initializing the KSK and the BSK both take 2 arguments, base log and levels. 

 You can view the results for how the initialization speed fluctuates based on changes in 

 the parameters in Table 1. 

 Using Table 1, we make some observations about the effect of different parameters of the 

 computation time for initiating the KSK and BSK. 

 Bits of Security:  Looking at lines 0 and 5, all parameters  stay the same with the 

 exception of the bits of security. Changing from 80 to 128 bits of security had a negligible impact 

 on the time required to initiate the KSK, but increased the time required to initiate the BSK by 

 28.5%. 
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 Table 1 

 Computation time required to build the KSK and BSK for different sets of parameters. 

 RLWE 
 Bits of 

 Security 

 RLWE 
 Polynomial 

 Size 

 (base log, levels)  Computation Time to 
 Initiate 

 KSK  BSK  KSK  BSK 

 0 
 80  2048 

 (4, 5)  (4, 5)  2274 ms  170655 ms 

 1  (6, 6)  (6,6)  2706 ms  210067 ms 

 2  (3, 28)  (3, 28)  12599 ms  968697 ms 

 3 

 128 

 1024 

 (4, 5)  (4, 5) 

 1188 ms  48371 ms 

 4 
 2048 

 2327 ms  177160 ms 

 5  2264 ms  238741 ms 

 6 

 4096 

 4604 ms  652111 ms 

 7  4500 ms  671387 ms 

 8  (3, 7)  (3, 7)  6480 ms  924656 ms 

 9  (4, 7)  (4, 7)  6519 ms  970439 ms 

 Base Log:  Looking at lines 8 and 9, all parameters  stay the same with the exception of 

 the base log for the KSK and BSK. Increasing the log from 3 to 4 increased the build time of the 

 KSK by 0.6% and the BSK by 4.7%. Compared to some other variations, this parameter's impact 

 is quite negligible on the build time of the KSK and BSK. 
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 Levels:  Making a drastic change in the number of levels also results in a drastic change 

 in the initialization time. Jumping the levels from 5 to 28, even while lowering the log base from 

 4 to 3 increased the initialization time of KSK by 82% and BSK by 82.3%. While this has a big 

 impact in initialization time, such a high level was never actually used past gathering these 

 results, so its impact on accuracy and computation time during the run of the program is 

 unknown. 

 Changing both Base Log and Levels:  Looking at lines  0 and 1, the increasing the values 

 of both the log base and levels increased the KSK initialization time by 16% and the BSK by 

 18.8%. 

 Changing the Polynomial Size of the RLWE:  Looking  at lines 3, 5, and 7, we can see 

 the impact in computation time from changing the polynomial size from 1024 to 2048 to 4096. 

 When changing from 1024 to 2048, it increases the initialization time of the KSK by 47.5% and 

 the BSK by 79.7%. When changing from 2048 to 4069, it increases the initialization time of 

 KSK by 49.7% and of BSK by 64.4%. Overall, to go from a polynomial size of 1024 up to 4096, 

 it increases the computation time of the KSK by 73.6% and the BSK by 92.8%. 

 Making changes to the polynomial size of the RLWE by far has the greatest overall 

 impact on a whole. It increases initialization time, and, as is shown in later sections, also 

 increases the overall computation time quite significantly. 

 4.1.2 Influence of Parameters on  compute_max_min() 

 Of greater significance than startup speed is the speed of our  compute_max_min() 

 function. This function is essential for comparing any two encrypted values. Thus, the time to 

 compute maximum values is directly related to the time to run  compute_max_min()  . In 

 Table 2 is a list of the average run time of  compute_max_min()  for a variety of parameters. 
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 Table 2 

 Computation time required to perform the compute_max_min() function for different sets 

 of parameters. 

 RLWE 
 Polynomial 

 Size 
 Encoder 

 (base log, levels)  Computation of 
 compute_max_min()  KSK  BSK 

 1024  (0.0, 1.0, 4, 2)  (4, 5)  (4, 5)  564 ms 

 2048  (0.0, 16.0, 5, 2)  (4, 5)  (4, 5)  1116 ms 

 4096 

 (0.0, 31.0, 6, 2)  (4, 5)  (4, 5)  2459 ms 

 (0.0, 50.0, 6, 2)  (4, 5)  (4, 5)  2450 ms 

 (0.0, 63.0, 6, 2) 
 (4, 5)  (4, 5)  2459 ms 

 (3,7)  (3,7)  2968 ms 

 (4, 7)  (4, 7)  3202 ms 

 You can see from these results that, on its own, the RLWE Polynomial has a big impact 

 on the computation time of  compute_max_min()  . However,  the other parameters also impact 

 the computation time. Making adjustments to the size of values that the encoder handles and to 

 the levels and log base also affect the computation time. 

 From our exploration of different RLWE polynomial values, it is evident that increasing 

 the size of the polynomial has significant impacts on the computation time. Regardless, to 

 accurately compute large values, it is necessary to do so. 

 4.1.3 Average vs. Theoretical Computation Time of  identify_max_bids() 

 The following section contains an analysis of computation time of 

 identify_max_bids()  , which relies on the computation  time of the 

 compute_max_min()  function analyzed in the previous  section. In the following analysis, 
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 these are the parameters at which the program was run. RLWE polynomial size: 4096; Encoder: 

 min: 0.0, max: 31.0, bits: 6, padding: 2; KSK: base log: 4, levels:5, BSK: base log: 4, levels: 5. 

 With these parameters, the average time to perform the  compute_max_min() 

 function was 2305.857 ms. This number comes from the average of 77 calls of 

 compute_max_mix()  . The timing is calculated using  Rust  Instant::now()  directly 

 before and after calling  comput_max_min()  . 

 The time required to calculate the array of maximum bids was tested, and those results 

 are compared to the theoretical time expected to perform the calculation. As mentioned in 

 section 3.3.2.3, the number of total comparisons in the  identify_max_bids  function is 

 dependent on  n  (the size of the array) and  i  (the  total number of tie bids). That equation is 

 𝑛 ( 𝑛 − 1 )
 2 − ( 𝑛 − 𝑖 − 1 )( 𝑛 − 𝑖 − 2 )

 2 +  𝑖 

 Based on this formula and the average computation time of  compute_max_min()  , 

 estimated run times for  identify_max_bids()  are calculated  and compared to actual run 

 times in Table 3. All averages in the table come from a sample size of 5. 

 There were notable outliers in expected vs. actual computation times in the cases when 

 and  . Including the major  outliers in these two cases, the mean  𝑛 =  50 ,     𝑖 =  40  𝑛 =  50 ,     𝑖 =  50 

 average percentage error (MAPE) is 7.86%. Removing the outlier data points and recalculating 

 the MAPE gives a value of 2.26%. 

 In the intended behavior of the  identify_max_bids()  function, the maximum value 

 from the first round of sorting is set as the master maximum value. However, discrepancies arose 

 in the aforementioned cases due to a fluctuation in the accuracy during computation. As 

 computations are performed on encrypted values, the associated noise of these values increases. 
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 Table 3 

 Expected vs. Actual Computation Times for Given  and  Values.  𝑛  𝑖 

 n  i  Comparisons  Expected 
 compute time 

 Average Actual 
 compute time 

 Percentage 
 error 

 9 

 1  16  36894 ms  37225 ms  0.90% 

 2  23  36894 ms  53950 ms  1.73% 

 3  29  53035 ms  66690 ms  0.27% 

 4  34  66870 ms  77673 ms  0.93% 

 5  38  78399 ms  85534 ms  2.38% 

 6  41  87623 ms  91301 ms  3.43% 

 7  43  94540 ms  95950 ms  3.23% 

 8  44  99152 ms  98946 ms  2.48% 

 9  44  101458 ms  98737 ms  2.68% 

 50 

 5  284  101458 ms  635354 ms  2.98% 

 15  679  654863 ms  1543963 ms  1.39% 

 25  974  1565677 ms  2146301 ms  4.43% 

 40  1229  2245905 ms  1471268 ms  *48.08% 

 50  1274  2833898 ms  1864774 ms  *36.52% 

 40  1229  2245905 ms  **2718565 ms  4.07% 

 50  1274  2833898 ms  **2958624 ms  0.71% 

 * These two values are outliers. The explanation of the outliers is below 

 ** Recalculation of the average, removing outliers 

 After 49 comparisons made in the first round of sorting for  , the cumulative noise  𝑛 =  50 

 caused the true maximum value of 29 to be mistakenly decrypted as 30. Given that all other tie 

 bids were valued at 2, they became lesser than the master maximum value, which was now 
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 inaccurately set at 30 (that is, a bid value of 3). As a consequence, the 

 identify_max_bids()  function concluded after just  one loop iteration, as opposed to the 

 expected 40 and 49 iterations, respectively. This premature termination resulted in the actual 

 computation time being significantly shorter than the projected computation time. Such 

 discrepancies underscore the challenges of maintaining accuracy in computations involving 

 encrypted values. 

 4.2 Accuracy 

 The accuracy of the blind-bidding auction depends on a combination of parameters and 

 configurations. Some of these can be influenced by the auction operator. In this section, we 

 explore how different bidding configurations can affect accuracy. 

 4.2.1 Fluctuation in Accuracy with Changes in  and  𝑛  𝑖 

 We focus on the variations in accuracy stemming from variations in  (the total number  𝑛 

 of bidders), and  (the number of tied maximum bids).  Selected results are shown in Table 5. It is  𝑖 

 worth noting, due to currency parameter constraint, the auction can only accommodate a 

 maximum of 9 unique bidder IDs. 

 The accuracy tends to decrease as  increases for  a given  , reflecting the fact that more  𝑖  𝑛 

 comparisons–and thus more opportunities for noise growth–are required for higher  values. As  𝑖 

 shown in Figure 3, the relationship between accuracy and the size of  has an  value of .6592.  𝑖  𝑅  2 

 This suggests that around 66% of the variation in accuracy is attributed to the increase in  and  its  𝑖 

 associated increase in the number of comparisons. To better understand the sources of the 

 remaining variation, we examined not just the total number of comparisons needed to determine 

 the maximum bids, but also the distribution of how many times each individual bid is being 

 compared. 
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 Table 4 

 Accuracy of Results of Winning Bids, for Given  and  Values  𝑛  𝑖 

 𝑛  𝑖  Accuracy 

 9  1  100% 

 9  2  100% 

 9  3  80% 

 9  4  79% 

 9  5  84% 

 9  6  73% 

 9  7  74% 

 9  8  79% 

 9  9  73% 

 Figure 3. For n=9, Accuracy of Results for i values between 1 and 9. 



 46 

 4.2.2 Fluctuation in Accuracy with Changes in Initial Configuration of Bids 

 In the auction, each participant is assigned a bidder ID. The bidder ID is not secret, and 

 the initial positioning of bids in the array can be facilitated based on the values of the bidder 

 IDs–either in ascending or descending order. As highlighted in section 3.3.2.2, each bid 

 undergoes at least one comparison with another bid in the process of determining the maximum. 

 Such comparisons result in the re-encryption of the bid, rendering it unrecognizable from its 

 original form. Therefore, the order in which the bids are initially placed in the array, based on 

 bidder IDs, does not compromise the system's security. Moreover, publicly associating original 

 encrypted bids with specific participants doesn’t leak any sensitive information. 

 This section contains an analysis of how the starting configuration of the bids impacts the 

 accuracy of the output. Depending on the initial location of a bid, it may be compared more or 

 fewer times before ending up in its final position, where it is no longer being compared to other 

 bids. We look further into this for sets of 8 bids. We set up three distinct arrays, with bids from 

 the set  . We then  arranged these in three different way in  𝐵 = { 21 ,     22 ,     23 ,     24 ,     25 ,     26 ,     27 ,     28 }

 arrays: With bidder ID in ascending order where  , descending  𝐵 
 𝑎 

= [ 21     22     23     24     25     26     27     28 ]

 order where  , and  randomly where  𝐵 
 𝑑 

= [ 28     27     26     25     24     23     22     21 ]

 . We checked the  provided maximum bids for ten iterations of  𝐵 
 𝑟 

= [ 25     23     21     28     22     27     24     26 ]

 the program for each of these configurations. For  the accuracy was .87, for  the accuracy  𝐵 
 𝑎 

 𝐵 
 𝑑 

 was .93, and for  the accuracy was .9. As you  can see, the accuracy is highest when the bids  𝐵 
 𝑟 

 started in the configuration  , and this configuration  was 6% more accurate than starting  𝐵 
 𝑑 

 configuration  .  𝐵 
 𝑎 
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 For each of these variations in starting configuration, there were an equivalent total 

 number of comparisons needed to find the maximum bids. However, the number of times each 

 given encrypted bid was compared to another bid is different for the different configurations. In 

 Table 5 we show the number of times that each encrypted value was compared to the different 

 arrangements. σ is the Standard Deviation of the number of comparisons. 

 Table 5 

 Distribution of Comparisons Among Encrypted Values for Different Starting 

 Configurations 

 Starting 
 Configuration 

 Total Number of Times the Given Encrypted Value was Compared 

 28  27  26  25  24  23  22  21  σ 

 𝐵 
 𝑎 

 1  4  6  8  10  12  14  8  4.224 

 𝐵 
 𝑑 

 7  8  8  8  8  8  8  8  0.354 

 𝐵 
 𝑟 

 5  5  4  11  7  12  11  8  3.137 

 Considering the fluctuation in the number of comparisons per value in  and  , we also  𝐵 
 𝑎 

 𝐵 
 𝑟 

 look at accuracy of, based on the number of times the bid was compared, how likely it is to 

 accurately hold its correct value. We show these results in Figure 4. The relationship between the 

 number of times that a value is compared and the accuracy on decryption (how often it decrypts 

 correctly) has an  value of .7644, suggesting  that around 76% of the variation in accuracy is  𝑅  2 

 attributed to how often the value was compared. This data suggests that as the number of 

 comparisons increases, the accuracy of a bid decreases. Thus, finding ways to distribute the 

 comparisons among all values will improve overall accuracy. This is discussed further in the 

 discussion section below. 
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 Figure 4. Accuracy of Results Based on the Number of Times Compared 

 The results underscore the complexities inherent in using a FHE scheme. Operations are 

 notably longer, and accumulation of noise significantly impacts the final accuracy of 

 computations. In the ensuing discussion we consider these accuracy nuances and consider the 

 practicality of the blind-bidding auction. 
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 Chapter 5: Discussion 

 5.2 Parameter Selection & Accuracy 

 In a FHE scheme, the potential growth of the error should be tracked well enough that 

 you never end up with inaccurate data, and all noise is taken care of during bootstrapping. 

 Concrete is both a FHE scheme and a Leveled Homomorphic Encryption scheme. With a leveled 

 scheme, there are a set number of levels before each bootstrapping step. With perfect starting 

 configuration of parameters, the auction should have been accurate each time. However, we were 

 not able to achieve this level of accuracy. FHE schemes are complicated, and changes to each 

 parameter impact other parameters. 

 Due to challenges with maintaining accuracy, interesting patterns show up with regards to 

 how the array is initially configured. This was briefly touched upon in the results in 4.3.2, but we 

 expand on this in the next section. 

 5.2.1 Accuracy Based on Starting Configuration 

 As seen in 4.3.2, there is a strong correlation between the number of times an encrypted 

 value is compared and the accuracy of the result. Encrypted values that were compared more 

 times are less likely to still be accurate upon decryption. This raises the question, is there 

 anything the auction owner can do with bidder IDs to optimize the distribution of the 

 comparisons? 

 As the number of comparisons increases for each individual value, the accuracy 

 decreases. We will delve deeper into how this manifests itself for three unique configurations of 

 the same data. Recall above that the total number of times that  compute_max_min()  is called 

 is 

 .  𝑛 ( 𝑛 − 1 )
 2 − ( 𝑛 − 𝑖 − 1 )( 𝑛 − 𝑖 − 2 )

 2 +  𝑖 
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 For the majority of these calls, the two values being compared are two full bids. 

 However, for each loop within  identify_max_bids()  ,  the current max is being compared 

 to the new encryption of the master max value, minus its bid ID. In our equation above, the  was  𝑖 

 added to the end accounts for this comparison. So, if we let 

 ,  𝐶 =  𝑛 ( 𝑛 − 1 )
 2 − ( 𝑛 − 𝑖 − 1 )( 𝑛 − 𝑖 − 2 )

 2 

 we can compute the sum of the total number of comparison for each individual bid using the 

 equation 

 .  𝐶 *  2 +  𝑖 

 However, if  , the total number of comparisons  in equivalent to when  .  𝑖 =  𝑛  𝑖 =  𝑛 −  1 

 To account for this difference, we calculate the sum of all comparisons as 

 , for  𝐶 *  2 −  𝑖  𝑖 <  𝑛 

 , for  𝐶 *  2 − ( 𝑖 −  1 )    𝑖 =  𝑛 

 Now we further analyze the case of different starting orientations, whose results we gave 

 in 4.3.2. Let a set of bids be  . This set contains bids from  𝐵 = { 21 ,     22 ,     23 ,     24 ,     25 ,     26 ,     27 ,     28 }

 bidders with ID’s 1-8. Consider three variations  ,  , and  . In  , the bids are entered  with  𝐵 
 𝑎 

 𝐵 
 𝑑 

 𝐵 
 𝑟 

 𝐵 
 𝑎 

 bidder IDs in numerical order. In  bids are  entered with bidder IDs in reverse numerical order.  𝐵 
 𝑏 
   

 In  bids are entered in a random order. We  discuss how these configurations affect the accuracy  𝐵 
 𝑟 
   

 of the sorted outcome. 

 Let  . We calculate  how many times each of these bids is  𝐵 
 𝑎 

= [ 21     22     23     24     25     26     27     28 ]

 compared to another bid. 

 First, 21 is compared to 22. They don’t swap. 22 is compared to 23. They don’t swap. 

 This process continues until 27 is compared to 28. 
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 At this point, 28 is added to the array of winning bids, and it is replaced with an 

 encryption of 20. This is the winning bid (28) without its bidder ID. 

 During the next round, the same process happens, but the comparisons only go up to 27. 

 Then, the highest bid (27) is compared to the encrypted 20. Since 27 is bigger, it is added to the 

 array of winning bids. Then, the loop runs again. 

 As you can see, in the first round, the first and last values are compared once and all 

 others twice. This is the case for each round, but since the lower values are still in the array for 

 more rounds, they are being compared for more rounds. In the end, you end up with this 

 distribution of comparisons: 

 Table 6 

 Number of Comparisons for Each Value, with an Ascending Starting Configuration 

 Total Number of Times Encrypted Value was Compared 

 Starting Position  21  22  23  24  25  26  27  28 

 Number of times 
 compared 

 8  14  12  10  8  6  4  1 

 Now we compare the ascending configuration to the descending configuration. Let 

 .  𝐵 
 𝑑 

= [ 28     27     26     25     24     23     22     21 ]

 In the first round, 28 is compared to 27, and they are swapped. Then 28 is compared to 26 

 and they are swapped. 28 continues to be swapped, and thus continues to be compared to each 

 value until it ends up all the way on the right. This is a total of 7 comparisons. 

 Just like last time, at this point 28 is added to the array of winning bids, and it is replaced 

 with an encryption of 20. This is the winning bid (28) without its bidder ID. 
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 In round two, 27 is compared to 26 and they are swapped. Then it is compared to 25, and 

 they are swapped. This continues until the array is in this configuration: 

 26 25 24 23 22 21 27 20 

 So far, 27 has been compared 7 times, once with the 28 to begin with, and now with each 

 other bid. It gets compared one more time, with 20, to determine if it is one of the maximums. It 

 is, so it gets added to the array of max bids, and the loop continues. 

 If we track how many times 26 is compared, it is also 8 total. As with all the other values, 

 until 21. Using the starting configuration of bids in descending order, we get the distribution of 

 comparisons shown in Table 7. 

 Table 7 

 Number of Comparisons for Each Value, with an Descending Starting Configuration 

 Total Number of Times Encrypted Value was Compared 

 Starting Position  28  27  26  25  24  23  22  21 

 Number of times 
 compared 

 7  8  8  8  8  8  8  8 

 We can see that using the descending configuration gives a much more uniform 

 configuration. In this case, where everyone has bid the same value, our results will be more 

 accurate if the starting configuration is with bidder IDs in descending order. 

 However, is this still the case if we go to the opposite extreme, where we only have one 

 winning bid? First, does the starting configuration have the same impact, where bids in 

 descending order lead to a more even distribution of comparisons? Second, what about the 

 winning bid specifically, is it better for that bid to be in ascending or descending order? In Table 

 8 we show the distribution of comparisons for some different sets of bids, in ascending versus 

 descending bidder ID starting configuration. 
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 Table 8 

 Initial Configuration of Bids and the Distribution of Comparisons 

 Starting Configuration  σ 

 Ascending  11  12  13  14  15  16  17  28 
 1.785 

 3  6  6  7  5  5  5  1 

 Descending  28  17  16  15  14  13  12  11 
 2.395 

 7  8  2  2  2  2  2  2 

 Ascending  21  12  13  14  15  16  17  18 
 1.714 

 9  3  5  5  4  4  4  4 

 Descending  18  17  16  15  14  13  12  21 
 2.736 

 9  7  2  2  2  2  2  1 

 Ascending  21  22  13  14  15  26  17  18 
 2.027 

 9  9  4  6  6  3  5  5 

 Descending  18  17  26  15  14  13  22  21 
 2.368 

 11  8  6  6  4  4  4  4 

 Ascending  21  22  13  24  15  26  17  18 
 2.222 

 10  10  5  7  7  3  6  6 

 Descending  18  17  26  15  24  13  22  21 
 2.332 

 12  9  6  6  6  5  5  5 

 Ascending  21  22  13  24  15  26  17  28 
 3.120 

 11  11  6  8  9  5  8  1 

 Descending  28  17  26  15  24  13  22  21 
 1.576 

 7  11  8  8  7  6  6  6 
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 As we begin to observe for a larger variety of winning values, it seems that the strategy of 

 placing bids in decreasing bidder ID order does not remain the most uniform distribution when 

 there are fewer winning bids. Based on these examples, it appears that for fewer winning bids, 

 bidder IDs in increasing order leaves a more uniform distribution. 

 Based on this information, we are unable to conclusively say if there is an advantage on 

 average for starting with bids configured in the ascending bidder ID or descending bidder ID 

 order. This is left as an extension to this work. From the data we have collected, our initial 

 thought is that using the descending bidder ID starting configuration is more valuable, because it 

 leads to a more uniform distribution in the case where there are many ties for maximum. The 

 case with many ties for maximum is also the case with the most comparisons in total, and 

 therefore, optimizing that extreme over the extreme of only one winning bid will likely lead to 

 better results overall. 

 5.2.2 Speed 

 For the cases in which we produce accurate data, the speeds are high, but not prohibitive. 

 For example, running the blind-bidding auction for a set of 50 bids, where there are 5 tie bids 

 took an average of  635354 ms to run. Computing the same thing on unencrypted data in Python 

 took .207 ms. The markup in speed is of the magnitude of 3 million times longer. So, while the 

 speed is not in fact prohibitive for a very small use case, as the number of bids increases, and the 

 computation time increases exponentially, that markup in speed very quickly can become 

 prohibitive. 

 However, as discussed in section 2.5, there have been enormous improvements to FHE 

 computation in the past 15 years, and it continues to be an area of research. Concrete, the FHE 

 implementation used for this project, was just released in 2022 [28, 30]. There continues to be 
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 work on increasing speeds of FHE, such as the work by Optasysis. The  compute_max_min() 

 function used in this project is from a paper by Optalysys [29]. In that paper, they introduce work 

 being done by their company to develop a silicon-photonic chip to compute the Fourire 

 transform, a main bottleneck in FHE operation, more efficiently. As indicated by their optical 

 simulator, sorting an array which took more than 6s to compute electronically would take .05 s 

 on their silicone-optical chip. 

 5.3 Practicality for Use 

 Based on the current status of this program, the program is not practical for actual 

 implementation. The maximum value for which some level of accuracy in results can be 

 achieved is when input is between 0-32, with 6 bits of information. Even then, the smallest bit 

 cannot be used while still achieving accurate results. That means you have 5 bits to store both the 

 bid and bidder information. Leaving at least 1 bit for the bid, you can have up to 16 bidders. 

 Using up to 4 bits for bid leaves you with only 1 bit for storing the bidder. These sizes aren’t 

 practical for actual implementation of the blind-bidding auction. 
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 Chapter 6: Conclusion 

 6.1 Deliverables 

 6.2 Deliverables 

 There are many future extensions to this work. As discussed in the analysis of the 

 accuracy, as the number of comparisons for one particular encrypted value increases, its accuracy 

 decreases. One notable future extension to this work is to analyze further if there are any patterns 

 for starting configurations of the bidder ID’s that can lead to less computations per winning bid. 

 This work analyzes the use case of having multiple tied maximum bids. In such a case, using the 

 initial bid configuration of bidder IDs being in descending order is optimal. However, finding the 

 optimal solution for any ratio of tied maximum bids and total bidders is left to future work. 

 Other future directions for this work are to implement the same algorithms using other 

 FHE schemes such as HElib [25], Microsoft SEAL [26], or OpenFHE [27], or exploring 

 different algorithms for the sorting of the highest bid. 

 While the current implementation of the blind-bidding auction using FHE has its 

 challenges, it serves as a foundation to realizing secure and blind auctions in the digital age. Our 

 exploration into the intricacies of FHE, particularly in the context of sorting algorithms, has 

 unveiled both the potential and the hurdles in implementing a blind-bidding auction with FHE. 

 As research of Fully Homomorphic Encryption continues to evolve, we are optimistic that the 

 issues of speed, accuracy, and computational intensity will continue to be improved. This road 

 ahead of Fully Homomorphic Encryption is promising and filled with potential. 
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 Appendices 

 Appendix A: System Setting, Build, and Compilation 

 This code was built, compiled, and run on a 2020 M1 MacBook Pro with an Apple M1 chip and 
 8GB memory. The code was built using the command  cargo  build --release 
 --target x86_64-apple-darwin  and run with the command  cargo run 
 --release --target x86_64-apple-darwin 

 Appendix B: Cargo.toml 

 [package] 
 name = "homomorphic_min_max" 
 version = "0.1.0" 
 edition = "2021" 

 [dependencies] 
 concrete = "0.1.11" 
 bincode = "1.3.3" 
 rand = "0.8" 
 concrete-csprng = "0.3.0" 
 serde = { version = "1.0", features = ["derive"] } 
 concrete-core = "^1.0.2" 
 float-cmp = "0.8.0" 
 rug = "1.10.0" 

 Appendix C: main.rs 

 use  homomorphic_min_max  ::*; 
 use  std  ::  io  ; 
 use  std  ::  fs  ; 
 mod  create_bid  ; 
 use  std  ::  fs  ::  File  ; 
 use  std  ::  io  ::  BufReader  ; 
 //use std::io::Read; 
 use  bincode  ; 
 use  float_cmp  ::  approx_eq  ; 
 use  std  ::  time  ::  Instant  ; 

 // Parts of main() are borrowed from [29] 
 fn  main  () ->  Result  <(),  Box  <  dyn  std  ::  error  ::  Error  >>  { 

 use  crate  ::  create_bid  ::  public_bid  ; 

 // START BORROWED CODE [29] 

 let  sk_rlwe  =  RLWESecretKey  ::  new  (&  RLWE128_1024_1  ); 
 let  sk_in  =  LWESecretKey  ::  new  (&  LWE128_1024  ); 
 let  sk_out  =  sk_rlwe  .  to_lwe_secret_key  (); 
 let  encoder  :  Encoder  =  Encoder  ::  new  (  0.0  ,  30.0  ,  6  ,  2  )?; 

 // key switching key 
 // Set timer 
 let  start_time_ksk  =  Instant  ::  now  (); 
 let  ksk  =  LWEKSK  ::  new  (&  sk_out  , &  sk_in  ,  4  ,  6  ); 
 let  end_time_ksk  =  Instant  ::  now  (); 
 let  elapsed_time_ksk  =  end_time_ksk  .  duration_since  (  start_time_ksk  ); 
 println!  (  "Elapsed time KSK:  {}  ms"  ,  elapsed_time_ksk  .  as_millis  ()); 
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 // bootstrapping key 
 // Set timer 
 let  start_time_bsk  =  Instant  ::  now  (); 
 let  bsk  =  LWEBSK  ::  new  (&  sk_in  , &  sk_rlwe  ,  4  ,  6  ); 
 let  end_time_bsk  =  Instant  ::  now  (); 
 let  elapsed_time_bsk  =  end_time_bsk  .  duration_since  (  start_time_bsk  ); 
 println!  (  "Elapsed time BSK:  {}  ms"  ,  elapsed_time_bsk  .  as_millis  ()); 

 // END BORROWED CODE [29] 

 // Create empty ciphers vector 
 let  mut  ciphers  :  Vec  <  LWE  > =  Vec  ::  new  (); 

 // Initialize number of bids to 0 
 let  mut  num_bids  :  usize  =  0  ; 

 // Ask for the nuber of bids 
 println!  (  "Enter the number of bidders: "  ); 
 let  mut  input_line  =  String  ::  new  (); 
 io  ::  stdin  () 
 .  read_line  (&  mut  input_line  ) 
 .  expect  (  "Failed to read line"  ); 
 let  num_bids_i32  :  i32  =  input_line  .  trim  ().  parse  ().  expect  (  "Input  not an 

 integer"  ); 

 if  num_bids_i32  >=  0  { 
 num_bids  =  num_bids_i32  as  usize  ; 
 }  else  { 
 // Handle the case where the index is negative 
 eprintln!  (  "Negative index is not allowed."  ); 
 } 

 // CREATE THE BID ARRAY 
 let  file_path  =  "bid.bin"  ; 

 // Check if file exists 
 if  fs  ::  metadata  (  file_path  ).  is_ok  () { 
 // If file exists, delete it 
 if  let  Err  (  e  ) =  fs  ::  remove_file  (  file_path  ) { 

 eprintln!  (  "Failed to delete  {}  :  {}  "  ,  file_path  ,  e  ); 
 } 
 } 

 // CALL public_bid() one time for each bid 
 for  _b  in  0  ..  num_bids  { 
 let  _  =  public_bid  (&  sk_in  , &  encoder  ); 
 } 

 println!  (  "Done collecting bids: "  ); 

 //READ THE ENCRYPTED MESSAGE FROM CREAT_BID 
 let  file_path  =  "bid.bin"  ; 

 // Try to open the file 
 let  file  =  File  ::  open  (  file_path  )?; 

 // Deserialize the content 
 let  mut  bid_file  =  BufReader  ::  new  (  file  ); 
 ciphers  =  bincode  ::  deserialize_from  (&  mut  bid_file  )?; 

 // Call max array 
 // Set timer 
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 let  start_time_max_array  =  Instant  ::  now  (); 

 let  max_array  =  identify_max_bids  (&  ciphers  , &  ksk  , &  bsk  , &  encoder  , &  sk_in  )?; 

 let  end_time_max_array  =  Instant  ::  now  (); 
 let  elapsed_time_max_array  = 

 end_time_max_array  .  duration_since  (  start_time_max_array  ); 
 println!  (  "Elapsed time Max Array:  {}  ms"  ,  elapsed_time_max_array  .  as_millis  ()); 

 // Calculate the Winning Bid Value, and who made that bid 

 // Format the bid 
 let  max_bid_value  = (  max_array  [  0  ]/  10.0  ).  floor  ()  as  f64  ; 
 let  mut  max_bid_array  =  max_array  .  clone  (); 
 // For all values in max_bid_array 
 for  i  in  0  ..  max_bid_array  .  len  () { 
 // Subtract the bid value 
 max_bid_array  [  i  ]=  max_bid_array  [  i  ]-  max_bid_value  *  10.0  ; 
 } 

 // Print the bid value 
 println!  (  "Winning Bid Value:  {}  "  ,  max_bid_value  ); 
 // Print who made the bid 
 println!  (  "Winning Bidder ID:  {:?}  "  ,  max_bid_array  ); 

 fn  round_to  (  value  :  f64  ,  places  :  i32  ) ->  f64  { 
 let  factor  =  10.0_f64  .  powi  (  places  ); 
 (  value  *  factor  ).  round  () /  factor 
 } 

 let  value  =  1.23456789  ; 
 let  rounded_value  =  round_to  (  value  ,  1  ); 
 assert!  (  approx_eq!  (  f64  ,  rounded_value  ,  1.2  ,  ulps  =  2  )); 

 let  file_path  =  "bid.bin"  ; 
 if  let  Err  (  e  ) =  fs  ::  remove_file  (  file_path  ) { 
 eprintln!  (  "Failed to delete file  {}  :  {}  "  ,  file_path  ,  e  ); 
 } 

 Ok  (()) 
 } 

 Appendix D: creat_bid.rs 

 use  homomorphic_min_max  ::*; 
 use  std  ::  io  ::  BufReader  ; 
 use  std  ::  io  ; 
 use  std  ::  fs  ; 
 use  bincode  ; 

 pub  fn  public_bid  (  sk_in  : &  LWESecretKey  ,  encoder  : &  Encoder  )  ->  Result  <(),  Box  <  dyn 
 std  ::  error  ::  Error  >> { 

 println!  (  "Enter your bid (0-2): "  ); 
 let  mut  input_line  =  String  ::  new  (); 
 io  ::  stdin  () 
 .  read_line  (&  mut  input_line  ) 
 .  expect  (  "Failed to read line"  ); 
 let  bid_input  :  f64  =  input_line  .  trim  ().  parse  ().  expect  (  "Input  not an integer"  ); 

 println!  (  "Enter your ID number (1-9): "  ); 
 let  mut  input_line  =  String  ::  new  (); 
 io  ::  stdin  () 
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 .  read_line  (&  mut  input_line  ) 
 .  expect  (  "Failed to read line"  ); 
 let  id_input  :  f64  =  input_line  .  trim  ().  parse  ().  expect  (  "Input not an integer"  ); 

 //Combine the message nad the bid value. 

 //The bids can be between 0-2, and the ID can be between 1-9 
 let  message  :  f64  =  bid_input  *  10.0  +  id_input  ; 

 // encrypt the messages 
 let  cipher  =  match  LWE  ::  encode_encrypt  (  sk_in  ,  message  ,  &  encoder  ) { 
 Ok  (  c  ) =>  c  , 
 Err  (  e  ) => { 

 println!  (  "An error occurred:  {:?}  "  ,  e  ); 
 return  Err  (  Box  ::  new  (  e  )); 
 } 

 }; 

 let  file_path  =  "bid.bin"  ; 

 // Check if file exists 
 let  data  :  Vec  <  LWE  > =  if  fs  ::  metadata  (  file_path  ).  is_ok  ()  { 
 // Try to read and deserialize the file 
 let  file  =  fs  ::  File  ::  open  (  file_path  ).  expect  (  "Failed  to open file"  ); 
 let  mut  buf_reader  =  BufReader  ::  new  (  file  ); 
 match  bincode  ::  deserialize_from  (&  mut  buf_reader  )  { 

 Ok  (  content  ) =>  content  , 
 Err  (  _  ) =>  Vec  ::  new  (),  // If deserialization  fails, initialize with an 

 empty Vec 
 } 
 }  else  { 
 Vec  ::  new  ()  // If file doesn't exist, initialize  with an empty Vec 
 }; 

 // Add the new value to the array 
 let  new_value  =  cipher  ; 
 let  mut  updated_data  :  Vec  <  LWE  >=  data  ; 
 updated_data  .  push  (  new_value  ); 

 let  bid_file  = 
 std  ::  io  ::  BufWriter  ::  new  (  std  ::  fs  ::  File  ::  create  (  file_path  ).  unwrap  ()); 

 bincode  ::  serialize_into  (  bid_file  , &  updated_data  ).  unwrap  (); 

 Ok  (()) 
 } 

 Appendix E: lib.rs 

 pub  use  concrete  ::*; 

 // START BORROWED CODE [29] 
 pub  fn  compute_max_min  (  cipher_1  : &LWE,  cipher_2  : &LWE,  ksk  : &LWEKSK,  bsk  : &LWEBSK, 
 encoder  : &  Encoder  ) 

 ->  Result  <(  LWE  ,  LWE  ),  CryptoAPIError  > 
 { 

 // difference between the two ciphers 
 let  cipher_diff  =  cipher_2  .  sub_with_padding  (&  cipher_1  )?; 

 // programmable bootstrap to check if the difference is positive 
 let  mut  cipher_diff_pos  =  cipher_diff  .  bootstrap_with_function  (  bsk  , 

 |  x  |  if  x  >=  0  . {  x  }  else 
 {  0  . }, 
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 encoder  )?; 

 // change the key back to the original one 
 cipher_diff_pos  =  cipher_diff_pos  .  keyswitch  (  ksk  )?; 

 // add the result to cipher_1 
 let  mut  result_max  =  cipher_1  .  add_with_padding  (&  cipher_diff_pos  )?; 

 // subtract the result from cipher_2 
 let  mut  result_min  =  cipher_2  .  sub_with_padding  (&  cipher_diff_pos  )?; 

 // reset the encoder 
 result_max  =  result_max  .  bootstrap_with_function  (  bsk  ,  |  x  |  x  ,  encoder  )?; 
 result_min  =  result_min  .  bootstrap_with_function  (  bsk  ,  |  x  |  x  ,  encoder  )?; 
 result_max  =  result_max  .  keyswitch  (  ksk  )?; 
 result_min  =  result_min  .  keyswitch  (  ksk  )?; 

 Ok  ((  result_max  ,  result_min  )) 
 } 
 // END BORROWED CODE [29] 

 pub  fn  sort_for_max  (  ciphers  : &[LWE],  ksk  : &LWEKSK,  bsk  : &LWEBSK,  encoder  : &  Encoder  , 
 round  :  usize  ) 

 ->  Result  <  Vec  <  LWE  >,  Box  <  dyn  std  ::  error  ::  Error  >> 
 { 

 // if ciphers contains less than two elements, just return it 
 if  ciphers  .  len  () <  2  ||  round  >=  ciphers  .  len  ()-  1  { 
 return  Ok  (  ciphers  .  to_vec  ()) 
 } 

 let  mut  results  =  ciphers  .  to_vec  (); 
 // Compare values from left to right, swapping always putting larger on right 
 // Will not result in a fully sorted vector, but will end up with the larges 

 value at the end 
 for  i  in  0  ..(  ciphers  .  len  ()-  1  -  round  ) { 
 let  (  c_max  ,  c_min  ) =  compute_max_min  (&  results  [  i  ],  &  results  [  i  +  1  ],  ksk  ,  bsk  , 

 encoder  )?; 
 results  [  i  ] =  c_min  ; 
 results  [  i  +  1  ] =  c_max  ; 
 } 

 Ok  (  results  ) 
 } 

 pub  fn  identify_max_bids  (  ciphers  : &[LWE],  ksk  : &LWEKSK,  bsk  : &LWEBSK,  encoder  : 
 &  Encoder  ,  sk_in  : &  LWESecretKey  ) 

 ->  Result  <  Vec  <  f64  >,  Box  <  dyn  std  ::  error  ::  Error  >> 
 { 

 // RUN THIS UNTIL ALL DUPLICATE BIDS HAVE BEEN DETERMINED 
 // Create max array 
 let  mut  round  :  usize  =  0  ; 
 let  mut  max_array  :  Vec  <  f64  > =  Vec  ::  new  (); 

 // Copy ciphers into results array 
 let  mut  results  =  ciphers  .  to_vec  (); 

 // To begin, call sort_for_max for the full array. 
 // The largest value will end up in the right-most position 
 results  =  sort_for_max  (&  results  ,  ksk  ,  bsk  ,  encoder  ,  round  )?; 

 // Decrypt that value and see what it is. Remove the voter ID 
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 let  temp_master_max_value  = 
 (&  results  [  ciphers  .  len  ()-  1  ].  decrypt_decode_round  (  sk_in  )?).  round  (); 

 // Add (with voter ID, to the max array) 
 max_array  .  push  (  temp_master_max_value  ); 
 let  master_max_value  =  remove_voter_id  (  temp_master_max_value  )?; 

 // Encrypted master_max_value is the highest bid, with no voter ID 
 let  master_max_value_enc  = LWE::  encode_encrypt  (  sk_in  ,  master_max_value  , 

 &  encoder  )?; 

 let  mut  done  =  false  ; 
 round  +=  1  ; 
 // Then, while not done: 
 while  !  done  &&  round  <  ciphers  .  len  (){ 
 // Call sort_for_max for the array, but only for the left-most n-1 values 
 results  =  sort_for_max  (&  results  ,  ksk  ,  bsk  ,  encoder  ,  round  )?; 

 // Call compute_max_min on the right-most minus n value and the re-encrypted 
 max without voter ID. 

 let  (  temp_max  ,  _temp_min  ) =  compute_max_min  (&  results  [  ciphers  .  len  ()-  1  -  round  ], 
 &  master_max_value_enc  ,  ksk  ,  bsk  ,  encoder  )?; 

 let  temp_max_dec  =  temp_max  .  decrypt_decode_round  (  sk_in  )?.  round  (); 
 if  temp_max_dec  >  master_max_value  { 

 // If the max of this round is greater than the master_max_value, add 
 temp_max to the max_array. Continue the loop 

 // Add temp_max to max_array 
 max_array  .  push  (  temp_max_dec  ); 
 round  +=  1  ; 

 } 
 else  { 

 // We're done 
 done  =  true  ; 

 } 
 } 

 Ok  (  max_array  ) 

 } 

 pub  fn  remove_voter_id  (  val  :  f64  ) 
 ->  Result  <  f64  ,  Box  <  dyn  std  ::  error  ::  Error  >> 

 { 
 // println!("Value: {}", val); 
 let  mut  val  =  val  .  clone  (); 
 val  = (  val  /  10.0  ).  floor  ()*  10.0  ; 
 // print val 
 // println!("Value: {}", val); 
 Ok  (  val  ) 

 } 
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