
CREATING A SONG LYRIC CORPUS GENERA TOR AND IDENTIFYING

VERB-PARTICLE CONSTRUCTIONS IN INFORMAL LANGUAGE

by

Mary Thrall

B.A., University of Minnesota, Minneapolis, 2011

A Thesis

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

St. Cloud, Minnesota

December, 2014

This thesis submitted by Mary Thrall in partial fulfillment of the requirements for
the Degree of Master of Science at St. Cloud State University is hereby approved by the
final evaluation committee.

~~
Dean
School of Graduate Studies

CREATING A SONG LYRIC CORPUS GENERA TOR AND IDENTIFYING
VERB-PARTICLE CONSTRUCTIONS IN INFORMAL LANGUAGE

Mary Thrall

Song lyric corpora - collections of text for use in linguistic analysis-have
proven to be publicly unavailable despite many previous studies on the subject. We
designed and created two programs which generate a song lyric corpus. These
programs can be shared or distributed, and they avoid potential copyright issues while
also allowing future researchers to generate corpora of popular song lyrics which
contain songs as current as the previous week. We used these programs to create a
corpus of approximately 800 modem US popular songs, the Song Lyric Corpus.

Verb-particle constructions, a type of multiword expression, often cause
difficulties for natural language processing tasks because of their colloquial nature and
variable syntax. We hypothesized that there would be a higher density of verb-particle
constructions in song lyrics than in formal speech because song lyrics contain more
colloquial speech.

We selected two corpora to perform a comparison of verb-particle construction
occurrences. The Song Lyric Corpus generated during this research and the Editorials
section of the Brown Corpus were tokenized and part-of-speech tagged using Python's
Natural Language Processing Toolkit (Bird, Loper, & Klein, 2009). We then manually
examined the resulting tagged corpora to identify verb-particle constructions.

The Song Lyric Corpus had more than five times as many verb-particle
constructions as the more formal Brown Corpus, indicating that song lyrics are a
promising future medium in which to study verb-particle constructions.

December 2014
Month Year Approved by Research Committee:

Bryant J Chairperson

111

ACKNOWLEDGMENTS

I would like to thank my committee members, Professors Bryant Julstrom,

Andrew Anda, and Brian Reese. The Computational Linguistics Reading Group at the

University of Minnesota offered helpful advice and kept me on task. This thesis would

not have been possible without the help and constant encouragement of fellow

graduate student Aleksandar Tomovic throughout the past two years. My deepest

gratitude goes to all.

lV

PREFACE

A Note on Gender

To avoid confusion, assumptions, or sexism, this thesis adopts the increasingly

embraced convention of using third person plural pronouns while referring to a

singular person of unknown gender. During discussions of others' work, if the gender

of an author is not known, the pronouns they/them/their/themselves will be used, rather

than he/him/his/himself or she/her/her/herself.

A Note on Profanity

As is often the case when performing linguistic analysis on informal speech,

certain words are considered by some to be profane or rude. Some of these words are

included in this thesis, not to offend, but because to do otherwise would be to ignore

important data and leave the analysis incomplete.

V

TABLE OF CONTENTS

Page

LIST OF TABLES ··········· ········· ······· ······ IX

LIST OF FIGURES X

Chapter

I. INTRODUCTION 1

II. SONG LYRIC CORPUS GENERA TOR 3

MOTIVATION 3

Literature Review 3

Reasons for Lack of Song Lyric Corpora 4

SONG EXTRACTOR 6

SongExtractor Design...... 8

ROYALS................... 12

Scrapy 12

Royals Design........... 16

Royals Implementation 19

Data Structures . 22

THE SONG LYRIC CORPUS 32

Future Work 32

Vl

Chapter Page

III. COMPARING VERB-PARTICLE CONSTRUCTIONS IN
CORPORA OF VARYING FORMALITIES 34

MOTIVATION 34

Verb-Particle Construction Definition 34

Machine Translation Example 35

Literature Review 36

Goals of Verb-Particle Construction Analysis 37

VPC IDENTIFICATION 37

NLTK 37

Method Overview 38

Manual Corpus Processing 39

Automated Corpus Modifications: Tokenization and Tagging 40

The Brown Corpus 44

Manual Examination 45

FINDINGS 46

Comparison ofVPC Occurrences 46

New VPCs 48

Future Work 48

IV. CONCLUSION 50

REFERENCES 51

APPENDICES

A. Source Code 56

Vll

Chapter Page

B. SongExtractor User Documentation 62

C. Royals User Documentation 65

Ylll

LIST OF TABLES

Table Page

1. XPath Navigation Operators 7

2. Results of Translating Sentences with and without VPCs 35

3. Findings ofVPC Comparison-...... 46

4. Newly Identified Verb-Particle Constructions 48

lX

LIST OF FIGURES

Figure Page

1. XML Example 7

2. (key, value) Structure of Songs Dictionary 10

3. Portion of Output File Produced by the SongExtractor Program... 11

4. ltems.py Used by the Royals Program 13

5. Example Raw String Lyric before Processing... 14

6. Pipelines.py File Used by the Royals Program 14

7. Settings.py File Used by the Royals Program 15

8. Format of Artist URL on Metrolyrics 17

9. Example Artist URL............ 17

10. Search Results for All About That Bass 18

11. Metro lyrics URL for a Listing of All Artists Beginning with L 19

12. Example Entry of the Dictionary letterurl 2 l

13. URL Leading to Artists Beginning with Non-Alphabetic
Characters . 21

14. (key, value) letterurl Data Structure 21

15. Format of Artist URLS on Metrolyrics 22

16. (key, value) artistlinks Data Structure 23

X

Figure Page

17. Format of Pages beyond First for Alphabetical Artist List on
Metro lyrics . 24

18. URL to the Third Page of the Artists Beginning with m on
Metro lyrics . 25

19. Python Code Storing All the Artist Links for Artists Beginning with
firstletter . 26

20. Python Code Preventing Prefix Problem 28

21. artistlinksongnames Data Structure 29

22. Full Code for the Royals Spider 31

23. Example Tokenized Sentence "Keep me up till the sun is high" 40

24. Python Code Tokenizing the Corpus 41

25. Training the Tagger 43

26. Tagging the Corpus 43

27. A Tagged Sentence 44

28. Code Using Tagger t3 to Tag Brown Editorial Corpus 45

XI

Chapter I

INTRODUCTION

A corpus is a collection of text for use in linguistic analysis. The word corpus

comes from the Latin corpus, meaning body [1]. The plural of corpus is corpora.

Many corpora are available for public use, such as the Brown Corpus [2] and the

British National Corpus (BNC) [3].

We approached two problems in this research:

1. The lack of an available corpus of song lyrics with which to do linguistic

analysis.

2. Determining whether song lyrics would contain a higher percentage of

verb-particle constructions (VPCs)-a specific type of verb defined in

section 3 .1-than a corpus of formal speech due to their colloquial nature.

A corpus of song lyrics was necessary to do the analysis of verb-particle

constructions, but no such corpus was available. Therefore, we created a corpus

generator consisting of two programs, written in Python 2.7.8. We then used the

corpus generator to make the Song Lyric Corpus, consisting of lyrics from modern

popular US songs. We processed The Song Lyric Corpus and counted the verb-particle

constructions. We also performed the same processing and verb-particle construction

counting on the Editorials section of the Brown Corpus.

1

Chapter II details the motivation and design of two programs to generate a

corpus of song lyrics. The SongExtractor program collects artist and song names

2

from the Billboard Website [4], and the Royals program uses web scraping software

a technique for extracting information from Websites-to find the lyrics for those songs

on Metrolyrics [5].

In Chapter Ill, verb-particle constructions are defined, and the motivation for

their study in song lyrics is presented. The details of corpus processing and manual

evaluation are explained, and the findings are presented. Possible future work is

presented.

Chapter IV, the conclusion, summarizes the work and findings of Chapters II

and III.

Chapter II

SONG LYRIC CORPUS GENERA TOR

MOTIVATION

Colloquial, or informal, speech, especially including modem slang, can pose

difficulties for natural language processing because it has not been researched as

thoroughly as formal speech. Many of the available corpora are more formal, as in the

Wall Street Journal Corpus. One potential source of modem informal speech is

popular song lyrics. There are no readily available corpora of song lyrics, despite

numerous research projects expressing the need for such a corpus. The following

literature review describes several studies which have been performed using song lyric

corpora their respective authors created, but none are provided to the public. These

authors noted the lack of lyric corpora, but these studies failed to provide the corpora

they compiled in the course of their research. This may be due to potential copyright

issues arising from the distribution of song lyrics.

Literature Review

Werner [6] conducted a study of modem pop lyrics but was forced to create a

corpus. The BLUR Corpus (short for Blues Lyrics collected at the University of

Regensburg) was compiled to study African American Vernacular English (AA VE) in

3

early blues lyrics [7], but the BLUR Corpus is not accessible online. Kreyer and

Mukherjee introduce the Giessen-Bonn Corpus of Popular Music (GBoP) [8], which

included twenty-seven of the top thirty US albums from 2003, but no access is

provided to the corpus. Falk analyzes rock lyrics using findings from "a pilot

investigation of the pilot version of GBoP" [9], but the author created the corpus

themselves by choosing the songs and collecting the lyrics from various lyric

Websites. The authors of American Song Lyrics: A Corpus-Based Research Project

also created their own corpus to collect rock, pop, country, and hip-hop lyrics [10].

Reasons for Lack of Song Lyric Corpora

4

Much of the time these authors, and others, have spent on creating these

corpora could instead have been spent on further analysis. The question remains: why

are there no available song lyric corpora?

One reason for this became apparent when we contacted the University of

Regensburg requesting access to their corpus of blues lyrics. The University

responded that, due to copyright issues, the corpus cannot be made easily available,

but researchers may access the corpus if they visit the University. It is kept on a

computer which has no Internet access and a modified BIOS which does not allow

copymg.

Another problem faced while considering song lyric corpus construction for

the study of modem language, especially colloquialisms, is that colloquial language

evolves quickly. Even a corpus that is one year old is out-of-date when studying this

type of language. Perhaps, even if a corpus were available, it would be out of date, or

in a genre the researchers were not interested in. One question faced by those in this

research is: How can I find an up-to-date corpus?

5

There is demand in natural language processing for song lyric corpora, but fear

of copyright issues is preventing them from being shared, and the constant publication

of new songs cause lyrics to go out of date quickly. A different approach, then, must

be taken to fulfill this demand. We implemented a solution to these issues using

programs to automatically generate a corpus of current Billboard Hot 100 song lyrics.

These procedures and programs can be publicly shared without violating song

copyrights, and each researcher can generate a new corpus on demand at any time,

allowing a corpus to contain songs as recent as the current week's top 100 list.

Billboard. www.billboard.com is Billboard Magazine 's Website [11) . We

chose Billboard to select the songs for inclusion into the corpus because it is a

commonly used source for top US music. Billboard ranks songs weekly in the Hot 100

chart, which lists the top 100 US songs for that week.

Billboard describes how they rank their music [11):

The week's most popular current songs across all genres, ranked by radio
airplay audience impressions as measured by Nielsen BDS, sales data as
compiled by Nielsen SoundScan and streaming activity data from online music

, sources tracked by Nielsen BDS. Songs are defined as current if they are
newly-released titles, or songs receiving widespread airplay and/or sales
activity for the first time.

6

SONG EXTRACTOR

We wrote two programs to facilitate the building of a song lyric corpus. The

first, the SongExtractor program, gathers song titles and artist names for which lyrics

will be collected. The second program takes the information gathered from the

SongExtractor program and scrapes the lyrics for the specified songs. Both programs

are written in Python Version 2.7.8 [12]. 1

XPath. XPath, a query language used to find information in HTML or XML

[13], is used both in the SongExtractor program and the Royals spider, a program

that performs web scraping. XPath expressions select nodes or node sets in the

document hierarchy. XML/HTML documents are considered trees of nodes. XPath

syntax denotes actions analogous to navigating a file system. Paths to nodes can be

specified as a relative path (a path starting from the current node) or an absolute path

(starting from the root node). A simple XML example is provided in Figure 1.

1 The most recent version of Python is version 3.4.2, but some software does not support
Python 3, including the web crawling software used for this research.

<collection>
<movie>

<ti t le lang=" en" >Jurassic Park</ti tle>
<year> 1993</year>

</movie>
<movie>

<ti t le lang=" en " >Star Wars</ti tle>
<year> l977</year>

</movie>
</collection>

Figure 1

XML Example

7

In Figure 1, the root node is collection, and it contains two movie nodes. Each

movie node contains title and year nodes. Table 1 lists some of the useful path

operators in XPath syntax. For example, the node name can be specified directly to

select all nodes with that name. The XPath expression movie selects both occurrences

of the node movie.

Table 1

XPath Navigation Operators [13]

Selects from the root node

@ Selects attributes

The expression /collection selects the root node collection, and

/collection/movie selects both movie nodes. //year selects both year nodes, as would

year and /collection/movie/year.

8

Attributes are selected using @. //title[@lang] selects title nodes with the fang

attribute, which in the case of this example would be both title nodes. A much more

detailed description of XPath syntax can be found at the XPath tutorial on

W3schools [13].

SongExtractor Design

Originally the SongExtractor program was written using Scrapy [14] , the

same software used for the Royals program, but it had redirect issues with Billboard

[4], the Website containing the lists of artists and songs. The Billboard Website was

designed to display the top I 00 songs in pages of ten each. However, when the Scrapy

software attempted to navigate to the next page, Billboard redirected to the first page.

This redirection problem was solved by writing a program in Python to directly

parse Billboard Website's HTML source. This program was not subject to the same

automatic redirects as the spider originally written with Scrapy. The SongExtractor

program uses the Python requests module to download each page, uses the lxrnl

module to extract the HTML, and uses XPath expressions to navigate the hierarchy.

Because the goal of the corpus is to cover modem popular US songs, the

Billboard Hot 100 charts were chosen to select the songs for inclusion. One of the

main reasons for generating a corpus of modem song lyrics was to analyze current

linguistic trends. For this reason, the SongExtractor program starts by selecting the

songs from the current week, then works backwards through successively older

weekly listings, up to a specified number of weeks. Thus the selection of songs, and

thereby the corpus generated by the Royals program, is current within a week.

A future enhancement of the SongExtractor program could allow the user to

specify the range of weeks from which to select songs. This would allow the building

of a corpus containing the popular songs from a specific timeframe. For example,

popular songs from the early 1990s could be collected by specifying the weeks in the

years 1990-1994.

9

The SongExtractor program has a global constant, NUM_ WEEKS, which

can be changed to vary the size of the corpus. Each week has 100 top songs, but many

songs are duplicates from week to week, so the total number of songs in the resulting

corpus is far less than 100 times the number of weeks selected. Each song is included

only once in the corpus regardless of how many occurrences appeared in the selected

weeks.

First, the SongExtractor program uses the requests module to load the current

Billboard Hot 100 chart. This contains the top 100 songs for the current week. The

program then uses XPath expressions to parse the HTML for each song and artist,

which are processed using regular expressions to normalize the format of the output,

performing actions such as stripping trailing and leading whitespace, and making

every character lowercase. Lowercase is required to match the all-lowercase URLs on

Metrolyrics. These processed strings are stored in a Python dictionary-an associative

array with key-value pairs-called songs, in which the song is the key and the artist is

the value. For example, songs["royals"] = "lorde". In this case, the song must be the

key, because one artist can have multiple songs in the top 100, and each key must be

unique. This continues until NUM _ WEEKS pages have been visited. The structure of

songs can be seen in Figure 2.

"the sign" =::::::::> "ace of bas,e"

mroyals" =::::::::> "lorde"

"anaconda"=::::::::> "nicki minaj"

•
•
•

Figure 2

(key, value) Structure of Songs Dictionary

This design has a flaw in that it does not accommodate multiple songs with the

same name, such as Say Something, which is a song by Christina Aguilera, and also a

song by Drake [5]. The list of future enhancements to the SongExtractor program

includes changing this data structure to a list of tuples, or immutable ordered pairs. 2

This would not only allow for multiple songs of the same name, but also preserve

ordering. Ordering of songs in the corpus has no meaning, but if a user modified the

code of the SongExtractor program for their research, they could preserve ordering,

creating a stable transformation.

2 ln Python, a tuple is immutable, or unchangeable. Once a tuple has been assigned, the values
cannot be changed.

11

Once all the artist and song names have been collected, they are written into

the output file in the following format: songlartist. The I character was chosen as a

separator because it is unlikely to be used in an artist or song name, while other special

characters, such as $ and *, are occasionally used. An example of the output file

generated is shown in Figure 3.

arctic monkeysldo i wanna know?

b.o.b featuring t.i. & jui cy jlwe stil l i n this b••••

big sean featuring lil wayne & j hene aiko/beware

eri c churchlgive me b a ck my hometown
cole swindelllhope you get lonely tonight

Figure 3

Portion of Output File Produced by the SongExtractor Program

Complexity. This program iterates through each week specified and stores each

artist and song name. There are NUM _ WEEKS pages per execution, 100 songs per

page, and constant operations per song. Then the complexity is NUM_ WEEKS * 100

songs/page. Since 100 is a constant, both the time and space complexities are O(n),

where n = NUM WEEKS.

There are a small number of instances in which the artist name was not

captured. This is due to an inconsistency in the HTML used on the Billboard page.

Most artists on the Billboard Hot 100 chart have a link from the chart to their artist

page. In this majority of cases, the artist name text is located within the link HTML

tag. In the few cases that the artist is not linked, the HTML link does not exist. In the

100-week corpus, this only happened for 27 of the 815 songs, or about 3.3%. A future

12

enhancement would be to implement handling of these special cases. This could be

accomplished by first investigating if all the exceptions are formatted in the same way,

then adding conditional statements to the source code to handle these cases. This

inconsistency resulted in that 3% of songs not being included in the final corpus.

ROYALS

Scrapy

The majority of the web scraping work was done with Scrapy [14], an open

source web crawling program written in Python 2.7. Scrapy, like other web scrapers, is

designed to extract information from Websites. The installation of Scrapy is described

on the Scrapy documentation Website [15], and requires the installation of numerous

other items, such as pip [16], a tool that manages Python packages, and the lxml XML

toolkit, which is "a Pythonic binding for the C libraries libxml2 and libxslt" [17] .

A (very thorough and clear) tutorial for the use of Scrapy is available in the

Scrapy documentation [18]. To create a new Scrapy project, only one simple

command is needed: "scrapy startproject projectname". This command creates a

directory named projectname for the project which contains the following:

• scrapy.cfg: the project configuration file

• projectname/: the project's Python module

• projectname/items.py

• projectname/pipelines.py

13

• projectname/settings.py

• projectname/spiders/: a directory to store the project's spiders [18]

Items.py. The items.py file defines the data structure the project will use to

store the data scraped from Websites. It holds fields for each piece of information

extracted from the provided URL or XPath expression. The items.py file used by the

Royals program can be seen in Figure 4.

import scrapy

class Royalsltem(scrapy.Item):
lyrics= scrapy.Field()
pass

Figure 4

Items.py Used by the Royals Program

This items file is extremely simple because no metadata for the song lyrics was

desired. There was no need to keep track of the artists or titles for each lyric. If this

information was necessary, only a few small adjustments would be necessary. The

lines artist= scrapy.FieldO and song= scrapy.FieldQwould be added, and lyrics

would become a list of strings.

Pipelines.py. Once an item has been scraped, it is processed through this item

pipeline before output. This pipeline can serve many uses by automatically processing

the data. For example, all the letters could be changed to uppercase, or numbers could

be multiplied by a specific percentage based on their value. The default pipilines.py

14

file created when the project is started simply returns what is passed into it with no

modification. Originally, the Royals program did not contain a pipeline because the

data was desired without modification. However, when each lyric was extracted from

Metrolyrics, the newline token at the end of each line was interpreted literally as two

tokens: a\ followed by an n, so each line from the resulting corpus was output as

below:

That kind of lux just ain't for us\n

Figure 5

Example Raw String Lyric before Processing [19]

Consequently, a pipeline was added to delete these unwanted characters.

See Figure 6.

import re
class RoyalsPipeline(object):

def process_item (self, item, spider):
p = re. compile ('.\ n ')
item[' lyrics '] = p.sub(' ', item[' lyr ics '])
return item

Figure 6

Pipelines.py File Used by the Royals Program

The function process_item is called on each item in each spider in the project.

In Figure 6, pis a regular expression searching for the newline character \n. In each

item, this string is substituted with the empty string, and the result is assigned back to

the item before it is returned.

15

If the use of a pipeline is desired, it must be specified in the settings.py file, as

described below.

Settings.py. This file is required and allows customization of the behavior of

Scrapy [20]. By default, three settings exist: BOT_NAME, SPIDER_MODULES,

and NEWSPIDER_MODULE. See Figure 7 for the full content of the Royals

settings.py file.

BOT_NAME = ' royals '

SPIDER MODULES= [' royals.spiders ']
NEWSPIDER MODULE ' royals.spiders '
ITEM PIPELINES { ' royals . pipelines . RoyalsPipeline ':
200}
CONCURRENT ITEMS= 1
CONCURRENT REQUESTS= 1
COOKIES ENABLED= False

Figure 7

Settings.py File Used by the Royals Program

BOT_NAME identifies the spider, and specifies how it is invoked from the

command line [20]. SPIDER_MODULES lists the locations Scrapy will look for

spiders for this project [20]. NEWSPIDER_MODULE specifies the location in

which the genspider command will create new spiders [20]. ITEM_PIPELINES

specifies which pipelines should be used. Each pipeline file in this list is followed by a

number which indicates the order in which to use it in the case of multiple pipeline

files. Many pipelines can be used in the same spider. In a multiple pipeline situation,

pipelines are used sequentially from lowest to highest number. In Figure 7 this number

16

is 200. CONCURRENT_ITEMS and CONCURRENT_REQUESTS specify the

maximum number of pipeline items to process in parallel and the maximum number of

simultaneous requests performed by Scrapy, respectively [20]. The defaults for

CONCURRENT_ITEMS and CONCURRENT_REQUESTS are higher than one,

and when using the default settings, the song lyrics were returned out of order. This

study is not concerned with including identifying metadata such as artist name and

song title, but the lyrics from each song were needed together and in order, to provide

context and to account for the few situations in which sentences crossed lyric

boundaries.

Royals Design

The Royals program, named after one of the top songs of the summer of 2013,

is a Scrapy spider written in Python 2.7 which takes the output from the

SongExtractor program as input, scrapes Metrolyrics for the lyrics of each song, and

outputs the lyrics into a text file . The Royals program can take any text file as input

providing it conforms to the format in Figure 3. This allows a user to manually

compile a list of songs and artists which are not necessarily in the Billboard Hot 100

chart.

The main file of the spider is royals_spider.py. This file reads the input artist

and song names and uses Scrapy to extract the lyrics. The other files in the program

are settings.py, items.py, and pipelines.py, which were discussed above.

17

Before introducing the logic of royals_ spider .py, a description of the

organization of Metrolyrics should be attempted. The URLs leading to the song lyrics

are formatted as in Figure 8.

http://metrolyrics.com/song-name-lyrics-artist-name.html

Figure 8

Format of Artist URL on Metrolyrics

For example, the link to the lyrics for Royals by Lorde is shown in Figure 9:

http :l/www. metro lyrics. com/royals-lyrics-lorde. html

Figure 9

Example Artist URL

During development, when a simple approach to finding the link to the song

was desired, the program built the URLs directly. This was performed by iterating

through each song and concatenating the URL and the artist and song names.

From the beginning, it was obvious this approach would not work for the final

project, because artist and song names from Billboard do not always directly match

the names on Metrolyrics. This is especially true for artist names when more than one

artist is involved. For example, on Billboard, the artist for the song Black Widow was

listed as Iggy Azalea Featuring Rita Ora, while on Metrolyrics only Iggy Azalea is

listed, and the URL is http: //www.metrolyrics.com/black-widow-lyrics-iggy

azalea.html.

18

Our first solution attempted involved searching for the artist or song name. To

search for either on the Website, there is an internal search feature which generates

results for both song and artist. The search engine is a fairly forgiving one, and partial

matches are returned, which was exactly what was required for this task. Figure l 0

shows the partial results of a search for All About That Bass.

MeQhan Trainor
All About That Bass

M1e9han Trainor
All About That Bass (Remix)

Meaqhan Trainor
All About That Bass

Dez D1lr.nqer
ltz All About That Money

EmehSande
Read All About It (Ptlll)

Figure 10

MeQhan Trainor
All About That Bass (Mae,°'
Remix)

Maeior Ali
All About That Bass (Remox)

Birdman
All About That

ThaOOQqPound
lt'z All About That Money

Hilarv Duff
All About You

Search Results for All About That Bass [5]

Ultimately, however, this approach proved infeasible because the search results

were not directly coded in HTML. Instead, they were dynamically generated by

JavaScript, presumably using the Website's internal APls.

Our final solution was by no means neat, intuitive, or efficient, but it was

accurate. Metrolyrics allows browsing for artist pages alphabetically. For example,

Lorde's Metrolyrics page, which contains links to the pages for the lyrics for her

19

individual songs, can be found by navigating to the page listing all the artists

beginning with the letter L. The URLS for these pages all have the same format, which

can be seen in Figure 11 for the artists beginning with L.

http://www.metrolyrics.com/artists-l.html

Figure 11

Metrolyrics URL for a Listing of All Artists Beginning with L

This is how the individual lyric pages were found. The URL based on the artist

last name is built, then that is searched for the URL to the specific artist, and finally

that URL is searched for the song URL. This is described in more detail in the next

section.

Royals Implementation

Royals_spider.py begins by opening and reading the input file which can be

created by the SongExtractor program, and storing the data in a dictionary called

inputsongs. The inputsongs data structure is identical to the songs data structure of

the SongExtractor program, in that it is a dictionary in which the keys are song titles

and the values are artist names. See Figure 2 for this structure. If the previously

discussed enhancement were to be made to the SongExtractor program by changing

this data structure to a list of tuples instead, then this data structure should also be

modified in the same way. As it is currently, inputsongs does not lose any data,

because if there were two songs with the same name, the SongExtractor program

20

would have chosen one by default and the data would have been lost at that point. This

straightforward loop iterates through each song once, so the time complexity is O(n),

where n is the number of songs in the input file.

A song can have multiple artists. In these cases, there is usually a primary artist

who is billed first on Billboard. In the observed data, Metrolyrics tended to list songs

such as these using only the main artist. For this reason, before the Royals program

stores the artists and songs into the inputsongs data structure, any part of the artist

string after a comma or the word featuring was stripped.

Once inputsongs contains all the songs and artists from the input file, the

Royals program builds and stores the URLs to the artist letter pages, such as

http: //www.metrolyrics.com/artists-a.html. Because there are only twenty-six letters in

the alphabet, it was deemed more efficient to initially store all possible URLs rather

than iterate through each artist, check the first letter of the artist name, then store the

corresponding URL. Even though it is possible a few unnecessary links may be stored

(even if the collection of artists does not contain any beginning with x, the link to the x

artists will be stored), this is less effort than checking the first letter of every artist.

These URLs were stored in a dictionary named letterurl, with the first letter as the

key and the link as the value. Figure 12 shows an example of the entry for artists

starting with the letter a.

letterurl['a7 = http://metrolyrics.com/artists-a.html

Figure 12

Example Entry of the Dictionary letterurl

There is an additional, twenty-seventh entry in the letterurl dictionary.

Metrolyrics assigns any artist beginning with a non-alphabetic character, such as a

number, using a 13
, as in Figure 13.

http://www.metrolyrics.com/artists-1.html

Figure 13

URL Leading to Artists Beginning with Non-Alphabetic Characters

21

This URL was also added to letterurl. The time complexity of this portion of

code, because it was done twenty-seven times, is constant. Figure 14 shows the

structure of letterurl.

"a" ~ http :/fwww .metro lyrics.com/artists-a . html"

"b" ~ http://www.metrolyrics.com/a rtists-b .htmr

•
•
•

' ~ "http ://www.metrolyrics.com/artists-z.html"

"1" ~ "http :f/www.metrolyrics.com/artists-1.html"

Figure 14

(key, value) letterurl Data Structure

3 This is the number one, not to be confused with the letter L.

22

After the twenty-seven URLs are built and stored,· those pages must be

searched to locate the pages of each individual artist. Artist page URLs take the form

displayed in Figure 15.

http://www.metrolyrics.com/artist-lyrics.html

Figure 15

Format of Artist URLS on Metrolyrics

For example, to find the URL for the band Ace of Base, http: //www.

metrolyrics.corn/artists-a.html is searched until the URL http: //www.metrolyrics.com/

ace-of-base-lyrics.html is found. The process of locating these artist pages is

described below.

Data Structures

The links to artist pages are found by comparing the artist names from the

input file, stored in inputsongs, to the links found on the alphabetical artist browsing

pages. The main data structures involved in this process are inputsongs, letterurl, and

artistlinks. As mentioned earlier, letterurl is a dictionary containing links to the

alphabetical artist browsing pages, keyed by first letter. artistlinks is another

dictionary, keyed again by artist first letter. The values in artistlinks are lists

containing all links to artist pages beginning with that letter, as in Figure 16.

"a" c::::>- "http:/twww.metrolyrics.com/ace-of-base-lyrics.html"
"http:/twww.metrolyrics.comlabba-lyrics.h I"

"http :ltwww.metrolyrics.com/a reth a-franklin-lyrics.html"

•
•
•

c::::>- "http:/twww.metrolyrics.com/zac-efron-lyrics.html"
http :/twww.metrolyrics.com/zz-to p-lyrics. html"

Figure 16

(key, value) artistlinks Data Structure

23

Unfortunately, the listing of artists on the first letter pages are not alphabetical.

For this reason, the strategy of sorting inputsongs alphabetically by artist, then

proceeding through the letter pages doing a one-by-one comparison will not work.

Additionally, because of the number of artists with similar names, and the variation

between how multiple artists are represented on the two Websites, finding the first

match is not sufficient. Often times, there is no exact match. lnstead, the best match is

required. For example, the artist of the popular song Say Something is listed in

Billboard as A Great Big World & Christina Aguilera. However, searching for that

exact artist name in the Metrolyrics URLs will not result in any matches.

Because of these two issues with searching one-by-one until an exact match is

found between the input artists and the links on the alphabetical pages, we adopted

another strategy. The dictionary artistlinks is used to store all URLs of artist pages

24

beginning with each letter. This is a large amount of unused information being stored.

Each first letter contains between 200 and 3 700 different URLs. Because of the issues

with other methods, and the knowledge that this storage is only done once per corpus

generated, this overhead was deemed acceptable. If many corpora were to be

generated, the Royals program could be modified to store this information in a file

from which future runs could extract the information. This, however, is not a function

of the current program because one of the main advantages of a corpus generator is the

ability to have an up-to-date corpus after every run. Storing the artist information in

this way could quickly lead to out-of-date information, most notably for new artists

that are added to the Metrolyrics database, but also in the case of Metrolyrics

modifying the URLs for any artists.

Locating artist page details. The program iterates through each song in

inputsongs. First, it checks the first letter of the artist, and if the set of URLs for

artists starting with that letter has not yet been stored in artistlinks, they are stored at

this time. This is done by using the requests module to load the HTML of the page

containing links to artists starting with that letter. Only forty artists are shown on this

first page. A link labeled next must be used to access the following forty, and so on.

The format of these next URLs is shown below in Figure 17.

http://www. metro lyrics. com/artists-letter-page#. html

Figure 17

Format of Pages beyond First for Alphabetical Artist List on Metrolyrics

25

Results 1-40 are on the first, non-numbered page. The page numbering starts at

one for results 41-80, and continues until there are no more results. The example in

Figure 18 shows the page with results 81-120 of artists starting with the letter m.

http://www.metrolyrics.com/artists-m-2.html

Figure 18

URL to the Third Page of the Artists Beginning with m on Metro lyrics

On the first page containing the first forty artists is also a number of total

artists. This number is extracted and used to calculate the number of pages. Each of

these pages is loaded, and XPath expressions are used to select all the individual artist

links from each page and store them in the artistlinks dictionary. There is one entry

per artist, so the space complexity of this information is linear with respect to the

number of artists. This code is shown in Figure 19.

r
artistlinks[firstletter] = tree . xpath (' +- I

~ Iterates rhr u~h ~ac. pa;~ after the firs pag~
J ,t r 0 c.1r-L rtlinks
for page in range(l , numpages) :

. i.)" lrwin ~ p-iq~,:

1.nks
• r I)

pageurl urlbeginning + firstletter + "-" + str(page) + urlending

letterpage = requests . get(pageurl)
tree= html . fromstring (letterpage . text)

App~nd the :ink_ from ~ne page to the c.1rray oi links
2 J _ n s

artistlinks[firstletter] = artistlinks[firstletter] +
tree. xpath (' I)

Figure 19

Python Code Storing All the Artist Links for Artists Beginning with firstletter

26

Once all the links for that letter are stored, they must be searched for the artist

currently in question. As a reminder, the process of searching all the artists of a certain

first letter for a match is done iteratively over each input song. To start this process,

the artist name is split on whitespace and stored as an array. Then certain punctuation

not used by Metrolyrics is stripped, leaving just the artist name as an array, one word

per element, all lower case. With the artist name in this format, the matching can

begin.

The approach taken to match the input artist with the URL is word-by-word,

breadth-first. The Royals program starts by attempting to match the first word of the

artist with the first word in the artist URL, and if multiple matches are found, then

attempts to match the first two words, and so on. A hyphen separator was used

27

between words as this is also how the links are built. A numwords variable keeps

track of the number of words currently being matched. This number starts at one,

unless the first word is the, in which case it starts at two. This was done to avoid

unnecessary matching of any artist starting with the. Python does not have do ... while

logic, so this matching is placed in a while True block, and once one and only one

match is found, a break statement ends the loop.

One of the challenges encountered during the creation of this spider was that

occasionally multiple artist links would match even when every word from the input

artist was being used. We found two reasons for this. Originally, the program had been

only matchingfirstword-secondword. This lead to issues with artists that were prefixes

of other artists. One example is Jessie J. Originally, this program was attempting to

match links containingjessie:i. This was matching both Jessie J and Jessie James. To

solve this problem, a hyphen was appended to the end of the string to match, because

the links always end in -lyrics.html. When the stringjessie-j- was searched for, only

Jessie J matched.

Another version of the prefix problem was encountered in the event that some

artists are whole word prefixes of other artists. In this case, the first few words were

exactly the same. This happened with Taylor Swift and Taylor Swift Cover Band. The

solution employed by the Royals program is if every word in the input artist is being

searched for, and there are multiple matches, then use the shortest match. See Figure

20.

If w~ havl u-ed all the w0rds in the artist name , but
more than one link watched
Thi- is use,d when one artL.t nawe is" subset of :.nother
E w 1 1 s ift - , r

if (numwords == len(artistname)) and (len(matchedlinks) > 1) :
Find and use the shortest .
shortest= matchedl inks(O]
for matchedl ink in matchedlinks :

if len(matchedlink) < len (shortest):
shortest= matchedlink

matchedl inks = []
matchedlinks . append (shortest)

Figure 20

Python Code Preventing Prefix Problem

28

The time complexity of the matching of artist names to links on Metrolyrics is

different in the best and worst case scenarios. In the best case, the artist link is found

after exactly one full pass through all artists starting with that letter. This is done for

each song, so the best case complexity is O(nm), where n is the number of songs and

m is the number of artists with the same first letter. Even if the artist is not found on

the first few passes, the subsequent iterations only compare to the potential matches

found in the previous iteration. Therefore any further iterations will be significantly

reduced in amount of comparisons; enough in practice to become negligible and thus

declare the complexity O(nm) in all cases.

There are n songs stored, and m links, so the space complexity of this portion

of the Royals program is O(n + m).

Once exactly one matching link is found for the artist, the song name and artist

URL are saved in a list of tuples called artistlinksongnames which will be accessed

29

in the following section of code. The structure for artistlinksongnames can be seen

below in Figure 21. The links themselves were not enough; each link also had to be

associated with the song names for two reasons. First, as previously stated, multiple

artists may have songs with the same name. Second, if the song name were not stored,

later each artist ' s page would have to be searched for a song name matching a song

from the input, which would require significantly more work than is necessary.

"the sign", httpJtwww.metrolyrics.cornface--of-base-lyrics.html"

roya Is", "http :/twww.metrolyrics.com/lo rde-lyrics.html"

"anaconda", http :/twww.metrolyrics.cornfnicki-minaj-lyrics.html"

•
•
•

Figure 21

artistlinksongnames Data Structure

After each artist's link is found, then these pages must be searched for the

artists' links to the lyrics of each individual song. In the previous section of code, a list

of artist names was searched through, attempting to match artists from the input file.

Now, a list of song names from a particular artist is searched to match the song name

from the input file .

Each song in artistlinksongnames is iterated through. First, the artist' s page is

loaded. Then, similarly to the search for artist names, the song is split on whitespace

and stored as a list. Punctuation is stripped out of the search string, because the

Metrolyrics URLs do not contain punctuation other than the hyphens

separating words.

30

The main difference between this search and the search for artist is that this

search is first performed for all words in the song title, and the number of words in the

search string is iteratively decreased by one until a matching song is found. These

decisions were made in an attempt to decrease runtime. During the artist search, as

many as 3700 links may be compared to the search string. Therefore it is more

efficient to narrow down the search quickly, rather than run the risk of searching all

artists many times before getting any matches. When examining songs by one artist,

there are typically far fewer songs, and there is less variation in the representation of

song names once stripped of punctuation, so the likelihood of an exact match on the

first iteration is high. The time complexity of this section is O(nq), where n is the

number of songs (total, from the input file), and q is the average number of songs on

each artist's page. Because even the Beatles only had between two and three hundred

songs, as the number of songs in the corpus gets large, q will become negligible and

the time complexity reduces to O(n).

The space complexity is smaller than the time complexity, because the

program is storing n songs and q song links. Therefore, the space complexity is O(n +

q), which, like the time complexity above, will reduce to O(n).

When a match between the song provided by the input file and the URLs for

the song lyrics is found, the URL is appended to the list urls. After all the songs have

been searched for, urls contains the final list of URLs from which to scrape song

lyrics. These URLs become the start_urls for the class LyricSpider, which is the

portion of the Royals program that actually scrapes Metro lyrics for the requested

song lyrics.

31

LyricSpider is very simple, containing only three pieces of data; the name,

domains allowed, and start_urls. Its parse function uses XPath expressions to select

every line from the lyrics, and returns each line. Figure 22 shows the full code of

LyricSpider. The lyrics are then written in an output file. This file becomes the

corpus after some manual processing.

class LyricSpider(scrapy . Spider) :

name = " a L -- "

allowed domains
start urls = urls

[" m rr lyric-=. r1IT1
11

]

def ~ar (self , response) :

for sel in response . xpath('
item= Royalsitem()
item[' _ ::; '] = sel

yield item

Figure 22

Full Code for the Royals Spider

ic•· (') . extract () :

Complexity. Most of the work is done before the actual spider scrapes the

information. The time complexity of the spider itself is O(nl), where n is the number

of URLS, or songs, and l is the number of lines in each song. Of the preprocessing

tasks, the one with the highest time complexity was when the program iterated through

each song and compared each song with each link in the page of artists with that

particular first letter. This, again, was complexity O(nm), where mis the number of

artist links starting with each letter.

THE SONG LYRIC CORPUS

32

The Song Lyric Corpus contains songs from 100 weeks of the Billboard Hot

100 Chart [11]. This corpus was generated on November 11 , 2014, so it contains most

of the top 100 songs from the weeks of 12/15/2012 to 11/15/2014. Once the metadata

was manually stripped from the corpus, there remained a total of 40440 lines and

280591 words.

Future Work

The corpus generation could be improved by implementing the handling of

special cases, as previously described, such as if two artists have a song with the same

name. A graphical user interface would greatly enhance the usability of both the

SongExtractor and Royals programs. The addition of options to specify a specific

time period would allow for studies of pop songs of specific eras.

Adding genre-specifying options would allow for the corpus to become much

more specialized. Of course, if a user wanted only specific songs in their corpus, they

can manually compile the input file for the Royals program, and skip using the

SongExtractor program. This allows for as much customization as Metrolyrics

supports. But adding an option to specify genre would allow, for example, a hip-hop

genre corpus to be generated. This would require more research, however, because the

Billboard Hot 100 chart does not keep genre information, so the identification of

songs by genre would have to be obtained elsewhere.

33

Chapter III

COMPARING VERB-PARTICLE CONSTRUCTIONS IN CORPORA
OF VARYING FORMALITIES

MOTIVATION

Verb-Particle Construction Definition

Multi-word expressions (MWEs) pose a serious problem for natural language

processing tasks such as machine translation and semantic analysis. MWEs are

"idiosyncratic interpretations that cross word boundaries (or spaces)" [21]. They can

typically be thought of as one unit of meaning. Examples of multiword expressions

include in short, kick the bucket, San Francisco, attorney general, and look up [21] .

Sag, Baldwin, Bond, Copestake, and Flickinger highlighted the importance of

researching methods to computationally handle MWEs [21].

Verb-Particle Constructions (VPCs) are a specific type ofMWE consisting of

a verb and one or more particles. A particle is a word which has no meaning by itself,

but must be paired with one or more other words to impart meaning. VPCs, as with

other MWEs, have meanings that are more than the sum of their parts. For example,

one can look up a building, and one can look up a word [21] . The former is a case of a

verb followed by a prepositional phrase. The latter, however, means typically to

consult a reference such as a dictionary or index to find a particular word

34

35

VPCs are often, but not always, characterized by the ability to be split: one can

look a word up, but not *look a tower up4 [21].

Machine Translation Example

To illustrate one of the issues that VPCs specifically cause, namely machine

translation, three sentences with the same meaning were translated from English to

Spanish using Google Translate [22] . The first sentence contained the more formal

word submitted. The second and third contained the VPC with the same meaning:

turned in. The second sentence keeps the words in the VPC together, while the third

splits the words. The Spanish output was then translated back into English and

compared with the original English output. Table 2 compares the original to the

resulting sentences. The sentences containing the VPCs do not translate as well,

especially the sentence with the split verb/particle.

Table 2

Results of Translating Sentences with and without VPCs

Original Input

She submitted a paper.
She turned in a paper.
She turned a paper in.

Output
Translation

after

She presented a paper.
She had a role.
It became an article in.

English/Spanish/English

4
ln lingui tic analysis, an asterisk represents an ungrammatical phrase.

36

Literature Review

In 2002, Baldwin and Villavicencio proposed a method of VPC extraction

using three different approaches: a part-of-speech tagger, a chunk parser, and a

syntactic parser [23]. A part-of-speech tagger assigns the part-of speech classification

to each word in its input, such as noun or verb. A chunk parser separates the text into

non-overlapping regions, usually based on noun, verb, or prepositional phrases, and a

syntactic parser forms a sentence tree accounting for each word representing the

syntax hierarchy. In 2005 , Baldwin used the output of the previous paper and

combined it with valence information to extract VPCs [24]. In 2007, Kim and

Baldwin estimated VPC compositionality using distributional and semantic similarity

of the head verb [25] . In 2006 and 2010, the same authors use a parser and word

senses of the head verbs and nouns using WordNet to distinguish between VPCs and

verbs followed by prepositions [26], [27] . A classifier was then developed using a

memory based learner, TiMBL [28].

In 2014, Smith uses alignment in a bilingual corpus of English and Spanish

movie and television subtitles [29], proposing that because VPCs tend to be less

formal than their non-VPC counterparts, a spoken text corpus will have a higher

density ofVPCs than a more formal corpus. He also expects that these VPCs will

often be slang or profanities, and not found in other corpora.

37

Goals of Verb-Particle Construction Analysis

This study of VPCs focuses on the examination and analysis of the number of

VPCs in an informal corpus, with the hypothesis that there is a positive correlation

between the amount of VPCs and the informality of the corpus. A corpus with a large

number of VPCs may be useful in future attempts of identification.

The analysis of the verb-particle constructions of a song lyric corpus

undertaken in this study has three goals:

NLTK

1. The identification of verb-particle constructions in the corpus.

2. A comparison of number of occurrences of VPCs between the Song Lyric

Corpus and a corpus of more formal writing. The Brown Editorials Corpus

is used.

3. The identification of new or interesting VPCs.

VPC IDENTIFICATION

The Natural Language Processing Toolkit (NLTK) [30] is an open source

library written in Python designed to perform natural language processing tasks such

as tokenization, part-of-speech tagging, and parsing. The NLTK was created in 2001

at the University of Pennsylvania and provides interfaces to over 50 lexical resources

and corpora, including the Brown Corpus and Penn Treebank. Bird, Klein, and Loper

note in their book Natural Language Processing with Python [30] that the NLTK is

38

simple, consistent, extensible, and modular, but "while the toolkit is efficient enough

to support meaningful tasks, it is not highly optimized for runtime performance" .

Installing NLTK is simple. NLTK requires Python versions 2.6-2.7 or 3.2+.

Typically users install both NLTK and NLTK Data, which contains various corpora

and grammars [31]. This research also required NumPy [32], a Python package

designed for scientific computing. This is used in NLTK's part-of-speech taggers.

Method Overview

We took the following steps to identify and analyze verb-particle constructions

in the Song Lyric Corpus:

1. Manual processing was performed on the Song Lyric Corpus to enable use

of Python 's Natural Language Processing Toolkit.

2. The NLTK was used to tokenize the corpus.

3. A part-of-speech tagger was trained and used to tag the parts of speech of

the corpus.

4. The same tagger was applied to the editorials sections of the

Brown Corpus.

5. Manual examination of ten percent of the song corpus confirmed the POS

tagging of VPCs and ensured all VPCs were found.

6. The same manual examination was performed on 50% of the tagged

Editorials section of the Brown Corpus.

39

7. VPC frequency is compared, along with number of correct/incorrect tags.

8. A small number of new VPCs were identified.

Manual Corpus Processing

The output from the Royals program required processing before it was usable

for analysis. Each line from the lyrics was wrapped in quotes with the keyword lyrics .

This had to be stripped. Additionally, some metadata in the lyrics provided by

Metrolyrics is conveyed in square brackets. This data includes text such is Verse 3, or

Bridge, or the name of the singer of the following lyrics in multi-artist songs. We

deleted this excess data. Repetitions of lines are sometimes conveyed by printing the

line once, then appending (x#), where# is the number of desired repetitions. We also

stripped these. The lines were not expanded, since multiple redundant lines will not

aid in linguistic analysis.

The song lyrics often do not contain periods. Sentences boundaries are either

not marked, or marked by newlines. Song lyrics also tend to contain run-on sentences.

A random sampling of songs was examined to determine how to designate sentence

boundaries. The majority of the lyrics are organized with one sentence per line, so we

appended a period to the end of each line. This undoubtedly introduced some extra

periods, but the analysis involves manually examining the part-of-speech tags just to

account for errors such as this.

40

Automated Corpus Modifications:
Tokenization and Tagging

Tokenization. Tokenization is "the task of cutting a string into identifiable

linguistic units that constitute a piece of language data" [30]. This must be done before

any automated linguistic analysis can occur. NLTK provides a default sentence

tokenizer sent_tokenize() which separates the string into sentences using an algorithm

which takes into account typical sentence punctuation such as'.' or'?' and also

accounts for items such as abbreviations [31]. At first, this tokenizer did not work

properly. The corpus was constructed so that each line was one sentence. Therefore it

was missing the usual space after a sentence boundary. We manually appended spaces

at the end of each line, and successfully re-applied the tokenizer.

Already broken into sentences, the corpus then had to be further tokenized into

individual tokens. A token is not necessarily a word; it is a piece of language data.

Most of the tokens are, in fact, words. There are exceptions, however. The word don't

becomes two tokens to account for their separate meanings: do and n 't. We used

NLTK's default word tokenizer, word_tokenize(), on the sentences in the sentence

tokenized corpus. This produced a fully tokenized corpus. See Figure 23 for an

example of a tokenized sentence from the song Young Girls [33].

['Keep', 'me', 'up', 'till', 'the', 'sun', 'is', 'high','.']

Figure 23

Example Tokenized Sentence "Keep me up till the sun is high."

41

This example is representative of the problems posed by this analysis. Keep up

is a verb-particle construction, which the analysis is attempting to identify. Also, the

word till is misspelled. It should be the abbreviation of until: 'ti/. This will illustrate

how the analysis works with imperfect data. In the following section, this sentence

will be shown with its part-of-speech tags.

The full code for the tokenization of the corpus is show below in Figure 24.

Opens the corpus
file= open('l:!_-_l-8-30pm royalsitemsstripped . txt' , 'r')

Reads the file
Adds a space at the end of each line so the sentence
tokenizer
will work correctly . Also discards a newline because the
corpus
contains a newline after every sentence , and the sentence
4 tokenizer requires the entire file in one string .
data = file. read () . replace (' ' ')

Tokenize tre sentences
full sentences= nltk . sent tokenize(data)

Tokenize the words
sentences [nltk . word_tokenize(sent) for sent

full sentences]

Figure 24

Python Code Tokenizing the Corpus

in

Tagging. In order to perform any linguistic analysis involving word meanings,

the words in the data must be classified into their parts-of-speech, such as noun, verb,

or preposition. This process is called part-of-speech (POS) tagging, or just tagging.

42

Ideally, a corpus would be tagged by hand, using native speakers of the corpus

language. This, however, is time-consuming and unrealistic. Luckily, many automated

POS taggers are available. NL TK has a number of taggers available. We trained a

trigram tagger t0 using NLTK's NgramTagger class and the Brown Corpus.

When assigning a tag to a word, a unigram tagger assigns the tag that is most

statistically likely for that token. For example, it may encounter the token wind, and its

statistics tells it that the noun is more common than the verb, so the word will be

assigned the tag of NN, the Brown tag for singular noun. Generally these statistics are

gathered by training the tagger on a set of data. Ann-gram tagger works similarly, but

uses statistics for the current word and the part-of-speech tags of the preceding n - 1

tokens [30]. A bigram (2-gram) tagger may therefore encounter the token wind, and

see that the previous token was tagged TO, which in the Brown ta$set stands for the

infinitival to. 5 This bigram tagger would then conclude that, when positioned after the

infinitival to, the current tag is most likely a verb. A trigram tagger, such as t3, assigns

the most likely tag based on the current word and the previous two words and tags.

When training a tagger, NLTK permits the use of a backofftagger. This is

essentially the backup if the main tagger fails to find statistics for a particular

positioning. The trigram tagger used had a chain of backoff taggers. The trigram

tagger's backoff was the bigram tagger, the bigram tagger's backoff was the unigram

tagger, and the unigram tagger's backoff was the default tagger, which simply tags

5 In English, the infinitive form of a verb is the basic dictionary form, with no modifications
for tense or person. The infinitival to refers to the particle to that precedes the infinitive form, such as in
to eat.

43

everything as a noun. We trained the tagger on the News section of the Brown Corpus.

See Figure 25 for the code training the tagger.

brown tagged_sents
brown.tagged_sents(categories= 'new ')

tO nl tk. Def aul tTagger (' ')
tl = nltk.UnigrarnTagger(brown tagged_sents, backoff=tO)
t2 = nltk.BigrarnTagger(brown tagged_sents, backoff=tl)
t3 nltk.TrigrarnTagger(brown tagged_sents, backoff=t2)

Figure 25

Training the Tagger

After training, we used the tagger on the fully tokenized corpus. The resulting

tagged corpus was output into a file by our program, sentence by sentence, along with

the untagged, untokenized sentence for easier reading. The tagging was done in only

one line of code. See Figure 26.

., - J rrc ~ l-4~

sentences= [t3.tag(sent) for sent in sentences]

Figure 26

Tagging the Corpus

Figure 27 shows one of the lyrics of the final part-of-speech tagged corpus.

This is the same sentence as in Figure 23.

44

Keep me up till t h e 9un i 3 h i gh _

[('Keep' , 'NN'), (' me', u'PPO') , ('up', u ' RP ') , (' t i l l', 'NN'),

('th e ', u'AT') , { '9un', 'NN ') , (' i 9', u' BE Z ') , ('high ' , u'.JJ') , I ' - ' , u' _ ') l

Figure 27

A Tagged Sentence

The tagged sentence is shown in the form of tuples . Each token has a tuple, in

which the token is the first element, and the POS tag is the second. These particular

tags are from the Brown tagset. Details of all the tag types can be found in the Brown

Corpus Manual [2] . The tags important to this analysis are IN (prepositions) and RP

(adverbs and particles). Note in the sentence in Figure 27 has mis-tagged till as a NN

(noun). This illustrates the difficulties of working with inaccurate data.

There are other taggers available, and other corpora on which to train them.

Various evaluation methods exist for taggers, but the goal of this tagger is to expedite

manual analysis, not to maximize the tagging accuracy, so no evaluation is done.

The Brown Corpus

The NLTK provides the Brown Corpus in both tagged and untagged versions.

The tagger t3 was trained on a tagged version of the News section of the Brown

Corpus. This same tagger was used to tag both the Song Lyric Corpus and also the

untagged version of the Editorials section of the Brown Corpus. This allows a

comparison of the tagger's performance on each corpus. Figure 28 shows the code

using t3 to tag the Editorials section of the Brown Corpus.

45

brown sents = brown.sents(categories= ' ~~-

brown sents = [t3.tag(sent) for sent in brown sents]

Figure 28

Code Using Tagger t3 to Tag Brown Editorial Corpus

Manual Examination

After the corpus has been tokenized and tagged, it is ready for manual analysis.

We chose a sample size of ten percent to manually examine. This portion of the corpus

has 4013 sentences and 28319 words. A similarly sized section of the Brown Corpus

was desirable for comparison. The sentences in song lyrics tend to be short, especially

compared with a corpus of formal editorials. For this reason, a similar word count,

instead of sentence count, was desired. We selected fifty percent of the Editorials

section of the Brown Corpus for a total of 30258 words.

The manual examination of these corpora is based on the methods used by Kim

and Baldwin (27]. Two tags are examined: RP - 'adverb, particle' and IN -

'preposition'. If tagged correctly, the particle of all VPCs should be tagged with RP

and none should be tagged with IN. However, the identification of VPCs is difficult

and it is expected the some VPCs will erroneously receive the IN tag. Additionally, the

RP tag also includes adverbs, so it cannot be trusted to identify VPCs in all cases.

First we examined each instance of the RP tag, and a determined whether or

not the tagged token was actually a VPC. After that, we examined each IN tag and

made the same determination. All determinations were marked in the text for counting

46

and reference purposes. This was done for both the Song Lyric Corpus and the Brown

Editorials Corpus.

FINDINGS

Comparison of VPC Occurrences

Table 3 contains the number of sentences, words, tags, and VPCs in each

corpus.

Table 3

Findings of VPC Comparison

Sentence Count
Word Count
Words per Sentence
RP Tags
RP Tags that are not VPCs
/,VTags
/ Tags that Tag VPCs
VPCs
VPCs per Sentence
Probability a Word is in a
VPC

Song Lyric Corpus Brown Editorial
Corpus

4013
28319

7.06
442
105

1778
223
560
.14

.040

1498
30258
20.20

131
50

2984
29

110
.07

.007

Table 3 shows that the sentence count varies greatly due to the shorter sentence

length in the Song Lyric Corpus. The average lyric only has seven words, while a

sentence from the Brown Editorial Corpus has twenty. As mentioned earlier, this was

why word count, and not sentence count, was chosen to divide the corpora.

47

IN tags are meant to mark prepositions, so any VPCs in which the particle is

marked with IN is tagged incorrectly. In the Song Lyric Corpus, approximately 12.5%

of the IN tags were inaccurately attached to the particles of VPCs. This was the case

for 9.7% of the IN tags for the Brown Editorials Corpus. The POS tagger t3 tagged at

least 10% of IN tags incorrectly. More analysis would need to be performed to get a

true measure of the tagger's accuracy regarding prepositions, but that is not the focus

of this study. The purpose of the POS tagger t3 was to greatly narrow down the

number of token to be considered, therefore making a manual evaluation possible

within the timeframe.

The difference in the number of VPCs in the two corpora is significantly large.

The Song Lyric Corpus contains over five times the amount ofVPCs than the Brown

Editorials Corpus. In the Song Lyric Corpus, a word has approximately a 4% chance

to be contained in a verb-particle construction, while in the Brown Editorial Corpus, a

word has only a .7% chance. This is assuming a VPC consists of two words, but it

should be noted that this is not always the case. Some verb-particle constructions

contain three words, such as brush up on [21].

These results indicate that, due to the high occurrences of VPC, future studies

may benefit from using a corpus of song lyrics.

NewVPCs

Smith [29] defines a new VPC as one which does not appear in either

Dictionary.com [34] or The Free Dictionary [35]. We identified the VPCs matching

these criteria and they can be seen in Table 4 below.

Table 4

Newly Identified Verb-Particle Constructions

snatch out*

pour up*
~-~~-

howl out
silverware out
double on down
wage on
walk on by
come on over
bite up

snatch the fucking track out

Where my double cup, time to pour it up
howled out with joy

silverware a nigga out
double on down like it's gonna make you free

The tug of war wages on
They can walk on by
So come on over baby
While I bite the beat up

48

In addition to the two Websites that Smith used, we also searched Urban

Dictionary [36], a site that provides definitions of slang, for each new VPC. Only the

VPCs marked with * were listed on Urban Dictionary. Table 4 seems to suggest that

three-word VPCs are not well documented. While phrases like bite up seem new, the

phrases walk on by and come on over are familiar.

Future Work

Applying an automated method of VPC extraction on a corpus of song lyrics

could give valuable insight into potential improvements to automated VPC

identification and extraction methods. Most notably, it would be useful to apply the

49

methods of Kim and Baldwin [25], [26] to a corpus of informal speech, using a parser

and the semantic meaning of the head verb to train a VPC classifier. Other media of

informal speech would be worth investigation as well, such as Smith's idea of

identifying VPCs in a subtitles corpus [29].

Chapter IV

CONCLUSION

We created two programs to automatically generate song lyric corpora. This

corpus generator has the potential to save future researchers hours of manual corpus

compilation. Because it is a corpus generator, and not a corpus itself, sharing these

programs has no potential of copyright issues, as all software used was open source.

Additionally, the generation of a corpus, rather than the re-use, allows for corpora to

remain modem. New songs are released every week, and now a corpus can be

generated at any time that includes the top songs from the current week.

Using the song lyric corpus generator, we made the Song Lyric Corpus,

consisting of approximately 800 of the top US songs from the last 100 weeks. We then

tokenized and tagged both the Song Lyric Corpus and a corpus of more formal speech,

the Brown Editorials Corpus, and counted the verb-particle constructions. We found

that the Song Lyric Corpus we generated contained over five times as many VPCs as

the existing Brown Editorials Corpus, indicating that a corpus of song lyrics is a

promising medium with which to research verb-particle constructions.

50

REFERENCES

51

REFERENCES

[1] "Corpus," Online Etymology Dictionary, November 21 , 2014, http://dictionary.
reference.com/browse/corpus.

[2] Brown Corpus Manual, November 21, 2014, http://clu.uni.no/icame/
brown/bcm.html.

[3] The British National Corpus, version 3 (BNC XML Edition). 2007. Distributed
by Oxford University Computing Services on behalf of the BNC Consortium,
http://www.natcorp.ox.ac. uk/.

[4] "Billboard-music charts," Music News , Artist Photo Gallery & Free Video,
November 21, 2014, http://www.billboard.com/.

[5] Song Lyrics I MetroLyrics, November 21 , 2014, http: //www.metrolyrics.com/.

[6] V. Werner, "Love is all around: A corpus-based study of pop lyrics," Corpora,
vol. 7, no. 1, pp. 19-50, 2012.

[7] G. Herk and U. Miethaner, "I can look through muddy water: Analyzing earlier
African American English in blues lyrics (BLUR)," English World-Wide, pp.
205-209, 2005.

[8] R. Kreyer and J. Mukherjee, "The style of pop song lyrics: A corpus-linguistic
pilot study," Anglia-Zeitschrift Fur Englische Philologie, vol. 125, no. 1, 2007.

[9] J. Falk, "We will rock you: A diachronic corpus-based analysis of linguistic
features in rock lyrics," Bachelor Thesis, 2012.

[10] N. Katznelson, J. Gelman, K. Lindblom, and M. Caput, "American song lyrics:
A corpus-based research project featuring twenty years in rock, pop, country,
and hip-hop."

52

[11] "Music: Top 100 songs I Billboard Hot 100 Chart," November 21 , 2014,
http://www.billboard.com/charts/hot-l 00.

[12] "Welcome to Python.org," November 21 , 2014, https://www.python.org/.

[13] "XPath tutorial," November 21 , 2014, http://www.w3schools.com/xpath/.

[14] "Meet Scrapy," November 21, 2014, http: //scrapy.org/.

[15] "Installation guide," November 21 , 2014, http: //doc.scrapy.org/en/latest/
intro/install.html.

53

[16] "Pip 1.5 .6: Python Package Index," November 21, 2014, https: / /pypi.python.org/
pypi/pip.

[17] "Lxml-XML and HTML with Python," November 21, 2014, http://lxml.de/.

[18] "Scrapy tutorial," November 21 , 2014, http: //doc.scrapy.org/en/latest/
intro/tutorial.html.

[19] Lorde, "Royals," On Pure Heroine [CD], Morningside, New Zealand: Golden
Age, 2013.

[20] "Settings," November 21 , 2014, http: / /doc.scrapy.org/en/latest/topics/settings.
html.

[21] I. Sag, T. Baldwin, R. Bond, A. Copestake, and D. Flickinger, "Multiword
expressions: A pain in the neck for NLP," in Proceedings of the 3rd
International Conference on Intelligent Text Processing and Computational
linguistics, 2002, pp. 1-15.

[22] "Google translate," November 21, 2014, http:/ /translate.google.corn/.

[23] T. Baldwin and A. Villavicencio, "Extracting the unextractable: A case study
on verb-particles," Proceedings of the 6th Conference on Natural language
learning, 2002, pp. 98-104.

[24] T. Baldwin, "The deep lexical acquisition of English verb-particle
constructions," Computer Speech and Language, Special Issue on Multiword

Expressions, vol. 19, no. 4, pp. 398-414, 2005.

54

[25] S. Kim and T. Baldwin, "Detecting compositionality of English verb-particle
constructions using semantic similarity," Proceedings of PA CLING 2007, 2007,
pp. 40-48.

[26] T. Baldwin and S. Kim, "How to pick out token instances of English verb
particle constructions," Journal of Language Resources and Evaluation, no. 44,
pp. 97-113, 2010.

[27] S. Kim and T. Baldwin, "Automatic identification of English verb particle
constructions using linguistic features," Proceedings of the Third ACL-SJGSEM

Workshop on Prepositions, 2006, pp. 65-72.

[28] W. Daelemans, J. Zavrel, K. Van der Sloot, and A. Van den Bosch, TiMBL:
Ti/burg Memory Based Learner, 2004.

[29] A. Smith, "Breaking bad: Extraction of verb-particle constructions from a
parallel subtitles corpus," SIGLEX-MWE: Workshops on Multiword Expressions,

2014.

[30] S. Bird, E. Loper, and E. Klein, Natural Language Processing with Python.
Beijing: O'Reilly, 2009.

[31] "Natural language toolkit," November 21, 2014, http://www.nltk.org/.

[32] "NumPy," November 21 , 2014, http://www.numpy.org/.

[33] B. Mars, "Young girls," On Unorthodox Jukebox [CD], Atlantic, 2012.

[34] Dictionary.com, November 21, 2014, http://dictionary.reference.com/.

[35] "Dictionary, encyclopedia and thesaurus," November 21 , 2014,
http: //www.thefreedictionary.com/.

[36] Urban Dictionary, November 21 , 2014, http: //www.urbandictionary.com/.

I

APPENDICES

55

APPENDIX A

Source Code

56

SongExtractor.py

from urlparse import urljoin
import requests
from lxml import html
import re

NUM WEEKS= 100

' w ') file= open(',,!')".':,•' ,
prevurl = " p:/,www.0 n _:d. ,·"/rh1rt ... , .. t-_ (J'}"

A i~ctionary 1n whic~ the key is the song and t~e value is the artist
songs= {}

s ► r~ps eveLft~~ng before and including the quote
p = re . compile(' .*?(' "l ')

Str~os tra~l~ng whitespace
q = re . compile(' ,s*('I")]$')

striptabs =re . compile('\
stripnewlines = re . compile('

~hib function extrac~~ t~e song and artist
and strips excess c~aracters, then stores
t'· son;i- and --,r tist ir t e songs dictionary
def extractSongArtist(item) :

song= item . xpath(' .+ !l ')

artist= item.xpath(1 t<2'" ')

_+:,ril'.' ,recessar1 c.. 11 ,c·ters u1 song and artist
art p . sub(" , str(artist))
art q . sub('' , art)
art striptabs . sub(' ' , art)
art stripnewlines . sub(' , art)
so= p . sub(' , str(song))
so= q . sub(' , so)
art= art . lower()
so = so. lower()

if not so in songs :
songs[so] = art

for week in range(l , NUM_WEEKS) :
page requests . get(prevurl)
tree= html.fromstring(page . text)

for item in tree . xpath(1 r
extractSongArtist(item)

prevurl = tree. xpath (' 1 " •
prevurl = urljoin(w ,.

page requests.get(prevurl)
tree= html.fromstring(page . text)

for item in tree.xpath (' I_ @ 1.

extractSongArtist(item)

- r cJ'1'r ''

i. m prevurl)

II I)

57

') [0]

f o r song in songs :

file . write(songs[song] + ' I ' +song+ ' u0 ')royals_spider.py
impor t scrapy
impo rt string
import re
from string import ascii lowercase
from royals . items i mport Royalsitem
from lxml import html
import requests

input= open(' ~ n ' ')
artistsSongs = input . read() . splitlines()
inputsongs = {)

def ~ r~mar •c (links , artistname , numwords)
matchesfound = []
for link in links :

stringtomatch = artistname[O] + " - "
for word i n range(l , numwords) :

stringtomatch = stringtomatch + artistname[word] +
if re . search(stringtomatch , link)

matchesfound . append(link)
re t urn matchesfound

f or line in artistsSongs :
stripast = re . compile(' ' ')
line= stripast . sub(' ' line)
artsong = string . split(line , '
song= artsong[l]

• ass1qn1rg aLt btS and songs tc a dict10rary in which
•~e k£y ·s ~he scng a"i th~ va_ e i_ th~ r~ist .

JI ~f thE r ,-,re multip~ i arti~-~ , on~y use thE: first .
Accvmp ish this by only tak1nq tr~ artist b~frre eit~er

'le _ " L c? r..vord 11 ---:a-... :..1nq "
firstartist = artsong[O] . split(')
firstartist = firstartist[O] . split(' ' • r ')
inputsongs[song] = firstartist[O]

urlbeginning =
urlending = "
1t •irl.., tu th art13t pages a ph'lbeti~a' ly.

' t ' = ht:o : //metr0lyr1cs . com/artists-a . rt~l
letterurl = {)
for letter in ascii lowercase:

letterurl[letter] = urlbeginning +letter+ urlending

M~trolyric~ puts arLists start1ng with a digit on the page
m~tro~yrics.com/art:sts l.ht~l

letterurl[

urls = []

'] = urlbeginning +

artistlinksongnames []

+ urlending

58

"-"

t Sto·C' l•nks t ind1v1dual art·st pages ty a d•L ► ionary of arrays :
The dict:onary keys are tn£ f~rst 1.etters of tne artist , and the

ct 1-rays c-orta1nirg a&l r,, 1irKc;
artistlinks = {}

for song in inputsongs :
r, ·ha'. let t<>, Lave nc-t. a::..r:eady beE..n at.ored

~ st le ► ter o~ t~e art•s
if inputsongs[song] [0] . isdigit()

firstletter
else :

firstletter inputsongs[song] [OJ

It~ kip e
if not (firstletter in letterurl)

continue

u: not fo-....nd

if not (firstletter in artistlinks) :

letterpage = requests . get(letterurl[firstletter])
tree= html.fromstring(letterpage . text)
numartists = int (tree. xpath (' "~(t • -

f >" ') [o l)
r 1 _ re1 J: ~ re

numpages (numartists / 40)
if numartists % 40 :

numpages += 1

1 first pug€!
artistlinks[firstletter] tree.xpath(' 'tr·!'

I era~c~ throu~h f'1 P p1~f' afte! ► re ~~rJL p~ge
it c ,u+-1st-:.in ·•
for page in range(l , numpages) :

, 1Low1.nq rc1qes

in art1.ct::.inks
l ,F')

pageurl urlbeginning + firstletter + " - " + str(page) +
urlending

-:l r 1

letterpage = requests.get(pageurl)
tree= html . fromstring(le t terpage . text)

Aor >rd th, 1 nk.J :rorr en~ page co t••e array oE ::.inks
j

artistlinks[firstletter] = artistlinks[firstletter) +
tree.xpath()

• ~uw ~ave al th ,r~~ •c art1stJ' paqes. : ne~d to
r ,_ C' thf' ~ inkn Fer t..,e c;c1 g .

artistname = string . split(inputsongs[song])

.., r l r: r ;

for x in range(O , len(artistname))
nopunct = re . compile(
artistname[x] = nopunct . sub(, artistname[x])

:•drt &oc-,·1.ng tor "11 y t E' ~1rsr wori ,:,F •_1t! aLc1.st r,ar~ ,
Jnles5 th': fir~t w-,rJ $ " thE:>". ir t-h c.Lt r.ise, leek for tho

59

:his .s done t0 hand:~ ~ases of m~ltiple ar~ist5 .
if artistname[O] is '•b

numwords 2
else :

numwords
matchedlinks
while True :

1
artistlinks[firstletter]

r
matchedlinks findmatches(matchedlinks , artistname , numwords)

II If wr> have •1se 11 a:l t.1" worct5 n •."c> artLft name, but
It mo E thaP one ini< ratc~ed
It This ia 1~0d whc-n an~ ~•tis ► ra~E is a r1bsF ► ~F aoo~hpr
It O : " r ft , ar i
if (numwords == len(artistname)) a nd (len(matchedlinks) > 1) :

ar l
shortest= matchedlinks[O]
for matchedlink in matchedlinks :

if len(matchedlink) < len(shortest) :
shortest= matchedlink

matchedlinks = []
matchedlinks.append(shortest)

l ' r j

if len(matchedlinks) < 2 :
break

,~ r r-e lOOf..

chir,,i ~~-t

matchedlinks = artistlinks[firstletter]
numwords +=1

ua ~e I tw" ao:q•, stur~ ovir, c~t~~~nq
,rc-uqh th wt. c 1C'1!)1

if len(matchedlinks) == 1 :
artistlinksongnames.append((matchedlinks[O] , song))

for tuple in artistlinksongnames:

1 a . r ir-q
artistpage = requests.get(tuple[O])
tree= html . fromstring(artistpage . text)

Lni l
0

PK

songbyword = tuple[l] .split()
for x in range(O, len(songbyword)) :

nopunct = re.compile(
songbyword[x] = nopunct.sub(, songbyword[x])

numwords = len(songbyword)
matched= False
while True :

for songlink in tree . xpath(
fl' r

stringtomatch = songbyword[O] +

h

for word in range(l, numwords) :
stringtomatch = stringtomatch

rawstring = stringtomatch.encode(
if re . search(rawstring , songlink) :

urls.append(songlink)
matched= True
break

')

+ songbyword[word] +
)

60

if matched or numwords < 1 :
break

else :
numwords -= 1

class LyricSpider(scrapy . Spider):

name = '
allowed domains
start urls = urls

def ,.., it (self , response) :

for sel in response. xpa th ('
item = Royals Item ()
item[l = sel

yield item

61

, l

C I ~ i " ,, x) . extract () :

APPENDIXB

SongExtractor User Documentation

62

63

SongExtractor User Documentation

Purpose:

The SongExtractor program loads the Billboard Hot JOO chart [4] and

navigates the HTML to extract song titles and artist names from the most recent

specified number of weeks. One hundred songs per week are extracted, discarding

duplicate songs. The range of weeks ends at the current week and begins a user

specified number of weeks prior, resulting in then most current weeks, where n is the

specified number of weeks.

Prerequisites:

• Internet connection

• Python 2.6-2. 7 .8 is required for use of this program. It is available as a free

download at https://www.python.org/downloads/ [34].

• The lxml XML Toolkit is also required and available as a free download at

http: //lxml.de/ [21].

Steps for use:

1. Ensure prerequisite software is installed.

2. To set the desired number of weeks for extraction of song and artist names:

a. Open SongExtractor.py.

b. In line 6, change the value of NUM_WEEKS to the number of weeks

desired. The default value is 100.

c. Save.

3. Run the SongExtractor program.

a. Run a command prompt and navigate to the directory containing

SongExtractor.py.

b. Enter the following command: python SongExtractor.py.

Output:

64

Once the SongExtractor program has finished, the output will be in the file

songs.txt within the same directory as SongExtractor.py. The output is formatted with

one song per line, first the song name, then the separator I, then the artist name. See

below for example output, reproduced from Figure 3.

arctic monkeysldo i wanna know?
b.o.b featuring t.i. & juicy jlwe still in this b••••
big sean featuring lil wayne & jhene aiko I bewar•e
eric churchlgive me back my hometown
cole swindelllhope you get lonely tonight

The output file songs.txt can be directly used as input to the Royals program described

in Appendix C.

APPENDIXC

Royals User Documentation

65

Royals User Documentation

Purpose:

The Royals program collects song lyrics from Metrolyrics and stores them in

an output file. This output file contains a corpus of song lyrics. The songs to be

collected are specified in an input file, songs.txt.

Included files:

royals_ spider.py, items.py, settings.py, pipelines.py, scrapy. cfg

Prerequisites:

• Internet connection

• Python 2.6-2.7.8 is required for use of this program. It is available as a free

download at https://www.python.org/downloads/ [34].

• The lxml XML Toolkit is also required and available as a free download at

http:/ /lxml.de/ [21].

• Scrapy is a web scraping software available at http://scrapy.org/ [23].

• A songs.txt file containing song titles and artist names in a specified format.

This file can either be produced by the program SongExtractor or made

manually. If made manually, adhere to the same format as the output file

described in Appendix B

Steps for use:

1. Save provided folder royals in the Scrapy directory.

2. Place songs.txt in the Scrapylroyals directory.

66

3. On a command prompt, navigate to the Scrapy/royals directory.

4. Enter the command: scrapy crawl royals -o corpusjson

a. The file name after the -o in the command will contain the output. It can

have any name with a json extension.

Output:

67

Once the Royals program has finished, the output file specified on the

command line will contain the lyrics of the songs from the input file. This process can

take several minutes depending on the number of items in the input file and the

Internet connection.

	Thrall_pt1
	Thrall_pt2

