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CORRECTIVE GREEDY ALGORITHM FOR FINDING THE 
STRAIGHT LINE SKELETON OF A SIMPLE POLYGON 

Amit Pamerkar 

The purpose of this paper is to introduce an algorithm for finding the Straight 
Line Skeleton of Simple Polygons that uses a "corrective greedy" approach. The 
thesis explores the behavior of a simple algorithm that attempts to find the Straight 
Skeleton using local information only. Since it is well known that local information_ 
alone is insufficient to find the Straight Skeleton [l, 9], the algorithm is at times forced 
to rollback/backtrack some of the computation done. Since it is hard to get an exact 
theoretical bound on the number of backtrack operations, we have tested the algorithm 
extensively on randomly generated star-shaped polygons. Our experimental results 
show that for star-shaped polygons, this approach gives us an O(n log n) behavior. 
Implementation for this algorithm is available through an applet at 
http ://web .stcloudstate. edu/rsamath/ skeleton/ straightSkeleton.htm. 

Straight Skeleton has several applications: layered manufacturing [10], 
drawing free trees inside rectilinear polygons [11], origami polygon cutting theorem 
(solve the fold-and-cut problem) [12, 13], label placement algorithms that locate a 
label at a centroid [14], to construct a polygonal roof over a set of ground walls [7] 
(see Figure 1.6), reconstruct a geographical terrain from a river map, character 
recognition (see Figure 1.5), etc. 

Straight Skeleton is a concept that was first introduced by Aichholzer in 1995 
[ 1] and is similar to medial axis. Finding medial axis can be achieved in linear time 
[15], but there are no known linear or nearly-linear algorithms for finding the Straight 
Skeleton. 

Several researchers have proposed algorithms for this problem. The fastest 
deterministic algorithm is the one by Eppstein and Erickson [5] which runs in O(nI+e 

8/ll+e 9/ll+e) h • h 1 b f • • h b f fl ( + n r w ere n 1s t e tota num er o vertices, r is t e num er o re ex non-
convex) vertices, and e is an arbitrarily small positive constant. More recently, a 
slightly faster randomized algorithm using O(n✓n log n) time and O(n) space was 
proposed by Cheng and Vigneron [6]. Our algorithm is an experimental algorithm and 
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runs faster than any of the known algorithms for computing Straight Skeleton of Star­
Shaped polygon. Figure 5.3 shows the comparison chart for all available algorithms at 
this time. 
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Chapter 1 

INTRODUCTION 

The purpose of this paper is to introduce an algorithm for finding the Straight 

Line Skeleton of Simple Polygons that uses a "corrective greedy" approach. The _ 

thesis explores the behavior of a simple algorithm that attempts to find the Straight 

Skeleton using local information only. Since it is well known that local information 

alone is insufficient to find the Straight Skeleton [1, 9], the algorithm is at times forced 

to rollback/backtrack some of the computation done. Since it is hard to get an exact 

theoretical bound on the number of backtrack operations, we have tested the algorithm 

extensively on randomly generated star-shaped polygons. Our experimental results 

show that for star-shaped polygons, this approach gives us O(n log n) behavior. 

. . . . . . . . . . . . . . . . . . . . 
I••••••••• : . . . . . . . . . . . . . . . . . . . . . . 
Figure 1.1 

A Simple Example of Straight Skeleton for Polygon 

1 
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A general polygon P, is defined by the line segments spanned by n points in 

the Euclidean plane; it is possible that a polygon could have self-crossing segments 

which is considered to be a non-simple polygon. Furthermore a simple polygon is a 

polygon without any hole (see Figure 1.2). 

(a) simple polygon (b) a non-simple polygon 

Figure 1.2 

Three Polygons 

SKELETONS 

D 
( c) non-simple polygon 

(polygon with hole) 

A Skeleton is a structure used to represent basic two dimensional structures. In 

this paper we are dealing with simple polygons. There are mainly two types of 

skeleton structures; medial axis and Straight Skeletons. Straight Skeleton is a concept 

that was recently introduced by Aichholzer in 1995 [1]. The Straight Skeleton is quite 

similar to the medial axis; the two are equivalent for convex polygons [16] (see Figure 

1.3). However, the Straight Skeleton of a non-convex polygon has lower 

combinatorial complexity than the medial axis, hence it is preferable over the medial 

axis. 



(a) convex polygon 

Figure 1.3 

Less than 180 degrees 

~ 

V 

(b) non-convex polygon with 
reflex vertex "v" 

Convex and Non-convex Polygon 

3 

Medial axis is the most widely used skeleton, which consists of all interior 

points whose closest point on the polygon's boundary is not unique. The collection of 

all these points will produce not only straight line segments but also curved arcs 

(parabolic arcs) in the vicinity ofreflex vertices of the polygon (see Figure 1.4a). If the 

exterior angle for any vertex in a polygon is less than 180 degree then it is called reflex 

vertex (see Figure 1.3b). 

The Straight Skeleton for a simple polygon, P, denoted S(P), can be defined by 

shrinking all of its edges at a constant rate and tracing the vertices' path (see Figure 

1.4b, formal definition is given in section 1.3). 
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(a) medial axis skeleton (b) Straight Skeleton 

Figure 1.4 

Two Types of Skeletons of the Same Polygon 

The advantage of Straight Skeleton, i.e., lower combinatorial complexity, is 

offset by the fact that fastest known algorithms for finding the Straight Skeleton are 

much slower and complex than those for finding the medial axis. Finding medial axis 

can be achieved in linear time [15], but there are no known linear or nearly-linear 

algorithms for finding the Straight Skeleton. 

APPLICATIONS OF STRAIGHT SKELETON 

The Straight Skeleton has several applications: layered manufacturing [10], 

drawing free trees inside rectilinear polygons [11], origami polygon cutting theorem 

(solve the fold-and-cut problem) [12, 13], label placement algorithms that locate a 

label at a centroid [14], to construct a polygonal roof over a set of ground walls [7] 

(see Figure 1.6), reconstruct a geographical terrain from a river map, character 

recognition (see Figure 1.5), etc. The definition of the Straight Skeleton can be 
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generalized to arbitrary planar straight line graphs, where it has (potential) 

applications to planar motion planning, and to three-dimensional polyhedra, where it 

has potential applications in solid modeling. 

(a) "SCSU" polygon 

(b) skeleton inside polygon 
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(c) Straight Skeleton for "SCSU" polygon letters 

Figure 1.5 

Straight Skeleton for the Letters "SCSU" 



(a) walls of a house 

Figure 1.6 

(b) Unique roof such that all faces 
have same slope 

Ground Walls and Corresponding Roof 

STRAIGHT SKELETON CONSTRUCTION PROCESS AND PROPERTIES 

7 

The formal definition of Straight Skeleton S(P) of polygon P is the union of 

the pieces of angular bisectors found by polygon vertices during the shrinking process 

(see Figure 1.7). Each edge e sweeps out a certain area which is called a plane or face 

of e. Bisector pieces are called rays, and their endpoints which are not vertices of P 
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are called nodes of S(P). It uniquely partitions the interior of given n-gon P into n 

monotone polygons, one for each edge of P. 

. . . . . . . . . . . . . . . . . . . . .......... : . . . . . . . . . . .. . . . . . . . . . . 

(a) shrinking process (b) Straight Skeleton in dashed line 

Shrinking Process 

Figure 1.7 

Shrinking Process 

The shrinking process creates two kinds of events (see Figure 1.8). 

1) An edge event occurs when an edge length decreases to 0. The edges 

neighboring that edge (if they still have a positive length), become 

adjacent. As a result we get a polygon with one fewer edge. 

2) A split event occurs when a reflex vertex collides with an edge. This splits 

the edge and changes adjacencies. As a result we get two polygons which 

again shrink recursively. 



Split Event 

Figure 1.8 

Shrinking Process, Edge Event and Split Event 

COMPARISON WITH MEDIAL AXIS 

9 

If P is an n-gon with r reflex vertices then S(P) realizes in 2n-3 arcs whereas 

medial axis of P realizes 2n- 3+r arcs, r of which are parabolically curved. The part of 

S(P) interior to P has only n-2 nodes, whereas medial axis of P has n+r-2 nodes. Thus 

Straight Skeleton gives lower combinatorial complexity over medial axis 

representation. For convex polygons both medial axis and Straight Skeleton are the 

same. 

Although the medial axis can be constructed in linear time, the fastest known 

algorithms for Straight Skeletons are much slower. The main difficulty is that 

changing the positions or angles of reflex vertices has a significant non-local effect on 

the skeleton. This non locality makes techniques such as incremental construction or 

divide-and-conquer fail. 



COMPLEXITY ANALYSIS OF PRESENT ALGORITHMS 

Several researchers have proposed algorithms for Straight Skeleton problem. 

The fastest deterministic algorithm is proposed by Eppstein and Erickson [5] which 

runs in O(n 1
+e + n8111

+e-,JII I+e) where n is the total number of vertices, r is the number 

of reflex (non-convex) vertices, and e is an arbitrarily small positive constant. More 

recently, a slightly faster randomized algorithm using O(n✓n log n) time and O(n) 

space was proposed by Cheng and Vigneron [6]. The following table summarizes 

these results [9]. 

Time S ace Reference 
O(n) 2 
O(nr [4] 
O(nr) [1, 5, 8 
O(n) [2, 5] 

O(n + 3] 
O(n +e + n [5] 

O(n) [6 

The Algorithm presented here employs a "corrective greedy approach." This 

approach was tried earlier by Huang [16], but the implementation encountered 

anomalies that were not fully addressed. 

ANOMALIES IN PREVIOUS APPROACH 

The implementation used a roof model (3 dimensional) to construct Straight 

Skeleton. It considered each edge of the polygon as a plane and considered the lowest 

height of the three adjacent planes having a constant slope and intersecting locally at 
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the point where the plane or edge can be collapsed. This was enough for general cases, 

but for some polygons direction of rays plays a key role. Huang's work did not take 

into consideration a lot of factors which gave rise to two anomalies, (i) Infinite loop 

and (ii) Self-Intersecting skeleton. 

In Infinite Loop, the rays will cause an infinite loop in which same set or sets 

of edges keep getting committed and backtracked because the algorithm has 

incorrectly determined ray's directions (i.e., growing direction of Straight Skeleton) 

Self- Intersection is caused by directional problem and results in the self-intersection 

of the Straight Skeleton, where the arcs of skeleton intersect with itself (see Figure 

1.9) and results in incorrect Straight Skeleton. 

Figure 1.9 

Self-intersecting Skeleton Anomaly 

(Incorrect Straight Skeleton) 



Chapter2 

GOALS OF THE PROJECT 

There are very few papers dedicated to the implementation of Straight Skeleton 

problem, and all these algorithms are complicated since they need to simulate edge 

events and split events. The split events introduce the element of non-locality into the 

problem. As can be seen in Figure 2.1 split events can involve an edge and a vertex 

that are not adjacent. Researchers have tried to attack this problem by tracking all the 

information simultaneously (i.e., global computation). Such an approach 1s more 

expensive since there is quadratic number of calculations at each step. 

Our approach is different from previous implementations in that it uses a 

greedy algorithm. However greedy algorithms use only local information to make 

decision whereas we know that local information is not sufficient to address this 

problem. We identify the cases when greedy algorithm makes a mistake and for those 

cases we backtrack/rollback to a safe or error-free state and again start working in a 

direction where we will avoid those cases. Thus at the end we get fully constructed 

Straight Skeleton. 

12 
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Figure 2.1 

Split Event and Edge Event in Shrinking Process 

In order to understand the behavior of the Corrective Greedy Algorithm for 

Straight Skeleton better, we have to use fairly complicated polygons which have a 

large number of reflex vertices. We chose star-shape polygons to test our algorithm for 

the following reasons: 

1) Star-shaped polygons can have as many as n/2 reflex vertices. Since the 

complexity of the Straight Skeleton depends heavily on the number of 

reflex vertices, these polygons serve as a good representative sample. 

2) It is easy to generate random instances of star-shaped polygons, as 

described below. It is not clear that there is such a procedure for arbitrary 

simple polygons. 

3) Star-shaped polygons have been studied in other contexts and have some 

interesting properties. Although our algorithm does not use any of these 

properties, it would be interesting to examine, at a later stage, algorithms 

tailored to computing the skeleton of a star-shaped polygon. 
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STAR-SHAPED POLYGON 

In a star-shaped polygon there exist an interior point such that all the boundary 

points of the polygon are visible from that interior point. Two points' p and q are said 

to be visible if the straight line segment between them does not intersect any edges 

(see Figure 2.2). 

Figure 2.2 

Star-shaped Polygon 

The star-shaped polygons are randomly generated as follows; consider two 

concentric circles of radius R and r respectively. The ratio r/R, called the spike value 

of the polygon, is what decides how sharp the reflex vertices will be. 
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Figure 2.3 

Two Concentric Circles with Radius r and R 

To generate a polygon with n vertices, divide the two circles into n sectors. Let 

S; denote the i'h sector, X; is a random number in [r/R . .l]. The vertex v0 on the radius 

separating S; and S;+J is at a distance R*x;from the centre (see Figure 2.4). 

Figure 2.4 

Two Concentric Circles with n Sectors for Polygon Size n 

We have built the star-shape polygon generation algorithm in a way that it can 

generate random star-shape polygon for given polygon size and spike. Though we 
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tested all our tests for the range of spike values 0.2, 0.4, 0.6, 0.8 (see Figure 2.5); for 

running time calculation we tested it for a spike of 0.4 only, which generates fairly 

complicated polygons. We did not use a smaller spike since it sometimes generates 

rounding errors in the computation. 

(a) 0.2 spike (b) 0.4 spike 

(c) 0.6 spike (d) 0.8 spike 

Figure 2.5 

Star-shaped Polygon with Different Spikes 



Chapter 3 

THE APPROACH 

The difficulty in computing the Straight Skeleton is partly because it is defined 

by the shrinking process and not by any properties. We observed that one way of 

simulating the shrinking process is to see the movement of the vertex common to two 

adjacent edges. This vertex moves inwards along the angular bisector of those two 

adjacent edges. Similarly, the intersection point of adjacent angular bisector suggests 

that the edge common to these two angular bisector is shrunk to zero and hence we 

represent an edge event. However this does not incorporate a mechanism to represent 

a split event caused by a reflex vertex. 

PRELIMINARIES 

The following results from [ 1] give us some useful properties of the Straight 

Skeleton: 

Lemma 1 S(P) is a tree and consists of exactly n connected faces, n - 2 nodes 

and 2n - 3 arcs. 

The construction of a face f(e) starts at its edge, e, of P. The construction of f(e) is 

completed when every part of e has shrunk to zero. Ase cannot reappear again,f(e) is 

connected, and S(P) is acyclic. 

17 
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Two types of arcs of S(P) can be distinguished. Each arc is a piece of the 

angular bisector of two edges e and e' of P or, more precisely, of the lines l(e) and 

l(e J supporting these edges. Note that the angular bisector of l(e) and l(e; actually 

consists of two lines that intersect at l(e)nt(e;. We single out the one relevant for S(P) 

as follows. Each line l(e) defines a halfplane h(e) that contains P near e. One of the 

bisector lines intersects the wedge h(e)nh(e J while the other avoids it. We call the 

former the bisector of the edges e and e '. An arc a defined by this bisector is called a 

convex arc or a reflex arc depending on whether its wedge contains e and e' in its 

boundary or not. We also consider a as labeled by the ordered pair ( e, e '). The order 

reflects the side of a where l(e) contributes to the boundary of the wedge. 

Each convex (reflex) vertex of P obviously gives rise to a convex (reflex) arc 

of S(P). While convex arcs can also connect two nodes of S(P) this is impossible for 

reflex arcs. 

Lemma 2 Reflex arcs of S(P) only emanate from reflex vertices of P. 

Let vu be an arc emanating from some vertex v of P. Then u is a node which 

corresponds either to an edge event or to a split event. It suffices to show that, after the 

event, S(P) continues at u with convex arcs only. 

In the former case, let vw be the vanishing edge. Since the arc wu meets vu at 

u, u is a convex vertex of the shrunk polygon after the event. In the latter case the 

polygon splits at u. It is obvious that, after that event u is a convex vertex of both new 

polygons. 

Thus each new vertex generated during the shrinking process is convex. 
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INTRODUCTION TO THE CORRECTIVE GREEDY ALGORITHM 

As discussed before the intersection point of adjacent angular bisector of two 

edge sequence suggests that the edge common to these two bisector is shrunk to zero. 

The idea for the Corrective Greedy Algorithm is simple; it looks for these intersection 

points to see which edge should collapse first (find local minimum) and at the end 

connect all these points together to form the Straight Skeleton. However since greedy 

algorithm uses only local information we can represent only edge events, in the case of 

split events the algorithm has to backtrack or undo the work it has done previously 

until it reaches a safe state and then start again. 

Local Minimum 

A local minimum is defined as the pair of edge sequence which can be 

combined to represent edge event. To find the local minimum for a region, start with 

an edge sequence say E12 and its angular bisector b12 (see Figure 3.1); now consider 

the intersection of adjacent angular bisectors bn1, b23 corresponding with edge 

sequence En1 and E23. Check to see which neighbor is intersecting b 12 closer to its 

origin (say b23 in this case). Now consider b23 and its neighbor sequences b12 and b34. 

Note in Figure 3.1 b12 is still intersecting b23 closer to its origin when compared with 

the intersection point formed by b34 and b23, so report [E12, E23] as local minimum, 

else if b34 intersects b23 closer to its origin then check recursively local minimum using 

£34 as start sequence. 
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Corrective Greedy Algorithm 

The algorithm starts with n rays, one from each vertex of the polygon. The 

algorithm has to find all nodes of the skeleton. At each step, one more node is added 

by combining two adjacent rays. The rays to be combined are chosen so that their 

point of intersection is a local minimum. (In Figure 3.1 b 12 & b21 intersect at a local 

minimum since rays b12 & b23 reach P before intersecting any other ray.) P becomes a 

node and we replace b12 & b23 by b13 and continue the process. 

Backtrack occur in situations like one in Figure 3.2, when b34 and b45 were first 

combined to get b35 . Later, b12 & b23 were combined and we find that the combination 

of b34 & b45 has to be undone, because the origin of b15 and right end point of edge e3 

(common to b13 & b35) are on different sides of b13. Backtracking is further discussed 

in Chapter 4. 

Clearly the time taken by this process depends on how often we have to undo 

these intersections. The current research has fully implemented this algorithm and 

attempted to find a relationship between the number of undo (backtrack) operations m, 

and the number of vertices n by testing the algorithm on several instances. 



Figure 3.1 

Construction Process 

Figure 3.2 

Backtrack Condition 
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Chapter 4 

ALGORITHM DETAILS 

NOTATION 

Simple Polygon 

A polygon P in which no two non-consecutive edges intersect is called simple 

polygon. Simple polygons can be further classified as convex and non-convex 

polygon. A polygon Pis convex if and only if all the exterior angles are greater than 

180 degrees, otherwise it is a non-convex or concave polygon. 

Let P be a polygon with vertices Vi, Vi ... , Vn and edges e1, e2 ... , en where e; 

connecting Vi and Vi+1. The vertices are labeled in a counter clockwise direction so 

that when we walk from Vi toVi+1, the interior of the polygon lies on the left hand side 

Figure 4.1 (b ). 

Convex and Reflex Arcs 

S(P) is a tree and consists of exactly n connected faces, n-2 nodes and 2n-3 

arcs, Lemma l[l] . Arc is a piece of angular bisector of two edges e and e' of P. S(P) 

can have two types of arcs convex and reflex. Reflex arcs of S(P) only emanate from 

reflex vertices of P, Lemma 2[1]. 
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(a) polygon 

Edge Sequence 

Interior of polygon 

(b) edge sequence 

Figure 4.1 

Polygon and Edge Sequence 
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An edge sequence of the polygon is any subset of contiguous edges. At the 

start, we haven edge sequences e1e2, e2e3 ... , e;e;+J ... , ene1. Associated with any edge 

sequence e;e;+J ... e1, we have a bisector bif, which is the bisector of the angle defined 
--. --. 

by the rays e;+1e; and e1_1e1. At each iteration we try to reduce appropriately the number 

of edge sequences by choosing some pair of adjacent edge sequences, say, e;e;+1 ... e1 

also represented as Eif. The edge sequence is called ground edge sequence if the origin 

of the angular bisector of that edge sequence is same as a vertex of the original 

polygon. 

Unifi.ability of Edge Sequences 

Consider the edges e;, e;+J .. . , e1; if the edges e; and e1 are extended (either as 

semi infinite line or until they intersect) we induce a partitioning of the plane. Using 
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the bisectors of the interior angles of the vertices in the edge sequence, we can define 

the skeleton of the edge sequence. An edge sequence is said to be unifiable if its 

skeleton contains exactly one semi-infinite line. (The edge sequence e1 e2 e3 e4 in 

Figure 4.2 (b) is not unifiable). 

Wrap of an Edge Sequence 

The wrap of an edge sequence e; ... , e1 is defined as the sum I\ = i+l 0k, where 0k 

is the signed exterior angle at vertex Vi- The sign of 0k is positive if the angle as shown 

in the figure is counter clockwise and negative otherwise. 

Lemma 4.1. Let a be any arc of the Straight Skeleton, such that a bisects the 

angle formed bye; and e1,J>i, then either e; and e1 are adjacent edges or the wrap of 

the sequence e; ... e1 lies between O and 27c. 

(a) edge sequence and wrap 
I 

I 

I 

~ 
I 

I 

(b) Straight Skeleton of ( a) 

Table 4.2 

Edge Sequence and Partial Straight Skeleton of Polygon 
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Proof. If e; and e1 are adjacent then a. obviously belongs to the Straight 

Skeleton. It is easy to verify that if the wrap is less than 0, the interior angle defined by 

--+ --+ 
the rays Vi+1 Vi and T7Jf7J+1 is reflex. Thus it follows from Lemma 2 that the bisector of 

e; and e1 can not belong to the Straight Skeleton. 

On the other hand if the wrap is greater than 21r we have situation like one in 

Figure 4.3 (a) In this case the wrap of the edge sequence e1,e1+k--e; is less than 0, i.e., 

the interior angle formed by the rays Vi+ 1 V; and J7J f7J+ 1 is reflex and therefore this -

bisector can not belong to this partial Straight Skeleton ( end of proof). 

The above lemma shows that edge sequence Eif is unifiable if the wrap lies in 

the range (i.e. , lies between 0 and 2rr). We say that two adjacent edge sequences Eif 

and E1k are unifiable if E;k is unifiable. 

(a) the interior angle between ei 
and ej is reflex 

(b) snapshot of FindLocalMinimum algorithm 

Figure 4.3 

The Interior Angle Between ei and ej is Reflex 
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The entire algorithm can therefore be summarized as follows: 

1) At the start we have n edge sequences e 1e2, e2e3 . .. , eiei+l ••· , ene1 each 

consisting of two edges. 

2) At each step we identify two adjacent edge sequences that can be 

combined, taking into account the wrap and any backtracks that need to be 

performed. 

3) The algorithm terminates when we are left with three unifiable edge 

sequences. 

DETAILS OF THE ALGORITHM 

Initialize Data Structures 

a) Store edge sequences E12, £23 .. . , En1 corresponding to vertex Vi, Vi ... , Vn in 

a circular list. 

b) For each vertex Vi, compute the angular bisector going inwards into the 

polygon. This bisector is represented by the unit vector bi. (for an edge 

sequence Eij, we denote this vector as bij)-

Main Algorithm 

While the circular edge sequence list has three or more edge sequences left 

a) Find a pair of adjacent edge sequences [Eij, Ejk] such that the intersection of 

the half-lines bii and bik forms a local minimum, as explained in Algorithm 

FindLocalMinimum ( 4.2.3). 
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b) Check if the combination of bij and bjk causes self-intersection, as explained 

in Algorithm Remove Self-intersection (4.2.4). 

c) Check if the resultant bisector b;k causes backtrack to its neighboring edge 

sequences as explained in Algorithm Check Backtrack ( 4.2.5). 

d) Combine Eij and Ejk to form one edge sequence Ejk• Remove Eij and Ejk and 

insert E;k into list of edge sequence. 

Algorithm FindLocalMinimum (Eij) 

Edge sequence Eu has bisector bij and Oij as the origin of bisector. Consider the _ 

left and right neighbor sequences of Eij as Eu and Ejk with bu, bjk as bisectors and Ou, 

Ojk as their origin (see Figure 4.3 b). 

Compute the intersection point of bisectors bij and bjk as a;k and bu & bij as au 

Assume without loss of generality that distance from Oij to au is less than distance 

from Ou to a;k (the other case can be solved in similar fashion) which can also be 

represented as Distance (Oij, a1J < Distance (Oij, ai/J, 

1. If Eij and Eu are not unifiable then call FindLocalMinimum (Eu) 

2. If Eij and Eu are unifiable, let Ep1 denote the left edge sequence of Eu. 

2.1 Ep1 and Eu are not unifiable then report the combination [Eu, Eij] as 

local minimum. 

2.2 Otherwise, if Ep1 and Eu are unifiable then check to see if Distance 

(Ou, apJ > Distance (Ou, a1J if it is, then report the combination [Eu, 

Eu] as local minimum, else call FindLocalMinimum (Ep1). 
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Algorithm RemoveSelflntersection (Eij) 

Let e3, e 1, ... , X, e2, e 4 be the edge vectors, and the bisector of E13 causes self 

intersection (see Figure 4.6). 

Unify the edge vectors e3, e 1 . . . , Xbefore we include e2 

a) Check to see if edge sequence formed by e1 .... ,Xis unifiable or not, 

If they are not unifiable then undo X and repeat this process until 

they are unifiable 

b) Try to unify in between e 3 and X until e 1 gets included ( at this point _ 

we are out of self intersection) 

Algorithm CheckBacktrack (Eij) 

Check if edge sequence Eij is backtracking its neighbors Eu and Ejk by 

performing two tests given below, if both are successful then backtrack detected. 

Below are the steps for checking if Eij is backtracking Ejk or not. (Similar procedure 

can be followed for checking backtrack for Eu) 

a) Perform the half-plane test 

1. Take left most edge vector of Ejk which is the edge common 

between Eij and Ejk and take its right point, we call it Vm. Consider 

the two half planes defined by the line containing bij. If the origin of 

bjk and Vm lie in different half planes, we say the half plane test is 

successful. 
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b) Local minimum test 

1. Find out the local minimum with respect to EiJ if it returns Eu and 

EiJ then check to see if the resultant of [Eu, EiJ] is intersecting with 

b1k, if it is intersecting, then calculate the intersection point of [ Eu, 

EiJ] bisector with biJ and bik• Checks to see which one is closer to 

origin of [Eu, EiJ]; if b1k is closer then there is no backtrack. If any of 

the above condition fails then backtrack is detected. 

11. If FindLocalMinimum(EiJ) does not return [Eu, EiJ] as combination 

then backtrack detected. 

Algorithm UndoEdgeSeguence (EiJ, d) 

Undo edge sequence EiJ to depth d. While we reach depth d do the following 

steps, 

a) Remove edge sequence EiJ from the list and take out its left and right 

children as Eu and E1k and insert them in the list. 

b) Check to see if Eu and E1k is causing any backtrack to their neighbor 

c) Decrement depth d 

d) Repeat this process until d reaches zero. 

Algorithm RemovelnfiniteLoop O 

Sometimes infinite loop is detected when :findLocalMinimum fails to return a 

combination of edge sequence and goes to infinite recursive mode. It usually happens 

because we get a combination of alternate reflex and convex arcs ( always an even 
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number of arcs e.g., 4, 6, 8). Once this scenario is detected, the following steps can be 

used to remove it. 

1. Combine the first reflex arc with corresponding convex arc and repeat this 

process until all the combination of reflex and convex arc got combined. 

Algorithm is UnifiableEdgeSequence (Eu, Ejk) 

This process will test the unifiability of two edge sequences Eu and Ejk based 

on two tests given below. 

a) Check to see if the bisectors (which are unit vector going inwards in 

polygon) bu and bjk meets in forward direction of there origin. 

b) Check to see if the wrap or angle 0 is in between valid limits (i.e., lies 

between O and 21r) for Eu and Ejk• 

BACKTRACK EXAMPLE 

Let E24 is the newly combined edge sequence and hence b24 is the newly 

formed bisector. As we are maintaining backtrack free invariant, after every 

combination of edge sequence the algorithm will check if the newly formed bisector is 

backtracking any of its immediate neighbor, in this case left and right bisectors are 

denoted by b 12 and b46. The left edge sequence is ground sequence hence there is no 

need to check for backtrack but for right edge sequence b46 the algorithm will work as 

explained in Algorithm Check Backtrack (4.2.5). 
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Origin of b 46 bisector and the right point Vs of leftmost edge vector e4 of edge 

sequence E46 lies on different half planes of bisector b24, so half-plane test is 

successful (Figure 4.4). 

, 

, 
, , 

, 
, 

, 

Figure 4.4 

Backtrack Scenario I 

(Shows half-plane test is successful in this scenario, as origin of b46 and right point of 
leftmost edge vector of E46 lies on different half-plane of b24) 

After half-plane test the algorithm test for the second condition is shown in 

Figure 4.5 The local minimum corresponding to b24 returns b 14 as the resultant. Now 

check to see if b 14 and b46 are intersecting or not. If b 14 and b46 formed valid 

intersection then no backtrack detected otherwise backtrack is detected and b46 needs 

to be undone till we get b45 and b56• 



Figure 4.5 

Backtrack Scenario II 
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(Two possible conditions are shown in the figure, b14 meets b46 in forward direction 
(no backtrack) and in the other its meeting behind b46 (detecting backtrack)) 

SELF-INTERSECTION EXAMPLE 

A self-intersection occurs in a situation like the one in Figure 4.6. Here b2,12 is 

ray emerging from the skeleton of E2, 12 and b1,2 is the ray emerging from the skeleton 

of E1,2. b2,12 intersects the skeleton of E2, 12 before it meets b1,2. Here part of the 

skeleton of E2,12 has to be undone. This situation suggests that edge e12 should be 

included after we include edge e1 in the skeleton for Eu2-



Figure 4.6 

Self-intersecting Skeleton Example 

(bisector b2.12 is intersecting one of its own bisectors arcs previously formed) 

SNAPSHOTS OF CONSTRUCTION PROCESS 

33 

This section explains the skeleton construction process by taking snapshots of 

a simple polygon. The polygon is labeled in counter clock-wise direction as a 

sequence of edge vectors e1, .. e16. 



Figure 4.7 a 

Polygon Snapshot 

( construction process snapshots are shown below) 
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The corrective greedy algorithm starts finding local minimum using E1.2 (edge 

vector e1, e2) as reference edge sequence. E1,2 is not unifiable with its left neighbor 

(E16,1) and right neighbor (Ev), so findLocalMinimum algorithm shifts one edge 

sequence in right (counter clock-wise) direction with E2.3 as new reference edge 

sequence. Again the left neighbor of Ev is not unifiable but right neighbor E3.4 is 

unifiable. To find the local minimum check to see if Ev and E3.4 are local minimum, 

this can be done by recursively calling findLocalMinimum with E3.4 as reference edge 

sequence, if it still returns E2.3 and E3.4 then it is indeed the local minimum. In this 

case as we can see that angular bisector of Ev is intersecting E3.4 closer to its origin 
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than the bisector of E4,5 edge sequence. As shown in Figure 4. 7 b the first edge 

collapsed is e3 by combining edge sequence Ev and E3.4. 

Backtrack occurs in Figure 4. 7 f and the algorithm has to undo some part of 

skeleton which was computed before. The next backtrack is encountered at Figure 4. 7 

j which we will discuss here. At this snapshot b4,10 is the bisector for edge sequence 

combining edge vector e4 .. e10. This bisector is backtracking its left neighbor b2.4 

formed previously by combining e2 .. e4 edge vectors. As can be seen by backtrack 

definition earlier, the origin of b2,4 and left point of edge e4 common between edge 

sequence E2,4 and E4,1o lie on different half-plane of b4,10 bisector. Thus edge sequence 

E2,4 has to be undone as shown in Figure 4.7 k 

Figure 4.7 o shows self-intersection which was discussed earlier. Thus the 

algorithm in this case computed 7 extra computation because of two backtracks and 

one self-intersection. The last Figure 4. 7 s shows fully constructed Straight Skeleton. 

Figure 4.7 b Figure 4.7 c 
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Figure 4.7 d 
Figure 4.7 e 

Figure 4.7 f 
Figure 4.7 g 

Figure 4.7 h 
Figure 4.7 i 
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Figure 4.7 j 

Figure 4.7 k 
Figure 4.71 
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Figure 4.7 m Figure 4.7 n 

Figure 4.7 o Figure 4.7 p 

Figure 4.7 q Figure 4.7 r 
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Figure 4.7 s 



Chapter 5 

RESULTS OBTAINED AND ANALYSIS 

We have tested the algorithm extensively on randomly generated star-shaped 

polygons. Our experimental results show that for star-shaped polygons, this approach 

gives us an O(n log n) behavior. The results from the implementation shows that the 

algorithm has no anomalies which existed before (self-intersection, infinite loop, 

wrong backtrack). 

This is an experimental algorithm and runs faster than any of the known 

algorithms for computing Straight Skeleton of star-shaped polygon. 

STATISTICAL CHART 

As mentioned earlier, n denotes the number of vertices and m denotes number 

of backtracks. Each backtrack can be computed in log n time using simple data 

structures, the algorithm runs in O((n + m) log n) time. Since it is hard to get a good 

theoretical bound on m, we have done this experimentally. To do this, we have 

focused on the special case of star-shaped polygon since it is possible to randomly 

generate a large number of instances of such polygons. The information captured 

helped us in analyzing running time and backtrack counts for the algorithm. 
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Running Time 

Running time of this algorithm as mentioned is O(n log n + m log n) where m 

is the number of backtracks and n is the number of vertices (Figure 5.1). Though in the 

worst case we will have n/2*n/2 backtracks and hence worst case will be O(n2 log n) 

as shown in Figure 5.2, though it is based on theoretical assumptions as in all of our 

tests on star-shaped polygons, we have not come across any case which has shown 

such a behavior. We experimented with randomly generated star shape polygons and 

plotted the running time with respect to vertex size (n) as shown in Figure 5.1. For 

each value of n, we generated 50 instances and took the average of all these running 

times. 
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Running time Vs Vertex size 
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Average Case and Worst Case Running Time of the Algorithm 
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Running time Vs Vertex size of Star-shaped polygon 
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Figure 5.3 

Comparison of Running Time of All Available Algorithms for Straight Skeletons 

(our approach is at the bottom which shows it is more efficient than other algorithms) 

Number of Backtrack per Vertex 

The number of backtrack or intersections computed, m, plays an important role 

in determining the running time of algorithm. Since it is hard to get a good theoretical 

bound on m, we have done this experimentally. To estimate m, we generated 2000 

random polygons of 100 vertices each. For each value of a (backtrack per vertex) we 

counted the number of input instances that had an (min) < = a (cumulative 

distribution function). This plot for n = 100 and n = 200 is given in figure 5.4. The 

graph shows that 90% of the test result has 1.2 intersections computed per vertex. 
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- 100 Vertex 
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Figure 5.4 

Cumulative Distribution Function of Number of Intersections Computed 
per Vertex 

The experimental result in Figure 5.4 suggests that the value of m or the 

number of extra intersections calculated is not very high. This is further strengthened 

by the cumulative distribution function whose sigmoid shape suggests that we can 

expect a good average case performance and perhaps a good worst case behavior with 

high probability using this approach. 
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I II Histogram I_ 

The histogram shows the distribution of backtracks calculated for 2000 star­

shaped polygons. These charts (CDF and Histogram) show that even ifwe increase the 

number of vertices in star shape polygon the number of intersection computed per 

vertex is less in general, although we might get some results where it is more but the 

probability for that is very less as we saw in the histogram there are only 2 results 

which has backtracks in 185 to 200 range. 



Chapter 6 

CONCLUSION 

The thesis explores the behavior of a simple algorithm that attempts to find the 

Straight Skeleton using local information only. The difficulty in computing the 

straight skeleton is partly because it is defined by the shrinking process and not by any 

properties. Several researchers have proposed algorithms for this problem. The fastest 

deterministic algorithm is the one by Eppstein and Erickson [5] which runs in O(n1
+e 

+ n8111
+e.;/JJ+e) where n is the total number of vertices, r is the number ofreflex (non­

convex) vertices, and e is an arbitrarily small positive constant. More recently, a 

slightly faster randomized algorithm using O(n✓n log n) time and O(n) space was 

proposed by Cheng and Vigneron [6] . 

We have tested the algorithm extensively on randomly generated star-shaped 

polygons. Since it is hard to get a good theoretical bound on m (backtracks), we have 

done this experimentally. Furthermore, star-shaped polygons have fair amount of 

reflex vertices and can be generated randomly using a program for testing. Our 

experimental results show that for star-shaped polygons, this approach gives us an O(n 

log n) behavior. The results from the implementation shows that the algorithm has no 

anomalies which existed before [16] (self-intersection, infinite loop, wrong backtrack). 
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This is an experimental algorithm and runs faster than any of the known algorithms for 

computing straight skeleton of star-shaped polygon (Figure 5.3 shows the comparison 

chart for all available algorithms at this time) 

FUTURE WORK 

1. Using 3D model for detecting backtracks without any false alarm (as we 

observed in our approach which is 2D, we sometimes get false backtracks). 

2. This algorithm does not use the knowledge of where the "centre" of the 

star-shaped polygon lies. That may help improve the performance of the 

algorithm and also help to extend this approach to the case of general 

polygons by decomposing them into star-shaped polygons. 

3. A star-shaped polygon can be covered by a single "guard" placed at the 

centre. Does the complexity of finding the skeleton depend on the number 

of "guards" needed to cover the polygon? 
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