
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Computer Science and
Information Technology

Department of Computer Science and
Information Technology

8-2004

Corrective Greedy Algorithm for Finding the Straight Line Skeleton Corrective Greedy Algorithm for Finding the Straight Line Skeleton

of a Simple Polygon of a Simple Polygon

Amit Parnerkar

Follow this and additional works at: https://repository.stcloudstate.edu/csit_etds

 Part of the Computer Sciences Commons, and the Mathematics Commons

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit_etds
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit
https://repository.stcloudstate.edu/csit_etds?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=repository.stcloudstate.edu%2Fcsit_etds%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages

CORRECTIVE GREEDY ALGORITHM FOR FINDING THE

STRAIGHT LINE SKELETON OF A SIMPLE POLYGON

by

Amit Pamerkar

B.E., Devi Ahilya University, Indore, India, 1999

A Thesis

Submitted to the Graduate Faculty

of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

St. Cloud, Minnesota

August, 2004

This thesis submitted by Amit Pamerkar in partial fulfillment of the
requirements for the Degree of Master of Science at St. Cloud State University is
hereby approved by the final evaluation committee.

Chairperson

ek'

-:DooNo ~unK
Dean
School of Graduate Studies

CORRECTIVE GREEDY ALGORITHM FOR FINDING THE
STRAIGHT LINE SKELETON OF A SIMPLE POLYGON

Amit Pamerkar

The purpose of this paper is to introduce an algorithm for finding the Straight
Line Skeleton of Simple Polygons that uses a "corrective greedy" approach. The
thesis explores the behavior of a simple algorithm that attempts to find the Straight
Skeleton using local information only. Since it is well known that local information_
alone is insufficient to find the Straight Skeleton [l, 9], the algorithm is at times forced
to rollback/backtrack some of the computation done. Since it is hard to get an exact
theoretical bound on the number of backtrack operations, we have tested the algorithm
extensively on randomly generated star-shaped polygons. Our experimental results
show that for star-shaped polygons, this approach gives us an O(n log n) behavior.
Implementation for this algorithm is available through an applet at
http ://web .stcloudstate. edu/rsamath/ skeleton/ straightSkeleton.htm.

Straight Skeleton has several applications: layered manufacturing [10],
drawing free trees inside rectilinear polygons [11], origami polygon cutting theorem
(solve the fold-and-cut problem) [12, 13], label placement algorithms that locate a
label at a centroid [14], to construct a polygonal roof over a set of ground walls [7]
(see Figure 1.6), reconstruct a geographical terrain from a river map, character
recognition (see Figure 1.5), etc.

Straight Skeleton is a concept that was first introduced by Aichholzer in 1995
[1] and is similar to medial axis. Finding medial axis can be achieved in linear time
[15], but there are no known linear or nearly-linear algorithms for finding the Straight
Skeleton.

Several researchers have proposed algorithms for this problem. The fastest
deterministic algorithm is the one by Eppstein and Erickson [5] which runs in O(nI+e

8/ll+e 9/ll+e) h • h 1 b f • • h b f fl (+ n r w ere n 1s t e tota num er o vertices, r is t e num er o re ex non-
convex) vertices, and e is an arbitrarily small positive constant. More recently, a
slightly faster randomized algorithm using O(n✓n log n) time and O(n) space was
proposed by Cheng and Vigneron [6]. Our algorithm is an experimental algorithm and

111

runs faster than any of the known algorithms for computing Straight Skeleton of Star
Shaped polygon. Figure 5.3 shows the comparison chart for all available algorithms at
this time.

2Aw ~
Year Approved by Research Committee:

£~
Ramnath Samath Chairperson

IV

ACKNOWLEDGMENT

I am thankful for having the unique experience of working on my Masters

thesis at St. Cloud State University and for successfully implementing the project.

First and foremost, I would like to recognize the unrelenting support from my advisor

Dr. Sarnath Ramnath during all of the work towards this thesis.

Secondly, I wish to thank Dr. Peiyi Zhao, for her timely help, especially for

geometry. I would also like to thank Dr. Andrew Anda for his kind help in guiding me

in writing the report. Finally, my parents and my brother are always my firmest

support through all of my life. I would also give many thanks to them. I sincerely

express my gratitude to Dr. Samath for giving me an opportunity to work on the

excellent concept of straight skeleton.

V

TABLE OF CONTENTS

Page

LIST OF FIGURES ••••••• •••• ••••••••••••••••••• ••• ••• •• •• •••••••••••••••• •••• •••••••• •••••••••••••••• ••• •••• •••• lX

Chapter

1. INTRODUCTION 1

SKELETONS 2

APPLICATIONS OF STRAIGHT SKELETON 4

STRAIGHT SKELETON CONSTRUCTION PROCESS
AND PROPERTIES 7

Shrinking Process . 8

COMPARISON WITH MEDIAL AXIS ... 9

COMPLEXITY ANALYSIS OF PRESENT ALGORITHMS 10

ANOMALIES IN PREVIOUS APPROACH 10

2. GOALS OF THE PROJECT 12

STAR-SHAPED POLYGON 14

3. THE APPROACH 17

PRELIMINARIES 17

INTRODUCTION TO THE CORRECTIVE GREEDY
ALGORITHM 19

Local Minimum 19

VI

Chapter Page

Corrective Greedy Algorithm 20

4. ALGORITHM DETAILS 22

NOTATION .. 22

Simple Polygon 22

Convex and Reflex Arcs 22

Edge Sequence 23

Unifiability of Edge Sequences 23

Wrap of an Edge Sequence 24

DETAILS OF THE ALGORITHM... 26

Initialize Data Structures 26

Main Algorithm 26

Algorithm FindLocalMinimum (Eij) 27

Algorithm RemoveSelflntersection (Eij) 28

Algorithm CheckBacktrack (Eij) 28

Algorithm UndoEdgeSequence ((Eij, d) .. 29

Algorithm RemovelnfiniteLoop O 29

Algorithm is UnifiableEdgeSequence (Eij, Ejk) 30

BACKTRACK EXAMPLE 30

SELF-INTERSECTION EXAMPLE 32

SNAPSHOTS OF CONSTRUCTION PROCESS 33

5. RESULTS OBTAINED AND ALAYISIS ... 40

STATISTICAL CHART ... 40

Vll

Chapter Page

Running Time 41

Number of Backtrack per Vertex 43

6. CONCLUSION ·............ 46

FUTURE WORK .. 47

REFERENCES.. 48

Vlll

LIST OF FIGURES

Figure Page

1.1 A Simple Example of Straight Skeleton for Polygon 1

1.2 Three Polygons 2

1.3 Convex and Non-convex Polygon 3

1.4 Two Types of Skeletons of the Same Polygon 4

1.5 Straight Skeleton for the Letters "SCSU'' 6

1.6 Ground Walls and Corresponding Roof 7

1. 7 Shrinking Process 8

1.8 Shrinking Process, Edge Event and split Event 9

1.9 Self-intersecting Skeleton Anomaly ... 11

2.1 Split Event and Edge Event in Shrinking Process 13

2.2 Star-shaped Polygon ... 14

2.3 Two Concentric Circles with Radius r and R ... 15

2.4 Two Concentric Circles with n Sectors for Polygon Size n 15

2.5 Star-shaped Polygon with Different Spikes ... 16

3 .1 Construction Process 21

3.2 Backtrack Condition 21

4.1 Polygon and Edge Sequence 23

lX

4.2 Edge Sequence and Partial Straight Skeleton of Polygon 24

4.3 The Interior Angle Between ei and ej is Reflex 25

4.4 Backtrack Scenario I 31

4.5 Backtrack Scenario II ... 32

4.6 Self-intersecting Skeleton Example 33

4.7 Polygon Snapshot 34

5.1 Running Time of Algorithm Plotted Against Number of Vertices
in the Polygon 41

5.2 Average Case and Worst Case Running Times of the Algorithm.......... 42

5.3 Comparison of Running Time of All Available Algorithms for
Straight Skeletons 43

5.4 Cumulative Distribution Function of Number of Intersections
Computed per Vertex 44

5.5 Histogram .. . 45

X

Chapter 1

INTRODUCTION

The purpose of this paper is to introduce an algorithm for finding the Straight

Line Skeleton of Simple Polygons that uses a "corrective greedy" approach. The _

thesis explores the behavior of a simple algorithm that attempts to find the Straight

Skeleton using local information only. Since it is well known that local information

alone is insufficient to find the Straight Skeleton [1, 9], the algorithm is at times forced

to rollback/backtrack some of the computation done. Since it is hard to get an exact

theoretical bound on the number of backtrack operations, we have tested the algorithm

extensively on randomly generated star-shaped polygons. Our experimental results

show that for star-shaped polygons, this approach gives us O(n log n) behavior.

.
I••••••••• : .
Figure 1.1

A Simple Example of Straight Skeleton for Polygon

1

2

A general polygon P, is defined by the line segments spanned by n points in

the Euclidean plane; it is possible that a polygon could have self-crossing segments

which is considered to be a non-simple polygon. Furthermore a simple polygon is a

polygon without any hole (see Figure 1.2).

(a) simple polygon (b) a non-simple polygon

Figure 1.2

Three Polygons

SKELETONS

D
(c) non-simple polygon

(polygon with hole)

A Skeleton is a structure used to represent basic two dimensional structures. In

this paper we are dealing with simple polygons. There are mainly two types of

skeleton structures; medial axis and Straight Skeletons. Straight Skeleton is a concept

that was recently introduced by Aichholzer in 1995 [1]. The Straight Skeleton is quite

similar to the medial axis; the two are equivalent for convex polygons [16] (see Figure

1.3). However, the Straight Skeleton of a non-convex polygon has lower

combinatorial complexity than the medial axis, hence it is preferable over the medial

axis.

(a) convex polygon

Figure 1.3

Less than 180 degrees

~

V

(b) non-convex polygon with
reflex vertex "v"

Convex and Non-convex Polygon

3

Medial axis is the most widely used skeleton, which consists of all interior

points whose closest point on the polygon's boundary is not unique. The collection of

all these points will produce not only straight line segments but also curved arcs

(parabolic arcs) in the vicinity ofreflex vertices of the polygon (see Figure 1.4a). If the

exterior angle for any vertex in a polygon is less than 180 degree then it is called reflex

vertex (see Figure 1.3b).

The Straight Skeleton for a simple polygon, P, denoted S(P), can be defined by

shrinking all of its edges at a constant rate and tracing the vertices' path (see Figure

1.4b, formal definition is given in section 1.3).

4

(a) medial axis skeleton (b) Straight Skeleton

Figure 1.4

Two Types of Skeletons of the Same Polygon

The advantage of Straight Skeleton, i.e., lower combinatorial complexity, is

offset by the fact that fastest known algorithms for finding the Straight Skeleton are

much slower and complex than those for finding the medial axis. Finding medial axis

can be achieved in linear time [15], but there are no known linear or nearly-linear

algorithms for finding the Straight Skeleton.

APPLICATIONS OF STRAIGHT SKELETON

The Straight Skeleton has several applications: layered manufacturing [10],

drawing free trees inside rectilinear polygons [11], origami polygon cutting theorem

(solve the fold-and-cut problem) [12, 13], label placement algorithms that locate a

label at a centroid [14], to construct a polygonal roof over a set of ground walls [7]

(see Figure 1.6), reconstruct a geographical terrain from a river map, character

recognition (see Figure 1.5), etc. The definition of the Straight Skeleton can be

5

generalized to arbitrary planar straight line graphs, where it has (potential)

applications to planar motion planning, and to three-dimensional polyhedra, where it

has potential applications in solid modeling.

(a) "SCSU" polygon

(b) skeleton inside polygon

6

(c) Straight Skeleton for "SCSU" polygon letters

Figure 1.5

Straight Skeleton for the Letters "SCSU"

(a) walls of a house

Figure 1.6

(b) Unique roof such that all faces
have same slope

Ground Walls and Corresponding Roof

STRAIGHT SKELETON CONSTRUCTION PROCESS AND PROPERTIES

7

The formal definition of Straight Skeleton S(P) of polygon P is the union of

the pieces of angular bisectors found by polygon vertices during the shrinking process

(see Figure 1.7). Each edge e sweeps out a certain area which is called a plane or face

of e. Bisector pieces are called rays, and their endpoints which are not vertices of P

8

are called nodes of S(P). It uniquely partitions the interior of given n-gon P into n

monotone polygons, one for each edge of P.

. :

(a) shrinking process (b) Straight Skeleton in dashed line

Shrinking Process

Figure 1.7

Shrinking Process

The shrinking process creates two kinds of events (see Figure 1.8).

1) An edge event occurs when an edge length decreases to 0. The edges

neighboring that edge (if they still have a positive length), become

adjacent. As a result we get a polygon with one fewer edge.

2) A split event occurs when a reflex vertex collides with an edge. This splits

the edge and changes adjacencies. As a result we get two polygons which

again shrink recursively.

Split Event

Figure 1.8

Shrinking Process, Edge Event and Split Event

COMPARISON WITH MEDIAL AXIS

9

If P is an n-gon with r reflex vertices then S(P) realizes in 2n-3 arcs whereas

medial axis of P realizes 2n- 3+r arcs, r of which are parabolically curved. The part of

S(P) interior to P has only n-2 nodes, whereas medial axis of P has n+r-2 nodes. Thus

Straight Skeleton gives lower combinatorial complexity over medial axis

representation. For convex polygons both medial axis and Straight Skeleton are the

same.

Although the medial axis can be constructed in linear time, the fastest known

algorithms for Straight Skeletons are much slower. The main difficulty is that

changing the positions or angles of reflex vertices has a significant non-local effect on

the skeleton. This non locality makes techniques such as incremental construction or

divide-and-conquer fail.

COMPLEXITY ANALYSIS OF PRESENT ALGORITHMS

Several researchers have proposed algorithms for Straight Skeleton problem.

The fastest deterministic algorithm is proposed by Eppstein and Erickson [5] which

runs in O(n 1
+e + n8111

+e-,JII I+e) where n is the total number of vertices, r is the number

of reflex (non-convex) vertices, and e is an arbitrarily small positive constant. More

recently, a slightly faster randomized algorithm using O(n✓n log n) time and O(n)

space was proposed by Cheng and Vigneron [6]. The following table summarizes

these results [9].

Time S ace Reference
O(n) 2
O(nr [4]
O(nr) [1, 5, 8
O(n) [2, 5]

O(n + 3]
O(n +e + n [5]

O(n) [6

The Algorithm presented here employs a "corrective greedy approach." This

approach was tried earlier by Huang [16], but the implementation encountered

anomalies that were not fully addressed.

ANOMALIES IN PREVIOUS APPROACH

The implementation used a roof model (3 dimensional) to construct Straight

Skeleton. It considered each edge of the polygon as a plane and considered the lowest

height of the three adjacent planes having a constant slope and intersecting locally at

11

the point where the plane or edge can be collapsed. This was enough for general cases,

but for some polygons direction of rays plays a key role. Huang's work did not take

into consideration a lot of factors which gave rise to two anomalies, (i) Infinite loop

and (ii) Self-Intersecting skeleton.

In Infinite Loop, the rays will cause an infinite loop in which same set or sets

of edges keep getting committed and backtracked because the algorithm has

incorrectly determined ray's directions (i.e., growing direction of Straight Skeleton)

Self- Intersection is caused by directional problem and results in the self-intersection

of the Straight Skeleton, where the arcs of skeleton intersect with itself (see Figure

1.9) and results in incorrect Straight Skeleton.

Figure 1.9

Self-intersecting Skeleton Anomaly

(Incorrect Straight Skeleton)

Chapter2

GOALS OF THE PROJECT

There are very few papers dedicated to the implementation of Straight Skeleton

problem, and all these algorithms are complicated since they need to simulate edge

events and split events. The split events introduce the element of non-locality into the

problem. As can be seen in Figure 2.1 split events can involve an edge and a vertex

that are not adjacent. Researchers have tried to attack this problem by tracking all the

information simultaneously (i.e., global computation). Such an approach 1s more

expensive since there is quadratic number of calculations at each step.

Our approach is different from previous implementations in that it uses a

greedy algorithm. However greedy algorithms use only local information to make

decision whereas we know that local information is not sufficient to address this

problem. We identify the cases when greedy algorithm makes a mistake and for those

cases we backtrack/rollback to a safe or error-free state and again start working in a

direction where we will avoid those cases. Thus at the end we get fully constructed

Straight Skeleton.

12

13

Figure 2.1

Split Event and Edge Event in Shrinking Process

In order to understand the behavior of the Corrective Greedy Algorithm for

Straight Skeleton better, we have to use fairly complicated polygons which have a

large number of reflex vertices. We chose star-shape polygons to test our algorithm for

the following reasons:

1) Star-shaped polygons can have as many as n/2 reflex vertices. Since the

complexity of the Straight Skeleton depends heavily on the number of

reflex vertices, these polygons serve as a good representative sample.

2) It is easy to generate random instances of star-shaped polygons, as

described below. It is not clear that there is such a procedure for arbitrary

simple polygons.

3) Star-shaped polygons have been studied in other contexts and have some

interesting properties. Although our algorithm does not use any of these

properties, it would be interesting to examine, at a later stage, algorithms

tailored to computing the skeleton of a star-shaped polygon.

14

STAR-SHAPED POLYGON

In a star-shaped polygon there exist an interior point such that all the boundary

points of the polygon are visible from that interior point. Two points' p and q are said

to be visible if the straight line segment between them does not intersect any edges

(see Figure 2.2).

Figure 2.2

Star-shaped Polygon

The star-shaped polygons are randomly generated as follows; consider two

concentric circles of radius R and r respectively. The ratio r/R, called the spike value

of the polygon, is what decides how sharp the reflex vertices will be.

15

Figure 2.3

Two Concentric Circles with Radius r and R

To generate a polygon with n vertices, divide the two circles into n sectors. Let

S; denote the i'h sector, X; is a random number in [r/R . .l]. The vertex v0 on the radius

separating S; and S;+J is at a distance R*x;from the centre (see Figure 2.4).

Figure 2.4

Two Concentric Circles with n Sectors for Polygon Size n

We have built the star-shape polygon generation algorithm in a way that it can

generate random star-shape polygon for given polygon size and spike. Though we

16

tested all our tests for the range of spike values 0.2, 0.4, 0.6, 0.8 (see Figure 2.5); for

running time calculation we tested it for a spike of 0.4 only, which generates fairly

complicated polygons. We did not use a smaller spike since it sometimes generates

rounding errors in the computation.

(a) 0.2 spike (b) 0.4 spike

(c) 0.6 spike (d) 0.8 spike

Figure 2.5

Star-shaped Polygon with Different Spikes

Chapter 3

THE APPROACH

The difficulty in computing the Straight Skeleton is partly because it is defined

by the shrinking process and not by any properties. We observed that one way of

simulating the shrinking process is to see the movement of the vertex common to two

adjacent edges. This vertex moves inwards along the angular bisector of those two

adjacent edges. Similarly, the intersection point of adjacent angular bisector suggests

that the edge common to these two angular bisector is shrunk to zero and hence we

represent an edge event. However this does not incorporate a mechanism to represent

a split event caused by a reflex vertex.

PRELIMINARIES

The following results from [1] give us some useful properties of the Straight

Skeleton:

Lemma 1 S(P) is a tree and consists of exactly n connected faces, n - 2 nodes

and 2n - 3 arcs.

The construction of a face f(e) starts at its edge, e, of P. The construction of f(e) is

completed when every part of e has shrunk to zero. Ase cannot reappear again,f(e) is

connected, and S(P) is acyclic.

17

18

Two types of arcs of S(P) can be distinguished. Each arc is a piece of the

angular bisector of two edges e and e' of P or, more precisely, of the lines l(e) and

l(e J supporting these edges. Note that the angular bisector of l(e) and l(e; actually

consists of two lines that intersect at l(e)nt(e;. We single out the one relevant for S(P)

as follows. Each line l(e) defines a halfplane h(e) that contains P near e. One of the

bisector lines intersects the wedge h(e)nh(e J while the other avoids it. We call the

former the bisector of the edges e and e '. An arc a defined by this bisector is called a

convex arc or a reflex arc depending on whether its wedge contains e and e' in its

boundary or not. We also consider a as labeled by the ordered pair (e, e '). The order

reflects the side of a where l(e) contributes to the boundary of the wedge.

Each convex (reflex) vertex of P obviously gives rise to a convex (reflex) arc

of S(P). While convex arcs can also connect two nodes of S(P) this is impossible for

reflex arcs.

Lemma 2 Reflex arcs of S(P) only emanate from reflex vertices of P.

Let vu be an arc emanating from some vertex v of P. Then u is a node which

corresponds either to an edge event or to a split event. It suffices to show that, after the

event, S(P) continues at u with convex arcs only.

In the former case, let vw be the vanishing edge. Since the arc wu meets vu at

u, u is a convex vertex of the shrunk polygon after the event. In the latter case the

polygon splits at u. It is obvious that, after that event u is a convex vertex of both new

polygons.

Thus each new vertex generated during the shrinking process is convex.

19

INTRODUCTION TO THE CORRECTIVE GREEDY ALGORITHM

As discussed before the intersection point of adjacent angular bisector of two

edge sequence suggests that the edge common to these two bisector is shrunk to zero.

The idea for the Corrective Greedy Algorithm is simple; it looks for these intersection

points to see which edge should collapse first (find local minimum) and at the end

connect all these points together to form the Straight Skeleton. However since greedy

algorithm uses only local information we can represent only edge events, in the case of

split events the algorithm has to backtrack or undo the work it has done previously

until it reaches a safe state and then start again.

Local Minimum

A local minimum is defined as the pair of edge sequence which can be

combined to represent edge event. To find the local minimum for a region, start with

an edge sequence say E12 and its angular bisector b12 (see Figure 3.1); now consider

the intersection of adjacent angular bisectors bn1, b23 corresponding with edge

sequence En1 and E23. Check to see which neighbor is intersecting b 12 closer to its

origin (say b23 in this case). Now consider b23 and its neighbor sequences b12 and b34.

Note in Figure 3.1 b12 is still intersecting b23 closer to its origin when compared with

the intersection point formed by b34 and b23, so report [E12, E23] as local minimum,

else if b34 intersects b23 closer to its origin then check recursively local minimum using

£34 as start sequence.

20

Corrective Greedy Algorithm

The algorithm starts with n rays, one from each vertex of the polygon. The

algorithm has to find all nodes of the skeleton. At each step, one more node is added

by combining two adjacent rays. The rays to be combined are chosen so that their

point of intersection is a local minimum. (In Figure 3.1 b 12 & b21 intersect at a local

minimum since rays b12 & b23 reach P before intersecting any other ray.) P becomes a

node and we replace b12 & b23 by b13 and continue the process.

Backtrack occur in situations like one in Figure 3.2, when b34 and b45 were first

combined to get b35 . Later, b12 & b23 were combined and we find that the combination

of b34 & b45 has to be undone, because the origin of b15 and right end point of edge e3

(common to b13 & b35) are on different sides of b13. Backtracking is further discussed

in Chapter 4.

Clearly the time taken by this process depends on how often we have to undo

these intersections. The current research has fully implemented this algorithm and

attempted to find a relationship between the number of undo (backtrack) operations m,

and the number of vertices n by testing the algorithm on several instances.

Figure 3.1

Construction Process

Figure 3.2

Backtrack Condition

21

Chapter 4

ALGORITHM DETAILS

NOTATION

Simple Polygon

A polygon P in which no two non-consecutive edges intersect is called simple

polygon. Simple polygons can be further classified as convex and non-convex

polygon. A polygon Pis convex if and only if all the exterior angles are greater than

180 degrees, otherwise it is a non-convex or concave polygon.

Let P be a polygon with vertices Vi, Vi ... , Vn and edges e1, e2 ... , en where e;

connecting Vi and Vi+1. The vertices are labeled in a counter clockwise direction so

that when we walk from Vi toVi+1, the interior of the polygon lies on the left hand side

Figure 4.1 (b).

Convex and Reflex Arcs

S(P) is a tree and consists of exactly n connected faces, n-2 nodes and 2n-3

arcs, Lemma l[l] . Arc is a piece of angular bisector of two edges e and e' of P. S(P)

can have two types of arcs convex and reflex. Reflex arcs of S(P) only emanate from

reflex vertices of P, Lemma 2[1].

22

(a) polygon

Edge Sequence

Interior of polygon

(b) edge sequence

Figure 4.1

Polygon and Edge Sequence

23

An edge sequence of the polygon is any subset of contiguous edges. At the

start, we haven edge sequences e1e2, e2e3 ... , e;e;+J ... , ene1. Associated with any edge

sequence e;e;+J ... e1, we have a bisector bif, which is the bisector of the angle defined
--. --.

by the rays e;+1e; and e1_1e1. At each iteration we try to reduce appropriately the number

of edge sequences by choosing some pair of adjacent edge sequences, say, e;e;+1 ... e1

also represented as Eif. The edge sequence is called ground edge sequence if the origin

of the angular bisector of that edge sequence is same as a vertex of the original

polygon.

Unifi.ability of Edge Sequences

Consider the edges e;, e;+J .. . , e1; if the edges e; and e1 are extended (either as

semi infinite line or until they intersect) we induce a partitioning of the plane. Using

24

the bisectors of the interior angles of the vertices in the edge sequence, we can define

the skeleton of the edge sequence. An edge sequence is said to be unifiable if its

skeleton contains exactly one semi-infinite line. (The edge sequence e1 e2 e3 e4 in

Figure 4.2 (b) is not unifiable).

Wrap of an Edge Sequence

The wrap of an edge sequence e; ... , e1 is defined as the sum I\ = i+l 0k, where 0k

is the signed exterior angle at vertex Vi- The sign of 0k is positive if the angle as shown

in the figure is counter clockwise and negative otherwise.

Lemma 4.1. Let a be any arc of the Straight Skeleton, such that a bisects the

angle formed bye; and e1,J>i, then either e; and e1 are adjacent edges or the wrap of

the sequence e; ... e1 lies between O and 27c.

(a) edge sequence and wrap
I

I

I

~
I

I

(b) Straight Skeleton of (a)

Table 4.2

Edge Sequence and Partial Straight Skeleton of Polygon

25

Proof. If e; and e1 are adjacent then a. obviously belongs to the Straight

Skeleton. It is easy to verify that if the wrap is less than 0, the interior angle defined by

--+ --+
the rays Vi+1 Vi and T7Jf7J+1 is reflex. Thus it follows from Lemma 2 that the bisector of

e; and e1 can not belong to the Straight Skeleton.

On the other hand if the wrap is greater than 21r we have situation like one in

Figure 4.3 (a) In this case the wrap of the edge sequence e1,e1+k--e; is less than 0, i.e.,

the interior angle formed by the rays Vi+ 1 V; and J7J f7J+ 1 is reflex and therefore this -

bisector can not belong to this partial Straight Skeleton (end of proof).

The above lemma shows that edge sequence Eif is unifiable if the wrap lies in

the range (i.e. , lies between 0 and 2rr). We say that two adjacent edge sequences Eif

and E1k are unifiable if E;k is unifiable.

(a) the interior angle between ei
and ej is reflex

(b) snapshot of FindLocalMinimum algorithm

Figure 4.3

The Interior Angle Between ei and ej is Reflex

26

The entire algorithm can therefore be summarized as follows:

1) At the start we have n edge sequences e 1e2, e2e3 . .. , eiei+l ••· , ene1 each

consisting of two edges.

2) At each step we identify two adjacent edge sequences that can be

combined, taking into account the wrap and any backtracks that need to be

performed.

3) The algorithm terminates when we are left with three unifiable edge

sequences.

DETAILS OF THE ALGORITHM

Initialize Data Structures

a) Store edge sequences E12, £23 .. . , En1 corresponding to vertex Vi, Vi ... , Vn in

a circular list.

b) For each vertex Vi, compute the angular bisector going inwards into the

polygon. This bisector is represented by the unit vector bi. (for an edge

sequence Eij, we denote this vector as bij)-

Main Algorithm

While the circular edge sequence list has three or more edge sequences left

a) Find a pair of adjacent edge sequences [Eij, Ejk] such that the intersection of

the half-lines bii and bik forms a local minimum, as explained in Algorithm

FindLocalMinimum (4.2.3).

27

b) Check if the combination of bij and bjk causes self-intersection, as explained

in Algorithm Remove Self-intersection (4.2.4).

c) Check if the resultant bisector b;k causes backtrack to its neighboring edge

sequences as explained in Algorithm Check Backtrack (4.2.5).

d) Combine Eij and Ejk to form one edge sequence Ejk• Remove Eij and Ejk and

insert E;k into list of edge sequence.

Algorithm FindLocalMinimum (Eij)

Edge sequence Eu has bisector bij and Oij as the origin of bisector. Consider the _

left and right neighbor sequences of Eij as Eu and Ejk with bu, bjk as bisectors and Ou,

Ojk as their origin (see Figure 4.3 b).

Compute the intersection point of bisectors bij and bjk as a;k and bu & bij as au

Assume without loss of generality that distance from Oij to au is less than distance

from Ou to a;k (the other case can be solved in similar fashion) which can also be

represented as Distance (Oij, a1J < Distance (Oij, ai/J,

1. If Eij and Eu are not unifiable then call FindLocalMinimum (Eu)

2. If Eij and Eu are unifiable, let Ep1 denote the left edge sequence of Eu.

2.1 Ep1 and Eu are not unifiable then report the combination [Eu, Eij] as

local minimum.

2.2 Otherwise, if Ep1 and Eu are unifiable then check to see if Distance

(Ou, apJ > Distance (Ou, a1J if it is, then report the combination [Eu,

Eu] as local minimum, else call FindLocalMinimum (Ep1).

28

Algorithm RemoveSelflntersection (Eij)

Let e3, e 1, ... , X, e2, e 4 be the edge vectors, and the bisector of E13 causes self

intersection (see Figure 4.6).

Unify the edge vectors e3, e 1 . . . , Xbefore we include e2

a) Check to see if edge sequence formed by e1 ,Xis unifiable or not,

If they are not unifiable then undo X and repeat this process until

they are unifiable

b) Try to unify in between e 3 and X until e 1 gets included (at this point _

we are out of self intersection)

Algorithm CheckBacktrack (Eij)

Check if edge sequence Eij is backtracking its neighbors Eu and Ejk by

performing two tests given below, if both are successful then backtrack detected.

Below are the steps for checking if Eij is backtracking Ejk or not. (Similar procedure

can be followed for checking backtrack for Eu)

a) Perform the half-plane test

1. Take left most edge vector of Ejk which is the edge common

between Eij and Ejk and take its right point, we call it Vm. Consider

the two half planes defined by the line containing bij. If the origin of

bjk and Vm lie in different half planes, we say the half plane test is

successful.

29

b) Local minimum test

1. Find out the local minimum with respect to EiJ if it returns Eu and

EiJ then check to see if the resultant of [Eu, EiJ] is intersecting with

b1k, if it is intersecting, then calculate the intersection point of [Eu,

EiJ] bisector with biJ and bik• Checks to see which one is closer to

origin of [Eu, EiJ]; if b1k is closer then there is no backtrack. If any of

the above condition fails then backtrack is detected.

11. If FindLocalMinimum(EiJ) does not return [Eu, EiJ] as combination

then backtrack detected.

Algorithm UndoEdgeSeguence (EiJ, d)

Undo edge sequence EiJ to depth d. While we reach depth d do the following

steps,

a) Remove edge sequence EiJ from the list and take out its left and right

children as Eu and E1k and insert them in the list.

b) Check to see if Eu and E1k is causing any backtrack to their neighbor

c) Decrement depth d

d) Repeat this process until d reaches zero.

Algorithm RemovelnfiniteLoop O

Sometimes infinite loop is detected when :findLocalMinimum fails to return a

combination of edge sequence and goes to infinite recursive mode. It usually happens

because we get a combination of alternate reflex and convex arcs (always an even

30

number of arcs e.g., 4, 6, 8). Once this scenario is detected, the following steps can be

used to remove it.

1. Combine the first reflex arc with corresponding convex arc and repeat this

process until all the combination of reflex and convex arc got combined.

Algorithm is UnifiableEdgeSequence (Eu, Ejk)

This process will test the unifiability of two edge sequences Eu and Ejk based

on two tests given below.

a) Check to see if the bisectors (which are unit vector going inwards in

polygon) bu and bjk meets in forward direction of there origin.

b) Check to see if the wrap or angle 0 is in between valid limits (i.e., lies

between O and 21r) for Eu and Ejk•

BACKTRACK EXAMPLE

Let E24 is the newly combined edge sequence and hence b24 is the newly

formed bisector. As we are maintaining backtrack free invariant, after every

combination of edge sequence the algorithm will check if the newly formed bisector is

backtracking any of its immediate neighbor, in this case left and right bisectors are

denoted by b 12 and b46. The left edge sequence is ground sequence hence there is no

need to check for backtrack but for right edge sequence b46 the algorithm will work as

explained in Algorithm Check Backtrack (4.2.5).

31

Origin of b 46 bisector and the right point Vs of leftmost edge vector e4 of edge

sequence E46 lies on different half planes of bisector b24, so half-plane test is

successful (Figure 4.4).

,

,
, ,

,
,

,

Figure 4.4

Backtrack Scenario I

(Shows half-plane test is successful in this scenario, as origin of b46 and right point of
leftmost edge vector of E46 lies on different half-plane of b24)

After half-plane test the algorithm test for the second condition is shown in

Figure 4.5 The local minimum corresponding to b24 returns b 14 as the resultant. Now

check to see if b 14 and b46 are intersecting or not. If b 14 and b46 formed valid

intersection then no backtrack detected otherwise backtrack is detected and b46 needs

to be undone till we get b45 and b56•

Figure 4.5

Backtrack Scenario II

32

(Two possible conditions are shown in the figure, b14 meets b46 in forward direction
(no backtrack) and in the other its meeting behind b46 (detecting backtrack))

SELF-INTERSECTION EXAMPLE

A self-intersection occurs in a situation like the one in Figure 4.6. Here b2,12 is

ray emerging from the skeleton of E2, 12 and b1,2 is the ray emerging from the skeleton

of E1,2. b2,12 intersects the skeleton of E2, 12 before it meets b1,2. Here part of the

skeleton of E2,12 has to be undone. This situation suggests that edge e12 should be

included after we include edge e1 in the skeleton for Eu2-

Figure 4.6

Self-intersecting Skeleton Example

(bisector b2.12 is intersecting one of its own bisectors arcs previously formed)

SNAPSHOTS OF CONSTRUCTION PROCESS

33

This section explains the skeleton construction process by taking snapshots of

a simple polygon. The polygon is labeled in counter clock-wise direction as a

sequence of edge vectors e1, .. e16.

Figure 4.7 a

Polygon Snapshot

(construction process snapshots are shown below)

34

The corrective greedy algorithm starts finding local minimum using E1.2 (edge

vector e1, e2) as reference edge sequence. E1,2 is not unifiable with its left neighbor

(E16,1) and right neighbor (Ev), so findLocalMinimum algorithm shifts one edge

sequence in right (counter clock-wise) direction with E2.3 as new reference edge

sequence. Again the left neighbor of Ev is not unifiable but right neighbor E3.4 is

unifiable. To find the local minimum check to see if Ev and E3.4 are local minimum,

this can be done by recursively calling findLocalMinimum with E3.4 as reference edge

sequence, if it still returns E2.3 and E3.4 then it is indeed the local minimum. In this

case as we can see that angular bisector of Ev is intersecting E3.4 closer to its origin

35

than the bisector of E4,5 edge sequence. As shown in Figure 4. 7 b the first edge

collapsed is e3 by combining edge sequence Ev and E3.4.

Backtrack occurs in Figure 4. 7 f and the algorithm has to undo some part of

skeleton which was computed before. The next backtrack is encountered at Figure 4. 7

j which we will discuss here. At this snapshot b4,10 is the bisector for edge sequence

combining edge vector e4 .. e10. This bisector is backtracking its left neighbor b2.4

formed previously by combining e2 .. e4 edge vectors. As can be seen by backtrack

definition earlier, the origin of b2,4 and left point of edge e4 common between edge

sequence E2,4 and E4,1o lie on different half-plane of b4,10 bisector. Thus edge sequence

E2,4 has to be undone as shown in Figure 4.7 k

Figure 4.7 o shows self-intersection which was discussed earlier. Thus the

algorithm in this case computed 7 extra computation because of two backtracks and

one self-intersection. The last Figure 4. 7 s shows fully constructed Straight Skeleton.

Figure 4.7 b Figure 4.7 c

36

Figure 4.7 d
Figure 4.7 e

Figure 4.7 f
Figure 4.7 g

Figure 4.7 h
Figure 4.7 i

37

Figure 4.7 j

Figure 4.7 k
Figure 4.71

38

Figure 4.7 m Figure 4.7 n

Figure 4.7 o Figure 4.7 p

Figure 4.7 q Figure 4.7 r

39

Figure 4.7 s

Chapter 5

RESULTS OBTAINED AND ANALYSIS

We have tested the algorithm extensively on randomly generated star-shaped

polygons. Our experimental results show that for star-shaped polygons, this approach

gives us an O(n log n) behavior. The results from the implementation shows that the

algorithm has no anomalies which existed before (self-intersection, infinite loop,

wrong backtrack).

This is an experimental algorithm and runs faster than any of the known

algorithms for computing Straight Skeleton of star-shaped polygon.

STATISTICAL CHART

As mentioned earlier, n denotes the number of vertices and m denotes number

of backtracks. Each backtrack can be computed in log n time using simple data

structures, the algorithm runs in O((n + m) log n) time. Since it is hard to get a good

theoretical bound on m, we have done this experimentally. To do this, we have

focused on the special case of star-shaped polygon since it is possible to randomly

generate a large number of instances of such polygons. The information captured

helped us in analyzing running time and backtrack counts for the algorithm.

40

41

Running Time

Running time of this algorithm as mentioned is O(n log n + m log n) where m

is the number of backtracks and n is the number of vertices (Figure 5.1). Though in the

worst case we will have n/2*n/2 backtracks and hence worst case will be O(n2 log n)

as shown in Figure 5.2, though it is based on theoretical assumptions as in all of our

tests on star-shaped polygons, we have not come across any case which has shown

such a behavior. We experimented with randomly generated star shape polygons and

plotted the running time with respect to vertex size (n) as shown in Figure 5.1. For

each value of n, we generated 50 instances and took the average of all these running

times.

120000

Cl) 100000 "C
C
0 u
Q) 80000
~
E
.£ 60000
Q)

E
:;::.
0) 40000
C ·c
C
::,

20000 0:::

0
0

Running time Vs Vertex size of Star-shaped Polygon

200 400

Vertex size

Figure 5.1

600 800

I - Result I

Running Time of Algorithm Plotted Against Number of Vertices in the Polygon

42

Running time Vs Vertex size

12000

<fl 10000 I -0
C I
0

) (.)
Cl) 8000 ~
E

I
- Our Result

C 6000 - n Log (n)
Cl)

E I n112 Log (n) :;:,

Ol 4000 I C ·c I C
:::J I

0::: 2000

0
0 200 400 600 800

Number of Vertices in Polygon

Figure 5.2

Average Case and Worst Case Running Time of the Algorithm

43

Running time Vs Vertex size of Star-shaped polygon

250000

rn
-0 200000 C
0
u - n square Log (n)
Q)

-~ nr Log (n)

E 150000 - nr Log (n/r)

-~ - r square Log (r)
Q)

E 100000 :;:;
- nr

0) - n"17/11
C ·c
C

50000 :::J
0:::

- Our Result

0
0 200 400 600 800

Number of Vertices in Polygon

Figure 5.3

Comparison of Running Time of All Available Algorithms for Straight Skeletons

(our approach is at the bottom which shows it is more efficient than other algorithms)

Number of Backtrack per Vertex

The number of backtrack or intersections computed, m, plays an important role

in determining the running time of algorithm. Since it is hard to get a good theoretical

bound on m, we have done this experimentally. To estimate m, we generated 2000

random polygons of 100 vertices each. For each value of a (backtrack per vertex) we

counted the number of input instances that had an (min) < = a (cumulative

distribution function). This plot for n = 100 and n = 200 is given in figure 5.4. The

graph shows that 90% of the test result has 1.2 intersections computed per vertex.

- -

(/)
Q)
(.)
C:
ro
(/)
C:

'+-
0

=it:

Cumulative Distribution Function of no. of intersections computed
per vertex

2500

2000

1500

44

- 100 Vertex

- 200 Vertex

1000 I

500

0

0 0.5 1 1.5 2 2.5

No. of intersections computed per Vertex (min)

Figure 5.4

Cumulative Distribution Function of Number of Intersections Computed
per Vertex

The experimental result in Figure 5.4 suggests that the value of m or the

number of extra intersections calculated is not very high. This is further strengthened

by the cumulative distribution function whose sigmoid shape suggests that we can

expect a good average case performance and perhaps a good worst case behavior with

high probability using this approach.

Histogram

800

J!l
"' {!!. 400 +----0
0
z 300 +---

200

100

0

50-65 65-80 80-95 95-110 110-125 125-140 140-155 155-170 170-185 185-200

Intersections Computed or backtracks for 100 vertex polygon

Figure 5.5

Histogram

45

I II Histogram I_

The histogram shows the distribution of backtracks calculated for 2000 star

shaped polygons. These charts (CDF and Histogram) show that even ifwe increase the

number of vertices in star shape polygon the number of intersection computed per

vertex is less in general, although we might get some results where it is more but the

probability for that is very less as we saw in the histogram there are only 2 results

which has backtracks in 185 to 200 range.

Chapter 6

CONCLUSION

The thesis explores the behavior of a simple algorithm that attempts to find the

Straight Skeleton using local information only. The difficulty in computing the

straight skeleton is partly because it is defined by the shrinking process and not by any

properties. Several researchers have proposed algorithms for this problem. The fastest

deterministic algorithm is the one by Eppstein and Erickson [5] which runs in O(n1
+e

+ n8111
+e.;/JJ+e) where n is the total number of vertices, r is the number ofreflex (non

convex) vertices, and e is an arbitrarily small positive constant. More recently, a

slightly faster randomized algorithm using O(n✓n log n) time and O(n) space was

proposed by Cheng and Vigneron [6] .

We have tested the algorithm extensively on randomly generated star-shaped

polygons. Since it is hard to get a good theoretical bound on m (backtracks), we have

done this experimentally. Furthermore, star-shaped polygons have fair amount of

reflex vertices and can be generated randomly using a program for testing. Our

experimental results show that for star-shaped polygons, this approach gives us an O(n

log n) behavior. The results from the implementation shows that the algorithm has no

anomalies which existed before [16] (self-intersection, infinite loop, wrong backtrack).

46

47

This is an experimental algorithm and runs faster than any of the known algorithms for

computing straight skeleton of star-shaped polygon (Figure 5.3 shows the comparison

chart for all available algorithms at this time)

FUTURE WORK

1. Using 3D model for detecting backtracks without any false alarm (as we

observed in our approach which is 2D, we sometimes get false backtracks).

2. This algorithm does not use the knowledge of where the "centre" of the

star-shaped polygon lies. That may help improve the performance of the

algorithm and also help to extend this approach to the case of general

polygons by decomposing them into star-shaped polygons.

3. A star-shaped polygon can be covered by a single "guard" placed at the

centre. Does the complexity of finding the skeleton depend on the number

of "guards" needed to cover the polygon?

REFERENCES

48

REFERENCES

[1] 0. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gartner. A Novel Type of
Skeleton for Polygons, J. Universal Comput. Sci., 1995.

[2] Oswin Aichholzer, Franz Aurenhammer, Straight Skeletons for General
Polygonal Figures in the Plane. Proceedings of the Second Annual International
Conference on Computing and Combinatorics, Springer-Verlag London, 1996.

[3] P. Felkel and S. Obdrzalek, Straight Skeleton Implementation. 14th Spring
Conference on Computer Graphics, Slovakia,1998,pages 210-218.

[4] Franz Aurenhammer et al., Straight skeleton of a simple polygon, Symposium of
LIESMARS, China, 1995,pages 114-124.

[5] David Eppstein and Jeff Erickson, Raising roofs, crashing cycles, and playing
pool: applications of a data structure for finding pairwise interactions, ACM
Symposium on Computational Geometry. Press New York, 1998, pages 58-67.

[6] Siu-Wing Cheng, Antoine Vigneron, Motorcycle graphs and straight skeletons,
ACM-SIAM symposium on Discrete algorithms, 2002,pages 156-165.

[7] David Belanger, Designing Roofs of Buildings,
http://www.sable.mcgill.ca/---dbelan2/roofs/roofs.html.

[8] David Eppstein, Fast Hierarchical Clustering and Other Applications of
Dynamic Closest Pairs, ACM and SIAM, 1998,pages 619-628.

[9] Jeff Erickson, Straight skeleton of a simple polygon,
http://compgeom.cs.uiuc.edu/~j effe/open/skeleton.html.

[10] Ravi Janardan, Geometric Algorithms for Rapid Physical Prototyping,
http://www-users.cs.umn.edu/~janardan/rpp-res-overview _ files/frame.htm.

[11] A.Bagheri, M.Razzazi, Drawing Free Trees Inside Rectilinear polygons Using
Polygon Skeleton, 18th European Workshop on Computational Geometry, 2002.

49

[12] Eric Biunno, The Origami Polygon Cutting Theorem,
http://transform.tv/EricBiunno/welcome.html.

[13] Erik Demaine, The Fold-and-Cut Problem,
http:/ /theory.lcs.mit.edu/---edemaine/foldcut/#skeleton.

50

[14] Hoseok Kang, Shoreh Elhami, Using Shape Analyses for Placement of Polygon
Labels, http://gis.esri.com/library/userconf/procOl/
professional/papers/pap3 88/p3 88 .htm.

[15] Francis Chin, Jack Snoeyink, Cao An Wang, Finding the Medial Axis of a
Simple Polygon in Linear Time, Discrete & Computational Geometry 21(3):
405-420 (1999).

[16] Yen-Chang Huang and Samath Ramnath, Corrective Greedy Algorithm for
Straight Skeleton, MS Project 2001, Dept of Computer Science, St Cloud State
University.

	Corrective Greedy Algorithm for Finding the Straight Line Skeleton of a Simple Polygon
	Parnerkar_2004_001
	Parnerkar_2004_002

