
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

8-2018

Cloudarmor: Supporting Reputation-Based Trust
Management for Cloud Services
Unmesha Punyamurthula
St. Cloud State University, upunyamurthula@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Punyamurthula, Unmesha, "Cloudarmor: Supporting Reputation-Based Trust Management for Cloud Services" (2018). Culminating
Projects in Information Assurance. 67.
https://repository.stcloudstate.edu/msia_etds/67

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/67?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Cloudarmor: Supporting Reputation-Based Trust Management for Cloud Services

by

Unmesha Punyamurthula

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

August, 2018

Starred Paper Committee:

Susantha Herath, Chairperson

Lynn Collen

Balasubramanian Kasi

2

Abstract

Cloud services have become predominant in the current technological era. For the rich set of

features provided by cloud services, consumers want to access the services while protecting their

privacy. In this kind of environment, protection of cloud services will become a significant

problem. So, research has started for a system, which lets the users access cloud services without

losing the privacy of their data. Trust management and identity model makes sense in this case.

The identity model maintains the authentication and authorization of the components involved in

the system and trust-based model provides us with a dynamic way of identifying issues and

attacks with the system and take appropriate actions. Further, a trust management-based system

provides us with a new set of challenges such as reputation-based attacks, availability of

components, and misleading trust feedbacks. Collusion attacks and Sybil attacks form a

significant part of these challenges. This paper aims to solve the above problems in a trust

management-based model by introducing a credibility model on top of a new trust management

model, which addresses these use-cases, and also provides reliability and availability.

3

Table of Contents

 Page

List of Figures ..5

Chapter

I. Introduction ..6

Problem Statement ...6

Nature and Significance of the Problem ..7

The Objective of the Study ..13

II. Background and Review of Literature ...15

Introduction ..15

Definitions of Terms ..16

Background Related to the Problem ..26

“Did I”—Verifiability ..37

“Should I”—Verifiability ...42

Literature Related to the Problem ..48

III. Methodology ..53

Introduction ..53

Design of the Study ..53

Data Collection ..55

Tools and Techniques ...59

Hardware and Software Environment ..60

IV. Implementation ..61

4

Chapter Page

Introduction ..61

System Design ...61

System Testing ...66

V. Conclusion ...78

References ..80

Appendices

A. CodeBase ...84

B. Screen Shots ...100

5

List of Figures

Figure Page

1. Cloud Service Consumer Architecture ...16

2. Trust Management Techniques ..22

3. Conceptual Architecture...35

4. Taking Snapshots of the Resource Consumption Vector Before/After a

 Context Switch ...41

5. Prescriptive “Should I” Verifiability ..42

6. Demonstration of Sybil Attack...49

7. Data Flow Diagram ..62

8. Use Case Diagram..64

9. Class Diagram ..65

10. Sequence Diagram ...65

11. Activity Diagram ...66

12. Cloud Testing Technique Types ...68

13. Comparison Between Different Testing Techniques ..74

6

Chapter I: Introduction

This paper mainly deals with the way consumers interact with cloud service providers.

Security is one of the most significant concerns in a cloud environment based on the set of

features they provide, some of them are as follows:

1. Highly dynamic and distributed in nature.

2. They are loosely coupled systems and most of the time do not need to maintain any

state.

3. These services are highly competitive with the set of features they provide to

consumers (so there is much selection for the consumers).

For the rich set of features provided by cloud services, consumers want to access the

services while also protecting their privacy. In this kind of environment, cloud services

protection will become a significant problem because of various attacks in the cloud networks.

So, a system which lets the users access cloud services (without losing the privacy of data) with a

trust and identity model is needed, so that communication and cloud services are protected.

Problem Statement

Based on the multiple features and services cloud servers are providing on a day-to-day

basis and the increase in demand for such services in the recent few years, there has been

cutthroat competition in the similarity of the services which multiple cloud providers are

providing.

With most of the features and services from the competitors being alike, consumers have

preferred the cloud service providers who are offering better security standards.

 Some of the main concerns in this model are as follows:

7

1. Protecting consumers’ privacy in such a distributed environment, without

compromising on the set of services they can access.

2. Protecting cloud services from malicious users using security policies and comparing

them based on the valid set of features they provide.

3. Providing the above mentioned by providing a trust management service and working

on the availability of such services and networks.

So, regarding offering trust-based security for the consumers to access cloud services, the

three significant sub-problems that need to be solved are:

1. Consumers’ Privacy Protection

2. Cloud Services Protection

3. Trust Management Services Availability

Nature and Significance of the Problem

 To further understand the impact of these problems in the current world, let us consider

the use-cases from the cloud services and networks.

1. When consumers are accessing a cloud service, it is very critical that their privacy be

protected. There can be multiple points of communication failure, which will give

attackers confidential information about the consumer. Also, several kinds of attacks

can be designed once the attackers can understand the type of services that consumers

are accessing; the set of features they are interested in these services; the number of

times consumers are spending accessing these services, and the type of access

consumers are using. Once the attacker is aware of any of these details they will be

8

able to construct attacks such as a Sybil attack, which will restrict users’ accessibility

of services.

2. Service protection is something that should be included in the design of the service

by the provider rather than an additional work that needs to be done after the

completion of the service. Cloud services are attacked very often to compromise their

availability or to leverage weak points which can be exploited for long-term system

abuse. Also, once a service architecture and the loopholes in it are misused, there are

attacks like collusion attacks that can be launched, which will severely compromise

the availability of the service.

Cloud computing attempts to provide near infinite computing resources on-demand due

to its high scalability. It eliminates the needs for consumers to plan far ahead for the hardware

provisioning part of it. Many large companies, which operate in the cloud domain, are

accelerating their pace in developing cloud computing systems and enhancing its services,

thereby increasing their potential consumer base.

As cloud computing refers to not only software being delivered as service but also the

virtual hardware that provides those services and based on the research presented, security and

privacy complaints offered by the organizations that provide these are not sufficient and are

becoming a bottleneck for the user to adapt to the cloud computing environments. Consequently,

concerns about security issues, for example, accessibility, secrecy, information trustworthiness,

control, and review ought to be considered.

On-demand cloud services are software applications that are running in the cloud

computing infrastructure. Cloud computing allows providers to develop, deploy, and run

9

applications that can quickly scale, perform better than average running speeds, and rarely fail,

without any concerns about the infrastructure they are running on.

 Cloud computing systems can achieve the following goals:

1. Availability: Availability refers to making the cloud computing systems (including

applications and its infrastructure) usable anytime and anyplace irrespective of the

consequences. Since the cloud computing systems are based on the web, the services

should be accessible anywhere from the Internet (if possible only with a thin client).

It should hold for all cloud computing services such as Software as a Service,

Platform as a Service, Infrastructure as a Service and even Database as a Service.

Since the services are available across the Internet and there is no specific time in

which these services are available. They should be possible to any number of on-

demand users at any time to make sure of the availability of the infrastructure and the

software hosted on it. There can be two strategies that are used; they are hardening

and redundancy.

2. Confidentiality: This refers to maintaining the users’ privacy when they are using the

services hosted in the cloud systems. Isolation of the cluster within the cloud domain

or application of encryption algorithms (cryptographic algorithms) are the standard

approaches extensively used by the cloud computing vendors.

3. Data integrity: Given the three main security challenges for cloud (multi-tenancy,

divided responsibility, and dynamic environment) – one specific customer concern

can be data protection, including access control, encryption, integrity and origin

verification of the data. In cloud environments, the amount of data at rest, in transfer

10

and use is considerably more substantial than in traditional networks (Ericsson White

Paper, 2015).

Data protection requires support from the other security functional groups in the different

phases of the data lifecycle management. Data protection takes care of secure data lifecycle

management in the multi-tenant environment. It covers confidentiality, integrity and the

availability of data at rest, in transfer and use (Ericsson, 2015)

Security monitoring and analytic functions play an essential role in data protection.

Security-related events are collected from networks and nodes and correlated against indicators

of compromise together with the system data. These functions provide both live security status

(reactive response) and information on past security events, making it possible to respond to

threats even before a new incident occurs (predictive response). On the other hand, when

incidents occur, data provided by the security analytics shortens the time consumed in

investigations and forensics (Ericsson, 2015).

Data in transit requires traffic separation, protection, filtering, and integrity protection

that belong to the network and infrastructure protection controls. Infrastructure trustworthiness

assurance and secure disengagement are based on equipment established trust and secure

bootstrapping systems (Ericsson, 2015).

Let us consider the need for a user to ensure the integrity of this data at all times. Data

integrity in a cloud context is paramount in building enough trust for a user to put data in

the hands of a cloud provider. Unfortunately, data integrity often does not receive as

much attention as data encryption. (Ericsson, 2015, p. 7)

11

Integrity can guarantee the consistency of fundamental information, regardless of

whether it is framework information or application information.

Most security-cognizant clients need affirmation of any of the more significant part of the

accompanying:

• Time: When the information was created or ensured.

• Integrity: Assurance that information has not been transformed from its original

frame.

• Origin check: The personality of the information maker, which can be particularly

applicable amid legal sciences examinations, in encouraging crime scene

investigation auditing, or for legitimate and authoritative reasons for existing is

guaranteed.

These properties can be achieved using, for example, symmetric cryptography, Public

Key Infrastructure (PKI), or Keyless Signing Infrastructure (KSI) (Friedman, Resnick, & Sami,

2007). These techniques can be used separately or can complement each other, and the selection

of technology should be based on the use case and user requirements. PKI-based signing

technology utilizes public-private vital pairs, while KSI technology utilizes data hashes and hash

trees for generating and publishing a root hash for the data to be integrity protected (Ericsson,

2015). Integrity verification is done using signature tokens that enable verification of data

relative to the previously published root.

Which technology to select for data integrity protection can be based, for instance, on the

following aspects:

• The period of need for integrity protection (short-term versus long-term).

12

• The type of time information needed;

• The number of data items that need to be protected;

• The level to which the origin needs to be verifiable;

• Other organizational policies that, for example, mandate the use of specific

cryptography.

Symmetric cryptography and KSI have benefits in the cloud or meaningful data contexts

regarding efficiency. In KSI, integrity does not rely on a single key that could be breached: no

key is needed to verify if data matches the root hash. Security management is also facilitated in

KSI since there is no need for revocation. By combining data integrity and data encryption

technologies with other security orchestration and management tools, unique use cases could be

demonstrated including near real-time data integrity monitoring. Telecommunications cloud

providers would be able to transparently demonstrate that cloud tenants own and control their

data at all times (Ericsson, 2015)

 Maintaining data integrity is a fundamental task when providing cloud services, if data

gets modified by unauthorized entities, then it will lead to catastrophes for both the vendors and

the customers in the cloud domain.

• Control: This means to monitor and regulate the use of services by the customers

within the cloud domain.

• Audit: This is the in-depth monitoring of what is happening in the cloud system,

related to both providing services and using services. Auditability refers to capturing

evidence to provide information on the activities that occurred when a cloud service

is running in the domain. This itself will be provided as a service so that the

13

underlying service providers can leverage this (much like a platform feature) and will

give a sense of what happened in the systems and help administrators take appropriate

actions based on the results.

Though there are many ways in which the problems above can be solved, one of the

solutions is to have a trust-based management service, which has a feedback loop for

maintaining the trust between the consumers and the providers so that that cloud services can be

secured. Though a trust-based management service will solve the problems, if there is just a

single service doing all of this for the entire cloud network, then it will be a single point of

failure if attackers can exploit such a service with multiple attacks (for example a Sybil or

collision attack).

The Objective of the Study

One of the primary objectives of this study is to provide methodologies and solutions to

the problems as mentioned earlier. There are multiple interweaving solutions to these individual

problems, but there are no better approaches to solve these problems together along with

providing availability than the trust-based management approach. The primary objective,

therefore, is to improvise on the solutions so that they can be combined and applied to a cloud

architecture so that these security concerns can be resolved.

As stated earlier, this paper mainly concentrates on the three problems relating to

accessing of cloud services, they are:

• Consumer Privacy Protection

• Cloud Services Protection

• Trust Management Services Availability

14

Since this paper solely focused on the issues stated, everything that is falling out of

context regarding network or service is out of context for this paper and is assumed as a stable

system.

Some of the things that are not covered by the working of the network, or answering

theoretical questions are as follows:

1. There are no node level issues that are happening or all the nodes in the system are

stable, and no malicious programs can arise from the stable systems.

2. Networks and services are not going down with the normal functioning of the

systems, and networks and function are considered stable unless they are under

attack.

15

Chapter II: Background and Review of Literature

Introduction

A typical solution to the security of the cloud network which provides services and

contains consumers which access these services is a Trust Management Service (TMS) that

manages the trust between various providers and services.

This kind of architecture contains various components such as:

• Cloud service provider layer

• Consumer layer

• Service advertisement through the Internet

• Service discovery through the Internet, and

• Interactions among all of these components

One illustration of such a system is shown in Figure 1.

16

Figure 1. Cloud Service Consumer Architecture

Definitions of Terms

 Cloud Service Provider. A Cloud Service Provider is an organization that offers some

part of cloud computing ordinarily Infrastructure as a Service (IaaS), Software as a Service

(SaaS) or Platform as a Service (PaaS) to different organizations or people. Cloud suppliers are

now and then termed to as cloud specialist co-ops or CSPs.

17

 Cloud Service Consumer. A Cloud service consumer is a short runtime part accepted by

a software program when it gets to a cloud benefit gave by any Cloud Service Provider. Regular

sorts of cloud benefit consumers can incorporate programming projects and services able to do

remotely getting to cloud services with distributed service contracts, and workstations or PCs.

Mobile devices running software capable of remotely accessing other IT resources positioned as

cloud services or even thin clients running on any piece of hardware that can upload or download

data can also be a cloud service consumer.

Cloud Service Interaction. A service interaction involves communication between the

cloud service provider and consumer. A typical interaction is to use services provided by the

cloud service provider. The consumer can be in different layers or even a hierarchical manner,

where one consumer can get results from another consumer, and once the top of the tree is

reached, the first consumer will interact with the service.

 Cloud Service Advertisement. Advertising in very generic terms is a means of

communication with the users of a product or service. Advertisements are messages paid for by

the people who send them and are proposed to exhort or impact people who get them. Cloud

Service Advertisement refers to advertising of cloud services as products to the consumers, so

that consumers can discover the services.

 Cloud Service Discovery. Cloud Service discovery refers to the process of discovering

cloud services that are advertised by the providers of cloud services.

This is different from standard web service discovery as Web services use WSDL (Web

Services Description Language) or USDL (Unified Service Description Language) to expose

their interfaces and use UDDI (Universal Description, Discovery, and Integration) to publish

18

their services to service registries for discovery, and there is no standard description for cloud

services. For solving this, there is a cloud description ontology model that helps us in the cloud

discovery process as described by (Karlof & Wagner, 2003).

 Internet. The Internet, in some cases called basically “the Net” is an overall arrangement

of PC organizes, a system of systems in which clients at any one PC can (in the event that they

have authorization and the computer is connected to the network) get information from any other

computer connected to “the Net.” Also, it can be used to talk directly to users at other

computers, when all such interacting computers are within a network which is connected to the

Internet (Course Hero, n.d.).

 Trust Management Service. A Trust Management Service (TMS) provides the interface

layer between cloud service consumers and cloud service providers for effective trust

management. In particular, the trust management service spans across a distributed network with

a sufficient number of nodes that expose the service interfaces, so that the consumer can give

their feedback without worrying about a single endpoint to call and avoid a Single Point of

Failure (SPOF). The providers can use or inquire about the trust results, and the providers can

use this feedback and discuss on the path forward.

Also, as stated in Lai, Feldman, Stoica, and Chuang (2003), in distributed environments

that have a reputation-based trust management framework, the service can enable features which

allow one party to evaluate the trust of another party based on the feedback that another party has

received during its previous interactions with some other parties. The reputation of another party

can determine whether or not it meets a minimum trust threshold for future interactions. For

example, many participants in online file sharing systems can decide whether or not to share files

19

between various servers within the network or to trust a particular file server or not for

downloading the files from it. Over the past few years, many reputation-based trust management

systems have emerged for applications ranging from e-commerce to Web service selection.

 Previous works on reputation systems have explored the performance, efficiency and the

strength of various reputation scoring functions as well as algorithms for reputation management

in decentralized environments. However, not much attention has been given to supporting the

processing of feedback from multiple entities while also supporting the use of various reputation

scoring capacities by various substances over similar feedback information. Such flexibility,

variability and not fixing to a single scoring function or algorithm in choosing reputation scoring

functions is thought to be desirable in an infrastructure-centric environment where many cloud

service providers are hosting many services with different requirements for trust.

 Because of an infrastructure hosting many different services by multiple Cloud Service

Providers, each provider might have different reputation-based requirements, implementations

and the metrics that the provider would like to collect. For example, consider an infrastructure is

hosting many different services. Moreover, in turn, this can differ based on the clients, who are

consuming the service. Each service provider may want to apply requirements, implementations,

and metrics based on the service and client pair and these, in turn, need scalability. Given these

aspects, the system can have infrastructure-centric environments, where distributed networks are

not entirely treated as decentralized networks, rather reputation-based trust management is

offered at the infrastructure level, which gets replicated across the network in all of the nodes.

 A new Trust Management Framework is designed and implemented to take into account

the factors of trust and reputation of cloud service consumers who were interacting with the

20

cloud services. These trust factors are stored, analyzed and used in forming new interactions for

those clients with the services. The trust management framework stores feedback on previous

service interactions with clients and allow services are computing their own customized

reputation scoring functions over the feedback collected.

 Specifically, the following features are desired for the new version of Trust Management

Service:

1. Support for multiple trusts and reputation evaluation methodologies: As discussed

previously, different services might apply different trust evaluation methods,

concerning the scoring functions with the same trust and feedback-based data. So, a

trust management service that supports numerous notoriety scoring capacities over a

similar trust-related input shared from different administrations is created. Trust

Evaluation Caching: Caching is a concept where something which is retrieved from

an external source is kept locally, to not query the external source repeatedly within

the prescribed query time, or until the data on the external source is changed. It

reduces communication overhead in the trust management framework and further

reduces the network load in such a framework. Cache techniques like Bloom

histograms, CacheMere, MemCache were developed and tested for trust evaluation

results; these have shown to provide significant performance improvement over a

theoretical Trust Management framework.

2. SDK (Software Development Kit) for application developers: The SDK toolkit will

provide access to the underlying data stores in the Trust Management Framework

where the reputation data is stored, and various analyzing techniques were

21

implemented. The trust management service frees application developers from

writing their trust management software components.

3. Service implementation, deployment, and evaluation: The new trust management

service has been implemented and deployed in both Local Area Networks (LANs)

and Wide Area Network(WANs) and other distributed environments comprising

several nodes with a realistic service-oriented architecture application scenario.

Trust Interaction. Trust interaction refers to interaction with the trust management

service to either submit feedback or get feedback on particular entities within the network. In a

typical interaction of the reputation-based TMS, a user either gives feedback regarding the factor

of trust in a particular cloud service or requests the trust assessment of the service. Trust

management is an approach to deal with survey and build up trusted connections. A few

methodologies have been proposed for overseeing and getting to the trust score given alternate

points of view.

 Two different perspectives in the new Trust Management Framework, namely: (a)

Service Provider Perspective (SPP) (b) Service Requester Perspective (SRP).

In the Service Provider Perspective, the service provider is the primary driver of the trust

management system where the trust factor of the service consumer is assessed. On the other

hand, in the Service Requester Perspective, the service requester assesses the trust factor of the

service provider.

 Trust Management Techniques. Different trust management techniques have been

reported in the literature, which can be classified into four different categories: (a) policy, (b)

recommendation, (c) reputation, and (d) prediction (Vyshnavi & Yadav, 2016).

22

To ease the discussion, clarification of these trust administration systems utilizing the

service requester point of view (i.e., the cloud service consumers' viewpoint) is required. Similar

systems can be connected to the next point of view (i.e., cloud service providers’ viewpoint).

Cloud service consumers and suppliers identify with lines speaking to trusted relations between

them.

Figure 2 depicts the four trust management techniques. Cloud service consumers and

providers relate to lines representing trusted relations between them.

Figure 2. Trust Management Techniques (Noor, Sheng, Yao, Dustdar, & Ngu, 2015)

23

Policy as a trust management technique. One of the most straightforward ways in which

a trust among the parties can be established in a cloud environment (Molka, Boukadi, & Ben-

Abdallah, 2015), a peer-to-peer system or a grid is policy-based trust management. This

technique has a set of policies, with a definite trust score configured for each policy and each

policy controls the level of authorization. This type of configuration of Trust Score and

Authorization Level is called a role. Each consumer who would like to access the cloud service

has to assume this role to access the service.

The trust scores are set based on various approaches that are based on the past trust

results, which are calculated when consumers are using the cloud service, or the set of

permissions that users invoke for interactions. One of the approaches that can be used is the

auditing which is captured during the interactions. Monitoring this audit data and setting

definitive thresholds will define if a particular policy is met or not and the consumer can assume

a what role. Another approach can include the amount of credibility given by the peers when

they are interacting or the feedback mechanism which is collected from time to time based on the

performance of nodes in the network.

The trust score threshold can be considered as a service plan (i.e., where the service level

agreement is specified) and penalties can be assigned to the cloud service organization if there is

a service level infringement in the provisioned cloud services. Violation by a cloud service

provider is just an example; the same can apply to the consumer of the service, as well as the

nodes in between. Further, this trust score threshold-based service agreement can apply to the

trust management service node itself. The violations in the service agreement can be tracked with

24

strict causes, thereby having a tracker on the number of violations and also be aware of the

causes of each of those violations.

Also, as mentioned, real-time credibility can also be input in defining the trust score

threshold. It can be measured by multiple factors such as the response to the security pings from

the node, response time, total availability time of the node, and so on. Some of these are

qualitative measurements, while others are quantitative as well. The feedback validity can be

estimated utilizing a few factors, for example, the cloud service customers’ experience including

the nature of the input which differs from one person to another. Many researchers identify two

features of credibility including trustworthiness and expertise (Balachandran & Sanyal, 2012).

Regarding the approach based on the permissions of the nodes when interacting with other

nodes, there can be a single sign-on (SSO) approach where the credentials disclosure and

authentication happen once and afterward the cloud service consumer have an access approval

for a few cloud services. Alternatively, the state machine approach can be used where the

credentials disclosure and authentication happen once, and after that, the cloud service

consumers have an access endorsement for a few cloud administrations. Credentials can be

distributed based on various approaches such as sharing a secret private key or having a

credential pair of a public key and private key. In each of these approaches, there are multiple

protocols and methodologies present to distribute each key based approach. One such approach

is based on certificates, where a central third party is present, and it distributes the certificates,

and each entity that is under the interactions should regularly be in sync with the certificate

provider so that their interactions with the service are uninterrupted.

25

 Recommendation as a trust management technique. The other approach for trust

management is to have a recommendation as a trust management technique (RecT) in the context

of Internet dominated by service-oriented environments. The view of RecT comes from the

social norms of everyday life, where a particular party knows the source of trusted feedback.

This is much like everyday examples like a friend referring another friend to a restaurant that is

better for their group, or referral to another brand which they use. Also, with recommendations,

users can proudly display the recommendation given in their metadata information, which will

allow the Trust Management Framework to make a better decision.

 Recommendations can appear in different forms such as the direct recommendation or

transitive recommendation. A direct recommendation happens when a cloud service consumer

recommended a particular cloud service to their well-established and trusted relations or friends.

A transitive proposal happens, then again, when a cloud service consumer believes a specific

cloud benefit because of no less than one of their trusted relations trusts in the service. One

interesting thing with transitive recommendations is that each transitive recommendation can be

weighted based on the consumer it is coming from and also the path length from the consumer

taking the decision to the consumer who recommended it directly. So, this becomes more like a

graph problem with weighted edges.

Reputation as a trust management technique. Reputation as a trust management

technique (RepT) is essential because the feedback of the various cloud service consumers can

dramatically influence the reputation of a particular cloud service either positively or negatively.

It is like direct customer reviews on the product or service, given directly by the end users.

26

However, one specific problem with this kind of reputation-based approach is that some reviews

cannot be verified.

A simple example of this use case is checking the rating of movies online unless the

viewers of the movie have been verified, it cannot be taken accurately as a right of reputation.

Another example in which this has been resolved in a reputation-based system is browsing

through e-commerce pages with customer comments on items, which they have bought (an

example is a “verified purchase” on amazon.com) can have a direct or indirect influence on the

trustworthiness of a particular entity.

Prediction as a trust management technique. Prediction as a Trust Management

Technique (PrdT). Prediction as a trust management strategy is extremely valuable, mainly when

there is no earlier data concerning the cloud services’ connections (e.g., past collaborations or

history records). PrdT has been proposed in both the cloud environment and the service-oriented

environment. The essential thought behind PrdT is that comparable disapproved entities, for

example, cloud service consumers will probably trust each other.

Background Related to the Problem

 Security has been and will remain one of the significant concerns of cloud services. Till

all the security aspects of cloud computing have proper methodologies to deal with all of the

security concerns, it will remain a significant bottleneck for the advancement regarding both

development and adoption.

Data service outsourcing security. As companies and individuals produced and will

continue to produce more and more data that has to be stored and later utilized to make the

analysis. Rather than relying on the storage, they have on-site, they are driven to use cloud

27

computing resources for storing and utilizing their data due to its on-demand service and also

active regarding pricing and durability. However, once clients never again physically have their

information, its privacy and integrity can be insecure.

For the previous concern, information encryption before outsourcing is the least

complicated approach to ensure information protection and spontaneous battle access in the

cloud and beyond. In any case, encryption additionally makes sending general information usage

services, for example, a plaintext keyword search over printed information or question over

databases a troublesome task. The small arrangement of downloading every one of the

information and unscrambling it within is illogical, because of the enormous data transmission

cost coming about because of cloud-scale frameworks. Besides, besides terminating local storage

management, putting away information in the cloud fills no need unless individuals can

undoubtedly seek and use that information.

This issue on the best way to look encoded information has as of late picked up

considerably and prompted the improvement of available encryption procedures. At a higher

degree, an available encryption conspire utilizes a prebuilt encrypted seek file that lets clients

with suitable tokens safely look through the encrypted information employing watchwords

without first decrypting it. However, thinking about the conceivably vast number of on-request

information clients and the broad measure of outsourced information documents in the cloud,

this issue is still especially tricky because gathering performance, system usability, and

scalability requirements are challenging. In this specific situation, various intriguing yet difficult

issues remain, including the similitude of searches over encoded information, and the protected

28

positioned look over scrambled information, secure multi-keyword semantic search, secure range

query, and even secure search over non-textual data such as graphical or numerical data.

Another urgent issue that emerges while outsourcing information to the cloud is ensuring

information uprightness and long-haul storage correctness. Even though outsourcing data to the

cloud is financially engaging for a long haul, largescale capacity, it does not promptly ensure

data integrity and accessibility. This issue, if not appropriately tended to, can block the successful

organization of a cloud architecture. Given that users no longer locally possess their data, they

cannot utilize traditional cryptographic primitives to protect its integrity. Such natives more often

than not require a nearby duplicate of the information for trustworthiness confirmation, which

isn’t reasonable when storage is outsourced. Besides, the substantial measure of cloud

information and the clients’ obliged computing abilities make data integrity inspecting in a cloud

domain costly and imposing. Thus, empowering a brought together capacity inspecting design is

vital for this developing cloud economy to wind up completely settled, and clients will require

approaches to survey risks and pick up trust in the cloud.

 From framework ease of use perspective, such a plan ought to cause extremely restricted

examining overhead as far as calculation and transfer speed and besides join cloud information’s

dynamic highlights and safeguard clients privacy when a specialized third-party auditor is

introduced. Above capacity accuracy, other security issues emerge identified with distributed

storage administrations. One critical security idea is verification of proprietorship. This system

plans to keep the introduction of client information by employing side channels that outcome

from cross-client de-duplication, which is broadly used to spare the space and data transmission

CSPs require. Other testing security issues incorporate guaranteed information deletion and

29

remote appraisal of adaptation to internal failure, that is the remote identification of hard-drive

failure vulnerabilities in the cloud challenging security problems include assured data deletion

and remote assessment of fault tolerance, that is the remote detection of hard-drive failure

vulnerabilities in the cloud.

Computation outsourcing security. Another major administration empowered inside the

cloud worldview is computation outsourcing. By outsourcing workloads to the cloud, clients’

computational power is never again restricted by their asset compelled devices. Instead, they can

enjoy the cloud is near unlimited computing resources in a pay-per-use manner without

committing any substantial capital outlays.

 However, current outsourcing practices operate in plaintext, that is it reveals both data

and computation results to the commercial public cloud. It can raise significant security

concerns, mainly when the outsourced computation workloads contain sensitive information,

such as a business’s financial records, proprietary research data, or even protected health

information. Moreover, the cloud’s operational points of interest are not sufficiently

straightforward to clients. Therefore, different inspirations can make the cloud carry on

unfaithfully and return inaccurate outcomes. These range from possible software bugs, hardware

failures, or even outsider attacks to cloud servers deliberately being “lazy” to save computational

costs. Consequently, we are in high need of secure calculation outsourcing systems to both

ensure delicate workload data and guarantee that the calculation comes about came back from

the cloud are right. This undertaking is troublesome, be that as it may, because of a few

difficulties that the instrument configuration must meet all the while. Of, to begin with, such a

system must be achievable as far as multifaceted computational nature. Something else, either

30

the clients’ cost can turn out to be restrictively vast, or the cloud will not have the capacity to

finish the outsourced calculations in a sensible measure of time. Second, it must provide sound

security guarantees without restricting system assumptions. Namely, it should strike a right

balance between security guarantees and practical performance. Third, this system must

empower generous computational reserve funds at the client side contrasted with the measure of

exertion required to tackle an issue locally. Otherwise, users have no reason to outsource their

computation to the cloud.

 A current achievement in fully homomorphic encryption (FHE) has demonstrated the far-

reaching consequences of secure calculation outsourcing to be suitable in theory. In any case,

applying this general framework to conventional figuring assignments is still a long way from

down to earth because of FHE activities' having a to a significant degree high many-sided

quality, which can't yet be taken care of practically speaking n an alternate front, researchers are

dealing with instruments for particular calculation outsourcing issues. On the other front,

researchers are taking a shot at components for calculation outsourcing issues, for example,

direct programming utilizing issue change, genomic calculation utilizing figuring portions, and

viable. For example, linear programming utilizing issue change, genomic calculation utilizing

specific calculation allotments, and productive confirmation of vast scale biometric calculations,

all of which ought to provide much more practical effect than the more general solutions

currently available.

 Access control. In numerous application situations, for example, those in enterprises or

organizations, clients’ entrance to information is typically specific and profoundly separated.

Various clients appreciate unique access benefits concerning the information. At the point when

31

information is outsourced to the cloud, upholding secure, proficient, and dependable information

access among countless users is crucial.

Customarily, to control the scattering of private information, clients set up a trusted

server to store information locally free, and afterward control that server to check in the case of

asking for clients have legitimate confirmation before giving them a chance to get to the

information. From a security point of view, this access control engineering is not any more

appropriate when information is outsourced to the cloud have proper certification before letting

them access the data. From a security standpoint, this access control architecture is no longer

applicable when data is outsourced to the cloud. Since information clients and cloud servers are

not in the same put stock in the area, the server may never again be trusted entirely as an

omniscient reference screen for characterizing and implementing access control policies and

managing user details. In the event of either the server being compromised or a potential insider

attack, users’ private data might be exposed.

 One conceivable way to deal with implement information access without depending on

cloud servers could be to scramble information distinctly and reveal the relating decoding keys

just to approved clients. This approach usually suffers from severe performance issues, however,

and does not scale well mainly when a possibly vast number of on-request clients want fine-

grained information to get to control. Researchers have been chipping away at how to understand

a fine-grained get to control outline that ultimately uses the cloud’s calculation asset abundance.

Via this approach, data users would be able to delegate to the cloud most of the cumbersome

securely. Employing this approach, information clients would have the capacity to safely

delegate to the cloud the more significant part of the awkward client and information

32

administration workloads. For example, dealing with visit client get to user and data

management workloads, such as handling frequent user access privilege updates in large

dynamic systems while still preserving the underlying data confidentiality against any

unauthorized access.

 Trustworthy service metering. Computing as an administration has seen remarkable

development. The essential inspiration for this move is the guarantee of decreased working and

capital costs, and the simplicity of powerfully conveying and scaling new administrations

without keeping up a committed computing foundation. With expanded ubiquity and

appropriation, be that as it may, new and unexpected difficulties have developed. A typical issue

that cloud clients confront today is the failure to comprehend the cost impression of their

outsourced calculation.

As stated in Xiong and Liu (2004), because customers have little permission to make

digital or hard copies of all or part of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To duplicate or to republish, to

present on servers or on redistributing to records, requires earlier particular consent and an

expense. No visibility into the infrastructure is allowed, and these charges may have no apparent

direct connection to their application tasks. For example, when execution can be elastic in

reaction to dynamic workloads, customers may face inexplicable charges in a pay-as-you-go

billing model. This problem is further exacerbated in shared or “public” cloud infrastructures.

Suppliers lessen capital and administration costs by multiplexing a few clients on a similar

foundation utilizing equipment virtualization. While virtualization gives some level of

33

confinement between clients, many mutual assets cannot be flawlessly disconnected. This can

bring about unanticipated externalities that may expand an application’s asset impression. For

instance, a getting into mischief application may cause reserve misses or system blockage and

increment the calculation impression for different applications having the same physical stage.

In the meantime, even though suppliers do create pay with this plan of action, their

productivity is not apparent. Many providers are reluctant to release certain revenue and expense

estimates. Speculation that arises is that at least in part because providers are still struggling to

figure out how to precisely monitor and bill their customers and their resource consumption.

Fine-grained monitoring of virtualized computations is a tricky proposition, and it becomes

harder when it should likewise be sufficiently substantial to put on a receipt. Subsequently, a few

resources that are hard to monitor and attribute to client computations are not accounted. For

instance, input and output time and internal network bandwidth are not metered, although these

have a non-inconsequential effect on the supplier's working expenses and the execution of other

applications. Similarly, sharing effects such as memory pressure due to contention among co-

scheduled jobs cause costs that are both difficult to measure and challenging to attribute to their

source causally. Therefore, suppliers either erroneously represent these expenses while passing

the error on to their clients, or indeed bear the expenses, in this way expanding their particular

working costs

As the dominant vacation period of distributed computing winds down, cloud suppliers

and clients need to tweak their business techniques to remain practical. Even as early as 2008,

61% of IT executives and CIOs rated the “pay only for what you use” as a significant perceived

benefit of the cloud model and more than 80% of respondents rated competitive pricing and

34

offering performance assurances/SLAs as fundamental provider attributes (Sekar & Maniatis,

2011).

Regardless of this early affirmation that asset use and charging are top worries for IT

administrators, these have gotten practically no consideration from the business or the research

network. Consumers informal discussions with industry personnel and other researchers indicate

that mainstream recognition on this subject is frequently very outrageous. One view trusts this is

a “non-problem” in that the specific means as of now exist and it is just a short time before

advertising powers settle it. The contrary view trusts this is a critical problem, but the systems do

not have the technical means to do so. Given that public recognition is energized, but then there

is little work in this specific circumstance, our objective in this position paper is to stimulate a

dynamic talk in this subject.

Own position for distributed computing administrations to end up useful and practical, a

precise system for undeniable asset bookkeeping is required. Such a system will profit both

cloud clients and suppliers. It facilitates any worries that clients may have with suppliers’

estimating and execution ensures. It additionally furnishes clients with a reason for precisely

looking at changed cloud suppliers. In the meantime, having such a structure empowers suppliers

to steadfastly catch their working costs by charging for asset consumptions that they do not right

now represent and keeping clients from endeavoring to amusement their charging methods.

Moreover, facilitating the estimating execution concerns will empower more cloud appropriation

and enhance productivity by expanding the general use of a supplier’s foundation (Sekar &

Maniatis, 2011)

35

The objective is to give accurate resource accounting to cloud conditions, where the

calculation is being rented from others. To formally help characterize the issue, a conceptual

working model is demonstrated as follows. There are three logical participants: the customer C,

the provider P, and the verifier V. At a high-level, C asks P to run the computation task T.

Subsequently, P gives the C a consumption report R describing what resources it thinks C

consumed. For example, a provider may report a time series of consumption vectors, whose

elements correspond to CPU usage, memory bandwidth, memory size, I/O bandwidth, network

bandwidth, and energy, aggregated over pre-determined time quanta, for the duration of the task.

C takes this report R together with the task T and additional data (the roles of which will become

clearer later in this section) to the verifier V and checks if R is a valid resource report for the T.

Figure 3. Conceptual Architecture (Sekar & Maniatis, 2011, p. 2)

Granularity. This determines the level of detail at which resources are tracked. On the

coarse end, tracking might be done in units of core-hours for the duration of a task; on the subtle

end, tracking might be done in units of cycles used per second-long period. In a sense,

granularity defines the number and units of the components of a consumption vector. In the

model, granularity as a definition or schema of what consumption reports look like is captured:

36

over what quantum of time resource vectors are provided to the customer, and what elements

each resource vector contains. For example, EC2 charges for CPU instance hours, storage size

and requests, Internet bandwidth usage, and specialized services such as load balancing.

Similarly, Google’s AppEngine bills users for CPU Time, in/out network bandwidth, storage, and

email requests (Sekar & Maniatis, 2011).

Attribution. The attribution model determines how resource consumption is attributed to

the owner of a task. This model represents the charging policy of a provider and covers issues

such as whether a task owner should be charged for resources used for task migration, how task

owners and the service provider bear the cost of tasks thrashing. To this end, optionally extend

the consumption report R with a separate report of indirect, external consumption E, similar to R,

but attributed to task T due to external factors such as contention. Together, R and E make up

what the provider is going to invoice customer C for task T. In the model, the attribution model A

as a function that computes the values of R and E gave a computation T under given conditions

is represented. Intuitively, the attribution model can be regarded as a “golden simulator” of the

leased architecture (including its management software). This allows a customer to simulate

ahead of time how a computation will consume given some inputs and environment conditions

(including assumptions about other cotenant customers’ workloads) (Sekar & Maniatis, 2011).

Verifiability. Verifiability aims to give the customer assurances about two questions (a)

did I consume what I was charged, and (b) should I have consumed what I was charged? The

first question concerns itself with the veracity of the consumption vector. A provider should not

be able to charge a customer with cycles it did not expand on her behalf. The second question

concerns itself with the efficiency of the provider's infrastructure, concerning scheduling and

37

provisioning. If the provider conservatively—or erroneously—used 1 GByte of main memory for

a task that only required 1 MByte, it should arguably not be able to pass on the cost of its

inefficiency to its customer. To aid in the verification process, the provider may optionally give C

a witness W. Leave the specification of the W open depending on the type and level of

verifiability desired by C. For example; the witness may merely be hardware attestations to

guarantee the integrity of the reports. As discussed earlier, the customer has access to a logical

verifier, an oracle that returns Yes/No answers given a consumption report R and E. The witness

W, the task T, and the attribution model A. The simplest verifier might be one that uses W as a

sanity check to identify gross tampering with R and E. A more involved verifier may use A

together with the W to emulate the task T and compute local versions of R0 and E0. Then it can

check if these emulated values are close to the actual R and E received. One concern is that

having to run a verifier additionally reduces the appeal of outsourcing to the cloud. Note that the

verifier need not be run by the customer (i.e., it could be a third-party software service) and that

its computer cost will be significantly smaller than the original T (Sekar & Maniatis, 2011).

“Did I”–Verifiability

 In this section, the first question focused will be: Did I consume what I was charged?

Addressing this question requires infrastructure support to ensure that (a) The provider does not

create spurious charges of cycles that were never consumed by any principal (i.e., some

conservation of work), and (b) The provider correctly assigns the consumption of a resource to

the principal responsible for using that resource. To address these sub-challenges, started with a

possible clean-slate solution and then proceed to discuss how efficiently can it be approximated

with existing technologies.

38

For the resources to obtain very fine-grained resource footprints of a broad spectrum, the

reporting mechanism should ideally be implemented as a trusted hardware layer. It is because of

two reasons. First, the hardware is in the best position to observe the physical resource usage of

some resources (e.g., cache misses, I/O requests) that may be abstracted away from the software

stack. Second, a hardware root-of-trust is more reliable than OS- or VMMlevel trust in a

virtualized environment (Sekar & Maniatis, 2011).

Suppose a trusted hardware layer that provides the following primitive is present. For

each time epoch, the hardware generates an attested report specifying the active atomic

principals and the amount of each resource consumed by each such principal during this epoch.

Specifically, a trusted monitoring component on the hardware generates for each timestep t an

attested log entry of the form fU; hS1;:::; SNig, where U refers to an atomic principal associated

with the hardware context and Sis are the various resources that need to be accounted. To provide

the hardware layer with visibility into application-layer principals, extended ideas from prior

work on resource containers on practically exposing higher-layer principals to lower-layers

(Banga, Druschel, & Mogul, 1999; Sekar & Maniatis, 2011).

 Having a trusted consumption monitor satisfies two essential requirements. First, because

the reports are generated using in-hardware monitoring that is trusted to report actual

consumption, a provider cannot convincingly charge customers for resources that it never

consumed. Second, a provider cannot double-charge the same resources to multiple customers,

since only a single customer is associated with every reported consumed resource, and the

monitor reports only what was consumed (Sekar & Maniatis, 2011).

39

 Practical approximations. While the above fresh start arrangement is adroitly total,

there are three practical challenges: revealing bandwidth capacity for transmitting fine-grained

per-age estimations, execution overhead to get such bore witness to estimations, and reliance on

a trusted equipment crude that does not exist today. Next, potential answers to address each test

is talked about (Sekar & Maniatis, 2011).

 Revealing data transmission: Reporting the whole trusted asset utilization log depicted

above might be restrictive. For instance, expecting reports of 10 32-bit asset highlights every

second, a substantial supplier like Amazon (say 100K cases) would have no less than an

overhead 10 32 100K 32 Mbps of outbound activity to send these reports (disregarding metadata

and cryptography). To lessen this data transfer capacity cost, a gathered step that procedures the

log sections before creating R are imagined. That is, given the authenticated reports over various

time ages, a trusted aggregator produces a factual synopsis of the asset utilization vector

crosswise over time (Sekar & Maniatis, 2011).

Different classes of resources may define domain-specific aggregation functions. For

instance, we may need the entirety as an aggregator for CPU cycles, for memory we might need

to find the maximum and the whole of the utilization, and for I/O resources we might need to

count the total bandwidth-time footprint. Note that the aggregation can even occur inline,

meaning that individual log entries require not be physically created or stored anywhere.

Estimation overhead: Running fine-grained estimations on a for every guideline or per-CPU

cycle granularity can present a non-unimportant execution penalty for the application forms

being checked.

40

 The following discusses three potential opportunities to reduce this performance impact.

The first is offloading monitoring to a dedicated co-resident processor on a multi-core platform,

similar to previous work on Log-Based Architectures. The main idea is to generate events (e.g.,

specific memory operations) that are efficiently routed to a secondary core, which then performs

on-line analysis or packaging for off-line perusal, leaving the central core to continue performing

its primary functionality (Chen et al., 2006).

The second is sampling. Instead of maintaining very fine-grained per-cycle or per-second

counters, a subset or sample of the resource utilization can be used. Inspecting networks well

with the possibility of aggregation to lessen announcing transmission capacity. If only interested

in a coarse-grained or aggregate statistic, a suitable sampling strategy that can give tight bounds

on the bias and variance of the estimate can be chosen. However, a sampling approach must be

constrained to forestall adversarial activity such as cycle stealing where malicious VMs

opportunistically swap themselves out before a sample is taken, to charge their activities to

another VM's customer (Zhou, Goel, Desnoyers, & Sundaram, 2011).

Randomization is by all accounts a shoddy however viable answer for counter such

malignancy. Advance along the range, previews of the asset utilization vector each time another

main (e.g., a procedure) obtains or discharges an asset can be taken; Figure 4 shows this for the

CPU, where process setting switches are the obtaining/discharge limits. For whatever length of

time that the confided in the screen can ensure that no foremost other than the assigned one can

utilize the asset between successive procure/discharge occasions, at that point, such estimations

can be utilized to produce high-exactness reports with negligible overhead. Unwinding

equipment reliance: Realizing such confided in equipment capacities includes typically long

41

advancement cycles on the request of several months. A specific inquiry, at that point, the

confided in revealing and total natives utilizing existing equipment and programming capacities

can be approximated. The thoughts behind Log-based Architectures can help here.

Figure 4. Taking Snapshots of the Resource Consumption Vector Before/After a Context Switch

(Sekar & Maniatis, 2011).

 Rather than performing a full per-principal attested measurement in an online fashion, a

more straightforward, but dedicated hardware that records the instruction stream. Then, a post-

processing step that reconstructs the sequence of actions and associates the resource

consumptions to the active principals in each epoch can be included. The challenge here is to

provide this post-mortem processing with sufficient context to do the attribution accurately. The

capabilities, strictly speaking, can be implemented at the VMM layer. Unfortunately, modern

VMMs are sufficiently complex and involve several millions of lines of code. Thus, adding the

VMM to our trusted computing base may not be a feasible alternative. Fortunately, a minimal

subset of the functionality that VMMs provide and this can be implemented as a small statically

verifiable module is needed. Here the system can build on the promise of several recent efforts

for building a small, but trusted, shim layer that performs a more restricted set of monitoring

42

tasks. For example, recent work has shown that it is possible to implement a shim layer to

intercept network packets and to isolate trusted functionality from a legacy OS. The challenge

here is to evaluate whether the software-based solutions have enough visibility into monitoring

low-level effects (e.g., cache stress) if they need to be reported as well (Mccune, Parno, Perrig,

Reiter, & Isozaki, 2008).

Figure 5. Prescriptive “Should I” Verifiability (Seka & Maniatis, 2011).

“Should I”—Verifiability

 “Should I”-verifiability concerns itself not with whether specific usage attributable to a

customer took place—the subject of the previous section–but with the justification for that usage.

Given the workload at the infrastructure provider and the resource allocation policy agreed upon

by the customer, should the customer’s job have consumed the charged resources? Assume here

that the customer and the provider have an agreed upon the specification of the “right” resource-

allocation policy. The following two types of specifications are considered:

43

1. A prescriptive specification that describes in some executable pseudocode the

resource allocation decisions that should be made, given current workloads; or

2. A quantitative specification that describes an upper bound for the resources the

allocator should devote, as a function of the given task and other workloads.

Two kinds of studies “Should I”-verifiability below, first by considering ideal solutions

and then relaxing those solutions to make them practical. In theory, a prescriptive specification

can be verified via re-execution. Assuming that a self-contained component makes all resource

allocation decisions—the allocator handling memory, CPU, I/O, and other resource allocation

decisions—a verifier with a trustworthy log of all inputs and outputs to the allocator can re-

execute it and compare allocation decisions to those logged, to ensure the remote allocator was

run correctly. This is similar to the notion of remote verification of distributed computations, as

in Peer Review (Haeberlen, Kouznetsov, & Druschel, 2007).

 In Peer Review, a computation (the allocator in our case) is checked by a remote verifier

by being re-executed according to a tamper-evident record of its inputs, comparing the outputs to

a tamper-evident record of the outputs at the provider, and looking for deviations between the

two streams of outputs. In practice, this idealized solution to prescriptive “should I”- verifiability

is hampered by several challenges. To begin with, the raw log of contributions to the allocator is

voluminous (perhaps different sections every second from each machine in the framework);

gathering and imparting that log to the customer could require significant bandwidth and storage.

Second, making that log tamper-evident requires computational resources for cryptographic or

other “conditioning” of the log, possibly involving a TPM in the process. Third, the logic of a

resource allocator (its code) or the policy may be proprietary to the provider, so sharing its

44

specifics to enable re-execution may be unacceptable for privacy reasons. Quantitative “should

I”- unquestionable status, in a perfect world, requires no data about the logic of an allocator, yet

more data (than the prescriptive approach) about the condition of the entire framework. Given

the (tamper-evident) time series of resource utilization and their allocations to different customer

principals, the quantitative approach applies mathematical functions to the inputs to estimate an

upper bound on utilization for the customer's task. If that upper bound is significantly lower than

the charged resources, the customer suspects the provider for liberal scheduling. This concept

appears related to SLA verification, with a twist. While SLA verification establishes that a

service provided a minimum guaranteed level of resources to a customer, quantitative

verifiability establishes that the service allocated to a customer (and subsequently charged for) no

more resources than required by the submitted task. In practice, the challenges with quantitative

verifiability are somewhat steeper regarding the volume and integrity-protection of raw data,

since now the verifier requires not only decisions made by the allocator but also instantaneous

measurements of state properties, such as utilization. Then again, undeniable quantitative nature

does not require data about the allocator's code or arrangement, since the verifier is autonomous

of the logic of the allocator and requires no re-execution or emulation. In what follows,

approximations of these ideal verifiability approaches to address the similar challenges are

studied (Haeberlen, Kouznetsov, & Druschel, 2007).

Practical approximations. First, consider prescriptive verifiability. The log-volume

challenge is one of location. One way to address it is by moving the verifier (or the verifier’s

trusted agent) closer to the source of the log, on the provider’s platform. For instance, if the

provider’s platform includes an execution environment trusted by the verifier (e.g., a verifier-

45

trusted minimal OS and application, booted on the provider’s platform using a hardware root of

trust), then the verification could run there, obviating the need for transporting or storing large

logs. This is complementary to doing local aggregation for “Did I”-verifiability. The second

challenge that of the tamper-evidence of logs, remains difficult regardless of where the verifier

operates. On the one hand, collecting the logs must be trustworthy and, on the other hand, the

logs must maintain their integrity before analysis by the verifier. Similar to “Did I”-verifiability,

an approach to mitigate this challenge might be to use a trusted hypervisor to collect and

authenticate the log (e.g., by trapping on logged events so that the VM cannot evade monitoring).

Before forwarding it to the verifier; e.g., via techniques like Secure In-VM Monitoring,

combining this trusted log collector with a trusted execution environment for the verifier’s code

would compound the benefits of addressing both log-related challenges. The final question is

what the verifier code should be, whether it runs on the provider’s platform or at the customer

(Sharif, Lee, Cui, & Lanzi, 2009).

 Multitenancy security and privacy multitenancy. Multitenancy Security and Privacy

Multitenancy is a fundamental trait of distributed computing. To improve asset use, CSPs

frequently utilize equipment virtualization to conceal a figuring stage's physical qualities. This

gives different clients a chance to run their particular application occurrences all the while on the

same physical foundation without seeing each other’s information. Multitenancy expands

utilization of the essential hardware resources and, with virtualization, facilitates the

administration trouble for CSPs, taking into account proficient, and successful asset provisioning

and re-designation without the requirement for any forthright equipment buy or setup.

46

 Regardless of its advantages, this multi-occupant cloud condition likewise displays

extreme security dangers and protection vulnerabilities to both the cloud foundation and cloud

clients. Virtualized situations share comparable functionalities with existing working frameworks

and applications in the physical condition, so programming bugs and recently recognized

security vulnerabilities in these frameworks remain the essential threat to any virtualized

multitenant environment. Thinking about the size of cloud frameworks, the potential danger from

these security dangers can be considerably greater contrasted with that for a non-virtualized

computing condition Besides, for resource management in the cloud; various virtualized

application occasions must always be provisioned, designated, or even moved between numerous

physical machines. Therefore, such powerful highlights in the multitenant condition additionally

compound the issue’s many-sided quality and make accomplishing and keeping up steady

security troublesome.

 Multitenancy additionally opens entryways for potential protection spills. As specified

beforehand, side-channel attacks display new dangers to cloud clients' data in the multitenant

condition. In a current report, scientists utilized designing strategies to gather the virtualized

asset distribution system from CSPs and effectively set their virtualized application example on

the same physical machine as the target victim. They were then ready to separate the victim's

private data through activity designs and opposite side-channel information. These outcomes

demonstrate that even in an unequivocally segregated multitenant condition, this.

 Multitenancy security and protection is one of the fundamental difficulties for people in

general cloud, and discovering arrangements is significant if the cloud is to be broadly received.

47

In any case, little work exists today that tends to these issues as well as reliably and keeps up this

dynamic registering condition’s adaptability.

Security overhead and more. Although planning security into the cloud benefits clients

and CSPs, it expands overhead for both. For clients specifically, such overheads could balance

the cloud’s monetarily engaging advantages and may strife with their explanations behind

utilizing the cloud in any case. How to quantitatively explore the trade-offs between security

overhead and cloud benefits is another exciting but essential problem. Any answer for this

inquiry will enable clients to settle on better-educated choices previously moving to the cloud.

 Since the beginning of cloud services, everybody concentrated on exploring the

technology and creating new services and no serious concerns were given to security as such. It

all started when there were a bunch of services on the cloud already, and security issues started

creeping in. Since the system are already built, and security was never included in the

requirements/design of the system, it generated much regression and fixing systems with security

patches.

 After many such failures, security engineers realized the importance of cloud security and

started work on introducing multiple theories that would solve these problems. Moreover, since

Consumer’s privacy and Cloud service protection are one of the main concerns in cloud services,

building a Trust management service appeared to be one of the core solutions concerning cloud

security.

48

Literature Related to the Problem

Sybil attack. In this attack, malicious users exploit multiple identities (Ba & Pavlou,

2002; Douceur, 2002) to give numerous misleading feedbacks for a self-promoting or slandering

attack. It is interesting to note that attackers can also use multiple identities to disguise their

negative historical trust records (i.e., whitewashing attacks (Mogul, 2005).

Named after the case study of a woman with multiple personality disorder, a Sybil attack

is a type of security threat when a node in a network claims multiple identities. Most systems,

similar to a distributed system, depend on the suppositions of identity, where every PC speaks to

one character. A Sybil attack happens when an insecure computer is hijacked to claim multiple

identities. Problems arise when a reputation system (such as a file-sharing reputation on a torrent

network) is tricked into thinking that an attacking computer has a disproportionally large

influence. Similarly, an attacker with many identities can use them to act maliciously, by either

stealing information or disrupting communication. It is essential to perceive a Sybil attack and

note its threat keeping in mind the end goal to shield oneself from being an objective.

First described by Microsoft researcher John Douceur (2002), a Sybil attack relies on the

fact that a network of computers cannot ensure that each unknown computing element is a

distinct, physical computer. Some authorities have attempted to establish the identity of

computers on a network (or nodes) by using certification software such as VeriSign, employing

IP addresses to identify nodes, requiring passwords and usernames, and so forth. However,

impersonation, both in the real and digital worlds, is commonplace. Friends may share

passwords, communities may share website registrations, and some services provide a single IP

address that is shared among users.

49

Sybil attacks have shown up in numerous situations, with broad ramifications for

security, wellbeing, and trust. For example, an internet poll can be rigged using multiple IP

addresses to submit a large number of votes. A few organizations have additionally utilized Sybil

attacks to increase better evaluations on Google Page Rank.

Figure 6. Demonstration of Sybil Attack (NS-2 Simulator, n.d.)

 There are a couple of beyond any doubt fire approaches to shield a system from a Sybil

attack, yet there is an extensive variety of writing committed to talking about choices for

assurance and verification of competing identities.

Karloff and Wagner (2003) noted that the Sybil attack also poses a threat to routing

mechanisms in sensor networks. To protect against the Sybil attack, An approval that every node

is the main character displayed by the comparing physical node. There are two types of ways to

validate identity.

• Direct Validation: The first type is direct validation, in which a node directly tests

whether another node identity is valid.

• Indirect Validation: The second type is indirect validation, in which nodes that have

already been verified are allowed to vouch for or refute other nodes.

50

Since the first analysis of the Sybil attack, several different approaches have been proposed to

prevent or mitigate the attack: trusted certification, resource testing, radio resource testing, RSSI-

based scheme, and crucial random pre-distribution.

Trusted certification. Trusted certification is by far the most frequently cited solution to

defeating Sybil attacks (Rowaihy, Enck, McDaniel, & La Porta, 2007). It involves the presence

of a trusted certifying authority (CA) that validates the one is to one correspondence between an

entity on the network and its associated identity. This centralized CA thus eliminates the problem

of establishing a trust relationship between two communicating nodes. Douceur (2002) has

proven that trusted certification is the only approach that has the potential to eliminate Sybil

attacks. However, trusted certification relies on a centralized authority that must ensure each

entity is assigned precisely one identity, as indicated by possession of a certificate. In fact,

Douceur offered no method of ensuring such uniqueness, and in practice, it must be performed

by a manual or in-person process. It may be costly, or a create a performance bottleneck in large-

scale systems. Moreover, to be effective, the certifying authority must ensure that lost or stolen

identities are discovered and revoked. If the performance and security implications can be

solved, then this approach can eliminate the Sybil attack (Kuma, 2016).

Resource testing. Resource testing is the most regularly executed answer for turning

away Sybil attacks. The fundamental principle is that the quantum of computing resources of

each entity on the network is limited. A verifier at that point checks whether every character has

the same number of assets as the single physical gadget it is related with. Any inconsistency

demonstrates the likelihood of a compromised node. Storage, computation, and communication

were initially proposed as resources. In any case, for a framework, for example, a remote sensor

51

network, an attacker may have capacity and calculation assets in substantial limits contrasted

with resource starved sensor nodes. Alternatively, verification messages for verifying

communication resources might flood the entire system itself. Hence, all three are inadequate

choices for sensor network

Radio resource testing. Radio resource testing, proposed by Newsome et al. (cited in

Sekar & Maniatis, 2011) is an expansion of the asset testing check strategy for wireless sensor

networks. The fundamental assumptions of this approach are that any physical device has only

one radio and that this radio is incapable of transmitting and receiving messages on more than

one channel at any given time. As a concrete example, consider that a node wants to verify that

none of its neighbors are Sybil identities. It can assign each of its n neighbors a different channel

to broadcast some message. It can then choose a channel randomly on which to listen. If the

neighbor that was assigned that channel is legitimate, it should hear the message. Resource tests

have been suggested by many as a minimal defense against Sybil attacks where the goal is to

reduce their risk substantially rather than to eliminate it (Sekar & Maniatis, 2011).

RSSI-based scheme. Demirbas and Song (cited in Sekar & Maniatis, 2011; Conner,

Iyengar, Mikalsen, Rouvellou, & Nahrstedt, 2009) introduced a method for Sybil detection based

on the Received Signal Strength Indicator (RSSI) of messages. The cooperation of one additional

node (and hence one message communication) is required for the proper functioning of this

protocol. Upon receiving a message, the receiver will associate the RSSI of the message with the

sender ID included, and later when another message with the same RSSI but with different

sender-id is received, the receiver would detect Sybil attack. A localization algorithm is used in

this scheme. Sybil attacks can be detected with the completeness of 100% with few false positive

52

alerts. Despite the way that RSSI is untrustworthy and that transmissions employing radio are

non-isotropic, the utilization of proportions of RSSIs from numerous collectors tackles this issue.

Random key pre-distribution. This technique enables nodes to establish secure links to

other nodes in wireless sensor networks. In crucial random pre-distribution, a set of keys are

assigned at random to a node enabling it to discover or compute the standard keys that it shares

with its neighboring nodes. The key ideas are the association of the identity with the key

assigned to a node and the validation of the key. Validation involves ensuring that the network

can validate the keys that identity might have. Thus, given a constrained arrangement of caught

keys, there is little likelihood that a discretionarily created personality will work, for the keys

related with an arbitrary identity are not likely to have a significant intersection with the

compromised key set, making it hard for the fabricated identity to pass the critical validation.

Utilizing trusted gadgets resembles using trusted affirmation to shield against a Sybil

attack. For this circumstance, identities are identified with specific hardware devices. Similar to a

central authority creating certificates, there are a few ways to prevent an attacker from attaining

multiple devices.

 Collusion attack. In this attack, several vicious users collaborate to give numerous

misleading feedbacks to increase the trust result of cloud services (i.e., a self-promoting attack

(Douceur, 2002) or to decrease the trust result of cloud services (i.e., a slandering attack)

(Friedman et al., 2007). This sort of malicious behavior can happen in a non-tricky manner

where a specific malicious client gives various deceiving feedbacks to lead a self-promoting

attack or a slandering attack.

53

Chapter III: Methodology

Introduction

As a part of proposing and evaluating a Trust Management for cloud services, a

quantitative approach is used to showcase the results.

Methodologies that included feedback loop-based algorithms that will evaluate different

trust-based models created within the network will be proposed. The simulation results will

showcase the resilience of such a trust-based network against different types of attacks and

compares itself with the existing models to show why it is a better approach for solving trust

management for cloud services.

Design of the Study

In this paper, a design of a CloudArmor (CLOud consUmers creDibility Assessment and

tRust manageMent of clOud seRvices) is introduced. It is a framework for reputation-based trust

management in cloud environments.

In CloudArmor, trust is delivered as a service (TaaS) where trust is managed in a widely

distributed network and includes feedback mechanism so that the trust factor can be re-evaluated

from time to time. CloudArmor exploits techniques to identify credible feedbacks from wicked

ones.

Some of the features that are a part CloudArmor are:

1. Zero-Knowledge Credibility Proof Protocol (ZKC2P). A ZKC2P that jam the

customers' security, as well as empowers the TMS to demonstrate the believability of

a specific purchaser's input is presented. An Identity Management Service (IdM) can

help TMS in measuring the credibility of trust feedbacks without breaching

54

consumers’ privacy is proposed. Anonymization techniques are exploited to protect

users from privacy breaches in users’ identity or interactions.

2. Credibility Model. The credibility of feedbacks plays a vital role in the trust

management service’s performance. Therefore, several metrics for the feedback

collusion detection including the Feedback Density and Occasional Feedback

Collusion. These metrics distinguish misleading feedbacks from malicious users. It

additionally can distinguish essential and intermittent practices of collusion attacks

(i.e., assailants who expect to control the trust comes about by giving numerous trust

feedbacks to a particular cloud service in a long or short period). Besides, several

metrics for the Sybil attacks detection including the Multi-Identity Recognition and

Occasional Sybil Attacks are proposed. These measurements enable TMS to

recognize deluding criticisms from Sybil attacks.

3. An Availability Model. High accessibility is a critical prerequisite to the trust

management service. Thus, to spread several distributed nodes to manage feedbacks

given by users in a decentralized way is proposed. Load adjusting techniques are

misused to share the workload, accordingly continually keeping up the coveted

accessibility level. The quantity of TMS nodes is resolved through an operational

power metric. Replication methods are misused to limit the effect of inoperable TMS

examples. The quantity of copies for every hub is resolved through a replication

assurance metric that will be presented. This metric exploit particle shifting methods

to absolutely foresee the accessibility of every hub. Each of these methodologies is

aimed at solving each of the sub-problems mentioned in the problem description

55

section. Each one of these methodologies has their unique solutions, algorithms and

explains how they solve the underlying problems in detail.

Data Collection

 For experimentation, data will be reused from another experimental study and use it for

our calculations. There is already an existing component for collecting cloud services and trust

information. It is a cloud service crawler module that is based on an open source web crawler

which has been extended to discover multiple services in the internet cloud.

Web crawler. Web crawlers are PC programs that breadth the web, 'perusing' all that they

find. Web crawlers are generally called spiders, bots, and programmed indexers. These crawlers

examine web pages to perceive what words they contain, and where those words are utilized. The

crawler transforms its discoveries into a full record. The record is generally a noteworthy

summary of words and the web pages that component them. Along these lines, when one

approaches a web search tool for pages about hippos, the web index checks its file and gives you

a rundown of pages that say hippos. Web crawlers look at the web routinely, so they, for the most

part, have a leap forward record of the web.

 To understand how this crawler functionality has been implemented, it is better to

understand, functionality on how the crawlers usually work. The accompanying area will give a

short outline of the same. Some of the crawler components include:

1. Seed List: Before a crawler sets out on its trip of crossing a list of locales, it is

fundamental to build up an essential seed list of URLs that would, like this, comprise

of different URLs on their goal pages, from where the web crawlers onto their

coveted way can sling. It deals with what URLs and pages a crawler would wind up

56

extricating since it would experience every one of the pages that are associated with

the seed URLs what's following, unique URLs that would all be transitively related

and interlinked with these structural arrangements of URLs. The crawler would then

take after its implicit crossing calculation through which it might creep the associated

sets of pages and their hubs on a flat level or vertically. These days, the vast majority

of the sites have a sitemap.xml document with a list of all URLs exhibit on the site, to

help the web index bots find all pages on a visit.

2. Fetching the basic substance: Before beginning on its voyage, each web crawler has a

type of DB to check against, which keeps up a list of all seed URLs. At that point, it

needs to check if different URLs from a page should be crept, usually in light of the

refresh recurrence of the site. Once the URLs to have crawled have been shortlisted,

every one of the URLs that ought to be sought is pushed into the line that takes after a

LIFO/FIFO configuration relying upon the crawler's calculation, and the URLs are

evacuated as and when they get crept. In most such setups from specific points of

view, the line comes as an advantageous mechanical assembly to improve the

building of the whole system after that crawler goes and gets the page and spares it on

a neighborhood machine. Honest to goodness bringing of the pages in layman's terms

resembles going on a page and after that finishing a 'Right snap spare.' Bots achieve

the similar functionalities in various ways. On the off chance that the site is more

intuitive and have a great deal of AJAX cooperations, at that point, bots must be

further developed or custom to get the data. In the wake of getting the data, it is then

secured autonomously for extraction and arranging.

57

3. Discovery of new URLs and destinations: There are more than one trillion webpage

pages shown on the web, with more site pages coming up each day. Hence, it is not

achievable to store each one of these URLs in the line physically or even

mechanically so far as that is concerned. Accordingly, each time a crawler is created,

it is key to incorporate the Discover work in the web crawler code. Like this, one can

set up a crawler to discover URLs without any other individual's information that

ought to be crawled by bobbing from one seed URL to the partner URL. By and by,

the way site pages are associated and interlinked; bots travel between various pages.

Be that as it may, if there are free pages, which neither interface with various pages

nor is associated from various pages, they are elusive. Along these lines, site

administrators assume extra care to position them in sitemap.xml or incorporate the

association for them somewhere on the site page with the objective that web look

apparatuses can reach them successfully.

4. Intelligent slithering. Another important assignment to perform amid the Discovery of

URLs is that to check regardless of whether these URLs have been crept beforehand

in a similar slither. While discovering more URLs from each page that is crawled, it is

outstandingly possible that the crawler may encounter URLs of site pages it has

recently crawled previously, since the web is only an arrangement of interlinked

website pages. Keeping in mind that the ultimate objective to avoid re-creeping these

pages and shield the crawler from going into a circle, it is crucial to play out a

deduplication check before crawling a page. If that page has just been slithered, one

can push that page to the seed list seed once-over to empower disclosure of pages less

58

requesting. If not, well by then straightforwardly ahead and crawl the page joyfully to

make an advance revelation of pages more available. If not, well at that point go

ahead and slither the page joyfully. Crawlers today have developed a claim to fame

set of complex inquiries that can help keep the excess stack on crawlers to crawl the

pages various circumstances every day and besides the pages that get crawled various

circumstances every day, therefore affecting their load time. Consequently, while

creeping a page, another check is raced to see the last time stamp when that page was

refreshed, per slither. In case a page is invigorated more regularly, by then it looks

good to crawl that page every now and again to recognize and report the movements

as need be. On the off chance that a page is invigorated less frequently, by then, it is

rude to stack the page’s server with reiterated crawl requests, and from this time

forward it is only considerate to encourage the weight on the crawlers to creep the

page superfluously.

5. Parsing. Once the pages have been gotten, the next errand is to get data from it. Web

look apparatuses use changed computations and heuristics to find data from the

substance exhibit on the site page. With the goal that when specific terms are looked,

web crawlers appear relevant pages in light of the data they separated from these

pages. As of late, there is a more prominent focus on SEMANTIC MARKUP and

SEMANTIC RESULTS, wherein, web crawlers endeavor to deduce distinctive fields

showed on the page. Distinctive markups proposed by schema.org is another first

propel which helps webpage proprietors furthermore web crawlers. Regardless, its

59

focal point is that those little scale names help in parsing and getting data from the

content. prompt.

6. Data Storage. When a user is composing a crawler, given the sheer volume, storage of

data turns into a sufficiently major issue. Considering the measure of data that is

crawled and required each day, standard SQL databases are not set up to manage that

sort of volume on a normal start. Besides, this data does not have numerous social

characteristics. It is the place for the Hadoop, and other NoSQL databases come into

the photo. It can store and inquiry many data rapidly and complete the preparing of

the same inside minutes. A few people likewise utilize frameworks, for example,

Depth and S3 and other comparable administrations that could be utilized to store and

offer data over various stages. Once in a while, people have used level records with

sensible accomplishment. The open source rendition of the web crawler utilized for

this hunt is one such web crawler that is constructed utilizing the highlights depicted

previously. Crawlers will control the data that is being gathered in light of the number

of companions, the space in which the crawler is set up and the time inside which the

slithering can happen. Likewise, the data for the clients are gathered as verifiable

records and reviews and are being put away in a database. This data incorporates the

ID data for a client, many character data when he was getting to various

administrations in the cloud, utilization designs (which can be replayed), and so on.

Tools and Techniques

• Database: Trust Feedback DB

• Registry: Trust Identity Registry

60

• Notification Mechanism

Hardware and Software Environment

The following are the Hardware and Software requirements needed for developing and

running the prototype:

Hardware Requirements

• System Pentium IV 2.4 GHz

• Hard Disk 40 GB

• RAM 512 MB

Software Requirements

• Operating system Windows 10

• Coding Language JAVA/J2EE

• IDE NetBeans 7.4

• Database MYSQL

61

Chapter IV: Implementation

Introduction

Cloud service consumers’ criticism is a decent source to evaluate the general

dependability of cloud services. In this paper, novel techniques that help in detecting reputation-

based attacks and allowing users to identify trustworthy cloud services effectively are presented.

A credibility model that not just distinguishes deluding trust criticisms from collusion attacks yet,

besides, identifies Sybil attacks regardless of these assaults happen in a long or short period (i.e.,

strategic or occasional attacks respectively) is introduced. An availability model that maintains

the trust management service at the desired level is also developed.

System Design

Data Flow Diagram (DFD).

1. The DFD is also called a bubble chart. It is a basic graphical formalism that can be

utilized to speak to a framework as far as information to the framework, different

preparing did on this information, and this system generates the output data.

2. The data flow diagram (DFD) is one of the most important modeling tools. It is used

to model the system components. These components are the system process, the data

used by the process, an external entity that interacts with the system and the

information flows in the system. (Format is off here slide over to the left slightly)

3. DFD shows how the information moves through the system and how a series of

transformations modify it. It is a graphical procedure that delineates data streams and

the changes that are connected as information moves from input to output.

62

4. DFD is also known as a bubble chart; a DFD might be utilized to describe a

framework at any level of reflection. DFD might be divided into levels that speak to

expanding data streams and provide useful detail, see Figure 7 below as an example

of a DFD.

 USER DETAILS

Registration

TM

IDM

Login

User

View Profile

Search

Purchase

Add Service

CLOUD

Attacker List

Service Details

Service List

Access List

Update Rate Collusion Attcak

Sybil Atack

User Details

Publish,Revoke

Feedback

feedback

Add to Cart

Figure 7. Data Flow Diagram

UML diagrams. UML stands for Unified Modeling Language. UML is an

institutionalized broadly useful modeling language in the field of object-oriented programming.

The standard is overseen and was made by, the Object Management Group. The goal is for UML

to become a common language for creating models of object-oriented computer software. In its

63

present frame, UML is contained in two noteworthy parts: A Meta-model and documentation.

Later on, some technique or process may likewise be added to or connected with, UML.

The Unified Modeling Language is a standard language for demonstrating, visualization,

constructing and chronicling the relics of programming systems, and likewise for showing

business processes and other non-programming structures. The UML is an essential part of

developing object-oriented software and the software development process. The UML uses

mostly graphical notations to express the design of software projects.

Goals. The Primary objectives in the plan of the UML are as per the following:

1. Give clients a prepared to-utilize, an expressive visual demonstrating language with

the goal that they can create and trade essential models. Give extendibility and

specialization systems to broaden the first ideas.

2. Be free of specific programming dialects and improvement processes.

3. Give a formal premise to understanding the displaying language

4. Support the development of object-oriented devices showcased.

5. Integrate best practices.

Use case diagram. A utilization case chart in the Unified Modeling Language (UML) is a

kind of behavioral outline characterized by and made from a use-case examination. Its

motivation is to show a graphical outline of the usefulness gave by a framework concerning

actors, their objectives (spoke to as use cases), and any conditions between those use cases. The

primary inspiration driving a use case outline is to demonstrate what structure limits are

performed for which on-screen character. Roles of the characters in the framework can be

portrayed as in Figure 8.

64

TM

User

Registration

Cloud

`

User Details

IDM

View Profile

Purchase

Add Cart

Search

Attacker List

Add Service

Update Rate

Service Details

Figure 8. Use Case Diagram

Class diagram. In programming, designing a class diagram in the Unified Modeling

Language (UML) is a sort of static structure outline that depicts the structure of a framework by

demonstrating the framework’s classes, their attributes, operations (or methods), and the

relationships among the classes. It explains which class contains which information as seen in

Figure 9.

65

user

View Profile
Search
Purchase
feedback
Add to Cart

View Profile()
Search()
Purchase()
feedback()
Add to Cart()

IDM

ser Details
Attacker List
Sybil Attack
Collusion Attack

ser Details()
Attacker List()
Sybil Attack()
Collusion Attack()

TM

User Details
Service Details
Feedback
Publish,Revoke

User Details()
Service Details()
Feedback()
Publish,Revoke()

CLOUD

Add Service
Service List
Access List
update Rate

Add Service()
Service List()
Access List()
update Rate()

Figure 9. Class Diagram

Sequence diagram. An arrangement outline in Unified Modeling Language (UML) is a

sort of connection graph that shows how shapes function with each other and in what game plan.

It is a build of a Message Sequence Diagrams. Sequence diagrams are seen here in Figure 10,

and they are called occasion charts, occasion situations, and timing outlines.

TM
IDM

Database

USER

Registration

CLOUD

Add Service

User Details

User Details

Publish, Revoke

Search

Purchase

Add t oCart

Attacker Details

Sybil Details

Service List

Update Rate

Figure 10. Sequence Diagram

66

 Activity diagram. Activity Diagrams are graphical portrayals of work processes of

stepwise exercises and activities with help for a decision, emphasis, and simultaneousness. In the

Unified Modeling Language, movement charts can be utilized to portray the business and

operational well-ordered work processes of parts in a framework. A movement graph

demonstrates the general stream of control, as seen in Figure 11.

TM

Service Details

CLoud

verify Cloud

Login

User login

verify User

View Profile

Invalid User

Add to cart,

Feedback

Purchase

incorrect

Cloud

IDM

verify IDM

User Details

incorrect IDM

encrypt user files
Attacker list

Publish, Revoke

TM-Verify
incorrect

TM

Access List

Add Service list

Update List

Search

Figure 11. Activity Diagram

System Testing

 The purpose of testing is to discover errors. Testing is the way toward endeavoring to find

each possible blame or then again deficiency in a work thing. It gives a way to deal with check

the convenience of parts, sub-congregations, gatherings and additionally a completed item. It is

67

the way of practicing programming with the goal of guaranteeing that the programming

framework lives up to its necessities and client desires and does not change unacceptable. There

are different sorts of tests, and each test composed addresses a particular testing necessity.

Types of testing.

Unit testing. Unit testing includes the plan of experiments that approve that the interior

program rationale is working legitimately and that program inputs create strong yields. All

choice branches and interior code stream ought to be approved by management. It is the trying of

individual programming units of the application, and it is done after the finish of an individual

unit before combination with other units. It is a basic test that depends on learning of its

development and is obtrusive. Unit tests perform first tests at the segment level and test a

particular business process, application, and additionally framework arrangements. Unit tests

ensure that each exceptional method for a business methodology performs precisely to the

recorded particulars and contains unquestionably portrayed data sources and expected results.

Integration testing. Integration tests are intended to test coordinated programming parts

to decide whether they keep running as one program. Testing is on occasion driven and is more

worried about the necessary result of screens or fields. Incorporation tests exhibit that even

though the segments were independently fulfilled, as appeared by effectively unit testing, the

blend of segments is remedied and steady. Integration testing is mainly done for uncovering the

issues that emerge from the mix of segments.

68

Figure 12. Cloud Testing Technique Types (Shrivastava, Gupta., & Tiwari, 2014).

Functional testing strategies. Functional testing is a procedure of value affirmation. It is

performed for both remote and neighborhood applications. It is utilized to test every one of the

highlights and elements of a system which incorporates programming and equipment. Functional

testing includes conveying different assignments and contrasting the consequence of same

undertakings and the standard yield. Functional Testing can be performed both physically and

consequently with a human analyzer or programming program individually. Functional Testing

more often than not depicts what the system does.

System testing. System testing will be testing performed on an utterly coordinated system

to assess the system's consistency with its predefined requirements. It is performed concerning a

Functional Requirement Specification(s) (FRS) or conceivably a System Requirement

Specification (SRS) all in all structure. System testing tests the conduct, plan and the desires of

the client.

69

Integration testing. Integration testing is the strategy in which every product module is

tried as a gathering. It fits cloud registering systems with regards to a general business technique.

Integration of cloud administrations ends up a major for business and wonder that grasps a

cloud-based game plan that requires integration of data and interfaces in the cloud with the on-

ask for the application. It is for the most part in charge of interfacing source and target systems,

extricating information from source systems, intervening semantics and sentence structure of

information and distributing the information to target systems.

User acceptance testing. This testing is done to check the presently gave cloud

arrangement from the merchant. In this testing, business requirements are utilized to demonstrate

that the Cloud arrangement that is conveyed addresses particular issues. This testing is done on

both off-commence and at the start. Quick control and observing of test advance are permitted by

on location testing.

Non-functional testing methods. This testing is improved the situation guaranteeing that

a web application meets the predefined performance requirements. It is otherwise called a

performance testing procedure. It is done against the non-functional requirements which mirror

the nature of the item. It affects clients.

Business requirement testing. Associations ought to painstakingly, correctly look at their

business requirements before moving their business to a cloud processing arrangement; this is on

account of business requirements are the building obstructs for cloud registering arrangements.

The business requirements can be accomplished by the surveys, workshops, and gatherings.

70

Cloud availability testing. These guarantees cloud administrations must be accessible

consistently. There ought to be no downtime which could unfavorably influence the business of

the customer.

Cloud security testing. It has turned out to be one of the essential parts of testing as

security issues as expanding step by step in business. It is useful as it guarantees that business

information is put away and transported securely. For recognizing access strategies to a system

by utilizing a few apparatuses and procedures utilized by programmers can ensure the security of

cloud arrangements.

In a cloud domain, arrange security is generally vital. A few security machines are in

broad utilize, which ensures endeavors and server farms. These gadgets include the parts of

interruption anticipation systems, firewalls, against infection, hostile to spam, and information

misfortune avoidance. Security components are tried in three measurements: Accuracy,

Effectiveness, and Performance.

Cloud scalability and performance testing. Cloud Scalability is that region of concern

where the best possible measure of testing is required. Cloud Computing arrangements are

constantly adaptable on demand. Cloud scalability and performance testing procedures assist us

in measuring the cloud systems performance precisely and painstakingly (Kuma, 2016).

Performance testing is in charge of discovering edges, bottlenecks, and constraints (Conner et al.,

2009). Thus, performance testing is the endeavor to gauge response times and issues related to

specific exercises while the structure is subjected to expanding load from different multi-

customer errands. It chooses the point of confinement, responsiveness, dependability,

throughput, and additionally the flexibility of a system under a given workload. It can survey age

71

readiness, evaluate execution criteria, discover structure limits, think about execution

characteristics of various systems, discover the wellspring of execution issues, bolster system

tuning, and discover throughput levels.

Cloud load and stress testing. Load testing is used for making overpowering customer

development and evaluating its response. It moreover tunes the execution of any application to

meet particular rules. Then again, stress testing decides the ability of uses to keep up a specific

level of adequacy. For any application, it is essential to work even under the best weight and care

for security. Stress testing does this by making peak loads using test systems.

Latency testing. This testing includes estimating the latency (delay) between the activity

and the reaction for any application in the wake of conveying it on the cloud.

Ability testing systems. Ability testing is done to guarantee that users get the fitting

administrations from the cloud condition on demand. Under this classification, compatibility and

interoperability testing, disaster recovery testing, multi-occupancy testing are performed.

Compatibility and interoperability testing. It is testing performed on the application to

evaluate the application's similitude with the enrolling condition. A cloud application must be fit

for working crosswise over different conditions and executed on different cloud stages. Thus, it

is less demanding for the relocation of cloud applications starting with one foundation then onto

the next. A compatibility test incorporates (an) equipment designs, (b) distinct stages, (c) PC

peripherals, and (d) organize condition.

Disaster recovery testing. Disasters are an unavoidable conviction for any affiliation, yet

while sure, fiascos are in like manner generally sporadic. The specialist organization of cloud

favors that its cloud administrations must be accessible to users constantly. Disaster recovery

72

time must be low after some disappointment happens. This testing is done to guarantee that the

cloud administrations must be accessible to the user after some disappointment happens, with

least or no information misfortune.

Multi-occupancy testing. Multi-tenure alludes to a guideline where a single example of

the product keeps running on a server, serving different customer associations. It alludes to

various association and customers utilizing on-demand advertising. The offering ought to be

adaptable for every customer and ought to give information and additionally design level

security to maintain a strategic distance from any entrance related issues.

Advantages of cloud testing. Cloud testing helps business in setting and keeping up the

conditions, on-task for benefits, cuts down cost, resource pooling, end of capital utilization early,

and more broad system get to, quick adaptability and decreasing in cycle diminishment time for

various business offering in this powerful and quick going administrations and IT industry.

The following are a portion of the critical advantages concerning testing in the cloud:

1. Rapid provision of the test environment(s). Due to the dynamic nature of the real-

world application regarding requirements and user in a short period, it is challenging

for many companies to set up the infrastructure for testing use. With the help of the

cloud, it is effortless for an organization to turn up the testing environments to fulfill

project timelines. Test imitation of generation conditions can be reproduced by

business/clients which help testing groups to approve the business situations and

discover bugs more quickly. Reduced capital expense – cloud will take care of setting

up for the testing infrastructure as when needed by the organization and

decommission all the setup of servers once the testing is done which helps companies

73

to save their money. It helps many companies to get the work done at a lower price as

compared to earlier as there is no cost associated with them in setting up that entire

infrastructure in advance.

2. Fast customization of equipment assets. As companies are permitting cloud condition

for their testing, it is simple for the association to reenact the generation situations to

check the load, performance testing, verifying the scenarios in different environments

with multiple browsers in different operating systems and the latest versions available

in the market.

3. Support green computing and reducing carbon footprint.

4. Computing is the study of using computing resources efficiently. The global use of

computing resources continues to grow dramatically due to the vast IT market and

different industries. As the clear majority of the organizations have begun receiving

cloud procedures which give the framework in light of interest, cloud arrangement

empowers organizations to wind up more naturally agreeable. Practical use of

resources, the cloud will take care of all business needs as and when required. By

using the cloud, server efficiency and utilization have been drastically improved

through the even distribution of workload. Testing in the cloud obtained the current

distributed computing framework gave by the seller who helps in diminishing the cost

of figuring, all things considered, with expanding testing effectiveness in the process.

Comparison among various cloud testing techniques and platforms. Following are

the comparisons and various cloud testing platforms which are considered to be the key players

74

in the cloud testing zone. These are the leading cloud testing providers as per the five categories:

infrastructure, platform, security, storage, and software.

Figure 13. Comparison Of Different Testing Techniques (Shrivastva et al., 2014)

Functional tests give orderly demonstrations that capacities tried are accessible as

determined by the business and functional necessities, framework documentation, and client

manuals.

Functional testing is focused on the accompanying things:

• Valid Input Identified classes of valid input must be acknowledged.

75

• Invalid Input Distinguished classes of invalid data must be rejected.

• Functions Recognized limits must be worked out.

• Output Identified classes of use outputs must be worked out.

• Systems/Procedures Interfacing systems or methodology must be conjured.

Association and readiness of functional tests are centered around prerequisites,

fundamental functions, or individual experiments. Also, systematic coverage about identifies

business process flows; data fields, predefined processes, and continuous processes must be

considered for testing. Before functional testing is finished, extra tests are distinguished, and the

compelling estimation of current tests is resolved.

White box testing. White box testing is testing in which the software tester knows the

internal workings, structure, and dialect of the product, or possibly its motivation. It is utilized to

test zones that can't become to form a black box level.

Black box testing. Black box testing is testing the software without any knowledge of the

inner workings, structure or language of the module being tested. Black box tests, as most

different sorts of tests, must be composed of an authoritative source report, for example,

determination or prerequisites record or a particular or requirements document. Blackbox tests,

as most different sorts of tests, must be composed of a particular source record, for example,

detail or prerequisites archive, or a determination or necessities report. It is testing in which the

software under test is treated, as a black box and one cannot “see” into it. The test gives sources

of info and reacts to yields without considering how the product functions.

76

Unit testing. Unit testing is generally accepted as a significant aspect of a joined code and

unit test period of the software lifecycle, even though it is not phenomenal for coding and unit

testing to be conducted as two distinct phases.

Test strategy and approach. Field testing will be performed manually, and useful tests

will be composed in detail.

Test objectives:

• All field entries must work correctly.

• Pages must be enacted from the recognized connection.

• The passage screen, messages, and reactions must not be deferred.

Highlights to be tested:

• Verify that the sections are of the right organization.

• No copy sections ought to be permitted.

• All connections should take the client to the right page.

Integration testing. Software integration testing is the incremental integration testing of

at least two coordinated software parts on a single stage to deliver disappointments caused by

interface defects.

 Test results: All the test cases mentioned above passed successfully. No defects

encountered.

Acceptance testing. User Acceptance Testing is a necessary period of any task and

requires critical cooperation by the end client. It additionally guarantees that the framework

meets the practical necessities.

77

Test results: All the test cases mentioned above passed successfully. No defects

encountered.

78

Chapter V: Conclusion

Given the highly dynamic, distributed, and nontransparent nature of cloud services,

managing and establishing trust between cloud service users and cloud services remains a

significant challenge. Cloud service consumers’ criticism is a decent source to evaluate the

general dependability of cloud administrations. Be that as it may, noxious clients may work

together to:

• The disadvantage of a cloud service by giving multiple misleading trust feedbacks

(i.e., collision attacks), or

• Trap clients into trusting cloud benefits that are not reliable by making a few records

and giving deceiving trust feedbacks (i.e., Sybil attacks).

In this paper, novel techniques that help in detecting reputation-based attacks and allowing

users to identify trustworthy cloud services effectively are presented. Specifically, a credibility

model demonstrates that not just distinguishes misdirecting trust criticisms from collusion

attacks. Besides, identifies Sybil attacks regardless of these attacks happen in a lot of cloud

vendors, service providers, and tenants must establish a shared view on cloud security to

establish and drive trusted business in a short period (i.e., strategic or occasional attacks

respectively) is introduced. An availability model that maintains the trust management service at

the desired level is also introduced. A large number of consumers’ trust feedback given on real-

world cloud services (i.e., over 10,000 records) are collected to evaluate my proposed

techniques. The experimental results demonstrate the applicability of the approach and show the

capability of detecting such malicious behaviors.

79

Vendors of cloud, service provider and occupants must build up a standard view on cloud

security keeping in mind the end goal to set up and drive trusted business. This shared view will

enable cloud service providers to understand and fulfill the security needs of their customers. In

various sectors, such as healthcare, automotive, manufacturing, public utilities or banking, these

needs are also subject to applicable regulations.

 Through the Trust Engine, this paper provides a conceptual basis to support different

actors in their discussions about cloud security risks, threats, controls, management, and

compliance, as well as other security requirements in a cloud system. Also, different design

factors, best security design practices and the application of the right security technologies will

need to be taken into account.

 A right cloud service provider can combine a solid conceptual foundation and a shared

understanding of customer needs with technical know-how in design and implementation. It will

allow it to provide, in a cost-efficient way, more reliable operations, networks and components

than many customers could achieve independently, and to fully realize the benefits of sharing

resources through a cloud model.

 There are a couple of directions for our future work. Distinctive trust management

procedures, for example, reputation and proposal to expand the trust comes about precision can

be intended to join for improving numerous factors. Performance optimization of the trust

management benefit is another focal point of our future research work.

80

References

Ba, S., & Pavlou, P. (2002). Evidence of the effect of trust building technology in electronic

markets: Price premiums and buyer behavior. MIS Quarterly, 26(3), 24j3-268.

Balachandran, N., & Sanyal S. (2012). A review of techniques to mitigate Sybil attacks.

International Journal of Advanced Networking Applications, 1514-1518.

Banga, C., Druschel, P., & Mogul, J. C. (1999). Resource containers: A new facility for resource

management in server systems. In Proceedings of 3rd USENIX Symposium on Operating

Systems Design and Implementation (ODSI), New Orleans, LA.

Chen, S., Falsafi, B. Gibbons, P. B., Kozuch, M., Mowry, T. C., Teodorescu, R., . . . Schlosser, S.

W. (2006). Log-based architectures for general-purpose monitoring of deployed code. In

Proceedings of the 1st Workshop on Architectural and System Support for Improving

Software Dependability (pp. 63-65), San Jose, California.

Conner, W., Iyengar, A., Mikalsen, T., Rouvellou, I., & Nahrstedt, K. (2009). Trust management

framework for service-oriented environments. A trust management framework for

service-oriented environments. In Proceedings of the 18th International Conference on

World Wide Web, Spain, 891-900.

Course Hero. (n.d.). What is the internet? Retrieved from

https://www.coursehero.com/file/23710838/What-is-the-Internet/

Douceur, J. R. (2002). The Sybil attack. In Proceedings of the 1st International Workshop on

Peer-to-Peer Systems (IPTPS), Cambridge.

Ericsson White Paper. (2015). Cloud security architecture. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.670.4602&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.670.4602&rep=rep1&type=pdf

81

Friedman, E., Resnick, P., & Sami. R. (2007). Algorithmic game theory. New York, NY:

Cambridge University Press.

Haeberlen, A., Kouznetsov, P., & Druschel, P. (2007). Peer review: Practical accountability for

distributed systems. In SOSP 07 Proceedings of 21st ACM SIGOPS Symposium on

Operating Systems Principles, Stevenson, Washington.

Karlof, C., & Wagner, D. (2003). Secure routing in wireless sensor networks: Attacks and

countermeasures. Ad hoc Networks Journal, 1(2-3), 293-315.

Kumar, V. (2016). Brief review on cloud computing. International Journal of Computer Science

and Mobile Computing, 5(9), 1-5.

Lai, K., Feldman, M., Stoica, I., & Chuang, J. (2003). Incentives for cooperation in peer-to-peer

networks. In Proceedings of the 1st Workshop on Economics of Peer-to-Peer Systems,

University of Berkley, CA.

McCune, J. M., Parno, B. J., Perrig, A., Reiter, M. K., & Isozaki, H. (2008). Flicker: An

execution infrastructure for TCB minimization. In EuroSys, 2008, Glasglow, Scotland.

Mogul, J. C. (2005). Operating systems should support business change. In Proceedings of 10th

Workshop on Hot Topics in Operating Systems HotOS X, Santa Fe, NM, 43-48. Retrieved

from https://pdfs.semanticscholar.org/a2b4/29090c4755dffa9b3f53f9c6132be9152f53.pdf

Molka, R., Boukadi, K., & Ben-Abdallah, H. (2015). Cloud description ontology for service

discovery and selection. In Software Technologies, 2015 10th International Joint

Conference.

82

Noor, T. H., Sheng, Q. Z., Yao, L., Dustdar, S., & Ngu, A. H. (2015). Cloudarmor: Supporting

reputation-based trust management for cloud services. In IEEE Transactions on Parallel

and Distributed Systems, 0(0).

Ns-2 Simulator. (n.d.). What is Sybil attack? Retrieved from http://ns2simulator.com/sybil-

attack-in-ns2/

Rowaihy, H., Enck. W., McDaniel, P., & La Porta, T. (2007). Limiting Sybil attacks in structured

p2- networks. In INFOCOM, 26th IEEE International Conference on Computer

Communication, 2956.

Sekar, V., & Maniatis, P. (2011). Verifiable resource accounting for cloud computing services. In

Proceedings of the 3rd ACM Workshop on Cloud Computing Security, Chicago, IL. 21-26.

Sharif, M. I., Lee, W., Cui, W., & Lanzi, A. (2009). Secure-VM monitoring using hardware

virtualization. In Proceedings of the 16th ACM Conference on Computer and

Communications Security, Chicago, IL.

Shrivastva, A., Gupta, S., & Tiwari, R. (2014). Cloud-based testing techniques. International

Journal of Computer Applications, 104(5), 975-8887.

Vyshnavi, U., & Yadav. P. P. (2016). Trust management of cloud services using credibility

assessment technique. International Journal and Magazine of Engineering, Technology,

Management and Research, 3(10), 514-519. Retrieved from

http://www.ijmetmr.com/oloctober2016/UVyshnavi-PPraveenYadav-71.pdf

Xiong, L., & Liu, L. (2004). Peertrust: Supporting reputation-based trust for peer-to-peer

electronic communities. IEEE Transactions on Knowledge and Data Engineering, 16(7),

843-857.

83

Zhou, F., Goel, M., Desnoyers, P., & Sundaram, R. (2011). Scheduler vulnerabilities and attacks

in cloud computing. Retrieved from https://archive.org/stream/arxiv-

1103.0759/1103.0759#page/n0/mode/2up

84

 Appendix A: Code Base

Some of the main parts of the code base in the system implementation are as below: -

Frontend Code Base

Home Page

<%@page contentType=“text/html” pageEncoding=“UTF-8”%>

<!DOCTYPE html>

<html xmlns=“http://www.w3.org/1999/xhtml”>

 <head>

 <meta http-equiv=“content-type” content=“text/html; charset=utf-8” />

 <title>CloudArmor</title>

 <meta name=“keywords” content=““ />

 <meta name=“description” content=““ />

 <link href=“styles.css” rel=“stylesheet” type=“text/css” media=“screen” />

 <link href=‘http://fonts.googleapis.com/css?family=Merienda+One’ rel=‘stylesheet’ type=‘text/css’ />

 </head>

 <body>

 <div id=“header_bg”>

 <div id=“logo”>

 <h1>CloudArmor</h1>

 <center>

 <h1 style=“font-size: 26px;line-height: 30px;font-family: ‘Merienda One’,

cursive;”>Supporting Reputation-based

 Trust Management
 for Cloud Services</h1>

 </center>

 </div>

 <div id=“prew_img”>

 <ul class=“round”>

85

 <script type=“text/javascript” src=“lib/jquery.js”></script>

 <script type=“text/javascript” src=“lib/jquery.roundabout.js”></script>

 <script type=“text/javascript”>

 $(document).ready(function () {

 $(‘.round’).roundabout();

 });

 </script>

 </div>

 <div id=“menu”>

 Home

 User Details

 Service_Details

 Feedback

 Log out

 <div class=“clear”></div>

 </div>

 <div id=“black_bg” style=“height: 300px;color: white;background: url(‘images/tms.png’)”>

86

 </div>

 </div>

 </body>

</html>

Publishing Feedback to Backend DB

<%@page import=“com.cloudarmor.kk.action.Dbconnection”%>

<%@page import=“java.sql.ResultSet”%>

<%@page import=“java.sql.Statement”%>

<%@page import=“java.sql.Connection”%>

<%

 Connection con = null;

 Statement st = null;

 Statement st1 = null;

 ResultSet rs = null;

 String[] data = request.getQueryString().split(“,”);

 System.out.println(“data[0-]”+data[0]);

 String pitem = data[0].replace(“%20”,” “);

 System.out.println(“data[0-1]”+pitem);

 try {

 con = Dbconnection.getConnection();

 st = con.createStatement();

 rs = st.executeQuery(“select * from feed where status=‘No’ AND feedback=‘“ + pitem + “‘ AND

uid=‘“ + data[1] + “‘“);

 if (rs.next()) {

87

 st1 = con.createStatement();

 int i = st1.executeUpdate(“update feed set status=‘Yes’ where status=‘No’ AND feedback=‘“ +

data[0] + “‘AND uid=‘“ + data[1] + “‘“);

 if (i != 0) {

 response.sendRedirect(“tpfeedback.jsp?pmsg=sucess”);

 }

 } else {

 response.sendRedirect(“tpfeedback.jsp?msgg=failed”);

 }

 } catch (Exception ex) {

 System.out.println(“Exception error in Publish”+ex.getMessage());

 }

%>

Cart Details Page

<%@page import=“com.cloudarmor.kk.action.Dbconnection”%>

<%@page import=“java.sql.ResultSet”%>

<%@page import=“java.sql.Statement”%>

<%@page import=“java.sql.Connection”%>

<%@page contentType=“text/html” pageEncoding=“UTF-8”%>

<!DOCTYPE html>

<html xmlns=“http://www.w3.org/1999/xhtml”>

 <head>

 <meta http-equiv=“content-type” content=“text/html; charset=utf-8” />

 <title>CloudArmor</title>

88

 <meta name=“keywords” content=““ />

 <meta name=“description” content=““ />

 <link href=“styles.css” rel=“stylesheet” type=“text/css” media=“screen” />

 <link href=‘http://fonts.googleapis.com/css?family=Merienda+One’ rel=‘stylesheet’ type=‘text/css’ />

 </head>

 <style>

 #signup-form {

 width: 500px;

 margin: 0 auto;

 margin-top: 50px;

 margin-bottom: 50px;

 background: #fff;

 padding: 40px;

 border: 10px solid #f2f2f2;

 height: 200px;

 border-radius: 25px;

 }

 </style>

 <body>

 <div id=“header_bg”>

 <div id=“logo”>

 <h1>CloudArmor</h1>

 <center>

 <h1 style=“font-size: 26px;line-height: 30px;font-family: ‘Merienda One’,

cursive;”>Supporting Reputation-based

 Trust Management
 for Cloud Services</h1>

 </center>

89

 </div>

 <div id=“prew_img”>

 <ul class=“round”>

 <script type=“text/javascript” src=“lib/jquery.js”></script>

 <script type=“text/javascript” src=“lib/jquery.roundabout.js”></script>

 <script type=“text/javascript”>

 $(document).ready(function () {

 $(‘.round’).roundabout();

 });

 </script>

 </div>

 <div id=“menu”>

 Home

 User Profile

 Search

 Service List

90

 Log out

 <div class=“clear”></div>

 </div>

 <div id=“black_bg” style=“height: 300px;background: transparent”>

 <div id=“signup-form” style=““>

 <center> <h1 style=“margin-top: 3px”>Cloud Order Details</h1></center>

 <table style=“margin-left: 100px;text-align: center” border=“1”>

 <tr>

 <th>Service Model</th>

 <th>Service Name</th>

 <th>Duration</th>

 <th>Total Price</th>

 </tr>

 <tr>

 <%

 String uname = session.getAttribute(“email”).toString();

 String pitem = null;

 try {

 Connection con = Dbconnection.getConnection();

 Statement st = con.createStatement();

 ResultSet rs1 = st.executeQuery(“select * from cart where status=‘NO’ AND

name=‘“ + uname + “‘“);

 while (rs1.next()) {

 pitem = rs1.getString(“productitem”);

 %>

 <td><%=rs1.getString(“productname”)%></td>

91

 <td><%=rs1.getString(“productitem”)%></td>

 <td><%=rs1.getString(“quantity”)%> Days</td>

 <td><%=rs1.getString(“total”)%></td>

 </tr>

 <%

 }

 } catch (Exception e) {

 System.out.println(“Exception Error in cartdetails “ + e.getMessage());

 }

 %>

 </table>

 <a href=“paction.jsp?<%=pitem%>“><button class=“button” style=“margin-left:

200px;width: 100px;height: 30px;background: orange;border: currentColor;border-radius: 10px;font-size:

15px;”>Buy Cloud</button>

 </div>

 </div>

 </div>

 </body>

</html>

Backend Code Base

Process Upload Request

package com.cloudarmor.kk.action;

import java.io.DataInputStream;

import java.io.File;

92

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.PrintWriter;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.util.UUID;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

public class Upload extends HttpServlet {

 /**

 * Processes requests for both HTTP <code>GET</code> and <code>POST</code>

 * methods.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

93

 throws ServletException, IOException {

 response.setContentType(“text/html;charset=UTF-8”);

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 HttpSession session = request.getSession(true);

 String saveFile = ““;

 String contentType = request.getContentType();

 if ((contentType != null) && (contentType.indexOf(“multipart/form-data”) >= 0)) {

 DataInputStream in = new DataInputStream(request.getInputStream());

 int formDataLength = request.getContentLength();

 byte dataBytes[] = new byte[formDataLength];

 int byteRead = 0;

 int totalBytesRead = 0;

 while (totalBytesRead < formDataLength) {

 byteRead = in.read(dataBytes, totalBytesRead, formDataLength);

 totalBytesRead += byteRead;

 }

 String file = new String(dataBytes);

 saveFile = file.substring(file.indexOf(“filename=\”“) + 10);

 saveFile = saveFile.substring(0, saveFile.indexOf(“\n”));

 saveFile = saveFile.substring(saveFile.lastIndexOf(“\\”) + 1, saveFile.indexOf(“\”“));

 int lastIndex = contentType.lastIndexOf(“=“);

 String boundary = contentType.substring(lastIndex + 1, contentType.length());

 int pos;

 pos = file.indexOf(“filename=\”“);

 pos = file.indexOf(“\n”, pos) + 1;

 pos = file.indexOf(“\n”, pos) + 1;

94

 pos = file.indexOf(“\n”, pos) + 1;

 int boundaryLocation = file.indexOf(boundary, pos) - 4;

 int startPos = ((file.substring(0, pos)).getBytes()).length;

 int endPos = ((file.substring(0, boundaryLocation)).getBytes()).length;

 File ff = new File(saveFile);

 System.out.println(“The File Location “ + ff);

 FileOutputStream fileOut = new FileOutputStream(ff);

 fileOut.write(dataBytes, startPos, (endPos - startPos));

 fileOut.flush();

 fileOut.close();

 /*Random Key Generation*/

 String imgid = UUID.randomUUID().toString().substring(0, 3);

 /**/

 Connection = null;

 ResultSet rs = null;

 PreparedStatement psmnt = null;

 FileInputStream fis;

 try {

 connection = Dbconnection.getConnection();

 File f = new File(saveFile);

 psmnt = connection.prepareStatement(“insert into product(imgid,image,iname)values(?,?,?)”);

 fis = new FileInputStream(f);

 psmnt.setString(1, imgid);

 psmnt.setBinaryStream(2, (InputStream) fis, (int) (f.length()));

 psmnt.setString(3, saveFile);

 int s = psmnt.executeUpdate();

95

 if (s > 0) {

 session.setAttribute(“imgid”, imgid);

 session.setAttribute(“fname”, saveFile);

 System.out.println(“Uploaded successfully !”);

 response.sendRedirect(“additems.jsp”);

 } else {

 System.out.println(“Error!”);

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 }

 }

 // <editor-fold defaultstate=“collapsed” desc=“HttpServlet methods. Click on the + sign on the left to

edit the code.”>

 /**

 * Handles the HTTP <code>GET</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

96

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP <code>POST</code> method.

 *

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 *

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return “Short description”;

 }// </editor-fold>

97

}

Email Sender

package com.cloudarmor.kk.action;

import com.sun.mail.smtp.SMTPTransport;

import java.util.Properties;

import javax.mail.Message;

import javax.mail.MessagingException;

import javax.mail.PasswordAuthentication;

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.URLName;

import javax.mail.internet.InternetAddress;

import javax.mail.internet.MimeMessage;

public class Mail {

 public static boolean sendMail(String msg, String userid, String to) {

 Properties props = new Properties();

 props.put(“mail.smtp.host”, “smtp.gmail.com”);

 props.put(“mail.smtp.socketFactory.port”, “465”);

 props.put(“mail.smtp.socketFactory.class”,

 “javax.net.ssl.SSLSocketFactory”);

 props.put(“mail.smtp.auth”, “true”);

 props.put(“mail.smtp.port”, “465”);

98

 // Assuming you are sending email from localhost

 Session = Session.getDefaultInstance(props,

 new javax.mail.Authenticator() {

 protected PasswordAuthentication getPasswordAuthentication() {

 return new PasswordAuthentication(“cloudmail107@gmail.com”, “cloudmail123”);

 }

 });

 System.out.println(“Message “ + msg);

 try {

 Message = new MimeMessage(session);

 message.setFrom(new InternetAddress(userid));

 message.setRecipients(Message.RecipientType.TO,

 InternetAddress.parse(to));

 message.setSubject(“Status Mail “);

 message.setText(msg);

 Transport.send(message);

 System.out.println(“Done”);

 return true;

 } catch (MessagingException e) {

 System.out.println(e);

 e.printStackTrace();

 return false;

 // throw new RuntimeException(e);

99

 }

 }

}

Maintaining DB Connection

package com.cloudarmor.kk.action;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.SQLException;

public class Dbconnection {

 public static Connection con;

 public static Connection getConnection() throws ClassNotFoundException, SQLException

 {

 Class.forName(“com.mysql.jdbc.Driver”);

 con = DriverManager.getConnection(“jdbc:mysql://localhost:3306/cloudarmor”,”root”,”root”);

 return con;

 }

}

100

Appendix B: Screenshots

Home Page

User Login Page - Registration

101

Cloud Server Login Page

102

Cloud Server Home Page

Add Service

103

104

Service List

Access

105

List

User Login

106

IDM

107

108

User Login

109

110

111

112

TM

	St. Cloud State University
	theRepository at St. Cloud State
	8-2018

	Cloudarmor: Supporting Reputation-Based Trust Management for Cloud Services
	Unmesha Punyamurthula
	Recommended Citation

	tmp.1532705887.pdf.2caYu

