St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2018

Creating A Fake Cryptocurrency Unit

Sai Venkatesh Pabba
spabba@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Pabba, Sai Venkatesh, "Creating A Fake Cryptocurrency Unit" (2018). Culminating Projects in Information Assurance. 72.
https://repository.stcloudstate.edu/msia_etds/72

This Starred Paper is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more

information, please contact rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/72?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Creating a Fake Cryptocurrency Unit

by

Sai Venkatesh Pabba

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfilment of the Requirements
for the Degree
Master of Science

in Information Assurance

December, 2018

Starred Paper Committee
Guster Dennis, Chairperson
Lynn Collen
Balasubramanian Kasi

Abstract

In the recent years, cryptocurrencies gained lots of popularity. Many new
cryptocurrencies are introduced day by day. Though new cryptocurrencies are being
introduced, they are based on the same Blockchain technology. Cryptocurrencies are
virtual currencies and differ from traditional money in a way which made them very
popular among the users. Bitcoin which was the first cryptocurrency introduced by
Satoshi Nakamoto in late 2008 as a Peer-to-Peer Electronic cash system. The most
important feature of this system was that it was de-centralized meaning that there is no
centralized authority controlling the payment network. Instead, every single entity of the
network realizes all the tasks of the centralized server. Cryptocurrencies rely on miners
who verify the transactions and add the block to the blockchain. Miners depend on high
computation power to solve a mathematical problem following a mining algorithm which
also rewards them with some cryptocurrency.

This paper provides a comprehensive overview of the technology behind
cryptocurrencies and explores the security and privacy issues that are involved with
cryptocurrencies and introduces a mechanism to create fake cryptocurrency units.

Keywords: cryptocurrency, Bitcoin, miner, blockchain

Table of Contents

Page

LISt Of TADIES ...t 5

IS 0 T U SRS 6
Chapter

R [o110 T Ut i o o PP PR T PP PPPPPPPPPPPPRP 7

INEFOAUCTION ... e e e e as 7

Problem Statementoooo i 9

Nature and Significance of the Problem...............c.ooooiiiii . 9

The Objective of the Research...............cviiiiiiiiiiiiicee 10

Research QUESHIONSiiiieiiiieiiiiii e e e e e e e e e eeeenes 10

Limitations Of the STUAYuuuuiiiiiiiiiiiiiiiiiii s 10

DefiNitioN Of TEIMSuiiiiiiiiiiiiiii i 11

SUMIMI@TY ..ttt ettt e e e e e et e e e e e e e e e e s s e e e e 11

[I. Background and Review Of LItEraturecccccvveviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 12

INEFOAUCTION ..o 12

Background Related to the Problemccccviiiiiiiiiiiiiiiiiiiiiis 12

Literature Related to the Problem ... 29

Literature Related to the Methodologyuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiees 31

SUMIMI@TY ..ottt e e e e e e et e e e e e e e e e e e e e na e e e e 32

1 T\ =31 g o T (o] (oo PP 33

INEFOAUCTION ..o 33

DeSign Of the STUAY.........uuiiiiiiiiiiiiiiiiiiii i 33

Chapter Page
D= 1= W @] | [T ox 1o o PSRRI 39

Tools and TeChNOIOGY........coooiiiiiiiiiii e 39

SUMMIAIY ...ttt e ettt e e ettt e e et et e e e e eebn e e e eeebn e e e eeenanaaaeees 55

V. ANAlYSIS Of RESUILS.....cciiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 56
oo 18 o 1o o [PPSR 56

Data PreSentationcoiieeieiieiiiiiiiie et e e e e et e e e e e eeeeee 56

DAt ANBIYSIS ...ttt 59

RESUIES et e et eeeaaarne 61

SUMIMI@TY ..ttt ettt e e e e e e e e e e e e e e e e e s s nn e e e e 62

V. Conclusions and FUtUre WOIK...........coiiieeiiiiiiiiiie e 63
oo 18 o 1o o ISP 63

9 o 0 7] o] o USSR 63

(@] 3 Tod 18110 o 1P 64

FULUIE WOTK ...ttt e e e e e e e e e et e e e e e e e e eeeene 64

] (=] (=] 1= PRSP 65

APPENTIX et 68

Table

1.

2.

Cryptocurrencies

Script Operations

List of Tables

and hashing algorithms ..o e,

Figure

10.
11.
12.
13.
14.
15.
16.
17.

18.

List of Figures

Page
Shares Of CryPLtOCUITENCIES........uviii e e e e e e e e e e e e eeaeaes 8
Market cap Of CryPtOCUITENCIES.uvuiiiieieeeieeeece e 9
Size Of DIOCKCNAIN ... 13
Structure of BIOCKCNAINoooiiiiiiiii e 14
[lustration of POW SYSIEMScooiiiiiiiiiiii e 19
Splitting the padded message into bIOCKS ..o, 21
INItIal NASNES ... 21
ShUffling the DIOCKS ... e e e eaanes 22
Calculating Hash Merkle ROOL............c.ooviiiiiiiii e 28
Flowchart for implementing the simulation network...................ccovvviiiiiineeeen, 37
Flowchart for implementing MiNers..........cooovviiiii e 38
Installing Bitcore dependencCiesS............eeiieieeiiiiiiiiicie e 41
Bitcore Downloading blockchain.............cooovviiiiiiii e 42
Starting the mining apPliCatioNccooiiiiiiiiiii e 57
Addresses generated by the applicationccccoooiiiiiiiiii e, 58
Application mining DItCOINSoooiiiiiii e 59
Adding the blocks to the blockchain.coooiiiiii e, 60
Fake coins added to the Chain................uuuiiiiiiiiiiiiiiis 62

file:///C:/Users/saive/Downloads/CREATING%20A%20FAKE%20CRYPTO-CURRENCY%20UNIT.docx%23_Toc533976729
file:///C:/Users/saive/Downloads/CREATING%20A%20FAKE%20CRYPTO-CURRENCY%20UNIT.docx%23_Toc533976730

Chapter I: Introduction
Introduction

Since the creation of Bitcoin in 2009, many cryptocurrencies have been
introduced. These cryptocurrencies have attracted many investors. Bitcoin is the most
popular cryptocurrency saw a peak conversion rate of $19,783.21 on December 17,
2017 (Higgins, 2017). This surge in the price of bitcoin was due to growing popularity
among the users and miners. Due to this increased popularity of cryptocurrencies, many
financial institutions began accepting cryptocurrencies as a form of payment. The first
bitcoin ATM was installed in a coffee shop in Canada which allows users to convert
bitcoins to Canadian dollars and vice-versa (Who is accepting bitcoin). Overstock.com
had started accepting bitcoin for payments since 2014, and since then many other
websites like WordPress, Reddit, Namecheap, etc. started accepting bitcoins as
payment (Who is accepting bitcoin).

A cryptocurrency is a peer-to-peer digital exchange system in which
cryptography is used to generate and distribute currency units (Farell, 2015). The main
essence of cryptocurrencies is in the concept of Blockchain technology. Blockchain
technology involves processing a transaction without no centralized authority. In usual
monetary systems, there will be a central authority (usually a bank) who overlooks the
entire system. This authority is responsible for maintaining verify, validate, and process
the transactions, log them, and lets the user know about the status of the transaction.
On the other hand, decentralized monetary systems have no such centralized system to

handle and monitor the transactions (Nakamoto, 2008). The main concept behind this

8
decentralized currency is the anonymity of the transaction. These kinds of systems are

realized through Blockchain technology.

Other 826
cryptos
Litecoin 13’\‘
2% \

NEM3% _—
Bitcoin
Ripple 46%
16%
Ethereum

20%

Figure 1: Shares of cryptocurrencies (source: https://www.ofwealth.com)

The above figure shows the shares of different cryptocurrencies in the market.
Bitcoin takes the highest share of the market with 46% of the whole share which is
followed by Ethereum with a 20% share followed by Ripple with a 16% share. NEM
holds a share of 3%, Litecoin holds 2% of the share, and the rest hold about 13%

altogether.

https://www.ofwealth.com/cryptocurrencies-boom-bubble/

Problem Statement

Cryptocurrency units usually have a value that is higher than most traditional
currency units. For example, a single bitcoin costs around 8000 US dollars. Given the
conversion rates, fake cryptocurrency units can cause a huge amount of loss to the
economy.

This research will help explore the attacks that involve creating an illegitimate
cryptocurrency unit by analyzing the algorithms involved in the cryptocurrency, find the
flaws in them to implement and prove that a fake cryptocurrency unit can be created.
Nature and Significance of the Problem

There is a rapid increase in the market cap of cryptocurrencies in recent years.

Figure 2 shows the market cap of cryptocurrencies from April 2017 to April 2018.

om 1d 7d 1m 3m 1y YID AL From | Apr 14,2017 | To | Apr

24h Vol

I ik ‘||||||||||||I||||||||||||I|||I““ll“l”|||I||||||||I|II||||I||II|IIIIIIIIII||||I|III|I|||||||||||..|||||
Dec'17 Jan 18 Feb 18 Mar 18 Aprg

May 17 Jun 7 7 Aug"7 sep'17 Oct 17 Nov'17

Market Cap @ 24h Vol

Figure 2: Market cap of cryptocurrencies. (source: https://coinmarketcap.com/charts/)
The figure above shows the market cap of cryptocurrencies. The market is
almost about 750 billion US Dollars. Considering the amount of money involved in these
cryptocurrencies, adding a fake cryptocurrency unit to the system creates a huge loss to

legitimate users of the cryptocurrency. If users come to know that a certain

cryptocurrency unit can be duplicated, they might no longer want to hold their crypto

10
coins and might decide to sell them. Lack of users will lead to a huge downfall in the

prices of these cryptocurrency coins thereby pushing legit users and investors into a
huge loss.
The Objective of the Research

The primary objective of this research is to observe various cryptocurrencies to
find out the vulnerabilities in them and determine how they would react to an attack
trying to duplicate cryptocurrency units. Finally, come up with a mechanism to create a
duplicate crypto coin using the details found from the research.
Research Questions

How secure are the cryptocurrency networks?

What are the different algorithms that are being used in cryptocurrency systems?

What kind of security mechanisms are in place to avoid attacks on cryptocurrency
networks?

Are there any known vulnerabilities in the mechanisms that are being used to
implement the cryptocurrency system?

How does the network respond to attacks on any of its nodes?

If an attack is made on a node, how does the network handle the situation to solve
the problem?

What happens if a node is acting maliciously?
Limitations of the Study

Cryptocurrency networks are usually very huge and involve some thousands of
nodes forming the backbones of the network. These nodes usually have high

computational capabilities. So, it is not feasible for an individual to overpower the

11
computing power of these nodes put together. Also attacking these networks would be

illegal and might incur a loss to some user to the cryptocurrency network.
Definition of Terms

A cryptocurrency is a peer-to-peer digital exchange system in which
cryptography is used to generate and distribute currency units (Farell, 2015). A
duplicate cryptocurrency unit is something that gets added to blockchain against the
cryptocurrency protocol and gets into circulation in the network. It also talks about the
final objective.
Summary

This chapter discusses the basics of cryptocurrency starting with what a
cryptocurrency is and how important they are by introducing their market cap. It talks
about the research work that the paper concentrates on and the hurdles that should be
overcome for the research to succeed. The next chapter talks about the previous work
that is involved in securing cryptocurrency networks and the working of the

cryptocurrency networks in greater detail.

12
Chapter Il: Background and Review of Literature

Introduction

In this chapter, we will be discussing the working of various cryptocurrency
networks, mechanisms involved in them and their working. This chapter also talks about
the previous literature related to the research area and provides an opinion about those
works.

Background Related to the Problem

The blockchain is a database which stores the transactions that were performed
using a cryptocurrency. A blockchain creates a sort of digital ledger which constitutes
blocks. These blocks contain the data related to the transaction and are linked to each
other to form a chain-like structure hence the name blockchain.

Each node in blockchain is identified by a hash value that is computed using a
hashing algorithm. Every block in the chain contains the hash value of its previous block
thereby linking the blocks together. A single block can have multiple child blocks but can
have only one parent block (Singh & Singh, 2017). Each node on the network will
maintain a copy of this chain. In case of Bitcoin, on an average, a block gets added to
the chain for every 10 minutes (Kaushal, Bagga, & Sobti, 2017). As of 04/05/2018 19:00

the length of blockchain is 163,278MB.

13

Source: blockchain.info

175,000

150,000

125,000

100,000

=

75,000

50,000

25,000

Figure 3: Size of blockchain (Y-axis) vs. time (X-axis) (Source: blockchain.info)

The figure above shows the plot of the size of blockchain in megabytes to time in
years starting from 2009. As it can be understood from the figure, the size of blockchain
took a sudden surge from mid-2012, and since then it kept growing until it reached the
size of approximately 175,000 megabytes. This is a huge amount of data considering
that only a minimal amount of data is put in each block along with a header. Hash of the
previous block and the hash of the entire data to be stored in the block along with the
difficulty level and the create coin transaction for the miner who added the block to the

chain.

14

Blockchain
|
1
4N Z\
Block 1 1073 Bloc 2 1073 Block 3
Header Header Header
o Hash value of Hash value of Hash value of
Connection Previous Block 15[previous Block 19 Previous Block
of Blocks Header Header Header
Root of Hash Root of Hash Root of Hash
Tree Tree Tree
A
X1 -1 ™31
™2 nR-2 ™2
TX1n -0 ™3

0 Hash function

Collection of
Transactions

Figure 4: Structure of Blockchain (Source: hitps://www.pinterest.com)

The above figure shows the structure of part of a blockchain. The very first block
in the blockchain is called the Genesis block. Every block in the chain can have a
variable number of transactions. Usually, all the transactions that are generated in a 10-
minute period are put into a block. This number usually ranges from 1000 to 3000. A
unique hash can identify every block in the chain.

Every block contains a header that describes the block, i.e., it contains the
metadata about the block, the transactions, Merkle root of the transactions. The hash is
generated from all these fields, and the block itself would be added to the chain by a

miner.

https://www.pinterest.com/pin/326511041719619427/

15
Table 1: Cryptocurrencies and hashing algorithms (source: https://bitcoinguide.online)

COIN HASH ALGORITHM
Bitcoin (BTC) SHA256
Ethereum (ETH) Sash
Litecoin (LTC) Scrypt
DigitalCash (DASH) X11
Monero (XMR) CryptoNight
Nxt (NXT) PoS
Ethereum Classic (ETC) Ethash
Dogecoin (DOGE) Scrypt
Bitshares (BTS) SHA-512
DigiByte (DGB) Multiple
BitcoinDark (BTCD) SHA256
CraigsCoin (CRAIG) X11
Bitstake (XBS) X11
PayCoin (XPY) SHA256

https://bitcoinguide.online/a-list-of-cryptocurrency-algorithms/
https://www.cryptocompare.com/coins/btc/overview
https://www.cryptocompare.com/coins/eth/overview
https://www.cryptocompare.com/coins/ltc/overview
https://www.cryptocompare.com/coins/dash/overview
https://www.cryptocompare.com/coins/xmr/overview
https://www.cryptocompare.com/coins/nxt/overview
https://www.cryptocompare.com/coins/etc/overview
https://www.cryptocompare.com/coins/doge/overview
https://www.cryptocompare.com/coins/bts/overview
https://www.cryptocompare.com/coins/dgb/overview
https://www.cryptocompare.com/coins/btcd/overview
https://www.cryptocompare.com/coins/craig/overview
https://www.cryptocompare.com/coins/xbs/overview
https://www.cryptocompare.com/coins/xpy/overview

16
A wallet may be considered as a piece of software or hardware that holds private

keys associated with a cryptocurrency user. These wallets are responsible for storing
the private keys of a user securely. It is very important that these private keys remain
private because anyone who knows the private key can access all the crypto coins of a
user and if a user loses access to his private key, he won'’t be able to access his crypto
coins. We will be discussing this in the next sections.

Every user of a cryptocurrency has a public address associated with it. This
address will be used by the blockchain to identify the user. When the user decides to
perform a transaction, which may be buying some crypto coins for himself or sending
crypto coins to some other user, the transaction will contain the public address of the
sender, receiver and the amount that must be sent. This entire transaction is then
signed by using the user’s private key which will be validated by the nodes in the
network by using public keys.

So, as explained earlier, if a user loses his private key, he will lose access to his
entire cryptocurrency as he no longer has a private key that is associated with the coins.
Once the nodes in the network have validated the transaction, it is put into a block
which in turn is added to the blockchain. To calculate a user’s balance, all the
transactions associated with the user’s address are to be collected from the blockchain
and then put together to get the final balance.

When a user who has a wallet creates a transaction, this transaction will be
verified by the nodes in the network. This process of verifying a transaction and adding
it to the blockchain is called mining. Mining is done by miners who turn a huge volume

of data into a hash of fixed length. Other miners should then accept this hash in the

17
network. If most of the miners accept this hash, only then it will be added to the

blockchain (Singh & Singh, 2017). If a person tries to create a fake transaction, this
transaction cannot be validated by other miners and will be rejected. All that it would
create is a nuisance in the network and is very easily rectified.

When a miner successfully adds a block to the blockchain, the node gets
rewarded with some Bitcoins which are generated through a coin creation transaction
with the recipient address as the node’s address (Kaushal, Bagga, & Sobti, 2017). In
turn for verifying the transactions, the miners get to keep the rewarded coins generated
during the mining process. Whenever a user wants to perform a transaction, the user
will be charged a transaction fee which is proportional to the amount to of data being
added to the blockchain, and this transaction fee goes to the miner who adds the block
to the blockchain.

All the cryptocurrencies are based on the decentralized public ledger that is
append-only. If any false data gets appended to the chain, it can’t be removed from the
chain as it is very computationally expensive. Therefore, there must be a mechanism to
determine if something that is being added to the blockchain is indeed true. Consensus
algorithms provide such mechanism (Glazer, 2014). Double spending and Byzantine
Generals Problem are the problems faced by currency systems that can be solved
using consensus algorithms.

As the name suggests, Double spending is the problem of spending a unit of
currency twice. Physical currency does not have the problem of double spending

because it is an entity and it must be exchanged to make a purchase but the same

18
doesn’t apply to internet transactions. Cryptocurrencies solve this problem by verifying

the transaction by the nodes in the network (Yu, Shiwen, & Li, 2017).

Byzantine Generals problem is the problem that is faced by distributed systems.
It occurs when a node in the network is infected and is acting maliciously. So, there
should be a mechanism to differentiate data that has been altered or generated by
malicious nodes. Cryptocurrencies solve this problem by using consensus algorithms
(Mingxiao, Xiaofeng, & Zhe, 2017).

In PoW, the miner must generate a hash using a random nonce and the data in
the transaction and the hash from the previous block satisfying a certain level of
difficulty. The network automatically adjusts the level of difficulty to compensate for the
hash rate. If the time taken to add a block takes less time than the expected time, then
the difficulty level is increased and vice versa (Sleiman, Lauf, & Yampolskiy, 2016).

The above figure shows the working of the Proof of Work consensus mechanism.
The upper part of the figure shows the working of the PoOW systems at a very high level.
For a miner to add a block, he should take the hash from the previous block, the data of
the new block, Merkle root of the transactions and then the miner must select an
incremental nonce value and put it through a hashing algorithm to generate a hash. The
miner then compares this hash to the target value. If the hash value is less than the
target value then, the block is accepted and gets added to the chain. The target value is
calculated from a difficulty value which is set automatically by the network depending on

the hash rate.

19
THE BITCOIN MINING SAGA - PART 11
By Patricia Estevao

What is Proof of Work (PoW)?¢

It's a method to ensure that the information (the new block) was
difficult (costly, time-consuming) to be made.

It costs processing Which can be translated to:
power hardware, energy and time

It's easy, on the other hand, for others to check if the reguirements were met.

s IN PRACTICE .
(made simple)

BEGIN HERE

Proposed
Header of the new block NONCE (a Increment
most recent incremental
block number)

Mining
Difficulty

Combine
and hash

Determines

HASH
number

Is HASH < Target Value?

MINING
REWARD

You solved

the Pow!

Figure 5: lllustration of POW systems (source: https://www.bitcoinmining.com/what-is-
proof-of-work/)

20
The PoW consensus creates a sense of competition among the miners for the

incentive that is rewarded in addition to the transaction fee. In PoOW systems the
incentive rewarded to the miner gets halved for every four years, and when the
incentive is gone, the only motivation that miners will have is the transaction fee which
might lead miners to abandon mining completely (Tosh, Shetty, & Liang, 2018). The
PoW increases the wastage of computational power to make the mining difficult and it
might lead to a 51% problem and might eventually convert forging into a centralized
task.

The hashing algorithm that we will be using for this research is SHA-256 which is
the algorithm used by bitcoin. The steps involved in the SHA-256 algorithm are as
follows.

Preprocessing.

1. If we consider M as the message to be hashed, and | is the length of M in bits

where | < 2%, then we create the padded message M’ since SHA-256 can
only operate on blocks size in multiples of 512, which is message M plus a
right padding, such that M’ is of length I', a multiple of 512. Specifically, we

use a padding P such that M’ is multiple of 512.

M 0<t<15

(’,.II‘N(‘,‘/[—:) + W- +(7,'5\"‘ ("/:-:5) + ""’_:h 16<t <63

SHR *(x)
SHR "(x)

o™ (x) = ROTR'(x) ® ROTR“®x)
o (x) = ROTR"(x) & ROTR"(x)

a

®

2. M’ is splitinto N blocks of size 512 bits, ranging from M* to MN, and each

block is expressed as 16 input blocks of size 32 bits, My to Mys.

LD ENIERE]

o][1][2][3
1[5[6][7 4[5
8[9

2
BlE
[ro{[11
12 13 14/ 15

||
~al| &

Block: 512 bits

8 9|1011
12)13/14 15

ol [=][=]
DI

M =

=
=
==
==

Input block: 32 bits
M’ M” M"

Figure 6: splitting the padded message into blocks

21

3. To calculate the initial hash H°, square roots of the first eight prime numbers

are calculated. Since prime numbers never have a perfect number, the first

32 bits of their fractional part is taken as H° through H7°

O HY 6al09e667
O HY bb6T7ae85
o =Y 3ceef372
m H" a54£f53a
o HY 510e527f
o HY 9b05688¢c
o HYY 1£83d9%ab
= 7Y Sbelcdl?

Figure 7: initial hashes

Hashing.

1. A message schedule W' is created from four 512-bit message blocks. The

first block of W' is message block M!, and the next three blocks are variations

of M.

22
2. The input blocks are then shuffled. The shuffle function takes a hash wi(t) and

message schedule input block W(t) as inputs. The output of shuffle function is

a hash wi(t+1). The diagram below describes the shuffle function.

E
_c.

= - T - - T -
T @ = @ @ 0 T @

T

wr oM

Figure 8: Shuffling the blocks
3. The new hash H' can be created by using the formula:
Hi() = H71()) + w'(63)()

The same process is to be repeated for each of the input blocks M'if Miis
the last block then, the hash H' produced can be considered as the final hash
output of the algorithm.

Unlike Proof of work technique does not involve any incentive or intense
computation but instead for any user to be able to become a forger (one who mines
coins), he must hold a stake in the network by involving some of his coins. In this
mechanism, the forger puts his coins at stake and if the forger is involved in any
malicious behavior, all his coins, his ability to continue as a forger will be taken away

from him.

23
In PoS, the creator of a new block is chosen deterministically. The forger with

the highest stake will the given the highest priority to forge coins and the second priority
will be given to the one holding the second highest number of coins and so on. Simply
put, the percentage of blocks that can be forged by a forger will be the percentage of
coins that he owns in the whole network (Tosh, Shetty, & Liang, 2018).In PoS systems,
there is no incentive given to the miners. The number of currency units in the entire
network is fixed, and the same coins are circulated throughout the network. The miners
get to keep the transaction fee associated with a block upon successful addition of a
block to the blockchain. Ethereum is the most popular cryptocurrency which is switching
from PoW to PoS They designed a system namely Casper which provides some
defenses against fatal crashes (Griffith, 2017).

Structure of bitcoin block.

1. Magic Number: This is a number that represents that the data contained in a
bitcoin block. Its value is always “OxD9B4BEF9”.

2. Block Size: It is an Integer, and it represents the block size in bytes.

3. Transaction counter: This represents the number of transactions in the bitcoin
block. The number of transactions in the bitcoin block does not have any
restrictions. It is totally up to the miner. The minimum limit is one transaction.
Though there is no maximum limit, the number of transactions that can be
included in the bitcoin block is limited by the size of the total block. The size of
a block can never exceed 1MB.

4. Transactions: These are the transactions that are included in this block.

5.

24
Block Header: This is the header that represents the block and used to

calculate the hash of the entire block by varying the nonce value.

Structure of a bitcoin transaction.

Version: This indicates the version of the Bitcoin protocol being used.
In-Counter: This represents the number of inputs to this transaction.

List of Inputs: These are the list of inputs that are being used in the
transaction.

Out-Counter: It is an Integer and represents the number of outputs of this
transaction. The outputs represent the value of an address.

List of Outputs: This represents the list of outputs of this transaction.

Lock time: Lock time is an integer and can be of two types. If its value is
greater than 500 million, it represents the time in epoch milliseconds after
which the transaction can be added to a bitcoin block. If this value is less than
500 million, it represents the number of blocks that should be added after the

block containing this transaction is added to the blockchain.

Structure of transaction inputs.

1.

Previous Transaction Hash: This represents the previous transaction hash

whose one of the outputs are being used in this transaction.

. Transaction Out-Index: This represents the index of the output the previous

transaction that should be used in this transaction. Indices start at zero.
Input Script Length: This represents the size of the input script.

Input Script: This is the script that proves that the output owner is legitimate.

25
5. Sequence Number: This number is used for replacement and is not currently

not being used as a replacement is disabled.

Structure of transaction outputs.

1. Value: This represents the amount that is being transferred for the current
output in satoshis. A Satoshi is the smallest divisible unit of a bitcoin. Each
Satoshi is worth 108 bitcoins.

2. Output Script Length: It represents the length of the output script.

3. Output Script: This is the script that that is to be satisfied by anyone who
wants to use this output as a part of their input for a transaction.

Structure of a block header.

1. Version: This represents the version of bitcoin that is used for the block.

2. Hash Merkle Root: This represents the Merkle root for the transactions.

3. Hash Previous Block: This represents the hash of the previous block to which
this block is to be linked in the blockchain. This value is the hash of the last
block in the blockchain. The hash is the field that makes the chain by linking
one block to the one before it.

4. Time: The time in epoch milliseconds when this block is generated.

5. Target: The target value at the time of creation of this block. The hash of this
block should be lesser than this target.

6. Nonce: Itis an Integer and is the value that is altered by miners so that hash
of the block is less than the target. Miners typically start with a nonce value of
0 and keep incrementing it for each iteration until they obtain a hash value

that is less than the target.

26

The input and output scripts used by bitcoin are written using a set of instructions

specified by the Script instruction set. Below are few of the instructions used by bitcoin

scripts.

Table 2: Script Operations (Source: https://en.bitcoin.it/wiki/Script)

Word

Description

OP_0, OP_FALSE

An empty array of bytes is pushed onto the stack.

(This is not a no-op: an item is added to the stack.)

OP_PUSHDATA

The next byte contains the number of bytes to be

pushed onto the stack.

OP_INEGATE

The number -1 is pushed onto the stack.

OP_1, OP_TRUE

The number 1 is pushed onto the stack.

Marks transaction as invalid if top stack value is not

OP_VERIFY

true. The top stack value is removed.
OP_DUP Duplicates the top item of the stack.

Puts the number of items of items in the stack onto
OP_DEPTH

the top of the stack.
OP_IFDUP Duplicate the top of the stack if it is not zero.
OP_SWAP The top two items of the stack are swapped.
OP_DROP Removes the top item from the stack.

Adds the size of the item at the top of the stack to
OP_SIZE the stack. This operation does not pop the item on

the stack.

OP_EQUAL

Results in 1 if both the items on the top of the stack
are equal else results in 0. Two items are popped

from the stack by this operation.

OP_EQUALVERIFY

Pops two items from the top of the stack and
compares them. If they are equal, next operation is

performed else exits with a failure.

OP_RIPEMD160

The item on the top of the stack is hashed using
RipeMD160 hashing algorithm and is put back onto

the top of the stack.

The item on the top of the stack is hashed using the

OP_SHA256 SHA256 hashing algorithm, and the result is pushed
back to the stack.
Checks a digital signature to a public key. The item
on top is used for public key, and the item below it is
OP_CHECKSIG

considered a digital signature. It results in 1 if the

digital signature is valid else results in 0.

OP_CHECKSIGVERIFY

Checks a digital signature to a public key. The item
on top is used for public key, and the item below it is
considered a digital signature. If the result is true,

the transaction is considered valid else it is rejected.

27

28
To calculate the hash of a block, the miner starts by calculating the SHA-256

hash of each of the transactions. The order of fields for transaction hashing is version
number, input counter, list of inputs, output counter, list of outputs, lock time. The order
of fields for inputs is a previous transaction hash, output index, input script length, a
sequence number. The order of fields for outputs is value, output script length followed
by output script. All these fields are put together in the specified order, and a SHA-256
hash of the resulting string is calculated. When the miner is done calculating these

hashes, the miner calculates the hash Merkle root for all the transactions.

Merkle Root

HABCD
HaSh(HAB+ H CD)

/\

HaB Hep
Hash(HA+ H B) HaSh(Hc-i-HD)
Hp Hp He Hp
Hash(Tx A) Hash(Tx B) Hash(Tx () Hash(Tx D)

Figure 9 Calculating Hash Merkle Root (Source: https://i.stack.imgur.com/ExJSC.png)

After obtaining the hash Merkle root for the transactions, the block header can be
hashed to get the final block hash. To calculate the block hash, the order of fields is
version, hash of the previous block, hash merkle root for the transaction set, time,
target, nonce. All these fields are put together and then they are hashed twice using

SHA-256 algorithm to get the final hash. It is important to remember that the byte

https://i.stack.imgur.com/ExJSC.png

29
ordering followed by bitcoin systems is big endian. So, the byte ordering for the previous

hash, version, target is to be reversed before calculating the hash.

For a block to be accepted to put in the block chain, the hash value of the block
should be less than the target value. To achieve this, miners alter the nonce and
recompute the hash every time making mining a computationally intensive task. Miners
usually start off at nonce 0 and keep incrementing it after every in-successful hash and
then calculate the hash after every incrementation until they reach the nonce when
included in the block makes the hash value lesser the target value.

Literature Related to the Problem

In Mukhopadhyay, U., Skjellum, A., & Hambolu, O.’s A Brief Survey of
Cryptocurrency Systems, the authors have explained the basics of cryptocurrencies and
the related terms. The paper starts off by explaining the origins of cryptocurrencies all
the way from Chaum creating the first anonymous electronic money system to the latest
cryptocurrencies that are based on blockchain technology. The paper talks about the
basic structure of bitcoin block, the Genesis block and how the links are formed
between the blocks at a very high level (Mukhopadhyay, Skjellum, & Hambolu, 2017).

The paper also talks about the different consensus mechanisms that can be used
in cryptocurrencies also talks about few of the vulnerabilities of each of these
mechanisms. The author talks about the working of 51% attack mechanism
(Mukhopadhyay, Skjellum, & Hambolu, 2017) and then discusses the different
consensus algorithms used by different cryptocurrencies and the hash algorithms

involved in them.

30
In their paper, Zheng, Z., Xie, S., & Dai, H talked about cryptocurrencies and

blockchain technology on the whole. They introduced the structure of blockchain and
explained the link formation in the blockchain. The paper also talks about different
consensus techniques, advantages, and disadvantages associated with each of them.
Then it discusses different issues with cryptocurrencies (Zheng, Xie, & Dai, 2017).

In Sleiman, M. D., Lauf, A. P., & Yampolskiy, R’s Bitcoin Message: Data Insertion
on a Proof-of-Work Cryptocurrency System, they talked about a concept of embedding
messages in a cryptocurrency network. This concept was introduced in Jonathan
Warren’s paper Bit message: A Peer-to-Peer Message Authentication and Delivery
System (Warren, 2012). The authors chose to implement this concept by embedding
the encoded message inside the bitcoin’s blockchain by encoding the message as the
transaction amount and creating a transaction in the blockchain. This approach works
since it is a legit transaction transferring a certain number of bitcoins from one address
to another (Sleiman, Lauf, & Yampolskiy, 2016). But every time they want to send a
message, the message would be accompanied by a transaction fee that goes to the
miners for verifying the transaction and is a high cost for fulfilling the task of sending a
simple message and moreover there is no confidentiality involved as the data would be
posted to a publicly maintained blockchain and the encoding can be broken pretty
easily.

In Ahram, T., Sargolzaei, A., & Sargolzaei,S’s paper on Blockchain Technology
Innovations, they talked about the concept of bitcoin and its applications. The paper
introduces the concept of Blockchain powered health chain, a system where the details

of the patients are to be stored in blockchain which is maintained by a private

31
organization. The paper talks about HIPAA act which addresses privacy of a patient’s

data and blockchain can achieve it (Ahram, Sargolzaei, & Sargolzaei, 2017).

In Nayak, K., Kumar, S., & Miller, A’s paper Stubborn Mining: Generalizing
Selfish Mining and Combining with an Eclipse Attack, they discuss mining in a
mathematical aspect. They talked about selfish mining by using a mathematical
approach and compare it to honest mining and how selfish mining affects honest
miners. They introduce the concept of stubborn mining which is an extension of selfish
mining. In selfish mining, a miner mines and keeps his blocks private when he is in the
lead and cooperates with the network if he is not in the lead. In Stubborn mining, the
miner keeps working on his private chain even when he is not in the lead (Nayak,
Kumar, & Miller, 2016).

Literature Related to the Methodology

In Michael Bedford Taylor's paper The Evolution of Bitcoin Hardware, the author
introduces the working of the bitcoin system. He then introduces what mining is and
how it works and how blocks are generated. The paper mainly focusses on the
hardware involved in the mining and introduces the audience to the concept of hash
rate and why it is important regarding mining and how it has a direct impact on the price
of bitcoin. The paper talks about how ASIC miners have changed the concept of mining
turning it into a race of power-hungry machines mining bitcoins (Michael Bedford Taylor,
2017).

In Lewis Tseng’s paper on Bitcoin’s consistency property, the author speaks
about the consistency property of bitcoin. The paper quotes the bitcoin’s eventual

consistency property as “Without any new transactions, any participants eventually

32
maintain the same Blockchain, i.e., each participant has the same chain at its local

storage.” (Tseng, 2017). The paper provides a simple example transaction where
bitcoin protocol does not follow the eventual consistency property. The situation occurs
when the blockchain is empty and two miners a & b try to add transaction Ta, Tb to the
chain at the same time and the transactions get buffered at the chain and as each of
these miners have added only one block they will only have their block as the chain
thereby violating the eventual consistency (Tseng, 2017).

Bag, S., Ruj, S., & Sakurai, K’s paper on Bitcoin withholding attack talks about
the withholding attack on bitcoin mining pools. The authors start off by explaining what
the bitcoin withholding attack is, and then they introduce a scheme which they used to
implement the withholding attack. Then they talk about the system model for sponsored
withholding attack. They provide mathematical proof for implementing the attack they
introduce their lemmas theorems, and corollaries to prove the attack is feasible. They
end the discussion by saying how a like-minded mining pool can be profited by the
Bitcoin Withholding attack (Bag, Ruj, & Sakurai, 2016).

Summary

This chapter provides a detailed overview of the technology involved in
cryptocurrencies. It introduces the concept of the blockchain, how blockchain works,
how transactions are performed by the users and the involvement of miners in the
transaction to add it to the blockchain. It also explains how miners are benefitted from
mining operations. It introduces consensus mechanisms for mining and their working in
a great level of detail. The chapter ends with the past works done in the field of

cryptocurrencies.

33
Chapter Ill: Methodology

Introduction

This chapter describes the coin duplication attacks which will be implemented in
this study. This chapter describes how the simulation mechanism will be implemented to
create an attack environment and to implement the attack. The design and
implementation details of the attack will be discussed in detail. The chapter also
discusses the algorithms that will be used to implement the system.

Design of the Study

The research design is all about planning the overall strategy which can
effectively address different issues that come up during the implementation. The main
issue with implementing the duplication mechanism is the sheer number of nodes and
miners across the globe. The bitcoin mining network is gigantic regarding computing
power. All the miners involved in the network mine 24/7 to validate the chain. The
miners check each transaction that is added to the chain and ignore any fake
transactions.

To overcome this problem, the attack will be made on a simulation network which
resembles a cryptocurrency network. Designing the simulation network involves the
following steps

1. Learn and understand all the implementation details of the cryptocurrency

system.

2. Try to analyze each algorithm and consensus mechanisms implemented in

the network.

3. Understand the different components of the network and their roles.

34
4. Create and setup virtual machines where the nodes will live.

5. Install and configure the simulation on the nodes that were just created.

6. Setup the cryptocurrency system on the virtual machines and configure the

network.

7. Make a test run inserting a few blocks to make sure that the implementation

works.

The Proof of Work mechanism will be used as consensus mechanism for the
simulation. Bitcoin is one of the most popular cryptocurrencies implementing this
technique. In proof of work implementation, the miner gets new coins with the addition
of a new block to the blockchain in addition to transaction fees. In PoW, the miner must
generate a hash using a random nonce and the data in the transaction and the hash
from the previous block satisfying a certain level of difficulty. The hashes are tough to
generate but can be verified very easily by just computing the hash using the nonce and
comparing to the hash produced by the miner who added the block. For the simulation,
the difficulty level will be level so that the computational power of an ordinary machine
will be able to mine the cryptocurrency coins.

When the simulation is done, it is time to design the main attack. The design
details of the attack are as follows.

1. There will be a node that has bitcoin daemon running on it. This will be a

virtual machine running on the same machine as the miner.

2. Every node and miner in the bitcoin network communicate with each other by

exchanging some bitcoin specific messages on port 8333.

35
. Designing a mechanism where communication is achieved by exchanging

text messages can be daunting experience. There by the attack would be
using a third-party library (insight-api) that is installed on top of bitcoind and
translates these messages into http calls available at certain endpoints.

. The miner will be implemented to communicate to the node via http using the
insight-api.

. The miner will make api calls to get the list of pending transactions from the
node. Since it is up to the miner to include any number of blocks, in this case
we are using 20 transactions. Then the miner adds a coinbase transaction to
the list of transactions which is the block reward for mining the block

according to the bitcoin protocol.

. The miner then adds another transaction to the list of transaction which is

fake and would not be accepted by any other miners connected to the node.
In this case, there is only one miner connected to the node there by there
would be no one to complain about the fake transaction being added to the
block.

. The miner then computes the hash merkle root of these transactions together
and then starts off by computing the hash of the block using a nonce value 0O
and then keeps incrementing it until a valid hash value which is lesser than
the target is obtained by altering the nonce values.

. When such a nonce is discovered, the miner stops and then reports the block

to the node. But there is a catch here. The amount added by these

36
transactions are valid only after the block reaches certain depth (In main-net it

is 6 blocks and in reg-test it is 4 blocks).

9. The miner should add three more blocks to the chain before the bitcoins
added to the previous block are available for spending. Therefore, the same
process is repeated but without adding a fake transaction for three more
times. Therefore, the miner adds four blocks in total to the blockchain.

10.The node can be setup on a virtual machine running on a host because it is
just a storage node and doesn’t need much computation power. The miner on
the other hand must run on the host machine where the computational power

is more than that of a virtual machine.

Create a virtual machine for
setting up the bitcoin node in
reg-test mode

Install NVM on the virtual
machine and then install NPM
and python

Install bitcore on the virtual
machine using the NPM just
installed.

Run the bitcore directly so that
it downloads the block chain
from test-net.

Install In-Sight api and start it.

Figure 10 Flowchart for implementing the simulation network

37

Fetch the transactions from the
bitcoin node

Add the coinbase transaction to the
obtained list of transactions.

Add a Fake transaction to these list
of transactions.

Calculate the hash merkle root of
these transactions.

Insert a nonce value of 0 and
compute the hash of the entire
block.

Increment the nonce value.

Compute the hash of the entire
block using this nonce.

Report the block to the node

Figure 11: Flowchart for implementing miners

38

39
Data Collection

The data needed for this research is algorithms and mechanisms that are used to
implement the cryptocurrencies. The data related to these implementations are freely
available on the internet. Numerous articles describe the mechanisms of
cryptocurrencies in detail. Also, the concept of a decentralized public ledger means that
all the transactions ever made are available to everyone who wants to analyze these
transactions. The details of the transaction amount, wallet address, the block hash, the
address of the miner who mined the block, the number of transactions included in a
block are all available online.

Every year there will be conferences held on the security of cryptocurrencies and
new additions to the cryptocurrency protocols. These conferences discuss security of
the systems and analyze solutions to solve those vulnerabilities. IEEE is a standard
which conducts such surveys every year, and the details of conferences can be
obtained from IEEE website.

Tools and Technology

To implement the attack, we need a target to attack. The real bitcoin network is
huge and is not easier to attack. There are miners guarding the network who are always
validating and verifying the transactions added to the network. There is a new block
being added to the blockchain for every 10 minutes and any fake transactions added to
the chain are just ignored by the miners and the transaction would never get added to
the blockchain. The bitcoin network can be attacked if the mining power of the attacker
is greater than that of all the miners combined. The miners have capacity to add a new

block every 10 minutes. If a legit miner adds a block to the chain before the attacker, the

40
node would propagate that block reported by the legit miner and the block reported by

the attacker would not be accepted because it is no longer valid as a similar block is
already added to the chain which has the hash of the same previous block and the
blockchain is immune to forking.

Bitcoin is not a specific piece of software, it is a specific set of protocols which
need to be implemented to perform transactions over the network. There are several
client applications which implemented the protocol. Anyone can join the network using
their own client application. There are several client applications that are freely available
(Bcoin, decred, btcd, Bitcore etc.). Bitcore is the most popular one that supports decent
features. Bitcore is an open source client written in java script. Bitcoin has 3 different
modes that it can run in. If Bitcore is run no additional flags, it runs in Mainnet mode.

The Mainnet is at least 160GB currently and to setup a node that uses mainnet,
all these blocks should be downloaded before any operations can be performed on the
chain. There is also a testnet which is like mainnet but only difference being that coins
from mainnet are not valid in the testnet and vice versa. The testnet is currently 16GB
which is far less than that of the mainnet. The testnet is mostly used by developers who
develop applications targeting bitcoin payments and for some other purposes. In the
test net too, there are miners who validate the transactions and it would be tough to add
fake transactions to the chain. Though attacks can be performed on the Testnet, it is
complicated and has been reset twice before. To overcome these problems, the attack
would be performed on a simulated network where there are no competitive miners and
the attacker can freely mine blocks and report them to the bitcoin node. Bitcoin also

offers one more called Simnet mode. In Simnet mode, the node is setup locally with no

41
connections to any other node from mainnet or testnet. A Bitcore node setup in simnet

mode is the perfect target for the attack as there would be no other miners involved to
verify and validate the transactions added to the network.
Setup bitcore in simnet mode. Bitcore is a bitcoin client application written using
Nodejs. To install and to run Bitcore, we need to setup Node Version Manager
(NVM) and then install Node Package Manager (NPM) using NVM. When we have
NPM installed, we will also need python3 installed. We will also need to execute
‘apt-get install libzmqg3-dev build-essential.

venkatesh@venkatesh: ~

File Edit View Search Terminal Help

venkatesh@venkatesh:~$ sudo apt-get install libzmg3-dev build-essential

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
binutils binutils-common binutils-x86-64-1linux-gnu cpp cpp-7 dirmngr
dpkg-dev fakeroot g++ g++-7 gcc gcc-7 gcc-7-base gnupg gnupg-11@n
gnupg-utils gpg gpg-agent gpg-wks-client gpg-wks-server gpgconf gpgsm
libalgorithm-diff-perl libalgorithm-diff-xs-perl libalgorithm-merge-perl
libasan4 libassuan® libatomicl libbinutils libc-dev-bin libc6-dev libccil-0
libcilkrtss libdpkg-perl libfakeroot libfile-fcntllock-perl libgcc-7-dev
libgdbm-compat4 libgomp1 1libisl19 libitm1 libksba8 liblsan® 1libmpc3 libmpfré
libmpx2 libnorml libnpth® libperl5.26 libpgm-5.2-8 libquadmath® libsodium23
libstdc++-7-dev libtsan® libubsan® 1ibzmg5 linux-libc-dev make manpages-dev
patch perl perl-modules-5.26 pinentry-curses

Suggested packages:
binutils-doc cpp-doc gcc-7-locales dbus-user-session pinentry-gnome3 tor
debian-keyring g++-multilib g++-7-multilib gcc-7-doc libstdc++6-7-dbg

Figure 12: Installing Bitcore dependencies
With all the criteria met, we can install Bitcore by using npm by using the
command ‘npm install -g bitcore’. This command installs Bitcore globally across the
system. After the installation of Bitcore, we need to setup a node using Bitcore which
can be done easily using the command ‘bitcore create <node name> --simnet’. This will

make Bitcore download the block chain create a node with the given node.

venkatesh@venkatesh: ~/mynode

File Edit View Search Terminal Help

[2018-07-30T05:48:57.68747] Bitcoin Height: 1314969 Percentage:
[2018-07-30T05:49:12.2337] Bitcoin Height: 1315386 Percentage:
[2018-07-30T05:49:27.554Z] Bitcoin Height: 1315386 Percentage:
[2018-07-30T05:49:42.253Z] Bitcoin Height: 1315453 Percentage:
[2018-07-30T05:50:30.006Z] Bitcoin Helght: 1315682 Percentage:
[2018-07-30T05:50:43.5277] Bitcoin Heilght: 1315691 Percentage:
[2018-07-30T05:50:43.5787] Bitcoin Height: 1315692 Percentage:
[2018-07-30T05:50:43.5797] Bitcoin Height: 1315692 Percentage:
[2018-07-30T05:51:07.677Z] Bitcoin Heilght: 1315711 Percentage:
[2018-07-30T05:51:28.770Z] Bitcoin Heilght: 1315714 Percentage:
[2018-07-30T05:51:38.4217] Bitcoin Height: 1315714 Percentage:
[2018-07-30T05:51:46.067Z] Bitcoin Height: 1315715 Percentage:
[2018-07-30T05:52:02.3397] Bitcoin Height: 1315722 Percentage:
[2018-07-30T05:52:23.649Z] Bitcoin Height: 1315728 Percentage:
[2018-07-30T05:52:33.900Z] Bitcoin Heilght: 1315732 Percentage:
[2018-07-30T05:52:50.099Z] Bitcoin Heilght: 1315748 Percentage:
[2018-07-30T05:53:00. Bitcoin : 1315764 Percentage:

Figure 13: Bitcore Downloading blockchain

The Bitcoin protocol specification allows communication over a specific port
(depends on the network type). The communication is done using some messages
specific to the protocol. It would be a little complicated to make communication using
these messages as we need to code all these messages and communicate over a
socket. Instead communicating over http would be easy. Insight API is a software
package that can be installed on top of Bitcore client. This provides a convenient http
API which offers different endpoints to get and post transaction and block data from the
node. Insight API can be installed using the command ‘bitcore install insight-api’ and
then when Bitcore is started, along with it starts the In-sight api.

To implement the attacking miner java language will be used. The reason for
choosing java over other programming language is due to the huge set of libraries that it
provides and making http calls using the libraries and converting the response from the

node into objects and vice versa is comparatively easy and non-clumsy. Gradle is used

43
for dependency management and as a build tool. Spring framework is used for

managing beans and dependency injection.

public static void main(String[] args) {
ApplicationContext ctx
= new AnnotationConfigApplicationContext(Miner.class);
MinerUtil fraudMiner = ctx.getBean(MinerU'til.class);

fraudMiner.startMiners();

This is the main class that would be run by the gradle daemon. This class
creates the two necessary beans one of type OkHttpClient which will be used all over by
the application to make http calls. The other bean is of type ObjectMapper which is used
to convert json strings to objects and vice versa. This class also has the main method
which gets the bean of type MinerUtil which contains the code responsible for starting
the miner thread and then joins it to the main thread so that the application does not
terminate while this thread is still running. We will look at the MinerUstil class in a
moment. For now, it is class which has the miner implementation and the bean is
automatically created and managed by the spring container service. Bitcoin protocol
involves data exchange in hexadecimal format and Big-Endian byte ordering. The
application needs to convert this data back to data that can be worked with.

The application has a utility class named HexUtil that helps with these
conversions. All the methods of this class are public static methods. The first of them is
reverseByteOrdering. This method accepts a String argument which is proper
hexadecimal format. This method is used by the application to reverse the byte ordering

of a hexadecimal data and vice versa. This method works by decoding the hexadecimal

44
string to get a byte array which is reversed and then gets pushed to a byte buffer and is

then extracted from byte buffer, encoded and then converted back to string and
returned. The method reverseOrderAndParselLong is used by the application to reverse
byte ordering of the input string and then converting the obtained value to a Long which
gets returned.

The TxIn class represents a transaction input to a transaction. The class has the
fields ‘previousTransactionHash’ which is of type String and represents the hash of the
previous transaction that is to be used as input for this transaction. The field
‘txOutlindex’ is of type String which indicates the output index in the output set of the
previous transaction. This field is made as a String because it is represented in
hexadecimal format. The field ‘txInScriptLength’ represents the length of the input script
for the specified input. This is a string that represents the length of the input script in
hexadecimal format. The field ‘txInScript’ represents the input script for the transaction.
It is a string containing the script which will be validated by the miner during the
transaction verification. The field sequence number is a string type field. In addition to
the above fields, this class overrides toString method to return the data in hexadecimal
format for hashing.

The TxOut class is model class that represents the output of a transaction. This
class has the fields value which is of type String and represents the value of output in
satoshis (102 bitcoin) in hexadecimal format. This field follows Big Endian byte ordering
and needs to be reordered before processing. The field txOutScriptLength represents
the size of transaction output script in bytes with big endian byte ordering. The field

txOutScript represents the output script which will be validated when a transaction

45
wants to use this output as an input. This too is in hexadecimal format with big endian

byte ordering. This class overrides the toString method from object class to combine all
the above-mentioned fields by reversing their byte ordering and returns the
concatenated string.

The Transaction class represents a bitcoin transaction. This class has the fields
versionNo which represents the version of bitcoin protocol being used in hexadecimal
format with big endian byte ordering. The field inCounter represents the number of
inputs to transaction in hexadecimal format with big endian byte ordering. The field
listOfInputs represents the inputs to this transaction. The field outCounter represents
the number of outputs from this transaction in hexadecimal format with big endian byte
ordering. The field listOfOutputs represents the outputs from this transaction. The field
lockTime is a string representing locktime and can be of two types. If its value is greater
than 500 million, it represents the time in epoch milliseconds after which the transaction
can be added to a bitcoin block. If this value is less than 500 million, it represents the
number of blocks that should be added after the block containing this transaction is
added to the block chain.

public Try<String> calculateHash() {
return Try.of(() -> {
String data ="";
data += HexUtil.reverseByteOrdering(this.versionNo);
data += HexUtil.reverseByteOrdering(this.inCounter);
for (TxIn in : this.listOfinputs) {

data += in.toString();

46
data += HexUtil.reverseByteOrdering(this.outCounter);

for (TxOut in : this.listOfOutputs) {

data += in.toString();

}

data += HexUtil.reverseByteOrdering(this.lockTime);

MessageDigest digest = MessageDigest.getinstance("SHA-256");

byte[] hash = digest.digest(data.getBytes());

byte[] digestl = digest.digest(hash);

return HexUtil.reverseByteOrdering(new String(Hex.encode(digest1)));

1

The class also contains a method calculateHash which is used to calculate the
SHA-256 hash of the transaction. This method works by reversing the byte ordering of
versionNo, inCounter, outCounter, lockTime and concatenating them together in the
order versionNo, inCounter, listOfinputs, outCounter, listOfOutputs, lockTime. To get
the list of inputs, the method uses the overridden toString implementation from TxIn
class which converts the fields from TxIn in the order previousTransactionHash,
txInScriptLength, txInScript, sequenceNumber, and returns the concatenated string. To
get the list of outputs, the method uses the overridden toString implementation from
TxOut class which converts the fields from TxOut in the order value, txOutScriptLength,
txOutScript, and returns the concatenated string. It then applies SHA-256 on the hex
string twice and then reverses the byte ordering of the resultant hash and the final hash
of the transaction.

The BlockHeader class represents the block header of a bitcoin block. The fields

in this class are used to calculate the hash of the block. The version field represents the

47
version of bitcoin protocol used for this block. The field hashMerkleRoot represents the

hash merkle root of the transactions included in this block. The field hashPrevBlock
represents the hash of the previous block. The field time represents the time of creating
this block. The field target represents the target value during the block creation time.
The field nonce represents the nonce value used to achieve the target. All the fields
represented in this class are in hexadecimal format and follow Big Endian byte ordering.
The class also includes a method to calculate the hash of the block. This method starts
by reversing the byte order of the fields and concatenating them in the order version,
hashPrevBlock, hashMerkleRoot, time, nonce. The resultant string is hashed twice
using SHA-256 hashing algorithm which in turn is encoded and byte order reversed to
get the final hash. This is the hash that is hash of the block containing this header.

public Try<String> calculateHash() {
return Try.of(() -> {
String data ="";
data += HexUtil.reverseByteOrdering(this.version);
data += HexUtil.reverseByteOrdering(this.hashPrevBlock);
data += HexUtil.reverseByteOrdering(this.hashMerkleRoot);
data += HexUtil.reverseByteOrdering(this.time);
data += HexUtil.reverseByteOrdering(this.nonce);
MessageDigest digest = MessageDigest.getinstance("SHA-256");
byte[] hash = digest.digest(Hex.decode(data));
byte[] digestl = digest.digest(hash);
return HexUtil.reverseByteOrdering(new String(Hex.encode(digest1)));

1;

48
The class Block represents a bitcoin block. The field magicNumber represents

the magic number of the bitcoin protocol. This field is always set to OxD9B4BEF9 which
represents that the data included is bitcoin data. The field blockSize represents the size
of the block in bytes. The field transactionCounter represents the number of
transactions included in the bitcoin block. The field transaction represents the
transactions that are included in this block. The field blockHeader represents the header
corresponding to the block. The fields magicNumber, blockSize, transactionCounter are
all in hexadecimal format and follow Big Endian byte ordering. This class has method to
compute the merkle root of the transactions which is to be included in the block header.
The merkle root can be considered as the combined hash of all the transactions. To
calculate merkle root, hashes of each of the transactions are calculated and then the
hash of the first transaction is concatenated with the hash of the second transaction and
the SHA-256 of this combined hash is calculated. Then the same thing is done for the
next transactions and so on. This gives us a set of hashes once more and the same
process is continued on more levels until we end up with just one single hash and this
hash is called the merkle root for the set of transactions. It is important to remember that
bitcoin network has Big Endian byte ordering and this byte ordering of data must be
reversed before hashing. The method handles this by using the utility class’s methods.

public Try<String> calculateMerkleRoot() {
return Try.of(() -> {
MessageDigest digest = MessageDigest.getinstance("SHA-256");
List<String> hashes = this.transactions
.stream()

.map(transaction -> HexUtil.reverseByteOrdering(transaction.calculateHash().get()))

49

.collect(Collectors.tolList());

while (hashes.size() > 1) {

for (inti=1;i< hashes.size(); i +=2) {

digest.reset();
String hash1 = HexUtil.reverseByteOrdering(hashes.get(i - 1));
String hash2 = HexUtil.reverseByteOrdering(hashes.get(i));
byte[] bytes = Hex.decode(hashl.concat(hash2));
String combinedHash = new String(Hex.encode(digest.digest(bytes)));
hashes.remove(i);
hashes.remove(i - 1);

hashes.add(i - 1, HexUtil.reverseByteOrdering(combinedHash));

}

return hashes.get(0);
1;

The Bitcoin protocol specification allows communication over a specific port
(depends on the network type). The communication is done using some messages
specific to the protocol. It would be a little complicated to make communication using
these messages as we need to code all these messages and communicate over a
socket. Instead communicating over http would be easy. Insight API is a software
package that can be installed on top of Bitcore client. This provides a convenient http
API1 which offers different endpoints to get and post transaction and block data from the
node. To communicate with Insight-api, the application OkHttp library. The application

has a few client classes that help it communicate with the Bitcore node.

50
The TransactionClient class helps the application get the transactions from the

node. This class uses the two beans of types OkHttpClient and ObjectMapper
respectively that are maintained by the spring container. These beans are configured to
be autowired into the TransactionClient. The TransactionClient is annotated with
@Component which makes it a spring component therefore automatically creating a
bean and managing it. This class has two methods namely getPendingTransactions and
listTransactions. The method getPendingTransactions is responsible for making a http
call to the endpoint http://ubuntuvm:8080/insight-api/transactions/pending to get the list
of pending transactions and converts them into Transaction objects using the
objectmapper that was injected into the bean. The method listTransactions is
responsible for making a http call to endpoint http://ubuntuvm:8080/insight-
api/transactions and returning the obtained transactions.

The BlockClient class has methods that help the application to get the blocks and
to report newly created blocks to the bitcoin node. The class is annotated with
@Component which marks it as component bean to be created and managed by the
spring application container. This class uses OkHttpClient to make http calls to
endpoints and this bean is configured to be autowired by the spring container. The class
has two methods namely getLastBlock and postBlock which help the application to get
the last block of the blockchain and to post a new block to the blockchain respectively.
The getLastBlock method makes a GET http call to the endpoint
http://ubuntuvm:8080/insight-api/blocks/last to get the last block that was successfully

posted to the block chain, converts the obtained JSON to Block object and then returns

51
it. The postBlock method makes a POST http call to http://ubuntuvm:8080/insight-

api/blocks with a new block data in JSON format to add a new block to the blockchain.
The class MinerUtil is the class that does the actual mining. The field
transactionClient is an instance of the TransactionClient class. It is a bean managed by
the spring container and is constructor injected into the MinerUtil bean which is also
managed by the spring container. The field TargetClient is an instance of type
TargetClient and is a bean managed by spring container. The field keys are a list which
contains the public and private key pairs. This list is populated by the method
generateKeysAndAddresses which is configured to run after the MinerUtil bean
creation. The fields are injected using constructor injection mechanism are autowired by
the spring container. The class has a method generateKeysAndAddress is a method
that generates two pairs of public, private keys and generates bitcoin addresses. The
first pair of keys is used to generate the script for coinbase transaction. The second set
of keys is used to generate the script for the coinbase transaction. This method is
annotated with @PostConstruct so that it gets executed soon after the MinerUtil bean’s
construction. This method uses a static method adjustTo64 which concatenates the key
with Os before it. The method getBlockData uses the transactionClient bean to get the
list of pending transactions, current target, the lastly added block, then uses some of the

pending transactions to build a block and then returns the same.

52
@PostConstruct

private void generateKeysAndAddress() throws InvalidAlgorithmParameterException,
NoSuchAlgorithmException, NoSuchProviderException, UnsupportedEncodingException {

for (Integer 1 =1; I <= 2; |++) {
KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC");
ECGenParameterSpec ecSpec = new ECGenParameterSpec("secp256k1");
keyGen.initialize(ecSpec);
KeyPair kp = keyGen.generateKeyPair();
PublicKey pub = kp.getPublic();
PrivateKey pvt = kp.getPrivate();
ECPrivateKey epvt = (ECPrivateKey) pvt;
String privateKey = adjustTo64(epvt.getS().toString(16)).toUpperCase();
ECPublicKey epub = (ECPublicKey) pub;
ECPoint pt = epub.getW();
String sx = adjustTo64(pt.getAffineX().toString(16)).toUpperCase();
String sy = adjustTo64(pt.getAffineY().toString(16)).toUpperCase();
String publicKey = "04" + sx + sy;
keys.add(ImmutablePair.of(privateKey, publicKey));
MessageDigest sha = MessageDigest.getInstance("SHA-256");
byte[] s1 = sha.digest(publicKey.getBytes("UTF-8"));
Security.addProvider(new BouncyCastleProvider());
MessageDigest rmd = MessageDigest.getinstance("RipeMD160", "BC");
byte[] r1 = rmd.digest(s1);
byte[] r2 = new byte[rl.length + 1];
r2[0] = 0;
for (inti=0;i<rl.length; i++) {
r2[i + 1] = r1Ji];
} byte[] s2 = sha.digest(r2);
byte[] s3 = sha.digest(s2);

byte[] al = new byte[25];

53
for (inti=0;i<r2.length; i++) {

al[i] = r2[i];

}

for (inti=0;i<5;i++){
al[20 +i] = s3[i;

}

log.info("address" + | + "={}", Base58.encode(al));

Bitcoin network imposes a restriction on the block size. A block cannot exceed
1mb in size. This application limits the number of transactions to 20. The target client is
used to get the current target from the node It is a string target that gets returned from
the client and can be directly used to build the block. The method
insertCoinbaseTransaction is used by the application to insert a coin base transaction
into the block. This method uses the public key generated by
generateKeysAndAddresses method. The application uses pay to public key transaction
for the coinbase and fake transaction. The input script for these transactions is
OP_PUSH_DATA public key CHECKSIG. To use this output, the private key for this
public key must be used to generate a digital signature.

The method insertFakeTransaction is used by the application to insert a fake
transaction into the block. This method is same as insertCoinbaseTransaction except
that it uses the second public key to generate the script for the transaction. The method
startMining is the method which changes the nonce value in steps of 1 and calculates
the hash of the block. If this hash is more than the target value, the nonce is

incremented by 1 and hash is recalculated until a nonce which yields a hash less than

54
target is reached. This method starts off by getting the blockdata from the node and

then adds the coinbase transaction and fake transactions to the block and starts
calculating the hash starting with a nonce of 0 and incrementing in steps of 1. After
every iteration, the application compares the hash to that of the target. If the hash is
less than the target, it would be accepted by the node, so it would break out of the loop
and post the block to the node.

public void startMiners() {
new Thread(() -> {
for (inti=1;i<=4;i++) {
Block block = getBlockData();
insertCoinbaseTransaction(block);
if (i==1)
insertFakeTransaction(block);
String target = block.getBlockHeader().getTarget();
for (Long nonce = OL; nonce < Long.MAX_VALUE; nonce++) {
block.getBlockHeader().setNonce(HexUtil.formatLongAndReverseOrdering(nonce));
String hash = block.getBlockHeader().calculateHash().get();
if (target.compareTo(hash) > 0) {
log.info("nonce={} hash={} target={}", nonce, hash, target);
break;
b
if (blockClient.postBlock(block).get())
log.info("posted block={}", block);

}

}).start();

55
Summary

This chapter provides details about the implementation of research. It discusses
the design and approach that are taken to implement the attack. It discusses the
algorithms and consensus mechanisms that will be used to realize the objectives of the
research by overcoming the challenges. It also provides a brief walkthrough of the code

to give a high-level view of the implementation

56
Chapter IV: Analysis of Results

Introduction

This chapter talks focusses on analyzing the results of the attack implementation.
In the previous chapter, we discussed about the implementation design and provided a
walkthrough of it. This chapter provides details of the attack and shows screenshots of
the attack in various stages and provides a detailed information of the output produced
by the attacking miner. This chapter will also provide details related to the execution of
the attack by the miner.
Data Presentation

The bitcoin node is setup on a virtual machine using Bitcore bitcoin client. The
host is named as ubuntuvm on the host machine. The miner will be run on the host
machine since it has more computational power when compared to the virtual machine.
The miner can be started by navigating to the directory and using the command java -jar
Miner.jar. This automatically starts the Mining operation and will continue running until 4
blocks are added to the blockchain. The node is setup to reduce the difficulty of mining.
Despite this lower difficulty, the mining operation takes huge amount of time
(approximately 2-3 hours for a single block). Starting the application automatically
initializes the spring application container from the main method and then gets the

MinerUtil bean from the spring application context and then starts the mining thread.

57

venkatesh@venkatesh:~5 java -jar Miner.jar

19:29:53.342 [main] DEBUG org.springframework.core.env.StandardEnvironment - Adding PropertySource 's

ystemProperties' with lowest search precedence
19:29:53.348 [main] DEBUG org.springframework.core.env.StandardEnvironment - Adding PropertySource 's

ystemenvironment' with lowest search precedence
19:29:53.349 [main] DEBUG org.springframework.core.env.StandardeEnvironment - Initialized StandardEnvi
ronment with PropertySources [MapPropertySource@2052001577 {name='systemProperties', properties={java
.runtime.name=Java(TM) SE Runtime Environment, java.protocol.handler.pkgs=org.springframework.boot.lo
ader, sun.boot.library.path=/usr/local/srcfjava/jdk1.8.0_181/jre/lib/amd64, java.vm.version=25.181-b1
3, java.vm.vendor=0Oracle Corporation, java.vendor.url=http://java.oracle.com/, path.separator=:, java
pot(TM) 64-Bit Server VM, file.encoding.pkg=sun.io, user.country=US, sun.java.launc
, sun.os.patch.level=unknown, java.vm.specification.name=Java Virtual Machine Specifi
, user.dir=/home/venkatesh, java.runtime.version=1.8.0_181-b13, java.awt.graphicsenv=sun.awt.X1
1GraphicsEnvironment, java.endorsed.dirs=/usr/local/src/java/jdk1.8.0_181/jre/lib/endorsed, os.arch=a

md64, java.ilo.tmpdir=/tmp, line.separator=

, java.vm.specification.vendor=0racle Corporation, os.name=Linux, sun.jnu.encoding=UTF-8, java.librar
y.path=/usr/java/packages/lib/amd64: /fusr/1ib64: /1ib64:/1ib: /usr/1ib, java.specification.name=Java Pla
tform API Specification, java.class.version=52.8, sun.management.compiler=HotSpot 64-Bit Tiered Compi
lers, os.version=4.15.0-34-generic, user.home=/home/venkatesh, user.timezone=America/Los_Angeles, jav
a.awt.printerjob=sun.print.PSPrinterJob, file.encoding=UTF-8, java.specification.version=1.8, java.cl
ass.path=Miner.jar, user.name=venkatesh, java.vm.specification.version=1.8, sun.java.command=Miner.ja
r, java.home=fusr/local/src/java/jdk1.8.0_181/jre, sun.arch.data.model=64, user.language=en, java.spe
cification.vendor=0Oracle Corporation, awt.toolkit=sun.awt.X11.XToolkit, java.vm.info=mixed mode, java
.version=1.8.0_181, java.ext.dirs=/usr/local/src/java/jdk1.8.0_181/jre/lib/ext: fusr/java/packages/1lib
Jext, sun.boot.class.path=/usr/local/src/java/jdk1.8.0_181/jre/lib/resources.jar:fusr/local/src/java/
jdk1.8.0_181/jre/lib/rt.jar:/usr/local/src/java/jdk1.8.0_181/jre/lib/sunrsasign.jar:fusr/local/src/ja
va/jdk1.8.0_181/jre/lib/jsse.jar:/usr/local/src/java/jdk1.8.0_181/jre/lib/jce.jar:/usr/local/src/java
/jdk1.8.0_181/jre/lib/charsets.jar:/usr/local/src/java/jdk1.8.0_181/jre/lib/jfr.jar:/usr/local/src/ja
va/jdk1.8.0_181/jre/classes, java.vendor=Oracle Corporation, file.separator=/, java.vendor.url.bug=ht
tp://bugreport.sun.com/bugreport/, sun.io.unicode.encoding=UnicodelLittle, sun.cpu.endian=1little, sun.
desktop=gnome, sun.cpu.isalist=1}}, SystemEnvironmentPropertySource@l160264930 {name='systemEnvironmen
t', properties={PATH=/usr/local/sbin:/usr/local/bin: fusr/sbin:fusr/bin:/sbin:/bin:/usr/games:fusr/loc
al/games:/snap/bin: }usr}local}src}java}jdkl 8.0_181/bin:JAVA_HOME/jre/bin, XAUTHORITY=/run/fuser/1000/
gdm}?authorlty, XMODIFIERS= i GDM*EbeDN ubuntu, XDG_| DHTH _DIRS=/fusr/sharefubuntu: fusr/local/sh
h 1ib d/desk \ = GTK IM MODULE=ibus, DBUS SES

Figure 14: Starting the mining application

The application uses a separate thread to mine bitcoins since it is not considered
as a good practice to run computationally intensive tasks on the main thread. The
application spawns a new thread from the main thread and joins it with the main thread.
This thread as soon as it is started, makes api call to the Bitcore node to get the list of
transactions, creates a block using these transactions and then starts off the mining
process with a nonce 1 and then keeps incrementing it till it reaches a hash value that is
less than the target value. When the spring application context is initialized, MinerUtil's
generateKeysAndAddresses method gets executed which generates the keys set and

the address to be used to generate the output script for the coinbase and fake

transactions respectively. The application logs these addresses to verify that the

addresses are assigned some coins by using the transactions.

155.430 |main] DEBUG org.springtramework.beans.tactory.support.bDeTaultListableBeanFactory - Retu

cached instance of singleton bean 'targetClient’

:55.430 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory Retu

cached instance of singleton bean 'blockClient'

:55.430 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory Auto
wiring by type from bean name 'minerUtil' via constructor to bean named 'transactionClient'’
19:29:55.430 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory Auto
wiring by type from bean name 'minerUtil’' wvia constructor to bean named 'targetClient’
19:29:55.430 [main] DEBUG org.springframework.beans.factory.support.DefaultlListableBeanFactory Auto
wiring by type from bean name 'minerUtil' via constructor to bean named 'blockClient'
19:29:55.434 [main] DEBUG org.springframework.context.annotation.CommonAnnotationBeanPostProcessor -
Found init method on class [org.bitcoin.service.MinerUtil]: private void org.bitcoin.service.Mineruti
1l.generateKeysAndAddress() throws java.security.InvalidAlgorithmParameterException, java.security.NoSu
chAlgorithmException, java.security.NoSuchProviderException,java.io.UnsupportedEncodingException
19:29:55.434 [main] DEBUG org.springframework.context.annotation.CommonAnnotationBeanPostProcessor -
Registered init method on class [org.bitcoin.service.MinerUtil]: org.springframework.beans.factory.an
notation.InitDestroyAnnotationBeanPostProcessorSLifecycleElement@ld281e46
19:29:55.434 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory - Eage
rly caching bean 'minerUtil' to allow for resolwing potential circular references
19:29:55.436 [main] DEBUG org.springframework.context.annotation.CommonAnnotationBeanPostProcessor -
Invoking init method on bean 'minerUtil': private void org.bitcoin.service.MinerUtil.generateKeysAndA
ddrcss() throws java.security. InvaltdAlgorlthmParamctcrExceptlon java.security.NoSuchAlgorithmExcepti

.NoSuchProviderException, j]
19:29:55.476 [main] INFO or . i MLQpDvPvgYyNk3Nug5WgKkSuaFUhXFNUn
i INFO org.bitcoin.service.MinerUtil - address2=1JFrxyQZvXCXYWSDTdaPkbHFxDSmrko211
19:29:55.480 [main] DEBUG org.springframework.beans.factory.support.DefaultlistableBeanFactory - Fini
shed creating instance of bean 'minerutil’

:55.481 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory - Retu

cached instance of singleton bean 'okHttpClient'

:55.481 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory - Retu

cached instance of singleton bean 'getObjectMapper'

:29:55.481 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory - Crea
ting shared instance of singleton bean 'org.springframework.boot.autoconfigure.AutoConfigurationPacka
ges'
19:29:55.481 [main] DEBUG org.springframework.beans.factory.support.DefaultListableBeanFactory - Crea
ting instance of bean 'org.springframework.boot.autoconfigure.AutoConfigurationPackages'

Figure 15: Addresses generated by the application

The application does not log the keys used since the Bitcore node can be

gueried by using the public addresses and do not need the keys for that. As explained

58

previously, the mining process starts off with a nonce value of 0 and keeps incrementing

for each of the rounds until a hash with lesser value is obtained.

59

22:54:47.146 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=0 hash=acbf74c6d81aa8f8e99064a984
e097d2607cda845616d99417c34ead0f0208fc target=00000000000c95ccdOlaa8c835dazeB8alebc30ac707cb991199a5d
26ca652741
22:54:47.146 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=1 hash=d108f5e13b%9a384ddfef39d31a
5c3efce3f49ae5aTac5940ecb0696f96F9d339 target=00000000000c95ccd®laa8c835dazeBalebc30ac707cb991199a5d
26ca652741
22:54:47.147 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=2 hash=at6e866c5bboabbszobs3a7ozed
4744b47T21a461ebfOc1026c526cB8ecebf5el8 target=00000000000c95ccd®laaBcB835daZeBalebc3Pac707cb991199a5d
26ca652741
22:54:47.147 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=3 hash=862fae81b6cPe®8aafd33f79d6
b2cef50ed02864e37794197fb1898af9bfc96b target=0000AOOOOOOcI5ccdO®laaBcB35daZeBalebc3Pac707cb991199a5d
26ca652741
22:54:47.147 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=4 hash=8427e7743725a5c263aae52130
0904198dT16754a83c5b7399a9074d2fa651f1 target=00000000000c95ccd@laa8c835dazeB8alebc30ac707cb991199a5d
26ca652741
22:54:47.147 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=5 hash=a332d0466caB8003465bdcelf5a

Figure 16 Application mining bitcoins

Data Analysis

The application log is huge because it generates a log statement for each of the
nonce values and to generate a single block it takes at least 1 million iterations. So, it
logs at least 1 million lines for each block and four such blocks need to successfully add
a block containing fake transaction which means that in the best case it logs out 4
million lines which is a lot and the terminal buffer doesn’t have the ability to hold all
these log statements. During the development of this application, alternative options like
writing the logs to a different file was tried out but even that approach failed causing the
host system to run out of disk space. So, application was modified to printout the log
statements only when a block was successfully generated and reported back to the

node.

19 45 34 90 [Thrcad 3] INFD org. bltcotn service.MinerUtil - nonce=166213763 hash=000000008c569a050d5
1b9fPeB8a161947cd0f48e46342b9da2f969d7a2eabd93 target=0000000adldc95ccd®laa8c835da2eBalebc30ac707cb991
199a5d26ca652741
19:45:34.728 [Thread-3] INFO org.bitcoin.service.MinerUtil - posted block=Block(magicNumber=D9B4BEF9,
«Size=5c010000, transactionCounter=02000000, transactions=[PAOEOOA2PE0000A10000AAOOOOANAAOEOAAAGE
00PEEOO0AAEEOO0AAEEOOAAAEOOOAAEEOO0ANNEROONAAEEOANAEE0AAAREETFIfffff0NAEEOO10AEE06012a05F20000000044aC
894bB87aabacB1506946a225e15b92dde7dBe58cefedd6336070454bec8e65d3eaflc@e9f@b6bblac7Pa3364c3aea433a495e
65eb422553a51ae5cf9743daatd04414c000000005bb81e24, 0000000200000001000000000O0O0OAONONONONONONONONENE
0000000000000EEEEEEEEEEEEOONONONOOONENONENEREETFFfffffO0000001000000003b9acatPOPOPOR44acl51a23dea’299
9639c905880T4ce@b2fb9056132a12fb3576aed65%a3fefbof82efed42ba7a34334971f0468293b494989d068d9cd7 30249
85dfb70a34e3e904414c000000005bb81e24], blockHeader=0000000278f0783189303459dc6b06d964df5e8e05932Fed55
878724bbe4c10d46000000000000005bbB81224000000000983883)
21:06:38.829 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=860207930 hash=00000001dB8fa57b82c3
a899df6fe488ddaa2363ed6eed8co009a21212fed4c48 target=0000000ad1dc95ccd@laa8c835dazeBalebc30ac707cb991
199a5d26ca652741
21:06:38.843 [Thread-3] INFO org.bitcoin.service.MinerUtil - posted block=Block(magicNumber=D9B4BEF9,
blockSize=cc@00000, transactionCounter=01000000, transactions=[0000000200000001000000000000000OEOEOA
000000000000000000EEEEE00000N0NON000NENONONONONONONONON0AEAETFFFfITIOO000001000000012a05T20000000044aC
894b887aabac81506946a225e15b92dde7does58cefedd6336070454becB8e65d3ealf1c0e9fob6bblac70a3364c3aead33a495e
65eb422553a51ae5cf9743daafd4414c000000005bb821ce], blockHeader=0000000293bdeaa2d769f9a29d2b34468ef4d
07c9461a1e870b9510d059a568cO0000PO0ONONONOO5bbB21ce0nBNOBOO3345bb3a)
22:48:05.295 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=1882383936 hash=000000026492730b43
0f49988a319626169c5a6T9ad4ce3ceed6ae89d6f2ad44a32 target=0000000ad1dc95ccd®laaBc835da2e8alebc3Pac707cbo9
1199a5d26ca652741
22:48:05.306 [Thread-3] INFO org.bitcoin.service.MinerUtil - posted block=Block(magicNumber=D9B4BEF9,
blockSize=cc@00000, transactionCounter=01000000, transactions=[0000000200000001000000000000000OEOEOA
00PEEOO0AAEEOO0AAEEOOAAAEOOOAAEEOO0ANNEROONAAEEOANAEE0AAAREETFIfffff0NAEEOO10AEE06012a05F20000000044aC
894b887aabacB81506946a225e15b92dde7d0e58cefedd6336070454becBe65d3eal1cOe9fOb6bblac70a3364c3aead33a495e
65eb422553a51ae5cf9743daafdo4414c000000005bb834ce], blockHeader=00000002484ced2f21219a00c9d8eed63e36a
2da8d48fef69d893a2cb857fad001000000000000005bbB34ce0nONO0O04083de40)
23:08:31.239 [Thread-3] INFO org.bitcoin.service.MinerUtil - nonce=218957735 hash=000000885e07a82boc51
749a3a88497d0a0530a838c1801211043598bcba535b76 target=0000000adldc95ccd@laa8c835da2eBalebc30ac707cb991
199a5d26ca652741
23:08:31.246 [Thread-3] INFO org.bitcoin.service.MinerUtil - posted block=Block(magicNumber=D9B4BEF9,
Size=ccO08008, transactionCounter=01000000, transactions= [0000000200000001000000000000000000000

Figure 17: Adding the blocks to the blockchain.

The screenshot above shows the output of the application after successful
mining of four bitcoin blocks. The target value obtained from the Bitcore node is
0000000ad1dc95ccd01aa8c835da2e8alebc30ac707¢cb991199a5d26ca652741. The
nonce value used for the blocks are 166213763, 860207930 and 1082383936
respectively. According to the bitcoin protocol, any funds added by a block are only
available only after the block containing the transaction reaches certain depth. In the
main chain, this depth should be at least 6 meaning that funds added by a transaction
are only available when the block containing this transaction is at depth 6. In the main
chain, a new block gets added to the chain every 10 minutes. So, after a new

transaction is added to the chain, it takes at least 1 hour for the funds to be available for

61
spending. In Reg test mode, this depth is 4 blocks. So, a fake transaction is added to

the chain using the first block and then, three more blocks are added to the block by the
application.
Results

Approximately running for about 8 hours, the application was able to add four
blocks to the blockchain. This was possible since there were no other miners in the
network who would verify the block reported by the fraud miner. When all the four
blocks were successfully reported to the node, these funds are readily available for
spending which can be verified by querying the node for balance of the address that
was logged by the application. The api also provides with an endpoint which enables
anyone to query the UTXOs (Unspent transaction outputs) of the node. The bitcoin
node keeps track of unspent transactions using a database that is separate from the
blockchain itself.

There is no partial spending of a transaction output in bitcoin network. In a
situation where only, a part of a transaction output is to be spent, the transaction has an
extra output which pays to the same address which contains the change from different
output. This way, there is a standardized way to keep track of un-spent outputs. The
node can be queried for the un-spent outputs using the endpoint provided by the

insight-api.

62

venkatesh@venkatesh:~$ curl http://ubuntuvm:8080/insight-api/balance?address=1JFrxyQZvXCXY
WSDTdaPkbHFxDSmrko211

{"transactions":[{"versionNo":"82800000","inCounter”:"01000000","listOfinputs":[{"previous
TransactionHash":"0000000000000000000000000000NANANANOAOAAEAEEEOANANAOANAAAEAEAEEAEREA" , "tx0uUtL
Index":"00000000", "txInScriptLength”:"00000000", "txInScript":"", "sequenceNumber" : "FFFFFFFF

"}],"outCounter":"01000008","listOfOutputs”::[{"value":"008ca%a3boOOBEOOO" , " tx0utScriptlLengt
h":"44000000" ,"tx0utScript":"4c4104E9E3340AB7DF85F924307FCDD968D08949493B2968041F973443A3A
72BD4FE2EF8BYEF3F9A65ED6ASTB32FA1326105B92FOBCEF48058909C639929A9DE231A15ac "}], "lockTime":
"241eb85b00O0OOGEO"}], "value": "00ca9a3bononnnnn” jvenkatesh@venkatesh: ~$ I

Figure 18: Fake coins added to the chain
Summary
This chapter talks about the results of the application. In the previous chapter,
we talked about details of the implementation and some part of the code. In this section,
we looked at details of running the application and how to perform the mining operation.
This chapter also talks about the troubles that were faced during the implementation of

the application and how they were overcome during the development of the application.

63
Chapter V: Conclusions and Future Work

Introduction

This chapter talks about the overall summary of the paper. In the previous
chapter, we looked at the results of the application used to create the fake
cryptocurrency. It focused mainly about the results of the mining operation and how to
obtain the value of the fake coins that were added by using the application. This chapter
mainly focusses on the concluding the entire research and putting forth the difficulty of
adding fake coins to the main bitcoin network. This chapter also puts forth the future
work that can be done to improve the bitcoin protocol to avoid the attacks that are
proposed by this research work.
Discussion

This paper talks about cryptocurrencies, the technology they depend on, the
mechanism which they to use of work, the different consensus mechanisms that are
involved in each of those cryptocurrencies. This paper also dives into the
implementation details of Proof of work and Proof of stake consensus mechanisms, how
they work and the effectiveness of the algorithms. The paper introduces the basic
concepts of Blockchains and describes how blockchain is linked together. It talks about
the SHA-256 algorithm and the different steps involved in hashing. It talks about bitcoin
in detail starting at transactions, different types of transactions, the fields involved in a
transaction, how a transaction is included in a bitcoin block, it talks about hash merkle
root of a bitcoin block, and how it can be generated. Finally, it introduces a mechanism
which can be used to insert a fake transaction into the bitcoin blockchain there by

producing fake bitcoins.

64
Conclusions

Miners are responsible for maintaining the integrity of the bitcoin network and the
blockchain itself. Miners validate transactions, verify new blocks added to the bitcoin
network thereby defending the blockchain against attackers. But in a situation where a
miner commits fraud may not be much serious trouble but if the miner possesses more
computational power than the rest of the miners put together, the miner might be able to
cause much damage to the chain as demonstrated by this research. Though it is very
unlikely to happen even by using super computers, this is still a vulnerability waiting to
be exploited.

Future Work

Blockchain and cryptocurrency technologies are brand new and there is lots of
research that can be done to improve these networks against attacks. Without miners,
these networks would cease to exist. The incentive in the form of coinbase transactions
is the main cause driving the miners towards mining but there is a limit to the number of
coins that can be mined by the miners. When this incentive is gone, miners may not be
interested anymore in mining to validate the transactions. Without miners, the
cryptocurrency network is open to attackers and the entire network might need a reset
(Happened twice in case of bitcoin test net). The future work related to this paper would

be to introduce safety mechanisms so that these kinds of problems can be overcome.

65
References

Ahram T., Sargolzaei A., & Sargolzaei S. (2017, August). Blockchain technology
innovations. Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/7998367/

Bag S, Ruj S, & Sakurai K. (2016, November). Bitcoin block withholding attack.
Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/7728010/

Farell R. (2015, May). An analysis of the cryptocurrency industry. Retrieved from
repository.upenn.edu:
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1133&context=wharton_

research_scholars

Glazer P. (2014, March). An overview of cryptocurrency consensus algorithms.
Retrieved from hackernoon.com: https://hackernoon.com/an-overview-of-

cryptocurrency-consensus-algorithms-9d744289378f

Griffith V. (2017, October). Casper the friendly finality gadget. Retrieved from arxiv.org:

https://arxiv.org/abs/1710.09437

Higgins S. (2017, December). Bitcoin's historic 2017 price run revisited. Retrieved from
coindesk.com: https://www.coindesk.com/900-20000-bitcoins-historic-2017-price-

run-revisited/

66
Kaushal P, K Bagga D. A, & Sobti D. R. (2017, July). Evolution of bitcoin and security

risk in bitcoin. Retrieved from ieeexplore.ieee.org:

http://ieeexplore.ieee.org/document/8003959/?reload=true

Michael Bedford Taylor (2017, September). The evolution of bitcoin hardware.
Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/8048662/

Mingxiao D., Xiaofeng M, & Zhe Z. (2017, December 1). A review on consensus
algorithm of blockchain. Retrieved from ieeexplore.ieee.org:

http://ieeexplore.ieee.org/document/8123011/

Mukhopadhyay U, Skjellum A, & Hambolu O. (2017, April). A brief survey of
cryptocurrency systems. Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/7906988/

Nakamoto S. (2008). Bitcoin: a peer-to-peer electronic cash system. Retrieved from

bitcoin.org: https://bitcoin.org/bitcoin.pdf

Nayak K, Kumar S, & Miller A. (2016, May). Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/7467362/

Singh S., & Singh N. (2017, May). Blockchain: future of financial and cyber security.
Retrieved from ieeexplore.ieee.org:

http://ieeexplore.ieee.org/document/7918009/

67
Sleiman M. D., Lauf A. P., & Yampolskiy R. (2016, February). Bitcoin message: data

insertion on a proof-of-work cryptocurrency system. Retrieved from

ieeexplore.ieee.org: https://ieeexplore.ieee.org/document/7398436/

Tosh D. K., Shetty S., & Liang X. (2018, January). Consensus protocols for blockchain-
based data provenance: challenges and opportunities . Retrieved from

ieeexplore.ieee.org: https://ieeexplore.ieee.org/document/8249088/versions

Tseng L. (2017, May). Bitcoin’s consistency property. Retrieved from

ieeexplore.ieee.org: https://ieeexplore.ieee.org/document/7920619

Warren J. (2012, November). Bitmessage: a peer-to-peer message authentication and
delivery System. Retrieved from bitmessage.org:

https://bitmessage.org/bitmessage.pdf

Who is accepting bitcoin. (n.d.). Retrieved from coinreport.net:

https://coinreport.net/coin-101/accepting-bitcoin/

Yu X., Shiwen M. T., & Li Y. (2017, October 19). Fair deposits against double-spending
for bitcoin transactions. Retrieved from ieeexplore.ieee.org:

http://ieeexplore.ieee.org/document/8073796/

Zheng Z., Xie S., & Dai H. (2017, September). An overview of blockchain technology:
architecture, consensus, and future trends. Retrieved from ieeexplore.ieee.org:

https://ieeexplore.ieee.org/document/8029379

Appendix

Application.java

package org.bitcoin;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.google.common.collect.Lists;

import io.vavr.control. Try;

import java.util.List;

import lombok.extern.slf4).SIf4;;

import okhttp3.OkHttpClient;

import org.bitcoin.client. TransactionClient;

import org.bitcoin.model. Transaction;

import org.bitcoin.service.MinerUtil;

import org.bouncycastle.util.encoders.Hex;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;

import org.springframework.context.ApplicationContext;

import org.springframework.context.annotation.AnnotationConfigApplicationContext;

import org.springframework.context.annotation.Bean,;

import org.springframework.context.annotation.ComponentScan;

68

import org.springframework.context.annotation.Configuration;
@Configuration
@EnableAutoConfiguration
@ComponentScan(basePackages = {"org.bitcoin"})
@SIf4j
public class Miner {
public static void main(String[] args) {
ApplicationContext ctx
= new AnnotationConfigApplicationContext(Miner.class);
MinerUtil fraudMiner = ctx.getBean(MinerUtil.class);

fraudMiner.startMiners();

@Bean
public OkHttpClient okHttpClient() {

return new OkHttpClient();

@Bean

public ObjectMapper getObjectMapper() {

69

return new ObjectMapper();

MinerUltil.java

package org.bitcoin.service;

import com.google.common.collect.Lists;

import java.io.UnsupportedEncodingException;

import java.nio.*;

import java.security.*;

import java.time.Instant;

import java.util.*;

import java.util.stream.*;

import javax.annotation.PostConstruct;

import lombok.extern.slf4j.Slf4j;

import org.apache.commons.lang3.tuple.*;

import org.bitcoin.client.*;

import org.bitcoin.model.*;

import org.bitcoin.util. HexUtil;

70

import org.bitcoinj.core.Base58;

import org.bouncycastle.jce.provider.BouncyCastleProvider;

import org.bouncycastle.util.encoders.Hex;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.stereotype.Component;

@Slf4

@Component

public class MinerUtil {

private Boolean miningStarted,

private Thread currentMiningThread;

private final TransactionClient transactionClient;

private final TargetClient targetClient;

private final BlockClient blockClient;

private List<Pair<String, String>> keys;

@Autowired

public MinerUtil(final TransactionClient transactionClient, final TargetClient

targetClient, final BlockClient blockClient) {

this.transactionClient = transactionClient;

71

72
this.targetClient = targetClient;

this.blockClient = blockClient;

keys = Lists.newArrayList();

@PostConstruct

private void generateKeysAndAddress() throws InvalidAlgorithmParameterException,
NoSuchAlgorithmException, NoSuchProviderException,

UnsupportedEncodingException {

for (Integer 1 = 1; 1 <= 2; I++) {

KeyPairGenerator keyGen = KeyPairGenerator.getinstance("EC");

ECGenParameterSpec ecSpec = new ECGenParameterSpec('secp256k1");

keyGen.initialize(ecSpec);

KeyPair kp = keyGen.generateKeyPair();

PublicKey pub = kp.getPublic();

PrivateKey pvt = kp.getPrivate();

ECPrivateKey epvt = (ECPrivateKey) pwvt;

String privateKey = adjustTo64(epvt.getS().toString(16)).toUpperCase();

ECPublicKey epub = (ECPublicKey) pub;

73
ECPoint pt = epub.getW();

String sx = adjustTo64(pt.getAffineX().toString(16)).toUpperCase();

String sy = adjustTo64(pt.getAffineY().toString(16)).toUpperCase();

String publicKey = "04" + sx + sy;

keys.add(ImmutablePair.of(privateKey, publicKey));

MessageDigest sha = MessageDigest.getinstance("SHA-256");

byte[] s1 = sha.digest(publicKey.getBytes("UTF-8"));

Security.addProvider(new BouncyCastleProvider());

MessageDigest rmd = MessageDigest.getinstance("RipeMD160", "BC");

byte[] r1 = rmd.digest(sl);

byte[] r2 = new byte[rl.length + 1];

r2[0] = 0;

for (inti=0;i<rl.length;i++) {

r2[i + 1] = r1]i];

byte[] s2 = sha.digest(r2);

byte[] s3 = sha.digest(s2);

byte[] al = new byte[25];

for (inti=0;i<r2.length; i++) {

alfi] = r2[i];

for (inti=0;1<5; i++) {

al[20 +i] = s3i];

log.info("address" + | + "={}", Base58.encode(al));

static private String adjustTo64(String s) {

switch (s.length()) {

case 62:

return "00" + s;

case 63:

return "0" + s;

case 64:

return s;

default:

74

throw new lllegalArgumentException("not a valid key: " + s);

private Block getBlockData() {

List<Transaction> transactions = transactionClient.getPendingTransactions()

.onFailure(exception -> log.error("failed to get transactions from node",

exception))

.getOrElse(Lists.newArrayList())

.stream().limit(20).collect(Collectors.toList());

String targetValue = targetClient.getCurrentTarget()

.onFailure(exception -> log.error("failed to get current target from node",

exception));

Block lastBlock = blockClient.getLastBlock()

.onFailure(exception -> log.error("failed to get current target from node",

exception))

.getOrElse(Block.builder().build());

Block block = Block.builder()

.magicNumber("D9B4BEF9")

75

76
.blockHeader(BlockHeader.builder()

.hashPrevBlock(lastBlock.getBlockHeader().calculateHash().getOrElse(""))

target(targetValue)

time(HexUtil.formatLongAndReverseOrdering(Instant.now().getEpochSecond()))

.version("02000000")

build()

build();

block.setTransactions(transactions);

return block;

private void insertCoinbaseTransaction(Block block) {

Pair<String, String> keyPair = keys.get(0);

String privateKey = keyPair.getLeft();

String publicKey = keyPair.getRight();

String outScript = "4c" + String.format("%02x", (publicKey.length() / 2)) + publicKey

+ "aC";

String outputScriptLength =

HexUtil.formatintegerAndReverseOrdering(outScript.length() / 2);

77
String lockTime =

HexUtil.formatLongAndReverseOrdering(Instant.now().getEpochSecond());

block.getTransactions().add(Transaction.builder()

.InCounter("01000000")

JistOfinputs(Collections.singletonList(TxIn.builder()

.previousTransactionHash("00

0000000000000000")

.txOutIndex("00000000")

txInScript("™)

txInScriptLength(*00000000")

.sequenceNumber("FFFFFFFF")

build())

.outCounter("01000000")

JistOfOutputs(

Collections.singletonList(

TxOut.builder()

txOutScript(outScript)

.value(HexUtil.formatLongAndReverseOrdering(5000000000L))

78
txOutScriptLength(outputScriptLength)

build())

.versionNo("02000000")

JdockTime(lockTime)

build();

block.setTransactionCounter(HexUtil.formatintegerAndReverseOrdering(block.getTrans

actions().size()));

private void insertFakeTransaction(Block block) {

Pair<String, String> keyPair = keys.get(1);

String privateKey = keyPair.getLeft();

String publicKey = keyPair.getRight();

String outScript = "4c" + String.format("%02x", (publicKey.length() / 2)) + publicKey

+ "aC";

String outputScriptLength =

HexUtil.formatintegerAndReverseOrdering(outScript.length() / 2);

String lockTime =

HexUtil.formatLongAndReverseOrdering(Instant.now().getEpochSecond());

block.getTransactions().add(Transaction.builder()

79
.inCounter("01000000")

JistOfinputs(Collections.singletonList(TxIn.builder()

.previousTransactionHash("00

0000000000000000")

.txOutIndex("00000000")

txInScript("™)

.txInScriptLength(*00000000")

.sequenceNumber("FFFFFFFF")

build())

.outCounter("01000000")

JistOfOutputs(

Collections.singletonList(

TxOut.builder()

txOutScript(outScript)

.\value(HexUtil.formatLongAndReverseOrdering(1000000000L))

txOutScriptLength(outputScriptLength)

build()))

80
.versionNo("02000000")

JdockTime(lockTime)

Jbuild());

block.setTransactionCounter(HexUtil.formatintegerAndReverseOrdering(block.getTrans

actions().size()));

public void startMiners() {
new Thread(() -> {
for (inti=1;i<=4;i++) {
Block block = getBlockData();
insertCoinbaseTransaction(block);
if i==1){

insertFakeTransaction(block);

String target = block.getBlockHeader().getTarget();

for (Long nonce = OL; nonce < Long.MAX_VALUE; nonce++) {

block.getBlockHeader().setNonce(HexUtil.formatLongAndReverseOrdering(nonce));
String hash = block.getBlockHeader().calculateHash().get();
if (target.compareTo(hash) > 0) {
log.info("nonce={} hash={} target={}", nonce, hash, target);

break;

if (blockClient.postBlock(block).get()) {

log.info("posted block={}", block);

b.start();

HexUtil.java
package org.bitcoin.util;

import java.nio.ByteBuffer;

82
import java.nio.ByteOrder;

import org.bouncycastle.util.encoders.Hex;

import org.spongycastle.util.Arrays;

public class HexUtil {

public static String reverseByteOrdering(String value) {

ByteBuffer buffer = ByteBuffer.allocate(value.length() / 2);

buffer.order(ByteOrder.LITTLE_ENDIAN);

buffer.put(Arrays.reverse(Hex.decode(value)));

return new String(Hex.encode(buffer.array()));

public static long reverseOrderingAndParseLong(String value) {

ByteBuffer buffer = ByteBuffer.allocate(Long.BYTES);

buffer.order(ByteOrder.LITTLE_ENDIAN);

buffer.put(Arrays.reverse(Hex.decode(value)));

return Long.parseLong(new String(Hex.encode(buffer.array())).substring(0, 8), 16);

public static String formatintegerAndReverseOrdering(Integer value) {

ByteBuffer buffer = ByteBuffer.allocate(Long.BYTES);

buffer.order(ByteOrder.LITTLE_ENDIAN);

buffer.putint(value);

return new String(Hex.encode(buffer.array())).substring(0, 8);

public static String formatLongAndReverseOrdering(Long value) {

ByteBuffer buffer = ByteBuffer.allocate(Long.BYTES);

buffer.order(ByteOrder.LITTLE_ENDIAN);

buffer.putLong(value);

return new String(Hex.encode(buffer.array()));

Block.java

package org.bitcoin.model,

import io.vavr.control.Try;

import java.security.MessageDigest;

import java.util.List;

import java.util.stream.Collectors;

import lombok.AllArgsConstructor;

83

import lombok.Builder;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.NoArgsConstructor;

import lombok.Setter;

import lombok.ToString;

import lombok.extern.slf4).SIf4;;

import org.bitcoin.util.HexUtil;

import org.bouncycastle.util.encoders.Hex;

@ToString

@EqualsAndHashCode

@Builder

@Slf4

@NoArgsConstructor

@AIllArgsConstructor

public class Block {

@Getter

@Setter

84

private String magicNumber;

@Getter

@Setter

private String blockSize;

@Getter

@Setter

private String transactionCounter;

@Getter

private List<Transaction> transactions;

@Getter

@Setter

private BlockHeader blockHeader;

public void setTransactions(List<Transaction> transactions) {

this.transactions = transactions;

this.transactionCounter =

HexUtil.formatintegerAndReverseOrdering(transactions.size());

if (this.blockHeader == null) {

this.blockHeader = BlockHeader.builder().build();

85

86

this.blockHeader.setHashMerkleRoot(calculateMerkleRoot().getOrElse(™));

public Try<String> calculateMerkleRoot() {

return Try.of(() -> {

MessageDigest digest = MessageDigest.getinstance("SHA-256");

List<String> hashes = this.transactions

.Stream()

.map(transaction ->

HexUtil.reverseByteOrdering(transaction.calculateHash().get()))

.collect(Collectors.toList());

while (hashes.size() > 1) {

for (inti=1;i < hashes.size(); i += 2) {

digest.reset();

String hash1 = HexuUtil.reverseByteOrdering(hashes.get(i - 1));

String hash2 = HexUtil.reverseByteOrdering(hashes.get(i));

byte[] bytes = Hex.decode(hashl.concat(hash2));

String combinedHash = new String(Hex.encode(digest.digest(bytes)));

hashes.remove(i);

hashes.remove(i - 1);

hashes.add(i - 1, HexUtil.reverseByteOrdering(combinedHash));

return hashes.get(0);

D

Transaction.java

package org.bitcoin.model,

import com.google.common.collect.Lists;

import io.vavr.control.Try;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.security.MessageDigest;

import java.util.Collections;

import java.util.List;

87

import lombok.AllArgsConstructor;

import lombok.Builder;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.NoArgsConstructor;

import lombok.Setter;

import lombok.ToString;

import lombok.extern.slf4).SIf4j;

import org.bitcoin.util. HexUtil;

import org.bouncycastle.util.encoders.Hex;

@ToString

@EqualsAndHashCode

@Getter

@Setter

@Builder

@AIllArgsConstructor

@NoArgsConstructor

@SIf4

88

public class Transaction {

private String versionNo;

private String inCounter;

private List<TxIn> listOfinputs;

private String outCounter;

private List<TxOut> listOfOutputs;

private String lockTime;

public Try<String> calculateHash() {

return Try.of(() -> {

String data = "";

data += HexUtil.reverseByteOrdering(this.versionNo);

data += HexUtil.reverseByteOrdering(this.inCounter);

for (TxIn in : this.listOfinputs) {

data += in.toString();

data += HexUtil.reverseByteOrdering(this.outCounter);

for (TxOut in : this.listOfOutputs) {

data += in.toString();

89

data += HexUtil.reverseByteOrdering(this.lockTime);

MessageDigest digest = MessageDigest.getinstance("SHA-256");
byte[] hash = digest.digest(data.getBytes());

byte[] digestl = digest.digest(hash);

return HexUtil.reverseByteOrdering(new String(Hex.encode(digestl)));

D

TxIn.java

package org.bitcoin.model,

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.EqualsAndHashCode;
import lombok.Getter;

import lombok.NoArgsConstructor;

90

import lombok.Setter;

import lombok.extern.slf4).SIf4;;

import org.bitcoin.util. HexUtil;

import org.bouncycastle.util.encoders.Hex;

import org.spongycastle.util.Arrays;

@EqualsAndHashCode

@Getter

@Setter

@Builder

@SIf4

@AIllArgsConstructor

@NoArgsConstructor

public class TxIn {

private String previousTransactionHash;

private String txOutindex;

private String txInScriptLength;

private String txInScript;

private String sequenceNumber;

91

92
@Override

public String toString() {

try {

ByteBuffer buffer = ByteBuffer.allocate(Long.BYTES);

buffer.order(ByteOrder.LITTLE_ENDIAN);

StringBuilder data = new StringBuilder();

data.append(previousTransactionHash);

if (this.txOutindex != null) {

data.append(HexUtil.reverseByteOrdering(this.txOutindex));

if (this.txInScriptLength != null) {

data.append(HexUtil.reverseByteOrdering(this.txInScriptLength));

if (this.txInScript != null) {

data.append(HexUtil.reverseByteOrdering(this.txInScript));

if (this.sequenceNumber !'= null) {

data.append(HexUtil.reverseByteOrdering(this.sequenceNumber));

return data.toString();

} catch (Exception e) {

e.printStackTrace();

throw e;

TxOut.java

package org.bitcoin.model,

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import lombok.AllArgsConstructor;

import lombok.Builder;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.NoArgsConstructor;

import lombok.Setter;

93

94
import lombok.extern.slf4).SIf4;;

import org.bitcoin.util.HexUtil;

import org.bouncycastle.util.encoders.Hex;

import org.spongycastle.util.Arrays;

@EqualsAndHashCode

@Getter

@Setter

@AIllArgsConstructor

@NoArgsConstructor

@Builder

@SIf4

public class TxOut {

private String value;

private String txOutScriptLength;

private String txOutScript;

@Override

public String toString() {

String data = "";

95
data += HexUtil.reverseByteOrdering(this.value);

data += HexUtil.reverseByteOrdering(this.txOutScriptLength);

data += HexUtil.reverseByteOrdering(this.txOutScript);

return data;

BlockHeader.java

package org.bitcoin.model,

import com.google.common.collect.Lists;

import io.vavr.control.Try;

import java.nio.ByteBuffer;

import java.nio.ByteOrder;

import java.security.MessageDigest;

import java.time.Instant;

import java.util.Collections;

import java.util.List;

import lombok.AllArgsConstructor;

import lombok.Builder;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.NoArgsConstructor;

import lombok.Setter;

import lombok.ToString;

import lombok.extern.slf4].SIf4j;

import org.bitcoin.util.HexUtil;

import org.bouncycastle.util.encoders.Hex;

@ToString

@EqualsAndHashCode

@Getter

@Setter

@Builder

@SIf4

@NoArgsConstructor

@AIllArgsConstructor

public class BlockHeader {

private String version;

96

private String hashMerkleRoot;

private String hashPrevBlock;

private String time;

private String target;

private String nonce;

public Try<String> calculateHash() {

return Try.of(() -> {

String data = ";

data += HexUtil.reverseByteOrdering(this.version);

data += HexUtil.reverseByteOrdering(this.hashPrevBlock);

data += HexUtil.reverseByteOrdering(this.hashMerkleRoot);

data += HexUtil.reverseByteOrdering(this.time);

data += HexUtil.reverseByteOrdering(this.nonce);

MessageDigest digest = MessageDigest.getinstance("SHA-256");

byte[] hash = digest.digest(Hex.decode(data));

byte[] digestl = digest.digest(hash);

return HexUtil.reverseByteOrdering(new String(Hex.encode(digestl)));

D

97

BlockClient.java

package org.bitcoin.client;

import com.fasterxml.jackson.core.type.TypeReference;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.datatype.jsr310.JavaTimeModule;

import io.vavr.control.Try;

import lombok.extern.slf4].SIf4j;

import okhttp3.MediaType;

import okhttp3.OkHttpClient;

import okhttp3.Request;

import okhttp3.RequestBody;

import okhttp3.Response,;

import org.bitcoin.model.Block;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Component;

@Component

98

99
@SIf4

public class BlockClient {

private final OkHttpClient httpClient;

private final ObjectMapper objectMapper;

@Autowired

public BlockClient(OkHttpClient httpClient, ObjectMapper objectMapper) {

this.httpClient = httpClient;

this.objectMapper = objectMapper;

public Try<Block> getLastBlock() {

return Try.of(() -> {

Request request = new Request.Builder()

url("http://ubuntuvm:8080/insight-api/blocks/last")

.get()

build();

Response response = httpClient.newCall(request).execute();

objectMapper.registerModule(new JavaTimeModule());

String body = response.body().string();

100
response.close();

return objectMapper.readValue(body, new TypeReference<Block>() {

;

D

public Try<Boolean> postBlock(final Block block) {

return Try.of(() -> {

RequestBody body = RequestBody.create(MediaType.parse("application/json;

charset=utf-8"), objectMapper.writeValueAsString(block));

Request request = new Request.Builder()

url("http://ubuntuvm:8080/insight-api/blocks™)

.post(body)

build();

Response response = httpClient.newCall(request).execute();

response.close();

return true;

D

101

TargetClient.java

package org.bitcoin.client;

import io.vavr.control.Try;

import okhttp3.OkHttpClient;

import okhttp3.Request;

import okhttp3.Response,;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.stereotype.Component;

@Component

public class TargetClient {

private final OkHttpClient httpClient;

@Autowired

public TargetClient(OkHttpClient httpClient) {

this.httpClient = httpClient;

public Try<String> getCurrentTarget() {

return Try.of(() -> {

102
Request request = new Request.Builder()

.url("http://ubuntuvm:8080/insight-api/target")

.get()

build();

Response response = httpClient.newCall(request).execute();

String body = response.body().string();

response.close();

return body;

D

TransactionClient.java

package org.bitcoin.client;

import com.fasterxml.jackson.core.type.TypeReference;

import com.fasterxml.jackson.databind.ObjectMapper;

import io.vavr.control.Try;

import java.util.List;

import okhttp3.OkHttpClient;

import okhttp3.Request;

import okhttp3.Response;

import org.bitcoin.model. Transaction;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.stereotype.Component;

@Component

public class TransactionClient {

private final OkHttpClient httpClient;

private final ObjectMapper objectMapper;

@Autowired

public TransactionClient(final OkHttpClient httpClient, final ObjectMapper

objectMapper) {

this.httpClient = httpClient;

this.objectMapper = objectMapper;

public Try<List<Transaction>> getPendingTransactions() {

return Try.of(() -> {

Request request = new Request.Builder()

103

104
.url("http://ubuntuvm:8080/insight-api/transactions/pending™)

.get()

build();
Response response = httpClient.newCall(request).execute();
String body = response.body().string();
response.close();

return objectMapper.readValue(body, new TypeReference<List<Transaction>>()

D;

D

public Try<List<Transaction>> listTransactions() {
return Try.of(() -> {
Request request = new Request.Builder()
url("http://ubuntuvm:8080/insight-api/transactions")
.get()
build();

Response response = httpClient.newCall(request).execute();

1}

D

105
String body = response.body().string();

response.close();

return objectMapper.readValue(body, new TypeReference<List<Transaction>>()

D;

	St. Cloud State University
	theRepository at St. Cloud State
	12-2018

	Creating A Fake Cryptocurrency Unit
	Sai Venkatesh Pabba
	Recommended Citation

	tmp.1547187398.pdf.T10gA

