St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

3-2018

Using Shared Memory as a Means to Provide Data
Concurrency Across Vmsina Cloud Architecture

Shravani Meneni
St. Cloud State University, smeneni@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Meneni, Shravani, "Using Shared Memory as a Means to Provide Data Concurrency Across Vm’s in a Cloud Architecture” (2018).
Culminating Projects in Information Assurance. 63.
https://repository.stcloudstate.edu/msia_etds/63

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/63?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Using Shared Memory as a Means to Provide Data Concurrency

Across Vm’s in a Cloud Architecture

by

Shravani Meneni

A Starred Paper
Submitted to the Graduate Faculty
of St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree of
Master of Science in

Information Assurance

March, 2018

Starred Paper Committee:
Dennis Guster, Chairperson
Susantha Herath
Balasubramanian Kasi

Abstract

As the world is progressing towards full adoption of the - WWW (World Wide Web),
communication of data becomes more vital, especially when it must be achieved by making use
of Restful web services. Restful web services enable the ease to transfer data between virtual
machines on the cloud or the virtual machines hosted on-premises. The main idea of the project
is to showcase that data replication is possible between Primary HOSTS and Secondary HOSTS,
with the primary host responsible for sharing the data with other virtual machines, by making use
of a REST API. Further, any changes made to the data resided in the primary host must

be reflected in the secondary hosts. Concepts of virtualization, cloud computing and Rest API are
used here in this paper to achieve the goal of this project.

Table of Contents
Page
LEST OF TADIES ...t b et b e 6
S) T U= SRS 7

Chapter

L INEFOTUCTION ...ttt 10
DEfiNition OF TEIMS. ..ot 13
Il. Literature Review and Backgroundcccceiviiiieiiiicieee et 14
Advantages of Virtualizationccccoiveieiieiec i 14
Need fOr the REST AP ... 16
Advantages 0f the REST APcooiiiiicee e 17
SNArEA IMEIMOIY ...ttt et ste e resra e beenteaneesreas 18
1 T |V 1= 1 g To o (o] [oT | SR 19
R ol0] o PRSP 19
D= o gAY o] o] £o - o o ISP 19
PIIMANY HOSL ...ttt et e s re et et e neente e 19
SECONUANY HOSES.....ccuiiivieii ettt et st be e neesre s 19
DESIGN OF STUAY.....cuiiieiiie et sre e 20
TOOIS aNd TECHNIGUES ...ttt e e sree s 22
JAVA 1.8 .o 22
SPIING BOOLo 22

B o] [or: LR A O < 3 KT 23

Chapter Page
TP A e 23
INTEHTIT IDEA ..ot bbb 23
MYSQLS5.5 SBIVET ...ttt et 24
GrAUIR ... s 24

TEChNOIOQY SEACK.......cciiiieiie et aenre s 24
(0T T To [41U 25
IV, IMPIEMENTALIONecveiieiciecc ettt e e sre e reeneesbe e teaneenreas 31
Gradle SEEUP....cveeie ettt et e s et e et et e e e e nr e naenre s 31
MYSQL SEIVE SELUD ..eveiuiiieiiiie sttt e e et eennees 31
INSEAll MYSQL SEIVETviiieceeece ettt e be e s e nre s 32
Configure Environment VariablesScccovveiiiiiiiiii e 35
INSEAIT JAVA ... e 39
INSEAIT TOMCAL ...t 40
COoNFIGUIE TOMICALccvieeiiiecie ettt sae e re e beebesneeareas 41
Technical Design EXPIAINEdcccooiviiiiiiiicceece e 43
PIIMAIY HOSL ..ottt re e enes 43
MySQL Data Base SChemMaccccviiiiiiiiicc e 45
SECONAANY HOSE ...t 54
Setting up an IDE for the Development ENVIrONMEeNt..........cccoovveiieiiievie e, 55
BUild and DeploymMeNtccoiiiiieie et 61

V. CONCIUSION <. 73

R BT EIEINCES ... oot e e et oo ettt e e e e e e e e ettt e e e et e e e e —eteee e e e e e e ————aaaaaaan

Appendix

Table

List of Tables
Page
Glossary of Different Terms Used in ThiS Paper.........ccocvvveviiieiicii e 13
ClasSITICAtION OF API’S ..o 17
Student Table SCREMA..........co i 45

LOg Table SChEMAccooiece e 45

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

List of Figures

Page
Database Server Using Shared Memory to Enable Virtual Processorscccccevvvenenn. 18
ATCRITECTUIE. ...ttt ettt b e r e 20
HIGN LEVEI DESION ...ttt s ta ettt e esraenteenneene e ne e 20
Data Model IN IMYSQLooiieiecie et te e ae e 21
(08 1T DT o | - 1o USRS 21
Get Request SEqUENCE DIaQIamM.........c.ccuiiieieeie ettt ens 25
POST Request SEQUENCE DIagram.........cccueiveieiieieeiiesieseese e seestesae e saeene e e saeenesneas 25
PUT Request SEQUENCE DIAgIAMccuiiieiieieiieieeiesee st e e e e stesae e sreenesraesreeeesres 26
DELETE Request SEqUeNCe DIagramcccecvueiieiieiiesie e sie st sae e 26
Secondary Host Get Sequence DIagramccceccveiveieeiieseeie e 27
PrOJECT STTUCKUIE. ...ttt et be et e e e s aeesteernesreenteeneenres 28
Primary Host TEChNICAl DESIGNccvveviiieiieie et 43
Secondary Host TeChnical DESIGNcc.ocviiieiieiie e 43
Create StUABNT REOUESEcieeie ettt e b e e e saeesae e enes 46
UPAALE STUENT........eeiieiecec ettt e re et e e e e sreenteenneaneenae e 48
Database with Updated RECOId...........ccociiiiieiiiieie e 48
DELETE Request 0N POSIMAN........cccuiiiiiieiiieeiiie e siee e siee s sieessiree s sire s s e ssneessreesnneeesnseas 49
Deleted Record in the Database ... 50
Secondary HOSt ChanQESooouiiiiieiie it 55

Development Environment in INtelliJ IDEA ..o 56

Figure
21.
22.
23.
24,
25.
26.
217.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.

Page
(€] - To | LIS T=1 1] T SRS PR 57
RUN /Debug CoNFIQUIALION.cc.eiieieeie e sre e ee e 58
Window that Appears to Create a Configuration.............cccceeveeveeieiieese s 58
Configuration is Created Enabling us to do a Debug or a Run............cccccovvvviveievivcnee, 59
Client Cron Setup INSIIUCTIONS.........civeiiiiesieeie e ens 60
Window that Appears to Create a Cron Configuration............ccccceeevveveiiiesieese e 60
Setup INSLrUCLIONS TOF CrON.......cviiicie e e 61
Application BOOtRUN OPLIONc.eciiiiiiiccie et 62
Build Successful Message on Command Prompt...........ccceevviveiieieiicse e 63
WK File GENEIALEAc.oiviieiiiiiieeee et 63
Tomcat CoONFIQUIALTIONcouiiieiicce et sre e enes 64
TOMCAt DEPIOYMENT.......coiiiiceece et ere e enes 65
War File Generated in TOMCAt FOIAENccooiiiiiiiiiiieec e 66
Student Details DISPIAYET.........ccueiieiieieie e 66
Jar File Being GeNErated.........c.cooveiiiiiieiiciie ettt ene 67
Jar File Generated Inside the Build FOIEr ... 67
EXECULION OF CrON JOD ...t 68
POST OPEIALION......eeitiiiiie ittt ettt et e et e e et e e beesaeeabeesreeebeesseeanaeeannens 70
Database Before MOdifiCation ..o 70
O IO o1 -1 (o] ST PPRRPRPRN 71

Modified Date in LOg TabIecoooiiiiee e 71

Figure
42.
43.

44,

Student Table After Modification

Updated Data is Printed as a Response in the Cron Job Fetchccocoveiviiiniieieen,

Log Table Cron Job

10
Chapter I: Introduction

This chapter gives a brief introduction about Data replication between virtual machines
through the use of a REST API.

The world is progressing towards the complete adoption of the internet, and hence it is
necessary to explore the possibilities for sharing the pool of data between terminals, virtual
machines, and hosts, making it easier for the Database Administrators (DBAS). Anyone who
can understand the REST API can easily access the data. More importantly, a monitoring tool
can be built to check the status of back-end systems, and better log management is made
possible.

REST stands for Representational State Transfer, which is an architectural style for
designing networked applications. Earlier, communication between machines was achieved
using complex methods like SOAP, CORBA, and RPC. Now, with the REST protocol in place,
they can communicate directly through the HTTP protocol. RestFul applications make use of
HTTP requests to read, create, update and delete data through CRUD operations.

In the existing approach, sharing or updating data between a Master-Slave database (DB)
is possible through database administration, SOAP, and RPC. However, DBAs can only
understand the replication procedure as well as the related issues involved with the process. Also,
it is time-consuming to analyze the log files to resolve any issues with them, and there are no
monitoring tools available.

Remote machines and the use of virtualization are considered as the essential inside
handling development techniques in current use. Besides these, the use of VM (Virtual Machine)

communication is a step beyond, and it is also recognized as one of the primary roots of data

11
heightened structures and applications in most of the server-based systems and disseminated
processing circumstances (Lombardi & Di Pietro, 2010). One way to improve the VM
communication capability is to reinforce the local VM communication by making use of
information exchange methods and fall back on routine TCP/IP for exchange between remote
systems that are on different physical machines.

Recently, another approach is concentrated on upgrading communication capability
between local VMs using shared information documents, and the change fluctuates with each
different way the standard memory channel is set-up. However, this paper gives a clear outline of
the setup of choices and systems for execution of local VM communication (Pearce, Zeadally, &
Hunt, 2013).

This project is configured with on premise (local machines), but this could also be
deployed in a cloud environment. In the same way, it can also be implemented on Virtual
Machines and made accessible to other users. When trying to get access to the code on VM’s
for security purposes, it is available only by making use of a VPN (Virtual Private Network).
When it comes to large organizations, users are provided with tokens (which generate a
random number) to get access to the VM’-s, and this is the most secure way as these tokens are
used every time to gain access to the VM’-s. When it comes to the cloud, it is a similar
process. The advantage of having it in the cloud is that, based on the traffic, the number of
users, and CPU’-s the number of systems could be increased. At the same time, it acts more

drastically, and thus it incurs an enormous cost (Gurav & Shaikh, 2010).

12

In the existing approach, if data has to be replicated, the database administrators must
handle the data on their systems and every other system. DBAs will set up one primary MySQL
database server and two secondary MySQL database servers. Using MySQL scripting they will
have enabled data replication in place. Following this approach might cause a delay in updating
the data, and it might generate errors with frequent changes. Also, if the number of slave
databases are increased, it becomes riskier for the DBA. Though an automated process can
accomplish this, there is no mechanism to monitor for errors. Any issues encountered can only
be understood and then solved by the DBA. For this reason, it is not considered as a reliable
approach (Tutorials Point, n.d.-a).

Making use of REST API will help us to handle these issues. REST has few rules that
must be incorporated into the application, which will make it REST specific and easy for us to
understand. Using the CRUD operations, we can communicate with the backend efficiently to
handle HTTP requests, and support post, put, delete and get commands. The response format of
REST is in JSON (Javascript Object Notation) and JSON is preferred over XML, as it is more
lightweight (Tutorials Point, n.d.-b).

This approach does not need a DBA to administer the data because REST APIs will
handle the replication and other related tasks. The only thing to be considered with this approach
is to implement the REST API with all of the necessary infrastructure considerations taken into
account, like the application server. In this method, Tomcat is used to host the application, which
will communicate to the backend using the REST API. The advantage of using the REST API is
that, if the same data must be replicated in multiple systems, it is not required to copy the same

code manually each time. Instead, we can have a build system like GRADLE or MAVEN, which

13

will create a WAR file during the build process and then this WAR file can be directly deployed

into Tomcat.
Definition of Terms
Table 1

Glossary of Different Terms Used in This Paper

TERMS

ABBREVIATION

API
JSON
REST

CORBA

RPC
SOAP
VM
XML
DBMS
PK
FK
HTTP
Tomcat
WAR

MySQL

Application Programming Interface

Java Script Object Notation

Representational State Transfer

Common Object Request Broker

Architecture
Remote Procedure Call
Simple Object Access Protocol
Virtual Machine
Extensible Markup Language
Database Management System
Primary Key
Foreign Key
Hypertext Transfer Protocol
Apache Tomcat
Web Application Resource

Structured Query Language

14
Chapter I1: Literature Review and Background

According to Wood et al. (2009), various data center virtualization courses of action, for
instance, VMware ESX, use content-based page sharing to have the advantage of using multiple
servers. The concept of page sharing involves the technique of comparing virtual machine
memory pages to an uncertain substance and then coalesce them into a single shared page. This
type of system, when executed at the host level, is applied just between the VMs that are put
together on a given physical host. In a multi-server environment, the chances of sharing may be
greater in the light of the fact that the VMs holding undefined pages are localized on multiple
servers. To make use of content-based page sharing it is critical to put virtual machines to such a
degree as possible, to the point that VMs with practically identical memory substance are
arranged on similar hosts.

With the concept of virtualization, multiple VMs can be executed in parallel on a single
processor. Also, various operating systems can co-exist on the same physical platform.
Traditionally when it was first introduced, it was mainly used in server environments with a
motive to increase the usage and availability of resources whenever required. Now-a-days, it is
used in embedded systems as well. More recently, considering all the factors like performance,
power, security and safety of the embedded domain, researchers have put their efforts into
developing more effective solutions to the embedded virtualization environment (Heiser, 2008;
Varanasi & Heiser, 2011).

Advantages of Virtualization
Following are advantages of virtualization:

e Dynamic Load-balancing

15

e Disaster Recovery

e Server Consolidation

e Testing and Development

e Improved System Reliability

e Security

Cloud computing depends on the concept of virtualization to share its resources with the
end users over the web. It is composed of both a distributed and VM computing infrastructure.
There are three different ways in which the cloud provides its services to the end user (Albeshri
& Caelli, 2010). They are (a) infrastructure as a service, platform as a service, and (c) software
as a service (Albeshri & Caelli, 2010).

According to Ren et al. (2016), virtual machines (VMs) and virtualization are one of the
core computing technologies today. When VM communication is considered, it is the most basic
and one of the primary roots for data concentrated structures and applications in most server-
based environments and cloud computing. Making use of local VM communication is considered
as an essential step in improving the intercommunication between VMs more efficient, which
indirectly makes use of REST API for communicating between different VMs located on
different machines.

Also, when the sender VM and the receiver VM are co-resident on the same physical
host, the data can also be transmitted to the shared host and bypass the long method for the
TCP/IP system stack (Wang, 2009).

When the sender VM and the receiver VM are on different hosts, the data will be sent

from sender to receiver through standard TCP/IP protocol stack. To develop such a typical

16
information exchange between VM communication channels, it is required to recognize the
following limitations:

e Get every possible data request, dissect it, and recognize whether the recipient VM is
a co-resident with the sender VM on the similar host.

e Maintain both adjacent and remote midway VM communication techniques, and an
unending supply of neighborhood inter-VM communication, which enables switching
and redirects the dynamic data to the shared memory-based station.

e Twist the simple memory-based inter-VM communication into the current virtualized
system in a compelling and distinct route over existing programming layers, which
can be complex (Burtsev et al., 2009).

In earlier days, communication between different hosts was achieved by making use of
client/server architecture. In this kind of approach, each time a client wants to collect the data
from the server, it has to send it a request first. The request must be accepted and acknowledged
by the server, and then the communication is established between them (Muthunagai, Karthic, &

Sujatha, 2012).
Need for the REST API

REST API will make communication between machines through the HTTP protocol.
RESTFUL applications use HTTP requests to read, create, update and delete data through
CRUD operations which are easy to understand. APIs can also act as a network between the
software application and the operating system. It also serves as a guide between different

applications by directing them in each step.

17

Table 2
Classification of API’s
SOAP
Web Service APIs XML-RPC and JSON-RPC
REST
Library-based APIs JavaScript
TWAIN
Class-based APIs Java API
Android API
OS Functions and routines Access to file system
Access to user interface
Object remoting APIs COBRA

.NET Remoting

Video acceleration
Hardware APIs

Hard disk drives

PCI buses

Advantages of the REST API

Among all of the available APIs, REST is best used for service application development.
REST is the simpler data processing solution. The four most-important operations: GET, PUT,
POST, and DELETE will also make it easier to obtain a uniform interface and simplifies the data
transmission.

It acts as an interface between any systems using the HTTP call, which will enable the
data collection process. It will also allow us to perform all sorts of operations on the data and
generate output formats as required. It is lightweight and more flexible in comparison to any
other API currently available. Following are a few advantages of REST for development.

« Separation between the client and server.

* Visibility, reliability and scalability.

« lItis both platform and language independent.

18
Shared Memory
Memory that can be shared and accessed by a different number of programs is called
shared memory. Multiple applications can easily communicate with each other by making use of
shared memory. It can be considered the easiest and fastest means of communicating with

different applications.

Wirtual processor A Virtwal processor B
Memory space memaory space
Unallocated space Unallocated space

Shared-memory
saegmeants
Private data Private data
= I
Program text Program text

Diata Client applications (LIMIX)

Figure 1. Database Server Using Shared Memory to Enable Virtual Processors

19
Chapter 111: Methodology

Scope

The main scope of this project is to showcase the ability to share the data between master
and slave nodes using the Rest API. Any changes in master data should be replicated in the
slaves. Any changes made in slaves will be overridden by server changes as server changes
require the highest priority.
Design Approach

A primary host and two secondary hosts are considered for the design and
implementation. The data resides in the primary host and all updates occur on the primary host.
Data is replicated in the secondary hosts periodically using REST API exposed by the primary
host. A standard application is built to serve for both the primary and the secondary hosts.
Primary Host

e Server application is built to serve CRUD operations through the REST API.

e When the data is created, createdDate is updated.

e When the data is updated, lastModifiedDate is updated.

e Log Table is available to manage tables and lastFetchedDate in the application.
Secondary Hosts

e Secondary hosts use the same application except that, the client uses a pull approach

to update its DB.
e Cron job is triggered on a specified time-frame to see if there are any updates on the

Server Data.

20
e Ifanything is updated, the delta which is greater than “lastFetchDate” is returned in
a JSON format.
e Once the response is fetched, the POST call is made to the secondary host with the
delta.
o All of these are handled in a separate thread for performance optimization reasons.
Design of Study
The following diagram explains the architecture used for this project. Secondary virtual
hosts check for updated Delta (i.e., data) and make a GET request. Each time when the data is
updated in the primary host, the database gets updated, from their it sends the data to the

secondary virtual hosts.

Updme

Check for Delta GH request

n Cron job friggerd

Returns Delta GH et

Update DB

Figure 2. Architecture

P peta
Secondary Host 1

L ror 0N
Respe™

e Spong, e for
De!g
Primary Host
Wa [t For " Deriy
‘Secondary Host 2

Figure 3. High Level Design

Log Service
private LogRepository |
logRepository;
findBytableName |+ LogRepository CRUD

savelog

Log
private Integer logld; |
private Siring tableName
private Date
lastFetchedDate;

Figure 4. Data Model in MySQL
The Student Controller uses log service through autowiring and updates the last fetched

date if the GET request is triggered from a Cron job.

StudentController StudentService (Interface)
listAllStudents | Student findByld(String email).
Student findByMame(String name),
createStudent void saveStudent(Student student);
void updateStudent{Student student);
updateStudent void deleteStudentByld(String id);
List=Student= findAllStudents();
deleteStudent void deleteAllStudents(); Student
boolean isStudentExisi(Student student), - -
List«Student> fingAllStudenisUpdatedAfierDale(Date __private Infsgerid;
lastUpdatedDate); pn\{ate String studentName;
’ private String studentAge:
private String studentGrade;
private String studentinterest;
private String studentAddress:
¢ private String email
I private Date createdDate:
1 private Date lastModifiedDate
I |
i
1
StudentServicelmpl [~~777 -

StudentRepository

CRUDRepository

Figure 5. Class Diagram
» Student Controller: The class is mapped with @RestController annotation, which is
readily used by Spring MV C to handle web requests. The controller also has
@RequestMapping annotation, which will assign the API call to the corresponding
method implementation. The controller is auto-wired to the service layer using
annotation @autowired. The controller acts as a serving point for any CRUD

operations.

22

» Student Service (Interface): This interface exposes all necessary operations that
need to be performed on the Student entity.

» StudentSerivcelmpl: This class implements all the interface methods exposed by
student service, which depends on the repository through @autowiring.

» StudentRepository: The Interface implements a CRUDRepository interface, which
will have a default behavior for all CRUD related operations to be performed on the
entities.

» CRUDREepository: The interface provides most of the CRUD operation methods
needed. Any additional methods are written to the custom repository.

Tools and Techniques

Java 1.8. Java is a high-level programming language. It was developed by Sun
Microsystems, and was released in 1995. It is simple, robust, dynamic, platform independent and
a flexible programming language compared to many other languages. With each version that has
been released, there are new features that have been added. After Java 1.5 was released, Java 1.7
called Dolphin has been the most significant update. The version 1.8 release is the latest and has
more available features compared to earlier versions, Java 1.8 is what is used in this project.

Spring boot. The project uses Spring boot which makes the creation of stand-alone

applications easy. Spring boot has embedded Tomcat and Jetty enabling easy deployment
especially if there is no specific need to generate the .war file. It also allows for less
configuration in XML for the Spring framework and provides a starter configuration for Maven
files which, in turn, makes it easy to kick-start any web application development. It is also easy

to integrate with Gradle, as it is the most used build management system.

23

Tomcat 7.0.81. It implements almost all the Java EE specifications like Java Servlets,
JSP, Java Expression language and Web socket. With all of these specs, Tomcat makes it easy to
run the Java code in an HTTP server environment. It is light-weight, open-source, highly flexible
and fully secured. It is also a stable platform that makes the Java applications run more smoothly.

JPA. Java Persistence API (JPA) provides a better way for the developers to easily
access and manage data between Java applications and its associated database, by making use of
Object Relational Mapping. It is easy to understand and easy to implement.

Overall the application uses Spring Boot, with Java 1.8 and Gradle as a dependency and
build deployment system (Java Code Geeks, n.d.).

IntelliJ IDEA. IntelliJ Idea is used for development purposes. It is a Java IDE
(Integrated Development Environment) which was developed by JetBrains. Choosing an IDE for
code development is the most critical factor to be considered by any programmer. IntelliJ IDEA
is the best IDE in comparison to others such as Eclipse, NetBeans, BlueJ and many others, the
following describes why it is the best option (JetBrains, n.d.).

A few of the advantages to are:

e Autocomplete option makes it faster for the IDE to understand the keystrokes and
auto-populate the suggestions based on the keywords typed. This functionality will
reduce the time taken to write the code.

e IDEA refactoring is intelligent in that they provide various options based on the
situation.

e Debugging is the best part of IDEA, it easily understands all the variables and makes

it is easy as possible for the developer to track and fix bugs.

24

MySQL5.5 server. MySQL is used for the back-end database application. MySQL is an

open-source database management system, which is a traditional way of storing the data in the

back-end. MySQL Workbench, which is an integrated environment for MySQL is used to write

different tables that are required for this project. It is very user-friendly and easily understood.

Gradle. Gradle is an open-source build automation system. It is built on the concepts of

ANT and MAVEN. ANT and MAVEN are implemented using XML, whereas Gradle makes use

of Groovy. The Project is developed with Gradle to generate the .war and .jar file, which can

eventually be run on multiple systems. The .war file is deployed in the Tomcat application server

to serve the REST endpoints.

Technology Stack

Java 1.8
Spring Boot
Tomcat 7.*
JPA

MySQL 5.5
Gradle 2.14.1

IntelliJ ldea

25

UML Diagrams

yes

StudentController StudentServicelmpl StudentRepository Student | | DB
T T T
| | | | |
| | | | |
—_— I | | I I
I | | I I
I | | I I
i | | i i
I | | I I
4(‘# I | | I I
1 ' L L s 4
listAllStudents
/\ Sm———— findAlStudents()
Get Student findAl() students
fapifstudents L available
] fetch student i
\. :] Yes
 display JSON result I
\ | TS TEF Gt returns list of
students
. 1 students returns list of sludents
dizplay 204 "No content” students
&I msg
___:I' Mo
—
return empty list T refum empty list |_fetum empty st - return empty list
Figure 6. Get Request Sequence Diagram
StudentController StudentServicelmpl StudentRepository Student | | DB
i i ! i i
| | | | I
| | | | |
I I | I I
I I | I i
| | | | |
i i | i i
| | | | I
| | | | |
LF — — — —
|
SaveS ! ident()
: T jsStudentExist
Post Student
Japifstudents
return student Already D Yes
< axist mea in JSON
:> No
<
isplaycreated JSON 7
SaveStudent() =
display Save() -
&IT msg save i Save
retum err return err
retum e —
return err) No
-—

Figure 7. POST Request Sequence Diagram

StudentController StudentServicelmpl StudentRepository | | Student | | DB
i i i | |
I I I | |
I I I | |
I I I | |
I I I | |
I I I | |
I I I | |
I I I | |
| | | 1 1
L L] - - L
updateStudent()
pdatesitentvy, i
findStudentByName
PUT Student v
[apilstudent/id}
retum student does not D No
- exist JSON msg
L e
&
{Eplay updzted JSON updateStudent() L
display update() 5
&IT Mg update —— update ———x
yes
retum arr retum err
return err -
return err) No
—
Figure 8. PUT Request Sequence Diagram
StudentController StudentServicelmpl StudentRepository | Student | | DB
i i i i i
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
I I I I I
| | | | |
— — —_ — —
deleteStudent()
gy)
findStudentByName
Delete Student U
[apifstudent/id
o i return student does not D No
exist JSON msg
D Yes
isplay Mo content as
studlgnt is logically deleted deleteStudent() L
display delete() >
1T msg deletef) —— delete) —t
return e refum et
return err e
retum err b)
—

Figure 9. DELETE Request Sequence Diagram

27
When the data is created, the last modified date is set equal to the created date. And when
the subsequent data is modified, the last modified data is then updated. In this way, the created
data is not lost and sent back to the client to do an UPSERT.
When the data is deleted, a column with the name isDeleted is set to true, which is the
logical deletion of data rather than a physical deletion, which will also be updated in the slave
machines.

Thus, the records created, updated or deleted are synced up to date.

StudentController StudentServicelmpl StudentRepository | Student | | DB | | Log Service
I 1 I I | |

- - . . o o
listAlIStudents
—_—
D izCron && lastFetchedDate
Get Student ==nul
lapilstudents — students
N available
findAllStudenis() findAll)
l = fetch student Yes
display JSON results
: TRIOE ST o returns list of
Tetirms IsTar students
students returns list of ghenks
students
| — update lastFetchDate in
display 204 "No content’ ']
play paivt e No LogTable fatch students
qreater than ctudents
2 last modified)
findAllStudentsUpdatedA available
e By LasodTedD dae |
ateAfter l
) o
—
i
" < | etum empty list i bl
retum empy fst retum empty list TEturm emply 15

Figure 10. Secondary Host Get Sequence Diagram

studentcollaboration - [

File Edit te

main
jawa
v

student.api

controller

model

tCollarbrationMain

Figure 11. Project Structure
» Main file. StudentCollaborationMain.java serves as the main file. The Java
compiler looks for this main file and is configured for the Spring boot and all the
necessary JPA parameters like the package to lookup for Service, Repository and

Model are configured through the respective annotations.

28

29

Cron Package. The Cron Folder has the
StudentCollaborationClientSimpleJob.java and StudentCollaborationJob.java
files which are mainly used by slave machines to trigger and fetch modified data from
the server. A separate MySQL connection is used to connect to the server and bring
the latest data which then returns a JSON response, and which again triggers a CRUD
request on its virtual machines to save the data back to its DB.

Student API Package. This package contains the Controller, Model and Service.
Controller. The Controller is used to process CRUD user requests, build an
appropriate model and pass over it to view. The Controller’s dependency is specified
through an autowiring concept through annotation @autowired. The necessary
dependencies a controller can have is the service.

Model. Model is a Plain Old Java Object that encapsulates the application specific
data and is mainly used by the controller and Repository to take further actions on
entities.

Service. The Service is autowired with the controller for CRUD related operations to
be performed through an Interface without having to create an object. The custom
implementations can be handled here.

Repository. The Repository is mainly used to reduce the boilerplate code required to
access data layers for various persistence stores. Spring provides a CRUDRepository
interface, which has almost all the CRUD related operations performed without

having to re-create them. The custom implementations can be implemented by

30
extending the CRUDRepository interface and providing any additional methods
needed.

Util. Util contains any utility methods needed for the Project. One example is the
Custom error class which is required to simplify error messages to be returned to the
user.

Application.properties. The properties file is used to specify any application related
properties such as MySQL connection, username, password, connectivity type,
environment-related settings, and log levels. These features are used by Spring and
tweaking this file during run-time is easier, enabling to change the properties based
on the environment.

Build.gradle. The build dependencies in the project are specified in the build.gradle
file which uses a Groovy-based DSL (Domain Specific Language), which supports
automatic download of build dependencies. The file has tasks and dependencies
which can be specified for compile time as well as run time.

Settings.gradle. Settings related to Gradle is specified as the project name and all the

subprojects to be included for the build and can be added here.

31
Chapter 1V: Implementation

Gradle Setup
> In your browser, go to https://gradle.org/releases/ and choose Version 2.x preferably
2.14.1.
> Create a folder in c: drive as c:/gradle, unzip the downloaded gradle file and copy it
to the new directory created.
» Set PATH variable for gradle under system variable section to "C:\Gradle\gradle-
2.14.1\bin".
MySQL Server Setup
To build, run and deploy the research platform database, you will need the following:
e MySQL Server 5.5 or above
You may also want to consider these optional tools for your deployment.

e MySQL Client (e.g., mysql-workbench or similar)

Install MySQL Server

In your web browser, go
to http://dev.mysqgl.com/downloads/mysql/5.5.html#downloads.To download
MY SQL server 5.5v. Click on the Download button with respect to your system

architecture i.e., Windows (x86, 32-bit) or Windows (x64, 64-bit).

Recommended Download

MySQL Installer
1 y3Q for Windows

All MySQL Products, For All Windows Platforms,
In One Package,

.

Windows (x86, 32 & 64-bit), MySQL Installor NSI Go to Downdoad Page >

Other Downloads:

Windows (x86, 32:bit), MS! Installer 5587 35M

Windows (x£6, 64-bit), MSI Installer

32

You can skip this option by clicking the link at the bottom of the page that
says, “No thanks, just start my download.” and Click on the “Save file to your

system.”

Begin Your Download - mysql-installer-community-5.6.28.0.msi

Login Now or Sign Up for a free account.

pcie Wed Account provides you with the followrg advantages.

If you already have an Ovacie Web account, Cick the Login Snkc Otherwise,

you can sigrwp for & free account by cicking the Sign Up knk and following the instructions

| No thanks, just start my download. |

Once the file is downloaded, Run the MySQL installation file. Click on Typical

button and then click on the Next button.

1 MySQL Server 5.5 Setup -
Choose Setup Type
Onoose the setup type that best suls your needs

Instals the most common program featres, Recommended for most users,

Custom
Allows users to choose which program features will be nstalled and where
they wil be instalied. Recommended for advanced users.
Complete
Al program features wil be nstalled, Requires the most disk space.

33

During MySQL installation, use Advanced Configuration > Show Advanced
Options and set the MySQL ROOT Password. Then click on the Save button. Now

your user name will be root and password will be the password provided by you.

MySQL Server Instance Configuration Wizard x|

| MySQL Server Instance Configuration !
\ Configure the MySQL Server 5.5 server instance. i

Pleate set the security options.
¥ Modify Security Settings

1 New oot password: Enter the root password
ot Confirm Retype the password.

[Ensble root access from remote machines

[T Create An Anonymous Account

This oplion will create an anonymous account on this server,
Please note that this can lead to an insecure system.

< Back J | I Cancel

34

35

Configure Environment Variables
This section assumes a Windows environment, the content is the same for other

environments, but the methods for accessing and setting the environment variables are different.

Open your Environment Variables:

Start Menu > Control Panel > System and Security > System > Advanced System Settings

> Environment Variables

Erpromrnt Verubin

Uy wmnisbban for confld

Vbl i
ERELY Pt ey el | 506
o, G

R Tda I jeil]

o LEne

36

Create JAVA _HOME variable:
e Click on the New button, under the User Variables section.
o For Variable Name, enter JAVA_HOME
o For Variable Value, provide the Java path for, example: C:\Program
Files\Java\jdk1.8.0_144

Edit User Variable X

Variable name: | JAVA_HOME |

Variable value: | C:\Program Files\Java\jdk1.8.0_66| |
Browse Directory... Browse File... Cancel

o Click the OK button.
1. If you are running 32-bit Windows, then the path would be ex:- C:\Program
Files (x86)\Java\jdk1.8.0 144
2. Java jdk path "jdk1.8.0_144" will be with respect to the installed version and it

may not be the same as mentioned in the above example.

37

Edit PATH variable:

In the System Variables section, scroll down to and select the Path variable.
Click the Edit button just below.

System variables

a5

Variable Value

NUMBER_OF P... 2 (A

Windows_NT

C:\ProgramData\Orade\Javaljavapath;...

PA .COM; EXE; BAT;.CMD;.VBS;.VBE;.J5;.... ™
[Mew... Delete]

Click your mouse cursor onto Variable Value box.
Using your keyboard's right-arrow or End key, move all the way to the far right of
the current text in Variable Value.
Add the following text onto the end of the existing Variable Value text:

o For Java path example:- ;C:\Program Files\Java\jdk1.8.0_144\bin

o For MySQL server path example:- ;C:\Program Files\MySQL\MySQL

Server 5.5\bin

o For Gradle Path example: C:\Gradle\gradle-2.14.1\bin
There must be exactly one semi-colon between whatever is already in your PATH
variable, and the new C:\Program Files\Java\jdk1.8.0_66\bin — don't add a semi-
colon if your previous PATH already ended with a semi-colon.
Java jdk path "jdk1.8.0_66" will be with respect to the installed version and it may

not be the same as mentioned in the example.

Variable name: | PATH |

Variable value: I‘n,bin;C:‘n,Program FilesWavaljdk1.8.0_67hin I

Garc

38

Create JAVA _OPTS variable:
o Click the New button again, under the User Variables section.
o For Variable Name, enter JAVA_OPTS
o For Variable Value, enter: -Xms512m -Xmx1024m
Note: Variable value example can be changed with respect to the system memory

size for example: -Xms512m -Xmx1024m

Edit User Variable >
Variable name: | JAVA_OPTS |
Variable value: | -Xms512m -Xmx] 024m| |

Browse Directory... Browse File... Cancel

Add CLASSPATH variable:
In the System variables section, create JAVA_HOME (jdk path), JRE HOME (jdk path)
and CATALINA_HOME (tomcat path)
e point classpath variable to
%JAVA_ HOME%\bin;%JRE_HOME%\bin;%CATALINA HOME%\Ilib;
Then click OK button

39

Install Java

Before beginning, uninstall any existing versions of Java currently on your computer.

In your web browser, go to http://www.oracle.com/technetwork/java/javase/downloads/jdk8-
downloads-2133151.html, to download Java 1.8.

Oracle requires that you read the license agreement, then click the circle labeled Accept

License Agreement.

Java SE Development Kit 8u144

You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.
Accept License Agreement Decline License Agreement

Product / File Description File Size Download
Linux ARM 32 Hard Fioat ABI 77.89 MB #jdk-8u144-linux-arm32-vip-hfit tar.gz
Linux ARM 64 Hard Float ABI 7483 MB #jdk-Su1dd-linux-armG4-vip-hflt tar.gz
Linux x86 164.65 MB ®idk-Su1d4-linux-i586.rpm
Linux x86 179.44 MB #idk-8u144-linux-i586.t1ar.gz
Linux x64 162.1 MB #jdk-Su144-linux-x64.rpm
Linux x64 176.92 MB #jdk-Su144-linux-x64 tar.gz
Mac 0S X 226.6 MB ®idk-Su1d4-macosx-x64.dmg
Solans SPARC 64-bit 139.87 MB ®idk-Sutd4-solanis-sparcv9.tar.Z
Solans SPARC 64-bit 99.18 MB ®jdk-8u1dd-solans-sparcvd targz
Solaris x64 140.51 MB ®jok-Suid4-solans-x64.tar.Z
Solaris x64 96.99 MB #®ick-Su144-solaris-x64.tar.gz
Windows x86 190.94 MB ®idk-Suid4-windows-1586 exe
Windows x54 197.78 MB ®jdk-Su1d4-windows-x64.exe

Click the link to download with respect to your system architecture i.e., x86 for 32-bit or x64
for 64-bit.

Java SE Development Kit 8u144 Demos and Samples

Downloads
You must accept the Oracle BSD License. to download this software.
Accept License Agreement Decline License Agreement
Product / File Description File Size Download

Linux ARM 32 Hard Fleat ABI 9.95 MB ®jdk-Sutdd-linux-arm32-vfp-hfit-demos tar gz
Linux ARM 84 Hard Float ABI 9.94 MB ®jdk-8u144-linux-armG4-vip-hfit-demos tar. gz
Linux x86 52.66 MB #jdk-8u144-linux-i586-demos.rpm
Linux x86 52.52 MB #jdk-8u144-linux-1586-demos targz
Linux x64 52.72 MB ®jdk-8u144-linux-x64-demos.rpm
Linux x64 52.54 MB #;dk-8u 144-linux-x64-demos tar.gz
Mac OS X 53.09 MB #jdk-8u1d4-macosx-x86_64-demos.zip
Solaris x64 13.52 MB ®jdk-8u144-solaris-x64-demos tar.Z
Solaris x64 9.31 MB ®idk-8u144-solaris-x64-demos tar.gz
Solaris SPARC 64-bit 13.58 MB #$j0k-8u144-solans-sparcvd-demos tar
Solaris SPARC 64-bit 934 MB ®idk-8u144-solaris-sparcvd-demos tar gh
Windows x86 53.8 MB #jdk-8u144-windows-i586-demos.zip
Windows x54 53.82 MB #jdk-8u1d4-windows-x64-demos.zip

40

S | Save the Java installation file to your computer

6 | Run the Java Installation

Open a command line and execute java -version to verify that the install was successful.

Install Tomcat

In your browser, go to http://tomcat.apache.org/download-70.cgi to download Tomcat 7.
e Under the section Binary Distributions Core click on the link to 32-bit or 64-bit zip
(that corresponds to your system architecture) to download.

7.0.82
1 Please see the README file for packaging information. It explains what every distribution contains.
Binary Distributions

s Core:
© zip (pgp. mds, shat)
tar.gz (pgp. mds, sha1)
32-bit Windows zip (pgp., md5, sha1)
64-bit Windows zip (pgp. mds, shat)

(=]
=]
=]
© 32-bit/64-bit Windows Service Installer (pgp, mds, shat)

2 | Extract apache-tomcat-7.0.82.zip

3 | Folder: apache-tomcat-7.0.82, gets extracted

4 | Move apache-tomcat-7.0.82 folder to /usr/local/tomcat7

5 | Open Command prompt and enter:- cd /usr/local/tomcat7

6 | Enter: ./bin/startup.sh

41

Configure Tomcat

Setting up Lib folder
1. Download drizzle jdbc jar file
from https://mvnrepository.com/artifact/org.drizzle.jdbc/drizzle-jdbc/1.3

2. Once downloaded, copy and paste to lib folder — Go to /usr/local/tomcat7/lib and

1
put the jar file there.
Note: If tomcat-jdbc.jar file is not available in the /usr/local/tomcat7/lib folder then you
will need to download and add it to the tomcat/lib folder from:
http://www.java2s.com/Code/JarDownload/tomcat-jdbc/tomcat-jdbc.jar.zip
Generate keystore
Generate a new keystore using java keytool
e Open the command prompt
o Go to the $JAVA HOME/bin folder.
e Run this command to generate the key: keytool -genkey -keyalg RSA -alias tomcat
-keystore /usr/share/tomcat.keystore
2

e Provide the password.

Provide input and enter: y (for "’yes”) for the last question to confirm.

He—enter new password:

hat is your first and last name?
[Unknownl:z: Jjohn n

Ihat is the name of your organizational unit?
[Unknownl: xyz dept

lthat is the name of your organization?
[Unknownl: xyz company

lthat is the name of your City or Locality?
[Unknown 1=

Ihat is the name of your State or Province?
[Unknownl: us

IWhat is the two—letter country code for this unit?
[Unknownl:z 971

Is[CN;juhn n. OU=xyz dept. O=xyz company. L=Unknown. 8T=us, C=91 correct?
nol: y_

42

Updating server.xml configuration file
o Open c:/tomcat7/conf/server.xml in your text editor

o Copy and paste the following contents into server.xml
<?xml version="1.0' encoding="utf-8'?>
<Server port="8005" shutdown="SHUTDOWN">
<Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" />
<Listener className="org.apache.catalina.core.JasperListener" />
<Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" />
<Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" />
<Listener className="org.apache.catalina.core. ThreadLocalLeakPreventionListener" />
<GlobalNamingResources>
<Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase
description="User database that can be updated and saved"
factory="org.apache.catalina.users.MemoryUserDatabase Factory"
pathname="conf/tomcat-users.xml" />
<Resource type="javax.sql.DataSource" name="jdbc/mifosplatform-tenants"
factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
driverClassName="org.drizzle.jdbc.DrizzleDriver"
url="jdbc:mysql:thin://#MY SQL_DB_ADDRESS#:3306/mifosplatform-tenants"
username="#MYSQL_USER#"
password="#MYSQL_PASSWORD#"
initialSize="3"
maxActive="10"
maxldle="6"
minldle="3"
validationQuery="SELECT 1"
testOnBorrow="true"
testOnReturn="true"
testWhileldle="true"
timeBetweenEvictionRunsMillis="30000"
minEvictableldleTimeMillis="60000"
logAbandoned="true"
suspectTimeout="60"
>
</GlobalNamingResources>
<Service name="Catalina">
<Connector protocol="org.apache.coyote.http11.Http11Protocol"
port="443" maxThreads="200" scheme="https" secure="true" SSLEnabled="true"
keystoreFile="/usr/share/tomcat.keystore" keystorePass="#KEY STORE_PASSWORD#"
clientAuth="false" ssIProtocol="TLS" URIEncoding="UTF-8" compression="force"
compressableMimeType="text/html,text/xml,text/plain,text/javascript,text/css"/>
<Connector port="8009" protocol="AJP/1.3" redirectPort="8443" />
<Engine name="Catalina" defaultHost="localhost">
<Realm className="org.apache.catalina.realm.LockOutRealm">
<Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/>
</Realm>
<Host name="localhost" appBase="webapps" unpack WARs="true" autoDeploy="true">
<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
prefix="localhost_access_log." suffix=".txt"
pattern="%h %I %u %t "%r" %s %b" />
</Host>
</Engine>
</Service>
</Server>
You'll need to replace the following placeholders with appropriate values for your environment.

° #MYSQL_DB_ADDRESS# = server name or IP address
o #MYSQL_USER#

o #MYSQL_PASSWORD#

o #KEYSTORE_PASSWORD#

Save the file

Invokes ' Porforms Perfroms CRUD

appropriate corresponding operation on

service operation on corresponding

[N Entity Table in DB

Figure 12. Primary Host Technical Design

Performs Performs CRUD
corresponding operation on
operation on corresponding
Entity Table in DB

Store Data in
DB Periodic Gef

Trigger

Looks for Delta
Makes PUT
request with
Delta json

Returns Delta

Figure 13. Secondary Host Technical Design
Technical Design Explained
Primary host.
e The StudentCollaborationController has the trigger point for
Create/Get/Update/Delete requests.
e The Controller interacts with the service layer when the corresponding requests are

triggered.

43

44
The StudentService looks up corresponding CRUD operation and performs the
CRUD on the Student entity
Spring framework with JPA will help to do manipulation on the entities.
When a new student is created, createdDate and lastModifiedDate is set to the same
time.
When the same student is modified, lastModifiedDate is updated.
This way, the last operations performed on the student entity are not lost, but it is
created or updated.
The response is returned in a JSON format.
The custom error message can be returned as the JSON response to any business logic
failure such as, “Student Already exists or No student with that name to update or
delete.”
The data is deleted logically instead of a physical deletion to sync the same in the

client DB.

45

MySQL database schema.
Table 3
Student Table Schema
% Name Datatype Length/Set Unsign.. AllowM.. Zerofill Default
1 id INT 11 0 | (] AUTO_INCREMENT
1 created date DATETIME | B L
3 deleted TINYINT 1 O O g o
4 email VARCHAR 55 | R
5 last_ modified_date DATETIME | [
6 student address VARCHAR 255 | BN
7 student age VARCHAR % A BN
8 student_grade VARCHAR 255 | BN
9 student_interest VARCHAR % A BN
10| | student_name VARCHAR 255 & [| NULL
W1 logid INT 1 O O Nl
12 last fetched date DATETIME | R
13 log TINYBLOB A B Nodefault
Table 4
Log Table Schema
% Name Datatype Length/Set Unsign.. AllowN.. Zerofill Default
1 logid INT 1 O] [] AUTO_INCREMENT
2 last_fetched_date DATETIME 0 T
3 table name VARCHAR 255 0 T
e CreateStudent Request: This request shows how to create a student entry. In

POSTMAN set the path as — http://localhost:8080/api/student/Shravani and select
POST option. Then put the following code under body and select the radio button
“raw” and content-type as application/JSON, then click send. This request will create

a new entry with the following details.

http://localhost:8080/api/student/Shravani

46

"studentName":"Shravani”,

"studentAge":"20",

"studentGrade™:"A",
"studentinterest™:"Technology, freelancing, music",
"studentAddress™:"Thompson7 st”,

"email™:"shravanimenneni@gmail.com"

POST httpi/flocalhost:3080/zpi/student/ Params Send Vv

(1) Body @

form-data wwwwformeurlencoded @ raw binary |SON (spplication/json)

“studentllame": "Shravani”,
"studentAge":"20",

"studentGrade":"A",
tInterest":"Technology, Coding",
"studentAddress":"Thompson7 :t",|
"email”: "shravanimennenifgnail. con”

8]

Figure 14. Create Student Request
UpdateStudent Request: This request shows how to update a student entry. In
POSTMAN set the path as - http://localhost:8080/api/student/Shravanil and select
PUT option. Then put the following code under Body and select the radio button
“raw” and content-type as application/JSON, then click send. This request will update

the changes for the entry with the username specified.

http://localhost:8080/api/student/Shravani

{
"studentName":"Shravanil",
"studentAge":"21",
"studentGrade™:"B",
"studentinterest":"Technology",
"studentAddress™:"Thompson43 st",
"email™:"shravanimennenil@gmail.com”

}

Response:

{

"id™: 3,

"studentName": "Shravanil",
"studentAge": "21",

"studentGrade™: "B",
"studentinterest™: "Technology",
"studentAddress™: "Thompson43 st",
"email™: "shravanimennenil@gmail.com",
"createdDate": 1507656613000,
"lastModifiedDate": 1507656790174,
"deleted": false,

"studentLog™: {

"logld": 1,

47

"tableName": "Student",

"lastFetchedDate": 1507615646000

PUT http:/flocalhost:8080/api/student/shravanil Params “ Save
form-data x-www-form-urlencoded ™ raw binary JSON (application/json)
1~ {
2 "studentNami "Shravanil®,
3 "studentige 1",
4 "studentGrade
5 "studentInterest”
6 "studentAddress
7 “email":"shravenimennenil@gmail. com"|
8 1
Body ers (3) est Results Status 200 0K Time: 261 ms
Pretry JSOM =
Lz
2 "id": 3,
3 "studentName": "Shravanil",
4 "studentige” 1"
5 "student@rads":
6 "studentInterest "Technolegy™,
7 "studentAddress"” Thompsondd st”,
8 “emzil”: "shravanimennenil@gmsil.com”,
9 “createdDate”: 1587856613000,
18 "lastModifiedDate": 1587656798174,
11 "deleted": false,
12 - "studentlog™: {
13 "logld": 1,
14 "tablelame”: “"Student",
15 "lastFetchedDate": 1587615646008
16 }
17 1
Figure 15. Update Student
university-collab student: 5 rows total (appromately) B Net '] ¥ Sorting ¥ Columas (11/11) ¥ Fiter
) 0 ceated date dsleted emal last modfied_date shudent address shudent age student grade student interest shudent_name) o
2 017-10-10 22:58:52 0 dravanmennen@gmal.com 2017-10-10 22:58:52 Thompson? st .| A Technology, freelandng, music Sravani 1
3 2007-10-20 230013 0 shavanmenneni1gmal.com 17-10-10 3:03:10 Thompsond3 st A B Techndogy Svavanil 1
4 007-0-0 23008 0 svaynmemen2@gralom 017-10-1023:00:28 Thompsondst 2 A Techndlogy, freelancng Sravan2 1
S 20171010 23:00:90 0 gravanmenmen3ggmal.com 017-10-10 23:00:49) Thompson10 st 2 A Technology, fredancng Sravani3 !
6 2017-10-10 23:00:50 0 gvavanmennens@omal.com 2017-10-10 23:00:50 Thompson11 st 2 A Techndlogy, freeanang Sravand 1

Figure 16. Database with Updated Record

48

49

DeleteStudent Request: This request shows how to delete a student entry. In
POSTMAN set the path as — http://localhost:8080/api/student/Shravani2 and select
Delete option. Then put the following code under body and select the radio button
“raw” and content-type as application/JSON, then click send. This request will delete
the entry with the studentName set to Shravani2.
{

"studentName":"Shravani2",

"studentAge":"20",

"studentGrade™:"A",

"studentlInterest™:"Technology, freelancing”,

"studentAddress":"Thompson9 st",

"email":"shravanimenneni2@gmail.com"}

DELETE http:/localhost:8080/apilstudent/shravani Params Send v BEEG

form-data wwmnformeurlencoded ® raw © binary JSON (zpplication’jsan)

"studentInterest”s" Technalogy, freslancing”,
"studenthddress”: "Thompsond st”,
"email" s shravaninenneniZegnail. con”

8

Figure 17. DELETE Request on Postman

http://localhost:8080/api/student/Shravani

50

acastudent: § rows total (apprommately » Ku v Sotng v Columas (11/11) 7 Fiker

Figure 18. Deleted Record in the Database

GetStudents Request: This request shows how to get all the entries. In POSTMAN set
the path as — http://localhost:8080/api/students then click send. It returns the
following output.
Response:
[{

"id": 2,

"studentName": "Shravani",

"studentAge": "20",

"studentGrade™: "A",

"studentinterest": "Technology, freelancing, music",

"studentAddress™: "Thompson?7 st",

"email™; "shravanimenneni@gmail.com”,

"createdDate": 1507656532000,

"lastModifiedDate": 1507656532000,

"deleted": false,

"studentLog": {

"logld": 1,

"tableName": "Student",

http://localhost:8080/api/students

"lastFetchedDate": 1507615646000

"id": 3,
"studentName™: "Shravanil",
"studentAge": "21",
"studentGrade": "B",
"studentinterest™: "Technology",
"studentAddress™: "Thompson43 st",
"email™; "shravanimennenil@gmail.com"”,
"createdDate™: 1507656613000,
"lastModifiedDate": 1507656790000,
"deleted": false,
"studentLog": {

"logld™: 1,

"tableName": "Student",

"lastFetchedDate": 1507615646000

"id": 4,

51

52

"studentName": "Shravani2",
"studentAge": "20",
"studentGrade™: "A",
"studentinterest™: "Technology, freelancing”,
"studentAddress™: "Thompson9 st",
"email™; "shravanimenneni2@gmail.com",
"createdDate": 1507656628000,
"lastModifiedDate": 1507657118000,
"deleted™: true,
"studentLog": {

"logld™: 1,

"tableName": "Student",

"lastFetchedDate": 1507615646000

"id": 5,

"studentName": "Shravani3",

"studentAge": "20",

"studentGrade™: "A",

"studentinterest": "Technology, freelancing",

"studentAddress": "Thompson10 st",

"email™; "shravanimenneni3@gmail.com",
"createdDate": 1507656640000,
"lastModifiedDate": 1507656640000,
"deleted": false,
"studentLog": {

"logld™: 1,

"tableName": "Student",

"lastFetchedDate": 1507615646000

"id": 6,

"studentName": "Shravani4",

"studentAge": "20",

"studentGrade™: "A",

"studentinterest™: "Technology, freelancing”,
"studentAddress™: "Thompson11 st",
"email™: "shravanimenneni4@gmail.com",
"createdDate": 1507656650000,
"lastModifiedDate": 1507656650000,
"deleted": false,

"studentLog": {

53

54
"logld™: 1,
"tableName": "Student",

"lastFetchedDate": 1507615646000

]

Secondary host.

Secondary Host performs the same operations as the primary host.

Secondary Host always pulls the data from the server.

The main difference is that secondary host triggers Get Request using CRON on a
periodic time frame.

When there is any delta available on the server, the server responds in a JSON
format.

The client again makes a PUT request, which UPSERTS the data in the DB.

If the server contains data that is deleted, lastModifiedDate is updated along with

isDeleted field set to true. The same changes are updated on the client.

55

CA\Windows\System32\cmd.exe - java -cp studentcollaboration-all-1.0-SNAPSHOT.jar cron.StudentCollaborationClientSimplelobMain

LF4J: The requested version 1.7.16 hy your slf4j hinding is not compatible with [1.6]
See http://uww_slf4j. org/codes_htmlitversion_mismatch for further details.
[main] INFO org.quartz.impl.StdSchedulerFactory - Using default implementation for ThreadExecutor
[main] INFO .quartz.simpl.SimpleThreadPool - Job execution threads will use class loader of thread: main

[mainl INFO .quartz .core.SchedulerSignalerInpl — Initialized Scheduler Signaller of type: class org.guartz.core.SchedulerS8ignalerImpl

[main] INFO .quartz.core.QuartzScheduler — Quartz Scheduler v.2.1.5 created.
[main] INF0 org.quartz.simpl.RAMJobhStore - RAMJobStore initialized

[main] INFO org.quartz.core.QuartzScheduler — Scheduler meta-data: Quartz Scheduler <v2.1.5) ’DefaultQuartzScheduler’ with instanceld *NON_CLUSTERED*

Scheduler class: ‘org.quartz.core.QuartzScheduler’ - running locally.
NOT STARTED.

Currently in standby mode.

Number of jobs executed: @

Using thread pool ’org.quartz.simpl.SimpleThreadPool’ - with 18 threads.

Using joh-store ’org.guartz.simpl.RAMJobStore’ - which does not support persistence. and is not clustered.

[main] INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler 'DefaultQuart"ScheduleP' initialized from default resource file in Quartz package: ’quart
.5

[mainl INFO org.quartz.impl.StdSchedulerFactory - Quartz scheduler version: 2.

[main] INFO org. .cove.QuartzScheduler - Scheduler DefaultQuartzScheduler § NON CLUSTERED started.

[DefaultQuartz! QuartzSchedulerThread]l DEBUG org.guartz.core.QuartzScheduler d - batch acgquisition of trigyers
[DefaultQuartz8chedule: lartz§chedulerThread]l DEBUG org.guartz. e .QuartzScheduls acquisition of @ triggers
[Timer—@]1 DEBUG org.quartz.utils.UpdateChecker — Checking for available updated version of Quartz...
[DefaultQuartzScheduler_QuartzSchedulerThread]l DEBUG org.quartz.core.QuartzSchedulerThread — batch acquisition of B triggers
[DefaultQuartzScheduler_QuartzSchedulerThreadl DEBUG org.guartz.core.QuartzSchedulerThread — batch al:qlu.,ltlnn of 1 triggers

[DefaultQuartz8cheduler_QuartzSchedulerThread]l DEBUG org.quartz.simpl.PropertySettingdobFactory - Producing instance of Job ’groupl.fetchLatestmodif ications

[DefaultQuartzScheduler QuartzSchedulerThreadl DEBUG org.quartz.core.QuartzSchedulerThread — batch acquisition of B triggers

[DefaultQuartzScheduler_Yorker-11 DEBUG org.quartz.core.JobRunShell — Calling execute on job groupl.fetchLatestmodificationsdJob

-Zﬂl'? lﬂ—lﬂ 11:37:26.8 Student
p:gt Date: 108-18-2817 11:37:26

8.766 [DefaultQuartzScheduler_Worker—11 DEBUG org.springframework.ueb.client.Restlemplate Created GET request for “http:-rlocalhost:888B-apisstudents?isCron=trw
71 [DefaultQuartzSchedule: ki springf ramework 1i Setting request Accept header to [text/plain, application/json, applic
-6 I[DefaultQuartzSchedule org.springf ranevork .cli Writing [1 as “application/json" using [org.springframework.h
org.springfranework.weh.client. RentTemplate GET request for “http://localhost:888B/api/students?isCron
org.springf ramework.web.client .RestTemplate Reading [java.lang.Stringl as “application/jsonjcharset=UTF-

="Technoloy elancing, g1
6598016123, {*
i)

Log' ogl e" “studen
h»auanmennenﬂ@gmall con' 15'7656648'38 1a..tHud1f1e(lDat 53765664'383 "deleted' tudenthg

1, "tableNane

Shravanid”. "studentfge" /" tudentGrade’ "n echnology,. freelancing","studentAddress" hompsonil st" .J\rauanmennenﬂﬁymall con"

alse, "studentLog" Student" "la..tFetche(lDate" 150876590616123>123:40:01.694 [DefaultQuartzScheduler
Hg/api/gpdatestudents

.695 [DefaultQuartzSchedule: rker-11 DEBUG org.springframework.ueh.clien .,tTemplate - ”1‘1':1"9 [L{M (l
honpson? st*, "en H]lrauanlmennenll!gmall col cl-eate(lDate 1537656532358 lastModif iedDate"
tAge: 21", ..tu(lentGrade studentInter
i1, "tahleNa ":"Student". aﬂtFetchedDate”'1537659331512}} (bt
il.con m-eatedl)ate 1587656628888 "lastModifiedDate 1587657118080, "de leted":
. freelancing Thumpsnni@ ;

d":6, "studentName
”"hrauan1nennen14l3gma11 comn 5665 lngId
lg. springframework. http.converter.StringHttpMessageConverter@d34fe?d]
:4@:01.813 [DefaultQuartzSchedule: rker—11 DEBUG org.springframework.uweh.client.RestTemplate — PUT request for ttp: #slocalhost :8@8B api updateStudents"” resulted in
3:48:26.478 [DefaultQuartzScheduler_QuartzSchedulerThread]l DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of B triggers

Figure 19. Secondary Host Changes

Setting up an IDE for the Development Environment

application/json
'studentAg
al.,e, "studentLog":

u
1."tahleName": "Student". "last

IntelliJ Idea is used for the development purpose with the latest download community

edition from https://www.jetbrains.com/idea/download/#section=windows.

Next it is necessary to create a project with the proper java structure in place along with

the build.gradle specifying the necessary dependencies.

https://www.jetbrains.com/idea/download/#section=windows

56

ration] - [studentcollaboration_main] - ..\src\main'j \Stud llaborationJobjava - Intellil IDEA 2017.2.. - ©

ave o

4Avvyvyvvvpy E

fatlar
dMail

brationMain

Figure 20. Development Environment in IntelliJ IDEA
Once done, Gradle has a few built-in tasks available enabling us to create war, jar files.
Since Spring boot is used for development, which also has the embedded tomcat, the project can
be executed by creating RUN/DEBUG configuration as Gradle application and setting a boot
run task.
In IntelliJ, Go to View -> Tools window -> Gradle, below the side panel appears a

displaying of tasks and run configurations to be set for Gradle.

Figure 21. Gradle Settings

> Enable RUN/DEBUG configuration
Go to Run -> Edit Configuration -> Click on the “+” on the top left corner of the

popup window. Select Gradle from the list of applications as shown below.

57

» = Application
¥ (adle

> Defaults

Figure 23. Window that Appears to Create a Configuration

» (& Application

¥ (2 Gradle
(& bootrun

> Defaults

In the Name field, specify the name of config as “Bootrun” (the name can be
anything). Under the Configurations tab, set the below parameters:
Gradle Project: Root folder of the Project where build.gradle is visible
Tasks: clean bootrun
Arguments: --debug

Click on Apply -> OK

Run/Debug Configurations

¥ Before launch: Activate tool window

Figure 24. Configuration is Created Enabling us to do a Debug or a Run

» Setting up Client cron

Go to Run-> click on + -> select Application from the list

59

60

Run/Debug Configurations “

uration

Figure 25. Client Cron Setup Instructions

Run/Debug Configurations

¥ @ Application

m Unnamed

Defaults

aunch: Build, Adtivat

Figure 26. Window that Appears to Create a Cron Configuration

61
In the Name field, enter “Cron” (name can be anything)
Under the Configurations Tab,
Enter the following:
Main Class: Select the StudentCollaborationClientSimpleCronJob
Working directory: by default, it is populated.
Use the class path of Module: Select StudentCollaboration_main

Click on Apply -> OK
Run/Debug Configurations

¥ '@ Application

) Cron

¥ &G
(& bootrun

> Defaults

18

Enable capturing form s shots

¥ Before launch: Build, Activate tool window

¥ Build

Figure 27. Setup Instructions for Cron
Build and Deployment
The application can be built both for development and a production environment, the

development environment can be setup on an IDE to enable debugging and finding of issues.

62
» Development Environment
On the right side of the IDE or from the Run menu, choose the configuration
“BootRun” created above as debug or run configuration. The application starts to

debug, and can be viewed in the console.

| studentcollaboration - dentcollaboratis llaboration] - [studentcollaboration_main] - ..\src\main\java\cron\StudentCollaborationob java - Intelli] IDEA 2017.2.. - O
Co Help

& & &1 51 B & &F

Figure 28. Application BootRun Option

Once done, check the application by clicking on the browser or postman.
POSTMAN is an HTTP client that is used for testing web services. It is useful in
interfacing with the REST API’s.
» Production Environment
Primary Host: Go to the root folder of the project in the terminal or command

prompt and enter the command “gradle clean war”.

63

Figure 29. Build Successful Message on Command Prompt

The .war file is generated successfully in /StudentCollaboration/build/libs/1-1.0-

SNAPSHOT.war.

| = | libs - B
“ Home Share View 0

(—- - T <« studentcollaboration » build » libs v & Search libs ye

.) Date modified Marne
¢ Favorites

Bl Desktop @/ 10/6/2017 1... 1-1.0-SNAPSHOT.war
4 Downloads

= Recent places

1M This PC
e Desktop
‘| Documents
& Downloads
W Music
=| Pictures
g Videos
= Local Disk (C:)
—a Local Disk (D)

€ Network v < B

1 item 1item selected 21.2 MB Hoz| i

Figure 30. War File Generated
e Copy the generated .war file.
e Paste the .war file in c:\\Tomcat\webapps.

e Start the tomcat -> Go to c:\tomcat\bin > startup.bat.

64

& LAWINaowWs\>YSTEm3£\Cma.exe =

D:\personalsStudentCollabrationsstudentcollaborationded c:
N

D:\personal\StudentCollabrationsstudentcollaborationc:
oed toncat?.8.79

\toncat?.0.79>cd wehapps

\toncat?.@. 79 \wehapps Yed ..

i\toncat?.8.79>cd hin

\toncat?.@.79\bin)startup.hat
ging CATALINA_BASE: “c:“\tomcat"
sing CATALINA_HOME: “c:\tomcat"
ing CATALINA_TMPDIR: “c:\tonmcat\temp"
si | H "Gi\Progran Files\Javasjdki.8.@_131"
ging CLASSPATH: "¢ i\toncat\bhin\hootstrap. jar;c:\toncat\bhinvtoncat-juli. jar"
\tomcat?.@.79%bin>

Figure 31. Tomcat Configuration

e Tomcat will start to deploy the .war file and the entire logs can then be found in the

console.

Tomcat - ol

Oct @7, 2817 8:22:59 AM org.apache.coyote_ AhstractProtocol init |
lNFO. Initializing ProtocolHandler [“http—hio—9191"1

, 2817 3:80 AM org.apache.coyote.fAbstractProtocol init
lNFO' Initializing ProtocolHandler ["http—hio—8443
Oct @7, 2817 8:23:88 AM org.apache.catalina.startup.Catalina load
INFO: Initialization processed in 2583 ms
Oct @7, 2817 8:23:83 AM org.apache.catalina.core.8tandardService startInternal
INFO: Starting service Catalina
Oct @7, 2817 8:23:83 AM org.apache.catalina.core.StandardEngine startInternal
INFO: Starting Servlet Engine: Apache Tomcat/7.@.79
Oct @7, 2817 8:23:83 AM org.apache.catalina.startup.HostConfig deployWAR
INFO: Deploying web application archive C:\tomcatwebapps\nessage-gateway-8.@.1.
Oct @7, 2817 8:23:1@ AN org.apache.catalina.startup.TldConfiyg execute
INFO: At least one JAR was scanned for TLDs yet contained no TLDs. Enahle debug
ARs during scanning can improve startup time and JSP compilation time.
2017-10-@7 B8:23:12.732 UWARN 5924 —— [ost—startStop—11 o.s.b.l.LoggingApplicat
ot bhe opened and will be ignored

=SS
{wl.1.5.RELEASE>
2017-10-@7 B8:23:12.897 INFO 5924 —— [ost—startStop—11 o.s.boot.SpringApplicat
ib\spring—hoot—1.1.5.RELEASE. jar started by ppattabiraman in Stomcat?.B.79%hin
7 B8:23:13 .58 INFO 5924 —— [ost-startStop-11 ationConfigEnbeddediebl
D date [Sat Oct @7 B8:23:13 IST 28171; root of context hierarchy
INFO 5924 ——— [ost-startStop-11 o.s.h.f.s.DefaultLista
alﬂe, la"yInlt =false; autowireMode=3; dependencyCheck=8; autowire(]
iConf iguration; factoryMethodHame=heanNameliewResolver; initMethodH|
vcAutoConf iguration$White lahe 1IErrorViewConf iguration.class1] with [Root hean: ¢
false; factoryBeanName=org.springframevork.boot.autoconfigure h.UWebMucAutoConf
d); defined in class path resource [org/springframewvork-hootsautoconf ig]
7 88:23:17.385 INFO 5924 —— [ost-startStop-1] trationDelegatefBeanPos|
lass org.springframework.transaction.annotation.ProxyTransactionManagementGConf ig|
ot eligible for auto—proxying2
:23:17.431 INFO 5924 —— [ost—startStop-11 trationDelegate$BeanPos
ibuteSourcel iz not eligible for getting processed hy all BeanP|
’817*18*87 @8:23:17.445 INFO 5924 —— [ost—startStop-1] trationDelegateSBeanPos|
Interceptor] iz not eligible for getting processed by all BeanPostProcessors (fo
2017-10-87 B8:23:17.455 INF0O 5924 -— [ost—startStop-11 tratlnnDelegate$BeanPog
mework.transaction.interceptor. EeanFactoryTranoact10nﬂttr1bute$nurceﬂdu1gor] is|
7 B8:23:17.519 INFO 592 [ost—startStop-1] o.s.ueb.context.Context
[ost—startStop-11
[ost-startStop-11]
[ost—startStop-11
[ost—startStop-11
[ost-startStop-1] o.s.h.c.enbedded.Filtes|
[ost—startStop-11 -enhedded.Filten|
B8:23:28.454 [ost—startStop-1] o.f.c.i.dhsupport.DhSup|
A8:23:29.531 [ost-startStop-1] o.f.core.internal.commal
B8:23:29.608 [ost—startStop-1] o.f.core.internal.commal
A8:23:29.609 [ost—startStop-1] o.f.core.internal.commal
7 B8:23:29.794 [ost—staptStop-1]1 j.LocalContainerEntituMi

] Tomcat = 0

=traceEndpoint 1
734.515 INFO 5924 — [ost-startStep—11 a.s
dpo int . name =dumpEndpo int 1
INFO 5924 lost-startStop—11 o
type=Endpoint namn
4.537 INFO 5524 [ost-startStop-11 o

“IiPo 5924
2017 §:23:34 AM org.apache.cataling.stantup. HostConfig deploytAlt
: Deployment of web application archive
t 87, 2017 8:23:34 AM org.apache.catalina.startup.HostConfig deployDirectory
Deploying web application directory C:ntomcat-webappsidocs
8:23:34 AM org.apache.catalina.startup.TldConfig execute
1ea«: one JAR was scanned for TLDs yet contained no TLDs. Enable debug
ing can inprove startup time and JSP conpilation time.

: Peplovment of web appiication directery C:wtomcatwwehapnsdbce has Finishe
t 87, 2017 8:23:34 AM org.apache.catalina.startup.HostConfig deployDirectory
Deploying web application directory C:stomcat-webappsiexamples
7, 2817 8:23:38 AM org.apache.catalina.startup.TldConfig execute
NEO: At least one JAR wac schnned For TLDS yat contained no TLD Bnable dehuy
during scanning can inprove startup e and JSP compilatio
87, 2017 8:23:39 AR org.apache - catalina.stanrtup.HostConFig depleyDirectory
: Deployment of web application directory C:\tomcat-webappshexamples has Fin|
t 87, 2017 8:23:39 AM org.apache.catalina.startup.HostConfig deployDirectory
Deploying web application directory C:stomcat-webappsihost-manager
7, 2817 8:23:39 AM org.apache - natallna.startup TldConfig execute
NFO: At least one JAR was ichnned For TL et contained no TLDs. Enable debug
ARs during scanning can impeoue stantup time and JSP eompilation time.
67, 2017 8:23:39 AM org.apache.catalina.startup.HostConfig deployDirectory
: Deployment of web application directory C:\tomcat>webapps~host-manager has|
t 87, 2017 8:23:39 AM org.apache.catalina.startup.HostConfig deployDirectory
Deploying web application directory C:\tomcat-webapps\manager
7, 2817 8:23:39 AM org.apache.catalina.startup.TldConfig execute
A 1ea«: one JAR was scanned for TLDs yet contained no TLDs. Enable debug
canning can inprove startup time and JSP compilation time.
817 8:23:39 AR orgapache.catalina.startup.HostCon iy deplosbirectory
: Depluyment of web application directory Cintongatsuehappsimanager has fini
133 org.apache .catalina.startup.HostConfiy deployDirectory
Depluylng voh application directory Cistoncat wehappssRi
:23:3% AM org.apache.catalina.startup.TldConfig execute
NEo: At leagt e JAR wag scanned for TiDs set contained no TLDs. Enable dehug
ing can inprove startup time and JSP compilation time.

Depluyment of web application dlxectury 4 \tumcat\uehappg\ROOT has flnl»he
? AM org.apache.coyote . b ctProtocel start
ProtocolHandler [' ttp—hio—9191"1
3% AM org.apache .coyote.fRbs ctProtocel start

ing PrutuculHandler ["http-hio—8443"]
=3 org. apache .catalina.startup.Catalina start

38530 m:
INFO 5924 ——— [ool-18-thread—11 o.f.m.sms.service .SHSHe

Figure 32. Tomcat Deployment

65

66
The above console shows that the tomcat is deployed successfully. Note that the .war file
will be extracted in the name of 1-1.0-SNAPSHOT and can be accessible by the context as

http://localhost:8080/ 1-1.0-SNAPSHOT/api/student.

Home Share View
9 * T . » ThisPC » Local Disk (C) » tomcat » webapps

¢ Favorites MName ‘ Date modified Type Size
B Desktop 10 1-1.0-SNAPSHOT 10/7/2017 8:43 AM File folder
& Downloads . docs 9/6/2017 7:36 PM File folder
] Recent places | examples 9/6/2017 7:36 PM File folder

|/ host-manager 9/6/2017 7:36 PM File folder

1% This PC | manager 9/6/2017 T:36 PM File folder
o Desktop L. ROOT 9/6/2017 7:36 PM File folder
| Documents || 1-1.0-5MAPSHOT.war 10/6/2017 11:24 PM WAR File 22,351 KB
& Downloads
W Music
=| Pictures

8 Videos
i, Local Disk (C3)
= Local Disk (D:)

“! Metwork

Figure 33. War File Generated in Tomcat Folder
e Go to a browser and enter: http://localhost:8080/api/students

e The server is now up and running, see Figure 34.

€ > C | O localhost8050/api/student v 008 g
[{"1d":1,"studentNase™: "Shravani®, " studentige™: "20", "studentGrade™: "A", "studentInterest”™: "Techaology,
Coding", "studentaddress”: “Thompson?

st”,"endil": "shravanisennenifignail. con”, "createdDate” 1507350700000, " lastrodifiedDate™ :null, "lastFetch
edDate”:null, "studentlog”:{"logld":1,"tableNase": "Student", "lastFetchedDate”:null}}]

Figure 34. Student Details Displayed
Secondary Host:

e Follow the same steps as with the primary host build deployment.

independent application, see Figure 35.

icrosoft Windows [Uerszion 6.3.76881

(c> 2013 Microsoft Corporation. All rights reserved.

CA\Windows\System32\cmd.exe

D:spersonalsstudentcollaborationisstudentcollaborationtgradle fatjar

tcompileJava
Iproc Resources
tclasses

fatJar

BUILD SUCCESSFUL

otal time: 17.757 secs
D:\personalsstudentcollaborationisstudentcollaboration’

Figure 35. Jar File Being Generated

e _jarisgenerated in build\libs folder

| = | libs
“ Home Share View
(-I * ¢t « studentcollaboration » build » libs
[Favorites Name
B Desktop gk studentcollaboration-all-1.0-SMAPSHOT
& Downleads

= Recent places

18 This PC

i Desktop

‘| Documents

& Downleads

o Music

=| Pictures

& Videos
i Local Disk (C)
— Local Disk (D)

€l Network v

v O

Date medified

0/7/2017 10:09 AM

Type

Executable Jar File

Figure 36. Jar File Generated Inside the Build Folder

any modifications to the data from the last fetched date.

Additional steps required are to generate a .jar file to be able to run on an

o
7]
p
ize
28,344 KB

67

Once the .jar is generated, start the client application cron job to see if there are

68
e For the very first time, the last fetched date is null and hence all the data is
fetched from the server and inserted in the DB. Also, the last fetch date is now
updated to the current date and time.
e To start the cron job from jar - go to build/libs folder where .jar is generated
and execute the command “java -cp studentcollaboration-all-1.0-SNAPSHOT .jar

cron.StudentCollaborationClientSimpleJobMain”

o) C\Windows\System32\cmd.exe - java -cp studentcollaboration-all-1.0-SNAPSHOT,jar cron.StudentCollaborationClientSimpleJobMain -V

[D:\personalistudentcollaborationisstudentcollaborationded huild\libhs

4J: The requested version 1.7.16 by your s1f4j hinding is not compatihle with [1.61
See http://www.slf4j.org/codes.htnlfiversion_mismatch for further details.
26.918 [main] INFO opg.quartz.impl.StdSchedulerFactory - Using default implementation for ThreadExecutor
26.926 [main] INFO opg.quartz.simpl.SimpleThreadPool - Jobh execution threads will use class loader of theead: main
:54:26.942 [main] INFO org.quartz.core.SchedulerfignalerImpl - Initialized Scheduler Signaller of type: class org.quartz.core.SchedulerSignalerImpl
:54:26.946 [main] INFO org.quartz.core.QuartzScheduler - Quartz Scheduler v.2.1.5 created.
:54:26.947 [main] INFO org.quartz.simpl.RAMJobStore - RAMJobStore initialized.
:54:26.948 [main] INFO org.quartz.core.QuartzScheduler - Scheduler meta-data: Quartz Scheduler {v2.1.5) ‘DefaultQuartzScheduler’ with instanceld 'NON_CLUSTE]
Scheduler class: ’org.quartz.core.QuartzScheduler’ - running locally.
NOT STARTED.
Currently in standby mode.
Mumber of johs executed: @
Uging thread pool 'org.quartz.simpl.SimpleTheeadPool’ - with 18 threads.
Using joh-store ’org.quartz.simpl.RAMJohStore’ - which does not support persistence. and is not clustered.

:54:26.949 [main] INFO org.quartz.inpl.StdSchedulerFactory - Quartz scheduler 'DefauthuartzScheduleP' initialized from default resource file in Quartz pack
:54:26.94% [main] INEO or iartz. inpl.StdSchedulerFactory - Quartz scheduler version: 2.
:54:26.94% [main] INFO org.quartz.core.QuartzScheduler - Scheduler DefaultQuartzScheduler 5 NON_CLUSTERED started.

26.949 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG org.quarvtz.core.QuartzSchedulerThread - hatch acquisition of @ triggers

26.954 [DefaultQuartzEcheduler_QuartzSchedulerThread] DEBUG org.quartz.core.Quartz8§chedulerThread - hatch acquisition of @ triggers

27.947 [Timer—81 DEBUG org.quartz.utils.UpdateChecker — Checking for available updated version of Quartz...

52.422 [DefaultQuartzScheduler_QuartzSchedulerThread] DEBUG ory.quartz.core.QuartzSchedulerThread - hatch acquisition of 1 triggers

00.0807 [DefaultQuartz8cheduler_QuartzSchedulerThread] DEBUG org.quartz.simpl.PropertySettingJobFactory - Producing instance of Job ’groupl.dunmyJobName’
:55:00.313 [DefaultQuartzScheduler_QuartzSchedulerTheead]l DEBUG org.quartz.core.QuartzSchedulerThread - batch acquisition of @ triggers
:55:00.314 [DefaultQuartzScheduler Yorker-11 DEBUG org.quartz.core.JobRunShell - Calling execute on joh groupl.dunnyJohName
2817-10-88 @P:40:15.8 Student

:88.686 [DefaultQuartzScheduler ! 1 DEBUG org.springframevork.ueb.client.RestTemplate - Created GET request for “http://localhost:8@8@/apisstudents
@0.689 [DefaultQuartzSchedule 1 DEBUG org.zpringframevork.web.client.RestTemplate - Setting request Accept header to [text/plain. application/j
@8.61A [DefaultQuartzSchedule rker-11 DEBUG org.springframevork.web.client.RestTemplate - Writing [1 as “application/json' using [org.springframeuvor

8:55:12.779 [DefaultQuartzScheduler Worker-11 DEBUG org.springframevork.ueh.client.RestTemplate - GET request for “"http://localhost: Bﬂﬂﬁlapllutudent ?isCron=|
ullPfA:55:23.479 [DefaultQuartzScheduler_Quartz SchedulerThPead] DEBUG org.quartz.core.QuartzSchedulerThread - hatch acquisition of B triggers

Figure 37. Execution of Cron Job
From the above console screen in Figure 37, you can see that the cron job has started
successfully and makes the request to the server to fetch any modified data. The cron time can
be tweaked to minutes, hours, seconds and the frequency of updates can also be set.
Sample application explained:
e To prove the capability of data transfer between the primary and secondary hosts, a

StudentCollaboartion application is created.

Considered only student Create/Update/Get/Delete scenarios.

Maintained a Log table to update the last fetched time for the corresponding table.
The idea is to have the same application to be hosted in all three hosts, which will
have their own application server(tomcat) running along with the MySQL database.
The only difference between the secondary and primary hosts is that the secondary
host will have a cron job running to look for any modifications on the server.

If there are any modifications, the delta is fetched greater than the last fetched time.
Secondary hosts cron job makes a Get request to the student API with the
lastfetchdate parameter.

It will check for the last modified data after the given fetch date.

The client performs UPSERT (update or insert) of data based on the current state of
DB.

Any updates in the client will be overwritten by the server update.

Insert data in the Student table through create request and start the cron job as

specified before.

69

70

POST http:/Mlocalhost:8080/apifstudent/ Params
Authorization Headers (1) Body® PrerequestSeript Tests
I
formdata) xwwaform-urlencoded ® raw binary ~ |50N (applicationson)
1+ {
z "studentllane": "Shravani”,
3 "studentAge":"20",
‘ "studentOrads":"4",
studentInterest™: "Technology, Codin
5 "studentInterest™: "Technology, Coding",
b "studentAddress": "Thampson7 st"J|
| "emgil";"shravaninennenifanail, con’
g}
9
Figure 38. POST Operation
university-collaboration.student: 1 rows total (approximately) W Mext MM how all ¥ Sorting F Columns (11/11) + Filter
2 id created_date email last_fetched_date last_modified_date student_address student_age student_grade
2017-10-07 10:01:40 shravanimenneni@gmail. com (NULL) 2017-10-08 00:57:45 Thompsan7 st 20 A
£ >

Figure 39. Database Before Modification

71

e Meanwhile, go to postman and update the student as seen below in Figure 40.

PUT http://localhost:8080/api/student/Shravani Params Save

"studentlame": "Shravani”,

"studenthge™: 28",

"studentGrade":"A",

"studentInterest”:"Technology, freelancing, music"”),
"studentAddress":"Thompson? st”,

"email™: "shravanimennenig@gmail. com”

4

=IO AT, WS ETR R

—

Figure 40. PUT Operation

=i Host: 127.0.0.1 | || Database: university-collabor... | [=| Table: log | £8 Data } Query*| 55
university-cellaboration.log: 1 rows total (approximately) W Mext KM Shooe all ¥ Sorting v
log_id last_fetched_date table_name

il 2017-10-08 01:00:00 Student

Figure 41. Modified Date in Log Table

university-collaboration.student: 1 rows total (approximately) b Mest MM Show all | F Sorting ¥ Celumns (11/11) + Filter
2 id created_date email last_fetched_date last_modified_date student_address student_age student_grade
2017-10-07 10:01:40 shravanimenneni@gmail.com (NULL) 2017-10-08 01:01:05 Thompson7 st 20 A
< >

Figure 42. Student Table After Modification

72

20171888 A3:48:15.9 Student
eport Date: 18/88/2017 A0:49:15
p0:55:00.686 [DefaultQuartzOcheduler Yorker-11 DEBUG ovg.springfeancuork.veh.client. RestTenplate - Ceeated CET vequest for "hetpi//localhost :308/api/students
P:95:00.689 (DefaultQuartzScheduler Norker-11 DEBUG org.springfrancuork.yeh.client.RestTenplate - Setting vequest Accept header to [text/plain, application/]
:95:00.610 [DefaultQuartzbcheduler Norher-11 DEBUG org.springfeancuork.eh.client. RestTenplate - Yeiting (1 as "application/json” using lovg.springfrancuorh
B:05:12. 770 (DefaultQuartzicheduler orker-11 DEBUG org.springfrancuork.ueb.client . RestTenplate - GET vequest for “Wttp:/localhost:BB88/api/students? isCron=
n1100:55:23.47 (DefaultGuartzScheduler QuartzSchedulerThesad] DEBUG ovg. quartz,core. QuavteSchedulerThread - batch acquisition of @ triggers
5550083 (DefaultQuartzScheduler QuartzlchedulerTheead] DERIG ovg.quatz.core.QuartaSchedulerThread - hatch acquisition of B triggers
briT.0t3 [efaultQuartzbeheduler QuartaScheduleeTheead] DEBG obg.quartz.core. QuartzSchedulerThoead - hatch acquisition of B triggers
0,988 (DefaultGuartzScheduler QuartzlchedulerTheead] DERIG ovy.quartz.core.QuartedchedulerThread - hatch acquisition of B triguers
b.243 MefaultQuartzScheduler QuartzlchedulerTheead] DERUG ovy.quartz.core.QuartzSchedulerThread - hatch acquisition of B triggers
0,705 (efaultGuartzScheduler QuartzlchedulerTheead] DERIG ovy.quartz.core.QuartedchedulerThread - hatch acquisition of B triguers
6858 (DefaultGuartzScheduler QuartzlchedulerTheead] DERUG ovy.quartz.core. QuartzSchedulerThread - hatch acquisition of B triggers
1956 [DefaultuavtzScheduler QuartzbehedulerThread] DEBUG ovq.quartz.cove.QuartzichedulerThread - hatch acquisition of B trigyers
5,672 (efaultGuartzScheduler QuartzchedulerTheead] DERIG ovg.quartz.core.QuartaSchedulerThread - hatch acquisition of B triggers
B.762 (efaultQuartzScheduler QuartzlchedulerTheead] DERUG ovy.quartz.core.QuartzSchedulerThread - hatch acquisition of B triggers
5.7 (efaultGuartzScheduler QuartzchedulerTheead] DERIG ovy.quartz.core.QuartaSchedulerThread - hatch acquisition of 1 trigyers
0087 (efaultQuartzScheduler QuartzlchedulerTheead] DEBUG ovg.quastz.sinpl PropertySett inglobPactory - Producing instance of Job 'groupl, dunnyJobbane'
00,012 [efaultfuartzScheduler QuartlchedulerThread] DEBIC ovy.quatz.core.QuarteSchedulerThread - hatch acquisition of B triguers
0:00.823 [Defaultfuartzleheduler Yorker-21 DEBUG ovg.quartz.core. dobRunshell - Calling execute on job geoupd.dunnydabNane
2017-18-68 03:48:15.0 Student

eport Date: 16/88/2617 60:48:15
p1:00:20.035 [DefaultQuartaScheduler Yorker-21 DERUG org.springfrancuork.beh.client. RestTenplate - Ceeated GET vequest for “httpt//localhost:8888/api/students
1:00:08.035 [DefaultQuavtzScheduler Norker-21 DEBUG ovg.springfrancuork.ueh.client.RestTenplate - Setting vequest Accept header to [text/plain, application/]
00:00.835 [Def aultQuartzfcheduler Uorker-21 DEBUG org.springFeancyork.veh.client. RestTenplate - Weiting [1 as “application/json” using lovg.springfrancuoek
00:00,059 DefaultQuartzScheduler Yorker-21 DEBG ovg.springfranevork.veb.client . RestTenplate - GET vequest For "http://localhost:0M8B/api/students?isCeon=
0:00.803 [DefaultQuartzScheduler Uorker-21 DEBUG org.springfeancyork.ueh.client. RestTenplate - Reading [java. lang.Steing] as “application/json;chavset=UTR
1307

[{"1d":1, "studentHane"s "Sheavani”, "studenthge”: 28", "studentleade”: 0", "student Interest"s "Technology, freelancing, music”,"studentAddvess”:"Thonpson? st”,"ena
Date"+1507484465000, "TastPetchedDate " inull, "studentlog" :"log1d" 1, "tahleNane"s "Student”, "TastPetchedDate" 1 5A74B46 000512 101 :09: 26,889 [DefaultGuartzbehedul
hatch acquisition of @ triggers

1:08:55.505 [DefaultQuartzScheduler QuartaSchedulerThread] DERUG ovy.quartz.core. QuartzSchedulerThread - hatch acquisition of B triggers

1:81:21.650 (DefaultQuavtzScheduler QuarteSchedulerTheead] DEBIC ovy.quartz.core. QuarteSchedulerThread - hatch acquisition of B triguers

1:B:58 781 (DefaultQuartzScheduler QuartzSchedulerThread] DERIG ovy.quartz.core. QuartzSchedulerThread - hatch acquisition of B triggers

b4
70
12
7.5
§il
R
R
9:3
B:q
i:

H
H
Z
H
H

B:
!
:
!
:
:
H
B:
!
B:
I
i
1:

5
]
5
]
5
5
5
5
5
[
[
[

Figure 43. Updated Data is Printed as a Response in the Cron Job Fetch

iniversity-collaboration.log: 1 rows total (approximately) 13 HH ¥ Sorting ¥ Celumns (3/3) # Filter

table_name
| Student

log_id
1]

Figure 44. Log Table Cron Job

73
Chapter V: Conclusion

In this paper, a Java application was developed using Java server pages to replicate the
data from the primary host to secondary hosts by making use of the REST API. Even though
this process can be achieved by a DBA or through the use of SOAP and RPC, it is time-
consuming and solely dependent on the DBA, which makes it complicated to find the issues and
resolve them on time. Whereas, with REST API it is easy to replicate the data without any
limitations and it can be replicated on as many servers as we need. Also, REST acts as a secure
platform for transforming the data and makes it easy to track performance issues.

Virtualization, cloud computing and REST API concepts are implemented here to meet
the objective of the paper and achieve the successful implementation of the project. Data shared
with REST API in place has more advantages and is more secure when compared to the method
involved with DBA handling. This shows better handling of data within the emerging changes

in the IT industry.

74
References

Albeshri, A. A., & Caelli, W. (2010). Mutual protection in a cloud computing environment. In
IEEE 12" International Conference on High Performance Computing and
Communications (pp. 1-3). Melbourne.

Burtsev, A., Srinivasan, K., Radhakrishnan, P., Voruganti, K., & Goodson, G. R. (2009, June).
Fido: Fast inter-virtual-machine communication for enterprise appliances. Retrieved
from https://www.usenix.org/legacy/events/usenix09/tech/full_papers/Burtsev/
Burtsev_html/index.html

Gurav, U., & Shaikh, R. (2010). Virtualization: A key feature of cloud computing. In
Proceedings of the International Conference and Workshop on Emerging Trends in
Technology (ICWET’10) (pp. 227-229).

Heiser, G. (2008). The role of virtualization in embedded systems. In IIES 2008 Proceedings of
the First Workshop on Isolation and Integration in Embedded Systems (pp. 11-16).
Glasgow, Scotland.

Java Code Geeks. (n.d.). The gradle build automation handbook. Retrieved from
https://www.javacodegeeks.com/wp-content/uploads/2016/09/Gradle-Build-
Automation-Handbook.pdf

JetBrains. (n.d.). The IntelliJ IDEA help. Retrieved from
https://www.jetbrains.com/help/idea/2016.1/intellij-idea-help.pdf

Lombardi, F., & Di Pietro, R. (2010). Secure virtualization for cloud computing. Journal of

Network and Computer Applications, 34(4), 1113-1122.

75

Muthunagai, S., Karthic, C., & Sujatha, S. (2012). Efficient access of cloud resources through
virtualization techniques. In Proceedings of International Conference on Recent Trends
in Information Technology (pp. 174-178).

Pearce, M., Zeadally, S., & Hunt, R. (2013). Virtualization: Issues, security threats, and
solutions. ACM Computing Surveys, 45(2), 17.

Ren, Y., Liu, L., Zhang, Q., Wu, Q., Guan, J., Kong, J., . . . & Shao, L. (2016). Shared-data
optimizations for inter-virtual-machine communication. ACM Computing Surveys, 48(4),
49.

Tutorials Point. (n.d.-a). The MySQL tutorial. Retrieved from
https://www.tutorialspoint.com/mysqgl/mysql_tutorial.pdf

Tutorials Point. (n.d.-b). The RESTful web services tutorial. Retrieved
https://www.tutorialspoint.com/restful/

Varanasi, P., & Heiser, G. (2011). Hardware-supported virtualization on arm. In Proceedings of
the Second Asia-Pacific Workshop on Systems (p. 11).

Wang, J. (2009). Survey of state-of-the-art in inter-vm communication mechanisms. Retrieved
from
https://pdfs.semanticscholar.org/6555/64255d8c6bb4df3f93f128a955101b6e13ed.pdf

Wood, T., Tarasuk-Levin, G., Shenoy, P., Desnoyers, P., Cecchet, E., & Corner, M. D. (2009,
March). Memory buddies: Exploiting page sharing for smart colocation in virtualized
data centers. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments (pp. 31-40).

Appendix
Student controller

package student.api.controller;

import com.google.gson.*;

import com.google.gson.reflect. TypeToken;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.HttpEntity;

import org.springframework.http.HttpHeaders;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;
import student.api.model.Log;

import student.api.model.Student;

import org.springframework.web.util.UriComponentsBuilder;

import student.api.service.LogService;
import student.api.service.StudentService;

import student.api.util. CustomErrorType;

import java.lang.reflect. Type;

import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util. ArrayList;

import java.util.Date;

import java.util.List;

import static org.springframework.util. MimeTypeUtils. APPLICATION_JSON_VALUE;
@RestController
@RequestMapping(*'/api™)

public class StudentController {

public static final Logger = LoggerFactory.getLogger(StudentController.class);

@Autowired

StudentService studentService;

@Autowired

LogService logService;

@RequestMapping(value = "/students", method = RequestMethod.GET)
public ResponseEntity<List<Student>> listAllStudents(@RequestParam(required = false,
value = "lastFetchedDate™) String lastFetchedDate, @RequestParam(required = false, value =

"isCron") boolean isCron) throws ParseException {

List<Student> students = new ArrayList<>();

if(isCron) {

if (lastFetchedDate.isEmpty() || lastFetchedDate == "null"){

students = studentService.findAllStudents();
}
else {
DateFormat df = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss");
Date lastFetchDate = null;
try {
lastFetchDate = df.parse(lastFetchedDate);
} catch (ParseException e) {
e.printStackTrace();

¥

students = studentService.findAllStudentsUpdated AfterDate(lastFetchDate);
}
if('students.isEmpty()) {
Log log= logService.findBytableName("Student™);
log.setLastFetchedDate(new Date());

logService.savelLog(log);

}
} else {

students = studentService.findAllIStudents();

if (students.isEmpty()) {
return new ResponseEntity(HttpStatus.NO_CONTENT));
// You many decide to return HttpStatus.NOT_FOUND
}
return new ResponseEntity<List<Student>>(students, HttpStatus.OK);
}
@RequestMapping(value = "/student/", method = RequestMethod.POST)

public ResponseEntity<?> createStudent(@RequestBody Student, UriComponentsBuilder

ucBuilder) {

logger.info(*'Creating student : {}", student);

if (studentService.isStudentExist(student) && student.getDeleted() == true) {

logger.error("Unable to create new. A User with name {} already exist",

student.getStudentName());
student.setDeleted(false);
student.setLastModifiedDate(new Date());
studentService.saveStudent(student);
return new ResponseEntity<String>(HttpStatus. CREATED);

Il [Ireturn new ResponseEntity(new CustomErrorType("Unable to create. A User with

name " +

student.getStudentName() + " already exist."),HttpStatus. CONFLICT);

Log log= logService.findBytableName("Student™);
log.getLogld();

student.setStudentLog(log);
student.setCreatedDate(new Date());
student.setLastModifiedDate(new Date());
student.setDeleted(false);

studentService.saveStudent(student);

HttpHeaders headers = new HttpHeaders();

headers.setLocation(ucBuilder.path(*/api/student/{email}").buildAndExpand(student.getEmail())

.touri());

return new ResponseEntity<String>(headers, HttpStatus. CREATED);

@RequestMapping(value = "/updateStudents”, method = RequestMethod.PUT, consumes =
APPLICATION_JSON_VALUE)

@ResponseBody

public ResponseEntity<?> updateStudents(HttpEntity<String> httpEntity) {

logger.info("Updating bulk Students "');

/I Creates the json object which will manage the information received

GsonBuilder builder = new GsonBuilder();

/I Register an adapter to manage the date types as long values
builder.registerTypeAdapter(Date.class, new JsonDeserializer<Date>() {
public Date deserialize(JsonElement json, Type typeOfT, JsonDeserializationContext
context) throws JsonParseException {

return new Date(json.getAsJsonPrimitive().getAsLong());

}
b;
Gson = builder.create();
String body = httpEntity.getBody();

List<Student> jsonL.ist = gson.fromJson(body, new

TypeToken<ArrayList<Student>>(){}.getType());

for (Student s: jsonList) {

studentService.updateStudent(s);

}

return new ResponseEntity<Student>(HttpStatus.OK);

¥

@RequestMapping(value = "/student/{id}", method = RequestMethod.PUT)

public ResponseEntity<?> updateStudent(@PathVariable(*id") String id, @RequestBody

Student student) {
logger.info("Updating Student with id {}", id);
Student currentStudent = studentService.findByName(id);

if (currentStudent == null) {

logger.error("Unable to update. Student with id {} not found.", id);

return new ResponseEntity(new CustomErrorType("Unable to update. Student with id "
+id + " not found."),
HttpStatus.NOT_FOUND);
}
currentStudent.setStudentName(student.getStudentName());
currentStudent.setStudentAddress(student.getStudentAddress());
currentStudent.setStudentAge(student.getStudentAge());
currentStudent.setStudentGrade(student.getStudentGrade());
currentStudent.setStudentinterest(student.getStudentinterest());
currentStudent.setLastModifiedDate(new Date());
studentService.updateStudent(currentStudent);
return new ResponseEntity<Student>(currentStudent, HttpStatus.OK);
}
@RequestMapping(value = "/student/{id}", method = RequestMethod.DELETE)
public ResponseEntity<?> deleteStudent(@PathVariable(*id") String name) {
logger.info("Fetching & Deleting Student with id {}", name);

Student = studentService.findByName(name);

83

if (student == null) {

logger.error("Unable to delete. User with id {} not found.", name);

return new ResponseEntity(new CustomErrorType("Unable to delete. Student with id " +

name + " not found."),
HttpStatus.NOT_FOUND);

}
student.setDeleted(true);
student.setLastModifiedDate(new Date());
studentService.updateStudent(student);

return new ResponseEntity<Student>(HttpStatus.NO_CONTENT);

}

@RequestMapping(value = "/students/", method = RequestMethod. DELETE)

public ResponseEntity<Student> deleteAllUsers() {

logger.info("Deleting All Students™);

studentService.deleteAllStudents();

return new ResponseEntity<Student>(HttpStatus.NO_CONTENT);

Model

Log

package student.api.model;
import javax.persistence.*;
import java.io.Serializable;

import java.util.Date;

@Entity

public class Log implements Serializable{

@Id

@GeneratedValue(strategy= GenerationType.AUTO)
@Column(name = "log_id")

private Integer logld;

private String tableName;

private Date lastFetchedDate;

public String getTableName() {

return tableName;

}

public void setTableName(String tableName) {

this.tableName = tableName;

¥

public Date getLastFetchedDate() {

return lastFetchedDate;

¥

public void setLastFetchedDate(Date lastFetchedDate) {

this.lastFetchedDate = lastFetchedDate;
}
public Integer getLogld() {
return logld;
}
public void setLogld(Integer logld) {
this.logld = logld;
}
Hudent
package student.api.model;
import org.springframework.data.annotation.CreatedDate;
import org.springframework.data.annotation.LastModifiedDate;
import javax.persistence.*;
import java.io.Serializable;

import java.util.Date;

@Entity
public class Student implements Serializable{

@][e

@GeneratedValue(strategy= GenerationType.AUTO)

private Integer id;

private String studentName;
private String studentAge;
private String studentGrade;
private String studentinterest;
private String studentAddress;

private String email;

@CreatedDate
private Date createdDate;
@LastModifiedDate

private Date lastModifiedDate;

@Column(name = "deleted", columnDefinition = "boolean default false", nullable = false)

private Boolean deleted:;

@ManyToOne(cascade = CascadeType.ALL)
@JoinColumn(name="logld", referencedColumnName="log_Id")
public Log studentLog;
public Log getStudentLog() {

return studentLog;

¥

public void setStudentLog(Log studentLog) {

this.studentLog = studentLog;

}

public Student(String email, String studentName, String studentAge, String studentGrade,

String studentinterest, String studentAddress) {

this.studentName = studentName;
this.studentAge = studentAge;
this.studentGrade = studentGrade;
this.studentinterest = studentinterest;
this.studentAddress = studentAddress;
this.email = email;

}

public Student() {

}

public String getStudentName() {

return studentName;

}

public void setStudentName(String studentName) {

this.studentName = studentName;

k
public String getStudentAge() {

return studentAge;

¥

public void setStudentAge(String studentAge) {
this.studentAge = studentAge;

}

public String getStudentGrade() {
return studentGrade;

}

public void setStudentGrade(String studentGrade) {
this.studentGrade = studentGrade;

}

public String getStudentinterest() {

return studentinterest;

public void setStudentInterest(String studentinterest) {

this.studentInterest = studentInterest;

}

public String getStudentAddress() {

return studentAddress;
}
public void setStudentAddress(String studentAddress) {

this.studentAddress = studentAddress;

}
public String getEmail() {

return email;

}

public void setEmail(String email) {
this.email = email;

}

public Integer getld() {
return id;

}

public void setld(Integer id) {
this.id = id;

}

public Date getCreatedDate() {

return createdDate;

}

public void setCreatedDate(Date createdDate) {

this.createdDate = createdDate;

¥

public Date getLastModifiedDate() {

return lastModifiedDate;

90

public void setLastModifiedDate(Date lastModifiedDate) {

this.lastModifiedDate = lastModifiedDate;

¥

public Boolean getDeleted() {

return deleted;

¥

public void setDeleted(Boolean deleted) {

this.deleted = deleted;

Repository

LogRepository

package student.api.repository;

import org.springframework.data.repository.CrudRepository;

import student.api.model.Log;

public interface LogRepository extends CrudRepository<Log,String> {

public Log findBytableName(String tableName);

StudentRepository

package student.api.repository;

import org.springframework.data.repository.CrudRepository;

91
import student.api.model.Student;

import java.util.Date;

public interface StudentRepository extends CrudRepository<Student, Long>{

public Iterable<Student> findByLastModifiedDateAfter(Date lastModifiedDate);

Service

StudentService

package student.api.service;
import student.api.model.Student;
import java.util.Date;

import java.util.List;

public interface StudentService {
Student findByld(String email);

Student findByName(String name);

void saveStudent(Student student);

void updateStudent(Student student);
void deleteStudentByld(String id);
List<Student> findAllStudents();
void deleteAllStudents();

boolean isStudentExist(Student student);

List<Student> findAllStudentsUpdatedAfterDate(Date lastUpdatedDate);

¥

StudentServicelmpl

package student.api.service;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import student.api.model.Student;

import student.api.repository.StudentRepository;

import java.util.*;
import java.util.concurrent.atomic.AtomicLong;

@Service("studentService™)

public class StudentServicelmpl implements StudentService{

private static final AtomicLong counter = new AtomicLong();
private static List<Student> students;
@Autowired

public StudentRepository;

static {

students = populateDummyStudents();

@Override
public Student findByld(String email) {
List<Student> students_ = (List<Student>) studentRepository.findAll();
for(Student : students_){
if(student.getEmail().equalsignoreCase(email)){

return student;

}

return null;

}

@Override

public Student findByName(String name) {

List<Student> students_ = (List<Student>) studentRepository.findAll();

for(Student : students){
if(student.getStudentName().equalsignoreCase(name)){

return student;

}

return null;

@Override

public void saveStudent(Student student) {

studentRepository.save(student);

@Override

public void updateStudent(Student student) {
studentRepository.save(student);

}

@Override

public void deleteStudentByld(String id) {

for(Student : students){

if(student.getEmail().equalsignoreCase(id)){

studentRepository.delete(student);

@Override
public List<Student> findAllStudents() {

List<Student> students = (List<Student>) studentRepository.findAll();

[*for (Student: students) {

student.getLog().setLastFetchedDate(new Date());

studentRepository.save(student);
¥

return students;

public List<Student> findAllStudentsUpdatedAfterDate(Date lastUpdatedDate){

return (List<Student>) studentRepository.findByLastModifiedDateAfter(lastUpdatedDate);
}
@Override
public void deleteAllStudents() {
studentRepository.deleteAll();
}
@Override
public boolean isStudentExist(Student student) {
return findByName(student.getStudentName())!=null;
}
private static List<Student> populateDummyStudents(){
List<Student> students = new ArrayL.ist<Student>();
students.add(new Student("studentl@email.com"”, "studentl1", *20", "A", "music,
gardening”, "address1"));

students.add(new Student("student2@email.com", "student2", "19", "B", "music,

96
gardening”, "address2"));

students.add(new Student("student3@email.com”, "student3", *21", "O", "music,

gardening”, "address3"));

students.add(new Student("student4@email.com”, "student4™, 18", "C", "music,
gardening”, "address4"));

return students;

Util
package student.api.util;
public class CustomErrorType {
private String errorMessage;
public CustomErrorType(String errorMessage){

this.errorMessage = errorMessage;

}

public String getErrorMessage() {

return errorMessage;

StudentCollaborationMain

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import org.springframework.boot.autoconfigure.domain.EntityScan;

import org.springframework.boot.builder.SpringApplicationBuilder;

import org.springframework.boot.web.support.SpringBootServletinitializer;
org.springframework.data.jpa.repository.config.EnableJpaRepositories;
@SpringBootApplication(scanBasePackages={"student.api", "student.api.repository"})
@EnableJpaRepositories(*'student.api.repository™)

@EntityScan("student.api.model")

public class StudentCollarbrationMain extends SpringBootServletinitializer {

@Override

protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

return application.sources(StudentCollarbrationMain.class);

}

public static void main(String[] args) {

SpringApplication.run(StudentCollarbrationMain.class, args);

MySqlCon
package cron;
import student.api.model.Log;
import java.sgl.*;
import java.util.List;
public class MySqglCon {
public Log getLogTableDetails(String tableName) {
Log =new Log();
try {

Connection con =
DriverManager.getConnection("jdbc:mysqgl://localhost:3306/university-collaboration”, "root",
“mysql");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select * from log where table_name="' + tableName +

while (rs.next()) {

System.out.printin(rs.getint(1) + " " + rs.getString(2) + " " + rs.getString(3));

log.setLogld(rs.getint(1));
log.setTableName(rs.getString(3));

log.setLastFetchedDate(rs.getTimestamp(2));

con.close();

} catch (Exception €) {
System.out.printin(e);

¥

return log;

StudentCollaborationSimpleCron

package cron;

import org.quartz.*;

import org.quartz.impl.StdSchedulerFactory;

public class StudentCollaborationClientSimpleJobMain {

public static void main(String args[]) throws Exception{

JobDetail job = JobBuilder.newJob(StudentCollaborationJob.class)
.withldentity("fetchLatestmodificationsJob", "groupl1").build();
Trigger = TriggerBuilder
.newTrigger()
.withldentity("latestModificationTrigger", "groupl")
.withSchedule(
CronScheduleBuilder.cronSchedule(0 0/5 * 1/1 * ? *"))

build();

/Ischedule it
Scheduler = new StdSchedulerFactory().getScheduler();
scheduler.start();

scheduler.scheduleJob(job, trigger);

StudentCollaborationJob

package cron;

import com.google.gson.Gson;

import com.google.gson.JsonElement;
import com.google.gson.JsonObject;

import com.google.gson.reflect. TypeToken;
import org.quartz.Job;

import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;

import org.springframework.http.*;

import org.springframework.web.client.RestTemplate;

import student.api.model.Log;
import student.api.model.Student;
import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util. ArrayList;

import java.util.Date;

import java.util.List;

public class StudentCollaborationJob implements Job {
private String server = "http://localhost:8080/api";
private RestTemplate rest;
private HttpHeaders headers;

private HttpStatus status;

public StudentCollaborationJob() {
this.rest = new RestTemplate();
this.headers = new HttpHeaders();

headers.add(""Content-Type", "application/json");

headers.add("Accept", "*/*");

}
public String get(String uri) {

HttpEntity<String> requestEntity = new HttpEntity<String>("", headers);

ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.GET,
requestEntity, String.class);

this.setStatus(responseEntity.getStatusCode());

return responseEntity.getBody();

public String post(String uri, String json) {
HttpEntity<String> requestEntity = new HttpEntity<String>(json, headers);
ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.POST,
requestEntity, String.class);
this.setStatus(responseEntity.getStatusCode());
return responseEntity.getBody();
}
public void put(String uri, String json) {
HttpEntity<String> requestEntity = new HttpEntity<String>(json, headers);

ResponseEntity<String> responseEntity = rest.exchange(server + uri, HttpMethod.PUT,

requestEntity, String.class);

this.setStatus(responseEntity.getStatusCode());

public void delete(String uri) {
HttpEntity<String> requestEntity = new HttpEntity<String>("", headers);
ResponseEntity<String> responseEntity = rest.exchange(server + uri,
HttpMethod.DELETE, requestEntity, String.class);
this.setStatus(responseEntity.getStatusCode());

¥

public HttpStatus getStatus() {

return status;

public void setStatus(HttpStatus status) {
this.status = status;

}

@Override

public void execute(JobExecutionContext context) throws JobExecutionException {
MySqlCon con = new MySqlCon();
Log = con.getLogTableDetails("Student");

Date = log.getLastFetchedDate();

DateFormat df = new SimpleDateFormat("MM/dd/yyyy HH:mm:ss");

String reportDate = """;

if(date !'=null) {
reportDate = df.format(date);
System.out.printin("Report Date: " + reportDate);
}
String response = this.get(*/students?isCron=true&lastFetchedDate=" + reportDate);
System.out.print(response);
if(response !'=null) {

this.put("/updateStudents”, response);

}
build.gradle

group '1'
version '1.0-SNAPSHOT'
buildscript {
repositories {
mavenCentral()

}

dependencies {

classpath ‘org.springframework.boot:spring-boot-gradle-plugin:1.5.6.RELEASE'

‘com.bmuschko:gradle-tomcat-plugin:2.3'

}

apply plugin: ‘java’

apply plugin: ‘eclipse’

apply plugin: 'idea’

apply plugin: ‘war'

apply plugin: ‘com.bmuschko.tomcat’
apply plugin: ‘org.springframework.boot'

dependencies {

def tomcatVersion = '7.0.79'

tomcat "org.apache.tomcat.embed:tomcat-embed-core:${tomcatVersion}",

"org.apache.tomcat.embed:tomcat-embed-logging-juli:${tomcatVersion}"
tomcat(*'org.apache.tomcat.embed:tomcat-embed-jasper:${tomcatVersion}") {

exclude group: 'org.eclipse.jdt.core.compiler’, module: ‘ecj'

}

tomcatRun.contextPath="/"

tomcatRunWar.contextPath="/"
jar {
baseName = 'student-collaboration-rest-service'
version = '0.1.0'
}
task fatJar(type: Jar) {
manifest {
attributes 'Main-Class": 'cron.StudentCollaborationClientSimpleJobMain'
}
baseName = project.name + "-all'
from { configurations.compile.collect { it.isDirectory() ? it : zipTree(it) } }
with jar
}

sourceCompatibility = 1.8

repositories {

mavenCentral()

¥

dependencies {

compile("org.springframework.boot:spring-boot-starter-web")

providedRuntime("org.springframework.boot:spring-boot-starter-tomcat™)
compile ‘org.springframework.boot:spring-boot-starter-data-jpa’

compile ‘com.google.code.gson:gson:2.3.1'

compile 'mysql:mysgl-connector-java'

compile ‘org.quartz-scheduler:quartz:2.1.5'

compile ‘org.slf4j:slf4j-api:1.6.1'

testCompile group: ‘junit’, name: ‘junit’, version: '4.12'

providedCompile "javax.servlet:javax.servlet-api:3.1.0"

Settings.gradle

/*

* This settings file was auto generated by the Gradle buildInit task

* by 'mpilli* at '5/10/17 11:45 AM' with Gradle 2.14.1

*

* The settings file is used to specify which projects to include in your build.

* In a single project build this file can be empty or even removed.

107

* Detailed information about configuring a multi-project build in Gradle can be found

* in the user guide at https://docs.gradle.org/2.14.1/userguide/multi_project_builds.html

*/

[*

/I To declare projects as part of a multi-project build use the ‘include’ method
include 'shared'

include 'api'

include 'services:webservice'

*/

rootProject.name = 'studentcollaboration’

	St. Cloud State University
	theRepository at St. Cloud State
	3-2018

	Using Shared Memory as a Means to Provide Data Concurrency Across Vm’s in a Cloud Architecture
	Shravani Meneni
	Recommended Citation

	tmp.1521580904.pdf.dUEVy

