
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2017

Securing Online Reputation Systems Through
Temporal and Trust Analysis
Sai Shruthi Veerannagari
St. Cloud State University, sveerannagari@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Veerannagari, Sai Shruthi, "Securing Online Reputation Systems Through Temporal and Trust Analysis" (2017). Culminating Projects
in Information Assurance. 34.
https://repository.stcloudstate.edu/msia_etds/34

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/34?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F34&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Securing Online Reputation Systems Through Temporal and Trust Analysis

by

Sai Shruthi Veerannagari

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

December, 2017

Starred Paper Committee:

Dennis Guster, Chairperson

Lynn A. Collen

Kasi Balasubramanian

2

Abstract

With the rapid advancement of reputation systems in different online social networks

manipulations against these systems are developing rapidly. In this paper, TATA, the

abbreviation of joint Temporal and Trust Analysis, will be described. TATA protects

reputation systems from the combination of time domain anomaly detection and Dempster–

Shafer hypothesis based trust calculation. Real user attack information gathered from a cyber-

competition is then utilized to develop the testing data set. TATA accomplishes a

significantly better result in determining the underlying things under attack, as well as

detecting malicious users who insert dishonest ratings and recovering reputation scores.

3

Acknowledgement

The successful completion of this paper could not have been possible without the

guidance of my beloved professors, Dr. Dennis Guster and Professor Lynn A. Collen. I also

would like to thank Professor Kasi Balasubramanian for being part of the committee and

finding the time to read my thesis.

I also would like to thank my mother V Vasantha, my father V H Laxma Reddy, and

my friends who provided me immense support the entire way.

4

Table of Contents

 Page

List of Figures ..8

Chapter

I. Introduction ..9

Introduction ..9

Problem Statement ...9

Nature and Significance of the Problem ..9

Objective of the Study ...10

Definition of Terms..10

Summary ..11

II. Background and Review of Literature ...12

Introduction ..12

Background Related to the Problem ..12

 Protecting Online Rating Systems from Unfair Ratings13

 Filtering Out Unfair Ratings in Bayesian Reputation Systems14

 Information Filtering Via Interactive Refinement ...14

 Reputation Trap: A Powerful Attack on Reputation Systems Offline

 Sharing p2p Environment ..14

Literature Related to the Problem ..15

Literature Related to the Methodology ..17

Summary ..17

III. Methodology ..18

Introduction ..18

5

Chapter Page

Design of the Study ..18

 Data Collection ..18

 General Description ...18

 Changing in Rating Sequence ..19

 Trust Evaluation ...19

 Calculation of Correlation..20

 Identification of Malicious User ..20

 Product Reputation Score ..20

 Tools and Techniques ..21

 System Model ..21

 Attack Model ...22

 Assumption ..22

 Joint Trust and Temporal Analysis ..23

 Change Director ...23

 Basic and Revised CUSUM ...23

 Hardware and Software Environment ..24

IV. Implementation ..25

Modules..25

Modules Description ..25

 Online Shopping Module ...25

 User Rating Module ...25

 Data Collection Module ...26

 Change Detection Module ...26

6

Chapter Page

 Identify and Block Malicious Users ..26

V. Data Presentation and Analysis ...27

Introduction ..27

Data Presentation ...27

 Data Flow Diagram ..28

 UMD Diagrams ..29

 Goals ..30

 Use Case Diagrams ..30

 Class Diagram ..31

 Sequence Diagram ...32

 Activity Diagram ...33

Data Analysis ...34

 Feasibility Study ..34

Types of Tests ..36

 Unit Testing ...36

 Integration Testing ...37

 Functional Testing ...37

 System Testing ...38

 White Box Testing ...38

 Black Box Testing..38

 Acceptance Testing ..39

Screenshots ..39

VI. Conclusion ...47

7

Chapter Page

Reference ...48

Appendix ..49

8

List of Figures

Figure Page

1. System Architecture ...22

2. System Design ...27

3. Data Flow Diagram ..29

4. Use Case Diagram..31

5. Class Diagram ..32

6. Sequence Diagram ...33

7. Activity Diagram ...34

9

Chapter I: Introduction

Introduction

 Online reputation systems are playing a progressively critical role in impacting

individuals’ online purchasing/downloading decisions. Meanwhile manipulations against

these systems, which excessively expand or empty reputation scores of online things, are also

developing rapidly.

 A Dempster-Shafer hypothesis based trust model is proposed to identify malicious

users who embed unfair ratings to mislead items’ reputation scores. In particular, the author

explored time domain rating data for analyzing user behavior anomalies and, in view of this,

the development of Dempster-Shafer hypothesis based trust model to further identify

malicious users. When tested against real user attack data, information gathered from a cyber-

competition, it exhibited a good performance in identifying malicious users.

Problem Statement

The main problem with online reputation systems is due to the anonymity of the

Internet, it is extremely difficult for typical users to assess a stranger’s reliability and quality,

which then makes online interactions inherently risky.

Nature and Significance of the Problem

 The issue, then, becomes the way which online participants secure themselves by

judging the nature of strangers or unfamiliar items before making a decision. To address this

issue, online reputation systems have been developed to aid in the decision-making process.

The goal is to make large-scale virtual word of-mouth networks where people share opinions

and experiences. They can create reviews and ratings on different things, including items

such as services, digital content, and even on other individuals. These opinions and

experiences, which are called user feedback, are gathered as evidence and are investigated,

10

aggregated, and disseminated to the other users of the system. The disseminated results are

called a reputation score. Such systems are also referred to as feedback based reputation

systems.

A reputation system defense plan is proposed, named TATA, for feedback-based

reputation systems. TATA is the abbreviation of joint Temporal and Trust Analysis. It

contains two modules—a time domain anomaly detector and a trust model in view of the

Dempster-Shafer hypothesis. In particular, the ratings for a given item are considered as a

time sequence, and a time domain anomaly detector is used to distinguish suspicious time

intervals where anomaly occurs. A trust analysis is then used on the anomaly detection

results. The idea of user behavior uncertainty is then taken from the Dempster-Shafer

hypothesis to model users’ behavior patterns, and to assess whether a user’s rating value for

each item is reliable or not.

Objective of the Study

 The objective of this study is to demonstrate the incredible potential to effectively

remove dishonest ratings and keep the online reputation system as secure and effective as

possible for the online marketplace.

Definition of Terms

The Dempster-Shafer theory: A framework for joining evidence from distinct sources to

accomplish a level of belief.

Consider two events, where a = good behavior and b = bad behavior, and a subject is

observed to perform good behaviors for ‘r’ times and perform bad behaviors for ‘s’

times.

Bg = r/r+s+2,

Bb = s/r+s+2,

11

U = 2/r+s+2,

Where Bg is the belief that the proposition that the subject will perform a good

behavior is genuine, Bb is the belief that the proposition that the subject will perform

a bad behavior is genuine, and u is the uncertainty.

Behavior value: A user’s behavior value is defined on a single item as a binary value to

indicate whether his/her rating behavior is good or bad.

Combined binary value: The combined behavior value is introduced to evaluate user’s

behavior on multiple items.

Behavior uncertainty: A user’s behavior uncertainty is defined using the Dempster-Shafer

theory.

Summary

 This chapter provided a brief introduction, the problem statement, and the objective of

the study. It also provided a definition of the terms used.

12

Chapter II: Background and Review of Literature

Introduction

 In this chapter, the related work and literature related to the problem and methodology

will be covered.

Background Related to the Problem

 Many individuals are currently involved in the manipulation of online reputation

systems. Therefore, there is a need to create a defensive plan, and the securing of reputation

systems has developed accordingly. The efforts to provide a defense are divided into four

classifications. In the first class, the defense method used is to restrain the maximum number

of ratings every user can give within a certain period of time. This sort of method actually

confines the rating force of every user ID. This can then be used to stop the attackers from

embedding a lot of dishonest ratings through a couple user IDs within a brief period of time.

In the second class, the defense plans intend to expand the cost of launching an attack.

Some reputation systems, such as the one used by Amazon, allot a higher weight to users who

rate verified transactions. This system then expands the cost to manipulate a competitor’s

items reputation value. However, it has little effect on attacks in which the attackers purchase

their own particular items for reputational boosting. Some different schemes expand the costs

of securing different user IDs by tying identities with a specific IP address or utilizing system

coordinates to identify Sybil assaults. Such methods will extraordinarily increase the cost of

the attack, however, it can’t defeat attackers who have a lot of assets and determination. For

instance, some organizations who work to boost reputations will regularly obtain a vast

affiliate network of user IDs to try and thwart the defenses placed against them.

In the third class, the defense methods explore rating statistics. They consider ratings

as arbitrary variables and accept that dishonest ratings have statistical appropriations different

13

from expected ratings. Representative plans are as per the following: A Beta function based

methodology expects that the hidden ratings follow the Beta distribution and considers the

ratings outside (lower) and (upper) quantile of the majority’s opinions as dishonest ratings.

An entropy-based method recognizes the ratings that acquire a critical change in the

instability of the rating distribution as dishonest ratings. Dishonest rating analysis is based on

a Bayesian model. Controlled anonymity and cluster separating are then utilized to wipe out

dishonest ratings.

The defense approaches in the fourth class examine users’ rating practices. Accepting

that users with a bad rating history tend to give dishonest ratings, such methods decides the

weight of a rating based on the notoriety or reputation of the user who gives the rating. Such

reputation value is also referred to as trust or reliability. A few representative plans are as

follows: The Iteration refinement method proposes assigned weights to a user’s rating as per

the reverse of this user’s rating variance. A customized trust structure is presented so that

different users may assign different trust values to the same user. A user’s trust is obtained by

accumulating other users’ beliefs through the use of a belief theory. The REGRET reputation

system calculates the user’s reputation based on fuzzy logic. Flow models for example, the

Eigen Trust and Google Page Rank, compute trust or reputation by transitive emphasis

through circled or arbitrarily long chains.

 Protecting online rating systems from unfair ratings. Online rating systems have

been used by online exchange groups to boycott “awful” specialist co-ops and invite them to

give “great” services. The execution of the internet rating systems is effectively bargained by

different unjustifiable evaluations, e.g., balloting, castigating, and reciprocal unjustifiable

ratings. Step-by-step instructions to alleviate the impact of the out of line evaluations remains

an essential issue in internet rating frameworks. In this paper, a novel entropy-based strategy

14

is proposed to quantify the rating quality and in addition to screen the unjustifiable ratings.

Test results demonstrate that the proposed technique is both viable and effective in lightening

the impact of various sorts of unfair ratings.

 Filtering out unfair ratings in Bayesian reputation systems. The nature of a

reputation system relies on the integrity of the ratings it gets from its users. A basic issue is

that a rater can rate a specialist more positively or more negatively than the genuine

interaction with the operator would have justified. At the point when ratings are given by

specialists outside the control of the defending party, it is almost impossible to know when a

rater gives such uncalled-for ratings. It is frequently the case that unreasonable ratings have a

different measurable example than reasonable ratings. This paper utilizes that thought, and

depicts a factual method for barring unjustified ratings, and illustrates its adequacy through

reenactments.

 Information filtering via iterative refinement. With the explosive development of

accessible data, especially on the Internet, assessment based filtering has turned into a vital

assignment. Different systems have been devised with plans to deal with huge volumes of

data and select what is probably going to be more applicable to a given situation. In this way,

the user examines another positioning strategy, where the reputation of data suppliers is

resolved self-reliably.

 Reputation Trap: A powerful attack on reputation system offline sharing p2p

environment. As the negative perception of reputation systems is broadly perceived, the

motivation to control such systems is rapidly developing. TAUCA, a plan that distinguishes

malicious clients and recuperates reputation scores from a novel point—a mix of temporal

investigation and client connection analysis. Aided by the rich data in the time-area, TAUCA

recognizes the items under assault, the time when the assaults occur, and the malicious clients

15

who embed unfair ratings. TAUCA and two other agent plans are tested against genuine

client assault information gathered through a digital competition. TAUCA shows some

significant advantages, it enhances the discovery rate and diminishes the false caution rate in

the recognition of malicious clients. It also successfully diminishes the bias in the recovered

reputation scores.

Literature Related to the Problem

Manifestations of trust are easy to perceive because users encounter and depend on

them constantly, however, trust is very challenging to define because it shows itself in a wide

range of forms. The literature on trust can also be very confusing because the term is being

utilized with a variety of implications (McKnight & Chervany, 1996). Two common

definitions of trust are called reliability trust and decision trust and are described the study.

As the name suggests, reliability trust can be interpreted as the reliability of something or

somebody, and the definition by Gambetta (1990) gives an example of how this can be

determined: “Definition 1 (Reliability Trust): Trust is the subjective probability, by which an

individual, A, expects that another individual, B, performs a given action on which its welfare

depends” (¶ 2).

This definition incorporates the idea of depending on the trusted party, and the reliability

(likelihood) of the trusted party, as seen by the trusting party.

 However, the trust can be more complex than Gambetta’s (1990) definition

demonstrates. For instance, Falcone and Castelfranchi (2001) perceived that having high

(reliability) trust in an individual, in general, is not enough to choose to enter into a

circumstance of depending on that individual. Falcone and Castelfranchi wrote:

For example, it is possible that the value of the damage per se (in case of failure) is

too high to choose a given decision branch, and this independently either from the

16

probability of the failure (even if it is very low) or from the possible payoff (even if it

is very high). In other words, that danger might seem to the agent an intolerable risk.

(p. 56)

In order to catch this expansive idea of trust, the following definition inspired by

McKnight and Chervany (1996) can be utilized. “Definition 2 (Decision Trust): Trust is the

extent to which one party is willing to depend on something or somebody in a given situation

with a feeling of relative security, even though negative consequences are possible.”

The relative ambiguity of this definition is valuable because it makes it broader. It both

explicitly and implicitly incorporates parts of a wild idea of trust which is dependent on the

trusted element or party. The reliability of the trusted element or party is taken into account,

as well as the utility as in positive utility will result because of a positive outcome, and that

negative utility will result because of a negative outcome. Last, a certain risk attitude in the

trusting party is created to acknowledge the situational risk resulting from the past

components.

The idea of reputation is firmly connected to that of reliability, yet it is obvious that

there is a clear and vital difference. For the purpose of this study, the reputation is defined

according to the Concise Oxford lexicon. “Definition 3 (Reputation): Reputation is what is

generally said or believed about a person or thing’s character or standing” (Reputation, n.d.).

This definition relates well with the perspective of social system analysts (Freeman, 1979;

Marsden & Lin, 1982) that reputation is a quantity derived from the hidden social

organization which is globally visible to all individuals from the system.

According to Resnick, Zeckhauser, Friedman, and Kuwabara (2000), reputation

systems must have the following three properties to operate at all:

17

▪ Entities must be long-lived, so that with every interaction there is always an

expectation of future interactions.

▪ Ratings about current interactions are captured and distributed.

▪ Ratings about past interactions must guide decisions about current interactions.

Literature Related to the Methodology

 There are a variety of existing models available for securing the Reputation system

from diverse techniques of attack. To begin with, numerous ratings given by every user

within a certain period of time (Liu & Sun, 2010). Second, the same user ID giving the rating

for the same item for multiple times. Also, there could be various fake identities available and

this was considered by the Sybil attacks (Yu, Kaminsky, Gibbons, & Flasman, 2006). Third,

investigating users’ rating behaviors by assigning the trust value to every user. If the user has

a higher trust value, they are considered to be a good user and users having a lower trust

value are considered to be a malicious user as identified by the Trust Evaluation (Whitby,

Josang, & Indulska, 2005). Fourth, investigating rating distributions by using correlation

techniques (Liu & Sun, 2010). After this, the malicious user is identified and also the exact

score of the specific item is identified.

Summary

 This chapter covered the background related work of the study and also discussed the

literature of the problem and methodology.

18

Chapter III: Methodology

Introduction

 In this chapter, the framework of the study, tools, and techniques that will be used are

discussed. And also, the procedure for data collection is given in detail.

Design of the Study

A reputation defense plan is proposed, named TATA, for feedback-based reputation

systems. Here, TATA is the abbreviation of joint Temporal and Trust Analysis. It contains

two modules—a time domain anomaly detector and a trust model in view of the Dempster–

Shafer hypothesis. In particular, the ratings to a given item are considered as a time sequence,

and a time domain anomaly detector is acquainted with distinguishing suspicious time

intervals where an anomaly happens. A trust analysis is then led based on the anomaly

detection results. The idea of user behavior uncertainty is from the Dempster–Shafer

hypothesis to model users’ behavior patterns, and assess whether a user’s rating value to each

item is reliable or not.

A quantitative approach is used in this study. As the group studied here is larger and

randomly selected, and the types of data collected are numbers and statistics and allows for

the identification of statistical relationships.

Data Collection

 The attackers are identified by using the procedures of Trust Evaluation and User

Correlation.

General description. The proposed method contains two procedures: Trust

Evaluation and User Correlation. In this paper, the detection of an attacker from distinctive

points is accomplished and also a change detector is used to recognize the attacker within a

specific time interval. But sometimes, in this system, some normal users may give rating

19

values too high or too low because of their unusual experience. So, a typical user could be

considered as an attacker erroneously. The Trust Evaluation system distinguishes the attacker

by the trust value created and, if the user has a trust value over the threshold value, they are

considered to be a good client. The user having a trust value beneath the threshold value is at

that point considered a malicious client. Subsequent to distinguishing the malicious user, the

user correlation can be calculated by utilizing the correlation algorithm. Finally, the malicious

user is identified and the ratings to the identified item are removed. The remaining ratings are

then used to compute the product reputation.

 Changing in rating sequence. In this example, the rating sequence can be given by

the user who buys their item through an online purchase. Here the malicious users can be

recognized by the user giving the rating within a specific time interval. For instance, if one

user gives a rating at time 11.00 and then the same user gives further rating values at time

11.01, 11.02, and so on. Then that user is considered to be a malicious user. Specifically, in a

time interval, normal users also give rating values. In that type of instance it cannot be

considered that the user is a malicious user. So, in such situations, the trust analysis method is

used for detecting whether that user is a malicious user or not.

Trust evaluation. In this evaluation, the user gives ratings during the specific time

interval exhibited as the malicious user. In the specific time interval, typical users also give

the rating value. So, malicious users are identified by the trust evaluation method. Here a

belief hypothesis is utilized that is assigning a trust value to every user. The trust value relies

upon their good and bad behavior. Having one limiting value, if the trust value falls below the

limit value, then a user is considered as a malicious user. A trust value over the limit value

means that a user is considered to be a good user.

20

▪ Number of good ratings = without malicious users

▪ Number of bad ratings = with malicious users

Calculation of correlation. After identifying the malicious user, the user correlation

can be calculated. The correlation is computed by the equation

 Suspicious score = (Probability of good ratings +

 Probability of bad ratings)

 (Probability of total number of ratings)

The suspicious score calculated for the specific item is then based on this method. After

identifying the score, it is then exhibited that the item is a good item or bad item.

Identification of malicious user. Considering the time interval and rating provided

with the same e-mail id the malicious user is then identified. In this event, there is a time

variation and if that variation is large enough then that user is determined to be a Malicious

User1. If the variation is comparatively small then that user is Malicious User2. If the

variation is extremely small then that user is considered as Malicious User3. The user giving

the rating with the same e-mail id and then taking into account the time variation allows for

the malicious user to be identified.

Product reputation score. After identifying the malicious user for the specific item,

the original rating for the item is calculated. After this, the item is identified as to whether it

is good or bad. First, the item ratings are given and then they are arranged in ascending order

based on the time the ratings are given. An attack can be detected by the time interval. That

is, if the rating is provided within a specific time interval, then it is possible that a malicious

attacker made it. If there is no attack that implies the item is good. If an attack is detected,

then the following procedure of trust evaluation is performed. Here, a trust value is assigned

21

to every user. In the event that the user trust value is high, it implies that the user is good and

there is no attack occurring. If the trusts value is low, it means there may be an attack taking

place. In the step correlation, the suspicious score for the specific item is calculated and also

the item is evaluated. The malicious user is identified based on the provided trust value.

There are three sorts of malicious users available. If the variation in the time interval is large,

then the Malicious User1 is considered. If the variation is comparatively small, then

Malicious User2 is considered. And, if the variation in the time interval is very small, then

Malicious User3 is considered. The users who are giving the right rating value are considered

to be a good user. The right score of the item is identified and after that the item capability is

demonstrated.

Tools and Techniques

There are a few modules that are used to execute this study.

System model. User demonstrates the feedback-based reputation systems as the

system in which users give ratings to items. This model can depict numerous functional

systems. For instance, purchasers give ratings to items on Amazon.com and reader’s rate

social news on Reddit.com. The items in the above systems are products and social news,

respectively. It is considered that each user will give a rating to one thing at most once, and

the rating values are integer values going from 1 to 5. In practice, reputation systems

regularly permit users to give surveys as well. These surveys can likewise be untruthful. In

this paper, the identification of dishonest ratings is considered. The analysis of untruthful

surveys is beyond the extent of this paper, though the dishonest rating detection and

untruthful review detection complement one another.

22

Figure 1. System Architecture

Attack model. An attacker can control one or more user’s IDs and each of these user

IDs is referred to as a malicious user. Malicious users give ratings to manipulate the

reputation score of items. The item whose reputation score is manipulated by malicious users

is known as a target item. The ratings given by malicious users to target items are considered

to be dishonest ratings. An attack profile describes the behavior of all malicious users

controlled by the attacker.

Assumption. In this work, it is assumed that items have characteristic qualities which

do not change quickly. The rating values to a given item rely on the user’s personal

preference as well as the item quality. In a few applications, for example ratings for movies

23

or books, the item quality judgment is extremely subjective. In these examples, a users’

personal preference assumes a more critical part of the equation. Though, in some different

applications, for example Amazon item ratings, the item quality assumes an essential part. In

this study, the product-rating type applications are focused on, especially where the rating

distribution of an item is moderately stable. Hence, if rapid changes in the rating distribution

happen it is possible that an anomaly has occurred.

Joint trust and temporal analysis. This is proposed to detect anomalies from a new

angle that is analyzing time domain information. In particular, users organize the ratings to a

given item as a sequence in the descending order as indicated by the time when they are

given. This sequence, indicated by the timestamp, really reflects the rating pattern to a given

item. Practically speaking, numerous items have similar characteristics and similar quality,

which should be reflected in the distribution of ordinary ratings. If there are quick changes in

the rating values, such changes can serve as pointers of an anomaly.

Change director. Numerous change detectors have been developed for diverse

application situations. In online reputation systems, since typical ratings don’t necessarily

follow a particular distribution and attackers may embed dishonest ratings with little bias.

There is a need to choose a change detector that is insensitive to the probability distribution

of information and has the capacity to reliably recognize small bias in ratings. Hence, the

CUSUM detector has been chosen, which satisfies these requirements as the base to build the

change detector.

Basic and revised CUSUM. A basic CUSUM detector is introduced, which

determines if a parameter in a probability density function (PDF) has changed. Then, a

modified CUSUM detector is developed to estimate the change starting time and ending time.

The modified CUSUM can detect numerous change intervals.

24

For a particular change interval, it is signified by the beginning time of the change and

the closing time of the change.

Hardware and Software Environment

 Hardware configuration:

 Processor Intel Core i7

 RAM 4GB

 Hard Disk 424GB

 Software Configuration:

 Operating System Windows 8

 Programming Language JAVA

 Java Version JDK 1.6 and above.

 Frontend JSP, servlets

 Backend Oracle10g

25

Chapter IV: Implementation

Modules

1. Online Shopping Module

2. User Rating Module

3. Data Collection Module

4. Change Detection

5. Identify and Block Malicious Users

Modules Description

 Online shopping module. In this module, a site is developed for web-based

shopping. The client can buy items and then has the option to give appraisals and their

proposals as criticism. In this module, the administrator can include product details (item

name, value, legitimacy and so on) based on the classification of device like mobiles, PCs,

laptops and so on while maintaining details of a product. The client enters their payment card

details for validation and awaits approval. If the card details are legitimate, the client can then

buy their items. The client can choose products that are to be purchased, which are then

shown on the home page, or search for the item utilizing keywords or item classifications.

The client can then buy the item utilizing an authorized payment card. To finalize the

purchase the client is required to enter the details such as the card number, cardholder name,

date of birth, and credit card issuer. If the card is found to be legitimate then the client is

permitted to buy the item.

 User rating module. In this module, the client is permitted to have the ability of

providing their input in a type of ratings with respect to the service provider. Client ratings

are considered as one of the essential variables in the purchasing decision as they assume a

key role in whether an item is purchased or not. Misleading ratings may create extreme

26

problems in numerous feedback rating systems. Thus in this module, the client ratings are

gathered and are secured so as not to allow tampering with them.

 Data collection module. In this module, all client profiles and ratings are gathered.

Client profile values are additionally integrated with their system IP address, timespan spent

on the system and rating values provided. All of the client profiles including the values of the

ratings are saved safely for later analysis.

 Change detection module. In this module, the information gathered is utilized as a

dataset. In the dataset the fraudulent clients are distinguished by their client name by sudden

detection of changes. The chart (What chart are you referring to here?) shows the client fraud

rate crosswise over months and measures the weight for tests within the client dataset.

Identify and block malicious users. In this module, the system is developed with the

end goal that an administrator of the feedback rating system can have the ability to block the

malicious clients. In this way the malicious clients cannot provide unfair or misleading

feedback on the system.

27

Chapter V: Data Presentation and Analysis

Introduction

 Provide a brief introduction on what will be covered in this chapter or in other words

what should a reader expect to read from this chapter.

Data Presentation

 In this section, the system design is explained in a detailed manner.

Figure 2. System Design

28

Data flow diagram.

• The Data Flow Diagram is also known as a bubble outline. It is a straightforward

graphical illustration that can be utilized to represent a system regarding input

information to that system. The data is handled differently including the output

data which is created by the system.

• The data flow diagram (DFD) is a standout among the most critical modeling

tools. This can be used to model the system components. These components are

the various processes of the system, the data used by the process, and an external

entity that associates with the system and the data streams in the system.

• DFD shows how the data travels through the system and how it is altered by a

series of changes. It is a graphical illustration that portrays data streams and the

changes that are applied as information moves from the source to target system.

• DFD can be utilized to represent a system at any level of deliberation. DFD can be

partitioned into levels that represent expanding data streams and functional

details.

29

 ADMIN USER

 UNDER ATTACK

 Change Interval Estimation

 Trust model based Dempster_shafer Theory

 Malious User identification

 Item Reputation Recovery

 Item Reputation Score
 DataBase

 Maintain Product

 Validate key

 Rate

Search/purchse Product

 Transaction

 Data Collection

 Time domain Rating Sequence with all item

 Change Detection

yes

 Improvethe detection rate

no

 Login

 Register

Figure 3. Data Flow Diagram

 UML diagrams. Unified Modeling Language (UML) is considered to be a broadly

used modeling language in the field of object-oriented software engineering. The Object

Management Group were the ones who created and have managed UML. The objective of

UML is to have a common language for creating models of object-oriented computer

software. In its present state, UML comprises two important components, a meta-model and a

30

documentation framework. Later on, some type of strategy or process may also be added to

or connected with the UML.

The UML is a standard language for indicating, visualization, constructing and

reporting the artifacts of a programming system. And, in addition, it is also used to provide

business modeling and other non-programming systems. The UML represents an

accumulation of best engineering practices that have had demonstrated success in the

modeling of expansive and complex systems. UML plays a critical role in creating object-

oriented software and the software development process. Generally speaking, UML utilizes

graphical notations to express the plan and outline of programming projects.

 Goals. The primary objectives in the design of the UML are:

• Provide clients with a ready-made, expressive visual modeling language with the

goal that they can create and trade important models.

• Provide extensible and specialization systems to augment the core concepts.

• Being independent of specific programming languages and development

processes.

• Provide a formal reason for understanding the modeling language.

• Encourage the development of object-oriented devices to market.

• Supporting higher level development concepts including systems, structures,

collaborations, and segments. Integrate best practices and procedures.

Use case diagrams. A use case diagram in the Unified Modeling Language (UML) is

a kind of behavioral outline characterized by and created from a use case analysis. Its purpose

is to introduce a graphical outline of the functionality given by a system in terms of actors,

their objectives and any conditions between those use cases. The primary reason for a use

31

case outline is to show the functions of a system that are performed for which actor. Roles of

the characters in the system can be portrayed graphically.

 ADMIN

 Purchasing product

 Correlation Analysis

 USER

 Item Rating

 Time And Interval

 Trust Analysis

 Rating Aggregation

 Maintaining Product

Figure 4. Use Case Diagram

 Class diagram. A class diagram in the Unified Modeling Language (UML) is a kind

of static structure chart that depicts the structure of a system by demonstrating the system’s

classes, their traits, operations (or strategies), and the relationships among the classes in

software engineering. Also, a class diagram explains which class contains which data.

32

ADMIN

Product
Score Rating

Maintain()

Collection()
Calculat()

Removing()
Aggregate()

USER

Purchase
key

Rate

Rating()
Transaction()

Figure 5. Class Diagram

 Sequence diagram. In Unified Modeling Language (UML), the sequence diagram is

a kind of interaction diagram that shows how processes work with each other in an orderly

manner. It is built from a message sequence chart. The message sequence chart diagrams are

also known as event graphs, event situations, and timing charts.

33

 USER ADMIN

 DATABASE

 Item Purchase

 Maintain

 Item Rating

 Trust Analysis

 Aggregation

 Calculate Reputatin score

Figure 6. Sequence Diagram

Activity diagram. Activity diagrams are graphical portrayals of work processes of

tasks and activities. They provide support for the decision, cycle, and concurrency of these

tasks. In the Unified Modeling Language, activity diagrams can be utilized to portray the

business and operational well-ordered work processes of components in a system. The overall

flow of control within a system is demonstrated by the activity diagram.

34

 User Admin

New

Registration

Registration

Login

Login

 Interval/Estimation

 Item Reputation

 Score rate

 Online Shopping

Mallious user identificatin

key

 Search

 Transaction

 Purchase Item

 Rating Score

Data Collection

Maintain

Change deduction

Analysis User rate

Figure 7. Activity Diagram

Data Analysis

 Feasibility study. The feasibility of the project is investigated in this stage and the

business proposition is advanced with a general plan for the project and some cost estimates.

The feasibility study of the proposed work during the system analysis stage would need to be

done. This is to guarantee that the proposed system is not a financial burden to the

organization. For feasibility analysis, some understanding of the significant necessities for the

system is required.

35

Three key considerations are involved in the feasibility analysis they are: Economic

Feasibility, Technical Feasibility, and Social Feasibility.

 Economic feasibility. This study is done to check the financial effect that the system

will have on the organization. The funds that the organization can afford to create the

innovative work of the system is restricted by budgetary constraints. There is also a need to

justify the expenditures. In this manner, the developed system will need to fit within the

financial plan of the organization. This was accomplished in large part by the fact that a

significant portion of the technologies utilized are open source and are freely accessible. Only

the customized items for the feedback system must be purchased.

 Technical feasibility. This study is done to check the technical feasibility of the

system, including the technical requirements of implementing it. Any system developed must

not be overly burdensome on the available technical assets. This will prompt levels of

popularity on the accessible technical assets of the organization as well as on the customer.

There must be reasonable requirements for the developed system, so as negligible or invalid

changes are not required for executing this system.

 Social feasibility. This study is to check the level of acknowledgment of the system

by the client. This incorporates the way toward preparing the client to utilize the system

effectively. The client must not feel debilitated by the system, but should rather acknowledge

it as a need. The level of acknowledgment by the clients exclusively relies on upon the

techniques that are utilized to instruct the client about the system and to make them

acquainted with it. Their level of certainty in use of the system must be raised with the goal

that they are ready to create some productive feedback around an item or service, which then

can be used by other clients of the system.

36

The motivation behind testing systems is to find any errors that may occur. Testing is

a way toward attempting to find possible errors or shortcomings in a product or service. It

provides an approach to check the usefulness of the components, sub gatherings, assemblies

and eventually the completed product. It is a way of practicing software development with

the aim of guaranteeing that the software system lives up to its requirements and meets the

clients’ desires and does not fail in an unsatisfactory manner. There are different types of

tests that can be performed. Each type of test sorts addresses and covers a particular testing

requirement.

Types of Tests

 Unit testing. Unit testing includes the outline of test cases that assure that the inside

programmatic logic is working appropriately, and that program inputs create substantial and

correct outputs. All choice branches and flow of internal code need to be approved. It is

necessary to test all of the individual software units of the application or system. This is done

after an individual unit of the software is finished but before coordination of the components

in the system. This is considered a basic form of testing, and depends on learning of its

development and is obtrusive. Unit tests perform essential tests at the segment level and test a

particular business process, application, and system design. Unit tests guarantee that each

different way of a business procedure performs is precisely functioning according to the

archived details and contains plainly characterized inputs and expected outcomes.

Unit testing is normally led as a major aspect of a combined code and unit test period

of the software life cycle, this is done in spite of the fact that it is normal for coding and unit

testing to be directed at two distinct stages.

 Test strategy and approach. Field testing will also be performed physically, and

functional tests will be composed in detail.

37

 Test objectives.

▪ All field entries must work legitimately

▪ Pages must be activated from the distinguished connection

▪ The entry screen, messages, and reactions must not be deferred

Features to be tested.

▪ Verify that the entries are in the right configuration

▪ No copy entries should be permitted

▪ All connections should take the client to the appropriate page

 Integration testing. Integration tests are intended to test the incorporated components

of software to figure out whether they really keep running as one program. Testing is event-

driven and worries more about the essential results of the screens. Integration tests are used

despite the fact that the components were tested exclusively from one another and appeared

to be effective in unit testing. The integration test assures the blend of segments is operating

correctly and is stable. Integration testing is particularly aimed at uncovering the issues that

emerge from the blending of components.

 Functional testing. Functional tests give systematic demonstrations of previous tests

of the functions of the system that are accessible as determined by the business and technical

necessities, system documentation, and client manuals.

Functional testing is centered on the following items:

▪ Valid Input: Distinguished classes of legitimate inputs must be acknowledged.

▪ Invalid Input: Distinguished classes of invalid inputs must be rejected.

▪ Functions: Distinguished functions must be implemented.

▪ Output: Distinguished classes of utilization outputs must be implemented.

▪ Systems/Procedures: Interfacing systems or techniques must be queried.

38

 Organization and planning of functional tests are centered on prerequisites, key

functions, or special test cases. Moreover, the systematic scope as it relates to recognizing

business process flows, information fields, predefined forms, and progressive procedures

must be considered for testing. Before functional testing is completed, more tests are

recognized, and the viable estimation of current tests is resolved.

Software integration testing is the incremental coordinated testing of at least two

incorporated software segments on a solitary stage to deliver failures which are caused by

defects of the interface. The task of the integration test is to determine whether segments or

software applications (e.g. components in a software system or software applications at the

organization level) communicate without errors or mistakes.

 Test results. All the experiments specified above passed effectively and no

imperfections were experienced.

 System testing. System testing guarantees that the whole integrated software system

meets the prerequisites that were created. It tests a design to guarantee known and predictable

results. An example of system testing is the design arranged system reconciliation test.

System testing depends on process descriptions and streams, underlining pre-driven process

 White box testing. White Box Testing is a testing in which the software analyzer

knows about the inward workings, structure and language of the software, or its motivation. It

is utilized to test cases that cannot be reached from a black box level.

 Black box testing. Black Box testing is testing the software with no information of

the internal workings, structure or language of the module being tested. Black Box tests must

be composed of a conclusive source archive, for example, a determination or necessities

document or a particular prerequisites report. It is a form of testing in which the software

39

under test is dealt with as a black box that is unknown. The test gives data sources and reacts

to outcomes without considering how the software functions.

 Acceptance testing. User Acceptance Testing is a crucial period of any project and

requires significant investment by the end user or client. It likewise guarantees that the

system meets the functional prerequisites that were set for it.

 Test results. All the experiments specified above passed effectively and no

imperfections were experienced.

Screenshots

 Step 1: Welcome Page. The User can login to the website through this page and

access the dashboard.

40

 Step 2: User Login. This page gives access to the user to enter their credentials to log

in to a particular account for online shopping.

 Step 3: Search for Products. Once the user logs into the website, and through

accessing the dashboard they can start their online shopping by clicking on the category

“search by products.”

41

 Step 4: Product Gallery. This page gives all the details of a product including product

name, product item, brand name, price, and validity.

Step 5: Adding New Item. Through this page, the user can add a new product to their

cart and continue their shopping.

42

 Step 6: Purchased Products. This page gives the details of all the products that have

been purchased.

 Step 7: Card Holder. This page allows the user to enter their payment card details in

order to purchase products.

43

 Step 8: Purchase Success. This page gives the confirmation of a successful purchase

of the product.

 Step 9: Rating Page. This page shows the rating values given by the users.

44

 Step 10: Feedback. In this page, all of the users’ feedback ratings are secured and can

be viewed by the administrator for product review analysis.

 Step 11: Feedback About Products. This page allows the users to provide feedback

about the products they have purchased.

45

 Step 12: Admin Login. This page gives access to the administrator to login and check

details on different user’s accounts.

 Step 13: User Details. This page lists all of the registered user details like user Id,

username, DOB, email id, location and contact details.

46

 Step 14: Rating Graph. This chart gives the analysis of all the ratings given by users.

47

Chapter VI: Conclusion

Many schemes have exhibited great performance in ensuring reputation feedback

systems, however there are still problems that have not been completely addressed. In this

paper, an extensive anomaly detection scheme (TATA) is designed and assessed for ensuring

feedback of online reputation systems. Temporal and Trust analysis (TATA) exhibits critical

advantages such as recognizing things under attack, distinguishing malicious clients who

embed dishonest ratings and recovering reputation scores. To investigate the time-domain

data, a modified CUSUM detectors were developed to identify change in the interim. Online

reputation systems are progressively influencing individuals’ online shopping and

downloading decisions. Also, as evidenced by the project, it has been shown that the

Temporal and Trust Analysis reputation system works and provides significant benefits over

other systems.

48

References

Falcone, R., & Castelfranchi, C. (2001). Social trust: A cognitive approach. AA Dordrecht,

The Netherlands: Kluwer.

Freeman, L.C. (1979). Centrality on social networks. Social Networks, 1, 215-239.

Gambetta, D. (1990). Can we trust? In D. Gambetta (Ed.),Trust: Making and breaking

cooperative relations (pp. 213-238). Oxford: Basil Blackwell.

Liu, Y., & Sun, Y. (2010). Anomaly detection in feedback-based reputation systems through

temporal and correlation analysis. In Proceedings of the Second IEEE International

Conference on Social Computing (pp. 65-72).

Marsden, P.V., & Lin, N. (1982). Social structure and network analysis. Beverly Hills, CA:

Sage Publications.

McKnight, D.H., & Chervany, N. L. (1996). The meanings of trust. Technical Report

MISRC Working Paper Series 96-04: St. Paul, MN: University of Minnesota,

Management Information Systems Research Center.

Reputation. (n.d.). The Concise Oxford Dictionary (8th ed.). Oxford: Oxford University Press.

Resnick, P., Zeckhauser, R. Friedman, R., & Kuwabara, K. (2000). Reputation systems.

Communications of the ACM, 43(12), 45-48.

Whitby, A., Josang, J., & Indulska, J. (2005). Filtering out unfair ratings in Bayesian

reputation systems. Icfain Journal of Management Research, 4(2), 48-64.

Yu, H., Kaminsky, M., Gibbons, P. B., & Flasman, A. (2006). Sybilguard: Defending against

Sybil attacks via social networks. In Proceedings of Conference Applications,

Technologies, Architectures and Protocols for Computer Communication, pp. 267-

278).

49

Appendix

Additem:

import Utility.Dbconn;

import java.io.File;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.PreparedStatement;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.Iterator;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.apache.tomcat.util.http.fileupload.FileItem;

import org.apache.tomcat.util.http.fileupload.FileUploadException;

import org.apache.tomcat.util.http.fileupload.disk.DiskFileItemFactory;

import org.apache.tomcat.util.http.fileupload.servlet.ServletFileUpload;

50

public class Additem extends HttpServlet {

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 PrintWriter out = response.getWriter();

 Connection con = null;

 try {

 File f = null;

 DiskFileItemFactory diskFile = new DiskFileItemFactory();

 diskFile.setSizeThreshold(1 * 1024 * 1024);

 diskFile.setRepository(f);

 ServletFileUpload sfu = new ServletFileUpload(diskFile);

 List item = sfu.parseRequest(request);

 Iterator itr = item.iterator();

 FileItem items = (FileItem) itr.next()

 Class.forName(“com.mysql.jdbc.Driver”);

 con = DriverManager.getConnection(“jdbc:mysql://localhost:3306/securing”, “root”,

“root”);

 System.out.println(“database connected”);

 //Statement st = con.createStatement();

 // int i = st.executeUpdate(“insert into

additem(productname,productitem,brandname,itemcost,manaf_date,image) values(‘“ +

productname + “‘,’” + productitem + “‘,’” + brandname + “‘,’” + itemcost + “‘,’” +

manaf_date + “‘,?)”);

 PreparedStatement pstmt = null;

 pstmt = con.prepareStatement(“insert into additem(image,imgname) values(?,?)”);

51

 pstmt.setBinaryStream(1, items.getInputStream());

 pstmt.setString(2, items.getName());

 boolean i = pstmt.execute();

 System.out.println(“Data is successfully inserted! “+ i);

 response.sendRedirect(“Additem23_1.jsp”);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(Additem.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SQLException ex) {

 Logger.getLogger(Additem.class.getName()).log(Level.SEVERE, null, ex);

 } catch (FileUploadException ex) {

 Logger.getLogger(Additem.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

 out.close();

 }

 }

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

52

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return “Short description”;

 }// </editor-fold>

}

CreditCard:

/*

* To change this template, choose Tools | Templates

 * and open the template in the editor.

53

 */

package Action;

import Utility.Dbconn;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

 *

 * @author m

 */

public class Credit extends HttpServlet {

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

54

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 PrintWriter out = response.getWriter();

 Connection con = null;

 try {

 String username = request.getParameter(“user”);

 String card_no = request.getParameter(“credit”);

 Class.forName(“com.mysql.jdbc.Driver”);

 con = Dbconn.getConnection();

 Statement st = con.createStatement();

 ResultSet stud = st.executeQuery(“select * from register where name= ‘“ + username

+ “‘“);

 if (stud.next()) {

 if (card_no.equals(stud.getString(“card_no”))) {

55

 System.out.println(“login success”);

 // session.setAttribute(“UID”, username);

 out.println(“purchase success”);

 response.sendRedirect(“Rate.jsp?msg=“+username);

 //response.sendRedirect(“Product1.jsp?msg=“+username);

 } else {

 out.println(“credit card number error....!”);

 }

 } else {

 out.println(“Useraname error....!”);

 System.out.println(“Useraname error....!”);

 }

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(Credit.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SQLException ex) {

 Logger.getLogger(Credit.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

 out.close();

 }

 }

56

 // <editor-fold defaultstate=“collapsed” desc=“HttpServlet methods. Click on the + sign on

the left to edit the code.”>

 /**

 * Handles the HTTP

 * <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

57

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return “Short description”;

 }// </editor-fold>

}

RateEditing:

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

58

package Action;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

/**

 *

 * @author m

 */

public class EditRate extends HttpServlet {

 /**

 * Processes requests for both HTTP

59

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 PrintWriter out = response.getWriter();

 try {

 HttpSession session = request.getSession(true);

 String UserID = session.getAttribute(“UID”).toString();

 System.out.println(“getUser ID IS :” + UserID);

 String productname = request.getParameter(“productname”);

 String productitem = request.getParameter(“productitem”);

 String brandname = request.getParameter(“brandname”);

 String itemcost = request.getParameter(“itemcost”);

 String itemqty = request.getParameter(“qty”);

60

 //System.out.println(name + “\n” + m1+ “\n” + m2+ “\n” + m3+ “\n”

+m4+”\n”+m5+”\n”+percen+”\n”);

 //Connection con = Dbc.con();

 //con = Dbc.getConnection();//(Connection)

DriverManager.getConnection(“jdbc:mysql://localhost:3306/student”, “root”, “root”);

 Class.forName(“com.mysql.jdbc.Driver”);

 int getcost = 0;

 int qty = Integer.parseInt(itemqty);

 int total = 0;

 Connection con =

DriverManager.getConnection(“jdbc:mysql://localhost:3306/securing”, “root”, “root”);

 Statement st = con.createStatement();

 Statement st1 = con.createStatement();

 ResultSet rs = st1.executeQuery(“select * from additem where productitem = ‘“ +

productitem + “‘ “);

 if (rs.next()) {

 getcost = rs.getInt(“itemcost”);

 }

 total = qty * getcost;

 System.out.println(“total is “ + total);

 // int i = st.executeUpdate(“update additem set productitem=‘“ + productitem +

“‘,brandname=‘“ + brandname + “‘,itemcost=‘“ + itemcost + “‘ where name=‘“ +

productname + “‘ “);

 int i = st.executeUpdate(“insert into card values(‘“ + UserID + “‘,’” + productname +

“‘,’” + productitem + “‘,’” + itemqty + “‘,’” + total + “‘)”);

61

 // out.println(“Data is successfully Updated!”);

 response.sendRedirect(“Product1.jsp?”);

 // response.sendRedirect(“Credit.jsp?”);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(EditRate.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SQLException ex) {

 Logger.getLogger(EditRate.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

 out.close();

 }

 }

 // <editor-fold defaultstate=“collapsed” desc=“HttpServlet methods. Click on the + sign on

the left to edit the code.”>

 /**

 * Handles the HTTP

 * <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

62

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

63

 return “Short description”;

 }// </editor-fold>

}

Updating Items:

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package Action;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

import java.sql.Statement;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

/**

64

 *

 * @author m

 */

public class Update extends HttpServlet {

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 PrintWriter out = response.getWriter();

 try {

 // HttpSession session = request.getSession(true);

 String productname = request.getParameter(“productname”);

65

 System.out.println(productname);

 String productitem = request.getParameter(“productitem”);

 String brandname = request.getParameter(“brandname”);

 String itemcost = request.getParameter(“itemcost”);

 String manaf_date = request.getParameter(“manaf_date”);

 Class.forName(“com.mysql.jdbc.Driver”);

 Connection con =

DriverManager.getConnection(“jdbc:mysql://localhost:3306/securing”, “root”, “root”);

 Statement st = con.createStatement();

 System.out.println(“database connected”);

 int i = st.executeUpdate(“update additem set itemcost=‘“ + itemcost + “‘ where

productitem=‘“ + productitem + “‘ “);

 response.sendRedirect(“ProductView.jsp?”);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(Update.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SQLException ex) {

 Logger.getLogger(Update.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

66

 out.close();

 }

 }

 // <editor-fold defaultstate=“collapsed” desc=“HttpServlet methods. Click on the + sign on

the left to edit the code.”>

 /**

 * Handles the HTTP

 * <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

 * @param request servlet request

67

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return “Short description”;

 }// </editor-fold>

}

Register:

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

68

package Action;

import java.io.IOException;

import java.io.PrintWriter;

import java.sql.*;

import java.sql.DriverManager;

import java.sql.Statement;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

/**

 *

 * @author m

 */

public class RegisterA extends HttpServlet {

 /**

 * Processes requests for both HTTP

 * <code>GET</code> and

 * <code>POST</code> methods.

 *

69

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 PrintWriter out = response.getWriter();

 Connection con = null;

 try {

 String productname = request.getParameter(“product”);

 String productitem = request.getParameter(“item”);

 String price = request.getParameter(“price”);

 String validity = request.getParameter(“validity”);

 String brandname = request.getParameter(“name”);

 String description = request.getParameter(“description”);

 // String validity = request.getParameter(“validity”);

 // String web_id = request.getParameter(“mail”);

 //String country = request.getParameter(“country”);

 System.out.println(productname + “\n” +productitem+”\n”+ price + “\n” + validity +

“\n” + brandname + “\n” + description + “\n”);

70

 //Connection con = Dbc.con();

 //con = Dbc.getConnection();//(Connection)

DriverManager.getConnection(“jdbc:mysql://localhost:3306/student”, “root”, “root”);

 Class.forName(“com.mysql.jdbc.Driver”);

 con = DriverManager.getConnection(“jdbc:mysql://localhost:3306/securing”, “root”,

“root”);

 System.out.println(“database connected”);

 Statement st = con.createStatement();

 int i = st.executeUpdate(“insert into

item(productname,productitem,price,validity,brandname,description) values(‘“ +

productname + “‘,’” + productitem + “‘,’” + price + “‘,’” + validity + “‘,’” + brandname +

“‘,’” + description + “‘)”);

 out.println(“Data is successfully inserted!”);

 } catch (ClassNotFoundException ex) {

 Logger.getLogger(RegisterA.class.getName()).log(Level.SEVERE, null, ex);

 } catch (SQLException ex) {

 Logger.getLogger(RegisterA.class.getName()).log(Level.SEVERE, null, ex);

 } finally {

 out.close();

 }

 }

 // <editor-fold defaultstate=“collapsed” desc=“HttpServlet methods. Click on the + sign on

the left to edit the code.”>

 /**

 * Handles the HTTP

71

 * <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP

 * <code>POST</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

72

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return “Short description”;

 }// </editor-fold>

}

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

 JDBCPieDataset dataset = new JDBCPieDataset(con);

 try {

 dataset.executeQuery(“Select `productitem`, `itemcost` From additem order by itemcost

desc”);

 JFreeChart chart = ChartFactory.createPieChart(“Pie Chart”, dataset, true, true, false);

 if (chart != null) {

 response.setContentType(“image/png”);

 OutputStream out = response.getOutputStream();

73

 ChartUtilities.writeChartAsPNG(out, chart, 450, 400);

 }

 }

 catch (SQLException e) {

 e.printStackTrace();

 }

 try {

 if(con != null){con.close();}

 }

 catch (SQLException e) {}

 }

}

	St. Cloud State University
	theRepository at St. Cloud State
	12-2017

	Securing Online Reputation Systems Through Temporal and Trust Analysis
	Sai Shruthi Veerannagari
	Recommended Citation

	tmp.1514320582.pdf.VdFMR

