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upgraded then it specifies a new version. Parent block hash. It's a 256-bit hash of the previous 

block header, and it is 32 bytes in size, and it's updated when a new block comes into the 

blockchain. 

Merkle tree root hash. A 256-bit hash bashed on all the transactions in the block, and it 

is updated when a transaction is accepted, and it's 32 bytes in size. 

nBits. It is 4 bytes in size, and it's a target threshold of a valid block hash, in other words, 

it is the answer to a difficult-to-solve mathematical puzzle that solved by miners to validate the 

block and the answer to the puzzle is unique to each block it is the answer to a difficult-to-solve 

mathematical puzzle that solved by miners to validate the block and the answer to the puzzle is 

unique to each block. 

Timestamp. Current time as seconds in the universal time since January 1, 1970. 

Timestamp updated every few seconds, and it takes 4 bytes in size of block header. 

Nonce. It is a 4 bytes field, and it starts with 0 and increment for each hash calculations. 

 

Figure 3: Block structure. 
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Cryptographic components.  

Digital signature. The typical digital signature algorithm used in Blockchain is the 

elliptic curve digital signature algorithm (ECDSA) (Zheng et al., 2017). Each user who 

participate in Blockchain network owns a pair of public and private key. The private key is kept 

confidential and used to sign the transactions and the signed transactions are broadcasted to the 

whole Blockchain network. The digital signature process involves two steps: signing phase and 

verification phase (Zheng et al., 2017). For instance, a user Alice wants to send a transaction or 

message to another user Bob. (1) In the signing phase Alice encrypts her data with her private 

key and sends to Bob the encrypted result and original data. (2) In the verification phase, Bob 

verify the value with Alice’s public key and check if the data has been tempered or not. 

Cryptographic hash function. A hash function is a mathematical process that takes input 

data of any size and preform an operation and returns output of a fixed size. Blockchain uses 

SHA256 message digest algorithm for generating Hash values. Data on the Blockchain is hashed 

in each block and if the block is changed or tempered, the hashed valued would be different and 

everyone in the network could detect that something had changed. Because the hashed value of 

the previous block is used to calculate the hashed value of the current block creating this link 

between the blocks and this makes Blockchain tamper-resilience linked-list. 

Merkle tree. Merkle tree is a data structure and it is used in Blockchain to contain a 

summary of all the transactions in the block, which maintain the integrity of the transactions in 

the block. In fact, Merkle tree contains cryptographic hashes of the transactions.  The most 

common and simple form of Merkle tree is the binary Merkle tree, where a bucket always 

consists of two hashes of two adjacent transaction hashes. Merkle tree produces an overall digital 
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fingerprint of the entire set of transactions, and provides a very efficient process to verify 

whether a transaction is included in a block or not (Antonopoulos, 2015). A Merkle tree is 

created by recursively hashing pairs of nodes until there is only one hash, called the root, or 

Merkle root. A Merkle tree is constructed bottom-up fashion. For instance, in the below Figure 4, 

there are four transactions, T0, T1, T2, and T3 and the hashes of each transactions forms the 

leaves of the Merkle tree called Hash0, Hash1, Hash2, and Hash3.  First, hash of two adjacent 

transactions for example, Hash0 and Hash1 is calculated and stored in the parent node Hash01, 

and the same is done for the Hash2 and Hash3 and their hash is stored in their parent nodes 

Hash23. This process continues until there is only one node left at the top which is called root 

(Antonopoulos, 2015). The final hash is 32-byte hash that is stored in the block header which 

summarizes all the data in the four transactions. 

 

Figure 4. Merkel tree in blockchain’s block. 

Types of Blockchain 

Typically, there are two types of blockchain public and private. 
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Public blockchain. A public blockchain as its name suggest is the blockchain of public, 

i.e., anyone can participate in reading, writing and auditing the blockchain without permission. 

Public blockchain is open and transparent hence anyone can review the transaction at a given 

point of time. As no one is in charge in public blockchain so the consensus mechanisms such as 

Proof-of-Work (PoW) and Proof-of-Stack(PoS), and many others are used for decisions making.  

 Bitcoin, Ethereum, Litecoin and many others are example of public blockchain. Anyone 

can download the code and start running a public node on their local device, validating 

transactions in the network, thus participating in the consensus process- the process for 

determining what blocks get added to the chain and what is the current state (“Blockchains & 

Distributed Ledger Technologies,” n.d.). Anyone can send transactions across the world and 

expect to see them included in the blockchain once verified and validated. Transactions are 

transparent in public blockchain, but anonymous or pseudonymous. 

Private blockchain. In private blockchain the write permissions are kept centralized to 

one organization. Read permissions may be public or restricted to an arbitrary extent. Private 

blockchains are a way of taking advantage of blockchain by setting up groups and participants 

who can verify transactions internally. This create the risk of security breaches like a centralized 

system, as opposed to public blockchain secured by game theoretic incentive mechanisms 

(“Blockchains & Distributed Ledger Technologies,” n.d.). Private blockchain has its own use 

case, particularly, when it comes to scalability and state compliance of data privacy rule and 

other regulatory issues. MONAX, MultiChain are the examples of private blockchain. 

Consortium or federated blockchain. Consortium is sometime considered as third type 

of blockchain platform, but typically it a special type of private blockchain. This type of 
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blockchain removes the individual autonomy which is responsible for bringing changes in the 

blockchain as in private blockchain. In consortium or federated blockchains operate under the 

control of a group of institutions.  As opposed to public blockchains, consortium blockchain does 

not allow everyone to participate in the process of verifying transactions. A pre-selected set of 

nodes controls the consensus process; for instance, a consortium of ten financial institutions, 

each of which operates a node and of which seven must sign every block for the block to be valid 

(Seco, n.d.). The right to read the blockchain may be public or restricted to the participants. 

Banks usually use consortium blockchain and are faster and scalable and provides more 

transaction privacy. R3 (banks), EWF (Energy), and B3i (Insurance) are examples of the 

federated blockchain. 

Consensus Algorithms 

The purpose of a consensus algorithm is that everyone accepts and supports the decision, 

understand the reasons for making it, and shares collective responsibility for its consequences. 

The consensus is one of the fundamental problems of distributed computing. In blockchain, how 

to reach consensus among the untrusted nodes is a transformation of the Byzantine Generals 

(BG) problem. In BG problem, a group of generals who command Byzantine army and circle the 

city. The communication between the generals was by messenger. The problem was some 

generals prefer to attack while other refuse. To make the attack successful, the generals must 

agree upon a common battle plan, and all generals have to strike at the same time otherwise the 

attack may be failed. There is also a possibility that some generals may be traitors who will try to 

distract the loyal generals. The problem is to find a mechanism to ensures that all generals will 

reach an agreement and even if the communication is only verbal messages, this problem is 
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solvable if more than two-thirds of the generals are loyal and agree upon the deal (Lamport, 

Shostak, & Pease, 1982). In blockchain, as there is no central node to control or monitor the 

distributed digital ledger, so the same problem raised but there must be some consensus 

mechanisms to solve this problem. Various consensus algorithms are used to bring consensus in 

the blockchain systems. 

PoW - Proof of Work. Bitcoin network uses Proof of Work (PoW) consensus 

mechanism (Nakamoto, n.d.). Bitcoin blockchain is a decentralized network, and it does not 

require authorization from any trusted third party to process the transactions. The nodes work 

with each other in a collaborative environment and develop the blockchain without relying on 

any central authority. However, some nodes may behave maliciously and act against the 

common goal. Thus, Bitcoin blockchain runs a fault tolerance consensus mechanism called PoW 

to assures that all nodes agree on the new entries (blocks) added to the bitcoin blockchain. PoW 

happens through miners trying to solve extremely difficult mathematic puzzles and finding a 

solution is basically a guessing game but checking if a solution is correct is easy. In PoW, each 

node of the network is calculating a hash value of the block header (Gervais et al., 2016). The 

block header contains a nonce and miners would change the nonce frequently to get a different 

hash value, and the consensus requires that the calculated value must be equal to or smaller than 

a particular given value. When one node finds a given value, it will broadcast the block to other 

nodes, and all other nodes in the network must mutually confirm the correctness of the hash 

value. Once the block is validated, other miners would append this new block to their 

blockchains. Nodes that calculate the hash values are called miners, and the PoW procedure is 

called mining in the Bitcoin blockchain (Gervais et al., 2016).  
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In Bitcoin blockchain, once the new transactions happen, they are broadcasted to all 

nodes in the network. Each node collects new transactions into a block and starts works on 

finding a problematic proof-of-work for its block. Once a node detects a proof-of-work, it 

broadcasts the block to all nodes. Other nodes in the network accept this new block only if all 

transactions in it are valid and not already spent. Nodes express their acceptance of the new 

block by working on creating the next block in the chain, using the hash of the accepted block as 

the previous has. Nodes in the network always consider the most extended chain to be the valid 

one and will keep working on extending it (Xu et al., 2017). 

In the decentralized network, the valid blocks might be generated simultaneously when 

multiple nodes find the suitable nonce nearly at the same time. Due to which a new branch will 

be created. But it is unlikely that two competing forks will generate next block simultaneously 

(Gervais et al., 2016). In PoW based consensus algorithm, the participants require no 

authentication to join the network, which makes the Bitcoin consensus mechanism makes it 

extremely scalable regarding supporting thousands of network nodes. However, PoW based 

consensus is vulnerable to 51% attacks, in which an adversary has control over 51% of the hash-

rate in the network. Hence it can write its blocks or fork the blockchain that at a later point 

converges with the main blockchain. Fifty-one percent of attacks can further leverage the miner 

to carried out other types of attacks such as double-spending, eclipse, and denial of service (Xu 

et al., 2017). The PoW based consensus algorithm wastes a lot of energy in hash computations 

during the mining process, but, it also facilitates high scalability regarding nodes participating in 

the network and operates entirely in a decentralized manner. To mitigate the waste of resources, 

some PoW protocols in which works could have some side-applications have been designed. For 
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example, the Primecoin is a new type of PoW based on searching for prime numbers (King, 

2013). 

PoS–Proof of Stack. Proof of Stack (PoS) is the most common energy-saving alternative 

to Proof of Work algorithm. In PoS, instead of investing in computing power in a race to mine 

blocks, a 'validator' invests in the coins of the system, i.e., the validators in PoS have to prove the 

ownership of the amount of the currency. It is believed that people with more coins will less 

likely attack the network. There is no coin creation (mining) exists in the PoS. Instead, all the 

coins created from day one, and validators (stakeholders) are paid strictly in transaction fees. In 

PoS, the validator is chosen to develop next block based on the number of coins (stake) has in 

the system. Once the validator creates a block, that block still needs to be committed to the 

blockchain, and various PoS systems handle this differently. In Tendermint, every node in the 

network has to sign off on a block until a majority vote is reached, while in other PoS systems, a 

random group of participants is chosen to sign the block to commit the blockchain (Vasin, 2014). 

There are some problems existed with PoS. Suppose if a validator creates two blocks for 

the same set of transactions and claim two sets of transactions fees, and also a signer signed both 

of those blocks. This is called the 'nothing-at-stake' problem, i.e., a participant with nothing to 

lose has no reason not to misbehave (Vasin, 2014). One proposed solution to this problem is to 

require a validator to lock their currency in a type of virtual vault, and those coins will severe if 

the validator tries to double sign or fork the network. The selection of validator based on the 

account balance is considered unfair because the single richest person is bound to be dominant in 

the network. Different solutions are proposed to tackle this problem. Peercoin chooses validator 

based on the coin's age and more extensive set of coins (King & Nadal, 2012). Blackcoin uses 
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randomization to predict the next generator and uses a formula that looks for the lowest hash 

value in combination with the size of the stake (Vasin, 2014). Compare to PoW, PoS saves more 

energy and is more efficient. However, as the mining cost is nearly zero, attacks might come as a 

consequence. 

PoA–Proof-of-Authority. In PoA consensus mechanism, transaction and blocks are 

validated by approved accounts, known as validators. The process of the validation is automated 

by running software and does not require validators to be continually monitoring their nodes. 

However, the validator nodes have to keep running and uncompromised. Any one of the 

validators can approve the non-consecutive block in the PoA-based system, which minimized the 

risk. Three main rules must be fulfilled for a validator (“Proof-of-authority,” 2018). (1) The 

identity of the validator must be verified correctly, (2) Eligibility must be challenging to obtain, 

(3) There must be a complete unity in the checks and procedures for establishing authority. 

The PoW-based system uses a mining mechanism to generate and validate a block. The 

PoS-based system uses an algorithm that selects participants with the highest stakes as validators. 

The PoA-based system uses identity as the only verification of the authority to validate, and there 

is no mining process to verify the work.  

Literature Review Related to Problem 

This section briefly reviews the related studies about the problem. Some studies provide a 

survey about the security and privacy issues on the Blockchain.  The authors Conti et al. (Conti, 

E, Lal, & Ruj, 2017) provided a comprehensive survey on security and privacy issues in Bitcoin. 

This paper studied the security and privacy works in details but it only focusses the Bitcoin not 

the blockchain in general. Lin et al. (Lin & Liao, 2017) provide a survey of blockchain security 
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issues and challenges. This paper presents a general overview about blockchain, how blockchain 

works, its characteristics, some of the Blockchain’s application and briefly studies some security 

problems in Blockchain such as 51% attack, and Fork problems. “Introduction to Security and 

Privacy on the Blockchain” (Halpin & Piekarska, 2017) paper is based on the IEEE Privacy and 

Security on the blockchain Workshop (IEEE S&B). They presented peer-reviewed papers that 

are collected from academia and industry to analyze problems ranging from deploying newer 

cryptographic primitives on Bitcoin to enabling use-cases like privacy-preserving file storage. 

This paper mainly focuses on the issues that discussed in the workshop.   

Vyas and Lunagaria (2014) state the security concerns and issues for Bitcoin. This paper 

focuses on Bitcoin protocol and discusses some of the attacks on Bitcoin such as majority attack 

(51 % attack), Double-spending attack, Timejacking attack, and selfish mining attack. Wüst 

(2016) completed a master's thesis on Security of Blockchain. In fact, this thesis provides an in-

depth study of Proof of Work (PoW) consensus algorithm of Bitcoin. This study provides a 

quantitative framework based on Markov Decision Processes (MDP) to analyze the security of 

different PoW Blockchain instances with various parameters against selfish mining and double-

spending attacks. 

Yli-Huumo, Ko, Choi, Park, and Smolande (2016) state a systematic review on finding 

out "Where is current research on Blockchain technology?". The objective of this study was to 

understand the current research topics, challenges and future directions regarding blockchain 

technology from the technical perspective. This research report studied different papers that 

discuss various technical challenges of Blockchain Technology. For instance, Blockchain's 

scalability issues wasted resources and also presents some papers that were dedicated to security 
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and privacy issues of Blockchain. Though this research report discusses the security and privacy 

aspect of the blockchain more in general and provides the report based on the 14 papers that 

were covered in the scope of this report. However, this research provides a roadmap for technical 

challenges of Blockchain that should be researched.  

Literature Reviews Related to Methodology  

To best of our knowledge, this is the first state-of-arts that discussed the security issues in 

the both Blockchain 1.0 and Blockchain 2.0. The paper (Atzei, Bartoletti, & Cimoli, 2016) 

provides a survey on the Ethereum smart contracts and discusses 12 types of vulnerabilities on 

the Ethereum smart contract. Xu et al. (2017) state a taxonomy of Blockchain-based systems for 

architecture design. This paper classifies and compares blockchains and blockchain-based 

systems to assist with design and assessment of their impact on software architecture. This 

taxonomy discusses the architectural characteristics of blockchain and the effect of their 

principle design decision, and it does not provide insight on security and privacy issues of 

Blockchain. Lloyd's London presents a report called “Emerging Risk Report 2015” (Beecroft, 

2015) and this report discussed different risk factors specifically in Bitcoin. Lloyd's report 

studies risk in various domain of Bitcoin such as operational risks, technological risks, market 

risks and a minor report on security risks in Bitcoin. Cambridge Centre for Alternative Finance 

conducted a global blockchain benchmarking Study (Hileman & Rauchs, 2017). This 

benchmarking study discusses the state of the blockchain ecosystem from the finance perspective 

and very slight attention to the privacy factors of Blockchain. 

The Gervais et al. (2016) paper introduced a novel quantitative framework to analyze the 

security and performance implications of various consensus and network parameters of Proof of 
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Work (PoW) blockchains. This paper formulates adversarial strategies for double-spending and 

selfish mining while taking into account real-world constraints such as network propagation, 

different block sizes, block generation intervals, information propagation mechanism, and the 

impact of eclipse attack.  

Apostolaki, Zohar, and Vanbever (2017) discuss the Bitcoin's Hijacking. This paper 

provides a taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale 

attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. The 

paper discusses two general network attacks, partitioning attack and delay the attack. 

 Wan, Lo, Xia, and Cai (2017) discuss bug characteristics in blockchain systems. This 

paper performs an empirical study on bug characteristics in eight representatives open source 

blockchain systems. First, the article manually examines 1,108 bug reports to understand the 

nature of the reported bugs and then leverage card sorting to label the bug reports and get ten bug 

categories in blockchain systems. This paper further investigates the frequency distribution of 

bug categories across projects and programming languages, and finally, study the relationship 

between bug categories and bug fixing time. 

Summary   

This chapter summaries the basic concept of the blockchain, its features, applications, 

types of blockchain, consensus mechanism. Finally, the chapter included the literatures reviews 

based on the problem and methodology. 
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Chapter III: Methodology  

 This study followed the qualitative research methods which involves surveys and case 

studies. In this chapter, the classification methods and its underlying technologies and concepts 

required for the taxonomies are presented. 

Design of the Study 

 The study used qualitative research method, because it concentrates on collecting and 

analyzing data and gain greater insight and knowledge by reproducing or recognizing the 

problem. The qualitative research method involves survey and case study. To better under 

understand the security threats problem in the blockchain (both blockchain 1.0, 2.0), the study 

presented a systematic survey. The systematic survey reviews the existing vulnerabilities in the 

blockchain, and examines how these vulnerabilities lead to the execution of various security 

threats. Moreover, the study provided a case-study for each attack by examining the popular 

blockchain systems and also reviews possible countermeasures which could be used in the 

development of various blockchain systems. In order to recognize specifically the targets for 

each threat, taxonomies are developed. The taxonomies classified the each of the examined 

security threats in term of affected abstract layers of blockchain, affected primary processes of 

the blockchain and finally the business users. 

Since in the qualitative research, the data are analyzed by themes from descriptions by 

informants and keep that in mind, the study developed taxonomies and classify the threats 

(Mcleod, 2008). 

 Moreover, this work also provided a comprehensive study about the blockchain concept, 

its characteristics, the underlying technologies to better recognize the problem. It also surveyed 
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the existing technical challenges in the blockchain such as scalabilities, usability and some 

government and compliance concerns. Though the government and compliance was not in the 

scope of this study, but provided a brief insight about the current standards and government 

issues. 

Data Collection 

 The data collected and analyzed in this study was from various relevant papers that are 

extracted from scientific databases. The relevant research included journal papers, conference 

papers, technical and white papers and used some academic blogs for obtaining up to date 

statistics to evaluate the objective of the problem discussed in this study. 

Tools and Techniques  

There is no specific tool used in addressing the problem, but the study used the taxonomy 

as a technique to evaluate and classify the security threats and attacks in the different domains of 

the blockchain. The three taxonomies as first based on the abstract layers of the blockchain, the 

primary technical processes in the blockchain and finally the primary targets (users) involves in 

the blockchain platforms from the business perspective. 

Taxonomy #1. This taxonomy is based on the abstract layers of the blockchain. The 

abstract layer considers in this taxonomy are: Network layer, Consensus layer, Data model layer, 

Execution layer. The taxonomy based on the abstract layers is formed by studying the nature of 

each of the existing vulnerabilities that lead to the security threats and attacks, and which abstract 

layer can be affect by each attack.  

Taxonomy #2. This taxonomy is designed in considering the primary processes of the 

blockchain platforms. By examining each of the security threats and how it can affect the four 
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primary processes. The four common processes in the blockchain platforms are: Network 

discovery, Transaction creations, Mining or Block generation and Block validation. 

Taxonomy #3. The taxonomy considered the primary target of the business users 

corresponding to each attack. The actors involved in the blockchain platforms are: User, 

Merchant, Miner, Mining pool, Cryptocurrency Exchanges, and Blockchain network. 

Summary  

 In this chapter, the approach to the study has been presented. In particular, the study 

follows a systematic survey the existing vulnerabilities in the blockchain and the related security 

threats and attacks. Furthermore, using the finding of the systematic survey, the security threats 

and attacks are classified in term of affected abstract layers, processes and business users. 
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Chapter IV: Data Presentation and Analysis  

 This chapter discussed the systematic survey conducted by this study. In particular the 

systematic survey addressed various area related to the security problem of the blockchain:      

(1) Reviewed the existing technical challenges in the blockchain such as scalability and usability 

and studied the solutions. (2) Presented the detail study of the existing vulnerabilities and 

analyses how the vulnerabilities lead to the execution of the security threats. In particular the 

systematic survey discussed the security threats to double spending, threats to mining or mining 

pool, threats to blockchain network, threats to wallets (client software), and finally threats to 

smart contracts. (3) Studied each of the security threats and their corresponding attack vectors or 

attacks by providing a case-study or attack scenario and reviewed the possible countermeasures. 

Finally, developed three taxonomies and classified each of the security threats in term of affected 

abstract layers of the blockchain, affected blockchain process, and finally the affected business 

users. 

Blockchain Technical Challenges and Advances  

Scalability. Almost all existing Blockchain systems including the Bitcoin, Ethereum, 

Ripple and their associated consensus protocols have a scalability limitation. The challenging 

restriction is due to the decentralized nature of the blockchain system-every node on the network 

processes every transaction and maintains a copy of the entire state of the ledger. Though a 

decentralization consensus mechanism offers some critical benefits, such as fault tolerance, 

strong security especially data integrity, political neutrality, and authenticity. However, it comes 

at the cost of scalability. Bitcoin and Ethereum are two more dominant blockchain protocols that 

many other existing blockchain systems leverages the components of Bitcoin or Ethereum or 
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both of them. In fact, Ethereum used the Bitcoin protocol and added smart contract functionality. 

The main scalability problem is the time take to put a transaction in a block, and the time taken 

to reach a consensus. More preciously following three functionalities or components of the 

blockchain networks need to be addressed. 

Throughput. Bitcoin manages around 7 transactions per second (“Bitcoin Charts & 

Graphs–Blockchain,” n.d.), Ethereum does about 20 transactions per second (“Ethereum Charts 

and Statistics,” n.d.). Other transaction processing network such as VISA controls 1667 

transactions per second and PayPal does 193 transactions per second. So, for the Bitcoin and 

Ethereum to compete with the more mainstream system like VISA and PayPal, they need to 

increase their throughput. In general, when the frequency of transactions in Blockchain rises to a 

similar level of VISA, the throughput of the blockchain networks need to be improved. 

Latency. It takes currently roughly 10 minutes in Bitcoin network to create or mine a 

block which contains transaction, for Ethereum it’s around 14 seconds (“Bitcoin, Litecoin, 

Namecoin, Dogecoin, Peercoin, Ethereum stats,” n.d.). To achieve efficiency in the security, 

more time has to be spent on a block creation and validation, to ensure that the inputs for the 

transactions have not been previously used, which lead to double-spending attacks. Existing 

blockchain systems need to improve the block creation and validation time, to complete a 

transaction while maintaining the security.  

Size and bandwidth.  The current size of the Bitcoin blockchain is 190.65 GB, and 

Ethereum blockchain size is 330.61 GB (March 23, 2018) (“Bitcoin, Litecoin, Namecoin, 

Dogecoin, Peercoin, Ethereum stats,” n.d.). When the throughput increases to the level of VISA 

network, bitcoin blockchain could multiply. The current average block size of Bitcoin is 1 MB. 
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Ethereum uses gas limit mechanism rather than the block size. The time to create a Bitcoin 1 MB 

block which contains on average 500 transactions takes on average 10 minutes (Yli-Huumo et 

al., 2016). If the Bitcoin blockchain needs to control more transactions, the size and bandwidth 

issues have to be resolved. 

The current Bitcoin blockchain is globally distributed in 11,875 full nodes (“Global 

Bitcoin nodes distribution,” n.d.), and Ethereum blockchain is globally distributed in 17,263 full 

nodes (“ethernodes.org–The ethereum node explorer,” n.d.) (March 23, 2018). That is, Ethereum 

is more distributed than Bitcoin blockchain. However, blockchain scalability issue increases as 

more nodes are added to its blockchain because of the inter-node latency that logarithmically 

increases with every additional node. Contrary to the traditional database system, in which the 

performance improved by adding more computer power (servers). But in the decentralized 

blockchain systems, as every node needs to process and verify transactions and maintain the 

updated copy of the blockchain the inter-node latency increases. The current existing blockchain 

systems tradeoff between the low transaction throughput and a high degree of centralization. 

Thus, to scale the current blockchain protocols, it’s important to limit the number of participants 

needed to validate each transaction, without leading to the risk of centralization and losing the 

network’s trust that each transaction is valid. 

Proposed solutions. There are a number of solutions proposed to address the scalability 

issue of the blockchain, which could be categorized into two types. 

Storage optimization of the blockchain.  It is harder for the nodes to maintain the full 

copy of the ledger, Bruce (Bruce, n.d.) proposed a scheme that contains three core components 

called, mini-blockchain, account tree and proof of chain, to enhance the scalability. The mini-
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blockchain is a variant of the Bitcoin protocol which aims to eliminate the need for storing the 

full blockchain and overcome the “blockchain bloat” problem. In this scheme, the old transaction 

records are removed (or forgotten) by the network, that is, old blocks can be trimmed from the 

chain. The block headers are kept as a Proof of Work record, but all other transactions can be 

discarded. The address balances are managed separately in a hash tree structure called the 

“account tree” which is a self-contained balance sheet designed to keep track of all non-empty 

addresses. New blocks act upon the entries in the account tree to perform transactions, and the 

master hash of the account tree is embedded into the block headers to ensure consistency and 

agreement between the nodes. To secure the whole system from the malicious activities, a chain 

of interlocking PoW solutions called the “proof chain” is used. The proof chain is merely a chain 

of block headers which encapsulate all the energy expended by the network on a given chain, 

and it secures the mini-blockchain and account tree against the attackers. The paper (van den 

Hooff, Kaashoek, & Zeldovich, 2014) propose a novel scheme called VerSum. Versum allows 

lightweight clients to outsource expensive computations over extensive and frequently changing 

data structure, such as the Bitcoin, Namecoin blockchain, or a Certificate Transparency log. 

VerSum assumes that at least one server is honest in the network, and when servers disagree, 

VerSum uses an effective conflict resolution protocol to determine which server(s) made a 

mistake and get the correct output by comparing the outputs from multiple servers. 

Redesigning blockchain. The paper (Eyal, Emin, & Sirer, n.d.) proposed a new 

blockchain protocol called Bitcoin-NG (Next Generation) to scale. The Bitcoin-NG is a 

Byzantine-fault-tolerant blockchain protocol that is robust to extreme churn and also shares the 

same trust model as the Bitcoin protocol. The main idea of the Bitcoin-NG is to split the 
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conventional block into two parts: Key blocks for leader election and microblocks that contain 

the ledger entries. Each block has a header that includes, among the other fields, the unique 

reference of its predecessors. Bitcoin-NG divides time into epochs or period, and in each epoch, 

a single leader is in charge of serializing state machine transactions. Miners are competing to 

become a leader, and once a miner becomes a leader he/she is responsible for microblock 

generation until a new leader appears. Bitcoin-NG also extended the longest (heaviest) chain 

strategy where only key blocks count and microblocks carry no weight. In this way, blockchain 

is redesigned, and the tradeoff between the block size and the network security has been 

discussed. 

Sharding is a concept that has been used by distributed systems for a long time, to 

improve scalability, performance, and input/output bandwidth. The existing blockchain systems 

including Ethereum face the big problem of scalability, that is, the speed of transaction 

verification. Each full node in the network has to maintain the copy of the entire blockchain. 

With sharding, it can be breaks down a transaction into shards and spreads it among the network. 

The nodes can work on individual shards in parallel. This in turn decrease the overall time taken 

by the transaction. Zilliqa (“whitepaper.pdf,” n.d.) is the first public blockchain platform that 

implement sharding. It automatically split the nodes in the network into parallel chains called 

“shards”, where each shard processes a small portion of all transaction in conjunction with other 

shards, resulting in a microblock from each shard. These microblocks are then merged into one 

complete block that is then added to the blockchain. Zilliqa claims that it is linearly scalable. 

Linear scalability means that as the number of the participating nodes in the network increases, 

the transaction throughput also increases at an almost linear rate. However, it is opposite in 
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blockchain, as the number of participating nodes increases, each transaction has to be 

broadcasted to a greater number of nodes before being validated and added to the blockchain, 

thereby limiting transaction throughput. Zilliqa uses PoW only to establish miners’ identities and 

it’s not used as a consensus protocol, which significantly reduces the energy consumption. 

Instead, Zilliqa uses an optimized Practical Byzantine Fault Tolerant (PBFT) consensus protocol 

which give finality to transactions. Unlike the PoW, where multiple confirmations are required, 

PBFT does not allow temporary forks due to the consensus protocols, that is, once a block added 

to the blockchain no other block can share the same parent as the committed block, and as a 

result, no confirmations are required. Because of finality, the entire transaction history is not 

required to be stored on the blockchain, instead it is sufficient to store only the latest state. 

Plasma (Poon & Buterin, n.d.) is another proposed framework for scalability, which is a 

series of smart contracts that run on the top of the root blockchain (i.e., the Ethereum 

blockchain). The root blockchain enforces the validity of the state in the plasma chains using a 

mechanism called “fraud proofs.” Fraud-proof is a mechanism by which nodes can determine if a 

block is invalid using a mathematical proof. The Plasma framework forms the blockchain in a 

tree hierarchy, and each branch is treated as a blockchain that has its own blockchain history and 

computations that are MapReduce. The “plasma blockchains” could be considered as the child 

chains, each of which is a chain within a blockchain. The Plasma blockchain does not reveal the 

contents of the blockchain on the root chain (e.g., Ethereum). Instead, only the block header 

hashes are submitted on the root chain, which is enough to determine the validity of the block. 

The data is sent to the root chain in Byzantine conditions. As a result, the root blockchain 

process only a small amount of commitments from child blockchains, which in turn decreases 
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the amount of data passed onto the root blockchain and allows for a much more significant 

number of computations. 

Wasted resources, fork, and usability issues. 

Wasted resources. Many other existing blockchain systems, Bitcoin and Ethereum are 

based on the Proof-of-Work consensus mechanism, which requires mining (computational 

power) to do the proof of work or solve the puzzle. The Bitcoin’s current annual electricity 

consumption is 57.17 TWh (“Bitcoin Energy Consumption Index,” n.d.), which is estimated 

above $15 million/day. Electricity consumed per Bitcoin’s transactions is 847 KWh, which is 

more than a household's energy used in a week. Moreover, a single Bitcoin transaction takes 

thousands of times more energy than a credit card swap. Ethereum is the second largest 

electricity consumer blockchain system. Thus, immense computer power, and massive electricity 

consumption still an enormous challenge to the blockchain system. Besides that, the annual 

carbon footprint (kt of CO2) of Bitcoin network is 28,015 (“Bitcoin Energy Consumption 

Index,” n.d.) which is an unsustainable and not eco-system friendly. Some of the alternative 

proposed are Proof-of-Stake, Proof-of-Authority, and many mores, which does not require 

mining for creating and validating blocks. 

Usability.  There is no standard available for developing the Application Programming 

Interface (API), and different blockchains follow different programming languages for 

development. It makes it difficult to use in term of developing services, notably the Bitcoin’s 

API. There is a need to create a more developer-friendly API for the blockchains that should use 

some standards such as REST (Representational State Transfer) APIs (Yli-Huumo et al., 2016). 
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Versioning, hard forks, multiple chains. Usually, updates in the main protocols lead to 

versioning or hard forks, if all the blockchain community does not have consensus of the new 

update. This makes the blockchains split and usually happened for administrative or versioning 

purposes. For instance, after increasing the Bitcoin protocol block size from 1MB to 2MB makes 

a hard fork (called segwit) in the Bitcoin network and creates a fork or blockchain named Bitcoin 

Cash, and the blockchain core developers split into two teams. One is supporting the original 

Bitcoin protocol (BTC), and other advocates the new fork, Bitcoin Cash. 

Security Threats to Blockchain Systems  

This section provides a details study of each of the security threats to the blockchain 

systems. It includes the double-spending security threats, mining or mining pool security threats, 

blockchain network security threats and finally smart contract security threats. Furthermore, this 

section also discussed the attack scenario for each attack and provided available 

countermeasures. The list of security threats and attacks are presented in the table 1, and 

explained in detail as follows. 
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Table 1 

Taxonomy of Blockchain Security Threats 

Security 

Threats 

Attack Vectors Cause 

Double-

Spending 

Threats 

Race Attack Transaction Verification mechanism 

Finney Attack Transaction Verification mechanism 

Vector76 Attack Transaction Verification mechanism 

Alternative History Attack Transaction Verification mechanism 

51% Attack Consensus mechanism 

Mining/Pool 

Threats 

Selfish Mining/Block-discard Attack Consensus mechanism 

Block-Withholding Attack (BWH) Consensus mechanism 

Fork-After-withhold Attack (FAW) Consensus mechanism 

Bribery Attack Consensus mechanism 

Pool Hopping Attack Consensus mechanism 

Wallet 

Threats 

Vulnerable signature ECDSA flaws - Poor randomness 

Lack of control in address creation Public nature of the blockchain 

Collison & Pre-Image Attack Flaws in ECDSA, SHA256 & RIPEMD 160 

Flawed key generation Flaws in implementing ECDSA 

Bugs & Malware Client design flaws 

Network 

Threats 

DDoS Attack External resources, contracts underpriced 

operations 

Transaction Malleability Attack Flaws in blockchain protocols -Transaction ID 

Timejacking Attack Flaws in blochain protocols - timestamp handling 

Partition Routing Attack Flaws in Internet routing - routing manipulations 

Delay Routing Attack Flaws in Internet routing - routing manipulations 

Sybil Attack Structured P2P network limitation - forge 

identities 

Eclipse Attack Flaws in blockchain protocols - outgoing 

connections 

Refund Attack Flaws in BIP70 payment protocol -Bitcoin refund 

policy 

Balance Attack Consensus mechanism 

Punitive and Feather forking Attack Consensus mechanism - blacklisting transactions 

Smart Contracts 

Threats 

Vulnerabilities in contracts source code Program design flaws 

Vulnerabilities in EVM Bytecode EVM design flaws 

Vulnerabilities in Blockchain Program design flaws 

Eclipse Attack on Smart contract 

blockchain 

EVM design flaws 

Low-level attacks underprice operations 
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Double-spending Security Threats 

A double-spending attack is an attack where a consumer uses the same cryptocurrency 

multiple times for transactions, i.e., the given set of coins is spent in more than one transaction. 

For instance, Bob sends money to Alice (merchant) to get some product, Alice then ships the 

product to Bob, now since nodes always adopt the longer tail as the confirmed transactions, if Bob 

cloud generate a longer tail that contains a reverse transaction with the same input reference, Alice 

would be out of her money and her product. 

 

Figure 5. Double-spending attack simplified. 

There are various double-spending attack vectors or various ways to perform a double-

spending attack, such as Race attack, Finney attack, Vector76 attack, Alternative history attack, 

51% attack. 

Race attack. Race attack happened when an attacker sends two conflicting transactions 

in rapid succession into the Bitcoin network. This type of attack is relatively easy to implement 

in PoW-based blockchains. Merchants who accepts a payment immediately with 
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“0/unconfirmed” are exposed to the transaction being reversed (“Irreversible Transactions - 

Bitcoin Wiki,” n.d.).  

Attack scenario. In Race attack, the attacker in order to do double-spending, sends a 

transaction paying the merchant directly, and as the merchant accept the payment immediately 

without waiting for confirmation and ship the product to attacker. Meanwhile, the attacker sends 

a conflicting transaction (that has the same coins previously paid to merchant) to himself to the 

rest of blockchain network. It is likely that the second conflicting transaction will be mined into 

block and accepted by the Bitcoin nodes as genuine, and the coins included in the transaction 

sent to merchant will be considered invalid. Here, the attacker can exploit the intermediate time 

between two transactions’ initiation and confirmation to launch a double-spending attack 

quickly.  

As the merchants are willing to accept payment (Bitcoin) on 0/unconfirmed, can take 

precautions such as disable incoming connections or only connect to well-connected nodes. But, 

still impossible to prevent such type of attack if there is no confirmation mechanism available in 

the network. 

Possible countermeasures. There are a couple of studies and proposals that could be used 

to detect and used as a precaution to double-spending attack, particularly on the Bitcoin network.  

Ghassan et al. (Karame, Androulaki, & Capkun, 2012) discusses the double-spending attacks on 

fast payments in Bitcoin, and propose an attack model that enables the detection of double-

spending attacks in fast transactions. The three detection techniques the paper presented are: (a) 

listening period, (b) inserting observers, and (c) forwarding double spending attempts. The 

Bitcoin daemon locally generates an error if it receives a transaction whose inputs have already 
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been spent, but this error is not displayed to the Bitcoin user. In the “listening period”, the vendor 

associates a listening period with each received transaction, and it monitors all the receiving 

transactions during this period. The vendor only delivers the product, or provide the service, if he 

does not see any attempt of double-spending during the listening period. Another technique is 

called “inserting observers”, in which the vendor inserts a node or couple of nodes that it 

controls within the Bitcoin network called “observer” that would directly relay all the 

transactions that it receives to the vendor. This helps the vendor to detect a double-spending 

attempt within seconds by himself or by its observers. The third technique is “communicating 

double-spending alerts among peers”. This technique is considered an efficient countermeasure 

to combat double-spending on fast Bitcoin payment. In this technique, the Bitcoin network peers 

propagate alerts whenever they receive two more transactions that share common inputs and 

different outputs (double-spending attempt). 

Another countermeasure called “Forwarding Double-Spending Attempts in the Network” 

present in Karame, Androulaki, Roeschlin, Gervais, and Čapkun (2015), states nearby peers 

should notify the merchant about the attempt that double-spending the same coins in the Bitcoin 

network. Specifically, whenever a peer receives a new transaction, it checks whether the 

transaction uses coins that have not been spent in any other transaction that exists in the 

blockchain and their memory pool. If the transaction does not have already spent coins in it, 

peers add the transaction to their memory pool and forward it in the network. On the other hand, 

if peers detect that there is another transaction in the memory pool that spends that same coins to 

different recipients (address), then peers forward this double-spending transaction to their 

neighbors (without adding it to their memory pool). The primary intention behind this technique 
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is not to prevent the double-spending attack, but to detect it and inform the vendor so s/he can 

identify the double-spending transaction before sending or providing service to the attacker. 

Podolanko, Ming, and Wright (n.d.) provide a countermeasure against double-spending 

attacks on Bitcoin Fast-Pay transactions. They proposed a solution called Enhanced Observers 

(ENHOBS), a hybrid of observers and the peer alert system. In this scheme, the ENHOBS will 

do more in-depth inspections of all transactions received and compares their outputs and inputs. 

Once a double-spending attack is detected, an alert message that also contains the double-

spending transactions as evidence through the P2P network. Once the alert is received and 

verified, any transactions that match the same inputs are dropped from the memory pool 

immediately. 

Bamert, Decker, Elsen, Wattenhofer, and Welten (2013) propose couple of 

countermeasures against double-spending. For instance, the merchant should connect to a 

sufficiently large random number of nodes in the Bitcoin network. This will make harder for the 

attacker to inject incorrect transaction information or double-spending transaction because the 

attacker does not know over which nodes the merchant communicates. Furthermore, the 

merchant should not accept direct incoming connections. Thus, the attacker cannot directly send 

a transaction to the merchant, and forcing him to broadcast it over the network. The nodes that 

will forward that transaction will review it and detected if the transaction has a double-spending 

attempt. The subsequent transactions using the same input (address) from the attacker would be 

ignored by those nodes and would make it harder for the attacker to do double-spending. 

Finney attack. An attacker, pre-mined one transaction into a block and spend the same 

coins before releasing the block to public network to invalidate that transaction. This is called a 
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Finney attack (Sompolinsky & Zohar, n.d.). The Finney attack is a fraudulent double-spend that 

requires the participation of a miner once a block has been mined. An adversary can only 

perform a double-spending in the presence of one-confirmation vendors.  

Attack scenario. To launch a Finney attack, (1) an attacker (A) privately pre-mined a 

block which contains the double-spending transaction (TAadd) that he sent to his address (attacker 

address - Aadd). (2) The attacker creates another transaction (TMadd) which uses the same coins 

(suppose same Bitcoins) and sends it to merchant (Madd) address. Transactions in the Blockchain 

network are group by node into a block and broadcast the block to the network, and transactions 

which are not yet in a block are considered unconfirmed. (3) The attacker waits until the 

transaction (that he sent to merchant) is accepted by the merchant, and merchant only accepts the 

transaction, when it receives confirmation from the miners indicating that this transaction is valid 

and included in the blockchain. (4) Once merchant receives confirmation, he sends the product to 

the attacker. (5) After receiving the product, the attacker releases the privately pre-mind block 

into the main (public) blockchain, thus creates a blockchain fork (suppose Bf). Now, if the next 

mined block in the network extends the fork blockchain (Bf) instead of the main blockchain, then 

all the miners will create new blocks on the top of the fork blockchain (Bf). As the fork 

blockchain is the longest chain in the network, the miners will ignore the previous blockchain, 

and the fork blockchain will be considered the valid blockchain onward. Thus, the block which 

has transaction (TMadd) which was sent to the merchant and confirmed in the previous blockchain 

by miners will become invalid and resulting the merchant loses his product and attacker receives 

the product and his coins back. 
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Possible countermeasure. Since a Finney attack can only be performed against a one-

confirmation vendor. In order to avoid the Finney attack, the vendor should wait for multiple 

confirmations before releasing the product or providing a service to the client. The waiting for 

multiple confirmation, will not prevent the double-spending attack, but will mitigate the risk and 

makes it harder for the attacker to spend the same coins more than once.  The countermeasures 

presented for Race attacks (Karame et al., 2012, 2015) can also be used to mitigate the risk of 

Finney attack. 

Vector76 attack. Vector76 is also called a one-confirmation attack, in which attacker 

uses the privately mined block to perform a double-spending attack on the exchanges 

(Sompolinsky & Zohar, n.d.). It is a combination of the race attack and the Finney attack such 

that a transaction that even has one confirmation can still be reversed (“Irreversible 

Transactions–Bitcoin Wiki,” n.d.). A vector76 attack is possible when a wallet service such as 

cryptocurrency exchange runs a node that accepts direct (incoming) connections. Assuming that 

this node is using a static IP address, which will not be difficult for the attacker to find the IP 

address. 

Attack scenario. The attack would be carried out as follows. Now, let’s assume that 

exchange (a digital market where traders can buy, sell or exchange cryptocurrencies) requires 

only one confirmation and then enables you to withdraw those deposited funds after that deposit 

transaction gets the one confirmation. To launch the vector76 attack, the dishonest miner 

(attacker) needs to maintain two nodes (say- Node A and B). The Node A is only connected to 

the exchange (e-wallet service) node, and the Node B is connected to one or more well-

connected peers in the blockchain network. Then, the dishonest miner creates two transactions 
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that spend the same coins. The first transaction T1 (suppose 30BTC) is sent to the attacker 

Bitcoin address in the exchange. The second transaction T2 (suppose 0.5 BTC) is sent to his own 

wallet. Both of the transactions are not yet broadcasted to the Bitcoin network. The dishonest 

miner tries to solve (mine) a block which includes the first transaction T1 (30BTC). Once the 

block is solved, then instead of releasing that solved block to the public Bitcoin network, the 

attacker keeps that solved block and instead carry out the T1 (30BTC) on Node A and T2 (0.5 

BTC) on Node B simultaneously. Now, the only nodes that know about the 30BTC transaction 

are the own attacker node (Node A) and the exchange node. The exchange node will propagate 

the 30BTC transaction to its peer. But the second transaction (0.5BTC) was done by Node B 

which was connected to well-connected peers in the Bitcoin network, likely has reached to most 

of all Bitcoin nodes in the network and verified by peers. The nodes in the network that know the 

0.5 BTC transaction will reject the 30BTC transaction as it is a double-spend of the same coin. 

When the attacker see this solved block on Node B, he then broadcast the previously withheld 

pre-mined block from Node A (which is connected to the exchange). As the exchange provide 

services based on the one-confirmation and that one-confirmation has been already done by the 

own attacker node (Node A), the exchange will deposit the 30BTC transaction into attacker 

account. The attacker would then immediately withdraw the 30BTC from his account. 

Eventually, the Bitcoin mining network will solve yet another block and that blockchain most 

likely knows of the 0.5BTC transaction and thus rejects the 50BTC transaction. When the 

exchange node sees the next block, it will discard the previous block obtained from the dishonest 

miner (attacker) which includes the 30BTC transaction as that block’s chain end at a block 

height that is below what is now the most extended chain. Thus, the exchange allowed a with 
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(“Irreversible Transactions–Bitcoin Wiki,” n.d.) draw of the 30BTC even the deposit transaction 

for that was later reversed. So, in this scenario, the attacker got the 30BTC (Bitcoins) withdraw 

from his exchange's account and also keeps the 0.5BTC (Bitcoin) that was sent to attacker own 

wallet, and the exchange lost 30 Bitcoins in the attack. 

Possible countermeasure. The protective actions could be, waiting for multi-

confirmation, no incoming connections (Bamert et al., 2013), explicit outgoing connections to a 

well-connected nodes, inserting observers in the network, notify the merchant about the on-going 

double-spend (Karame et al., 2012, 2015; Podolanko et al., n.d.).  

Alternative history attack. The alternative history attack is still possible in case of 

multiple confirmations but requires high hash-rate and risk of significant expense in wasted 

electricity to the attacking miner (Lei, n.d.). 

Attack scenario. To launch the alternative history attack to carry out the double-

spending, the dishonest miner (attacker), submits to the merchant or network a transaction which 

pays the merchant. Meanwhile, the dishonest miner privately mines an alternative blockchain 

fork in which a fraudulent double-spending transaction is included. After waiting for the n 

confirmations, the merchant sends the product to the attacker. At this time, if the attacker finds 

more than n blocks, he releases his fork and regains his coins; otherwise, he keeps trying to 

continue extending his fork with the hope of being able to catch up with the network. If the 

attacker never able to extend his fork compare to the main blockchain fork, then the attack is 

failed, and he wasted his resource and also lose the reward for the mined blocks. The probability 

of success for such attack is based on the attacker’s hash-rate as a proportion of the total network 

hash-rate, and for the number of the confirmations, the merchant waits. Based on the bitcoin 
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network difficulty, it is hard to launch such attack on the Bitcoin network, but it is possible on 

the blockchain. The Reddcoin blockchain system was the victim of such attack in May 2014 

(“[Case Study] 51% attack and double spending,” 2014). The Reddcoin team considered it as 

51% attac, but eventually the attacker tried to do a multi-confirmation double-spending attack, in 

which the initial confirmation was 6 and after the attack. The Reddcoin blockchain increases the 

number of confirmations from 6 to 60. Later on, the Reddcoin blockchain system moved from 

Proof-of-Work to a Proof-of-Stake variety called Proof-of-Stake-Velocity (PoSV) to mitigate the 

risk of such attack. 

Possible countermeasure. The possible protective measures could be, no incoming 

connections (Bamert et al., 2013), explicit outgoing connections to a well-connected nodes, 

inserting observers in the network, notify the merchant about the on-going double-spend 

(Karame et al., 2012, 2015; Podolanko et al., n.d.). 

Fifty-one percent or >50% attack or majority hash rate attack. The blockchain relies 

on the distributed consensus mechanisms to maintain mutual trust in the network. However, the 

consensus mechanisms themselves have 51% vulnerability which can be exploited by the 

attackers to control the entire blockchain network. Though, the blockchain is designed with the 

assumption that honest nodes control the network. But when a user or group of users (miners) 

able to take control of more than 50% of the hash power in Proof-of-Work, then the 51% attack 

may be launched. The 51% attack or >50% is considered the most threatening attack on the 

blockchain network. It gives power to the attacker to destroy the stability of the whole network 

including actions such as double spending attack, exclude, modify, and self-reverse transactions 

and prevent some or all mining of valid blocks for their benefits. If the attacker controls more 
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than half of the network hash-rate, the success rate of Alternative history attack is 100% 

(“Irreversible Transactions–Bitcoin Wiki,” n.d.). Since, the attacker can generate blocks faster 

than the rest of the network, and maintain his private fork until it becomes longer than the main 

Bitcoin fork built by the honest network miners. Mainly in Bitcoin network, the 51% attack can 

lead to the various attacks. For instance, reverse transactions while the attacker is in control and 

initiates a double-spending attack. Prevent some or all transactions from to get confirmed. 

Prevent miners from mining any valid blocks. But the attacker cannot prevent transactions from 

being sent at all. Reverse other user’s transactions without their cooperation, or send coins that 

never belonged to him, or create coins out of thin air. 

Attack scenario. To launch the 51% attack to carry out the double-spending attack (the 

same coins are spent twice) the attacker performs the following: 

• Attacker submits to the merchant/network a transaction which pays the merchant. 

• Meanwhile, create a private blockchain starting from block number N (which 

includes the    double-spending transaction) and do not broadcast it to the network. 

• On the public blockchain, exchange coins for goods or services (for example, sell 

coins for BTC on an exchange). 

• Attacker waits for M blocks to be generated on the public blockchain to confirm the 

transaction (usually in Bitcoin network, merchant waits for 6 confirmation). 

• After m confirmation (at block N+M), the provider of goods or services deliver the 

product to attacker. 

• At this time, the private blockchain has generated more than m blocks, therefore 

longer than the public blockchain. 
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• Publish the privately mined blocks (private blockchain) to the network and replace 

the public blockchain, effectively removing the record of the previous transactions for 

goods or services. 

• Attacker received its money and assets back, and successfully launched the double-

spending. 

 The majority attack has never been successfully executed on the Bitcoin network. 

However, according to the Blockchain.info, in January 2014 the “ghash.io” mining pool reached 

42% of the total Bitcoin computing power, and in June 2014 the same mining pool hashrate 

fluctuated between 40% and 50% of the network’s total power over a week. This force some 

miners to voluntarily leave the ghash.io mining pool to drop the computing power and eliminate 

the fear of 51% attack. The Verge (XVG) a privacy blockchain experienced a 51% attack on 

April 4th, 2018, in which the attacker exploits a bug in the Verge code to exploit the timestamp 

(Sedgwick, 2018). The attacker stolen around 250,000 verge coins. The attack relented after 

three hours by initiating an immediate hard fork on the blockchain by the Verge team. 

Possible countermeasures.  The 51% attack is considered the most worst-case scenario 

as the adversary can do anything with the network. No amount of confirmation can prevent such 

attack; however, waiting for the confirmations does increase the aggregated resource cost of 

performing the attack. As the Bitcoin’s security model relies not on a single coalition of miners 

controlling more than half of the network hash-rate. So, a miner or a mining pool with more than 

50% hash power is an incentive to reduce their mining power and reframe from attacking. 

Therefore, the primary precaution is that no single miner or mining pool should have more than 

half of network hash-rate. 



65 
 

Other possible solutions are inserting observers into the network, communicating double-

spending alerts among peers (Karame et al., 2012, 2015). The paper (Eyal & Sirer, n.d.), 

introduced two-phase proof-of-work (2P-PoW), to disincentivize large mining pools. The paper 

(Luu & Velner, n.d.), proposes a novel approach for particle decentralized pooled mining using 

smart contracts. This paper claims that 95% of the Bitcoin’s and 80% of the Ethereum mining 

power resides with less than 10 and six mining pools, respectively. This makes the mining more 

centralized and pose the risk of transaction censorship from pool operators, and open up 

possibilities for cooperation between mining pools for executing severe attacks, including 51%. 

Mining Pools Security Threats 

 Mining pools are created by a group of miners to work together, pool their resources, and 

contribute to the generation of a block, and then share the block reward according to the added 

processing power. In case of the Bitcoin, when a pool solves a block, the 12.5 BTC (Bitcoin) 

generated by that block’s solution reward is split and distributed in between the miners (“Pool vs. 

solo mining–Bitcoin Wiki,” n.d.). The Bitcoin block mining reward halves every 210,000 blocks, 

so the coin reward will decrease from 12.5 to 6.25 Bitcoins (“Bitcoin Block Reward Halving 

Countdown,” n.d.). There is also solo mining when a miner performs the mining operations alone 

without joining a pool, and for each discovered block, 12.5 BTC and the transaction fees are paid 

to the miner. But in case of pools, the transaction fee is kept by the mining pool and not 

distributed among pool participants. However, the current difficulty level of Bitcoin 

(3,290,605,988,755) March 16, 2018 (“Bitcoin Block Reward Halving Countdown,” n.d.), makes 

it practically impossible for soloists to make a profit mining unless the solo miner has a vast 

amount of computer resources. The pool operator or manager controlled the mining pools. The 
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pool operator determines the amount of work done by individual pool members, by using the 

number of shares, a member find and submit while trying to discover a new block. 

 Different attack vectors exploit the vulnerabilities in the pool based mining approach. 

These attack vectors lead to both internal and external attacks on a mining pool. The internal 

attacks are carried out by some dishonest miners within the pool to collect more than their fair 

share of collective reward or interrupt the functionality of the honest miner in the pool and 

distant it from the successful mining attempts (Conti et al., 2017). In external attacks on pools, 

dishonest miners in the pool could use their higher hash power and perform some double-

spending attack. Distributed Denial of Service (DDoS) is another significant external threat to 

the mining pool. 

 Most of the attacks on mining or mining pools uses the strategic objective to assure some 

of the dishonest miners a certain unfair advantage. For instance, to obtain an expected revenue 

from mining higher their fair share based on the contributed computer power. This strategic 

objective of dishonest miners leads to launch various types of attacks on the solo miners or 

pools. 

 Following chart presents most of the mining pools across the world has Bitcoin network 

hashrate till March 10, 2018. 
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Figure 6. Bitcoin network hashrate distribution across the world, til March 10, 2018  

(“Hashrate Distribution,” n.d.). 

 

Selfish Mining Attack. The selfish mining attack was first introduced by by Eyal and 

Sirer in the paper “Majority is not Enough” (Eyal & Sirer, 2014). There is another other paper 

that called the selfish mining attack as block-discarding attack (Bahack, 2013). In selfish mining 

attack, a dishonest miner(s), does not publish and distribute a valid solution to the rest of the 

network. In this attack, the dishonest miner(s) rather than acting like a regular miner and 

publishing blocks to the network immediately upon finding them, the attacker selectively 

releases blocks, or publishing many blocks all at once and thus forcing the rest of the network to 

discard their blocks and lose revenue (Eyal & Sirer, 2014). The primary motives of selfish 

mining are to obtain an unfair reward which is bigger than their share of computer power spent, 

and confuse other honest miners and lead them to waste their resources in a wrong direction.  
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Attack scenario. In paper “Majority is not Enough”  (Eyal & Sirer, 2014) by Eyal and 

Sirer, states the following  strategies for a selfish mining attack. In case a new block is 

discovered by honest miners, (1) if the size of the public chain (honest branch) is longer than 

then selfish branch (private chain created by attacker), then the selfish miners tries to set its 

private branch equal to the public branch. (2) if the selfish branch is one block is longer than the 

public branch, then selfish miners publish their private chain completely. (3) If the selfish branch 

is more than one block longer than the public branch, then the selfish miners publish only the 

head of their private branch. This scenario is simplified in the Figure 7. In case a new block is 

discovered by selfish miners, they keep this new block private and in case of competition with 

the honest miners, they publish their private branch to win the race. This scenario is simplified in 

Figure 8. 

Followings are the states to carrying out the selfish attack presented by (Eyal & Sirer, 

2014). 

Event: The honest miners discover a block. 

State 0: Only one single chain. That is, if the public chain is longer than the private chain 

of the attacker, set the private chain equal to the public chain. 

State 1: Dishonest miner (attacker) manages to mine a block, and kept the block private. 

State 2: Dishonest miner manages to mine another block and kept it private. 

State 2: Honest miners also find a block. 

In this situation, dishonest miner(s) published the private chain, and the honest miners 

lose their block. Because the private chain is longer than the public chain. 



69 
 

State 0: After releasing the private chain, the private chain became the public or main 

chain, and honest miners will start mining on top of it. The previous block mined by 

honest miners became invalid.  

 

Figure 7. Selfish mining attack with private chain simplified. 

Event: The dishonest miner discovers a block. 

State 1: A dishonest miner manages to mine a block, and kept it private. 

State 0’: Honest miners and dishonest miner chain are competing. 

Once, the honest miners find a new block as in state 0, the dishonest miner release the 

private block and hope the honest miners will mine on top of it. 

 

Figure 8. Selfish mining with one private block simplified. 

Possible countermeasures. There are different solutions proposed for such type of attack. 

Bitcoin improvement proposals (BIPS), suggested to randomly assign miners to various branches 

of pools, to lower the probability of the selfish mining attack. The paper (Heilman, 2014), 

proposed a solution called Freshness Preferred (FP). In which the block with recent timestamp 
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should be chosen. The FP uses unforgeable timestamps in blocks beside the timestamp that is 

already existed in each block header. The unforgeable timestamp can prove that a block was 

mined recently. As in case of the selfish mining, the attacker withholds a block, so using this 

approach it will decrease the motives for selfish mining because the withheld blocks will lose 

block race against the newly minted or fresh blocks. Thus, if dishonest miner releases a long list 

of blocks (private chain) then the rest of honest miners will weight their validity against the 

timestamp they were hashed and the timestamp they were reported to the network.  

 The paper proposes an algorithm called ZeroBlock, which uses timestamp-free 

prevention of block withholding attack (Solat & Potop-Butucaru, 2016). The key idea of this 

solution is that each block must be generated and received by the network within a maximum 

acceptable time (mat). If the miners could not mine a new block within mat interval, then miner 

itself need to generate a dummy block, called ZeroBlock. As in case of block withholding attack, 

the selfish miners hold the block and publish it later to the public chain, so that private blocks 

mined by selfish miners could have more value than mat. The dummy block is generated locally 

by honest miners. It conveys the solved blocks to prove, that the network witnesses the block and 

that a competing block is absent before miners can work on it. The dummy block includes the 

index of mat interval and the hash of the previous block, and the computation of each mat 

interval is done locally by each miner, which is based on the expected delay for a block mining 

and the information propagation time in the Bitcoin network. 

Block-withholding attack (BWH). The paper “The Miner’s Dilemma” (Ittay, n.d.), and 

the paper by Bag, Ruj, and Sakurai (2017), presented another attack on the mining pool called 

the block-withholding (BWH) attack. In block withholding attacks, blocks are discarded, and 
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dishonest miners never publish a mined block to sabotage the pool revenue. However, in selfish 

mining, dishonest miners just kept the mined block secret until the right time to release them. 

Block withholding attack is usually made by infiltrating another pool.  

Attack scenario. The mining pools have two types of users, one is pool manager, and 

other are regular miners. The pool manager forwards unsolved work units to pool members or 

miners. Miners in the pool generate partial Proof-of-Work (PPoW) and full Proof-of-Work 

(FPoW) and submit them to the pool’s manager as shares. Once a miner creates a block, it is 

submitted to the manager with FPoW, and then the manager broadcast the newly generated block 

to the Bitcoin network to receive the mining reward. Once the manager gets the rewards, it is 

distributed among the miners based on their PPoW. The paper (Ittay, n.d.) described the block-

withholding attack strategy as follows. 

As most of the pools nowadays are open pools and an attacker can register with a pool 

and participate as a regular miner. In block-withholding attack, the pool manager uses some of 

its miners for its own mining. The manager infiltrates a victim pool (another pool) by registering 

as a regular miner. He receives some of the work from the victim pool and then sends them to 

some of its loyal miners in his pool. The mining powers the attacker (manager) redirects towards 

the victim’s task is called the infiltration rate, and the miners are called infiltrating miners. Once 

the attacker receives the PPoW from his infiltrating miners, he sends them to the victim pool, 

which estimates their true mining power. But, when the attacker gets FPoW from his infiltrating 

miners, it withholds and discards them, and therefore it does not contribute to the victim’s 

revenue. The victim pool was thinking that the infiltrating workforce was doing useful mining 

and shares its revenue with the victim pool, but it tricked. The attacker then distributes its 
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revenue from its own mining and from its infiltration among all its loyal miners. In this scenario, 

the attacker’s mining power is reduced, since he used some of his miners for the block 

withholding, but he earns additional revenue through his infiltration of the other pool. Also, the 

total effective mining power in the system is reduced, causing the Bitcoin protocol to minimize 

the difficulty (Ittay, n.d.). 

Possible countermeasure. Since pool registration typically requires only a Bitcoin 

address for revenue collection and sometimes an email address, so it’s challenging for the victim 

pool to find out who is the attacker. The paper by Courtois, Bahack & Lear (2014) suggests a 

solution for block withholding attack, that pool manager should only allow trusted miners to 

register who are personally known to him or her. Also, if the pool revenue goes down than 

expected from its computational effort the pool should be closed. The paper (Bag et al., 2017) 

presented a cryptographic commitment scheme to counter BWH attack. This scheme can be 

implemented by making a small change to the existing Bitcoin protocol which will protect a pool 

from rogue miners and also from rogue pool managers. This scheme makes it impossible for the 

miners to distinguish between a PPoW and FPoW, and it is designed that the administrator 

cannot cheat on the entire pool. 

Fork-After-Withholding attack (FAW). The paper by Kwon, Kim, Son, Vasserman, 

and Kim (2017) introduced the fork after-withholding attack. FAW is another variant of BWH 

attack. In case of the FAW attack, the attacker’s reward is always equal to or greater than that for 

a BWH attacker, and it is four times more practical per pool than the BWH attack. In fact, the 

FAW attack combines components of selfish mining and BWH attack.  
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Attack scenario. To launch a FAW attack, an attacker (individual or pool) do as follows. 

(1) The attacker divides his computing power between the innocent mining and infiltration 

mining. The infiltration mining is the mining as part of a target or victim pool. (2) When the 

attacker finds an FPoW as part of infiltration mining in a pool, he holds that block privately and 

does not publish it. (3) Depending on what happens next, the privately owned FPoW block can 

be either release to the target pool manager hoping to create a fork (as in the selfish mining) or 

discard it (as in block withholding). The attacker will immediately release the privately held 

FPoW if he notices that other miners who are not part of the target pool and propagating a valid 

block. The attack does this to create a fork. But the attacker will drop his privately held FPoW in 

two cases. (a) The attacker notices that another miner in the target pool finds an FPoW, (attacker 

will still share in the reward from FPoW publish by another miner in the target pool). (b) If the 

attacker themselves finds another FPoW through their innocent mining and the attacker will 

receive a greater share of the block reward for the block they located outside of the target pool 

(Kwon et al., 2017). 

Possible countermeasures. There is no efficient solution so far reported and finding a 

cheap and efficient countermeasure remains an open problem. The same paper (Kwon et al., 

2017) suggest a partial solution to reward higher the miner who finds an FPoW in a pool, as 

compare to other miners who only submit PPoW. For instance, rewards 0.1 BTC to the miner 

who finds an FPoW in a pool and 0.9 BTC shared among the other miners in the pool according 

to their PPoW submissions. But, because of the high reward difference, miners may be hesitated 

to join pools using this reward system. 
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There are some other attacks that directly or indirectly disrupt the miner or mining pools 

activities. The paper by Rosenfeld (2011) presented the Pool Hopping attack. Pool-hopping is the 

exploitation of the circumstance by mining only when the attractiveness is high and living when 

the attractiveness is low. The attractiveness is the expected earnings. The main idea of this attack 

is that if a miner mines in a pool in which a lot of shares have already been submitted and no 

block has yet been found, he will gain less in expectation because the reward will be shared with 

the miners who have contributed to this pool. So, at a particular moment, it may be profitable to 

stop mining in this pool and participate in some other pools or mine individually. Usually, it is 

considered a good practice if the miner will not frequently change the pool based on the 

attractiveness. The paper by  Bonneau (n.d.) discusses a theoretical attack called, Bribery attacks, 

in which an attacker might purchase mining power for a short period via bribery. The bribery can 

be performed in-band with the system itself enforcing the bribe. That is, the attacker attempts to 

bribe using Bitcoin itself by creating a fork which contains the bribe money and available for the 

miner adopting the fork. Besides in-band payment, out-of-band payment, in which attacker will 

pay directly to rent their computing power, or by Negative-Fee mining pool, in which the 

attacker forms a pool by paying a higher return. This attack could lead to Majority attack, or 

Distributed Denial of Service attack (DDoS) to disrupt the whole Bitcoin network functionality. 

Blockchain Network Security Threats 

The blockchain peer-to-peer nature of the network, which includes all the nodes who 

maintain and run the blockchain protocols and provides services come under the blockchain 

network. In case of the Bitcoin there are two types of nodes: those that accept incoming TCP 

connection, and generate blocks in the blockchain (miners) and other nodes (users) who only 
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create transaction and submit it into the Bitcoin network. There are various attacks can happen at 

the Blockchain network layer. 

Distributed Denial of Service attacks (DDoS). The distributed, decentralized natures of 

the blockchain makes it harder for the attacker to launch an effective DDoS attack on the 

blockchain system than the conventional client-server model. However, blockchain ecosystem is 

still subject to DDoS attacks. A DDoS is an effort to make target system resources unavailable 

by overwhelming it with service requests. DDoS attacks can be either network layer or at 

application layer attacks. The DDoS at network layer cause network saturation by consuming 

much of the available network bandwidth. The DDoS at application layer attacks, intend to bring 

down a server by consuming much of its processing resources (e.g., memory or CPU) with a 

high number of requests. The application layer DDoS attacks usually facilitated by DDoS 

botnets. According to the Bitcoin forum, there are 23 built-in, prevention mechanisms in the 

Bitcoin client version 0.8.0, against the denial of service attacks and 7 Bitcoin protocol rules to 

prevent the denial of service attack in Bitcoin (“Weaknesses–Bitcoin Wiki,” n.d.). Nevertheless, 

Bitcoin and other blockchain base platform are still vulnerable to sophisticated DDoS, and it 

becomes the most common attack on the blockchain ecosystem. DDoS main target is crypto 

exchanges, mining pools, e-wallets, smart contracts and other financial services in the blockchain 

system. According to the Imperva Incapsula, a cloud-based service provider, report (Q3 2017 

Global DDoS Threat Landscape), more than 73% of all bitcoin sites using the Imperva services 

were attacked in the third quarter of 2017 (“Global DDoS Threat Landscape | Q3 2017 | 

Incapsula,” n.d.), which means the cryptocurrency exchanges and services are the relatively high 

target of DDoS attacks. The paper (Vasek, Thornton, & Moore, 2014) performed an empirical 
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study of DDoS attacks, and  documented 142 unique DDoS attacks on the Bitcoin services 

between May 2011 and October 2013. The study found that 7% of all popular operators have 

been affected by DDoS attacks, but the currency exchanges, mining pools, gambling operators, 

eWallets, and other financial services are much more likely to be attacked. Between these two 

studies (2013 and 2017) ( “Global DDoS Threat Landscape | Q3 2017 | Incapsula,” n.d.; Vasek et 

al., 2014), we can conclude that still the DDoS attacks high intension is currency exchages and 

mining pools and definetely most of the exchanges are using some sort of wallet services.  

Possible countermeasures. Various anti- DDoS services are available that could 

protections for the blockchain network and applications in the market such as CloudFlare, 

Incapsula, or Cloud Services (Amazon) and many other, if used by the currency exchanges and 

mining pools can mitigate the risk of DDoS on their services. At the consensus protocol level the 

paper by Bentov, Lee, Mizrahi, and Rosenfeld (2014) proposed a Proof-of-Authority (PoA) 

consensus mechanism that combines the PoW components with the PoS. The authors claim that 

PoA protocol offers good security against the possible attacks on the Bitcoin, and has relatively 

low penalty in terms of network performance and storage usage.  

Transaction malleability attack. The transaction malleability considered as a flaw in the 

original Bitcoin protocol. The paper by Andrychowicz, Dziembowski, Malinowski, and Mazurek 

(2015) proposes the transaction malleability attack, and also the paper by Decker and 

Wattenhofer (2014) did a study to traces the Bitcoin network for over a year and showed that the 

transaction malleability problem is real and it was not well-known before the closure of MtGox 

hack (transaction malleability hack). In transaction malleability attacks, attacker tricks his target 

into believing that a transaction has failed. The attacker then asks for the transaction to be 
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repeated. In this way, the attacker who was already owned X Bitcoins could fraudulently obtain 

twice the amount. This could be happened by changing the transaction hash (transaction ID) of a 

Bitcoin transaction before it is confirmed on the Bitcoin network. 

Each user in the Bitcoin network may create an arbitrary number of addresses that can be 

used to send and receive Bitcoins. An address is derived from an ECDSA (Elliptic Curve Digital 

Signature Algorithm) key pair that is later used to prove the ownership of the Bitcoins associated 

with that address. The ECDSA is a cryptographic algorithm used by the Bitcoin to ensure that 

funds can only be spent by their owners. The only operation allowed to modify the address 

balances is the transaction. A transaction is identified by the SHA256 hash of their serialized 

representation, which consists of one or more inputs and outputs. The input is used to specify 

which bitcoins will be transferred, and the output specifies the address that should be credited to 

the Bitcoin being transferred (Decker & Wattenhofer, 2014). The input, output, number of 

Bitcoins to send and some other data are cryptographically signed, into a unique piece of data 

called hash. The hash is essentially the transaction ID. Once the miner confirms the transaction, 

the transaction ID is included in a block and stored in the blockchain. Now, as any modification 

to the original data should generate a different hash. Thus, if the attacker can modify somehow 

the same transaction data, it will produce a different hash. So, two transactions can exist with the 

same inputs and outputs, valid signature but the different hashes. This is called transaction 

malleability. The main reason for the success of this attack is that in Bitcoin each transaction is 

uniquely identified by its transaction ID (hash). 

 A malleability attack is considered as a variant of the double-spending attack but with 

some difference. In transaction malleability attack, the attacker is no longer the person who is 
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issuing the transaction (as in double-spending case). Instead, it is the receiving party (Decker & 

Wattenhofer, 2014). In fact, the attacker would cause the victim to create a transaction that 

transfers some Bitcoins to an address controlled by the attacker. Once the attacker receives the 

transaction, the same transaction is then modified by altering the signature of it, without 

invalidating it. The modified transaction then has a different transaction identification hash. The 

changed transaction is then broadcasted to the network, and either of the two transactions may 

later be confirmed. The malleability attack is considered successful if the modified version of the 

transaction is later confirmed (Decker & Wattenhofer, 2014). Now, if the victim relies only on 

the transaction identity hash to track and verify its account balance, and the victim will see that 

transaction it issued has not been confirmed. It will credit the amount to the attacker or 

attempting to send another transaction at a later time. The attacker would have doubled 

efficiently the funds the victim sent it. 

 The current reference Bitcoin core client is not vulnerable to this attack as it tracks the 

unspent transaction output set by applying all confirmed transactions to it, rather than concluding 

only from transaction it issued (Decker & Wattenhofer, 2014). 

Attack scenario. MtGox a popular Bitcoin exchange suffered from transaction 

malleability attack that eventually led to the filing for bankruptcy of MtGox. The attacker tried  

to exploit the vulnerability in the MtGox client that identified both transactions as different,    

and this leads to the transaction malleability. The attack on the MtGox proceeds as follows:      

(1) Attacker deposits n Bitcoins in his MtGox account. (2) Then the attacker sends a transaction 

T to the MtGox to transfer his n Bitcoins back. (3) MtGox issues a transaction T' which transfer 

the n Bitcoins back to the attacker. (4) The attacker performed the transaction malleability by 
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tweaking the signature data and get the transaction T' which is semantically equivalent to T but 

has a different transaction identification hash or transaction id. Now assumes that T' gets 

included into the Bitcoin blockchain instead of T.  (5) Once the attacker receives the T', he 

complains to MtGox that the transaction T was not successful. (6) MtGox did an internal check, 

and it will not found a successful transaction of T. Thus, MtGox credited the attacker's account 

again. The problem is that the MtGox should not only search the transaction based on the 

transaction id but also any semantically equivalent of T (Conti et al., 2017). 

Possible countermeasures. The BIP 62 (Bitcoin Improvement Proposal 62) that intended 

to deal with malleability and listed the sources of malleability (“bitcoincore development–How 

much of BIP 62 [(‘Dealing with malleability’] has been implemented?,” n.d.). The BIP 62 was 

supposed to be implemented as soft fork to fix this issue and enforced the new transaction 

validity rule which consider multiple metrics for transaction verification. 

Timejacking attack. Timejacking attack is an attack on the Bitcoin network that is due 

to a theoretical vulnerability in Bitcoin timestamp handling. In Timejacking attack, attacker try 

to announce inaccurate timestamps when connecting to a node. Once the network time counter of 

node is altered by the attacker, the deceived node may accept an alternate blockchain. This could 

significantly increase the chances of a successful double-spending, drain a node’s computational 

resources, or simply slow down the transaction confirmation rate (Boverman, 2011). 

 Attack scenario. Each node in the network internally maintains a time counter that 

represents the network time, which is based on the median time of a node’s peers which is sent in 

the version message when peers connect. But, if the median time differs by more than 70 minutes 

from the system time, the network time counter reverts to the system time. An attacker could 
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plant multiple fake peers in the network and all these fake peers will report inaccurate 

timestamps, which could potentially slow down or speed up a node’s network time (Boverman, 

2011).  

Possible countermeasures. The Boverman (2011) study mentioned a few solutions to 

overcome this dilemma. (1) Use the node’s system time instead of the network time to determine 

the upper limit of the block timestamps and when creating blocks. (2) Restricted the acceptance 

time ranges. That is, the node’s network time could be restricted to a value within 30 minutes. 

This changes the maximum initial attack window to between 30 and 60 minutes instead of 70 

and 140. However, it would not prevent splits entirely, and nodes with incorrect daylight savings 

handling might be left behind. (3) Use only trusted peers. 

Routing attacks. The paper (Apostolaki et al., 2017) introduced the routing attacks on 

the Bitcoin network. This paper studied the impact of that Internet routing attacks (such as BGP 

hijacks), and malicious Internet Service Providers (ISP) can have on the Bitcoin network. The 

routing attacks can impact individual nodes and also target the whole network. This paper states 

that two key properties make routing attacks practically: (a) the efficiency of the routing 

manipulation, and (b) the significant centralization of Bitcoin concerning mining and routing. 

More specifically, the key observation suggests that any attacker with few (<100) hijacked BGP 

prefixes could partition nearly 50% of the mining power. 

A BGP (Border Gateway Protocol)  hijack is a routing attack in which an ISP diverts 

internet traffic by advertising a fake announcement in the internet routing system (“BGP 

hijacking,” 2018). This research shows that most of the Bitcoin nodes are hosted in few ISPs; 13 

ISPs host 30% of the entire Bitcoin network and most of the traffic exchanged between Bitcoin 
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nodes traverse few ISPs. Particularly, 60% of the all possible Bitcoin connections cross 3 ISPs, 

in other words, 3 ISPs can see 60% of all Bitcoin traffic. These two characteristics make it 

relatively easy for a dishonest ISP to intercept a lot of Bitcoin traffic (Apostolaki et al., 2017). 

Thus, because of the extreme efficiency of the Internet routing attacks and the centralization of 

the Bitcoin network in few networks worldwide (mining pools), the paper shows following two 

attacks that are practically possible. 

Partition attack. Any ISP can partition the Bitcoin network by hijacking few IP prefixes. 

The goal of a partition attack is to disconnect as set of nodes from the network entirely. This 

requires the attacker to divert and cut all the connection between the set of the nodes and the rest 

of the network, and partition the network into disjoint components. By preventing nodes within a 

partition to communicate with outside nodes, the attacker forces the creation the parallel 

blockchains. To perform partition attack, the attacker first diverts the traffic and intercepts the 

Bitcoin traffic (e.g., based on the TCP ports) and identifies whether the corresponding 

connections cross the partition he tries to create. If So, the attacker drops the packets, if not 

meaning that the connection is inside the partition P. The attacker keeps monitors the Bitcoin 

traffic to detect the “leakage points.” Leakage points are nodes currently within the partition P, 

which maintains connections with nodes outside of P, that the attacker cannot intercept which is 

called “stealth” connection. 

• Attack scenario. The following figure shows the partition attack scenario (Apostolaki 

et al., 2017). 
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Figure 9: Partition routing attack simplified. How ISP adversary can intercept Bitcoin traffic by 

hijacking prefixes to isolate the set of nodes P = (A,B,C,D,E,F) (Apostolaki et al., 2017). 

Here AS8 is the Autonomous Systems or ISP number 8. 

 

The attack is as follows: (1) Nodes of the left and right side of the network communicate 

through a Bitcoin connections denoted by blue lines. (2) The attacker attracts the traffic destined 

to the left nodes by performing a BGP hijack. (3) The attacker cuts these connections, effectively 

partitioning the network into two parts. (4) During the attack, nodes within each side continue 

communicating with nodes of the same side. After the attack, the attacker can discard all the 

blocks mined within the smaller partitions including all the transactions and the miner’s revenue. 

Delay attack. The goal of this attack is to slow down the propagation of blocks towards 

or from a given set of nodes. Here an attacker can use routing attacks to the delivery of a block to 

a victim node by 20 minutes while staying completely undetected. During this period, the victim 

is unaware of the most recently mined blocks. So, it the victim is a merchant, it is susceptible to 

double-spending attacks, and if it is a miner, the miner wastes its computation power, and if the 
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victim is a regular node, then it is unable to contribute to the network by propagating the last 

version of the blockchains. 

• Attack scenario. Following figure shows the partition attack scenario(Apostolaki et 

al., 2017). 

 

Figure 10: Delay Routing attack simplified. Example of delay attack, how an AS-level adversary 

(AS8) which intercepts a part of the traffic can delay the delivery of  

a block for 20 minutes to a victim node C (Apostolaki et al., 2017). 

 

The attack is as follows: (1) Nodes A and B broadcast the same block to the victim node 

C, using the INV message. (2) Node C request the block via a GETDATA from node A. Then 

attacker changes the content of the GETDATA such that it triggers the delivery of an older block 

from node A. (3) The older block is delivered. (4) Shortly before 20 minutes after the original 

bock requested by node C, the attacker triggers its delivery by modifying another GETDATA 

message originated by C. (5) The bloc is delivered just before the 20 minutes timeout. The victim 

does not disconnect from node A. 

The potential damage of this attack is disturbing; among other these attacks could reduce 

miner’s revenue and render the network much more susceptible to double-spending. These 
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attacks could also prevent merchants, exchanges and other large entities that hold Bitcoins from 

performing transactions. 

• Possible countermeasures. The paper by Apostolaki et al. (2017) also provides a set 

of countermeasures against routing attack. Such as Increase the diversity of node 

connections. That is, the more connected as AS is, the harder it is to attack it. So, it is 

better, that Bitcoin nodes are multi-homed. Another countermeasure could be select 

Bitcoin peers while taking routing into account. Bitcoin nodes randomly establish 

eight outgoing connections, while randomness is vital to avoid biased decisions, 

Bitcoin nodes should build a few extra connections considering routing. Furthermore, 

monitor the round-trip (RTT). The RTT towards the hijack destination increases 

during the attack, so by observing the RTT towards its peers, a node could detect 

sudden changes and establish extra random connections as a protection mechanism. 

Also, it is a good practice to use gateways in different ASes. Based on this study they 

found that most of the pools are using gateways in the same AS. So, by hosting these 

gateways in different ASes would make it harder for the attacker to launch the routing 

attacks against the network.  

 Sybil a ttack. The Sybil attack is an attack wherein a reputation system is weakened by 

forging identifies in P2P networks (Douceur, n.d.). That is, one attacker with many identities. In 

a Sybil attack, the attacker subverts the reputation system of a P2P network by creating a large 

number of pseudonymous identities and then use them to gain a suspiciously large influence. A 

Sybil attack in Bitcoin network is an attack where a single adversary is controlling multiple 

nodes in the Bitcoin network. The paper by Douceur (n.d.) shows that, without a logically 
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centralized authority, Sybil attacks are always possible except under extreme and unrealistic 

assumptions of resources and coordination among entities. Thus, Proof of Work does not prevent 

a Sybil attack from occurring. However, Bitcoin uses PoW to make it infeasible for a successful 

Sybil attack to feed false information to the victim. Also, Bitcoin nodes initiating multiple 

randomly outbound connections to other peers in the network.  

Attack scenario. To Sybil attack a Bitcoin node, the attacker has to first identify the 

victim’s node and then replace that all of that node’s peers with the attacker nodes. Then the 

attacker tries to isolate the user and disconnect the transactions initiated by the user or a user will 

be made to choose only those blocks that are governed by the attacker. If no nodes in the 

network confirm a transaction that input can be used for double-spending attack. 

Possible countermeasures. Bitcoin protocol is considered Sybil resistance, because it 

considers the true chain to be the one with most cumulative proof of work (not the longest chain 

as is often incorrectly stated), the result is that a new peer joining the network only needs to 

connect to a single honest peer to find the true chain. This is also known as Sybil resistance, 

which means that it’s not possible for someone to launch an attack against a node by creating 

many dishonest peers that provide the false information (Lopp, 2016). A worst-case scenario is 

when honest node is being massively Sybil attacked but still has a single connection with an 

honest node that is connected to the true Bitcoin network. As long as a single honest node is 

passing the true data to the honest full node (which is being attacked), it will ignore all the 

attempts from the Sybil attacker’s nodes. 
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Figure 11: Sybil attack on honest node of Bitcoin network (Lopp, 2016). 

The paper by Bissias, Ozisik, Levine, and Liberatore (2014), proposed a two-party 

mixing protocol called Xim. It is decentralized protocol to simultaneously address Sybil attack, 

denial of service attacks, and timing-based inference attacks. It is a multi-round protocol that 

includes a decentralized system for anonymously finding mix partners based on ads placed in the 

blockchain. Xim’s design increases attacker cost linearly with the total number of participants, 

and by increasing the cost, it can mitigate the Sybil-based DoS attack effects. Usually, in other 

mixing protocols such as DarkWallet, SharedCoin, and CoinShuffle participants pay only 

standard transaction fees. The transaction fees are practically negligible; because the cost to the 

attacker is just the sum of the instances where they are successful, rather than to the number of 

identities they created. So, if Sybil attackers wishing to maintain a fixed success rate must pay 

for each participating address, and so their costs grow linearly with the total number of mix 

participants, while honest participant’s costs are fixed and constant with the number of 

participants (Bissias et al., 2014). 

Eclipse attack. In eclipse attack, an adversary able to control a sufficient number of IP 

addresses to monopolize all connections to and from a victim node (Wang, 2015). That is the 
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attacker force network partition between the public network and a specific miner. If successful 

the attacker can then exploit the victim for attacks on Bitcoin’s mining and consensus systems, 

including 0-confirmation and N-confirmation double-spending attacks, selfish mining and 

adversarial forks in the blockchain. To perform an eclipse attack, an attacker can manipulate the 

node so that all its outgoing connections are to attacker IPs. For this, the attacker need to fill 

victim node’s peer tables with attacker IPs. Once the node is restarted it loses its current 

outgoing connections. Finally, the node makes new connections only to the attacker IPs. The 

node restarts frequently occur, because of software updates, a packet of death/DoS attacks, and 

power or network failures. 

To understand the attack scenario for the eclipse attack, some keys Bitcoin network 

information is essential. For instance, a Bitcoin node has a maximum of 8 outgoing TCP 

connections, and 117 incoming TCP connections by default. These connections form the gossip 

network to propagate Bitcoin transactions and blocks. The eclipse attack targets only the Bitcoin 

nodes that accept incoming connections because not all nodes accept incoming connections.  
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Figure 12: Bitcoin’s P2P network incoming and outgoing connection (Wang, 2015). 

With proper manipulation of the P2P network, an adversary can eclipse a node so that it 

is only communicating with malicious nodes. Moreover, in Bitcoin network, Public IPs are 

stored in a node’s “tried” and “new” tables. These tables are stored on disk and persist when a 

restart. The tried table stores IP address that a node has successfully made incoming and 

outgoing TCP connections. The new table stores IP addresses received from DNS seeders or 

ADDR messages. A DNS seeder is a server that responds to DNS queries from Bitcoin nodes 

with a list of IP addresses for Bitcoin nodes. The maximum possible number of IP addresses that 

can be returned by a single DNS query is around 4000. ADDR messages, containing up to 1000 

IP address and their timestamps, are used to obtain network information from peers. If more than 

1000 address are sent in an ADDR message, the peer who sent the message is blacklisted. Nodes 

accept unsolicited ADDR messages, and an ADDR message is solicited only upon establishing 

an outgoing connection with a peer. When a node restarts it randomly selects an IP address from 
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either tried or new tables. If the connection is successful, add that IP address as a new outgoing 

connection, and this is repeated until eight outgoing connections are established. 

Attack scenario. The attack is as follows (Goldberg & Aviv Zohar, 2015): (1) The 

attacker first gets a large number of IP addresses, e.g., control a distributed botnet. (2) Then the 

attacker fills the tried table of victim node with attacker-controlled addresses. (3) Overwrite 

addresses in the new table with “trash” IP address that are not part of the Bitcoin network. For 

this, the attacker peers send unsolicited ADDR messages filled with “trash.” The “trash” 

addresses are unallocated or as “reversed for future use” like 252.0.0.0/8 block (“IANA IPv4 

Address Space Registry,” n.d.). (4) The attacker force or wait for the victim node be restarted. 

(5) Once the victim node is restarted, with high probability, victim forms all of her outgoing 

connections with attacker controlled IP addresses. 

Possible countermeasures. The paper by Wang (2015) provides eight countermeasures to 

makes eclipse attack difficult. Such as random selection of addresses from the tried and new 

tables. Moreover, diversify incoming connections, that is, a node should accept only a limited 

number of connections form the same IP address. As nowadays, a bitcoin node can have all of its 

incoming connections form the same IP address. Also, ban unsolicited ADDR messages. A node 

could choose not to accept large unsolicited ADDR messages (with >10 addresses) from 

incoming peers, and only solicit ADDR messages from outgoing connections when its new table 

is too empty.  

Wallet Security Threats  

Blockchain-based currencies use private key-based authentication, though passwords 

remain the most common form of user authentication (Bos et al., 2013). Users’ needs their public 
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and private keys, to access coins or make transactions in the blockchain. A Bitcoin wallet is a 

collection of private’s keys that are used to manage those keys and to make transactions on the 

Bitcoin network (Eskandari et al., 2015). Bitcoin uses Elliptic Curve Digital Signature Algorithm 

(ECDSA) which is a variant of the Digital Signature Algorithm (DSA) to sign and validate 

transactions (Goldfeder, Gennaro, & Kalodner, n.d.). A digital signature of a transaction is an 

encryption of the transaction hash calculated with a private key. The signature of the transaction 

can be verified with an associated public key. The digital signature proves that the transaction 

has not been altered, and the owner of the private key has issued that transaction. In the process 

of creating signature a pre-selected random value is used along with the private key, and the 

random value should be different for each transaction. 

Various types of key management schemes are used in the blockchain ecosystem. 

Typically, wallets could be either online (hot - connected to the Internet) or offline (cold-

disconnected from the internet. Online and offline wallets could be summarized into four 

categories; software, hardware, paper and online wallets. Software wallets are applications or 

client’s software that users can download onto their desktop, laptop, or mobile devices to store 

their private keys local, and are considered online wallet. Different types of software’s wallets 

are available in the market such as Bitcoin core, Bitcoin XT, Armory. Hardware wallets are 

stand-alone hardware cold-storage that is used to store private key offline. Popular hardware 

wallets in the markets are Ledger Nano, TREZOR, PI wallet. A paper wallet is a fancy term for 

printing out your public and private keys on a piece of paper, and sometimes QR barcode is used 

to store the private key. In online wallets or web-based wallets, private keys are stored in the 
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cloud rather than a local computer. Most of the currency exchange offers web-based wallet 

facilities.  

Private key security threats. 

Vulnerable signature. In Bitcoin, the private key is the major authentication component, 

and Bitcoin mainly reply on the ECDSA to sign and validate transaction. The paper (Bos et al., 

2013) states that the ECDSA has insufficient randomness in signature generation, which could 

lead to compromise of private key. In the process of creating signature a pre-selected random 

value is used along with the private key, and the random value should be different for each 

transaction. This research found that 158 unique public keys had used the same nonce value 

(random value) in more than one signature, and this make it possible to compute these users’ 

private keys. As ECDSA has poor randomness property, and Bitcoin highly used ECDSA, so 

securing private keys with new cryptographic algorithms besides ECDSA is still an open 

challenge.  

Lack of control in address creation.  Bitcoin address is the hash value of a public key 

encoded with a pair of public and private keys (Park & Park, 2017). The paper by Ateniese, 

Faonio, Magri, and de Medeiros (2014) states an extension of the Bitcoin protocol that preserves 

its decentralized nature, while enabling payers to optionally specify the involvement of a trusted 

authority that attests to the identity of the payee, by requiring payees to use certified Bitcoin 

addresses. That is, to send and receive Bitcoins only to and from certified users and control of 

creation of Bitcoin addresses by trusted authorities. The certified addresses are still anonymous 

within the Bitcoin system, but the authority can validate the legitimacy of the entity to whom it 

releases a certificate address. The certified addresses are allowed to co-exist with the standard 
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auto-generation Bitcoin addresses. The paper claims that this can help in mitigating identity 

theft, particularly, considering the case where a man-in-the-middle (MIMT) attacker changes the 

payee’s Bitcoin address for the attacker’s address. Moreover, the certified Bitcoin address are 

blinded, that is, the trusted authority can mint coins on behalf of a particular user, but it cannot 

spend any of them. Also, the author claims that they mitigate the existing reservations against the 

adaptation of Bitcoin as a currency in commercial uses. But this scheme has some tradeoff of 

user privacy concerns with respect to trusted authority. 

Possible collison and pre-image attacks. The paper by Giechaskiel, Cremers, and 

Rasmussen (2016) states that most of the digital currencies including Bitcoin rely on 

cryptographic primitives to operate, and these primitive are breakable with increased 

computational power and advanced cryptanalysis.  

The possible effects of broken primitives could be collision attacks and pre-image 

attacks. A collision attack is an attack in which the adversary tries to find two inputs producing 

the same hash,.i.e., a hash collision, and in contrast to this a pre-image attack where a specific 

target hash value is specified (“Collision attack - Bitcoin Wiki,” n.d.). This research analyzes and 

reveals the possible of impact of the collision attack on Bitcoin could be repudiate payer, or 

destroy coins, and pre-image attack could cause uncover address, double-spending, steal coins or 

completely destroy blockchain. Though for such cryptographic attacks huge computation power 

is required which could be possible if someone completely dedicate a large size mining pools or 

has high possibility with quantum computing. 

Flawed key generation. Sometimes due to faulty implementations of ECDSA and the 

associated hash functions for key generations creates weakness in wallets which lead to exposure 
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of private keys. This happened in December 2014 to hybrid wallet provider called 

Blockchain.info (Beecroft, 2015). This mistake happened during the update of the code for the 

Blockchain.info, and this affected the inputs to the ECDSA algorithm were not sufficiently 

random to generate an effective one-way function. Due to lack of randomness, it’s easy to 

determine private key using user’s public key. This issue was resolved within two-and-a-half 

hours (Beecroft, 2015). However, the flaw in the implementations is often possible which could 

leak of private keys. 

Bugs and malware threats. The paper by Wan et al. (2017) provides a large-scale 

empirical study on bug characteristics in blockchain systems that examine 1,108 bugs reports. 

This research discussed various types of bugs in blockchain client software’s both such as 

semantic bugs (runtime), memory, concurrency, performance, security, GUI, configuration, 

build, compatibility and hard fork bugs in the blockchain systems including the client software. 

There are also various reports about the bugs in the hardware wallets. Recently author Rashid 

(2018) claims and demonstrate how an Evil Maid attack is possible on the currently popular 

hardware wallet named, Nano S. Ledger. This attack would allow extracting the PIN, recovery 

seed and BIP-39 passphrases used, and lead to disclosing of all the private keys in the wallet. To 

launch this attack, an attacker needs to update the MCU firmware of ledger using some social 

engineering or using an infected computer. This vulnerability is shared with the Nano S. ledger 

team to be fixed. The reports Risks and opportunities for systems using blockchain and smart 

contracts (Staples, 2017) and Cryptocurrency Mining Malware (2017) argue and predict the 

possible malware that could affect the various cryptocurrencies. 
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Smart Contract Security Threats 

 A smart contract is a program or scripts that automatically execute when certain 

conditions are met. Ethereum blockchain was designed as a smart contract platform, and the 

most well-known and used framework for smart contracts (Buterin, 2014). The Ethereum Virtual 

Machine (EVM) is a runtime environment where smart contracts run in the Ethereum. A good 

metaphor is that the EVM is a distributed global computer where all smart contracts are executed 

(Araoz, 2016). Every single operation that is executed inside the EVM is simultaneously 

executed by every node in the network. To limit the resources used by each contract run in the 

EVM, a mechanism is used called gas. Each operation of contracts has a cost measured in gas, 

and each gas unit consumed by a transaction paid for in Ether, based on the gas/Ether price 

which changes dynamically (Araoz, 2016). Ether is a cryptocurrency like Bitcoin used by 

Ethereum (Buterin, 2014).  

The paper by Atzei et al. (2016) analyzed security vulnerabilities of Ethereum smart 

contracts and group them into the level where they are introduced such as Solidity, EVM 

bytecode, or blockchain. Solidity is the language for smart contracts, i.e., the source code is 

written in Solidity, and EVM is the virtual machine where contracts run. The research analyzes 

12 types of vulnerabilities and that most of them have been already exploited. The 12 types of 

security vulnerabilities of Ethereum smart contracts as shown in the following table. 
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Table 2 

Taxonomy of Vulnerabilities in Ethereum Smart Contracts  

 

 Vulnerabilities in the smart contract based Blockchain.  

Vulnerabilities in solidity. Call to the unknown. It refers to use of some functions in 

solidity to invoke functions and to transfer ether may result in the execution of an unknown, 

possible malicious fallback function. That is, i the intended function to be called, does not exist, 

then the fallback function is executed, and malicious users can exploit this vulnerability by 

calling their own fallback function (Atzei et al., 2016). 

Gasless send. The function send is used to transfer Ether, and it is possible to encounter 

out of gas expectation. If the callee of a send function is a contract with relatively expensive 

fallback function than the caller gas limit–which could be up to 2300 units, for sending Ether to 

an address and if the gas is insufficient, then an out-of-gas exception will be thrown. 

Exception disorders. There are several situations in which exception may be raised. 

However, Solidity is not uniform in a way it handles exceptions (Atzei et al., 2016). The 

Number Vulnerability Cause Level 

1 Call to the unknown Called function does not exit Solidity 

2 Gasless send Callee's fallback function is invoked 

3 Exception disorders Irregularity in exception handling 

4 Type casts No expectation is thrown, if type-mismatched 

5 Reentrancy A non-recursive function re-enter before termination 

6 Keeping secrets Contracts private fields, secrecy is not guaranteed 

7 Immutable bugs Defective contracts cannot be patched or recovered EVM 

8 Ether lost in transfer Ether sent to orphan address is lost 

9 Stack size limit The number of values exceeds 1024 in the stack 

10 Unpredictable state Actual state of the contract is changed before invoking Blockchain 

 
11 Generating 

randomness 

Malicious miner biases the outcome of random number 

12 Time constraints Timestamp of the block is changed by malicious miner 
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irregularity in how exceptions are handled may impact the security of the contract. This is 

usually happened due to unchecked send errors or called contracts that throw exceptions, and the 

effect is the calling transaction is entirely reverted, and all gas is lost (Cook, Latham, & Lee, 

n.d.). 

Type casts. The Solidity compiler can detect some types' errors. But in some cases, the 

compiler does not recognize mismatched type error. Mainly, if the arguments to a direct call 

from one contract to a function of another contract are incorrectly typed, or the address of the 

contract is invalid, either nothing will be executed, or the wrong code will be executed (Cook et 

al., n.d.). In all cases, no exception is thrown, and the caller is unaware of the error. 

Reentrancy.  Due to the atomicity and sequentially execution of transactions, some 

programmers believe that when a non-recursive function is invoked, it cannot be re-entered 

before its termination. But, it is not always the case, and a fallback mechanism may allow an 

attacker to re-enter the caller function, and this result of repeated execution of the function and 

consume all gas (Atzei et al., 2016).  

Keeping secrets. Some fields in contracts are public, which are readable by everyone, and 

some held private which should not be directly readable by other users/contracts. However, 

contract fields declared private, are still not guaranteed to remain secret.  

Vulnerabilities in EVM. 

Immutable bugs. Once the smart contracts are added to the blockchain, due to the 

immutable property of blockchain, it cannot be altered. The programmers consider that the 

contract’s runtime behavior should be as they are expecting. However, if they found the contract 

is defective, then there is no direct way to patch it. The immutable bugs have been exploited in 
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various attacks to steal Ether or to make it unredeemable by any user (Atzei et al., 2016). 

Sometimes developers need to plan a hard-fork to resolve such issue as the Ethereum team did 

after the “DOA attack.” 

 Ether lost in the transfer. If Ether is sent to an orphan address, it is lost forever. The 

orphan address does not belong to any user or contract, and there is no way to detect if the 

address is orphan (Atzei et al., 2016). 

Stack size limit. Each time a contract calls another contract or even itself, a transaction’s 

call stack grows, and once the stack is reached to 1,024 frames, an exception is thrown. An 

attacker was able to exploit this vulnerability by generating an almost-full call stack (via a 

sequence of nested calls), and then he invokes the victim’s function, which will fail upon a 

further invocation. By October 18th, 2016 Ethereum team resolves this issue by changing some 

gas rules and certain instruction costs (Atzei et al., 2016). 

Vulnerabilities in Blockchain. 

Unpredictable state. Fields and balances determine the state of a smart contract. When a 

user sends a transaction to invoke some contracts, he cannot be sure that the transaction will be 

run in the same state the contract was at the time of sending that transaction. This may happen, 

because at the same time other transaction may change the state of same contracts. This 

vulnerability is said to be available in up to 15.8 percent in all smart contracts, and this bug is 

also called Transaction-Ordering Dependence (TOD) (Rivlin, 2016). 

Generating randomness.  There are two types of execution of EVM bytecode, 

deterministic and non-deterministic (Atzei et al., 2016). Deterministic, where all miners’ 

executing a transaction will have the same result, and non-deterministic is to stimulate non-
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deterministic choices such as contracts for lotteries, games, etc. In non-deterministic execution of 

EVM bytecode pseudo-random numbers are generated, where the initialization seed is chosen 

uniquely by all miners. A malicious miner could exploit this vulnerability by arranging their 

block to influence the outcome of this random number generation. 

Time constraints/timestamp dependency. Most of the applications use time constraints to 

determine which actions are permitted or mandatory at the current state of contract. The time 

constraints are implemented by using block timestamp, and some Dapps (Distributed 

Applications) use this timestamp to generate random numbers. However, the clock in Ethereum 

is set by local clocks of its miners. Thus, such Dapps can be affected with slight adjustments to 

miner’s reported times (Cook et al., n.d.). 

Attacks based on exiting vulnerabilities. The above 12 mentioned vulnerabilities led to 

six types of attacks (Atzei et al., 2016). (1) The DAO attack–DOA was a contract implementing 

a crowd-funding platform and this attacked happened by exploiting the “call to unknown” 

vulnerability of the Solidity. (2) King of the Ether Throne attack–the “King of the Ether Throne” 

is a game where players compete for getting the title of “King of the Ether,” and this attack was 

happened by exploiting the “gasless send” and “exception disorders” vulnerabilities in the smart 

contract source code. (3) Multi-player games attack- Consider an online game between two 

players and suppose one of the players carry on an attack by exploiting the “keeping secret” or 

disclosing private field in the smart contract which can help him to reveal the opposing player 

state, and by this, the attacker can win the game. Game industry uses Ethereum smart contracts. 

(4) Rubixi attack–Rubixi is a smart contract to implement a Ponzi scheme, which is a fraudulent 

high-return investment program where participants gain money from the investments made by 
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newcomers. An adversary or contract owner can collect fees, and steal Ether, and later exploit 

the “immutable bugs” vulnerability of contract source code. (5) GovernMental–it is another 

flawed Ponzi scheme, in which participant must send a certain amount of Ether to the contract to 

join. If no one joins the scheme for 12 hours, the last participants get all the Ether in the contract. 

The attack on GovernMetal could happen variously. For instance, by exploiting the “exception 

disorder,” “stack size limit,” and the main attack is called “Mallory attack,” in which the attacker 

starts invoking herself recursively, and, making the stack grow and eventually, stack overflow 

happened. It could also be happened by exploiting the “time constraints” vulnerability in the 

blockchain. (6) Dynamic libraries–This attack could happen by exploiting the “unpredictable 

state” of the blockchain. For example, consider a contract which can dynamically update one of 

its component (library), and the user does not know what the next state of the contract is. This 

allows an attacker to change these components with malicious ones.  The attack scenario for each 

of the above attacks are explained in detail in the paper (Atzei et al., 2016). 

Eclipse attacks on Ethereum network and client. The eclipse attacks on the Ethereum 

is discussed by the (Wüst & Gervais, 2016) by presenting three vulnerabilities in the Ethereum 

blockchain and client. First, by exploiting the block propagation design of Ethereum, an 

adversary can partition the P2P network without monopolizing the connections of the victim. 

Second, the paper presents an exploit to force a node to accept a longer chain with lower total 

difficulty than the main chain, and finally, identify a bug in the Ethereum difficulty calculation. 

Low-source eclipse attacks on neighbor discover process. The paper by Marcus, 

Heilman, and Goldberg (n.d.) presented low-source eclipse attacks on Ethereum nodes that 

exploit the P2P network used for neighbor discovery. The attack in this scenario can be launched 
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using only two hosts, each with a single IP address. This attack can control all the victim’s 

incoming and outgoing connections, thus isolating from rest of the peers. This research also 

provides countermeasures to harden the eclipse attack on Ethereum, and the countermeasures 

have been consolidated in the Ethereum geth 1.8 client released on February 14, 2018. 

Low-level attacks. Some attacks exploit vulnerabilities at the EVM specification level, 

combined with the security flaws in the Ethereum client (Atzei et al., 2016). For instance, some 

of the IO-heavy operations gas values are set too low, and hence these could be used by an 

adversary to launch a denial of service attack on Ethereum. The Rivlin study (2016) reported the 

denial of service attack on Ethereum due to the underpriced operation called “SUICIDE”. After 

few other incidents due to underpriced operations the issue is fixed for seven IO-heavy 

operations in the EIP (Ethereum Improvement Protocol) 150 (vbuterin, n.d.). 

Countermeasures solutions. The paper Luu, Chu, Olickel, Saxena, and Hobor (2016) 

proposed a symbolic execution tool called Oyente to find potential security bugs. This research 

found that among 19366 existing Ethereum contracts, Oyente flags 8,833 them vulnerable, 

including the DAO bug which led to a 60 million USD loss in June 2016. The also introduced 

four types of bugs namely. (1) Transaction-ordering dependence which is similar to 

unpredictable state vulnerability, (2) Timestamp dependence (3) Mishandled exceptions,          

(4) Reentrancy vulnerability.  

The paper by Chen, Li, Luo, and Zhang (2017) identified 7 gas costly patterns and group 

them to 2 categories; useless code related patterns and loop related patterns. They found that 

under-optimized smart contracts cost more gas than necessary, and therefore users are 

overcharged. They developed a tool called GASPER, which automatically locating gas costly 



101 
 

patterns by analyzing smart contracts’ bytecodes. Their preliminary results on discovering the 

three representative patterns from 4,240 real smart contracts show that 93.5%, 90.1%, and 80% 

contracts suffer from these 3 patterns respectively. The three representative patterns are: 

Detection of dead code. Some lines of code in a contract are never executed but they are 

still part of contract and deployed on blockchain. Since the consumption of gas is due to the size 

of bytecode, and hence the dead code wastes money. GASPER detects dead code through three 

steps; logs the addresses, collects the addresses, and finally reports all the blocks that are found 

in the CFG (Chen et al., 2017). GASPER constructs Control Flow Graph (CFG) for scanning 

purposes. 

Detection of opaque predicates. Opaque predicates are statements in the contracts which 

results are known to be either true or false without execution. Since the results of opaque 

predicates are already known, and the results do not affect any other statement or contracts, so it 

should be removed for saving gas. In order to detect opaque predicates, GASPER executes the 

smart contracts symbolically, and records the executed branch either true or false when a 

conditional jump encountered. Then, the conditional jump with one never-executed branch is 

considered as an opaque predicate (Chen et al., 2017). 

Detection of expensive operations in a loop.  The expensive operations in a loop refers to 

execution of statement that may executed multiple times in one invocation. Moving them out of 

loop can save gas. GASPER detects this pattern through two steps. First, it looks for loops in the 

bytecode, and second, it searches the loop bodies for expensive operations. GASPER first 

searches for back edges in the CFG, which shows the existence of loops, and then identifies the 
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entry bock and exit block for each loop. A block is considered to be in a loop if it is closer to the 

exit block than to the entry block (Chen et al., 2017). 

The paper by Cook et al. (n.d.) also propose a prototype for a tool called DappGuard, 

which is intended to be used for live monitoring and protection for Solidity smart contracts. This 

tool considers all the 12 types of vulnerability discussed in the above table.    

Data Analyzed: Security Threats Classification Taxonomies 

Taxononmy#1. Taxonomy based on Blockchain abstract layers. This taxonomy 

leveraged some of the work introduced by Dinh et al. (2017) and Croman et al. (2016). The Dinh 

et al. (2017) design of a framework for private blockchain systems and considered four common 

layers of abstraction. By comparing the over 200 Bitcoin variants, Ethereum, and other 

permissioned blockchains, and meaningfully compare them, the study identifies four common 

abstraction layers in all of these systems. The consensus layer contains protocols through which 

a block is considered appended to the blockchain. The data layer contains the structure, content, 

and operations on the blockchain data. The execution layer includes details of the runtime 

environment that support blockchain operations. The application layer contains classes of the 

blockchain applications or blockchain platforms. In related work (Croman et al., 2016), 

blockchain is divided into several planes: network, consensus, storage, view, and side plane. This 

study did not consider the execution of smart contracts.  

This study evaluates both studies (Croman et al., 2016; Dinh et al., 2017) and considered 

the five common layers of abstraction and included the network layer besides the four other 

layers, shown in the Figure 5. The network layer manages various protocols that are used to 

establish the communication channel between the nodes in the blockchain network. The common 
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protocols included in the network layer are peer to peer (P2P) protocol- for establishing 

communication between the nodes connected in the decentralized environment, transmission 

protocol–for passing the block updates between the peers or nodes, and verification protocol 

responsible for verifying the transactions by each of the participant nodes or peers.  

 The taxonomy formed based on the abstract layers mainly considered the network, 

consensus, data model, and execution layers. Since the application layer includes the business 

model of various applications of the blockchain and could be different for each of the platform, 

hence we excluded it from examining. In taking into account, the four abstract layers of the 

blockchain, the taxonomy is formed and classified the security threats based on the nature of the 

vulnerabilities for each threat. The nature of each vulnerability and the corresponding security 

threats and attacks are discussed in detailed in next chapter, and the taxonomy based on the 

abstract layers are presented in Table 3.  
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Table 3 

Taxonomy of Security Threats Affecting Blockchain Abstract Layers 

Security 

Threats 

Attack Vectors Affected Abstract Layers 

Double-

Spending 

Threats 

Race Attack Consensus 

Finney Attack Consensus 

Vector76 Attack Consensus 

Alternative History Attack Consensus 

51% Attack Network, Consensus, Data Model  

Mining/Pool 

 Threats 

Selfish Mining/Block-discard Attack Network, Consensus  

Block-Withholding Attack (BWH) Network, Consensus  

Fork-After-withhold Attack (FAW) Network, Consensus  

Bribery Attack Network, Consensus  

Pool Hopping Attack Network, Consensus  

Wallet  

Threats  

Vulnerable signature  Data Model 

Lack of control in address creation Data Model 

Collison & Pre-Image Attack Data Model 

Flawed key generation  Data Model 

Bugs & Malware  Data Model 

Network  

Threats 

DDoS Attack  Network, Consensus, External 

resource 

Transaction Malleability Attack Consensus, Data Model 

Timejacking Attack Network, Consensus, Data Model  

Partition Routing Attack Network, Consensus, Data Model  

Delay Routing Attack Network, Consensus, Data Model  

Sybil Attack Network 

Eclipse Attack Network 

Refund Attack Application - Bitcoin 

Balance Attack Network, Consensus  

Punitive and Feather forking Attack Network, Consensus, Data Model  

Smart Contracts 

Threats 

Vulnerabilities in contracts source code Execution 

Vulnerabilities in EVM Bytecode Execution 

Vulnerabilities in Blockchain  Network, Consensus  

Eclipse Attack on contract blockchain Network, Consensus  

Low-level attacks  Consensus, Data Model 
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Blockchain architecture abstraction layers. Blockchain architecture (Figure 5) consists 

of a network layer, a data layer, a consensus layer, an execution layer, and an application layer. 

Most of the existing blockchain platform includes these five abstract layers. 

 

Figure 13.  Blockchain abstract layers. 

Network layer. Peer-to-Peer (P2P) is a decentralized communication model and is one 

way of distributing data in a network. In the P2P network model, each party has the same 

capabilities, and either party can initiate a communication session. Unlike the client/server 

model, in which the client makes a service request, and the server fulfills the request. The P2P 

network model allows each node to function both as a client and server.  

 In P2P network model as each peer has 100% (or as close to it as possible) of the data, 

and updates are shared around. Data replication, and sharing updates happen many times; once 

per machine, and each addition or change makes more network traffic, and due to which P2P is 

considered less efficient than the client-server model (“A-Gentle-Introduction-To-Bitcoin-
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WEB.pdf,” n.d.). However, each peer is more independent and can continue operating to some 

extent if it loses connectivity to the majority of other peers. In other words, P2P provides a 

solution to the single point of failure problem, which makes P2P network model more robust, as 

no central server that controls everything, so shutting down the P2P network is difficult. Another 

problem with P2P models is, as there is no central server to manage the updates or modification 

of data, so if each peer is updating at different speeds and have slightly different states, it will be 

difficult to determine the real state of the data. To tackle this problem, even if the peers in the 

P2P network are untrusted like in Bitcoin blockchain, some consensus algorithms like PoW or 

PoS are used to ensure the changes to the blockchain and mitigate the risk of corrupting the 

ledger by bad peers. 

 In blockchain, the P2P network layer is responsible for inter-node communications which 

include discovery and data transfer (usually transactions and block propagation) (Pay, 2017). 

Typically, a sample of this layer is the DEVp2p library used by the Ethereum blockchain (Costa, 

2014/2018). DEVp2p is a wire protocol used by Ethereum to facilitate the P2P communications 

between the nodes in the Ethereum Blockchain network. DEVp2p nodes communicate by 

sending messages using RLPx (Recursive Length Prefix), an encrypted and authenticated 

transport protocol. RLPx is a cryptographic P2P network and protocol suite which provides a 

general-purpose transport and interface for applications to communicate through a P2P network.  

  Peers in the network are free to advertise and accept connections on any TCP port they 

wish, however, a default port on which connection may be listened and made is 30303 (Costa, 

2014/2018). Though TCP provides a connection-oriented channel, DEVp2p nodes communicate 

regarding packets and RLPx facilities to send and receive packets. DEVp2p nodes find peers in 
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the network through the RLPx discovery protocol DHT. Peer connections can also be initiated by 

providing the endpoint of a peer to a client-specific RPC API. Further details about RLPx is 

presented here (Mandeleil, 2015/2018). 

 Bitcoin is structured as a peer-to-peer network based on unencrypted persistent TCP 

connections as its foundational communication structure. The collection of nodes running the 

bitcoin P2P protocol is called bitcoin network. Each node in the bitcoin network maintain a list 

of IP address of potentials peers, and the list is bootstrapped via a DNS server, and additional 

addresses are exchanged between peers. Each node in the network maintain a minimum of eight 

unencrypted TCP connections in the overlay, and each node establish new connections if the 

current number of connections is lower than eight (Conti et al., 2017). The number of connection 

can be exceeded from 8 till 125 if incoming connections are accepted by a Bitcoin peer. By 

default, each peer listens on port 8333 for inbound connections, and to establish a new 

connection, peers perform an application layer handshake, using the version and verack 

messages. During the handshake, the version and verack messages are exchange, to ensure 

compatibility between peers. 1) The “version” message is created by a node which want to create 

an outgoing connection, and it will immediately advertise its version. The remote node will 

respond with its version, and no further communication is possible until both the peers have 

exchanged their version (“Protocol documentation–Bitcoin Wiki,” n.d.). 2) The “verack” 

message is sent in reply to version (“Protocol documentation–Bitcoin Wiki,” n.d.). This message 

consists of only a message header with the command string “verack”. The “verack” packet shall 

be sent if the version packet was accepted. The verack message. The exchange of version and 

verack messages are called “Version Handshake” between the peers in the Bitcoin network. For 
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example, when a local peer (L) wants to connect to a remote peer (R), the remote peer will not 

send any data until it receives a version message back from the local peer. The messages include 

a timestamp for time synchronization, IP addresses, and the protocol version. Following is  the 

protocol handshaking process between bitcoin’s nodes in the network (“Protocol documentation–

Bitcoin Wiki,” n.d.). 

• L -> R: Send version message with the local peer’s version. 

• R -> L: Send version message back. 

• R -> L: if both peers’ version is compatible, R send verack message. 

• R: Sets version to the minimum of the 2 versions. 

• L->R: Send verack message after receiving version message from R. 

• L: Sets version to the minimum of the 2 versions. 

 Each node randomly selects its peers, and it decides a new set of peers after a fixed 

amount of time. This is done to minimize the possibility and effects of netsplit attack, in which 

an attacker creates an inconsistent view of the network at the attacked node. To detect when 

peers have left the network, Bitcoin uses a soft-state approach. If 30 minutes have been passed 

since messages were last exchanged between neighbors, peers will transmit a “hello” message to 

keep the connection alive. 

 Miners continually listen to new block announcements which are sent via INV messages, 

containing the hash of the mined block. If miners discover that it does not hold a newly 

announced block, it transmits a GETDATA message to one of its neighbors, and the neighbor 

responds by sending the requested information in a BLOCK message. In case the requested 

block does not arrive within 20 minutes, the miner triggers the disconnection of that particular 
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neighbor and requests the same information from another neighbor. The propagation of 

transactions occurs in a sequence given as INV, GETDATA, and TX messages, in which nodes 

announces, request, and share transactions that have not yet been included in the blockchain 

(Conti et al., 2017). 

Data model layer. The data layer contains the structure, content, and the operation of the 

blockchain data. According to Mastering Bitcoin, transactions are data structures that encode the 

transfer of value between participants in the bitcoin network (Antonopoulos, 2015). A block 

contains a list of transactions, and a list of smart contracts executed as well as their latest states. 

In the data layer, each block is identified by the cryptographic hash of its contents and linked to 

the previous block hash, and all blocks together create the chain of blocks or digital ledger. 

Transactions hashes in a block are group together in a Merkel tree. Each transaction is a public 

entry in the bitcoin blockchain. Transactions are the essential part of the blockchain network. 

Every components and service in the blockchain network is designed to ensure that transactions 

can be created, propagated on the network, validated, and finally added to the blockchain. 

Typically, data models have a block, a block header, and transactions. In Bitcoin, transactions 

are system states representing digital coins in the network. Bitcoin introduces the Input-Output 

transactions data model that is also used by other protocols such as MultiChain and Chain core. 

Ethereum, on the other hand, uses the state replication model, where each new block's state is the 

outcome of the transactions that were included in the block. For instance, in Bitcoin transferring 

money between sender and receiver involves searching for transaction belonging to the sender, 

then marking some of them as spent, whereas it is easily done in Ethereum by updating two 

accounts in one transaction. An account in the Ethereum has a balance as its state and is updated 
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upon receiving a transaction. A special type of account, called “smart contract,” contains 

executable code and private states, and when receiving a transaction, in addition to updating its 

balance, the contracts' code is invoked and performed the specified arguments in the transaction. 

The code can read the states of other non-contract accounts, and it can send new transactions 

during execution (Dinh et al., 2017). Ethereum has chosen not to use the Input-Output 

transaction model because it does not allow multi-stage contracts or scripts that cloud keep an 

internal state (Dinh et al., 2017). 

Consensus layer. The role of consensus layer is to get all nodes in the blockchain system 

to agree on the blockchain contents. That is, if a node appends a block to the blockchain, the 

other nodes in the network must approve and also append the same copy of the block to their 

blockchain. The consensus layer contains protocols through which a block is considered verified 

and appended to the blockchain. Blockchain systems, use a spectrum of Byzantine fault-tolerant 

protocols. The consensus layer works jointly with data model layer, in creating, verifying and 

appending a block the blockchain. The data model layer concerns about the structure of the block 

and consensus layer concerns about which consensus mechanism to be used for creating the 

adding the block to the chain. 

The Proof-of-Work consensus algorithm is the broadly used consensus mechanism used 

in the existing blockchain systems, particularly in the cryptocurrencies area. PoW was introduced 

by Bitcoin and assumes that each node in the Bitcoin system votes with his “computing power” 

by solving proof of work instances and creating the appropriate blocks. Bitcoin uses a hash-

based PoW which requires finding a nonce value, such that when hashed with additional block 

parameters (e.g., a Merkle hash, the previous block hash), the value of the hash has to be smaller 
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than the current target value. When such a nonce is found, the miner creates the block and 

forward it to the network layer to its peers. Other peers in the network which has P2P 

connections, can verify the PoW by computing the hash of the block and checking whether it 

satisfies the condition to be smaller than the current target value (Gervais et al., 2016). 

Proof-of-Work selects at each round a random node which can append a block, where the 

node’s total computing power determines the probability of being selected. This simple scheme 

works against the Sybil attack; an attack in an open, decentralized environment in which 

adversary requires multiple identities (Bissias et al., 2014). The major problem with PoW 

mechanism is that as nodes spend their CPU cycle solving puzzles and it consumes a lot of 

energy and computing power. In addition to this problem, sometimes two nodes may be selected 

to append the same block to the chain, and both blocks can be accepted, and this cause fork in 

the blockchain. To tackle the fork problem, additional rules are used by most of the PoW-based 

blockchain systems, for instance, only blocks on the longest chain are considered and accepted. 

Ethereum, like Bitcoin uses PoW variant called GHOST (Greedy Heaviest Observed Subtree) 

which accepts blocks in heavy branches (Buterin, 2014). To solve the energy and resources 

usages problem, an alternative to PoW called Proof-of-Stake (PoW) is used. Other famous 

consensus algorithms used in existing blockchains are Proof-of-Authority (PoA (“Proof-of-

authority,” 2018), Proof-of-Burn (PoB) (“Why Proof-of-Burn | Counterparty,” n.d.), Ripple 

(Schwartz, Youngs, & Britto, n.d.), Practical Byzantine Fault Tolerance (PBFT) (Castro & 

Liskov, n.d.), Stellar (RES, n.d.) and others. 

 Execution Layer. The execution layer contains details of the runtime environment that 

support blockchain operations (Dinh et al., 2017). Each blockchain system uses its own 
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programming and scripting languages which entail runtimes environment including compiler, 

decoder, virtual machine and others. Most of these runtime environment operations are 

maintained at the execution layer of the blockchain systems. A contract (or chaincode) is 

executed in a runtime environment, and there are two requirements of execution. (1) Execution 

must be fast because there are multiple contracts and transactions in one block and they must all 

be verified by the node. (2) Execution must be deterministic; ideally the same at all the nodes. 

Deterministic execution prevents unnecessary inconsistency in transaction input and output states 

which leads to blocks being aborted and aborting a block usually wastes computer resources. 

 Smart contracts are programs that serve to negotiate, facilitate or enforce the performance 

and state of an agreement (contract). The term of the contract is coded as a program in the 

programming language provided by the underlying blockchain platform. These smart contracts 

can complement or substitute legal contracts. Ethereum develops its own machine language 

(bytecode) and a virtual machine called Ethereum Virtual Machine (EVM) for executing the 

code. EVM is a runtime environment, which provides all the needed support and services for 

executing the smart contracts in Ethereum blockchain system. EVM is optimized for Ethereum 

specific operations. For instance, executing a code (running a transaction or contract) in 

Ethereum costs a certain amount of gas, and the total cost must be properly tracked and charged 

to the transaction’s sender. Gas is the internal pricing for running a transaction or contract in 

Ethereum blockchain system. The gas system is not very different from the use of KW (Kilo 

Watt) for measuring electricity. One difference from actual energy market is that the originator 

of the transaction sets the price of gas, to which the miner may accept or ignore. That is, miners 

are free to ignore transactions whose gas prices limit is too low, on the other hand, with Bitcoin 
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miners’ priorities transaction with the highest mining fees. The idea behind using gas is to limit 

infinite loops. For instance, 10Szabo (which is about 1/100,000 of an Ether), or 0.00001 Ether 

(Ethereum currency) or 1 gas can execute a line of code or some commands in the contract. So, if 

there is not enough Ether in the account to perform the transaction or execute the smart contract, 

then it is considered invalid. The idea is to stop denial of service attacks from infinite loops and 

to make an attacker pay for the resources they use, from bandwidth to CPU calculations through 

to storage [56]. 

 Party (Dixon, n.d.) another Ethereum based blockchain system also uses EVM for 

executing the code. However, Hyperledger (“Hyperledger_Arch_WG_Paper_1_Consensus.pdf,” 

n.d.) does not consider these semantic in its design, so it merely supports running of compiled 

machine codes inside Docker image. 

Application layer. The application layer includes the use-cases of the blockchain 

application. Most of these applications of blockchain are due to key features of blockchain 

mainly two features. First, data in the blockchain is immutable and transparent to the 

participants, meaning that once a record is appended, it can never be changed and this feature 

achieved data integrity. Second, it is resilient to dishonest and malicious participants. The most 

extensive application of blockchain is still cryptocurrencies. According to Coinmarketcap site, 

currently, more than 1500 different cryptocurrencies projects exist in the market. Besides 

cryptocurrencies, there are other use-cases of the blockchain in the market such as asset 

management, supply change, identity management, security settlements, IoT, Cloud security, 

financial services, Healthcare and many more. 
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Taxonomy #2. Taxonomy based on Blockchain primary processes. This taxonomy is 

inspired from the work (Ellervee, 2017), which designed a comprehensive reference model for 

blockchain-based distributed ledger technology. The reference model was designed with 

intension to better understand the standardization and uniform processes involved in the 

blockchain. In order to designed a reference model the study (Ellervee, 2017) separated the 

blockchain based platforms into four groups: permissionless (public) blockchain, permissioned 

(private) blockchain, blockchains with smart contracts, and blockchain with transaction only as 

shown in the Table 4. 

Table 4 

Classification of Blockchain Platforms 

 Permissionless Permissioned  

Transaction only Bitcoin MultiChain Blockchain 1.0 

With Smart Contract Ethereum Chain Core Blockchain 2.0 

 

The four groups of blockchain platforms are characterized as follows: 

• Permissionless. The permissionless blockchains are fully public blockchains, where 

anyone can read, write data (Ellervee, 2017). 

• Permissioned. In permissioned blockchain, rules are pre-defined for different 

permissions on different users on the network. There can be different permissions for 

reading data, creating transactions, validating blocks, creating new blocks and others 

(Ellervee, 2017). 

• Blockchain with transaction only. These blockchain platforms are built for 

transaction capabilities such as Bitcoin and MultiChain. They support transferring 
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value from one account to another (Ellervee, 2017). These types of blockchain are 

also named as Blockchain 1.0. 

• Blockchain with Smart Contracts. These blockchain enable “smart contract” like 

capabilities and allow building business logic process mechanism into the chain 

(Ellervee, 2017). With the invent of smart contract concept, these blockchain 

platforms are considered as Blockchain 2.0. 

The reference model summarized the four platforms provide similar four general process: 

Network discovery, Transaction creation, and Mining (Block generation and submission), and 

block validation process. 

Process are realization of services that the actors (users) of the technology use. The 

typical services in the blockchain are creating transaction, mining or creating blocks, and 

validating blocks. The table 5 provides overview of the processes from different platforms. 

Table 5 

Blockchain Processes in Blockchain Platform 

Platform Processes  

Bitcoin Network discovery process, Transaction creation process, Mining process, Block 

verification process 

MultiChain Handshake process, Transaction creation process, Mining process 

Ethereum  Network discovery process, Transaction creation process, Mining process, Block 

validation process 

Chain Core Network discovery process, Transaction process, Chain consensus process 

 

• Network discovery process. Each platform has a network discovery process, which 

includes four main steps (Ellervee, 2017): 
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- Peer discovery: finding peers to connect to, either user already knows the IPs or 

acquires them 

- Handshake: version check, establishing connection, providing ownership of 

private key 

- Network discovery: finding neighboring peers and letting the network know that a 

new node has connected. 

- Synchronization: downloading the latest block data from the network. 

• Transaction creation process. In bitcoin to create a transaction user, need to enter 

value and the receivers address, and then the transaction is signed by the user and 

broadcasted to the network (to neighboring nodes). The neighboring nodes check the 

transaction for validity and if valid, then they will propagate it forward to other peers.  

In Ethereum the same process as Bitcoin is followed up, i.e., supports the regular 

value transactions. The input parameters for the transaction are similar to Bitcoin (i.e., 

amount and the address of the receiver). Besides input parameters Ethereum also 

support creating contracts and calling contract functions, which is an additional 

metadata added to a transaction (Ellervee, 2017). 

• Mining process or Block generation process.  Mining is based on the proof-of-work 

consensus mechanism. In mining process or block generation process a miner add 

collected unverified transaction and metadata, and calculate the computationally 

exhaustive proof-of-work for the block and build a new block. If he is the first one to 

solve the task and mine the block, he can submit the block to the network and receive 

the reward for the work ( Ellervee, 2017; Nakamoto, n.d). In Ethereum, the mining 
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process also requires a state transaction process, since it keeps a state of the 

blockchain. In the state transaction process, transactions are validated and in case of 

contracts, code execution is also performed. Finally, when all the state transaction 

function, miner in Ethereum will provide the proof-of-work to the blockchain 

(Buterin, 2014; Ellervee, 2017). In MultiChain the proof-of-work is optional and 

mining is permissioned (Greenspan, n.d.).  

• Block validation process. In public blockchain such as Bitcoin and Ethereum the 

validation process is performed by every node once the miner broadcast a new block ( 

Buterin, 2014; Nakamoto, n.d.). Since in the public blockchains the miners are 

anonymous, there has to be a guarantee that the miner has truly produced a valid 

block. In Bitcoin, this is called a consensus if all the nodes validate the new blocks 

against the same rules. In Ethereum, the validation is similar to Bitcoin, but it also 

includes the state transaction process, which has to be performed by each before 

accepting the block (Ellervee, 2017).  

This taxonomy classified the security threats based on the primary affected blockchain 

process and shown in Table 6: 
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Table 6 

Taxonomy of Security Threats Affecting Blockchain Processes  

Security 

Threats 

Attack Vectors Primary Affected Blockchain Processes  

Double-

Spending 

Threats 

Race Attack Transaction Creations, Mining  

Finney Attack Transaction Creations, Mining, Block Validation  

Vector76 Attack Transaction Creations, Mining, Block Validation  

Alternative History Attack Transaction Creations, Mining, Block Validation  

51% Attack Network discovery, Mining, Transaction 

Creations, Block Validation  

Mining/Pool 

Threats 

Selfish Mining/Block-discard Attack Mining 

Block-Withholding Attack (BWH) Mining 

Fork-After-withhold Attack (FAW) Mining  

Bribery Attack Transaction Creations, Mining, Block Validation  

Pool Hopping Attack Mining  

Wallet  

Threats  

Vulnerable signature  Others -Private Key security threat 

Lack of control in address creation Others -Private Key security threat 

Collison & Pre-Image Attack Others -Private Key security threat 

Flawed key generation  Others -Private Key security threat 

Bugs & Malware  Others -Private Key security threat 

Network  

Threats 

DDoS Attack Network discovery, Mining, Transaction 

Creations, Block Validation  

Transaction Malleability Attack Transaction Creations, Mining  

Timejacking Attack Transaction Creations, Mining  

Partition Routing Attack Network discovery 

Delay Routing Attack Network discovery 

Sybil Attack Network discovery  

Eclipse Attack Network discovery  

Refund Attack Others-Payment protocol authentication & refund 

Balance Attack Network discovery 

Punitive and Feather forking Attack Mining 

Smart 

Contracts 

Threats 

Vulnerabilities in contracts source code Transaction Creations - change of state 

Vulnerabilities in EVM Bytecode Transaction Creations - change of state, Mining  

Vulnerabilities in Blockchain  Transaction Creations - change of state, Mining  

Eclipse Attack on contract’s blockchain Network discovery 

Low-level attacks  Transaction Creations - change of state, Mining  
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Taxonomy #3. Taxonomy based on Blockchain affected business users. This 

taxonomy is based on the affected target of security threats. It mainly focuses on the affected 

users by each of the security threats. In design of this taxonomy the taxonomy leveraged the 

(Ellervee, 2017) work with some modification. Blockchain a decentralized network of  

individual nodes, and each node has different purposes and different roles. The study (Ellervee, 

2017) shows an overview of the actors who are present in the analyzed blockchain platforms in 

Table 7. 

Table 7 

Overview of Actors in Blockchain Platforms 

Platform Actors  

Bitcoin Client (sender or receiver of Bitcoins), Miners 

MultiChain Client, Miners 

Ethereum  Externally Owned Account, Contract Account, Miner 

Chain Core Client (Issuer/Spender of assets), Blockchain operator (Generator/Signer) 

 

Generally, each of the platform involves a Client and Miner. The client interacts with the 

blockchain and exchanges or adds value by creating and broadcasting transactions. In Ethereum, 

an Externally Owned Account (EOA) can be understood as physical actor, and Contract Account 

(CA) can be understood as a system user which acts upon a request by an EOA, or by another 

CA. Miners deal with validating transactions and building new blocks. 

With keeping in mind the (Ellervee, 2017) study, this study defined and considered the 

actors as follows: 

• User. The human act who interacts with the blockchain by creating transaction can be 

called a “User”.  
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• Miner. Human or system actor responsible for verification and validation of 

transactions, building new blocks, signing new blocks and publishing new blocks to 

the blockchain. This actor supports trust between the parties involved.  

• Mining Pool. When miners share their computer power to solve together the proof-

of-work, miners create a pool. Since the difficulty of some blockchain such as Bitcoin 

and Ethereum is very high, and it is difficult for a solo miner to solve the problem, so 

they share their computer resources and collectively solve the problem. The rewards 

for the solving difficulty or mining block is then shared among all the participant 

miners in the pool. 

• Merchant. Any business which accept digital currency as payment systems.  

• Blockchain Network. It includes the nodes, which created the decentralized network 

of the blockchain and maintain the data of the ledger. 

• Exchange.  The cryptocurrency or digital currency exchanges are the business that 

provides services to customers to trade digital currencies for other assets, such as 

conventional fiat money, or different digital currencies. 

The affected business users or actors based on each security threats or attacks are shown in  

Table 8.  
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Table 8 

Taxonomy of Security Threats Affecting Business Users  

Security 

Threats 

Attack Vectors Primary Targets Blockchain 

Versions 

Double-

Spending 

Threats 

Race Attack Sellers or Merchants Blockchain1.0, 2.0 

Finney Attack Sellers or Merchants Blockchain 1.0, 2.0 

Vector76 Attack Exchange Blockchain 1.0, 2.0 

Alternative History Attack Sellers or Merchants Blockchain 1.0, 2.0 

51% Attack Network, Sellers, Merchants, 

Exchange, Miner 

Blockchain 1.0, 2.0 

Mining/Pool 

Threats 

Selfish Mining/Block-discard Attack Miners or Mining pools Blockchain 1.0, 2.0 

Block-Withholding Attack (BWH) Miners or Mining pools Blockchain 1.0, 2.0 

Fork-After-withhold Attack (FAW) Miners or Mining pools Blockchain 1.0, 2.0 

Bribery Attack Miners or Mining pools Blockchain 1.0, 2.0 

Pool Hopping Attack Miners or Mining pools Blockchain 1.0, 2.0 

Wallet  

Threats 

Vulnerable signature Users and merchant’s wallets Blockchain 1.0, 2.0 

Lack of control in address creation Sellers or Merchants Blockchain 1.0, 2.0 

Collison & Pre-Image Attack Users and Merchants wallets Blockchain 1.0, 2.0 

Flawed key generation Users and Merchants wallets Blockchain 1.0, 2.0 

Bugs & Malware Users and Merchants wallets Blockchain 1.0, 2.0 

Network  

Threats 

DDoS Attack Network, miners, pools, users, 

exchange, businesses 

Blockchain 1.0, 2.0 

Transaction Malleability Attack Exchanges Blockchain 1.0, 2.0 

Timejacking Attack Miners Blockchain 1.0, 2.0 

Partition Routing Attack Miners, users, pools Blockchain 1.0, 2.0 

Delay Routing Attack Miners, users, pools Blockchain 1.0, 2.0 

Sybil Attack Network, miners, pools, users Blockchain 1.0, 2.0 

Eclipse Attack Miners, users Blockchain 1.0, 2.0 

Refund Attack Exchanges, users, sellers Blockchain 1.0, 2.0 

Balance Attack Users, miners Blockchain 1.0, 2.0 

Punitive and Feather forking Attack Users Blockchain 1.0, 2.0 

Smart 

Contracts 

Threats 

Vulnerabilities in contracts code Contracts owner, businesses Blockchain 2.0 

Vulnerabilities in EVM Bytecode Contracts owner, businesses Blockchain 2.0 

Vulnerabilities in Blockchain Users, contracts owner, businesses Blockchain 2.0 

Eclipse Attack on Smart contract  Miners, users Blockchain 2.0 

Low-level attacks Network, miners, pools, users, 

exchange, businesses 

Blockchain 2.0 

 



122 
 

Summary  

 In this chapter, the author explained the data collected for the systematic survey about the 

security aspect of the blockchain. It also included the technical challenges and advancements. 

Analyzed the security threats and attack vectors for each security threats, and how adversaries 

can use these existing vulnerabilities and launch various types of the attacks. Each of the attack 

is discussed in detail by examining the popular blockchain platforms and provided the attack 

scenario and possible countermeasures. Based on data analyzed the author formed taxonomies 

and classified the security threats and attacks in term of affected abstract layers, processes and 

business users involved in the blockchain platforms. 
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Chapter V: Results, Conclusion, and Recommendations  

 This chapter concludes this study. It also suggests the lessons learned, future research 

directions and conclusion of the work. 

Results 

One of the major contribution of blockchain is the degree of transparency and 

decentralization that it provides along with the adequate level of security and privacy, which 

previously considered impossible. However, Blockchain is still some evolving technologies and 

besides many interesting security and privacy features, there are still huge security and privacy 

concerns available in the Blockchain ecosystem. Based on the comprehensive survey on the 

security aspect of the Blockchain, there are security threats existing due to the available 

vulnerabilities in the Blockchain. Besides, the security threats that lead to double-spending 

attacks, there are security threats to Blockchain network, blockchain miner or mining pools, 

private key security threats and smart contracts. The study also analyzed based on the nature of 

each vulnerabilities discussed in this study, and classified the security threats to different fields 

of the blockchain. 

Future Research Directions  

Consensus mechanism. As most of the popular public Blockchain such as Bitcoin, 

Ethereum and others used proof-of-work (PoW) based consensus algorithm to protect the user’s 

actions. Proof-of-work also provide a practical solution for the Byzantine Generals problem and 

achieve distributed consensus. However, PoW based blockchain expose itself to a number of 

security threats. The main threat is double-spending which is almost always possible in Bitcoin. 

Another major disadvantage of PoW based blockchain is the waste of computer resources. To 
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solve this problem some blockchain such as Ethereum plan to use the hybrid consensus 

mechanism of PoW and PoS. But as Bitcoin is still dominate blockchain and PoW always 

requires huge wastage of resources both electricity and computer resources. Thus, providing 

more robust, secure and easily scalability consensus algorithms are a possible research direction. 

• One the major contribution of blockchain like Bitcoin is the degree of transparency 

and decentralization, which was previously considered impossible.  

Mining pool protocols. The original concept of mining, which could be based on Proof 

of Work, Proof of Stack, Proof of Burns or some other scheme, not only secures the blockchain 

but it also provides distributed consensus. Without mining schemes, the fake identities would be 

able to easily disturb the consensus process and ruined the normal functions of systems by a 

Sybil attack. However, the rapidly increasing mining pools threatens the decentralized of some 

of the blockchain like Bitcoin.  

Game theory and stability. Since most the blockchain functions depends on the miner 

and miners can behave selfishly by holding on to their blocks and releasing it whenever they 

want. This kind of selfish behavior may pose a game theoretic problem between the selfish 

miners and the honest miners in the network. The selfish miners or attacker may try to contribute 

to an increase of their chain length compared to honest chain miners in the network, and 

eventually launch different types of attacks including double-spending. Thus, achieving 

equilibrium to bring stability in the network is a possible research direction. 

Cryptographic and keying techniques. The current Simplified Payment Verification 

(SPV) protocol which is a lightweight protocol used for the verification of the transactions send 

from the user, is often vulnerable to attacks like Sybil or double-spending. A more robust 
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verification protocol is required. For the key manipulations and calculations, a distributed 

approach is always preferred more than the centralized one. Thus, in this direction, innovative 

means of key computation and storage of the Blockchain is a possible research direction. Also, 

was discussed Bitcoin highly rely on ECDSA algorithm and it has poor randomness property and 

hash functions like SHA-256, creates another research direction. 

Improving blockchain protocol. Despite blockchain potential, it still faces significant 

concerns in term of privacy and scalability. The immutable nature of the blockchain makes it 

impractical for many other applications. Recently, the research called “Redactable Blockchain” 

(Ateniese, Magri, Venturi, & Andrade, 2016) present modification in blockchain techniques that 

allows operations such as re-writing one or more blocks, compressing any number of blocks into 

a smaller one. 

Fastness. Bitcoin PoW is designed to validate a new block on average within 10 minutes, 

and it is recommended to wait for six confirmations before accepting a transaction, which makes 

it impractical for many real-word application such as a point of sale payments. Fasting mining 

with the same robustness is a future requirement.  

Blockchain data. The blockchain will produce a lot of data, including block information, 

transaction data, contract bytecode, etc. However, not all of the data in the blockchain is valid. 

For instance, a smart contract can delete its code by SUICIDE or SELFDESTRUCT, but the 

address of the contract will not be erased. Moreover, there are a lot of smart contracts containing 

no code or totally the same code (redundant), or some smart contracts are never being executed 

after its deployment. Thus, an efficient data cleanup and detection mechanism is desired to 

improve the execution efficiency of the blockchain systems. 
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No practical defense for attacks. Throughout our comprehensive and systematic survey, 

we provided the reported defense mechanism or countermeasures of each of the attack discussed 

in the study. However, some of the attack such as Fork after Withholding (FAW) (Kwon et al., 

2017) attack, and Punitive and Feather forking attacks (Narayanan, 2017) remains open 

challenges. 

Conclusion  

 This study focuses on the security issues of the blockchain technology. By studying the 

different fields of the blockchain such as consensus mechanisms, blockchain network, mining 

process, data storage and key management, and smart contracts functionality, the study reviewed 

all the existing vulnerabilities in this area. Additionally, based on the understanding from the 

survey the study classified the security threats in two various domains. 
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