
St. Cloud State University
theRepository at St. Cloud State
Culminating Projects in Mechanical and
Manufacturing Engineering

Department of Mechanical and Manufacturing
Engineering

1-2017

Optimizing Software Quality through Automation
Testing
Ankit Sharma

Follow this and additional works at: https://repository.stcloudstate.edu/mme_etds

This Starred Paper is brought to you for free and open access by the Department of Mechanical and Manufacturing Engineering at theRepository at St.
Cloud State. It has been accepted for inclusion in Culminating Projects in Mechanical and Manufacturing Engineering by an authorized administrator
of theRepository at St. Cloud State. For more information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Sharma, Ankit, "Optimizing Software Quality through Automation Testing" (2017). Culminating Projects in Mechanical and
Manufacturing Engineering. 65.
https://repository.stcloudstate.edu/mme_etds/65

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme_etds?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme_etds?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme_etds?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/mme_etds/65?utm_source=repository.stcloudstate.edu%2Fmme_etds%2F65&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Optimizing Software Quality through Automation Testing

by

Ankit Sharma

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in partial Fulfillment of the Requirements

for the Degree

Master of Engineering Management

December, 2016

Starred Paper Committee:
Ben Baliga, Chairperson

Hiral Shah
Balasubramanian Kasi

2

Abstract

The current business application is large, multi-tired, distributed and integrated

which require higher level of sophistication to implement and manage. The current

quality methodologies rely on manual work which makes the application venerable

due to its limitation and entails higher cost. Running complete regression suite

manually every time is cumbersome and often do not complete due to either time or

resource limitation. Finding more defects during testing life cycle has tremendous

effect on the quality of an application. This project is intended to run more number of

tests in lesser time and reduction in overall cost of the project and this has been

achieved by implementing an automation tool. Various tools and frameworks are

studied to fulfill this requirement, also the results are stated and compared. The

implication of implementing an automation test tool is higher software quality

assurance.

3

Acknowledgments

This project completion is mere impossible without the assistance and

valuable guidance from many individuals.

I am thankful to Dr. Hiral Shah, Associate Professor for Engineering

Management Program at St Could State University. Her support, guidance, and

assistance assisted me to complete this project successfully.

I would take this opportunity to thank Dr. Ben Baliga, Professor and Graduate

Director for Engineering Management Program at St. Cloud State University for his

support and guidance.

Also, I would like to thank Prof. Kasi Balasubramanian for serving on the

committee and support throughout the project.

4

Table of Contents

 Page

List of Tables ... 6

List of Figures .. 7

Chapter

 I. Introduction ... 9

 Introduction ... 9

 Problem Statement ... 10

 Nature and Significance of the Problem .. 10

 Object of the Project .. 11

 Project Questions .. 11

 Limitations ... 11

 Summary ... 12

 II. Background and Review of Literature .. 13

 Introduction ... 13

 Background Related to Problem ... 13

 Literature Related to Methodology .. 15

 Summary ... 23

 III. Methodology ... 24

 Introduction ... 24

 Design of Study ... 24

 Data Collection .. 42

5

Chapter Page

 Summary ... 42

 IV. Data Analysis ... 43

 Introduction ... 43

 Data Analysis .. 43

 Data Presentation ... 50

 Summary ... 51

 V. Results, Conclusion, and Recommendations ... 52

 Introduction ... 52

 Results .. 52

 Conclusion .. 54

 Recommendations .. 54

References .. 56

6

List of Tables

Table Page

 1. Comparison Study of Automation Tools ... 25

 2. Scope of Testing .. 31

 3. Test Tools ... 33

 4. Defect Priority ... 34

 5. Testing Team ... 35

 6. Test Schedule .. 35

 7. Approval and Sign Off .. 36

 8. Sample Test Case .. 41

 9. Sample Test Script ... 41

 10. Manual vs Automation Comparison .. 50

7

List of Figures

Figure Page

 1. Relative Cost to Fix Software Defects .. 14

 2. Manual vs Automated Test Comparison ... 14

 3. Expanded Testing Model .. 17

 4. Software Testing Life Cycle .. 19

 5. End to End Testing Process ... 30

 6. Test Phases ... 32

 7. Java Installation .. 36

 8. Eclipse Download Page .. 37

 9. Configuring Eclipse IDE .. 38

 10. Download Selenium Java Client ... 39

 11. Configuring Build Path .. 39

 12. Add External Jars ... 40

 13. Running TestNG Script ... 45

 14. Refresh Page ... 46

 15. Generated Test Output Folder .. 46

 16. Index.html Report ... 47

 17. Default Test Report .. 48

 18. Email-able Report ... 49

 19. XSLT Report ... 50

 20. Manual vs Automation Time Study ... 52

8

Figure Page

 21. Total Cost of Testing .. 53

9

Chapter I: INTRODUCTION

Introduction

Software drives the competitive businesses in this global economy. Software

quality is the key, and cost of defects late in the life cycle become prohibitive [1].

With greater complexity from technology, software sourcing, compliance, etc.,

addressing defects is becoming a challenging job. Companies focusing on traditional

quality approaches are dealing with some level of bugs post-release. The Systems

Sciences Institute at IBM has reported that “the cost to fix an error found after product

release was four to five times as much as one uncovered during design, and up to

100 times more than one identified in the maintenance phase.”

The Current Web Application who is owned by Comcast who is a leading

provider of communications, entertainment and cable product and services. With up

to 6TB of Internet traffic per second per each day, the Comcast network handles

 Over 142 million completed phone calls,

 Over 136 million delivered emails,

 Over 12 million received voicemails [2].

To handle this complex system, it requires sophisticated software to stream

line the business. Bugs in the later stages of software lead to huge business losses

(monetary and customer trust). Therefore, it becomes very important to ensure

quality pre-product release and must have sufficient confidence over the product to

prevent any adverse situation.

10

Problem Statement

The current business application is large, multi-tiered, distributed and

integrated. It requires higher level of sophistication to implement and manage. The

current quality methodologies rely on manual software quality assurance which

makes the application venerable due to its limitations. Manual Testing Process is

very cumbersome and complete regression tests are almost impossible to implement.

The cost involved in assuring quality of application is very high due to large number

of man hours. Moreover, manual tests are not accurate due to human error and more

time consuming, hence it is less reliable.

It is hard to test and very expensive in case of urgent patch fixes to production

application during overnight and weekends. Testing time is directly proportion to the

number of test cases. With increasing competition, companies are facing pressure to

release newer products sooner in the market. Due to time limitations, often the quality

of product is compromised.

Nature and Significance of the Problem

One of the major problem in introducing new software product or making

changes to the existing one is testing time. Test teams spend most of their time

running test cases, it takes as much as a day just to test one new feature of a system

and often test fails due to system time outs. Full regression tests have been so

expensive and team avoid whenever possible. Needless to say, execution is manual.

The turnaround time for releasing a new version of software after it has been

sufficiently tested is too long and seems to be ever increasing. The test team is busy

11

doing manual testing instead of producing new test specifications, or updating old

one to match new ones to match the new requirement. Consequently, test

documentation is lagging.

Objective of the Project

1. To Assure Quality of software by running more tests in lesser time.

2. To Gain confidence in the application.

3. Reduce man hours to decrease overall cost.

4. Run regression suite during weekends and overnight.

Project Questions

Following project questions will be answered after the implementation of

automation process:

1. How much is the total reduction in turnaround time of completing

regression test suite?

2. What are the total savings due to automation?

3. How the automation testing tool is selected?

Limitations

 Automation vs Manual study comparison compares one-time static cost

only.

 No of product releases (major, minor) are assumed based on historical

data.

12

Summary

 This chapter briefly discusses the nature and significance of the existing

problem, how it largely reduces the quality of the software and increase the overall

cost.

Objectives and project questions are also discussed here. The next chapter

covers the literature background knowledge related to the project.

13

Chapter II: BACKGROUND AND REVIEW OF LITERATURE

Introduction

 This chapter focuses on reviewing the background related to problem,

literature related to methodology that has been implemented to solve the problem.

Also, we will briefly discuss about the company background and issues related to our

existing problem.

Background Related to Problem

 Comcast is an is an American global mass media conglomerate and is the

largest broadcasting and cable television company in the world by revenue. Comcast

services U.S. residential and commercial customers in 40 states and the District of

Columbia [3]. Comcast Cable is one of the nation's largest video, high-speed Internet

and phone providers to residential customers under the XFINITY brand and provides

these services to businesses. Comcast has invested in technology to build a

sophisticated network that delivers the fastest broadband speeds, and brings

customers personalized video, communications and home management offerings.

 It offers a wide variety of products and services to its customers, few of them

are listed here:

A) Xfinity TV,

B) Xfinity Internet,

C) Xfinity Voice,

D) Xfinity Home,

etc. It is currently servicing more than 800,000 customers.

https://en.wikipedia.org/wiki/Broadcasting
https://en.wikipedia.org/wiki/Cable_television
https://en.wikipedia.org/wiki/Washington,_D.C.
https://en.wikipedia.org/wiki/Washington,_D.C.
http://www.comcast.com/

14

 Serving the needs of large customers require a sophisticated application,

capable of handling large data or traffic maturely and gracefully. The current Web

Application owned by Comcast, PA is a cross browser, cross platform application.

Due to its vast features and complexity it is not easy to test an entire application

before any major release. Nevertheless, quality is being compromised. The Science

institute of IBM has reported that the cost to fix an error after product release was

four to five as much as one uncovered during design, and up to 100 time more than

one identified during maintenance phase.

Figure 1: Relative Cost to Fix Software Defects

The following graph illustrate the relationship between time and cost of testing:

Figure 2: Manual vs Automated Test Comparison

15

Manual Efforts provide a smaller test coverage area and compromised overall

quality of the product and hence the goal is to reduce the time of testing and the cost

of delivery, while increasing test coverage and quality [4].

 It is also evident that resources to test are mostly freely available during nights

or weekends. However, running tests during nights and weekends are not feasible

and most of the times surpass the project budget. Also, reduces the morale and

performance of the team as they need to work over weekends or nights.

It is very important to differentiate between the test that execute very few times

to the frequent ones. It is well worth automating only those tests that execute many

times and are among the best candidate for the regression suites.

The current application test execution is manual and its regression suite

consists of 480 test cases. Averaging 12 min per test execution, total time require

completing testing is 480*12 = 5760 Minutes or 96 hours. I.e. Team of 3 persons

working 8 hours/day require 4 days to complete. Looking at these numbers it proves

that it is good candidate for automation Testing rather than Manual.

Literature Related to Methodology

Nowadays with booming technology, Software is becoming essential part of

human life from any mobile application (e.g., banking app) to medical appliance (e.g.,

life support system). Many people have experienced with software which do not work

as anticipated. This kind of Software that does not work properly could result in lot of

problems including time, money loss, some consequences may also lead to loss of

business or reputation, in many cases it can be devastating and could cause damage

16

to human life or death. Therefore, it is necessary to test any software while it is in

development stage and before final operational use.

The main objective of Software testing is to ensure the system/software under

development is functioning correctly as per specifications and is bug or fault free. Bug

can be of any type of error which produces incorrect results or catastrophic

malfunction. So, to risk of problems occurring after software is implemented live,

rigorous testing is necessary. Software testing also ensures the quality of product by

increasing software’s reliability which helps to gain customers confidence. The aim of

any software project is to deliver software as per the customer provided

specifications. That means project will be successful if:

 The customer needs should be specified correctly.

 And the developed software must meet that specifications exactly. The

customer also wants the software to be delivered within given budget and

timeline. Quality of product is also directly proportional to the maintenance

cost.

A model of testing. Programming testing includes more than bolstering

contributions to a program and watching comes about. Programming today

additionally has states and communicates with put away information and the PC

environment. Figure 3 reproductions the information sources and results for any

product. Such a model is essential in test mechanization since it gives classifications

to distinguish the information sources and results that must be checked and

controlled amid computerized testing. For even a straightforward mechanized test

17

that sustains contributions to the SUT, the computerized test ought to confirm the

normal direct results. On the off chance that the program should change the

framework environment or any information sets, then some confirmation ought to be

performed to affirm the right environment and information values after the test. At the

point when analyzer computerizes tests he should guarantee that such issues are

distinguished.

Figure 3: Expanded Testing Model (adapted from [5]).

Test levels. There are mainly four perceived levels of tests: unit/Component

testing, Integration/reconciliation testing, System testing, and Acceptance testing.

Tests are as often as possible assembled by where they are included the product

improvement prepare, or by the level of specificity of the test.

18

1. Unit Testing: It searches for defects and verifies for functionality, of

software (e.g., modules, programs, objects, classes, etc.) that are

separately testable. It may be done in isolation from the rest of the system.

2. Integration Testing: It tests interfaces between components, interactions

to different parts of a system, such as operating system, file system,

hardware or interfaces between systems.

3. System Testing: It is concerned with the behavior of a whole

system/product as defined by the scope of development project or

program.

4. Acceptance Testing: The objective in Acceptance testing is to build up

trust in the framework, parts of the framework or non-practical attributes of

the framework. Discovering deformities is not the primary center in

acknowledgment testing. Acknowledgment testing may evaluate the

framework's status for sending and utilize, even though it is not the last

level of testing. For instance, a substantial scale framework mix test may

come after the Acceptance test for a framework.

Testing lifecycle. It comprises of set of activities which are completed in each

manner to assure the quality of Software Under Test (SUT) Following are the

activities which constitute the Software Testing Life Cycle (STLC). Every stage has

predefined list of activities, set of Deliverables, Entry and Exit Criteria.

Figure 4 below shows different stages of STLC.

19

Figure 4: Software Testing Life Cycle

Manual vs. automation testing. Manual testing provides a way to quickly

evaluate a product and provide testers with a familiarity of the features during the

development process. Testers create test cases based on their ability to determine

whether requirements are met. But initially these test cases should be executed

manually, both for the sake of verification of the necessary steps, and to record test

scripts for automation in the future [6].

Manual testing also includes exploratory testing, which enables testers to learn

more about the application, while also identifying areas that potentially need more

test cases to fully understand weaknesses and risk. Testers use exploratory testing

to better understand weaknesses and determine which parts of the application need

more test cases.

20

Lastly, manual testing is especially valuable early in the development of

features and the user interface, as layouts and controls are often changing almost

daily in response to design considerations and user feedback. It can be more time-

consuming to maintain and change automated scripts than to execute tests manually.

From manual to automated process. Often Manual testing is defined as a

state where a tester starts each test, relates with it, and understands, evaluates, and

reports the results. While Automation Testing is when there is a tool for running of

test cases without tester. Generally, test cases are said automated when all the

following elements are present. If any of them is missing, then tests are considered

as semi-automated. (Which is sometimes most cost-effective)

 Ability to run two or more number of test cases,

 Ability to run a subset of all the automated test cases,

 No involvement is needed after initiation the tests,

 Automatically sets-up and/or records the relevant test environment

parameters,

 Runs the test cases,

 Captures the relevant results,

 Compares actual with expected results and flags differences,

 Analyzes and reports pass/fail for each test case and for the test run.

Key factors in automated testing. The underlying strides in while getting

ready for test automation is to group and see some key variables about the Software

Under Test (SUT): Identify what programming is to be tried, its segments and

21

elements we need to test, and the earth encompassing the SUT. These variables are

basic to the mechanization engineering. Also, comprehend the current and

accessible test product components and instruments for testing and test automation

in the SUT's surroundings.

Albeit in some cases self-evident, it is frequently illuminating to formally

portray what is it we need to test and recognize it from every other component in the

framework. It is additionally imperative to recognize what things we believe are

outside the extent of our mechanization or we don't mean to test. A few related

applications and utilities with various interfaces may contain the SUT, perhaps

notwithstanding running in various situations. Early choices on which parts to

incorporate, which to prohibit, and which components are most critical can put

authoritative limits on the automation tasks and generously diminish their many-sided

quality.

Following those SUT components are finalized environment and interfaces

must be recognized. The input and results data types are also imperative. Testing

can succeed when the tester and automation tools perform a useful test and draw

proper conclusions based on the results. Automation is valuable to augment the

tester by performing tasks that are tedious or impossible for a human or are more

cost effective to automate. Different types of tests are run at different times and not

all related tests have to be run at one time.

The extent of the arranged automation undertakings likewise relies on upon

the current and accessible test ware components and instruments. The test ware

22

components incorporate most the product, documentation, test cases, information,

programs, and related methodology required for all the test exercises. The devices

incorporate working framework utilities, test determination and control programs,

examination schedules, and so forth, that are utilized to do the testing and

automation. Two regions of test automation require uncommon consideration.

Result Capture can be a colossal assignment when you understand the

universe of conceivable comes about because of running programming. The actual

results of running a test are considerably more than survey data on the screen.

Framework environment factors, memory and file contents, program status,

messages, and so on, may all be affected by the right running of a program. Since

we are searching for blunders, we should incorporate every one of the things that the

program could affect–a much bigger arrangement of things we must check as

"results."

Result Analysis is a second region that can spell inconvenience for an

automation exertion. Things that will be checked expecting 'as Result' should be

distinguished and one need vision what those Results ought to be. For manual

testing analyzer takes a gander at the presentations, examine inward factors and

program states, and fulfill that the test passed or failed. For automation testing

analyzer, must program the automation apparatuses to play out similar errand.

Physically, the analyzer chooses the arrangement of tests and examinations, and it

fluctuates based upon the information they find.

23

There might be one test, however there might be a few "right" results from it,

and there are an extensive number of ways a mistake would show itself. In an

automated test environment analyzer, must arrangement the check of results with the

goal that he know when the test passed and when it doesn't. That implies recognizing

exceptionally critical signs of blunders and methodically checking them after each

test

Summary

Test automation also has several roles in the development process. As testers

grow more confident in his work, it saves the time and effort of repeating the same

tests over the period. Recording these tests produces scripts that automated testing

tools can execute at any time, often with different sets of data. Automation brings an

important aspect to testing practices. It assures consistency in how a test is

performed. Once the validity of a given test is established, automating it provides a

defined benchmark of how the test is run on a regular basis.

Automation is also essential for regression testing, the practice of executing

already-passed tests throughout the development process, to ensure that already-

implemented features aren’t broken as development continues. Regressions suites

typically contain hundreds or even thousands of tests that can help maintain find

issues throughout the development lifecycle [6].

24

Chapter III: METHODOLOGY

Introduction

Automation of software testing is like a software development process. It goes

through the same life cycle as in the development of software product. The important

think that must be taken care of who is writing the scripts. There is always a conflict

on who writes the scripts whether a developer or a testing team member. It is always

a good idea and normally followed by many organizations that the effort should be a

collaborated effort between tester and the developer. The automation process goes

through a lot of effort taking collaborated work because a lot of emphasis is given for

the time and financial constraint.

Design of Study

The automation process may be divided into many phases but in general

perspective goes through the following phases.

I. Test tool selection. Automation testing success largely depends on the

selection of right testing tool. Following comparison is drawn between different tools

available in the market and based on the SUT (system under test) appropriate tool

was selected.

25

Table 1: Comparison Study of Automation Tools

Sr. No.
Automation Tools

Eggplant
Functional iMacros Selenium

Test
Studio Watir

Skilled resource to
allocate for automation
tasks?

No No Yes No Yes

Price Free

Free browser
add-on
Standard: $495
Enterprise:
$995
Web Browser
Component:
$2,995

Free -
Open
Source

$79/mo.
up to
$2,999
one time

Free

Support All Web
Browsers

Yes No Yes Few No

HTTPS Yes Yes Yes Yes Yes

Is it suitable for the
project environment and
technology you are
using? No No Yes No Yes

Does the tool integrate
with other testing tools
like test planning and
test management? Yes Yes Yes Yes Yes

Support test data input
from various data files
such as Excel, XML,
Text file etc. Yes No Yes Yes Yes

Recorder Yes Yes
only
Firefox Yes Yes

Further brain storming was done on the following points and based on the

discussion; it was decided to go with the Selenium.

Following are the points that were discussed further to gain more insight about

the tool and its appropriateness.

26

 Strong Skill of the team and ease of use.

 Environment Support.

 Support of multiple frameworks.

 Minimize training cost of the selected tool.

 Test Reports and Results.

II. Test plan. After studying the requirements of Software, detailed Test plan

was created to describe the scope, approach and schedule of testing, etc.

1. Introduction

1.1 Objective

The objective of the Test Plan is to detail the approach, define responsibilities,

define test deliverables and describe status reporting procedures to be employed for

the testing phases of the XZ Games project. The test plan provides the framework

used to plan and manage the testing effort. It seeks to outline the scope, schedules,

responsibilities, resources, metrics, issues, risks and environment needs required to

complete the testing.

The test plan supports the following objectives:

 Outline the components that will be tested in this release.

 Outline project test schedule and milestones.

 Outline the various phases of the testing process.

 Identify dependencies, assumptions and risks.

 Define the test environments that will support the various testing phases.

 Outline the roles and responsibilities related to the testing process.

27

 Detail the deliverables that will be produced during each phase of testing

including test plan, test procedures and test execution metrics.

 Define the test data management process that will support the various

testing phases.

 Establish an approach for full end-to-end testing.

1.2 Purpose of Sign-off

The sign-off this document indicates that the signing reviewers agree with the

stated testing approach for the XZ Games project. The required signing reviewers are

listed in the table in Section 8 below.

1.3 Project Background

 This Project objective is to stream 20 video games to cable subscribers and

allowing them to play games using Android and Apple smartphones and tablets as

controllers. It primarily focuses on enhancing and refining this new gaming

experience and making it available to many more customers soon.

The following test methodologies are planned for this project:

 Unit testing

 System testing

 Regression testing

 User Acceptance Testing

 Production checkout

Please refer to Section 3.1 of this master test plan for the definition of each test type.

28

2. Test Controls Verification and Validation

The deliverables for each test phase will be verified and validated through

peer review. The major and more critical documents such as master test plan and

detailed test plan will be reviewed with the different development teams.

2.1 Entry/Exit Criteria

Entry and exit criteria are a set of conditions that must be satisfied before

entering or exiting a test phase. The criteria state what is required (for example, from

previous phases) to support a given phase (entry criteria) and what is required of a

given phase to determine completeness (exit criteria). Entry and exit criteria are

defined for each phase to assure quality deliverables, and correct closure and

handover, from one phase to the next.

Some exit criteria may satisfy the entry criteria of a phase other than the one

next in line. The entry criteria for one phase will usually ensure that the exit criteria

from the previous phase are completed, and will also include any additional set-up

criteria. For instance, system test execution entry criteria may include the

requirement that all assembly test exit criteria be met. An additional entry criterion to

system test may be that the system test environment is established and all system

test preparation exit criteria be met.

Please find the entry and exit criteria per test phase in Section 3 of this

document.

29

2.2 General Prerequisites to the Test Phases

1. Business Requirement Document

2. Change Request Forms (if any)

3. Requirement Traceability Matrix

4. Software Requirement Specification Document

5. High Level Design Document

6. Low Level Design Document

2.3 General Test Deliverables

The test deliverables are as follows:

 Requirements traceability Matrix

 Test plan per phase

 Test cases

 Test automation scripts

 Test report per phase

 Defect or incident report

2.4 Test Methodology

This document addresses the validation component of the testing

methodology.

The following diagram depicts the testing methodology to be used for the

project/release. It is an end to end model developed by Software Development

Technologies.

30

Project Kick

off

BRD
MTP

creation
BRD

Walkthrough

Scorecard Updation

1

Review

process

Business

Specs

Test Plan

creation
Review

process

Test Script

creation

Test Data
Data mocking

.Test Prediction
Review

process

Test

Execution
Test closure

summary

Production

Checkout
Yes

PASS

Project

team

review

PASS Yes

QA

Manage

ment

review

Yes

REWORK

N
o

N
o

N
o

N
o

Internal

review

REVIEW PROCESS

1

END TO END PROCESS

PASS

Scorecard Updation

End

Defect

N
o

Coding

changes

Review

process

Figure 5: End to End Testing Process

3. Test Strategy

The following tests will be run during System/Regression Test Cycle (Iteration)

1. A secondary cycle will be utilized in the event of outstanding defects.

3.1 Scope of System/Regression Test:

31

Table 2: Scope of Testing

Sr.
No.

Business
Requirement Detailed Specification

1 Pairing Page 1. User image appears
2. Pairing code is present
3. Footer, footer text is present.
4. Submit button is present.
5. Privacy and Cookie Policy link is working etc.

2 Invalid Paring
Page 1. Validate the text Let's try that again.

2. InvalidPairingCode Validate the text Please check your pairing
code and enter one more time.
3. PairingCodeExpired Validate the error code - XG-200.
4. InvalidPairingCode: Re-pair Validate if the Image displayed on the
Page
5. InvalidPairingCode: Re-pairing Validate the Input Field is
displayed
6. InvalidPairingCode: Re-pairing Validate the Submit Button is
available

3 Select Profile 1. Validate the User Image picture in Select Profile Page is
displayed.
2. Validate the Text-Please select your XFINITY profile.
3. Validate Create Player button is present.
4. Validate Manage Players button is present

4 Create Player 1. Validate the User Image is displayed.
2. Validate the Text-What is the new Player's name.
3. Validate Continue button is present.
4. Validate Cancel button is present.
5. CreateNewPlayer Continue Button takes user to SelectAvater
page

5 Tablet Initiated
Flow

1. Validate if Welcome Back screen appears.
2. Validate if XFINITY Games Powered by EA logo is displayed
3. Validate if avatar is displayed
4. Validate if displayed avatar matches with that of the user.
5. Validate if welcome message is displayed with the correct
username.
6. Validate if Continue Playing button is present
7. Validate if Select Another TV button is present

3.2 Out of Scope

This section lists items that are not in scope for this project.

 Any defects that are revealed through testing that are not due to this

project.

 For more please refer to Business Requirement Document.

32

3.3 Assumptions

This section lists assumptions that are made specific to this project.

 Devices with different operating system like Android, iOS are available.

 Test Environment is available and ready.

3.4 Test Phases

The following diagram depicts the test phases planned for XZ Games:

Figure 6: Test Phases

33

3.5 Success Criteria

A test cycle will be deemed as successfully tested when the cycle and

associated test conditions have been executed with no defects arising. A test cycle

will also be deemed as successfully tested even if a defect is raised during the

execution of that cycle, if the defect is agreed by the project team and business

owners as non-critical to the project release (low and medium priority). All critical and

high priority defects must be successfully tested to proclaim the test cycle successful.

A stakeholder’s meeting will be conducted after the completion of full volume

integration test to discuss any remaining defects. An assessment will be made at that

time whether there are any defects that will risk the deployment schedule.

3.6 Test Tools

The following tools will be used in the entire test process:

Table 3: Test Tools

Tool Use Tool Name

Test Plans MS Word, MS Excel

Test Cases MS Excel

Test Scripts Eclipse IDE

Test Execution Selenium. Appium, TestNG

Defect Tracking JIRA

4. Defect Management

 Defect management is the process of tracking and managing the discovery,

resolution, and re-test of system defects identified during test execution. This process

involves recording, reviewing, and prioritizing defects; assigning defects to

34

developers for fixing; and assigning testers to re-test fixes. It is essential to follow a

process of this nature during test execution to ensure that all defects are recorded,

resolved, and re-tested in a consistent and effective way, as quickly as possible. It is

also essential to allow managers to accurately monitor the number, priority, and

status of defects, so they can best manage the continued progress of the systems

development project.

All defects will be logged JIRA.

4.1 Defect Priority

Defect priority descriptions are as follows:

Table 4: Defect Priority

Priority 1 LOW – Used to highlight minor defects that will be fixed only if time
permits and does not impact the business’ ability to use the
application (e.g. cosmetic). Resolution could be in next release.

Priority 2 MEDIUM – Application generally functions, but needs to be fixed in
the next release. Some piece of functionality fails. Business
process needs modification to accommodate application behavior,
but can wait for resolution. Need to fix in future build or release.

Priority 3 HIGH – Application can function using difficult workarounds. Must
be fixed in next build or patch.

Priority 4 Very High – Used when there is a problem that significantly impacts
the business' ability to use the application. Must be fixed before go-
live with possible exception.

 Priority 5 Urgent – Generally reserved for fatal errors which means that
testing cannot continue without fix, and/or means that the service
cannot go-live. Must be fixed before go-live.

35

5. Test Team Organization

Table 5: Testing Team

Name Role Responsibilities

Tester 1

Test Lead Study of BRD/SRS Document

 Test Plan Creation

 Test Scenarios Preparation in Test case
sheet

 Test cases review

 Test Execution Result Review

 Defect Review

Tester 2
Tester 3

Tester Test Scenarios Preparation in Test case
sheet

 Test cases creation, Test Script Creation

 Test Execution

6. Test Schedule

The initial test schedule as below.

Table 6: Test Schedule

Task Name Effort Comments

Test Planning

Review Requirements documents 2 d

Create initial test estimates 1 d

Create Test Plan 2 d

Create Test Case, Scripts 12 d

Staff and train new test resources 1 d

Iteration 1 deploy to QA test environment 1 d

System Testing 1 1 d

Regression testing 2 1 d

Iteration 2 deploy to QA test environment

System testing 2 1 d

Regression testing 2 1 d

UAT 1 d

Resolution of final defects and final build

testing

1 d

Deploy to Staging environment 1 d

Release to Production 1d

36

7. Mandatory Approval and Sign Off

Table 7: Approval and Sign Off

Name Department/Team Role

PM Project Manager

BA Business Analyst Lead

SE1 Developer Lead

Tester 1 Test Lead

III. Environment Setup

To develop and execute Selenium Web Driver Scripts, initial configuration

need to be done. Setting up the environment requires the following steps.

Installing Java. In the first step, download and install JDK. Navigate to the

following link http://www.oracle.com/technetwork/java/javase/downloads/index.html

and install JDK by following the instructions.

Figure 7: Java Installation

http://www.oracle.com/technetwork/java/javase/downloads/index.html

37

Download eclipse. Eclipse is an IDE (integrated development Environment)

and it is an open source software. Navigate to http://www.eclipse.org/downloads/

eclipse-packages/ and download the appropriate file.

Figure 8: Eclipse Download Page

 Unzip the download and run eclipse.exe file to launch the IDE.

 Configure test NG. Open Eclipse IDE and go to Help Tab and click on Install

new software.

http://www.eclipse.org/downloads/%20eclipse-packages/
http://www.eclipse.org/downloads/%20eclipse-packages/

38

Figure 9: Configuring Eclipse IDE

 Enter the URL http://beust.com/eclipse and complete the download process.

Configure selenium. Download the Selenium Java Client from

http://docs.seleniumhq.org/download/

http://beust.com/eclipse
http://docs.seleniumhq.org/download/

39

Figure 10: Download Selenium Java Client

Downloaded zip file was extracted and saved.

Configure eclipse to work with web driver. Create new java project and

then right click on project folder. Clicked on build path and then configure Build path.

Figure 11: Configuring Build Path

Open the Libraries tab in properties dialog and add External Jars

40

Figure 12: Add External Jars

Add all the jars files that were downloaded in the previous section and then the

initial set up is over. After setting up the environment, test script was developed.

IV. Test Script Development

Once the initial environment setup is done, it is the task of testers to develop

test scripts. Designing test cases and writing test scripts require lot of skill and thus is

the most challenging and time consuming task. Source code for the test will be

developed using Eclipse IDE and java is the programming language that will be used

to develop all the scripts. Various scenarios or test cases will be created to form test

suites. A test case can be added to multiple test suites and test plans. After creating

test plan, test suites are created. They are created based on the cycle or based on

the scope. It may contain both functional as well as non-functional tests. Table 8 list

the sample test cases developed during manual testing and Table 9 is the sample

representation of test script.

41

Table 8: Sample Test Case

 Table 9: Sample Test Script

42

Data Collection

 Data will be collected and analyzed based on the historical observations and

automation reports. Data collection process focuses on amount of time difference in

execution before and after. Since cost is directly proportional to the amount to time,

exact cost difference will be calculated based on the data generated after running

complete regression suite.

Summary

The chapter explains in detail about the step by step process involved in the

project implementation and data collection methodology. First section talks about the

tool selection and later detail plan are discussed here. In the next section, we will

focus over data analysis.

43

Chapter IV: DATA ANALYSIS

Introduction

Data will be collected through the generated reports. After completing the

primary humongous task of writing the scripts, this section will show the process of

running the automation scripts. This chapter will discuss the report interpretation and

conclusion will be drawn.

Data Analysis

Once the automation scripts are developed, regression suite is scheduled to

run and generate the appropriate report indicating total number of failed and pass

scenarios. It will also mention total time taken to complete the process. Reporting

plays very important role in determining ROI (Return on Investment). These reports

are shared with the team and clients to track the testing progress and discuss the

results.

Selenium is an automation tool and it generates the console output only. To

generate interactive reports, we need to integrate selenium with third party tools. The

testing framework or build management tools take care of the reports. Test NG and

Junit are the two most common types of frameworks. Once we configure our project

with the testing framework there is no need of writing an extra code to generate the

reports.

In this project, we have used Test NG framework to design automation

framework. It is designed to simplify a broad range of testing needs, from unit testing

(testing a class in isolation of the others) to integration testing (testing entire systems

44

made of several classes, several packages and even several external frameworks,

such as application servers).

Writing a test is typically a three-step process:

 Write the business logic of your test and insert TestNG annotations in your

code.

 Add the information about your test (e.g., the class name, the groups you

wish to run, etc...) in a testng.xml file or in build.xml.

 Run TestNG [7].

The results of the test run are created in a file called index.html in the directory

specified when launching Suite Runner. This file points to various other HTML and

text files that contain the result of the entire test run.

Create report: To create report first we need to run the complete automation

suite. To run the automation suite, right click and select Run As. Submenu will be

open and select as Test NG Test. After clicking, automation will start.

http://testng.org/doc/documentation-main.html#annotations
http://testng.org/doc/documentation-main.html#testng-xml
http://testng.org/doc/ant.html

45

Figure 13: Running TestNG Script

After starting an execution, we will start getting console notifications about the

status and wait until the program is getting finished. Once the execution got finished,

refresh the project and reports folder will generate automatically.

46

Figure 14: Refresh Page

Figure 15: Generated Test Output Folder

TestNG, by default, generates multiple reports as part of its test execution.

These reports mainly include TestNG HTML report, TestNG email-able report,

47

TestNG report XML, and JUnit report XML files. These files can be found under the

output report folder (in this case, test-output)

The generated index.html report contains all the hyperlinks related to

automation framework. It contains links to detailed info like test, groups, Ignored

Methods etc. Clicking each link will reveal further about the test suite and its

components.

Figure 16: Index.html Report

The second report which is most useful for analysis and which is most

commonly share among the team is Default Test Report. It gives the complete

information about the execution cycle.

The current project start date, time, pass/fail status all are mentioned in this

report. It also gives detailed Test step pass/fail status.

48

Figure 17: Default Test Report

This is an email-able form of html report. It contains the same information. In

the figure below a snap of the generated report showing the detailed status of failed

reports.

49

Figure 18: Email-able Report

Selenium with Test NG generates basic html or xml reports that lacks rich

formatting features. To enhance the report feature XSLT report is helpful. It provides

user friendly UI and detailed description of test suite results.

XSLT stands for XML Style-sheet language for transformation, it provides very

rich formatting report using TestNG framework.

Following is the pre-requisite to generate XSLT report.

1) ANT build tool should be install (Its necessary to install ANT for XSLT

reporting feature). ANT is used to compile the source code and creating the build. It

is also very much extensible. Refer this link for steps to download and install ANT.

2) XSLT package downloaded.

3) Selenium script that should be executed by TestNG [8].

http://www.guru99.com/using-apache-ant-with-selenium.html

50

Figure 19: XSLT Report

Data Presentation

Based on the generated reports following comparison study are drawn.

Table 10: Manual vs Automation Comparison

 Manual Automation

Total No of Test Cases 432 432

Total Time taken for Test Planning 432*11/60=79.2 hours
(approx. 80 hrs.)

432*70/60=504 hours
(approx. 500 hrs.)

Cost for Test Planning (assuming
Avg. rate $65/hour)

$5,200 $32,500

Total Time taken for Test
Execution

432*12/60 = 86.4 Hours
(Avg. time for execution 12
Min)

12690/3600 = 3.525
Hours

No of days for Test Execution for
a team of 3 considering 8 hours
working day

86.4/24 = 3.6 (approx. 4
days)

Equivalent to 1
person working for
half day

Cost of Test Execution every time
(assuming Avg. rate $65 /hour)

$5,616 $0

Cost of running Regression suite
in a year (20 product releases)

$112,320 $0

Total Cost (Test Planning + Test
Execution + Regression in year)

$123,136 $32,500

51

Summary

 This chapter explained the report results and its generation methodology.

Based on the results, data is analyzed between manual and automation execution.

The next chapter explains in detail the results and conclusion drawn from the study.

52

Chapter V: RESULTS, CONCLUSION, AND RECOMMENDATIONS

Introduction

This chapter provides the results and conclusion of the project. It also provides

answers to the project questions discussed in the earlier section. Further

recommendations are provided for scope of improvement.

Results

Based on the analysis done in the last section, following results are presented

and discussed here.

This following graphs are the representation of the same.

Figure 20: Manual vs Automation Time Study

0

20000

40000

60000

80000

100000

120000

Test Planning Test Execution Regression Test
Execution

Manual vs Automation Time (in Sec)

Manual Automation

53

Figure 21: Total Cost of Testing

Based on finding it can be concluded that automating the regression suite is

highly successful.

Let’s delve into the project question to identify whether the project goal is

achieved.

1. How much is the total reduction in turnaround time of completing

regression test suite?

After automating regression suite total reduction in turnaround time is

more than 82 hours which is more than 24 times of improvement.

2. What are the total savings due to automation?

Based on the results it is evident that test designing and planning for an

automation test suite is much higher that manual test planning. But looking

the results over a project life of a year, total savings due to automation is

$90636.

54

3. How the automation testing tool is selected?

Choosing the testing tool was the team effort. Choosing the right testing

is the key to success of an automation. Based on the detailed discussion

on the topics mentioned in the Tool selection section and separate study

conducted by the team, Selenium is selected which proves to be very

efficient.

Conclusion

 Based on the results it can be concluded that automating test suite is highly

successful. Huge reduction in testing turnaround time, cost and software deployment

time make the project highly competitive. Quality is optimized as more number of

times regression suite can be run which is turn give more confidence over the

product.

Project requirements and specification rapidly change to satisfy customers; it

is necessary to deliver an error free product on time. Automation the test suite lead to

faster execution which in turn optimized the software quality by running more number

of tests in lesser time. It also helped in faster deployments of code and thus overall

cost is reduced.

Recommendations

 Automation test suites is highly recommendable and provide an edge over

manual automation, but balance must be maintained. It is highly

recommendable to identify the right test cases for automating. Test

planning and design of automation is expensive than manual and the test

55

cases which run very few number of time over the software life cycle

should not be automated, as the overall cost will be much higher than the

benefits.

 Success of automation largely depends upon the right testing tool,

therefore looking the strengths and weaknesses of your current project and

discussion with the team is highly recommendable in choosing the right

tool before opting for an automation.

56

References

[1] M. Ballou, M. (2008, June). “Improving software quality to drive business agility,”
June 2008, http://www.coverity.com/library/pdf/IDC_Improving_Software_
Quality_June_2008.pdf, August 2016.

[2] “About us,” https://business.comcast.com/about-us.

[3] Wikipedia, “Comcast,” https://en.wikipedia.org/wiki/Comcast.

[4] T. Garrett, “Implementing automated software testing–continuously track

progress and adjust accordingly,” http://www.methodsandtools.com/
archive/archive.php?id=94.

[5] D. Hoffman, "Test automation architectures: Planning for test automation,"

http://www.kaner.com/pdfs/automation/Auto_Arch.pdf.

[6] J. Silberman, “The advantages of manual vs automation testing,” August 2015,

https://www.blazemeter.com/blog/advantages-manual-vs-automated-testing.

[7] “TestNG,” http://testng.org/doc/documentation-main.html#introduction.

[8] “XSLT report in selenium,” http://www.guru99.com/xslt-report-selenium.html.

http://www.coverity.com/library/pdf/IDC_Improving_Software_%20Quality_June_2008.pdf
http://www.coverity.com/library/pdf/IDC_Improving_Software_%20Quality_June_2008.pdf
https://business.comcast.com/about-us
http://www.methodsandtools.com/%20archive/archive.php?id=94
http://www.methodsandtools.com/%20archive/archive.php?id=94
http://www.kaner.com/pdfs/automation/Auto_Arch.pdf
https://www.blazemeter.com/blog/advantages-manual-vs-automated-testing
http://testng.org/doc/documentation-main.html#introduction
http://www.guru99.com/xslt-report-selenium.html

	St. Cloud State University
	theRepository at St. Cloud State
	1-2017

	Optimizing Software Quality through Automation Testing
	Ankit Sharma
	Recommended Citation

	tmp.1483398379.pdf.XCIVs

