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Abstract 

Cronobacter sakazakii is a gram-negative bacillus belonging to the family Enterobacteriaceae and 
is classed as an opportunistic pathogen. Capable of mortality rates in excess of 40% in infected 
infants and neonates, many investigations have sought to elucidate the pathogenesis of this 
organism. Constructing a site-specific integrative vector that could be utilized to engineer the 
species and create a fluorescent C. sakazakii strain may provide a useful visual aid in tissue 
invasion studies. The vector pOSIP-KC was utilized as a plasmid backbone into which the φES15 
integrase gene, derived from a C. sakazakii lysogenic phage, along with the φES15 attP attachment 
sequence were cloned, creating the novel integrative vector pOSIP-ES15. The efficiency of vector 
integration and targeting at the predicted attB location was tested by transforming 
electrocompetent C. sakazakii NCTC 11467 cells with the vector and confirming integration 
through PCR analysis. pOSIP-ES15 appeared to preferentially integrate into other unknown 
locations in the chromosome, only integrating into the attB site approximately one third of the 
time. An expression cassette with a gene encoding the Superfolder GFP protein, driven by the 
strong, constitutive promoter nptII, was cloned into the vector to create pOSIP-ES15_GFP. 
Through repeated attempts, although integration of the vector into the NCTC 11467 chromosome 
was verified, no visual fluorescence was detectable. Fluorescence analysis by spectrophotometry 
showed no significant difference in emission intensity between integrated strains and parental 
NCTC 11467 cells. Expression of the cassette when harbored in an episomal plasmid within NCTC 
11467 led to high intensity fluorescence, indicating the strain could express the cassette, but once 
integrated into the chromosome unknown factors caused a silencing of expression. This project 
demonstrated that site-specific integrative vectors can be powerful genetic engineering tools, but 
that without prior characterization of integration locations, expression of exogenous DNA 
introduced cannot always be reliably predicted. 
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Chapter I: Introduction 

Listeria innocua Engineering Project 

The title of this thesis clearly conveys the primary focus and scope of the project. 

However, the idea and execution of the primary body of work stemmed from an initial 

investigation into genetic modification of bacteria.  A collaboration with a local biotechnology 

company led to a proposed venture in genetically engineering the microbe Listeria innocua so 

that a strain could be generated that was constitutively, and stably, fluorescent.  

 Genetic modification of bacteria is not a new field of study within molecular biology. 

Indeed, bacteria have been genetically modified for nearly half a century (Cohen et al. 1973). 

However, in those succeeding decades, an array of techniques has been developed to engineer 

bacteria for different purposes. One very important use has been the delivery of a gene encoding 

a protein known as green fluorescent protein (GFP) to act as a visual reporter for several 

different applications. One of the most basic applications has been the generation of strains of 

bacteria that have the ability to fluoresce when excited with blue visible light or ultraviolet light. 

In the simplest experiments this has been accomplished by transforming, or inserting, an 

extrachromosomal plasmid containing the GFP gene into bacterial cells and inducing the cells to 

express the protein from the plasmid. For some purposes, this is a sufficient method for creating 

a fluorescent strain. However, as cells must expend resources on replicating these plasmids, this 

leads to a loss in energy for metabolism (Pinheiro et al., 2008). Therefore, the cells will only 

maintain the plasmid if it is essential for survival such as conferring resistance to an antibiotic 

when the cells are grown on selective media. This observation dictates the applications in which 

these cells may be used. For some investigations, such as studying in vivo pathogenesis 
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mechanisms involved in bacteria crossing plant or animal tissue barriers and using fluorescence 

as a means of tracking the bacteria, this method would not be useful as it would not always be 

possible to perform these studies in the presence of an antibiotic. The bacteria would not 

maintain the plasmid, leading to a loss of fluorescence and the subsequent ability to track the 

cells as they invade or infiltrate a tissue. Integrating the GFP gene into the chromosome would 

circumvent this and allow the fluorescence to be stably maintained in absence of a selective 

pressure (Pinheiro et al., 2008).  

 The desire by certain groups to obtain a strain of Listeria innocua engineered in such a 

manner was the prompting that led to this collaborative project. L. innocua is a nonpathogenic, 

saprotrophic, gram-positive facultatively anaerobic rod that is the sister species to the well-

known foodborne pathogen L. monocytogenes (Velge & Roche, 2010).  L. monocytogenes is 

responsible for the majority of listeriosis cases that occur through consumption of contaminated 

food products, mostly meat and dairy (Farber and Peterkin, 1991). Although a relatively 

uncommon foodborne infection compared to the more prevalent pathogens Salmonella and E. 

coli, L. monocytogenes nonetheless presents the highest hospitalization rate among those infected 

and results in a remarkably high fatality rate, many times exceeding 30% (Schuppler and 

Loesner, 2010) (Ward et al. 2004).  An evolutionary offspring, L. innocua lost the prfA virulence 

gene cluster present in the pathogenic species L. monocytogenes while maintianing similar 

metabolism and growth characteristics (Velge & Roche, 2010). This has made this species a 

desirable surrogate for use in studies or applications where researchers may wish to avoid 

working directly with the pathogenic species L. monocytogenes and substitution with L. innocua 

is acceptable. 
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 As strains of L. monocytogenes modified to be constitutively fluorescent with an 

expression cassette containing gfp engineered into their chromosomes were already in existence, 

this initial project became somewhat simplified. A cursory literature review into the methods 

utilized was warranted so that an experiment could be planned to test the techniques within L. 

innocua. Integration of gfp into these strains was accomplished utilizing site-specific 

recombination with a plasmid that had been designed to target a known location within the 

chromosome through the action of a protein encoded by the plasmid. The phage known as PSA, 

isolated from L. monocytogenes strain Scott A, had been previously demonstrated to integrate 

into multiple Listeria species (Lauer et al. 2002). This action is accomplished through an 

integrase protein contained within the phage genome that recognizes an attachment site (attB) 

located within the tRNAARG gene and catalyzes a recombination event between the attB site on 

the bacterial chromosome and the homologous attachment site on the phage chromosome (attP). 

A plasmid was constructed that contained the integrase gene along with the attP site. Lauer and 

colleagues labeled this plasmid pPL2 and demonstrated its efficiency in integrating into several 

different species of Listeria (2002). This presented an ideal tool for delivering exogenous genes 

into Listeria strains. Another group took advantage of this and designed an expression cassette 

that they cloned into pPL2, creating pPL3e. This expression cassette contained a strong 

constitutive promoter to drive expression of a GFP mutant known as GFPmut2 that exhibited 

increased fluorescence (Shen and Higgens, 2005). This was successfully used to create a 

fluorescent strain of L. monocytogenes. The efficiency of this plasmid in generating fluorescent 

strains of L. monocytogenes was further demonstrated in another study that utilized it to deliver 

four different expression cassettes designed with GFP derivatives (Balestrino et al. 2010). With 
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this information, it was decided that the pPL3e plasmid would be tested to determine if it would 

integrate into the tRNAARG gene in L. innocua, and whether this species would express the 

expression cassette in an efficient manner that would allow visual detection of fluorescence.  

 

Figure 1. Plasmid map of the integrative plasmid pPL3e designed by Shen & Higgens, which is a 
derivative of the plasmid pPL2. The plasmid utilizes the integrase gene from the PSA 
listeriophage for site-directed integration into Listeria species. The fluorescence expression 
cassette includes the constitutive promoter Hyper-SPO1 fused to the 5’ UTR of the Listeria hly 
gene, which acts post-transcriptionally to increase expression of downstream genes, which is gfp 
in this instance. An erythromycin resistance gene allows for selection of positive transformants, 
while a gram-negative chloramphenicol gene and origin of replication allow for propagation in 
E. coli. 
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Materials and Methods  

 With the pPL3e plasmid obtained through a most generous donation from the source 

laboratory, proceeding to test its ability to integrate into L. innocua required a straightforward 

transformation experiment. The transformation protocol was based upon a well-established 

protocol, which first involved the preparation of electrocompetent cells (Hupfeld et al., 2018).  L. 

innocua NCTC 11288 was inoculated into 5 mL Brain Heart Infusion (BHI) broth media (Hardy 

Diagnostics) and was grown overnight at 37°C, shaking at 250 rpm. The following morning, 2 

mL of this culture was inoculated into two separate volumes of 40 mL BHI broth and incubated 

at 30°C shaking at 180 rpm until reaching an optical density of OD600 of 0.23. The following 

procedure was conducted for each 40 mL culture. Once this optical density was reached, the 40 

mL culture was divided into four separate 10 mL cultures. All four cultures were inoculated with 

Penicillin G at a concentration of 10 µg/mL. These cultures were then placed back into the 30°C 

incubator, shaking at 180 rpm, for two hours of growth with the added Penicillin G. The cultures 

were then removed and had lysozyme (VWR Life Science) added. Two of the cultures had 

lysozyme added at a concentration of 10 µg/mL, while the other two at a concentration of 5 

µg/mL, to empirically determine proper concentration level. The cultures were placed back into 

the incubator at the same settings for an additional 10 minutes. They were then removed, and the 

cultures transferred to chilled 50 mL conical tubes (Falcon) and placed onto ice for 5 minutes. 

Following this, the tubes were centrifuged at 3220 x g at 4°C for 10 minutes. The supernatant 

was poured off after, and 1.5 mL of ice-cold Sucrose Glycerol Wash Buffer (SGWB; 0.5 M 

Sucrose, 10% glycerol, pH 7.4) was added to resuspend the pellet by gentle swirling while on 

ice. The tubes were centrifuged again at the same parameters, supernatant poured off, and pellet 
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resuspended with 1 mL SGWB. This step was repeated a final time, with a final resuspension in 

60 µL SGWB for each pellet. These resuspensions were moved to chilled 1.5 mL microfuge 

tubes.  

 1 µg of pPL3e plasmid DNA was added to four cell resuspensions. (two 10 µg/mL 

lysosome, two 5 µg/mL lysozyme) and incubated on ice for 1 minute. A Harvard Apparatus BTX 

830 Electroporator was utilized for the electroporation. Electroporation pulse parameters were 

set at 2.2 kV, 400 Ω, 25 µF. Each resuspension of electrocompetent NCTC 11288 was added to 

chilled 2 mm electroporation cuvettes (VWR Life Science), inserted into the electroporation 

apparatus and delivered an electric pulse. After pulse delivery, each cell suspension was 

immediately moved from the cuvette to 1 mL warmed BHI + 0.5M Sucrose broth in a microfuge 

tube. These were then placed into a 30°C static incubator to recover for 90 minutes. After 

recovery, the cells were plated onto warmed BHI Erythromycin agar plates (5 µg/mL). An 

electroporation positive control was conducted with a resuspension of cells with no DNA added 

to verify cells could survive pulse parameters, with the cells being plated onto nonselective BHI 

agar plates. Another resuspension that was not electroporated was plated directly onto a BHI 

Erythromycin agar plate to act as a negative control. All growth plates were placed into a 30°C 

incubator for 48 hours. After this period, they were removed and observed for growth. 

Transformant colonies were viewed under a light microscope at 10X magnification, illuminated 

by an integrated LED light at 470 nm wavelength to determine if visual fluorescence was 

detectable. Transformant colonies were also illuminated with a NightSea BlueStar UV Flashlight 

at 480 nm wavelength and viewed special filtered glasses by naked eye.  
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Integration of the plasmid into the chromosome at the predicted location was performed 

by PCR analysis. Two primers, NC16 and PL95, were utilized that amplify a 499-bp DNA 

fragment in strains that have the pPL3e vector integrated into the attB site (Lauer et al. 2002). 

The sequences are included in Table 1. Colony PCR was performed on the colonies by first 

inoculating each colony into separate 100 µL sterile diH2O aliquots which were then vortexed to 

ensure a well-mixed suspension. 25 µL PCR reactions were prepared by mixing 2.5 µL 10X 

PCR Buffer (-Mg), 0.5 µL 10 mM dNTP, 0.75 µL 50 mM MgCl2, 0.1 µL Platinum Taq DNA 

Polymerase (ThermoFisher Scientific), and 2 µL of the colony suspension. A negative control 

was prepared utilizing native NCTC 11288 cells. A thermocycler was programmed with an 

initial 4-minute boil step at 95°C to ensure the cells would be lysed. The rest of the program 

followed a standard PCR run, with a 30 second 95°C denaturation, followed by 30 second 

annealing at 48°C, and 30 second elongation at 72°C. 30 total cycles were programmed and 

completed. Once finished, the PCR reactions were combined with EZ-Vision Two DNA Dye and 

loaded onto a 1% agarose gel. Gel electrophoresis was conducted at 140V/200mA until the lower 

band of dye was approximately 5 cm from the bottom of the gel.  

Table 1. Primers utilized to confirm integration of pPL3e into the attB site within the tRNAARG 
gene in L. innocua NCTC 12288 chromosome. Primer sequences obtained from Lauer et al. 
2002. 

Primer Name  Melting Temp. (°C) Primer Sequence 

NC16 49.1 5’-GTCAAAACATACGCTCTTATC-3’ 

PL95 52.8 5’-ACATAATCAGTCCAAAGTAGATGC-3’ 
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The fitness of the integrated strain was also tested against the native strain of NCTC 

11288 to evaluate whether the integration of the plasmid negatively affected its growth rate. Four 

colonies of both NCTC 11288 and NCTC 11288-GFP were inoculated into 5 mL BHI broth and 

grown at 37°C, shaking at 250 rpm, until reaching an optical density of OD600 2.0. The cultures 

were diluted 10-6 and 40 µL inoculated into 360 µL BHI broth in a 36-well plate. A negative 

control well was prepared with BHI broth with no inoculum. This was then loaded into a 

Bioscreen C automated growth curve analyzer, set at 37°C, shaking at 250 rpm. The Bioscreen 

recorded optical density at OD600 every 15 minutes for a period of 24 hours and a growth curve 

was constructed from the data.  

 Stability of the integrated plasmid was determined through a multigenerational growth 

experiment. A colony of NCTC 11288-GFP was inoculated into 10 mL BHI broth with no 

antibiotics added and placed into a 37°C incubator, shaking at 250 rpm. After 12 hours growth, 

the culture was removed and 50 µL of the culture was transferred to a fresh 10 mL of BHI broth. 

This was placed back in the incubator at the same parameters, and this process was repeated an 

additional 6 times, until 96 hours of growth had been achieved. At this point, the culture was 

diluted 10-6 and plated onto a nonselective BHI agar plate. The plate was placed into a 37°C 

incubator. After 24 hours of growth, 108 colonies were chosen at random and plated onto BHI 

Erythromycin agar plates (5 µg/mL) which were then placed into the 37°C incubator for 24 

hours. The plate was then assessed to determine how many colonies could sustain growth on 

selective media and fluoresce.  
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Results  

 Upon transforming L. innocua NCTC11288 with pPL3e, the first experiment appeared 

successful as colonies were found growing on the selective media after 48 hours of growth. 

Utilizing a light microscope with an integral LED light emitting at a wavelength of 470 nm at 

10X magnification, the colonies were observed to be visibly fluorescent as compared to a 

negative control of native NCTC 11288 cells viewed under the same conditions. The colonies 

were also easily determined to be visibly fluorescent with the naked eye when viewed with the 

BlueStar UV flashlight and filtered glasses. While fluorescence presumptively indicated that 

integration of the pPL3e plasmid had occurred, it was necessary to verify this with PCR analysis. 

As indicated, the primer pair utilized for confirmation only amplifies a band when integration of 

the vector has occurred. This is resultant from NC16 annealing to a location on the NCTC 11288 

chromosome upstream of the attB site, while the PL95 primer anneals to a location on the pPL3e 

plasmid. The gel image in Figure 2 clearly demonstrated that this event had occurred. Visible in 

lanes 2 & 3 are amplified bands at approximately 500 bp with lanes 4 & 5 being negative 

controls. The band appears in the appropriate location for a strain in which the plasmid at 

integrated at the predicted site. 
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Figure 2. Confirmation of chromosomal integration by colony PCR, utilizing the primers NC16 
and PL95. Bands present in Lanes 2 & 3 were amplified from transformant colonies growing on 
BHI media containing erythromycin. Bands appear at ~500 bp as expected. Lanes 4 & 5 are 
negative controls from PCR utilizing the same primer pair on parental NCTC 11288 colonies. 
Ladder is Quanti-Marker 1kb. 

 Stability of the integrated plasmid was tested in the multigenerational growth experiment. 

Over 100 generations of cell growth had been achieved by the multiple passaging. As was 

evident in the final plating onto selective Erythromycin media, all 108 colonies were able to 

survive and maintain fluorescence. Four of these colonies were chosen to proceed with the 

fitness assay. After 24 hours of growth in the Bioscreen C, a growth curve was constructed from 

the collected measurements. This curve is presented in Figure 3. Cultures 1-4 are the integrated 

NCTC 11266-GFP, while cultures 5-8 are the parental non-engineered strain. The growth curves 
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from the eight cultures all follow the same trend. A One-Way ANOVA was conducted, 

comparing each culture against one another as individual groups, resulting in an F = 0.0576, p = 

0.996. This indicated there was no statistical significance in growth between any of the samples.  

 

Figure 3. Fitness test comparing growth curves from the engineered strain and the parental strain 
performed on an automated growth curve Bioscreen C system. Samples 1-4 are cultures of L. 
innocua-GFP, while samples 5-8 are parental strain NCTC 11288. Sample 9 is a negative 
control. One-Way ANOVA showed no statistical differences between the gfp-integrated cultures 
and the parental cultures.  

Discussion  

 In engineering L. innocua to generate a stable, constitutively fluorescent strain, there 

were several lessons and observations that were gleaned. A group looking to engineer a bacterial 

species of interest must consult the published literature to determine if there is a genetic tool that 

has already been developed for use in the specific species or family that is of interest. The groups 

that first developed the pPL2 plasmid, that was further modified to create the pPL3e plasmid 



20 
 
utilized here put forth much time and effort to determine what genetic elements would be 

necessary in generating these tools that allowed precise integration and efficient expression. This 

is no small task, and the effort here in engineering L. innocua would have been magnified greatly 

if a cursory literature review had not been first conducted that shed light on the existence of these 

plasmids and how they were constructed. While this may seem quite obvious, oversight in 

finding pertinent literature has led to countless hours being squandered in laboratories.  

The pPL3e plasmid integrated into the predicted attB site on the L. innocua chromosome 

upon the first transformation experiment conducted.  The transformant colonies that were 

obtained were highly fluorescent and easily detectable with the naked eye. PCR analysis 

confirmed that the integration occurred in the predicted location, as observed in Figure 2. 

Amplification was only possible if the plasmid was present, as NC16 annealed the vector while 

PL95 annealed the genome. The basic fitness tests demonstrated that in basic growth conditions 

the integrated plasmid did not induce major metabolic strain upon the cells and that they grew at 

the same rate as the parental strain of cells lacking the plasmid.  

The most important observation from this project was the sheer proficiency exhibited by 

the integrative plasmid in generating an engineered bacterial strain. What was expected to be a 

project that could have been quite extensive ended up an exercise in electrotransformation 

technique. For a group that had never conducted any similar experiments in genetic 

modifications of bacteria, the site-specific targeting combined with the efficiency established the 

notion that for future projects this method may be the most preferable to explore.  
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Chapter II: Cronobacter sakazakii 

Introduction  

 Cronobacter sakazakii is a gram-negative bacillus belonging to the family 

Enterobacteriaceae that is classified as an opportunistic pathogen (Iversen, et al., 2007). Of the 

members of the genus Cronobacter, C. sakazakii has been of the most interest to the research 

community due to its ability to cause sepsis, necrotizing enterocolitis, and meningitis in infected 

infants and neonates (Yan et al., 2012). Often, the mortality rate in those infected infants is in 

excess of 40% (Yan et al., 2012). It has been linked to, and identified within, several tragic 

outbreaks including the 1994 France outbreak where 17 new-born children were infected in a 

single hospital NICU, resulting in 3 infant deaths (Feeney, Kropp, O’Connor, & Sleator, 2014). 

The pathogenesis of the organism is still under current investigation, with several virulence 

factors identified that may aid in its ability to invade and cross tissue barriers (Singh, Goel, & 

Raghav, 2015).   

While it has a variety of natural reservoirs, the primary mode of transmission to humans 

is through contaminated powdered infant milk formula (Feeney, Kropp, O’Connor, & Sleator, 

2014). Unfortunately, this organism has the ability to survive well in desiccated environments 

and this increases the likelihood of contamination of powdered formula products post-

pasteurization (Breeuwer, Lardeau, Peterz, & Joosten, 2003). While not being an extremely 

thermotolerant organism, the lipid A core endotoxin it possesses has demonstrated the ability to 

remain biologically active in these products post-pasteurization and heat treatment, which makes 

detection of C. sakazakii a high priority (Townsend, Barron, Loc-Carrillo, & Forsythe, 2007). 
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These factors have made C. sakazakii a primary organism of concern to manufacturers of 

powdered formula. 

 Reviewing this information, it was proposed that there could be utility and applications 

for a strain of C. sakazakii engineered to be brightly fluorescent. Such a strain would be useful in 

studies where tracking cells in tissue invasion or membrane infiltration would be made simpler 

through visual analysis rather than enumeration assays. Constructing an engineering tool that 

would allow efficient integration into the C. sakazakii chromosome at a defined location would 

allow for delivery of an expression cassette containing the GFP gene to accomplish this. 

Additionally, this tool could be useful in other studies where engineering this species with 

exogenous genetic elements may be useful. As the pPL3e integrative plasmid worked so well in 

this manner in the Listeria project, it was decided that construction of a site-specific integrative 

vector for use in C. sakazakii would be pursued. 

Cronobacter Engineering Vector 

 Before this project could begin, it was necessary to determine if there was a 

characterized, temperate phage isolated from C. sakazakii whose full genome sequence had been 

published. As integrative vectors rely upon the action of a phage integrase protein to perform the 

integration mechanism, constructing a vector is dependent upon the ability to clone an integrase 

gene. Furthermore, as phages coevolve with their host bacterial species their molecular 

machinery evolves to function with host-encoded factors and sequences (Koskella & Meaden, 

2013). To construct an integrative vector for a target species of bacteria, it can thus be expected 

to operate most efficiently when the integrase is derived from a lysogenic phage isolated from 

the species. A review of the pertinent literature revealed that there was indeed a lysogenic phage 
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that had been induced from its prophage state from a strain of C. sakazakii by UV induction, and 

the genome sequenced. 

 φES15 is a phage that was first identified as a prophage existing within the genome of the 

C. sakazakii strain ES15, isolated from ground whole grains (Lee et al., 2012). Once isolated, the 

genome was sequenced by the source laboratory and published on NCBI. This genome had been 

automatically annotated by gene prediction programs and ribosomal binding site locators, which 

gave predictions based upon homology (Lee et al., 2012). Analyzing this genomic data, the gene 

at locus tag φES15_003 was found to be called as a putative integrase. Additionally, a 26-bp 

sequence was identified as a potential attachment site attP, upon which the putative integrase 

would integrate into the 26-bp identical attB sequence on the host chromosome. It is worthy to 

note the mechanism that integrases operate by so that it is clear why these sequences were 

important to find. Integrase proteins operate by recognizing sequence similarity between the attP 

in the phage genome and the homologous attB in the host genome (Groth & Calos, 2004). The 

integrase then binds and cleaves the phosphodiester backbone at these sites through a catalytic 

amino acid residue present in their active sites; either a serine or tyrosine depending upon which 

evolutionary class the protein falls in (Groth & Calos, 2004). The nucleotide strands are then 

swapped between the two chromosomes and ligated to one another, allowing integration of the 

phage chromosome into the host. Integrative vectors exploit these sequences to target a known 

location and integrate into that site. With the sequences of these two elements known, an 

experiment could be planned to build an integrative vector that would be tested in engineering 

the type strain C. sakazakii NCTC 11467.  
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 Using NCBI Blast, this 26-bp attB was identified within the genome of NCTC 11467. 

Located in an intergenic region, it appeared an ideal site for integration of a vector, as it should 

not be disruptive to genes or other major metabolic elements. The decision was made to move 

forward with a proposed project, which would seek to collect data to answer these three 

hypotheses: 

Hypothesis 1: An integrative vector constructed utilizing the φES15 integrase gene and attP 

sequence will integrate into C. sakazakii NCTC 11467 chromosome at the predicted location 

Hypothesis 2: The constructed engineering vector can be utilized to integrate a fluorescent 

expression cassette into C. sakazakii genome, to generate a fluorescent strain  

Hypothesis 3: The putative φES15 integrase performs a molecular recombination between the 

putative viral attP sequence and host attB sequence 
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Chapter III: Materials and Methods 
Integrative Vector Design 

 In order to proceed with designing and constructing an integrative engineering vector for 

use within C. sakazakii, choosing a suitable plasmid backbone was necessary. As there have 

been many excellent choices of previously designed integrative vectors discussed in the scientific 

literature, it was decided that one of these would afford the best backbone. The plasmid decided 

upon was a member of a line of plasmids known as the One-Step Integration Plasmids, or pOSIP, 

originally designed to efficiently integrate into the chromosome of Escherichia coli (St-Pierre et 

al., 2013). The plasmids in this family all shared the same basic design but differed in the 

specific integrase genes and respective attP sites that were designed in each. Similar to all 

integrative plasmids, they were constructed with an integrase gene, attP site, multiple cloning 

site, antibiotic resistance gene, and a conditional method of replication. The design features that 

made these plasmids attractive as a donor backbone were the R6Kγ origin and the λ temperature 

sensitive repressor. The R6Kγ origin would only allow this plasmid to be replicated in the 

propagation strain of E. coli containing the PIR1 gene, thereby forcing recipient cells of C. 

sakazakii to integrate it into their chromosomes or they would be unable to replicate and grow. 

The λ temperature sensitive repressor allows for efficient expression of the integrase gene at the 

permissive temperature of 37°C, but prevents expression at 30°C, thus allowing a temperature-

inducible control of plasmid integration.  

The specific plasmid member chosen for this project was known as pOSIP-KC and 

contained the integrase gene φC31 and its respective attP site. pOSIP-KC (see Figure 4) 

contained convenient restriction sites at the sequences that needed to be excised, and the same 

sites were not present within the sequence designs that were to be cloned into the construct. 
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Figure 4. Plasmid map of the integrative vector pOSIP-KC, chosen as the plasmid backbone 
from which an engineering vector for use in C. sakazakii could be constructed. This vector was 
chosen due to its desirable design attributes, including a convenient multiple cloning site, 
conditional origin of replication, and a temperature-sensitive repression system that allows 
selective expression of the integrase gene.  

With a backbone vector chosen, the insert sequences could be designed. First, a short 

noncoding 255-bp sequence was designed for replacement of the original sequence present 

within the multiple cloning site. This noncoding fragment would act as a placeholder within the 

multiple cloning site for initial integration testing of the construct before a coding sequence 

would replace it. It was designed with an EcoRI and XhoI restriction site on either side. The 

second fragment designed was a 1305-bp fragment containing the coding sequence for the 
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pBR322ori-F   (966 .. 985)

BioBrick suffix

XhoI   (1152)

rrnB T2 terminator

SbfI   (2245)

pOSIP-KC (KanR, PhiC31)

6971 bp
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φES15 integrase gene. A synthetic ribosomal binding site allowing for upregulated translation of 

the transcribed mRNA was inserted before the start codon and was designed utilizing the online 

RBS Calculator by the Salis Lab (Espah Borujeni et al., 2017; Espah Borujeni & Salis, 2016; 

Espah Borujeni, Channarasappa, & Salis, 2013; Salis, Mirsky, & Voigt, 2009). DraIII and SbfI 

restriction sites flanked the sequence, allowing for directional insertion in the proper orientation 

for the λ repressor protein to act upon the native φES15 integrase promoter. The third sequence 

was a 206-bp fragment containing the φES15 attP site derived from the phage genome. This 

fragment was designed with flanking NheI and NdeI restriction sites. These first three fragments 

were to be cloned into the pOSIP-KC backbone, yielding the base integrative plasmid pOSIP-

ES15, at a size of 5452-bp. All three of these fragments were ordered from, and synthesized by, 

the company Biomatik and arrived cloned within separate pBSK plasmids (Delaware, USA). 

Fragment sequences are included in Appendix A.  

Following the presumptive integration tests with this plasmid, it would then be utilized to 

deliver an expression cassette contained within the multiple cloning site. This 1408-bp cassette 

was designed to contain the necessary regulatory elements that would allow constitutive 

expression of the target gene. As the goal was to create a fluorescent strain of C. sakazakii, the 

target gene would code for a fluorescent protein. The gene that was chosen for this project 

encoded the green fluorescent protein variant Superfolder GFP, which produces fluorescence that 

is approximately three times the brightness over that of the native Aequorea victoria green 

fluorescent protein (Pedelacq et al., 2006). Driving expression of the Superfolder GFP gene 

would be the nptII promoter. This promoter has been demonstrated to be a strong, constitutive 

promoter within Enterobacteriaceae, and was originally derived from the neomycin 
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phosphotransferase II gene conferring kanamycin resistance to the E. coli strain it was first 

discovered in (Remus-Emsermann, Gisler, & Drissner, 2016). This would allow for constant 

transcription of the Superfolder GFP gene. Following the promoter, a synthetic ribosomal 

binding site, once again designed using the online RBS Calculator, was inserted in front of the 

start codon to allow for upregulated translation. The gene was followed by a rrnB1 

transcriptional terminator and λ t0 transcriptional terminator. This 1.4-kb fragment was designed 

with an EcoRI restriction site and an XhoI site for directional insertion. Following insertion into 

the multiple cloning site, this would yield a final 6380-bp integrative engineering plasmid that 

would deliver an expression cassette into the C. sakazakii chromosome to allow fluorescence. 

Integrative Vector Construction 

  Construction of the vector was accomplished through a series of successive restriction 

enzyme cloning steps. All restriction enzymes and associated buffers utilized were obtained from 

New England Biolabs (Ipswich, MA). The pOSIP-KC vector was ordered from Addgene 

(Watertown, MA) and arrived as an episomal plasmid contained within E. coli. The E. coli was 

inoculated into 5 ml of liquid LB broth and incubated overnight at 37°C shaking at 250 rpm. The 

following morning, the culture was harvested at 7000 x G for 5 minutes and plasmid DNA was 

extracted utilizing the Hi-Speed Mini Plasmid Kit from IBI Scientific according to the kit 

protocol (IBI Scientific, Dubuque Iowa). The first round of restriction enzyme cloning involved 

a removal of the expression cassette contained within the multiple cloning site of pOSIP-KC to 

be replaced with the MCS noncoding fragment. Two micrograms of pOSIP-KC plasmid DNA 

were digested with 1 µl EcoRI, 1 µl XhoI, 5 µl CutSmart buffer, and a volume of diH20 to bring 

the total volume to 50 µl. At the same time, 2 micrograms of pBSK plasmid DNA containing the 
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noncoding fragment were digested with the same reagents and amounts. Both reactions were 

incubated at 37°C for two hours to ensure complete digestion. 1 µl of shrimp alkaline 

phosphatase (rSAP, New England Biolabs) was added to each reaction and incubated for a 

further 30 minutes at the same temperature, followed by an incubation at 65°C for five minutes 

to inactivate the rSAP enzyme. 10 µl of EZ-Vision Two DNA dye (VWR Life Science) was 

added to each reaction, once cooled to room temperature. Both 60 µl volumes were loaded into 

separate wells of a 1% agarose gel, alongside a 1-kb DNA ladder (GeneMate Quanti-Marker) 

and electrophoresis was conducted at settings of 140V/200A for 90 minutes, until the lower dye 

band was approximately 2 centimeters from the bottom of the gel. The gel was visualized with 

an Omega Lum gel imaging system (Aplegen) and the respective bands of DNA excised for 

extraction from the gel (5820-bp pOSIP-KC, 255-bp noncoding Linker). DNA extraction was 

performed using a Gel Extraction Kit (IBI Scientific) following the protocol included. The 

extracted linear fragments were then used in a ligation reaction. Ligation reaction calculations 

were performed using the NEB Ligation Calculator. The reaction was setup using a 3:1 insert : 

vector ratio, utilizing 80 ng of vector to 11.6 ng of insert in a 20 µl ligation reaction consisting of 

2 ul T4 ligase buffer, 1 µl T4 ligase and diH20. The ligation reaction was incubated at 10°C for a 

period of approximately 16 hours, which was followed with a 10 minute heat inactivation at 

65°C. 2.5 µl of this ligation reaction was then transformed into One Shot™ PIR1 Chemically 

Competent E. coli (ThermoFisher Scientific). The transformation was conducted according to the 

protocol supplied with the cells. Following the recovery step in the protocol, the cells were 

diluted 100-fold and plated onto LB-Kanamycin selective agar plates and incubated for 24 hours 

at 30°C, as this temperature would ensure suppression of the encoded integrase gene and prevent 
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the propagation cells from integrating the plasmid. Transformants were successfully recovered 

from the plates after the incubation period. Verification of the ligation reaction was conducted by 

selecting five colonies at random from the plates. These colonies were inoculated into LB-

Kanamycin liquid broth for overnight growth at 30°C shaking at 250 rpm. Plasmid DNA was 

extracted from these colonies following the same procedures detailed above. Insert ligation was 

confirmed by digesting one microgram of extracted plasmid DNA from each of the five colonies 

with both EcoRI and XhoI in reactions prepared in the same manner as described previously. 

Once EZ-Vision Dye was added, the digestion reactions were loaded onto a 1% agarose gel and 

ran according to the same parameters. The gel was visualized using the Omega Lum imaging 

system and confirmed that the ligation worked as expected and that this first subcloning step was 

successful.  

 The following two subcloning steps were conducted in the same manner as described for 

the cloning of the first insert. The second subclone involved the removal of the φC31 integrase 

gene from pOSIP-KC using DraIII and SbfI and the insertion of the φES15 integrase gene. The 

third subclone removed the φC31 attP site using NheI and NdeI, to allow for the insertion of the 

φES15 attP site. Following this last subcloning step and isolation of the plasmid DNA from the 

propagation PIR1 E. coli, this final vector construct was confirmed by performing four separate 

restriction enzyme digestions of the plasmid. The first reaction was a single digestion with 

ApaLI, which confirmed both the expected final size and the φES15 attP site insertion as this site 

was only present within this sequence. The next three digestions were with the same enzyme 

pairs utilized for the subcloning steps.  
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Figure 5. First subcloning step in construction of pOSIP-ES15. The cassette contained within the 
multiple cloning site of pOSIP-KC was removed with the restriction enzymes EcoRI and XhoI. 
In its place, a 255-bp noncoding fragment was ligated. The fragments are highlighted in red. This 
resulted in the plasmid labeled Sublcone 1.  

EcoRI   (1)

XhoI   (1152)

pOSIP-KC (KanR, PhiC31)

6971 bp

EcoRI   (1)

XhoI   (250)

Subclone 1

6069 bp
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Figure 6. Second subcloning step in construction of pOSIP-ES15. The φC31 integrase gene 
present in Subclone 1 was removed using DraIII and SbfI restriction enzymes. The 1405-bp 
φES15 integrase gene was ligated into its place. The fragments involved in this step are 
highlighted in blue. This resulted in the plasmid labeled Subclone 2.  

DraIII(3222)  

SbfI   (1343)

Subclone 1

6069 bp

SbfI   (1343)

DraIII   (2638)

Subclone 2

5485 bp
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Figure 7. Third subcloning step in construction of pOSIP-ES15. The φC31 attP site was removed 
using the restriction enzymes NheI and NdeI. The 206-bp φES15 attP fragment was ligated in its 
place. The fragments involved in this step are highlighted in magenta. This resulted in the 5452-
bp integrative vector labeled pOSIP-ES15. 
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NdeI(4123)  
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Transformation by Electroporation  

 Once the pOSIP-ES15 integrative vector construction had been confirmed, it was 

necessary to test its ability to integrate before attempting to utilize it to deliver an expression 

cassette into the chromosome. This test simply involved a transformation of competent C. 

sakazakii cells with the vector and observing if transformant colonies could be obtainable on 

kanamycin selective media. Confirmation of integration would be confirmed by PCR analysis. 

The first step involved a preparation of C. sakazakii electrocompetent cells. 50 ml of LB broth 

was inoculated with 500 µL of an overnight, turbid culture of C. sakazakii NCTC 11467 and 

placed into a 37°C incubator, shaking at 250 rpm. Optical density of the culture was measured at 

a wavelength of 600 nm at regular intervals of 30 minutes until a OD600 measurement of 0.6 was 

reached. The cells were transferred to a chilled 50 mL conical centrifuge tube and chilled on ice 

for 30 minutes. All following steps were performed to ensure that the cells remained cold 

throughout the entire process. The culture was then centrifuged at 1000 x g, 4°C for 15 minutes, 

and the supernatant decanted. The cell pellet was resuspended in 50 mL ice-cold 10% glycerol 

while being kept on ice and was centrifuged again at 1000 x g, 4°C for 10 minutes. The 

supernatant was once again decanted, and the cell resuspended in 25 mL ice-cold 10% glycerol. 

Centrifugation was repeated, and two more successive wash steps, first in 10 mL then in 5 mL 

10% glycerol were performed in the same manner as above. After the final centrifugation 

following the 5 mL wash, the supernatant once again was decanted, and the pellet resuspended in 

a final volume of 500 µL 10% glycerol. From this, 60 µL aliquots of the now-electrocompetent 

cells were prepared in chilled microfuge tubes and kept on ice. The cells were used immediately 

in electroporation in order to ensure that transformation efficiency would remain the highest. A 
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Harvard Apparatus BTX 830 Electroporator was utilized for the electroporations. 100 ng of 

pOSIP-ES15 plasmid DNA was added to a 60 µL aliquot of cells. The aliquot was mixed gently 

by flicking and incubated on ice for 1 minute. The cells were then transferred to a frozen (-20°C) 

2 mm electroporation cuvette (VWR Signature) and immediately placed into the electroporation 

apparatus to ensure the cuvette remained cold. The cells were electroporated at settings of V = 

2.5 kV, 200 Ω, 25 µF. They were then transferred from the cuvette to a microfuge tube 

containing 950 µL SOC media, and incubated at 37°C for one hour, shaking at 250 rpm. A 

positive control was performed using 100 ng pBSK Simple-Kan vector, while a negative control 

was performed with 5 µL diH2O. After incubation, cells were plated onto LB Kanamycin agar 

plates (25 µg/mL) and placed into a 30°C incubator for 24 hours. The negative control was 

plated onto both LB Kanamycin plates as well as nonselective LB plates to act as a positive 

control of cell survival through electroporation process.  

Confirmation of Integration 

After 24 hours of growth, the plates were removed from the incubator and colonies were 

observed to be growing on the media. This was a presumptive indication that the vector had 

integrated but a series of confirmation experiments were necessary to validate this observation. 

64 colonies were selected and re-streaked onto LB kanamycin plates at double the kanamycin 

concentration (50 µg/mL) to rule out possible false positives. The colonies that were able to 

grow on the higher concentration antibiotic media were then prepared for PCR analysis. A 

primer pair was designed that selectively annealed at positions flanking the hypothesized 

integration location in the chromosome. Primers were synthesized and obtained from IDT DNA 

(Coralville, IA). These primers were labeled Flank Forward and Flank Reverse, with sequences 
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contained in Table 2. Colony PCR was performed on the colonies by first inoculating each 

colony into separate 100 µL sterile diH2O aliquots which were then vortexed to ensure a well-

mixed suspension. 25 µL PCR reactions were prepared by mixing 2.5 µL 10X PCR Buffer (-

Mg), 0.5 µL 10 mM dNTP, 0.75 µL 50 mM MgCl2, 0.1 µL Platinum Taq DNA Polymerase 

(ThermoFisher Scientific), and 2 µL of the colony suspension. A positive control was prepared 

with 10 ng linearized pOSIP-ES15 plasmid, and a negative control with native C. sakazakii cells. 

A thermocycler was programmed with an initial 4-minute boil step at 95°C to ensure the cells 

would be lysed. The rest of the program followed a standard PCR run, with a 30 second 95°C 

denaturation, followed by 30 second annealing at 53°C, and 6-minute elongation at 72°C. 30 

total cycles were programmed and completed. Once finished, the PCR reactions were combined 

with EZ-Vision Two DNA Dye and loaded onto a 1% agarose gel. Gel electrophoresis was 

conducted at the same parameters described previously.  

Table 2. Primer pairs used in confirmation of integration at predicted attB location and presence 
of pOSIP-ES15 vector.  

Primer Name  Melting Temp. (°C) Primer Sequence 

Flank Forward 55.9 5’-GCAGCTTAATAACCTGCTTAGAGC-3’ 

Flank Reverse 57.3 5’-GTAGGTCCCAAGGCTCATCTTG-3’ 

KanR Reverse 54.9 5’-ATCGCGAGCCCATTTATACC-3’ 

ES15 Forward 55.0 5’-ATCGACTTTATCGGAAACACCG-3’ 

 

Another secondary PCR analysis was conducted utilizing the primers KanR Reverse and 

ES15 Forward, that selectively annealed within the integrative vector only. While the prior 

primer pair would confirm integration into the hypothesized location, this primer pair would only 
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confirm presence of the vector, in the possible instance of non-specific integration into off-target 

sites. PCR reactions were prepared in the same manner as just described, with the exception of 

an annealing temperature of 50°C and a shortened 1-minute elongation. These samples were 

subjected to gel electrophoresis analysis by the same method as described.  

Expression Cassette Subcloning 

 The expression cassette containing the gene for Superfolder GFP was the last insert to be 

subcloned into the pOSIP-ES15 vector. As mentioned previously, all DNA fragments were 

synthesized by Biomatik, including this one, and arrived in the cloning plasmid. Subcloning of 

this cassette followed the same procedures as for the previous fragments, using the restriction 

enzyme pair EcoRI and AatII, which removed the noncoding fragment from the multiple cloning 

site of the pOSIP-ES15 vector to be replaced with this cassette. Confirmation of successful 

subcloning was performed with a restriction digest and gel electrophoresis to confirm insert size 

and location.  

pOSIP-ES15_sGFP Integration 

 Following successful insertion of the expression cassette into the integrative vector, it 

was necessary to transform the vector into the C. sakazakii NCTC 11467 to allow chromosomal 

integration and test for expression of fluorescence. Transformation was conducted by 

electroporation in the same manner as described with the pOSIP-ES15 vector lacking the 

expression cassette, and electroporated cells were plated onto LB Kanamycin agar plates (25 

µg/mL). Plates were incubated for 24 hours at 30°C. Following successful obtainment of 

transformants growing on the media plates, confirmation of chromosomal integration was 

conducted by PCR analysis with the same primer pairs as utilized previously according to the 
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same protocols. Detection of fluorescence was performed visually by observing transformant 

colonies underneath a light microscope at 10X magnification with light supplied by an integrated 

LED light at 470 nm wavelength.  

 Integration of the pOSIP-ES15_sGFP vector was also conducted within E. coli as a 

secondary control. E. coli K12 cells were made electrocompetent according to the same protocol 

as NCTC 11467 and transformed under the same parameters and conditions. Cells were plated 

onto LB Kanamycin agar plates (25 µg/mL), incubated for 24 hours at 30°C, and transformant 

colonies obtained were subject to the same PCR analysis to confirm integration utilizing the 

KanR Reverse and ES15 Forward primer pair. 

Expression Cassette Control 

 A secondary control was conducted to confirm that the expression cassette could be 

efficiently transcribed and translated by C. sakazakii. This was performed by transforming a 

vector containing the expression cassette along with an origin of replication functionally 

recognized into competent C. sakazakii cells. The plasmid utilized was pOK12, with the 

expression cassette cloned into the multiple cloning site. The plasmid was transformed into 

competent cells according to the same protocols as previously described. The cells were plated 

onto LB Kanamycin agar plates (50 µg/mL), incubated overnight at 37°C and transformant 

colonies observed under the LED microscope. 

Fluorescence Assay  

An assay was performed to measure the levels of fluorescence emitted by the strains of C. 

sakazakii and E. coli that were generated through chromosomal integration of the pOSIP-

ES15_sGFP vector. This was conducted using a Varian Cary Eclipse fluorescence 
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spectrophotometer. Three strains of both C. sakazakii and E. coli were measured. These included 

the strains containing a chromosomal integration of the vector, the strains harboring the episomal 

pOK12-sGFP plasmid, and the native strains to act as the baseline measurements. Three colonies 

of each were inoculated into LB broth so that measurements could be taken in triplicate. The 

cultures were incubated at 37°C shaking at 250 rpm until an optical density of 0.5 at OD600 was 

reached. Each culture was then measured, undiluted, in the fluorescence spectrophotometer in a 

clear quartz cuvette. Excitation was set at 485 nm, and the spectrophotometer recorded emission 

spectra in the range of 490–550 nm.  

Active Site Mutation Assay 

 A set of experiments was conducted to empirically determine if integration of the pOSIP-

ES15 vector into the chromosome of C. sakazakii was reliant upon the action of the ES15 

integrase protein and that integration was not occurring through homologous recombination 

events. To determine this, the gene encoding the integrase was mutated to generate an inactive 

form of the protein. Using NCBI Conserved Domain Database, the sequence of the protein was 

compared against other integrase proteins to determine phylogeny (Lu et al., 2020). The tyrosine 

in the active site responsible for performing nucleophilic attack on the phosphodiester backbone 

was identified by comparison against other members in the protein family (see Figure 19). With 

a single base substitution, this tyrosine could be changed to a phenylalanine by switching the 

codon TAC to TTC. This was accomplished by having the gene synthesized with this single base 

pair change. This ES15-mutant gene was then subcloned from the vector it arrived in, into 

pOSIP-ES15 in place of the native gene using the same subcloning methods and protocol 

described previously. Once proper insert subcloning was confirmed by digestion and gel 
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electrophoresis, the vector was transformed into C. sakazakii by electroporation. A series of 

concurrent transformations were conducted, with NCTC 11467 transformed with pOSIP-ES15, 

pOSIP-ES15_GFP, and pOSIP-ES15_MUTANT in triplicate. The cells were then plated onto 

LB Kanamycin agar plates (25 µg/mL) and placed in a 30°C incubator for 24 hours, after which 

they were observed for growth. 

Intermolecular Plasmid Integration Assay 

 An intermolecular plasmid integration assay was performed to collect additional 

supporting evidence that the ES15 integrase protein performs an integration event between the 

attP site and the attB site. If pOSIP-ES15 were harbored in a cell along with another plasmid that 

contained the C. sakazakii NCTC 11467 attB site sequence, a recombination could be expected 

with the two plasmids becoming a single larger plasmid as the pOSIP-ES15 integrates into the 

other. To test this hypothesis, two primers, named attB EcoRI Forward and attB BamHI Reverse, 

were designed that would amplify a 639-bp fragment from the C. sakazakii NCTC 11467 

genome containing the 26-bp attB site along with flanking elements. Primer sequences are 

contained in Table 4. As their names implied, the primers were utilized to add restriction sites to 

either end of the amplicon to allow for cloning of the fragment into a vector. Annealing 

temperatures in the PCR amplification were programmed for 53°C for 10 cycles, followed by an 

increase to 60°C for 20 cycles to compensate for the overhang. Otherwise, the PCR reaction was 

performed as previously described, utilizing a colony of NCTC 11467 cells as the genomic 

template. The PCR reaction was subjected to restriction enzyme digestion with EcoRI and 

BamHI before fragment isolation utilizing gel electrophoresis. The amplicon was extracted from 

the gel utilizing the Gel Extraction Kit (IBI Scientific) according to the protocol provided. This 
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extracted fragment was then ligated into pUC19 plasmid that had been linearized with EcoRI and 

BamHI according to ligation procedures described earlier. 

Table 3. Primer pairs used in cloning of 639-bp attB site fragment from NCTC 11467 genome.  

Primer Name Melting  Temp. (°C) Primer Sequence 

attB EcoRI 

Forward 

62.7 5’-GTCAAGGAATTCGCAGCTTAATA 

ACCTGCTTAGAGC–3’ 

attB BamHI 

Reverse 

63.2 5’–GTATAAGGATCCGTAGGTCCCAA 

GGCTCATCTTG–3’ 

 

 Commercial NEB 5 Alpha chemically competent E. coli cells were concurrently 

transformed with 100 ng pOSIP-ES15_sGFP and 100 ng pUC19-NCTC11467_attB according to 

the protocol provided. Following recovery, the cells were plated onto LB Kanamycin/Ampicillin 

agar plates (50 µg/mL / 100 µg/mL). These plates were then placed into a 30°C incubator for 24 

hours. Transformant colonies that were obtained were subjected to plasmid DNA extraction. The 

plasmid DNA was then digested with the restriction enzyme pair NheI and XhoI and the 

digestion subjected to gel electrophoresis. Following this, the same transformation procedure 

was repeated with the pOSIP-ES15_mutant plasmid with the codon-substituted ES15 gene and 

attempts to obtain transformant colonies were conducted. 
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Chapter IV: Results 

Integrative Vector Construction 

 The three subcloning steps that were described in the construction of the vector pOSIP-

ES15 are visually represented in Figures 5-7. The plasmid map of the final integrative vector 

pOSIP-ES15 is included in Figure 8. Restriction enzymes utilized for cloning steps, as well as 

the various features are labeled.  

 

Figure 8. Plasmid map of pOSIP-ES15. Enzymes utilized in restriction cloning are labeled, along 
with the primer pair used to verify presence of the vector within transformant cells. Individual 
features and orientations are indicated. 
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pOSIP-ES15

5452 bp



43 
 
 Once the final cloning step was completed and the vector obtained by plasmid DNA 

extraction, confirmation of insert sizes and proper locations was conducted by restriction enzyme 

digest. Banding patterns are presented in the gel image in Figure 9. ApaLI confirmed the 

expected size of the vector, while also confirming presence of the proper third insert. The 

following three lanes confirmed proper inserts by digestion with the enzyme pairs used in 

cloning. 

 

Figure 9. Gel image of final confirmation of pOSIP-ES15 construction. Expected size is 
confirmed with ApaLI, and proper size inserts at expected locations are confirmed with the 
restriction enzyme pairs used in cloning. Insert one (EcoRI/XhoI) present at 255-bp. Insert two 
(DraIII/SbfI) present at 1305-bp. Insert three (NdeI/NheI) present at 206-bp. Ladder is Quanti-
Marker 1 kb. 
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pOSIP-ES15 Integration Confirmation 

 After transforming NCTC 11467 cells by electroporation with pOSIP-ES15, colonies 

were observed growing on the selective kanamycin media 24 hours after being placed in the 

incubator. A total of 30 colonies were obtained in the first transformation experiment. This 

presumptively indicated that the cells were positive integrants, and that the plasmid had inserted 

into the chromosome as predicted. As it was possible that these colonies were not true integrants 

or that integration occurred in locations other than the predicted attB site, PCR analysis was 

performed to confirm. The results from ten integrant clones are presented in Figure 10. Lane 1 is 

the DNA ladder, followed by clones in lanes 2-11 and the positive control in lane 12.  

The banding patterns in Figure 10 resulted from amplification with Flank Forward and 

Flank Reverse. These primers anneal into the chromosome upstream and downstream of the attB 

site. If integration of the vector occurred at the predicted attB site, the primers would amplify the 

entire 5.4-kb plasmid. This was observed in lanes 7-9, where a faint band is visible. If integration 

did not occur at the attB site, the primer pair would amplify a genomic fragment 639-bp in size, 

as is clearly visible in the positive control in the final lane. The ~640-bp band is visible in six 

other lanes, indicating one of two possibilities. The first being that these clones were mutants not 

carrying the plasmid that had gained resistance to kanamycin. The second possibility was that the 

plasmid had integrated into the chromosome, but at a location other than the predicted site. To 

rule out the former and verify the latter, another PCR analysis was conducted using a separate 

primer pair. This primer pair, KanR Reverse and ES15 Forward, anneal at two locations in 

pOSIP-ES15 (indicated in Figure 8) and amplify a fragment 647-bp in size when the vector is 

present within a cell. PCR was conducted utilizing this primer pair and the same ten clones 
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presented in Figure 10. The results of the PCR analysis are presented in Figure 11. A band is 

present at approximately 650-bp in every lane. This demonstrated the vector’s presence in all ten 

clones and ruled out the possibility that these were false positive mutants that had gained 

kanamycin resistance. PCR analysis on 20 more clones revealed similar results as the ten 

presented here. Approximately 25% of all integrant colonies presented pOSIP-ES15 integration 

into the expected location. The remaining colonies had vector presence verified, but integration 

location was indeterminable with PCR analysis.  

 

Figure 10. Amplification of bands from ten integrant colonies using Flank Forward and Flank 
Reverse. Integration into the predicted attB site would result in amplification of the entire 5.4-kb 
integrated vector. This is observed in lanes 7-9. Six other lanes amplified the ~640-bp band if 
vector was not present at attB. 
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Figure 11. Gel image of PCR analysis on same ten clones as in Figure 10, conducted with primer 
pair KanR Reverse and ES15 Forward which anneal within pOSIP-ES15. Primer pair amplifies a 
~650-bp band when vector is present within the integrant. All ten clones amplified the band at 
the expected location. Positive control utilized linearized pOSIP-ES15 as template. 

pOSIP-ES15_sGFP Construction 

 After confirming that the pOSIP-ES15 vector does integrate into the expected attB 

location on the NCTC 11467 chromosome, albeit at a low frequency, it was decided that an 

attempt would be made to utilize the vector to deliver the expression cassette that would allow 

for constitutive fluorescence. The plasmid map of this vector pOSIP-ES15_GFP is presented in 

Figure 12. The 1408-bp cassette was ligated into pOSIP-ES15 after digestion with EcoRI and 

AatII. Confirmation of final vector size and insert location is presented in Figure 13. 
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 Cloning of the expression cassette into pOSIP-ES15 went smoothly, with transformant 

PIR1 colonies all housing the recombined plasmid. It is worthy of note that the E. coli cells 

propagating this vector were quite visibly fluorescent upon a cursory examination using a Blue 

LED flashlight. This gave initial confidence that the construct could allow for visible 

fluorescence once integrated into C. sakazakii NCTC 11467.  

 

Figure 12. Plasmid map of pOSIP-ES15_GFP. Final vector size was 6380-bp with the 1408-bp 
expression cassette cloned into the multiple cloning site. The orientation and design of the 
expression cassette are visible, with the constitutive nptII promoter situated upstream of the 
Superfolder GFP gene, followed by the rrnB T1 and lambda T0 transcriptional terminators.  

EcoRI(1)  

rrnB T1 terminator

rrnB T1 terminator

rrnB T1 terminator

λ tL3 terminator

Kan-R Primer Reverse(3739 .. 3758)  

GFP Construct Forward   (7 .. 26)

nptII promoter

rrnB T1 terminator

GFP Construct Reverse   (1385 .. 1402)

AatII   (1407)

Lambda Repressor O2

ES15int Primer Forward   (3112 .. 3133)

pOSIP-ES15_GFP

6380 bp
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Figure 13. Confirmation of pOSIP-ES15_GFP construction by restriction enzyme digest. 
Digestion with EcoRI confirmed 6380-bp size and digestion with EcoRI/AatII confirmed proper 
insert location and size.  

pOSIP-ES15_sGFP Integration 

 As with the empty pOSIP-ES15 vector, transformant colonies were observed growing on 

the kanamycin selective media after the first attempt at electroporation, albeit at a lower number. 

Integration of the vector into the chromosome at the predicted attB site needed to be verified 

once again. Using the primer pair Flank 1 and Flank 2, attempts were made to locate a 

transformant that amplified a 6.4-kb fragment from the attB. However, as is illustrated in the gel 

image example in Figure 14 created from a sample of six random transformant colonies, a 

positive transformant with integration at the attB site was not located. Of the 36 colonies 
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obtained in the initial round of transformation, none amplified a 6.4-kb band, and all amplified 

the ~640-bp band present when the native attB site is intact with no vector integration.  

 

Figure 14. Confirmation of pOSIP-ES15_GFP integration by PCR analysis with primer pair 
Flank Forward and Flank Reverse. In the six clones presented here, all six amplified at ~640-bp 
band, indicating vector integration at a location on the chromosome other than the attB. In none 
of the integrant colonies obtained was integration at the attB site verified by amplification of a 
6.4-kb band.  

Integrant colonies were analyzed with the KanR Reverse and ES15 primers as performed 

with the pOSIP-ES15 integrants to confirm that the vector was present somewhere within the 

chromosome. The gel image in Figure 15 illustrate the results from the same six clones presented 

in Figure 14. All six of these clones amplified the band at ~640-bp that would be expected if the 
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vector is present in the chromosome. The results do not indicate any location, merely that the 

vector did indeed integrate somewhere.  

 

Figure 15. Confirmation of pOSIP-ES15_GFP integration by PCR analysis using primer pair 
KanR Reverse and ES15 Forward. The six clones presented here, which are also included in 
Figure 14, all amplified a ~650-bp band, indicating that the integrative vector was present within 
the chromosome, but at a location other than the predicted attB site. Unfortunately, none of the 
colonies were visibly fluorescent.  

Although the PCR analyses dd present evidence that integration of the vector had 

occurred, none of the integrant colonies appeared fluorescent when viewed at 10X magnification 

under a microscope illuminated with 470 nm wavelength LED light. From the attempts with 

excitation with wide-wavelength UV lights, none of the colonies were discernable from non-
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transformant NCTC 11467 cells. As this indicated a number of possible explanations, the first 

control that was conducted was integration of the vector into E. coli K12 cells to determine if 

expression of the cassette was detectable, as these cells were visibly fluorescent when they 

housed the episomal pOK12-GFP plasmid the synthesized cassette arrived in. Verification of 

integration was confirmed with KanR Reverse and ES15 Forward, as indicated in Figure 16, but 

as with NCTC 11467 no fluorescence was visually detectable. This gave support to the notion 

that there may be issues with expression of the vector once integrated.   

 

Figure 16. Confirmation of pOSIP-ES15_GFP integration into E. coli cells by PCR analysis 
using primer pair KanR reverse and ES15 forward. As the E. coli cells utilized in this control 
experiment lacked the PIR1 gene necessary for replication of the vector, they acted as a suitable 
control to determine if integration would occur. All transformant colonies analyzed contained the 
vector, but as with C. sakazakii, no fluorescence was detectable.  
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Expression Cassette Control  

 After confirming that the pOSIP-ES15_GFP vector had the ability to integrate into the 

chromosome of NCTC 11467 but that no fluorescence could be detected, a secondary expression 

control was conducted. As the expression cassette arrived in the vector pOK12, which C. 

sakazakii could replicate, this vector was transformed into the strain. The panels in Figure 17 

show the results. C. sakazakii cells harboring the pOK12-GFP vector were brightly fluorescent 

as compared to cells with integrated pOSIP-ES15-GFP. This confirmed the strain could indeed 

express the cassette, and that single-copy integration could present fluorescence levels too low to 

be detected visually.  

 

Figure 17. Images obtained at 10X magnification, with cells excited by LED light at wavelength 
470 nm. The left panel demonstrates the easily detectable fluorescence of C. sakazakii NCTC 
11467 cells harboring the replicative pOK12-sGFP vector that contained the same expression 
cassette as was cloned into pOSIP-ES15_GFP. Panel on right are NCTC 11467 cells with 
integrated pOSIP-ES15_GFP for comparison in fluorescence emitted. White arrows indicate 
colonies. 
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Fluorescence Assay 

After confirming that C. sakazakii NCTC 11467 could express the cassette when housed 

in an episomal vector and emit brightly visible fluorescence, and earlier evidence revealed that E. 

coli had the ability as well, experimentation with more highly sensitive techniques than the 

human eye was necessary. Fluorescence levels generated by C. sakazakii pOK12-GFP, C. 

sakazakii pOSIP-ES15_GFP, C. sakazakii NCTC 11467, E. coli pOK12-GFP, E. coli pOSIP-

ES15_GFP, and E. coli NEB 5 Alpha were recorded in the range of wavelengths 490 nm – 550 

nm. With each culture tested in triplicate with three separate samples, the average intensity was 

recorded at each wavelength, as well as standard deviation. This data is presented in the table in 

Appendix B. A line graph was constructed from the data and compiled in Figure 18. The C. 

sakazakii and E. coli strains carrying the episomal pOK12-GFP vector emitted fluorescence 

levels at a much greater intensity than any of the other four bacterial strains. When all six 

samples were compared with One-Way ANOVA analysis, this revealed a F-value = 304.601, p < 

0.05. This indicated a statistical significance in intensity values. A Tukey’s Post-Hoc test 

revealed that intensity values from both C. sakazakii pOK12-GFP and E. coli pOK12-GFP were 

statistically different than the other four samples. When the remaining four samples were 

compared against one another in One-Way ANOVA with Tukey’s Post-Hoc, the only sample 

that showed a statistically significant difference was NCTC 11467, which had the lowest 

fluorescence readings of any of the samples and was acting as the baseline control for no 

fluorescence expression.  
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Figure 18. Line graph constructed from fluorescence data collected by spectrophotometry. As is evident in the graph, the C. sakazakii NCTC 
11467 and E. coli NEB 5 Alpha cultures harboring an episomal pOK12-GFP plasmid had much higher emission values than the remaining four. 
There was no statistical significance in emission intensity values between the native C. sakazakii and E. coli cultures and the C. sakazakii and E. 
coli cultures with integrated pOSIP-ES15_GFP, indicating that expression of the single-copy cassette was undetectable. 
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Active Site Mutation Assay 

 The active site mutation assay was conducted to gather evidence to support the third 

hypothesis. The analysis using the NCBI Conserved Domain Database revealed that the φES15 

integrase contained a conserved domain that placed it into the INT_ICEBs1_C_like Tyrosine 

subfamily. Members of this integrase family contain a conserved tetrad of amino acid residues in 

their active site, as illustrated in Figure 19. The active tyrosine residue responsible for 

performing the nucleophilic attack in the mechanism of action for the φES15 integrase was 

identified at position Y373 based upon this analysis. The codon for the tyrosine was changed to 

the codon for phenylalanine by single base pair substitution (TAC → TTC) in synthesis of a new 

gene sequence, which would eliminate the active hydroxyl group while retaining the same 

aromatic structure to allow for proper protein folding conformation, as shown in Figure 20. 

 

 

Figure 19. Conserved amino acid residues within the active site of members of the 
INT_ICEBs1_C_like Tyrosine subfamily highlighted. The top panel shows other members of the 
subfamily with the active tyrosine residue responsible for nucleophilic attack located 33 residues 
after the conserved arginine. The φES15 integrase gene was analyzed and the active tyrosine 
located at Y373. Conserved domains obtained from NCBI Conserved Domain Database.  
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Figure 20. By making a single base pair substitution in the nucleotide sequence for the φES15 
integrase gene, the active tyrosine could be mutated to a phenylalanine (TAC → TTC). This 
would maintain the same aromatic amino acid structure to allow proper protein folding 
conformation while eliminating the active hydroxyl. 

 Once the newly synthesized mutant φES15 integrase gene was cloned into pOSIP to 

make pOSIP-ES15_MUTANT, a series of concurrent transformation experiments were prepared. 

The results of the experiments are illustrated in Figure 21. Transformations were performed 

concurrently to act as an internal control that the procedure had worked properly. All three 

transformations with pOSIP-ES15 and all three with pOSIP-ES15_GFP resulted in transformant 

colonies growing on the selective kanamycin media. There were no colonies obtained from any 

of the plates that the cells transformed with pOSIP-ES15_MUTANT. This was the expected 

negative result that would be obtained if the integrase protein was necessary for integration of 

the vector and that integration was not resultant from homologous recombination between DNA 

fragments that shared homology with regions in the chromosome.  
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Figure 21. The active site mutation assay was conducted by concurrent transformations of C. 
sakazakii NCTC 11467 cells performed in triplicate with pOSIP-ES15, pOSIP-ES15_GFP, and 
pOSIP-ES15_MUTANT. As visible in the above panels, transformant colonies were obtained on 
every plate with the pOSIP-ES15 and pOSIP-ES15_GFP vectors, but no colonies were obtained 
with pOSIP-ES15_MUTANT. This was the negative result expected if the tyrosine at Y373 was 
responsible for integration, and plasmid did not rely upon homologous recombination for 
insertion.  

Intermolecular Plasmid Integration Assay 

 The intermolecular plasmid integration assay provided further support for the third 

hypothesis. After pUC-NCTC11467_attB was constructed and confirmed through restriction 

enzyme digest, it was co-transformed along with pOSIP-ES15_GFP. The plasmid map for 

pUC19-NCTC11467_attB is shown in Figure 22, with the 639-bp attB sequence highlighted in 

blue. As discussed prior, the E. coli NEB 5 Alpha cells would only survive on the 

kanamycin/ampicillin selective media if the plasmids had recombined into a plasmid 9666-bp in 

size. The plasmid map of this recombined pOSIP-ES15_GFP-pUC19-NCTC11467_attB plasmid 

can be seen in Figure 23. After the predetermined incubation time, the growth plates were 

removed from the incubator and transformant colonies were observed to be growing. Digestion 

of the extracted plasmid DNA from two of these colonies with NheI and XhoI resulted in the 

banding pattern presented in the gel image in Figure 24.  
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Figure 22. Plasmid map of pUC19-NCTC11467_attB. This plasmid was constructed by cloning 
the attB fragment out of NCTC 11467 chromosome using the primers attB EcoRI and attB 
BamHI and utilizing restriction enzyme cloning to insert into pUC19.  

 Visible in lanes 2 & 3 of the gel image in Figure 24 are two bands, the larger at a position 

approximately 7.7-kb in size and the smaller approximately 1.9-kb in size. Digestion of the 

9666-bp plasmid with NheI and XhoI would result in a 7698-bp fragment and a 1968-bp 

fragment. Thus, this gel provided evidence that the two plasmids had integrated together at the 

expected attachment sites. The assay was repeated with the pOSIP-ES15_MUTANT form of the 

integrative plasmid. In no transformations did the use of this plasmid result in transformant 

colonies growing on the selective media.  

EcoRI   (396)

BamHI   (1017)

pUC19-NCTC11467_attB

3286 bp
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Figure 23. Plasmid map of the combined pOSIP-ES15_GFP-pUC19-NCTC11467_attB plasmid 
that would be obtained when the φES15 integrase protein performs a recombination event 
between the attB site on pUC19-NCTC11467_attB and the attP site on pOSIP-ES15_GFP. Final 
vector would be 9666-bp in size. Restriction enzyme sites NheI and XhoI are labeled.  

NheI(8536)  

XhoI   (838)

pOSIP-ES15_GFP-pUC19-NCTC11467_attB

9666 bp
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Figure 24. Confirmation of intermolecular plasmid recombination by restriction enzyme digest. 
Digestion with NheI and XhoI of the recombined 9666-bp plasmid would result in a band at 
7698-bp and a band at 1968-bp. These bands are visible in lanes 2 & 3, which are plasmid DNA 
obtained from two transformant colonies. Lanes 4 & 5 are undigested pUC19-NCTC11467_attB 
and pOSIP-ES15_GFP, respectively.  
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Chapter V: Discussion 

 The results from the experiments conducted here to generate a tool that would be useful 

in engineering Cronobacter sakazakii presented some interesting observations and left several 

unanswered questions. A systematic approach of discussing each hypothesis and the relevant 

experimental results will aid in elucidation. The first hypothesis stated: An integrative vector 

constructed utilizing the φES15 integrase gene and attP sequence will integrate into C. sakazakii 

NCTC 11467 chromosome at the predicted location. This hypothesis was only partially 

supported. The results from the initial integration experiments with pOSIP-ES15 showed that the 

vector was functional as a genetic engineering tool in integrating into the chromosome. 

However, it did not perform as hypothesized in efficiently integrating into the predicted 26-bp 

attB site on the NCTC 11467 chromosome. The gel image in Figure 10 was typical of the results 

of the integrant colonies obtained in transformation with this vector. In each round of 

transformation, approximately 25-30% of the positive integrants obtained amplified a fragment 

at the expected 5.4-kb size. The other three-quarters of integrant colonies did not, although it was 

demonstrated that the plasmid did integrate into their chromosomes at some unknown location. 

What this resulted in was a tool that could still be utilized to deliver a gene of interest or 

expression cassette into C. sakazakii, but there would only be an approximately 25% chance that 

the colonies obtained from doing so would have the vector at this known location.  

Without further experimentation to determine if the vector had a single site that it 

targeted at a higher rate, or whether there were multiple pseudo-attachment sites, confidence in 

use of this tool could not be expected. Due to budgetary and time constraints, these necessary 

experiments were not conducted in the course of this project but will be discussed further below. 
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Even though it had demonstrated lower efficiency in on-target integration than was desirable, the 

pOSIP-ES15 vector still demonstrated enough utility to allow for testing in delivery of an 

expression cassette. 

 The second hypothesis stated: The constructed engineering vector can be utilized to 

integrate a fluorescent cassette into C. sakazakii genome, to generate a fluorescent strain. This 

hypothesis was not supported in its entirety,  as the data only demonstrated support for the first 

half. The constructed pOSIP-ES15_GFP vector did integrate into the chromosome as 

demonstrated by PCR analysis with the primer pair KanR Reverse and ES15 Forward, and the 

vector was indeed carrying the expression cassette. However, the cells did not express the 

cassette containing the GFP gene at an efficient enough manner to be detectable by either visual 

means or instrumentational analysis. The results from the fluorescence experiments presented the 

most curious results and results that required the most speculation in postulating explanations.  

 In the first project involving the pPL3e vector integration into L. innocua, single-copy 

cassette integration allowed for brightly visible fluorescence when paired with a strong, 

constitutive promoter and a GFP protein variant that emitted high fluorescence intensity. The 

cassette inserted into pOSIP-ES15 and subsequently integrated into the chromosome was 

designed with analogous features. The nptII promoter has demonstrated to be a strong, 

constitutive promoter within the Enterobacteriaceae, and the synthetic ribosomal binding site 

was calculated to increase translation rates by nearly three orders of magnitude. In addition, the 

Superfolder GFP has an even higher fluorescence intensity than the Enhanced GFP cloned into 

pPL3e. Transformation of NCTC 11467 cells with the episomal plasmid pOK12-GFP that 

housed this expression cassette resulted in high intensity fluorescence, demonstrating that the 
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transcription and translational machinery in C. sakazakii was able to recognize the regulatory 

elements in the cassette design and produce functional protein. Therefore, the measuring of 

fluorescence by spectrophotometry was necessary to determine if expression of the single-copy 

insert was at a level that simply could not be detected through visual means. As the data from 

this experiment showed, however, this was not the case. Fluorescence levels were the same 

between the NCTC 11467 cells integrated with pOSIP-ES15_GFP as with the non-transformed 

NCTC 11467 cells. Highly sensitive spectrophotometry could not even detect any fluorescence 

emitted from the cells.  

 At this point it was necessary to speculate upon possible explanations and further 

experiments that could be conducted to gather evidence that could further support or refute or 

refute the hypothesis. There is a well-documented occurrence known as position effect that 

influences expression of genes that have been integrated into a bacterial chromosome (Bryant, 

Sellars, Busby, & Lee, 2014). Several groups have shown that expression can vary quite 

drastically depending upon where the integration occurs. This effect can depend on local 

regulatory elements, such as transcriptional terminators, or even proximity to a chromosomal 

origin of replication (Bryant, Sellars, Busby, & Lee, 2014). Integration into highly conserved 

regions generally presented with higher rates of expression versus areas that were not as highly 

conserved (Juhas & Ajioka, 2015). This suggests that characterization of proposed integration 

sites is necessary when engineering a bacterial strain utilizing targeted techniques. As discussed 

previously, the 26-bp attB site present in the NCTC 11467 genome was located in an intergenic 

region, several hundred nucleotides upstream of an uncharacterized hypothetical protein 

predicted to be a possible integrase. Further upstream of the attB, in the same reading frame was 
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a sequence identified by NCBI annotation as originating from a transposon. Early in this project, 

as the integrative vector was still being designed for use, this information appeared promising as 

it was presumed integration into an intergenic region would be beneficial to prevent disruption to 

genes or areas metabolically vital. However, this may have actually contributed to decreased 

expression, as the nearby presence of these sequences could indicate that the targeted site is in an 

area of low conservation.   

 This could be a reasonable speculative observation that could explain some of the data, if 

evidence had been collected that the pOSIP-ES15_GFP was integrating into the predicted attB in 

the first place. Recall, however, that in no instance was a positive integrant located in which a 

6.4-kb band was amplified. The vector was targeting one, or multiple, other sites and without 

knowing where these sites were located, position effects on expression variance can only be 

speculated highly upon. Other data collected in the course of this experiment could alternatively 

refute the positional effect speculation. The pOSIP-ES15_GFP vector was also integrated into 

the chromosome of E. coli K12 to verify whether expression of the cassette was possible once 

integrated into a related member of Enterobacteriaceae. As lab strain K12 lacked the PIR1 gene 

necessary to replicate the vector, confirmation of integration by PCR amplification of vector 

DNA by primer pair KanR Reverse and ES15 Forward presented in Figure 16 could be 

considered valid. Fluorescence analysis by spectrophotometry confirmed once again, however, 

that there was no difference in fluorescence intensity between the integrated strain and parent 

strain.  

An analysis with NCBI Blast in K12 revealed that the 26-bp predicted attB sequence 

constituted the 3’ end of a ssrA transfer-messenger RNA gene. This gene, which encodes the 
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tmRNA, is considered to be well-conserved as the function of tmRNA is quite versatile and plays 

an important role in trans-translational processes, such as recycling of stalled ribosomes and 

induction of proteolysis for unfinished peptides (Keiler, 2008). Thus, if pOSIP-ES15_GFP was 

integrating into this 26-bp fragment at this site in the K12 chromosome, integration would 

presumptively be occurring at a site with a high degree of conservation and yet expression of the 

cassette was still so low as to be undetectable. This would help demonstrate that conservation of 

integration location is not necessarily the only factor at play in the apparent repression of 

expression. Certain members of Enterobacteriaceae, including E. coli, have genetic regulatory 

systems known as Nucleoid-Associated Proteins (NAPs) that aid in regulation of horizontally 

acquired genetic elements (Corcoran, Cameron, and Dorman, 2010). They function by 

recognizing topology changes when foreign DNA integrates into the host chromosome, as well 

as regions of higher A-T nucleotide content, and binding to the site to create a repression 

complex (Corcoran, Cameron, and Dorman, 2010).  As an analysis of the UniProt protein 

sequence database revealed that C. sakazakii does produce a NAP homologous to the 

characterized protein produced by E. coli, it is possible that NAPs could be genetically silencing 

the cassette once integrated into both species. 

Interestingly, a re-analysis of the location of the 26-bp attB sequence in the C. sakazakii 

genome revealed it did indeed constitute the 3’ end of a homolog of the ssrA gene identified in E. 

coli K12, but NCBI did not annotate it as such. Even more interesting, was that this homolog was 

present in every type-species of the Cronobacter genus, but always in a location that was 

surrounded by genetic elements, such as hypothetical integrase or transposase sequences, that 

indicated it was obtained by lateral gene transfer. While this is information outside the scope of 
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this project, it nonetheless presents an interesting future project for someone wishing to study the 

evolution of ssrA acquisition in members of Enterobacteriaceae. 

 The third hypothesis stated: The putative φES15 integrase called by gene prediction 

performs a recombination between the putative attP sequence and host attB sequence. This 

hypothesis was supported by the data collected from the last experiments detailed. When a 

plasmid contains a sequence of DNA that is homologous to a region on the chromosome, 

integration of the plasmid can occur through the action of native DNA repair enzymes such as 

RecA that will facilitate recombination with sequences as short as 8 nucleotides in length. 

(Greene, 2016).  Furthermore, the φES15 integrase gene was predicted to encode a functional 

integrase by machine annotation but the protein had not been characterized and demonstrated to 

be functional. Therefore, it was necessary to determine that integration of pOSIP-ES15 was in 

fact occurring due to the action of the encoded integrase and that the annotation of the gene as a 

functional protein was accurate. By eliminating the single hydroxyl group in the protein 

responsible for cleaving the nucleotide phosphodiester backbone, it was proposed that integration 

of the vector would not occur. The concurrent transformation experiments with three pOSIP-

ES15 variants presented the evidence that supported this. From each single transformation of 

electrocompetent NCTC 11467 with both pOSIP-ES15 and pOSIP-ES15_GFP, between 50-200 

integrant colonies could be obtained growing on the selective media. In none of the three 

transformations with pOSIP-ES15_MUTANT was an integrant colony observed.  

This was fairly strong evidence for support but being that the result was considered a 

negative result due to the nature of the test, further evidence was warranted to strengthen the 

support for the hypothesis. The intermolecular plasmid integration assay added this additional 
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support. The restriction enzyme digest confirmation in Figure 24 validated that pOSIP-ES15 had 

been integrated into the pUC19 vector at the expected attB location based upon the banding 

pattern. Attempting to repeat this intermolecular integration between the pUC19-

NCTC11467_attB and the pOSIP-ES15_MUTANT vector could not produce a single 

transformant colony on the kanamycin/ampicillin media. This further illustrated that the φES15 

integrase protein was indeed functional and responsible for the integration event.  

As mentioned, the results of these experiments did leave several unanswered questions. 

The two primary unknowns were the location(s) that the pOSIP-ES15 vector preferentially 

targeted, and whether integration into this site was a factor in the lack of fluorescence generated. 

A series of experiments would need to be performed to verify this hypothesis. With the 

integrated strains already generated, the next immediate experiment would be expression 

profiling to verify that the engineered strain was transcribing the expression cassette. A common 

method that could be utilized for such an analysis would be the use of quantitative real-time PCR 

(RT-qPCR). This is a powerful technique that is capable of detecting expression of genes that is 

occurring even at very low levels (Wagner, 2013). To carry out this experiment, a culture of the 

NCTC 11467-GFP cells would be grown and then lysed, extracting the RNA from the lysate. 

The mRNA is isolated from the total RNA through commercial kits or established protocols, and 

cDNA generated through reverse transcription of the mRNA. Primers would be designed that 

amplify a section of the expression cassette, and this amplification can be quantified in real-time 

as the reaction occurs. The quantitative data from the amplification can then be utilized to 

determine the initial levels of transcript and determine if expression of the cassette was low or 

high initially. If no amplification was possible, it would indicate that transcription was not 
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occurring. This would give credence to the hypothesis that possible position effect expression 

variance, or NAP repression, may be responsible. 

While a positive result from RT-qPCR would reveal if transcription of the GFP gene was 

occurring, it would not reveal whether functional GFP was being actively translated from the 

mRNA transcripts. This would require an additional experiment involving protein isolation and 

identification using western blot analysis. Superfolder GFP specific antibodies would need to be 

ordered, and then verification of protein translation and identification through established 

western blot protocols (Mahmood and Yang, 2012). Detection of a 26.8 kDa protein would 

confirm that Superfolder GFP was being produced. Since spectrophotometry is an extremely 

sensitive analytical technique and did not detect any fluorescence from the engineered cell 

cultures, it is unlikely that if GFP was being produced in the current NCTC 111467-GFP strains, 

that western blot analysis of would produce detectable results. However, it is important to note 

that spectrophotometry was performed with intact cells. Before a western blot experiment could 

be performed, it would be prudent to conduct the spectrophotometry analysis of fluorescence 

using a cell lysate with isolated proteins from the current strains to determine if intact cells 

shielded low intensity fluorescence from being detected from a small amount of protein.  

Lastly, the most important set of experiments that could be conducted would be a 

characterization of integration locations in the NCTC 11467 chromosome. As the entirety of this 

thesis work has illustrated, site-specific integrative vectors can be a very useful tool in efficiently 

engineering a bacterial species of interest. The L. innocua project worked so well because the 

group that had designed the pPL3e plasmid derived the sequences from a phage integrase that 

targeted a sequence on a highly conserved genetic element and consistently integrated there. The 
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predicted attB site appeared to be the target for φES15 some of the time, but not all. The fastest, 

and most comprehensive, method of determining the preferential integration location would be 

by whole genome sequencing of the NCTC 11467-GFP strains. This would indicate where the 

vector is currently present. A series of experimental integrations at targeted locations flanking 

this site could then be prepared by homologous recombination. Using overlap PCR to add short 

sequences to either end of the GFP expression cassette, these sequences could be designed to 

allow for homologous recombination at precise locations in intervals of 1000 nucleotides from 

the current integration site. Fluorescence levels could then be measured by spectrophotometry 

from a panel of these integrant strains and analyzed to determine if position effect was playing a 

role in decreased expression, or if endogenous NAPs could still be responsible.  

For applications where directed and efficient engineering in bacteria is desirable, and 

integration locations have been characterized beforehand, integrative vectors present a powerful 

tool. In projects or situations where characterization is not possible beforehand, or when working 

with a bacterial species that has not had a fully characterized temperate phage identified, other 

techniques such as random integration via transposons may present a better option. As we head 

into an era of molecular biology where tools like CRISPR/Cas9 are being refined to allow for 

even more efficient engineering approaches, genetic modification of bacteria and other 

organisms will become an increasingly prevalent technique in research and industry.  
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Appendix A 

DNA sequences of the designed fragments inserted into the pOSIP backbone to create the vector 
pOSIP-ES15 and pOSIP-ES15_GFP 

Insert 
Fragments 

DNA Sequence 

φES15 
Integrase 
Gene 

cctgcaggaggtttcaaagctgcaggacacctaactgcgcccgatcaagcagcgcataaacctccgtttcacagcggttga
ctatcacaagtaaggaggttttacatggtgggcaagaaagaacaaggatcattatctctcccaagaggggtaactattcgcc
atcacaaaacaggcgataccctggtaatcacttttacgtataaaggggttctgtgccgcgagcccctttccaaaatggaggc
aaacgcgcggggtgttaagtatgctgcgcggctgcttggggaaatacaaaatcagatcgcccatgaaacttttgagtatgc
gaaatacttccctaattccaaaaaactggagttatttggggttacgaagaaaacaaaaaatattaagtcttacctggacgagta
tctcaaaatctgccagaaccgtaacttgtctccgtcgactattaacggctatgaaaagtgcctgtcggcgctgtcagctttgca
taaacttcacgtgtcggaactgacacctgcggttcttaaaaactggatagccagccggaaaacaaaactgaaaacgaccag
gaataacctttcgtttctgcgcagcgccatcgatgaagctgttacggatggcctgctgaccattaacccggtaaccctcgtca
gcgccagccggtaccacgtgatcgacagcaaaccgagccccgacgattacgaggttgacccgttcacgccagcggaaa
ccctcgcaatttaccagagctgcaggtacccggaatgggaaaacctgttccggttcgcattcaacaccggactacgtagct
ctgaattgtgcgctatacgctggaaggatatcgactttatcggaaacaccgcccacgtgcagatggccagcgtcgtagggg
tacttaaatgcactaaaacaaaagccggtacccgtaaggttgagctaaacagtgaggcgctggcagccctgctggcgcag
aaacaatacacctttatgaaaagcgagttcatattcagcgacccgaaaacgggagagccttgggcgaacgcagacgctat
ccgaaaaaaagcatgggtgccaaccctgaaaaaagctggcgttcggtaccgtaatccctaccagacccgccatacattcg
ccaccaaacacatcagccagggagtaaaccttttctggcttgcaggtcagatggggcataagggtccagaaatgctgttcc
gcaattacggatcatatctggcagtgtacgacggtcgtacatcgataaattctgctatatcgtcatgacctacttacacgttgtg
t 

φES15 attP catatgatatttttgtcttttctcggtctgcatactgtctggtcagtgtccgtaagtgactgtatttattgcctctgtccggttgcagt
cctatcaaaagtggtggagctggcgggagttgaacccatgtctgaggtgtgattaagtggttgaataatagttttttatttaattc
ataatgattttggtgcactttgcgtgctagc 

MCS 
noncoding 
fragment 
(Linker) 

gaattcatcgacatccaggaccttcaactagcatcgtaaaatcccgtcttcgaacttccttaacctacctacggcatattttcca
aggacgttgaccacgtacgacgacttactgactacccaattgttactaatgttaccgtactagccaaatccttttaacgaccga
ctaaaacggtacgtacgttgggttttaaaaccaggtaccttagccaattaagggaattaaccgatcagcgtcagtgatcactc
gag 

GFP 
Expression 
Cassette 

gaattctttattacacgttcatacgcacgctgccgcaagcactcagggcgcaagggctgctaaaggaagcggaacacgta
gaaagccagtccgcagaaacggtgctgaccccggatgaatgtcagctactgggctatctggacaagggaaaacgcaagc
gcaaagagaaagcaggtagcttgcagtgggcttacatggcgatagctagactgggcggttttatggacagcaagcgaacc
ggaattgccagctgggccgccctctggtaaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaaggat
ctgatggcgcaggggatcaagatctgatcaagagacaggatactagtggaggaagaaaaattaaaatttggtttcgaagga
ggtaaaggaggttactatgagcaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaat
gggcacaaattttctgtccgtggagagggtgaaggtgatgctacaaacggaaaactcacccttaaatttatttgcactactgg
aaaactacctgttccgtggccaacacttgtcactactctgacctatggtgttcaatgcttttcccgttatccggatcacatgaaa
cggcatgactttttcaagagtgccatgcccgaaggttatgtacaggaacgcactatatctttcaaagatgacgggacctacaa
gacgcgtgctgaagtcaagtttgaaggtgatacccttgttaatcgtatcgagttaaagggtattgattttaaagaagatggaaa
cattcttggacacaaactcgagtacaactttaactcacacaatgtatacatcacggcagacaaacaaaagaatggaatcaaa
gctaacttcaaaattcgccacaacgttgaagatggttccgttcaactagcagaccattatcaacaaaatactccaattggcgat
ggccctgtccttttaccagacaaccattacctgtcgacacaatctgtcctttcgaaagatcccaacgaaaagcgtgaccacat
ggtccttcttgagtttgtaactgctgctgggattacacatggcatggatgagctctacaaataactgaatgagaggatcggttc
cttgtcgagaggatcttccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtc
ggtgaacgctctctactagagtcacgtgtaaggaacatctggccaggcattaattctcaccaataaaaaacgcccggcggc



77 
 

aaccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaacaggagtcgttgtcgagtaaggat
cgacgtc 
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Appendix B 

Table of fluorescence intensity reading averages and accompanying standard deviations collected from the fluorescence assay. 

 EC  CS  EC OSIP  CS OSIP  EC OK  CS OK  
             
Wavelength 
(nm) 

Intensity 
Average St Dev 

Intensit
y St. Dev 

Intensit
y St. Dev 

Intensit
y St. Dev 

Intensit
y St. Dev 

Intensit
y St. Dev 

490             

491.06 701.918 
28.071

04 
867.91

62 
66.274

59 
648.49

07 
44.001

49 
761.47

11 
11.122

93 
249.62

28 
17.966

3 
998.66

7 
2.3089

08 

491.96 420.873 
16.323

05 
516.63

08 
42.055

23 
389.36

61 
27.160

3 
459.02

69 
5.1687

48 
151.05

11 
11.163

22 
636.71

82 
28.582

32 

493.03 154.846 
5.7438

29 
192.60

98 
14.962

71 
144.01

83 
9.8823

83 
169.94

56 
2.8962

79 
60.942

73 
4.5091

08 
248.42

9 
11.110

08 

493.93 45.0557 
1.6633

34 
55.956

92 
3.5977

3 
41.943

78 
2.7200

37 
49.749

88 
0.4790

06 
24.765

79 
1.2953

68 
85.961

13 
2.4209

26 

495 14.5136 
0.3422

87 
17.208

08 
1.0107

35 
13.802

55 
0.7314

08 
15.929

87 
0.2468

48 
17.265

72 
1.0274

92 
43.057

24 
0.6589

4 

496.06 9.8263 
0.1395

42 
10.760

72 
0.4871

86 
9.6245

99 
0.4540

35 
10.416

74 
0.1427

4 
17.654

68 
1.0835

13 
39.015

8 
0.5535

04 

496.96 8.96966 
0.0927

17 
9.6963

61 
0.3757

33 
8.9166

93 
0.2174

66 
9.6562

7 
0.1568

64 
18.378

25 
1.0011

08 
39.663

44 
0.8853

74 

498.03 8.29659 
0.0522

51 
8.9250

04 
0.2767

69 
8.4095

93 
0.1050

1 
9.0682

37 
0.3141

83 
19.930

68 
0.9527

87 
42.735

89 
1.2067

32 

498.93 8.31946 
0.0478

32 
8.5018

27 
0.2040

67 
8.4300

44 
0.2146

6 
8.7637

2 
0.1375

88 
22.043

71 
1.0783

61 
46.256

89 
1.0279

51 

500 8.11784 
0.1177

25 
8.3513

56 
0.1673

03 
8.5170

41 
0.0800

37 
8.7736

41 
0.0794

16 
24.117

28 
1.3913

77 
51.062

1 
1.2229

13 

501.04 8.30776 
0.0959

44 
8.2921

18 
0.1888

92 
8.6010

96 
0.2255

27 
8.8836

38 
0.1470

43 
26.452

57 
1.7147

98 
55.029

8 
1.2628

59 

501.94 8.50113 
0.1028

76 
8.2867

54 
0.1047

75 
8.7965

15 
0.1337

01 
8.9132

66 
0.1354

62 
27.880

42 
1.3478

8 
57.899

76 
0.9922

84 

502.98 8.4358 
0.0544

92 
8.2990

74 
0.1852

68 
8.9324

56 
0.1742

54 
8.9758

04 
0.1228

72 
29.840

34 
1.5633

12 
61.719

42 
1.6991

85 
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504.02 8.60105 
0.2700

98 
8.5710

27 
0.1115

07 
9.0716

19 
0.1509

85 
9.3125

88 
0.0723

75 
32.106

96 
1.8449

01 
66.587

99 
1.3938

47 

505.07 8.73197 
0.2510

6 
8.6450

42 
0.2159

27 
9.4033

41 
0.2329

44 
9.5210

5 
0.2224

75 
34.105

82 
1.7946

8 
70.922

85 
1.5254

61 

505.97 9.13306 
0.1618

07 
8.8593

1 
0.1154

15 
9.5939

47 
0.1607

67 
9.7131

59 
0.1701

74 
36.134

27 
1.9488

7 
74.955

06 
1.8728

17 

507.01 9.35289 
0.0846

42 
8.9328

75 
0.1458

36 
9.9450

59 
0.1865

43 
9.9498

89 
0.0794

11 
37.520

15 
2.0986

61 
78.045

72 
1.9333

54 

508.05 9.62205 
0.1177

68 
9.2710

51 
0.0821

42 
10.208

98 
0.0939

77 
10.232

78 
0.0371

56 
39.015

29 
2.5675

35 
81.267

72 
2.0580

07 

508.95 9.81365 
0.1639

89 
9.3930

85 
0.0499

06 
10.398

08 
0.1876

63 
10.533

61 
0.2054

29 
40.076

61 
2.1361

7 
82.667

93 
1.9941

89 

510 10.0498 
0.1336

61 
9.7624

13 
0.0801

12 
10.836

49 
0.2087

29 
10.665

23 
0.1198

62 
41.021

68 
2.2519

56 
85.030

48 
1.9888

53 

511.04 10.2416 
0.1160

27 
9.8327

99 
0.0798

99 
11.097

4 
0.1500

6 
10.926

7 
0.1597

58 
41.742

64 
2.3115

74 
85.548

03 
2.0219

79 

511.94 10.573 
0.0151

5 
9.9907

65 
0.0913

86 
11.355

05 
0.2903

33 
11.150

61 
0.1802

05 
41.913

42 
2.2839

13 
86.528

15 
2.3118

69 

512.98 10.7362 
0.0926

09 
10.207

54 
0.1340

63 
11.478

2 
0.2897

8 
11.343

25 
0.0663

41 
42.076

06 
2.3366

41 
85.638

99 
2.2806

71 

514.02 10.925 
0.2146

25 
10.380

04 
0.1362

2 
11.558

88 0.238 
11.384

31 
0.0917

24 
42.008

96 
2.2135

14 
84.291

13 
2.1933

07 

515.07 11.1457 
0.1029

71 
10.500

01 
0.1038

55 
11.789

61 
0.1898

48 
11.513

83 
0.2304

42 
41.339

73 
2.2493

77 
82.549

21 
1.9241

57 

515.97 11.1749 
0.0640

04 
10.486

26 
0.0689

33 
11.939

42 
0.2993

14 
11.527

16 
0.2106

15 
40.917

11 
2.0480

91 
80.717

61 
2.1909

5 

517.01 11.227 
0.1254

6 
10.675

49 
0.0884

99 
11.964

54 
0.2755

85 
11.633

53 
0.2594

69 
40.019

59 
2.2200

91 
78.059

36 
1.9831

31 

518.05 11.2611 
0.0944

98 
10.627

82 
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