
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

7-2011

Using Secondary Fitness to Break Ties in a Genetic Algorithm for Using Secondary Fitness to Break Ties in a Genetic Algorithm for

the One-Dimensional Bin-Packing Problem the One-Dimensional Bin-Packing Problem

Justin W. Benjamin

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

USING SECONDARY FITNESS TO BREAK TIES IN A GENETIC ALGORITHM FOR THE

ONE-DIMENSIONAL BIN-PACKING PROBLEM

by

Justin W. Benjamin

B.A., Ithaca College, Ithaca, NY, 2002

A Thesis

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

St. Cloud, Minn~sota

July, 2011

\

J

....

\

This thesis submitted by Justin W. Benjamin in partial fulfillment of the requirements
for the Degree of Master of Science at St. Cloud State University is hereby approved by the
final evaluation committee.

Chairperson

~~~ 

Dean 
S,chool of Graduate S 



USING SECONDARY FITNESS TO BREAK TIES IN A GENETIC ALGORITHM FOR THE 
ONE-DIMENSIONAL BIN-PACKING PROBLEM 

Justin W. Benjamin 

The one-dimensional bin-packing problem (BPP) is a well known problem in the 
realm of operations research. In the BPP, objects with pre-defined "weights" are packed into 
bins, each having a maximum weight capacity. The goal is to minimize the number of bins 
needed to hold objects. 

In a Genetic Algorithm for this problem, an individual candidate solution consists of 
a permutation of object~ representing their order of placement. A heuristic is then used to 
place objects in bins according to their specified order. The heuristic chosen is generally First 
Fit, Best Fit, or Worst Fit. The number of bins needed to store the objects is a solution's 
fitness. In Genetic Algorithms, the fitness value of a solution represents its likelihood to pass 
on its genetic material to new generations. In the case of the BPP, the less the number of 
bins needed, the greater a solution's fitness. To create new generations, solutions are 
"crossed-over" to combine features of their particular solutions and create a new organism. 
New generations are then created in a cycle until a predetermined limit has been reached 
and the best organism found becomes the solution to the problem. 

Many situations arise where two solutions may have the exact same fitness value 
according to the number of bins. However, these two solutions may not be equivalent in 
terms of solving the BPP. Solutions which pack objects more tightly in bins are more 
desirable because they have more potential to be improved in future generations. To 
distinguish these solutions, we propose a second fitness criterion: the free space in the final 
bin of a solution. 

By adding this secondary fitness criterion, the performance of the standard GA 
algorithm for the BPP can be improved by a significant margin. This has implications for any 
implementation of bin-packing GAs, as the modification is relatively minor and produces 
better results; therefore being a cost-effective improvement. 

£~,2011 'onth Year Approved by Research Committee: 

~ Chairperson 

iii 



TABLE OF CONTENTS 

Page 

LIST OF TABLES vi 

LIST OF FIGURES ..................................................... ....... ....... .... ............. .... ...... .................... vii 

Chapter 

I. INTRODUCTION ... ....... ......... ..... ......... ............ .. ... ...... .. ............................................ 1 

Evolutionary Algorithms ............ ..................................................................... . 1 

Genetic Algorithms . ..... .... .... .. ..... .......... .. .... ..... .. .... ... .... ..... .. .......... .. ... .. . ..... .. .. . 4 

Evolution Strategies and Evolutionary Programming ..................................... 6 

An Example: A GA for the 0-1 Knapsack Problem ............................ ... ... ......... 7 

The One-Dimensional Bin Packing Problem .............. .... .. .......... ...... .. ......... ..... 9 

Secondary Fitness .... ............ .... ............. ........................................................... 12 

Genetic Algorithms for BPP ...... .. ......... . ..... .... ......... ..... ...... .... . ................. .... .. .. 13 

The Implementation .... .... .... .... ............................ ...... .. ...... ..... ..... .............. ...... 15 

Testing ........ ... ... ...... .. ... ..... .. ... .... .... .... .... ....................... ............. ...................... 16 

Results ... ....... .... ............. ..... ........................... ..... .. .. ... ....... ....... ........................ 17 

Discussion ... . .. ... .. ... .. .. .. .... .... .. ..... . .. . ... .. . ... ... ... ..... ...... ... ... ... .. .. ............. ... .. ........ 19 

Application to Other Problems ....... ....... .. ... ...... .. ............................................. 20 

Conclusion ....... ..... ............ .... .... ... ..... ............................................................... 23 

REFERENCES ..... ..... ............... .... .... ............ ............... ........... .... ...... ... .. .... ........ ...................... 24 

iv 



Chapter 

APPENDICES 

Page 

A. Sample Data File ............................................................................... ..... ................ 28 

B. Program Code .. ....... ................................................. .. .... ... ............ ...... ............... .... 30 

V 



LIST OF TABLES 

Table Page 

1. Results for All Test Instances ................................................................................. 17 

2. Results for Selected Test Instances ........................................................................ 18 

vi 



LIST OF FIGURES 

Figure Page 

1. Pseudo-Code Summary of Gas ......... ....... ..... ......... ... ... ............................ ....... ...... .. 6 

2. 0-1 Knapsack .. .... ... ......... .... ... ...... ............ ..... ... ... ......... .... ...................... ............. .... 9 

3. Differences in "Quality" between Solutions in the One-dimensional Bin 
Packing Problem ....................................... ... ........... ... ....... .................... ........ ... 13 

4. First-fit Heuristic in the One-dimensional Bin-packing Problem ............ ... ............ 14 

vii 



Chapter I 

INTRODUCTION 

This paper begins by providing a summary of the concept of evolutionary algorithms 

and the three major types: genetic algorithms, evolutionary strategies and evolutionary 

programming. 

The one-dimensional bin-packing problem, a well-known operations research 

problem is then examined. The paper then describes various evolutionary algorithms 

historically applied to the bin-packing problem. 

A typical genetic algorithm for the bin-packing problem is outlined as well as the 

limitations of its single-fitness evaluation criterion. 

A secondary fitness strategy is proposed which can help to take advantage of 

previously unused information to influence the flow of the GA toward a better overall 

solution set. This secondary fitness is shown in empirical testing to produce significantly 

better results than the typical GA using a single fitness criterion . The results of these tests are 

then examined as well as their implications. 

Finally, potential applications of this concept to other similar problems are discussed . 

Evolutionary Algorithms 

An evolutionary algorithm (EA) is a search heuristic inspired by natural evolutionary 

processes. According to DeJong [1, p. 24], the concept of EAs "drew inspiration from nature, 

1 



rather than faithful (or even plausible) modeling of biological processes. The key issue was 

identifying and capturing computationally useful aspects of evolutionary processes." 

2 

An EA consists of a population of organisms which "compete" in the sense that there 

is some comparison of their relative values. These organisms "breed" to create new 

populations and pass on features of their genetic material; namely, their solution to the 

problem being solved. 

This genetic material is in the form of a "chromosome", which represents a possible 

solution to the problem being examined. The initial population's chromosomes are generally 

randomly generated; however, they can also be pre-seeded with solutions that have the 

potential to present good long-term outcomes. 

Attached to each chromosome is its numerical fitness which indicates how well the 

solution the chromosome represents solves the target problem instance. Better solutions will 

have more opportunities to pass on their genetic information. Genetic information is usually 

passed on by one of two ways: crossover or mutation. 

Crossover, also known as Recombination, combines the solutions of two parent 

organisms in some way so as to pass on genetic information from each parent. There are 

various versions of this operator, depending on the type of problem being solved. However, 

the underlying principle of any crossover operator is to "mate two individuals with different 

but desirable features ... to produce an offspring that combines both of those features" [2, p. 

22] . 

Mutation modifies a single parent organism (prospective solution) in (typically) a 

small way so as to retain a majority of its original information but also to differ slightly from 



the original organism. The solution produced is always the result of some combination of 

random choices [2, p. 21). 

\ 

3 

Typically parent candidates are selected randomly, but the selection process is 

weighted toward choosing parents who have better overall fitness values in relation to other 

organisms [l, pp. 54-55). Choosing parent candidates randomly but putting a slight bias 

toward ones with a better fitness improves results "without converging on a suboptimal 

solution" too quickly [l, p. 55). 

Another way for an organism to pass on its genetic information is through elitism. 

Elitism is a process in some evolutionary algorithms where a best-rated solution from a 

previous generation will "survive" to the next generation and therefore be more likely to 

pass on its genetic information to future offspring [3, p. 66). This prevents the loss of the 

"current fittest member'' due to random parent selection [2, p. 66). This also allows good 

solutions to persist without being modified through recombination or mutation; it also has 

the side effect of removing one of the newly created solutions/organisms from the new 

generation. It also prevents too many parent solutions from staying alive indefinitely [l, p. 

40). 

New generations of solutions are produced repeatedly and new organisms are built 

from their combined parents. As the candidates improve slowly over time, better solutions to 

the problem evolve. 

During the EA process, generations continue being created until some particular 

criterion is met [l, p. 78). Such criteria might consist of the EA recognizing no further changes 

in the population, how different the population is as a whole, how close the best fitness is to 

the best known fitness, or a generational limit [l, pp. 78-79). 



This method of problem solving is often applied, as here, to NP-hard problems, 

where on large problem instances, algorithms guaranteed to find optimum solutions take 

unfeasibly long (4). Because evolutionary algorithms are autonomous, human interaction is 

not needed and therefore large numbers of possible solutions can be processed. This has 

significant impact for scientific and commercial applications as, once a suitable software 

simulation can be constructed, the cost of running the simulation is low. 

Genetic Algorithms 

4 

Genetic Algorithms (GAs) are "the most widely known type of EA" (2, p. 37). GAs 

were created by Holland in 1975 in order to study adaptive behavior in natural and artificial 

systems (2, p. 37), (3, p. 641, (5). GAs closely model natural evolutionary processes in that 

they reference organisms/individuals, chromosomes, genes, etc when describing their 

structures (6, p. 15). They are widely considered to be "function optimization methods" [2, p. 

38) . GAs were intended to be "application-independent" and universal (1, p. 26). 

The "classic" GA structure is as follows. Chromosomes consist of strings of bits that 

represent candidate solutions to the target problem instance (2, p. 38) . This value-vector 

approach allows GAs to have problem-independent impl~mentations and thus makes them 

more general [1, p. 41). The recombination operator retains some genetic aspects of both 

parents to create a new hybrid solution (2, p. 38). The classic GA uses one-point crossover, 

where one section of one parent's chromosome is used and then the remaining values of the 

second parent's chromosome are used to complete the chromosome (2, p. 38). This 

emphasis on crossover is one factor that distinguishes GAs from other EAs [3, p. 64). The 

classic GA mutates via a bit-flip, or a change in a single position in the chromosome (2, p. 38). 

Mutation rates in the classic GA are usually low [2, p. 38). 



The probability that a chromosome will reproduce is proportional to its fitness and 

there are varied methods of choosing parent candidates [2, p. 38]. This ensures that parents 

with higher fitness pass on more genetic material to future generations ll, p. 261. This 

5 

feature is unique to GAs l3, p. 641 . A popular alternate method of selection is tournament 

selection, where a number of chromosomes are selected at random from the population and 

the candidate with the best fitness value is chosen to be a parent [3, p. 66]. This technique 

mitigates the rapid convergence sometimes encountered when selecting parents via fitness

proportional probabilities [3, p. 66]. 

Holland's original model called for only one pair of organisms to be crossed per 

generational cycle and the resulting generation would be selected from the entire pool of 

parents and the newly developed child organism [3, p. 65], [5]. However, this depends on the 

implementation and newer GAs instead replace the entire parent population with newly

created child organisms [3, p. 65], [1, p. 26]. Replacing the entire parent population with 

newly created child solutions solves the problem of a lack of diversity when parents are 

allowed to continue on through many generations [1, p. 40] . However, to retain good 

solutions from one generation to the next, many GAs use the previously mentioned method 

of "elitism". 

Newer GAs use chromosomal representations other than bit-strings and 

recombination methods other than crossover [3, p. 64] . However, in terms of recombination, 

most newer methods retain the "spirit" of the crossover operator originally proposed by 

Holland in that they preserve features of both parents' chromosomes [3, p. 64]. 



\ 

6 

GAs have proven to be highly effective and robust search methods despite being 

relatively non-problem-specific and have been applied in many areas of science and industry 

[l, p. 27], [6, p. 15). 

1. Create a population of randomly generated chromosomes, each representing a solution 
to the problem. 

2. Evaluate the fitness of each chromosome and aave the best for reference. 
3. For each chromosome In the next generation, do: 

Choose two parent candldatet at random (for 2-toumaments; more for other types) 
Compare their fltneues 
Choose the best as the first parent 
Repeat until all needed parent& are chosen 
Cl'Olt the two parents u1lng cl'Olsover operator 

4. If using elltilm, place the saved .. beat'' chromosome In a position in the n.xt generation 
5. ReP"t steps 2-4 until the de1lred number of generation• has been reached. 
6. Report the best found chromaome/solution. 

Figure 1 

Pseudo-Code Summary of GAs 

Evolution Strategies and Evolutionary 
Programming 

Evolution Strategies (ES) is a version of evolutionary computation created by 

Rechenberg and Schwefel in 1964 while working on a project to minimize drag on a robot 

operating in a wind tunnel [3, pp. 48-51). Current ES systems generate new populations by 

combining the groups of parents and offspring. This larger group is then reduced to the best 

N individuals where N is the size of the regular population. Descriptions of this strategy label 

it as: (µ+A), where µ represents the parent population and A represents the offspring [l, pp. 

36-371, [2, p. 72). Some modern ES systems also use the(µ, A) method of population 

generation where µ parents produce A offspring and the new generation is selected from the 

offspring only [6, pp. 162-163], [2, p. 72). The basic difference between Evolutionary 

Strategies and traditional Genetic Algorithms is that ESs use a hill climbing procedure with 



self-adapting step sizes and inclinations, whereas GAs are more general-purpose adaptive 

search algorithms (6, p. 164), (2, p. 72). 

7 

Evolutionary Programming (EP) was created by Fogel in 1960 while doing research in 

the area of artificial intelligence (3, p. 41). Originally, EP searched spaces of finite-state 

machines, where each machine would process input and the resulting output from the 

machine determined the fitness of the machine (3, p. 42). New generations are created using 

the (µ + µ) method, where each parent creates a new offspring and then the best half (by 

fitness) of the combined parent and child pool is retained [3, p. 43), (1, p. 25] . An interesting 

effect of this method of population generation is that low-fitness individuals have no chance 

of being retained, unlike most other EA algorithms (1, p. 35]. However, this can be 

undesirable in some cases, as it can cause fitness values to converge on a suboptimal value 

too quickly (1, p. 35) . Also, because parents and children are competing for their place in the 

next generation, the average ratio of children to parents in the new generation can actually 

be less than 1:1, something not possible in other EAs (1, p. 35]. Eventually, EP algorithms 

were modified to allow real-value vectors and ordered lists (3, p. 43]. 

An Example: A GA for the 0-1 Knapsack Problem 

The 0-1 Knapsack Problem (KP) is a simple problem for which GAs are well-suited. In 

KP, there exists a set of n items, each having a value v and cost c, and a knapsack of capacity 

C. The objective of the problem is to select a subset of the n items that maximizes the sum of 

the objects' values and whose sum of costs does not exceed C (2, p. 27), (6, p. 81]. This 

problem has applications to situations where items must be packed into a container, such as 

a traveler packing his or her suitcase for a trip and industrial packing and loading (2, p. 27]. 



8 

In a GA for this problem, the chromosomes representing solutions are binary strings 

of length N in which O indicates that an object is omitted and a 1 represents its inclusion in 

the knapsack. The ith chromosome value determines the th object's inclusion in the knapsack. 

During evaluation, the chromosome is scanned and for every value 1 found, the 

corresponding object's value and cost are added to the respective sums. The fitness of the 

solution is based on whether the cost exceeds maximum allowable capacity (fitness would 

then be zero) and if not, the sum of the included objects' values. Higher sums would indicate 

that the knapsack contains a higher overall value and would therefore be more desirable. 

Figure 2 illustrates the relationships between the chromosome and the array of 

objects (and their respective weights) in the 0-1 Knapsack problem. Objects referenced with 

a value of 1 in the chromosome are included in the knapsack and their respective weights are 

then added to determine the final capacity of the knapsack. 



Included in Knapsack 

l 
Knapsack Chromosome 0 IO I 1 1 0 1 0 

Object Weights s I 2 Is a 7 3 1 

Knapsack 

Figure 2 

0-1 Knapsack 

The One-Dimensional Bin Packing Problem 

1 0 1 0 1 

s s J 11 1 4 3 

9 

The One-Dimensional Bin-Packing Problem (BPP) is similar to the 0-1 Knapsack 

problem. In an instance of BPP, there are n items, each with a size or weight W; and an 

unbounded number of bins, each with capacity C. The goal is to place the objects in the 

smallest possible number of bins without the sum of the weights in any bin exceeding its 

capacity. The BPP is known to be NP-hard and is therefore a candidate for the application of 

heuristics, including evolutionary algorithms [7, p. 1). 



10 

There are several well-known greedy heuristics for BPP. The First Fit heuristic (FF) 

examines the objects in some order and places each in the first bin encountered that has 

sufficient space. This heuristic doesn't in general require a complete check of the entire set 

of bins for each object. The Best Fit heuristic (BF) places each object in the bin with empty 

space most closely fitting the weight of the object. Worst Fit (WF) places each object in the 

bin with the largest amount of available space. In all these heuristics, if the object cannot be 

placed in any existing bin, a new bin is created for it and the total number of bins used is 

incremented. 

Several EAs have been developed for the BPP. Khuri, Schutz and Heitkotter 

developed a GA using a "first fit decreasing" heuristic, where the objects to be placed are 

first ordered by weight, largest to smallest, then placed using the First Fit heuristic [8]. They 

encoded candidate solutions as strings of floating-point values rather than as bit-strings. Ross 

et al. applied a "learning classifier system", where the EA would choose from a selection of 

simple heuristics and "learn" when to apply each of them to solve the BPP problem more 

effectively [9]. A standard EA seeks to solve the problem, where Ross et al.'s EA seeks to find 

the best combination of heuristics to achieve the best method of finding a solution. Lima and 

Yakawa [10] describe a GA where genes in each chromosome are groups of objects assigned 

to a bin. In this case, changing the position or ordering of the genes in the chromosome 

makes no difference in the fitness of the solution; only changing the content of the gene 

itself affects the outcome. The solutions represented in the GA's initial population are 

created by applying the First Fit heuristic to the objects in random orders. Alvim et al. [11] 

developed a hybrid GA using the "Best Fit Decreasing" heuristic. Their GA is multifaceted and 



11 

utilizes pre-seeding of solutions, load redistribution, and solution improvement involving 

. tabu search. 

Two other examples of EA solutions to the BPP have similarities to the algorithm 

described in this paper. The first is the GA created by Falkenauer and Delchambre [12]. When 

developing the cost (fitness) function for their GA, Falkenauer and Delchambre recognized 

the need for taking into account how good a solution is. They observe that merely using a 

count of the number of bins as a fitness criterion is mathematically insufficient; solutions 

with the same fitness may differ in overall quality [12]. This does not help to guide the 

algorithm toward better solutions and "the algorithm would have to run into the optimal 

solution by mere chance" [12]. Falkenauer and Delchambre conclude that given two bins and 

a set of contents between them, "the situation where one of the bins is nearly full (leaving 

the other one nearly empty) is better than when the two bins are about equally filled. This is 

because the nearly empty bin will more easily accommodate additional objects which could 

otherwise be too big to fit into either of the half-filled bins" [12]. Falkenauer and 

Delchambre's cost function accounted for this by averaging the sum of the fractions of space 

used per bin over the number of bins used. This fitness function was applied universally. 

Their approach differs from the GA described in this paper in the fact that they measure an 

average of space across all bins and apply the fitness function universally, whereas the GA 

proposed here applies a modified function only when solutions occupy the same number of 

bins. 

The second GA, given by Reeves, is a hybrid GA that uses a permutation encoding of 

objects for its chromosomes [13]. Reeves' method of placing objects in bins is essentially the 

same as the GA described in this paper. The chromosome represents an ordering of objects, 



12 

where each successive object is placed in a bin based on either the First Fit or Best Fit 

heuristic methods [13). It is interesting to note that Reeves finds that the Best Fit heuristic 

has improved performance over the First Fit heuristic (the heuristic used in this paper) [13). 

Future research should explore this application. 

As with the Knapsack problem, the BPP has obvious applications in shipping and 

packing. 

Secondary Fitness 

Because the traditional bin-packing GA measures fitness via the total number of used 

bins, it loses important information about the potential a particular solution can have to 

produce an improved offspring. One such measure is how tightly "packed" a solution may be. 

For instance, two solutions may use the same number of bins, but one solution may have its 

unused space scattered freely about the bins, while the other has most of its free space in its 

last bin. In this case, the second solution would be preferred as it is likelier to improve under 

the genetic operators. Since this information and the overall number of bins are both 

important for evaluating the solution, the proposed modification is to create a dual-fitness 

GA. The secondary fitness will come into play as a "tiebreaker" when the number of bins in 

the two solutions is the same and traditional GAs would choose a solution at random. This 

modification should rescue solutions with the potential to produce better offspring from 

being discarded for lesser solutions. Overall, this should effect a slight performance increase 

from the standard method, as it does not aggressively cause convergence of solutions but 

only slightly tips the scales in favor of better solutions during comparisons. This modification 

can be used when comparing two parent solutions for crossover as well as when comparing 

solutions for elitism. Finally, it is unclear whether the accumulation of space in the final bin 



alone is a deciding factor, or whether space accumulated in any particular bin should be 

. examined. It is prudent to test both in this case. Figure 3 illustrates the difference between 

loosely and tightly packed solutions. 

J-- Space fitness 
Objects -{ 

I 

Bin Fitness 

13 

]-
Larger final bin space indicates 
a more tightly paeked (better) solution 

Figure 3 

Differences in "Quality" between Solutions in the One-dimensional Bin Packing Problem 

Genetic Algorithms for BPP 

In a GA for BPP, chromosomes are permutations of integers that represent the 

objects, as in Reeves [13). The numbers index the array of objects. When a chromosome is 

evaluated, the GA iterates through the chromosome and places objects in bins according to a 

placement heuristic, typically First Fit, Worst Fit, or Best Fit [7]. At the end of the evaluation, 

the fitness of the solution is determined by the overall number of bins used. Fewer bins 

indicate a better (more fit) solution. Figure 4 illustrates object placement using the First Fit 

heuristic. 



14 

Chromosome I oi 5 1 0 I 41 3 

l 
0 1 2 3 5 

Object Weights 5 2 6 8 7 3 

Bins 

Chromosome I oi 5 I 1 I ol 41 3 

I 
0 1 2 3 4 6 

Object Weights I s I 2 6 I a I 7 I 3 I 

Bins 

Figure 4 

First-fit Heuristic in the One-dimensional Bin-packing Problem (Bin capacity= 9) 



15 

The Implementation 

The GA created for this paper encodes solutions as strings of numbers where each 

• number represented a particular object from the set of objects to be placed. The string itself 

represents the ordering in which objects would be used in the placement heuristic. 

The GA evaluates solutions in the following manner. The program processes the 

solution string one number at a time and places the corresponding objects in bins using the 

"First Fit" heuristic. The program then determines the two fitness values from the resulting 

bin configuration. The first, Bin Fitness, represents the number of bins needed to store the 

objects. The second, Space Fitness, is the amount of free space in either the final bin or any 

bin with the most free space, depending on which type of evaluation is selected in the 

parameters of the GA. 

The GA creates chromosomes for the initial population by creating random orderings 

of the available objects indexes. 

Crossover for the GA consists of simple alternation of the two parent chromosomes. 

In this method, the two parent chromosomes are combined in a "zipper'' fashion with 

duplicate values being skipped. This method preserves some of the ordering of both original 

parent chromosomes and therefore retains some genetic characteristics of both. 

The Mutation operator swaps values between two randomly selected positions in 

the chromosome. 

There are four versions of the GA. The first is a standard GA (GAl) where fitness is 

simply the number of bins used for a solution. The second (GA2) uses the proposed 

secondary fitness value in addition to the number of bins; however, this is used when 

comparing organisms for parent selection only. The third GA (GA3) uses the secondary 



fitness for both parent selection and elitism comparisons. The final GA version (GA4) uses 

. secondary fitness for both parent selection and elitism, but instead of using only the final 

bin's free space, it uses the largest free space in any bin as the secondary fitness value. 

16 

Each version initializes its population with random chromosomes. Parents for each 

new organism in the next generation are chosen using 2-tournaments. This method selects 

two parent candidates for each final parent organism at random from the population and 

compares them; the fitter of the two is selected as a parent. Comparisons of solutions are 

performed according to the GA type selected in the parameters (i.e., GAl, GA2, GA3, GA4). 

Each offspring is generated using either crossover or mutation, not both. The GA 

incorporates 1-elitism, where the best organism of each generation is preserved into the 

next. Again, comparisons of solutions for elitism are done according to the GA type selected. 

The GA is halted after a fixed number of generations. 

Testing 

The size of the test GA's population was 200. The total number of generations was 

set to 100. The chance of mutation was set at 6%; therefore the chance of crossover was 

94%. The number of times to run the selected GA on each test instance was set to 50. The 

entire set of test instances were run through the GA a total of four times; once for each type 

of GA. 

The GAs were implemented in Java on a PC with an Intel Core 2 Duo processor and 

2GB of RAM, running Ubuntu Linux. Parameter information was read from the keyboard. The 

program then iterated through the list of available test instances, running a full GA 50 times 

for each and writing the results to a comma-delimited data file. 



17 

A total of 738 test instances were used; 20 from Beasley Operations Research Library 

[14] and 718 from the Jena University Operations Research department website [15]. 

Minimum numbers of bins are known for all of these instances. Because the OR Library's test 

set was used by [11], [8], [7], [13], and the Jena University OR test set was used by [11], [9], it 

was appropriate to use them for this study. 

For each test instance, the best found, the mean, and the standard deviation of the 

fitnesses, as well as the number of test runs (out of 50) that found the best known fitness 

were recorded. 

Results 

The testing showed a significant effect of the dual-fitness modification on the results 

of the GA. The first run of all test instances was meant as a benchmark against which the 

other tests could be evaluated. The results of all runs are as follows: 

Table 1 

Results for All Test Instances 

GA types: 
GAl: Standard GA 
GA2: GA with Dual Fitness, Selection Only 
GA3: GA with Dual Fitness Selection and Dual Fitness Elitism 
GA4: GA with Dual Fitness Selection, Dual Fitness Elitism and Check of Largest Max Bin Space 
For Any Bin 

Avg Standard 
Avg# Test Runs (of SO) Avg% GA Hit Best Fitness Deviation Of Best 

GA Type Hitting Best Fitness: For Test Runs (of 50): Found From Mean 
GAl 8.090541 16.18108 0.255238 

GA2 8.659459 17.31892 0.257387 
GA3 8.766216216 17.53243 0.252353 
GA4 8.418919 16.83784 0.253802 



18 

The dual-fitness modification for selection only (GA 2) showed a 1.13% increase over 

. the standard GA in the proportion of test runs that hit the best fitness. Furthermore, using 

dual-fitness evaluation for both crossover and el itism raised this percentage to 1.35%. 

Surprisingly, including a full-chromosome bin check in the fourth run actually decreased the 

improvement to only 0.65% better than the standard GA. On average, the proportion of 

comparisons invoking secondary fitness to the overall number of comparisons was rather 

high, around 0.88 (88%). The table below shows a sample of the results of the testing. 

Table 2 

Results for Selected Test Instances 

GA! GA2 G"3 GA4 

# # # # 
Best Best H~ Std a.st Hit Std a.st H,t Std 8est Hit Std 

lestSel ~r,own Found 8est Mean Dev Found Best Mon Dev Found Best Mear. Dev Found 8est Mean Dev 
I 

ul20 03 49 49 1 49.98 0.140 ! 49 1 49.98 0.140 49 6 49.88 0.325 49 l 49.98 0.140 

u120 05 48 48 31 48.38 0.485 48 37 48.26 0.439 48 46 48.08 0.271 48 34 48.32 0.466 

u120 06 48 48 8 48.84 0.367 48 16 48.68 0.466 48 17 48..66 0.474 48 13 48.74 0.439 

ul20 07 49 so 0 50.00 0.000 so 0 50.00 0.000 49 l 49,98 o.ao 49 l 49.98 0.140 

u120 12 48 49 0 49.00 0.000 &9 0 49.00 0.000 48 1 48.98 0.140 49 0 49 0,000 

u120 15 48 48 34 48.32 0.466 48 40 48.20 0.400 48 45 48.10 0 ,300 48 39 48.22 0-414 

ul 20 17 52 53 0 53.00 0.000 S2 4 52.92 0.2"11 52 9 52.82 0.384 52 6 52.88 0.325 

ul20 18 49 49 24 49.52 0.500 49 25 49.50 0.500 49 38 49.24 0.41.7 49 26 49.48 0.500 

NlClW2 L.BPP 31 31 42 31.16 0.367 31 46 31.08 0.271 31 4B 31.04 0.196 31 so 31 0.000 

NlClWI F.BPP 22 22 9 22.82 0.384 22 32 22.36 0.480 22 "36 22.28 0.449 22 20 22.6 0.490 

NlC2Wl_ L.BPP 25 25 48 25.04 0.196 25 49 25 .02 0.140 25 so 25.00 0.000 25 49 25,02 0.140 

NlC2W2 A.BPP 24 24 3 24.94 0.237 24 13 24.74 0.439 24 18 24.64 0.480 24 8 24.84 0.367 

NlC2W2 P,BPP 23 23 45 23.10 0.300 23 49 23.02 0.140 23 so 23.00 0.000 23 46 23.08 0.271 

NIC2W2 R.BPP 25 25 9 25.82 0.384 25 32 25.36 0.480 25 41 25.18 0.384 25 26 25.48 0.500 

N2ClWI K.BPP 55 56 0 S6.88 0.325 56 0 56.76 0.427 56 0 56.68 0 ,466 S6 0 56.72 0.449 

N2QW1. LBPP ss 56 0 56.00 0.000 S6 0 56.00 0.000 56 0 56.00 0.000 56 0 56 0.000 

N2QW1 M.BPP 46 48 0 48.00 0.000 48 0 48.00 0.000 48 0 48.00 0.000 48 0 48 0.000 

N2C1Wl N.BPP 4B 49 0 49.52 0.500 49 0 49.26 0.439 49 0 49.28 0.449 49 0 49.22 0.414 

/112C3W1 M.BPP 31 32 0 32.00 0.000 31 3 31.9-4 0.237 31 5 31.90 0.300 31 2 31.96 0.196 



19 

Discussion 

Clearly the addition of the dual-fitness evaluation made an impact on the 

performance of the GA. Although the improvement was slight, the results show that only a 

small change to the way a GA evaluates organisms can cause a significant difference in the 

number of times the GA finds an optimum solution to the problem. By adding this new 

criterion in each evaluation, the GA has been able to reclaim a potentially better contributor 

to the upcoming generations, which would have been otherwise lost, and to therefore 

improve the gene pool. 

An additional factor to note is the frequency of ties in the number of comparisons 

made. Eighty-eight percent of the total number of comparisons experienced a tie in the bin 

fitness of the two candidate-solutions. These ties represent potential turning points for the 

direction of the GA's flow and therefore adding the second fitness criterion would then 

obviously greatly change the overall outcome. It may seem counterintuitive that ties would 

be so common, but with a finite selection of objects and a limited space for placement, many 

solutions are very similar. Comparing very similar solutions often results in a bin-fitness tie 

and thus reiterates the need for a secondary criterion. 

The method proposed here clearly improves the performance of a standard GA for 

BPP. It is a relatively minor change to the implementation of the classic bin-packing GA 

algorithm, requiring only the addition of a few logical structures. Because of this, users with 

existing GA systems, as well as users looking to implement new systems, should find this 

improvement easy to implement and in the long term quite cost-effective. 

' .... 
) 

-



20 

Application to Other Problems 

The dual fitness tie-breaker method proposed here, if applicable to only the one

dimensional (and multi-dimensional) bin packing problem, would obviously be of limited 

utility. However, the concept is general and it should be applicable to many similar problems .. 

The fundamental concern of the modification is some secondary evaluation criterion that 

indicates the "improvability" of each chromosome. The crucial step in applying this concept 

to any problem is identifying that second criterion. 

Secondary fitness is effective on the Bin-Packing problem, which deals with 

arrangements of objects. There are many problems in Operations Research that deal with 

arrangements or scheduling of objects and secondary fitness should make a similar 

contribution on these. One common example of this is the problem of Job Shop Scheduling. 

The Job Shop Scheduling Problem (JSSP) consists of a set of N jobs which are to be 

processed by M machines. Each job is made up of a set of operations, that must be 

processed in order, and each operation requires the use of its machine for an uninterrupted 

period of time. A "schedule" is an ordering of these operations on machines in order to 

minimize the overall time to process the entire set of jobs, a value called the "makespan" 

[16]. 

In a GA for the JSSP, there are several methods that can be chosen, some quite 

complex. However, the one that seems to be the closest to Bin-Packing is a permutation

based encoding of chromosomes [16]. A chromosome consists of a permutation of the 

operations to be completed for all jobs, placed in the order in which they would need to be 

processed for each job, but with the chromosome divided into subsections for each machine. 

So for example, if we have jobs: 



Jobl: opl op2 op3 op4 

Job2: opl op3 op4 op2 

Job3: op4 op3 opl op2 

21 

A chromosome might look something like [2 1 3 1 3 2 3 2 1] where the first three items are 

the jobs to be processed on machine 1, the second three items for machine 2 and the last 

three items for machine 3. The number indicates that an operation from that particular job 

number needs to be processed next. If the job is not yet ready (i.e. it is not done processing 

on the previous machine), the current machine waits until the job is available. 

In order to apply the dual-fitness/tie-breaking concept to this problem, the 

previously mentioned stall period is an area of focus. Because the overall fitness for the 

problem is the makespan (the total time to complete all jobs), we need a criterion by which 

to break ties between solutions having the same makespan. The stall times fit this application 

nicely. An effective measure might be the maximum stall time for any given machine; the 

larger the stall time, the worse the solution. This trait would indicate how little wasted space 

there is in a solution, directly corresponding with the quality of being "tightly packed" in the 

Bin Packing problem. This would indicate that this new quantity could be used in the same 

manner. However, it is important to note that finding the proper measurement of this trait is 

essential; in Bin Packing, a measure of the largest space in any bin in the chromosome 

actually decreased effectiveness, whereas only using the space in the final bin had the 

desired improvement. The key in this new application is to find which measurement of stall 

time should affect the overall outcome and direct experimentation is likely the best way to 

discover this. 



22 

Another possible application of the tie-breaker concept is with a second well-known 

Operations Research problem called the "Constrained Circular Cutting" problem (CCP). The 

CCP is a modified version of the "2D Rectangular Cutting Stock" problem. In the 2D 

Rectangular problem, a piece of rectangular stock material exists. Set numbers of different 

sized rectangles are cut from the stock material; the objective is to minimize the left over 

material. In the CCP, instead of rectangles, circles are cut from the stock material [17]. 

Obviously, this increases the potential waste, as the shapes do not fit as uniformly into the 

available stock material. 

This problem is similar in structure to both BPP and JSSP in that it involves organizing 

shapes/objects into a finite space and attempting to gain the best output. However, the CCP 

is different, as its fitness measure is the amount of "wasted" stock material, not the number 

of items gleaned from it. Despite this, it is possible to adapt the tie-breaker method to fit this 

scenario. As the fitness value for a possible solution is determined by the overall amount of 

wasted stock material, and this is determined by subtracting the overall area of the placed 

circles from the total area of the stock, it is difficult to use individual waste as an effective 

secondary fitness. However, a better method can be used to determine how "tightly packed" 

a solution might be. Because the circles are not placed if they overlap on the stock material, 

any two circles should be at least as far apart as the sum of their radii (a distance of rl + r2 

would indicate the circles are touching). Also, this requirement would indicate the existence 

of some mechanism for detecting overlapping circles. If the distance between the centers of 

the two circles is measured (de) and the sum of the radii of the two circles is measured (sr), 

then the difference between the two (de - sr) would indicate how far apart the two circles 

are on the stock material. The largest difference value between any two adjacent circles 



would show the two circles with the largest "empty" space between them: an indication of 

how "tightly packed" the solution is. This would correspond with the use of the secondary 

fitness in the other two previously discussed problems. 

23 

The tie-breaker concept is a general one and clearly there are many ways it can be 

applied to various problems, as well as more than one way to the same problem. Although it 

has been shown here that the idea can be used in the realm of "packing" or "scheduling" 

type problems, it is possible that it can be applied to other problem sets. 

Conclusion 

The addition of a secondary fitness value to a genetic algorithm can reclaim possible 

solutions which would have been lost when using a single fitness criterion. We've seen that 

ties between solutions in GAs using only one fitness can happen frequently and more 

desirable solutions can be neglected, causing the outcome to deviate from a more optimal 

path. 

Clearly, this modification to the standard GA for the bin-packing problem is an 

improvement. Because of the simplicity of the modification, it will be easy to modify an 

existing GA. It should provide a significant improvement to the existing GA's results. In 

addition, this modification can be adapted to similar problems in other areas such as job

shop scheduling and stock-cutting and improve their performance as well. There also 

remains a possibility of adapting this method for use in other unrelated problems. 



REFERENCES 

24 



REFERENCES 

[1] K. De Jong, Evolutionary Computation: A Unified Approach. MIT Press, 2005. 

[2] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Berlin: Springer, 
2003. 

[3] T. Back, D. Fogel, and Z. Michalewicz, editors, Evolutionary Computation 1: Basic 
Algorithms and Operators. Bristol, UK: Institute of Physics Publishing, 2000. 

[4] M. R Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of 
NP-Completeness. W. H. Freeman, 1979. 

[SJ J. H. Holland, "Adaptation in Natural and Artificial Systems," University of Oregon 
Press, 1975. 

[6] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution Programs. New York: 
Springer-Verlag, 1996. 

[7] E. K. Burke, M. R. Hyde, and G. Kendall, "Evolving bin packing heuristics with genetic 
programming," In PPSN, vol. 4193 of Lecture Notes in Computer Science, T. P. 
Runarsson, H. G. Beyer, E. K. Burke, J. J. M. Guervos, L. D. Whitley, and X. Yao, Eds., pp. 
860-869. Springer, 2006. 

[8] S. Khuri, M. Schutz, and J. Heitkotter, "Evolutionary heuristics for the bin packing 
problem," in Proceedings of the 2nd International Conference on Artificial Neural 
Networks and Genetic Algorithms, D. W. Pearson, N. C. Steele, and R. F. Albrecht, Eds., 
pp. 285-288, Vienna: Springer, 1995. 

[9] P. Ross, S. Schulenburg, J. G. Marin-Blazquez, and E. Hart, "Hyper-heuristics: Learning 
to combine simple heuristics in bin-packing problems" in GECCO-2002: Proceedings of 
the Genetic and Evolutionary Computation Conference, W. B. Langdon et al., Eds., pp. 
942-948, San Francisco, CA: Morgan Kaufman, 2002. 

[10] H. Lima and T. Yakawa, "A new design of genetic algorithm for bin packing," in 
Proceedings of the 2003 Congress on Evolutionary Computation, vol. 2, 2003, pp. 1044-
1049. 

25 



26 

[11] A. C. F. Alvim, C. C. Ribeiro, F. Glover, and D. J. Aloise, "A hybrid improvement heuristic 
for the one-dimensional bin-packing problem," Journal of Heuristics, vol. 10, no. 2, pp. 
205-229, 2004. 

[12] E. Falkenauer and A. Delchambre, "A genetic algorithm for bin-packing and line 
balancing" in Proceedings of the 1992 IEEE International Conference on Robotics and 
Automation, vol. 2, IEEE, Piscataway, IEEE Service Center, NJ, USA, 1992, pp.1186-
1192. 

[13] C. Reeves, "Hybrid genetic algorithms for bin-packing and related problems," Annals of 
Operations Research, vol. 63, 1996, pp. 371-396. 

[14] J. R. Beasley, "OR library one dimensional bin packing instances," April 2010, [Online]. 
Available: http://people.brunel.ac.uk/"'mastjjb/jeb/orlib/binpackinfo.html. 

[15] A. Scholl and R. Klein, "Packing data aet 1 for BPP-1," April 2010, [Online]. Available: 
http://www. wiwi. uni-jena.de/Entsche idung/binpp/bi n ldat. htm. 

[16] T. Yamada and R. Nakano, "Job-shop scheduling," in Genetic Algorithms in Engineering 
Systems, vol. 55 of IEEE Control Engineering Series, pp. 134-160. Institution of Electrical 
Engineers, 1997. 

[17] M. Hifi and R. M'Hallah, "Approximate algorithms for constrained circular cutting 
problems," Computers and Operations Research, vol. 31, no. 5, 2004, pp. 675-694. 

I 



APPENDICES 

27 



APPENDIX A 

Sample Data File 

28 



[Sample Data File] 

50 
100 
99 
99 
96 
96 
92 
92 
91 
88 
87 
86 
85 
76 
74 
72 
69 
67 
67 
62 
61 
56 
52 
51 
49 
46 
44 
42 
40 
40 
33 
33 
30 

29 



APPENDIX B 

Program Code 

30 



[Program Code] 

import java.lang. *; 
import java.lang.Math; 
import java.util. *; 
import java.io. *; 
import java.util.Random; 

public class GA 
{ 

Random rand; /* Random number generator * / 

/* Command line parameter storage * / 
int cla_a, cla_b, cla_c, cla_d, cla_e, cla_f, cla_g, cla_h, cla_i, cla_j, cla_k; 

/* Params */ 
int TESTDATA=0; 

int DUALFITNESS; 
int DUALFITNESSELITISM=0; 
int USEMAXSPACEALLBINS; 
int NUMOFTESTRUNS; 
int NUMOFORGANISMS; 

int NUMOFGENS; 
int MUTATIONPERCENTAGE; 
String TESTFILENAME=""; 

int BESTKNOWNFITNESS; 
int TOURNEYPARTICIPANTS; 

/* GA Specific Variables * / 
int[] ObjectWeights; 
int MAXBINCAPACITY; 
int NUMOFOBJECTS=0; 

/* Internal variables for processing * / 
String TESTFILEPATH=""; 

String TESTFILEWITHPATH=""; 
String TESTSETNAME=""; 

/* Variables for file io * / 
Scanner in; 
PrintWriter out; 

/* Population variables * / 
Organism[] CurrentGen; 

31 



Organism[] NextGen; 
Organism[] SwapGen; 

/* Data collection variables * / 
Organism BestOrganism; /* Holds the best organism found per test run * / 

32 

Organism BestOverallOrganism; /* Holds the best organism found for the entire test 
instance over all runs * / 
Organism Parentl; / * Holds parent 1 temporarily for operations * / 
Organism Parent2; /* Holds parent 2 temporarily for operations*/ 
long StartTime; /* Start time of GA run * / 
long EndTime; /* End time of GA run * / 
long ElapsedTime; /* Elapsed time of GA run */ 
int MutationCount = O; /* Keeps track of number of times mutation was used in the 

program execution * / 
int CrossoverCount = O; /* Keeps track of number of times crossover was used in the 

program execution * / 
double BBFMean; /* Holds the mean of Best Fitnesses for all test runs*/ 
double BBFStdDev; /* Holds standard deviation of Best Fitnesses for all test runs*/ 
int BBFFoundCount; /* Holds number of times Best Bin Fitness came up as best found for 

test runs*/ 
int[] BestBinFitnesses; /* Holds the Best Bin Fitnesses found for each test run * / 
int[] BestSpaceFitnesses; /* Holds the corresponding space fitnesses for BestBinFitnesses 

array */ 

public static void main (String[] args) throws FileNotFoundException, IOException 
{ 

GA myga = new GA();/* Create instance of GA object*/ 

myga.process_args(args); /* Check the command line arguments and set variables 
accordingly * / 

myga .loadfiledata(); /* Load the test file and fill appropriate variables*/ 

/* Prep data reporting for entire test instance*/ 
myga.BestBinFitnesses = new int[myga.NUMOFTESTRUNS]; 
myga.BestSpaceFitnesses = new int [myga.NUMOFTESTRUNS]; 
myga.BBFMean = 0.0; 



33 

/* Initialize BestOverallOrganism */ 
myga.BestOverallOrganism = new Organism(myga.NUMOFOBJECTS); 
myga.BestOverallOrganism.BinFitness = myga.NUMOFOBJECTS; /* sets the value of 

the best bin fitness to the total number of objects * / 
/* i.e. one object per bin - worst case scenario * / 

myga.BestOverallOrganism.SpaceFitness = 0; /* Sets space fitness to worst scenario * / 

/* -------- GA Start -------- * / 

myga.StartTime = System.currentTimeMillis(); 

/* Test run loop - START OUTER TEST RUN LOOP * / 
for (int runs= 0; runs< myga.NUMOFTESTRUNS; runs++) 
{ 

/* Reset best organism object * / 
myga.BestOrganism = new Organism(myga.NUMOFOBJECTS); 
myga.BestOrganism.BinFitness = myga.NUMOFOBJECTS; /* sets the value of the best bin 

fitness to the total number of objects * / 
/* i.e. one object per bin - worst case scenario * / 

myga.BestOrganism.SpaceFitness = 0; /* Sets space fitness to worst scenario*/ 

/* Create list of organisms * / 
myga.CurrentGen = new Organism[myga.NUMOFORGANISMS]; 

myga.NextGen = new Organism[myga.NUMOFORGANISMS]; 
for (int i=0; i<myga.NUMOFORGANISMS; i++) 
{ 

myga.CurrentGen[i] = new Organism(myga.NUMOFOBJECTS); 
} 

/* Run for all generations - START GENERATIONAL LOOP*/ 
for (int gens= 0; gens< myga.NUMOFGENS; gens++) 

{ 

/* Evaluate their fitnesses*/ 
for (int orgs=0; orgs<myga.NUMOFORGANISMS; orgs++) 
{ 

myga.CurrentGen[orgs].evaluate_fitness(myga.ObjectWeights, 
myga.MAXBINCAPACITY, myga.USEMAXSPACEALLBINS); 



34 

/* Get best organism * / 
myga.BestOrganism = myga.getbestorganism(myga.CurrentGen, myga.BestOrganism); 

/* Set the best organism to organism in 0 slot (elitism)*/ 
myga.NextGen[0] = myga.BestOrganism.clone(); 

/* Initialize random number generator * / 
myga.rand = new Random(); 

/* Create next generation, selecting parents for each organism based on 
fitnesses, using 2-pt crossover or mutation * / 

for (int i=l; i<myga.NUMOFORGANISMS; i++) 
{ 

if (myga.rand.nextlnt(l00) < myga.MUTATIONPERCENTAGE) 
{ 

myga.Parentl = myga.tournament(myga.CurrentGen, 
myga.TOURNEYPARTICIPANTS, myga.DUALFITNESS); 

} 

myga.NextGen[i] = myga.Parentl.mutateandspawn(); 
myga.MutationCount++; 

else 
{ 

myga.Parentl = myga.tournament(myga.CurrentGen, 
myga.TOURNEYPARTICIPANTS, myga.DUALFITNESS); 

myga.Parent2 = myga.tournament(myga.CurrentGen, 
myga.TOURNEYPARTICIPANTS, myga.DUALFITNESS); 

myga.NextGen[i] = myga.crossover(myga.Parentl, myga.Parent2); 
myga.CrossoverCount++; 

} /* end mutation if * / 

} /* end for*/ 

/* Swap Generations * / 
myga.CurrentGen = myga.NextGen; 
myga.NextGen = null; 
myga.NextGen = new Organism[myga.NUMOFORGANISMS]; 



} /* Run for all generations - END GENERATIONAL LOOP * / 

/* Record fitnesses for best object in this test run * / 
myga.BestBinFitnesses[runs] = myga.BestOrganism.BinFitness; 
myga.BestSpaceFitnesses[runs] = myga.BestOrganism.SpaceFitness; 
if (myga.BestOrganism.BinFitness == myga.BESTKNOWNFITNESS) { 

myga.BBFFoundCount++;} 

/* Update best overall organism with whichever is better - Using 
DUALFITNESSELITISM instead of DUALFITNESS * / 

myga.BestOverallOrganism = myga.compare(myga.BestOrganism, 
myga.BestOverallOrganism, myga.DUALFITNESSELITISM); 

} /* Test one loop - END OUTER TEST RUN LOOP*/ 

/* Get end time for GA run * / 
myga.EndTime = System.currentTimeMillis(); 

/* -------- GA End -------- * / 

/* -------- Calculations and reporting-------- * / 

/* Calculate elapsed time, mean, std dev */ 
myga .ElapsedTime = myga.EndTime - myga.StartTime; 
myga.BBFMean = myga.mean(myga.BestBinFitnesses); 

myga.BBFStdDev = myga.stddev(myga.BestBinFitnesses); 

/* Output results to console * / 
System.out.print("Test Set: ti+ myga.TESTSETNAME +" - BK:"+ 

myga.BESTKNOWNFITNESS + ti - BBF: "); 
System.out.print( myga.BestOverallOrganism.BinFitness +" - BSF: "+ 

myga.BestOverallOrganism.SpaceFitness); 
System.out.print(" - BBFFound: "+ myga.BBFFoundCount); 
System.out.print(" - BBFFound%: " + ((myga.BBFFoundCount * 

100)/myga.NUMOFTESTRUNS)); 
System.out.print(" - BBFMean: "+ myga.BBFMean); 

System.out.print(" - BBFStdDev: "+ myga.BBFStdDev); 

35 



System.out.print(" - Time(ms): " + myga.ElapsedTime + "\n"); 

/* Output results to file */ 
myga.out = new PrintWriter(new FileWriter(new File("testresults.csv"), true)); 
myga.out.print(myga.TESTSETNAME + ","); 

myga.out.print(myga.BESTKNOWNFITNESS + 11,11 ); 
myga.out.print(myga.BestOverallOrganism.BinFitness + ","); 
myga.out.print(myga.BestOverallOrganism.SpaceFitness + ","); 
myga.out.print(myga.BBFFoundCount + ","); 
myga.out.print(((myga.BBFFoundCount * 100)/myga.NUMOFTESTRUNS) + ","); 
myga.out.print(myga.BBFMean + ","); 
myga.out.print(myga.BBFStdDev + ","); 
myga.out.print(myga.ElapsedTime + ","); 
myga.out.print(myga.TESTDATA + ","); 
myga.out.print(myga.DUALFITNESS + ","); 
myga.out.print(myga.DUALFITNESSELITISM + ", "); 
myga.out.print(myga.USEMAXSPACEALLBINS + 11,11 ); 
myga.out.print(myga.NUMOFTESTRUNS + 11,11 ); 
myga.out.print(myga.NUMOFORGANISMS + 11,11 ); 
myga.out.print(myga.NUMOFGENS + 11,11 ); 
myga.out.print(myga.MUTATIONPERCENTAGE + 11,11 ); 
myga.out.print(myga.TOURNEYPARTICIPANTS + ","); 
myga.out.print("\n"); 

myga.out.close(); 

/* ------- End of GA program ------- * / 

return; 

} /* end main*/ 

/* ------- Function definitions ------- * / 

36 



/* Checks the arguments to the program and sets variables accordingly * / 
void process_args(String[] args) 
{ 

/* Check the command line arguments * / 
if (args.length != 11) 
{ 

System.out.println("------ --------"); 
System.out.println(" I Dual Fitness GA Test Suite I"); 
System.out.println("-------------"); 

System.out.println("Usage: ga a b c d e f g h i j k"); 
System.out.println("---" ); 

37 

System.out.println("a: test set ID - 1 for OR library set, 2 for BPP set"); 
System.out.println("b: dual fitness for parent selection on/off - 1 for on, 0 for off"); 
System.out.println("c: dual fitness for elitism on/off - 1 for on, 0 for off"); 
System.out.println("d: max value check for all bins on/off - 1 for on, 0 for off -

otherwise uses only final bin value for fitness"); 
System.out.println("e: number of test runs per program - any integer value"); 
System.out.println("f: population size - any integer value"); 
System.out.println("g: number of generations - any integer value"); 
System.out.println("h: mutation chance (%) - any value from Oto 100, the rest is 

given to crossover"); 
System.out.println("i: file name - name of the test instance file (do not include path, 

test set ID handles path)"); 
System.out.println("j: best known fitness - the best known fitness value for the test 

instance"); 
System.out.println("k: tournament participants - number of participants to compete 

to determine the parent candidate"); 
System.out. p ri ntl n ( 11----------------------------------11 ); 

System.exit(!); 

} /* end if*/ 

/* Capture command line arguments into param variables*/ 
this.cla_a = lnteger.parselnt(args[O]); 

this.cla_b = lnteger.parselnt(args[l]); 
this.cla_c = lnteger.parselnt(args[2]); 
this.cla_d = lnteger.parselnt(args[3]); 
this.cla_e = lnteger.parselnt(args[4]); 
this.cla_f = lnteger.parselnt(args[S]); 
this.cla_g = lnteger.parselnt(args[G]); 
this.cla_h = lnteger.parselnt(args[7]); 
this.TESTFILENAME = args[8]; 



this.BESTKNOWNFITNESS = lnteger.parselnt(args[9]); 
this.cla_k = lnteger.parselnt(args[lO]); 

{ 

/* Verify validity of command line args * / 
switch (this.cla_a) 

case 1: this.TESTDATA=l; break; 
case 2: this.TESTDATA=2; break; 

38 

default: System.out.println("ERROR: You've chosen an incorrect value for test set, please 
try again."); System.exit(l); 

} 

switch (this.cla_b) 
{ 
case 0: DUALFITNESS=0; break; /* User chose to use the regular GA method for parent 

selection * / 
case 1: DUALFITNESS=l; break;/* User chose to use dual fitness GA for testing for parent 

selection * / 
default: System.out.println("ERROR: You've chosen an incorrect value for dual fitness 

option for parent selection, please choose either 0 or 1."); System.exit(l); 
} 

switch (this.cla_c) 
{ 
case 0: DUALFITNESSELITISM=0; break;/* User chose not to use dual fitness when 

evaluating organisms for elitism * / 
case 1: DUALFITNESSELITISM=l; break;/* User chose to use dual fitness when evaluating 

organisms for elitism * / 
default: System.out.println("ERROR: You've chosen an incorrect value for dual fitness 

option for elitism, please choose either 0 or 1."); System.exit(l); 
} 

switch (this.cla_d) 
{ 
case 0: USEMAXSPACEALLBINS=0; break;/* User chose to use final bin space only for 

evaluation * / 
case 1: USEMAXSPACEALLBINS=l; break;/* User chose to use any bin max space for 

evaluation*/ 
default: System.out.println("ERROR: You've chosen an incorrect value for max free space 

value check for all bins option, please choose either 0 or 1."); System.exit(l); 
} 

if (this.cla_e <= 0) 
{ 
System.out.println("ERROR: You must enter a positive value for number of test runs."); 



System.exit(l); 
} 
else 
{ 
this.NUMOFTESTRUNS=this.cla_e; /* Set test runs from command line arguments*/ 
} 

if (this.cla_f <= 0) 
{ 
System.out.println("ERROR: You must enter a positive value for population size."); 
System.exit(l); 
} 
else 
{ 

39 

this.NUMOFORGANISMS=this.cla_f; /* Set population size from command line arguments 
*/ 

} 

if (this.cla_g <= 0) 
{ 
System.out.println{"ERROR: You must enter a positive value for number of generations."); 
System.exit(l); 
} 
else 
{ 
this.NUMOFGENS=cla_g; /* Set number of gens from command line arguments*/ 
} 

if ((this.cla_h > 100) 11 (this.cla_h < 0)) 
{ 
System.out.println(''ERROR: Your value for mutation chance percentage is out of range, 

please choose a value between O and 100."); 
System.exit(l); 
} 
else 
{ 
this.MUTATIONPERCENTAGE=cla_h; /* Set mutation percentage from command line args 

*/ 
} 

if (this.cla_k < 2) 
{ 

System.out.println("ERROR: Your value for tournament participants is out of range, please 
choose a value greater than 2."); 

System.exit(l); 
} 



else 
{ 
this.TOURNEYPARTICIPANTS=this.cla_k; /* Set tourney participants from command line 

args */ 
} 

/* --- Prep data file variables --- * / 

/* Set file list to the proper test data list file * / 
if (this.TESTDATA == 1) 
{ 

/* ORLib data chosen * / 
this.TESTFILEPATH = "./orlib/"; 
} 
else if (TESTDATA == 2) 
{ 

/* BPP data chosen * / 
this.TESTFILEPATH = 11 ./bpp/"; 
} 
else 
{ 
/* Invalid test file option * / 
System.out.println("You have chosen an invalid test set option:"+ this.TESTDATA + ". 

Please try again. Exiting ... "); 
System.exit(l); 
} 

this.TESTFILEWITHPATH = this.TESTFILEPATH + this.TESTFILENAME; 

} /* end process_args */ 

/* Loads data from test file * / 
void loadfiledata() throws FileNotFoundException 
{ 

if (this.TESTFILEWITHPATH == '"') 
{ 

} 

System.out.println("Filename not specified, exiting ... "); 
System.exit(l); 

40 



/* Open file and load data * / 
in= new Scanner(new File(TESTFILEWITHPATH)); 

/* Get initial data to set variables * / 
if (this.TESTDATA == 1) 
{ 

this.TESTSETNAME = this.in.nextline(); /* Get test set name from test file first line*/ 
this.MAXBINCAPACITY = this.in.nextlnt(); 
this.NUMOFOBJECTS = this.in.nextlnt(); 
this.BESTKNOWNFITNESS = this.in.nextlnt(); /* Yes, this is redundant, but to make the 

file loading smoother, I left it in * / 
} 
else if (this.TESTDATA == 2) 
{ 

this.TESTSETNAME = this.TESTFILENAME; /* Set the test set name with the file 
name because in BPP they're the same, unlike ORLIB * / 

switch(this.TESTFILENAME.charAt(l)) 
{ 

case '1': this.NUMOFOBJECTS = SO; 
break; 

case '2': this.NUMOFOBJECTS = 100; 
break; 

case '3': this.NUMOFOBJECTS = 200; 
break; 

case '4': this.NUMOFOBJECTS = 500; 
break; 

default: System.out.println("lnvalid value for BPP first param. Exiting ... "); 
this.in.close(); 
System.exit{!); 

} /* end switch * / 

switch(this.TESTFILENAME.charAt(3)) 
{ 

case '1': this.MAXBINCAPACITY = 100; 
break; 

case '2': this.MAXBINCAPACITY = 120; 
break; 

case '3': this.MAXBINCAPACITY = 150; 
break; 

default: System.out.println("lnvalid value for BPP second param. Exiting ... "); 
this.in.close(); 
System.exit(l); 

} /* end switch * / 

41 



} 
else 
{ 

/* Invalid test file option*/ 
System.out.println("You have chosen an invalid test file option:"+ this.TESTDATA + ". 

Please try again. Exiting ... "); 
this.in.close(); 
System.exit(l); 

} // end if- else if- else 

/* Set up the object weights array * / 
this.ObjectWeights = new int[this.NUMOFOBJECTS]; 

/* Get the object weights from file * / 
for (int objs=0; objs<this.NUMOFOBJECTS; objs++) 

{ 
this.ObjectWeights[objs] = this.in.nextlnt(); 

} 

/* Close the input file * / 
this.in.close(); 

} /* end loadfiledata * / 

/* Does tournament selection and produces a parent * / 
Organism tournament(Organism[] population, int numofcandidates, int DUALFITNESS) 
{ 
/* Initialize random number generator * / 
this.rand = new Random(); 

/* Clone randomly chosen candidates * / 
Organism[] candidates= new Organism[numofcandidates]; 
for (int i=0; i<numofcandidates; i++) 
{ 

candidates[i] = population[this.rand.nextlnt(po·pulation.length)].clone(); 
} 

Organism parent= candidates[0].clone(); /* Get the first one for comparison * / 

42 



43 

/* Compare parents and take the best, using secondary fitness if specified * / 
for (int i=0; i<numofcandidates; i++) 

parent= this.compare(parent, candidates[i], DUALFITNESS); 
} /* end for*/ 

return parent; 

} /* end tournament * / 

/* Compares two organisms and returns a copy of the best*/ 
Organism compare(Organism subjectl, Organism subject2, int DUALFITNESS) 
{ 

Organism better= subjectl.clone(); /* Get the first one for comparison * / 

/* Compare parent variable to each, using secondary fitness if specified * / 
if ((better.BinFitness == subject2.BinFitness) && (better.SpaceFitness == 

subject2.SpaceFitness)) 
{ 
/* Both candidate pointers point to the same organism, do nothing*/ 

} 
else if ((better.BinFitness)==(subject2.BinFitness) && (DUALFITNESS==0)) 
{ 

} 

/* Bin fitness is the same for both but dual fitness evaluation is turned off*/ 
/* Results in a tie, any one is fine * / 
/* Do nothing, "better" is better*/ 

else if ((better.BinFitness)==(subject2.BinFitness) && (DUALFITNESS==l)) 
{ 
/* Bin fitness is the same for both, dual fitness evaluation is turned on * / 
if ((better.SpaceFitness) > (subject2.SpaceFitness)) 
{ 
/* Do nothing, "better" is better * / 

} 
else 
{ 

better= subject2; 
} 

} 
else if ((better.Bin Fitness)< (subject2.BinFitness)) 
{ 

/* Bin fitnesses are not equal, "better" has less bins than subject2 */ 
/* Do nothing, "better" is better*/ 



} 
else 
{ 

} 

/* Bin fitnesses are not equal, subject2 has less bins than "better" object 
i.e. - ((better->BinFitness) > (subject2->BinFitness)) 

So, replace "better" with subject2 * / 
better= subject2; 

return better; 

} /* end compare * / 

/* Crossover function that returns reference to child object * / 
Organism crossover(Organism parentl, Organism parent2) 
{ 

boolean[] Used= new boolean[this.NUMOFOBJECTS]; /* Keeps track of which object 
weights have been used * / 

Organism childorganism = new Organism(NUMOFOBJECTS); /* The resulting 
organism*/ 

44 

int[] parentlchr = new int[this.NUMOFOBJECTS]; /* Copy of parentl chromosome * / 
int[] parent2chr = new int[this.NUMOFOBJECTS]; /* Copy of parent2 chromosome 

*/ 

/* Get copy of each parent's chromosome*/ 
for (int chr=0; chr < this.NUMOFOBJECTS; chr++) 
{ 
parentlchr[chr] = parentl.Chromosome[chr]; 
parent2chr[chr] = parent2.Chromosome[chr]; 
} 

/* Initialize Used[] array to false*/ 
for (int i=0; i<this.NUMOFOBJECTS; i++) 
{ 

Used[i] = false; 
} 

/* Crossover-> Alternation * / 



for (int k=0,j=0; U<this.NUMOFOBJECTS)&&(k<this.NUMOFOBJECTS); ++j) 
{ 

} 

if (!Used[parentlchrLi]]) 
{ 

childorganism.Chromosome[k] = parentlchrLi]; 
++k; 
Used[parentlchrLi]] = true; 

} 
if (!Used[parent2chrLi]]) 
{ 

childorganism.Chromosome[k++] = parent2chrLi]; 
Used[parent2chrLi]] = true; 

/* Return new child • / 
return childorganism; 

}; /* end crossover • / 

/* Returns the current best organism in the specified generation • / 
Organism getbestorganism(Organism[] currentgeneration, Organism currentbest) 
{ 

/* Make a copy of the current best organism for comparison • / 
Organism newbest = currentbest.clone(); 

/* Get best organism based on bin fitness only • / 
for (int orgs=0; orgs<this.NUMOFORGANISMS; orgs++) 
{ 

/* Note the DUALFITNESSELITISM variable in place of the DUALFITNESS one * / 
if ((currentgeneration[orgs].BinFitness == newbest.BinFitness) && 

(this.DUALFITNESSELITISM == 1)) 
{ 

if (currentgeneration[orgs].SpaceFitness > newbest.SpaceFitness) 
{ 

/* Dual fitness check is turned on, Bin Fitnesses are equal and 
current organism has more space in last bin than best organism • / 

newbest = currentgeneration[orgs].clone(); 
} 

45 



else if (currentgeneration[orgs].BinFitness < newbest.BinFitness) 
{ 

46 

/* Bin fitness is less than best erg bin fitness, replace current best erg with 
this one*/ 

newbest = currentgeneration [ergs] .clone(); 
} 
else 
{ 
/* Keep best organism the same * / 

} /* end if*/ 

} /* end for*/ 

return newbest; 

} /* end getbestorganism * / 

/* Computes standard deviation of an array of integers * / 
double stddev(int[] fitnesses) 
{ 

double squaresum = 0; /* Holds sum of squares * / 
double stddev = 0.0; /* Holds standard deviation * / 
double groupmean = this.mean(fitnesses); /* Mean of integer fitness list parameter*/ 

for (int i=0; i<fitnesses.length; i++) 
{ 

squaresum += Math.pow(((double) fitnesses[i] - groupmean), 2.0); 

stddev = Math.sqrt(squaresum / (double) fitnesses.length); 

return stddev;• 

} /* end stddev * / 

/* Computes the mean of an array of integers * / 
double mean(int[] fitnesses) 
{ 



int groups um = 0; /* Holds the sum of the entire group of integers * / 
double groupmean = 0.0; /* Holds the mean of the group of integers * / 

for (int i=0; i<fitnesses.length; i++) 
{ 

groupsum += fitnesses[i]; 
} 

groupmean = (double) groupsum / (double) fitnesses.length; 

return groupmean; 

} /* end mean*/ 

} /* end GA class * / 

--- Organism.java--

import java.util.Random; 

public class Organism 
{ 

public int[] Chromosome;/* Chromosome array * / 
public int BinFitness; /* The smaller this number, the better * / 
public int SpaceFitness; /* The bigger the number, the better * / 
Random rand;/* Random number generator*/ 

Organism(int NUMOFOBJECTS) 
{ 

this.Chromosome = new int[NUMOFOBJECTS]; /* Organism's chromosome array * / 
this.BinFitness = NUMOFOBJECTS; /* Set to worst possible bin fitness * / 
this.Space Fitness = 0; /* Set to worst possible space fitness * / 

47 



this.rand= new Random();/* Initialize random number generator*/ 

/* -- Initialize Chromosome With Random Permutation -- * / 

int tempvalue; /* Holds the value being swapped*/ 
int targetindex; /* The random index returned by randomnumber */ 

48 

int chrlastused = 0; /* Holds the index of last filled position in child chromosome * / 
int lastelement = NUMOFOBJECTS; /* Get last element index*/ 

int[] sourceindexes = new int[NUMOFOBJECTS]; /* Holds the indexes to choose from*/ 

/* Set up the source index array * / 
for (int i=0; i<NUMOFOBJECTS; i++) 
{ 

sourceindexes[i] = i; 
} 

/* Fill new chromosome with randomized index values into object weight array*/ 
for (int chr=0; chr<NUMOFOBJECTS; chr++) 
{ 

targetindex = rand.nextlnt(lastelement); /* get random value between 0 and end 
of available elements*/ 

this.Chromosome[chr] = sourceindexes[targetindex]; /* get chosen value*/ 
tempvalue = sourceindexes[lastelement-1); /* copy last element * / 
sourceindexes[lastelement-1] = sourceindexes[tempvalue]; 

sourceindexes[targetindex] = tempvalue; 
lastelement--; 

} 

/* Chromosome is now set*/ 

} /* Constructor * / 

/* Return a clone of the current organism * / 
public Organism clone() 
{ 

Organism doppelganger = new Organism(this.Chromosome.length); 
for (int i=0; i<this.Chromosome.length; i++) 
{ 

doppelganger.Chromosome[i] = this.Chromosome[i] ; 



} 
doppelganger.BinFitness = this.BinFitness; 
doppelganger.SpaceFitness = this.SpaceFitness; 

return doppelganger; 

} /*Clone*/ 

/* Spawn a mutated copy of the current organism * / 
public Organism mutateandspawn() 
{ 

Organism doppelganger = this.clone(); 
this.rand = new Random(); 

int temp= O; 
int randomindexl = rand.nextlnt(this.Chromosome.length); 
int randomindex2 = rand.nextlnt(this.Chromosome.length); 

/* Swap values at a single position in the chromosome - i.e. mutate * / 
temp= doppelganger.Chromosome[randomindexl]; 
doppelganger.Chromosome[randomindexl] = 

doppelganger.Chromosome[randomindex2]; 
doppelganger.Chromosome[randomindex2] = temp; 

return doppelganger; 

} /* mutateandspawn * / 

/* Evaluate the chromosome and set the fitness variables * / 
public void evaluate_fitness(int[] objectlist, int MAXBINCAPACITY, int 

USEMAXSPACEALLBINS) 
{ 

int NUMOFOBJECTS = objectlist.length; /* Get the total number of objects * / 

/* Error checking*/ 
if (NUMOFOBJECTS != this.Chromosome.length) 
{ 

System.out.println("----------11 ); 

49 



match"); 

} 

so 

System.out.println("ObjectWeights length and Chromosome length do not 

System.out.println("ObjectWeights length: " + NUMOFOBJECTS); 
System.out.println("Chromsome length: " + this.Chromosome.length); 

int binindex = 0; /* Holds the index of the currently used bin*/ 
int currentobjectweight = 0; /* Holds the weight of the next object to be placed * / 

int[] binarray = new int[NUMOFOBJECTS]; /* Array to hold the bin values used*/ 
boolean placed =false;/* Flags the loop to stop trying to place the value once it's 

been put in a bin*/ 
int j=0; /* Index to bin array items * / 

/* Set binarray values to 0 * / 
for (int i=0; i<NUMOFOBJECTS; i++) 
{ 

binarray[i] = 0; 
} 

/* Loop through all values in the chromosome * / 
for (int obj=0; obj<NUMOFOBJECTS; obj++) 
{ 

currentobjectweight = objectlist[this.Chromosome[obj]]; /* Gets the weight of the 
object indexed by the chromosome value * / 

placed = false; 
j=0; 

while ((placed== false) && (j<NUMOFOBJECTS)) 
{ 

if ((binarrayU] + currentobjectweight) <= MAXBINCAPACITY) 
{ /* Object fits in the bin, place it * / 

will not be activated * / 

binarrayU] = binarrayU) + currentobjectweight; 
placed = true; 

} /* end if*/ 
else if (j == bin index) 
{ 

/* Object won't fit in any bin, increase the number of bins used * / 
/* On the next iteration of the for loop, the value will fit and this 

bin index++; 
binarray[binindex] = currentobjectweight; 
placed = true; 

} 
else 



{ 
j++; /*goto next bin*/ 

} 

} /* end while * / 

} /* end for*/ 

this.Bin Fitness= binindex; /* Set the bin fitness to the number of bins used * / 

if (USEMAXSPACEALLBINS == Q) 
{ 

51 

/* Only check the last bin used for secondary (space) fitness value * / 
this.SpaceFitness = MAXBINCAPACITY - binarray[binindex]; /* Set space fitness to 

the space left in the last bin * / 
} 

else if (USEMAXSPACEALLBINS == 1) 
{ 

/* Check all bins for the maximum unused space and report this as secondary 
(space) fitness * / 

int maxspacefound = 0; 
for (int i=0; i<binindex; i++) 

{ 
if ((MAXBINCAPACITY - binarray[i]) > maxspacefound) { maxspacefound = 

(MAXBINCAPACITY- binarray[i]);} 
} /* end for*/ 
this.SpaceFitness = maxspacefound; 

} 
else 
{ 

/* Option for USEMAXSPACALLBINS was out of range, report error*/ 
System.out.println("ERROR: USEMAXSPACEALLBINS variable passed to 

evaluate_fitness is not 0 or 1... exiting."); 
System.exit(l); 

} 

} /* end evaluateFitness * / 

} /* end class * / 


	Using Secondary Fitness to Break Ties in a Genetic Algorithm for the One-Dimensional Bin-Packing Problem
	Benjamin_pt1
	Benjamin_pt2

