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A TUTORIAL ON ACOUSTIC PHONETIC FEATURE EXTRACTION FOR 
AUTOMATIC SPEECH RECOGNITION (ASR) AND TEXT-TO-SPECH (TTS) 

APPLICATIONS IN AFRICAN LANGUAGES  
 

ETTIEN KOFFI 
 

ABSTRACT  
At present, Siri, Dragon Dictate, Google Voice, and Alexa-like functionalities are not available in 
any indigenous African language.  Yet, a 2015 Pew Research found that between 2002 to 2014, 
mobile phone usage increased tenfold in Africa, from 8% to 83%.1 The Acoustic Phonetic 
Approach (APA) discussed in this paper lays the foundation that will make Automatic Speech 
Recognition (ASR) and Text-to-Speech (TTS) applications possible in African languages. The 
paper is written as a tutorial so that others can use the information therein to help digitalize many 
of the continent’s indigenous languages.   
     
Keywords: Acoustic Phonetics Feature Extraction, Formant Extraction, Arpabet, Automatic 
Speech Recognition (ASR), Text-to-Speech (TTS), Acoustic Phonetics of African Languages, 
Measurement of Speech Signals, Speech Digitalization, Critical Band Theory, JND 
 
1.0 Introduction 

   This paper is written as a tutorial on acoustic phonetic feature extraction, an indispensable 
first step in Automatic Speech Recognition (ASR) and Text-to-Speech (TTS) applications.  
Extracting features is time-consuming but a labor of love that can increase the functionality of 
indigenous languages and help them survive in the “big eat small” linguistic environment in which 
indigenous languages find themselves.  The processes involved in acoustic phonetic feature 
extraction are discussed in eight sections.  The first highlights the benefits of speech digitalization, 
the second discusses the three main approaches used in speech synthesis, the third provides a short 
history of the Arpabet, the fourth surveys basic theoretical issues concerning phonetic invariance, 
the fifth deals with extracting consonant features, the sixth focuses on vowels features, and the 
seventh discusses suprasegmental features.   The final installment mentions briefly the additional 
steps not discussed in this paper but that are necessary for building full-fledged speech-enabled 
artificial intelligent systems for indigenous languages in Africa and beyond.  
 
2.0 Rationale for Extracting Acoustic Phonetics Features 

The phonetic and phonological diversity found in African languages makes it a prime 
candidate for a tutorial on feature extraction.  This richness is described by Clements (2000:123) 
as follows:  

 
The African continent offers a generous sample of the great variety of phonological 
systems to be found in the world’s languages, as well as some original features of its own.  
African phonological systems range from the relatively simple to the staggeringly complex.  
Those on the more complex end of the spectrum contain phonemic contrasts little known 
elsewhere in the world, rich patterns of morphophonemic alternations, and intricate tonal 

 
1 http://www.pewglobal.org/2015/04/15/cell-phones-in-africa-communication-lifeline/. Retrieved on November 10, 
2017. 
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and accentual systems, all offering stimulating grounds for phonetic and phonological 
study.  

 
In other words, if we can successfully extract the acoustic phonetic features found in African 
languages, we can apply the acquired skills to myriads of indigenous languages around the globe, 
so that they too can benefit from the revolution in speech-enabled technologies going on under our 
very eyes.  Rabiner and Schafer (1978:6-8) list some of the benefits that speech digitalization could 
potentially afford speakers of any language: 

 
1. Speech Synthesis  
2. Speech therapy 
3. Voiced enabled assistive technologies 
4. Digital transmission and storage of speech 
5. Speaker verification and identification 
6. Enhancement of signal quality 

 
Howley et al. (2020:2) list six additional benefits.  Without feature extraction, speakers of 
indigenous languages cannot use their smart devices in the same ways that speakers of English use 
Siri, Google Voice, Dragon Dictate, Alexa, etc.  The remaining sections of the paper will take us 
through various steps that make speech digitalization possible.  
 
3.0 Focus on the Acoustic Phonetic Approach 

Rabiner and Juang (1993:42-67) offers a good overview of three approaches used in ASR and 
TTS systems.  The common thread among them is that they all depend crucially on feature 
extraction.  The three models in question are: 

 
1) the Acoustic Phonetic Approach (APA) 
2) the Pattern Recognition Approach (PRA) 
3) the Artificial Intelligence Approach (AIA)  

 
The focus of this paper is APA because it can be readily applied to any indigenous language for 
which basic phonological descriptions exist.  Rabiner and Juang (1993: 42-3) describe it as 
follows:     
 

The acoustic-phonetic approach is based on the theory of acoustic phonetics that postulates 
that there exist finite, distinctive phonetic units in spoken language and that the phonetic 
units are broadly characterized by a set of properties that are manifest in the speech signal, 
or its spectrum, over time.  Even though the acoustic properties of phonetic units are highly 
variable, both with speakers and with neighboring phonetic units (the so-called co-
articulation of sounds), it is assumed that the rules governing the variability are 
straightforward and can readily be learned and applied in practical situation. 
 

According to Kent and Read (2000:253), this is the preferred speech synthesis method because it 
is “the product of many studies in acoustic phonetics, coupled with principles of phonology.”  
Assuming that the language under consideration has an adequate description of allophonic rules 
and phonotactic constraints, the researcher can move directly to feature extraction.   But a few 
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questions must be answered first.  Why is feature extraction necessary?  What principles should 
guide features extraction?  How many features are to be extracted?  Fant (1998:1249) answers the 
first question as follows: 
 

One object of speech analysis is to extract essential parameters of the acoustical structure, 
which may be regarded as a process of data reduction and an enhancement of information-
bearing elements. 
 

Three guiding principles on what features to extract are enunciated by Baken and Orlikoff (2000:3) 
as follows:  
 

1. The measurements must have a known (or at least a very likely) and specific relationship 
to recognized aspects of speech system physiology. 

2. A measurement must have clear relevance.  
3. The sole value of a measurement is in its interpretation.  

 
Fourcin and Abberton (2008:40) add that a distinction is to be made between measurements meant 
for “analytical precision” and those intended for “matching human perceptual abilities.”   Since 
the latter is the goal of ASR and TTS systems, only features that capitalize on intelligibility are 
worth extracting and measuring.   Rabiner and Schafer (1978:45) and Kent and Read (2002:247-
9) answer the question of how many features to extract by highlighting F1, F2, F3, and duration 
correlates.   However, since African languages are understudied acoustically, F0, VOT, and Center 
of Gravity (CoG) should also be included among the extractable features.   
 
3.1 The Overall Architecture of APA 

A quick examination of the overall architecture of APA by way of Figure 1 found in 
Rabiner and Juang (1993: 45) gives a glimpse of the methodological steps one must follow in 
feature extraction. 

 

 
Figure 1: Overall Architecture of APA  

 
The starting point of digitalization begins with the “Speech Analysis System” block in Figure 1.  
Given the popularity of Praat, it is safe to assume that it is the software that most linguists will use 
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to extract acoustic phonetic features.  Praat is a very powerful software that offers a wide array of 
possibilities.   Furthermore, it is free, which is music to the ears of researchers in the developing 
world who may not have the financial resources to afford expensive software.  The second block 
is “Feature Detector 1 … Feature Detector Q.”  This is where most of the extraction activities 
happen.  Questions related to what features to extract are listed below block 2.   
 

The procedure that one can/must follow to extract acoustic phonetic features is illustrated 
by Figure 2 with the example of the approximant fricative [ɥ] in the word <ahyʊa/ɛhyʊa> (night 
time stories).  It is a rare sound in Anyi, occurring only 10 times in a corpus of more than 5,000 
words.  A border is drawn around the whole word.  The segment [ɥ] occurs only in nouns, as noted 
on the parts of speech (POS) tier.  In this case, it occurred only in the singular, as also noted on the 
number tier.  Thereafter, inner boundaries are drawn around [ɥ] by itself because it the segment 
from measurements are collected.  The measurements appear on individual tiers: F0, F1, F2, F3, 
intensity, duration, and Center of Gravity (CoG):  
 

 
Figure 2: Annotation and Feature Extraction 

 
The totality of these seven correlates represent the features that are extracted for the approximant 
fricative [ɥ].  This procedure is repeated for the consonants, vowels, and suprasegments of the 
language that are “essential parameters” and “information-bearing elements,” in the language 
(Fant 1998:1249). 
 
3.2 Methodological Issues 

Feature extraction raise several methodological issues.  Some relate speech style and others 
to the number of participants.   In regard to the former, the question is whether or not the 
extracted features should come from words in citation form or in running speech.  Ladefoged et 
al. (1976) and Koffi and Krause (2020) have shown that as far as most acoustic correlates of vowels 
are concerned, speech style has no effect on intelligibility.   With regard to the latter, a minimum 
of six speakers are recommended for most acoustic phonetic studies (Ladefoged 2003:67).     
Jongman et al. (2000:1255) have shown that with as few as 20 participants (10 males and 10 
females), one can adequately represent the speech signals of an entire speech community.   
However, if features are to be extracted from 20 speakers, this would represent a massive amount 
of data if a minimum of seven acoustic correlates were to be considered.  For example, if a 
language has 9 oral vowels and 23 consonants, and if 20 participants produce them, this yields 
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4,480 tokens (9 x 7 x 20 + 23 x 7 x 20).    This will take a professor who is not on sabbatical and 
who does not have graduate assistants to help him/her, two to three years to extract all necessary 
features if the person works on the data on weekends, some holidays, and parts of the summer.   
Once all the data have been extracted, they will need to be sorted by gender and also by correlates.  
Assuming that 20 speakers produced [ɥ], their individual production should be tabulated.  The data 
should be tabulated by gender, then “first order statistical analysis,” i.e., means and standard 
deviations should be calculated (Rabiner 1998:1267).  This should be done for each segment!    

 
Clearly, if this is the methodology, then there will not be enough human power to do feature 

extraction and analysis for the 2,000 or so indigenous languages spoken in Africa.  Fortunately, 
there is a simpler solution which is less tedious but yields excellent results.   Increasingly, experts 
are using a single human exemplar as the Artificial Intelligent (AI) agent for ASR and TTS 
applications.  I have extracted vowel features from one such person whose voice is used in a 
pronunciation application that is used worldwide.  Synthesizing the speech of a single individual 
saves time and efforts.  There are just a few precautions to take to maximize intelligibility.  The 
exemplar’s voice should be as accent neutral as possible.  In other words, speakers of the language 
should not be able to easily pinpoint the region where the speaker is from.  The recordings should 
be of excellent quality.  If at all possible, the human exemplar should be recorded in a studio.  If 
this requirement is unduly burdensome, the recording should take place in a quiet room with noise 
cancellation equipment.  The price of the latter is no longer exorbitant.       
 
3.3 Critical Band Theory (CBT) and Just Noticeable Differences (JNDs)  

Intelligibility is the ultimate goal of communication.  For this reason, the interpretations of 
the measurements should be based on the Critical Band Theory (CBT).  CBT originated from 
the groundbreaking research done at Bells Research Laboratories from the 1920s to the 1960s.  In 
the 1940s, physicist Harvey Fletcher pioneered a psychoacoustic methodology to gauge how the 
ear transduces acoustic signals into intelligible utterances.  Another physicist, von Bekesy, 
demonstrated clinically that Fletcher’s theory of Critical Bands was anchored in anatomical and 
auditory reality. For this, von Bekesy was awarded the Nobel Prize in Medicine/Physiology in 
1961. Fletcher’s and Bekesy’s approach to intelligibility has revolutionized contemporary 
understanding of the processes involved in encoding and decoding speech signals.  The third-
octave response system, such as those listed in Rabiner and Juang (1993:186) and elsewhere, 
replicate as closely as possible how the human ear perceives speech signals (Everest and Pohlmann 
2015:529).  Zwicker (1961:248) and Pope (1998:1347) report that they have been endorsed by 
reputable bodies, such as the American National Standard Institute (ANSI), the International 
Standardization Organization (ISO), and the International Electrotechnical Commission (IEC)).   
CBT has uncovered important Just Noticeable Differences (JND) thresholds at which segments 
become intelligible or not.  The main ones are summarized in Table 1: 
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   N0 Acoustic Correlates JND Thresholds 
1.  F0  £ 1 Hz 
2.  F1  £ 60 Hz 
3.  F2 £ 200 
4.  F3 £ 400 
5.  Intensity £ 3 dB 
6.  Duration £ 10 ms 

Table 1: Intelligibility Thresholds 
 
The symbol “£” means that variations between segments of less than the indicated values are not 
perceptually salient.    Stevens (2000:225) notes that for an item to qualify as a valid JND, it must 
elicit at least 75% of correct responses from a large pool of participants.  Extensive discussions of 
CBT thresholds are available in Stevens (2000:203-241) and Rabiner and Juang (1993).   
 
3.4 Phonetic Invariance 

The above-mentioned JNDs and other like them have established beyond the shadow of a 
doubt that phonetic invariance is real.  This does not mean that variability does not exist.  Even 
ardent proponents of phonetic invariance do not deny that intraspeaker and interspeaker variability 
are a linguistic fact of life.    Instead, they argue that phonetic variability is tightly regulated so as 
to assure intelligibility within the same speech community.    Indeed, ASR and TTS systems have 
exploited the availability of JNDs to build robust systems that “understand” and are “understood 
by” an ever increasing number of speakers, even speakers of English with foreign accents.2  
Phonetic invariance is the main reason why digitalizing the speech of a single human exemplar is 
enough for building robust and “smart” ASR and TTS systems.  Appendices 3 to 7 display the 
features extracted from the speech of one speaker of Anyi, an Akan language spoken in eastern 
Côte d’Ivoire.  
 
4.0 Introducing the Arpabet 
 Broadly speaking, there are three transcription systems: the conventional orthography, the 
International Phonetic Alphabet (IPA), and the Arpabet.  The first is used worldwide by all literate 
individuals.  The second was officially created in 1888 (Pullum and Ladusaw 1986:xix) and is 
used primarily by linguists.   Gambarage (2017:457) refers to the IPA as “the lingua franca for 
field linguists and phonologists/phoneticians.”  Since its creation predates modern computers, it is 
not compatible with them.  For this reason, the Arpabet was introduced in the 1970s.  It operates 
on the same principles as the IPA.  Its main advantage is that it is fully compatible with ASCII 
symbols available on all computers.  Jurafsky and Martin (2000:94-95) note that the Arpabet was 
initially designed for English but it is not English-centric.  It can be expanded to transcribe African 
languages, as will be seen in the latter sections of this paper.   The English Arpabet is used as the 
starting point of our discussions before the system is broadened to include African languages.   
 
 
 
 

 
2 All the smart systems on my computer or iPhone understand me even though I’m not a native speaker of English.  I 
have noticed a very high level of intelligibility over the past 10 years since I have been testing voice-enabled devices. 
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N0 Arpabet Phoneme IPA Example Arpabet Transcription 
1.  AA  ɑ odd      AA D 
2.  AE  æ at  AE T 
3.  AH  ʌ hut hut 
4.  AO  ɔ ought AO T 
5.  AW ɑʊ cow K AW 
6.  AY ɑɪ hide HH AY D 
7.  B   b be  B IY 
8.  CH tʃ cheese  CH IY Z 
9.  D   d dee  D IY 
10.  DH  ð thee  DH IY 
11.  EH  ɛ Ed  EH D 
12.  ER  ɚ hurt  HH ER T 
13.  EY  e ate  EY T 
14.  F   f fee  F IY 
15.  G   g green  G R IY N 
16.  HH  h he  HH IY 
17.  IH  ɪ it  IH T 
18.  IY  i eat  IY T 
19.  JH  dʒ gee  JH IY 
20.  K   k key  K IY 
21.  L   l lee  L IY 
22.  M   m me  M IY 
23.  N   n knee  N IY 
24.  NG  ŋ ping  P IH NG 
25.  OW  o oat  OW T 
26.  OY  ɔɪ toy  T OY 
27.  P   p pee  P IY 
28.  R   r read  R IY D 
29.  S   s sea  S IY 
30.  SH  ʃ she  SH IY 
31.  T   t tea  T IY 
32.  TH  θ theta  TH EY T AH 
33.  UH  ʊ hood  HH UH D 
34.  UW  u two  T UW 
35.  V   v vee  V IY 
36.  W   w we  W IY 
37.  Y   j yield  Y IY L D 
38.  Z   z zee  Z IY 
39.  ZH  ʒ seizure  S IY ZH ER 

Table 2: English Arpabet  
 
A few noteworthy observations about Arpabet conventions are in order.  First, all vowels are 
represented by two letters (digraphs).  Secondly, the IPA symbols [θ, ð, dʒ, tʃ, ʒ] and aspirated [h] 
are also represented by diagraphs.   Third, Arpabet transcriptions appear either in all in capital 
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(upper case) or lower case letters.  However, capitalized transcriptions are more widespread.  
Fourth, the Arpabet system focused mostly on full-fledged phonemes.  However, over the years, 
limited number of allophones have been included, as shown in Table 3:3   
 

N0 Arpabet Phoneme IPA Example Arpabet Transcription 
1.  AX ə comma K AA M AX 
2.  EL l̩ bottle B AH Q EL 
3.  EM m̩  rhythm R IY DH AX EM 
4.  EN n̩ button B AH Q EN 
5.  Q ʔ button B AH Q EN 

Table 3: Allophones of Arpabet 
 
Fifth, the Arpabet also represents suprasegmentals by using Arabic numbers, as shown in Table 4: 
 

N0 Arpabet Phoneme IPA 
1.  0 unmarked 
2.  1 ́    
3.  2  ̀ 

Table 4: Suprasegmentals in Arpabet 
 
The word <rhythm> can be transcribed in the Arpabet system as follows: R IY 1 DH AX EM 2.  
It is worth noting that stress indices appear at syllable boundaries.  In reality though, only primary 
stress is indicated in most Arpabet systems.   So, <rhythm> is transcribed as R IY1 DH AX EM 2. 
Dialectal variations can also be transcribed.  In fact, many AI systems recommend that significant 
alternative pronunciations be transcribed to increase the “smartness” of the intelligent agent.  All 
in all, the Arpabet transcription system is challenging for English because its orthography is 
opaque, which means that there is no one-to-one correspondence between spelling and 
pronunciation.  Even so, current ASR and TTS systems work surprisingly well.  This means that 
the Arpabet will work well for African languages because their orthographies are transparent.  
They are for the most part based on the phonemic principle which calls a straightforward one-to-
one correspondence between phoneme and grapheme.   Because of this, we are confident that once 
the relevant features have been extracted, speech synthesis based on the APA model can be 
implemented successfully in for African languages.  Tone marking can be a challenge, but the 
solution proposed in 6.3 is supposed to work.  
 
5.0 Extractable Consonant Features  

Ordinarily, linguists rely on place of articulation, manner of articulation, and voicing to 
describe consonants exhaustively.  However, for some African languages, one might need to add 
two additional features, namely voice stream mechanism and double closure.  The former 
addresses issues having to with the pronunciation of implosives and ejectives, while the latter deals 
with labiovelars (to be explained below).   For acoustic phonetic measurements, we will pay closer 
attention to manner of articulation because, as Reetz and Jongman (2009:199) explain, “It is easier 
to identify cues to manner of articulation and voicing than place of articulation.”  This explains 
why all the extractable features that Rabiner and Schafer (1978:43) display in Table 3.1 are manner 

 
3 The digraph [nx] is used to represent the allophone of /t/ when it is pronounced as [n] when it follows an [n] as in 
<twenty>, <winter>, <Hunter>, etc. 
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features.  In other words, the extractable features used in speech synthesis are stops, fricatives, 
affricates, nasals, liquids, and glides/semi-vowels.  Consonants are dealt with first in the next 
several sections because they are more numerous in any given language than vowels.  
 
5.1 Extracting Stop Features   

The most robust acoustic correlate that talkers and hearers rely on to encode and decode 
stops is voice onset time (VOT).  It has to do with the amount of time that elapses when the 
articulators come together and when they part.  Lisker and Abramson’s (1964) article investigating 
the VOT of voiced and voiceless segments in 11 languages is by far the most influential acoustic 
phonetic study of its kind.  Their methodology has been widely used to study VOT in many 
languages.  Kent and Read (1992:120) contend that “VOT has been one of the most frequently 
measured phenomena in speech research.”  Ladefoged (2003:98) adds that “When making the 
description of a language, the VOT of stops consonants should always be given, as it varies 
considerably from one language to another.”   It needs to be pointed out that VOT can be positive 
or negative depending on the speaker and/or the language.  In the former, the vocal folds begin 
vibrating even before the release of closure.  In the latter, the vocal folds vibrate only after the 
release of closure.   Katz (2013:252) has highlighted a correlation between VOT and degrees of 
voicing, namely, “If a language sets a voiced sound to be so negative in VOT, then the voiceless 
counterpart doesn’t have to be strongly voiceless.”  Our investigation will go well beyond 
measuring the VOT of the plain voiceless stops [p, t, k] and the plain voiced stops [b, d, g] to 
include the VOT measurements of implosives, ejectives, labiovelars, and clicks that are found 
almost exclusively in African languages.  
 
5.2 Focus on Implosives 

The stop segments [ɓ, ɖ, ɠ] are called implosives because, in producing them, speakers 
suck air from outside into the oral cavity.  Maddieson (1984:111-4) notes that about 10% of world 
the languages have implosives.  Many of them are found in West African languages.  We learn 
from Ladefoged and Maddieson (1996:87) that implosives are not very loud and are mostly voiced.  
They describe these sounds aerodynamically as follows, “The closed glottis is lowered so that the 
air pressure in the mouth decreases considerably.  When it is about -4 cm H2O, the vocal folds start 
vibrating and the oral pressure starts increasing.  Shortly afterwards the lips come apart and air 
flows out of the mouth.”  VOT measurements of implosives are hard to come by.   Ladefoged and 
Maddieson (1996:82-3) display a couple of spectrographic annotations of implosives.   
 
5.3 Focus on Ejectives 

Ejectives are segments that are produced forcefully.   Unlike implosives, they are usually 
voiceless.  The three ejectives commonly found in African languages are [p’, t’, k’].  Ladefoged 
and Maddieson (1996:78) describe them aerodynamically as follows: “The pressure behind the 
closure in the oral cavity is often increased to about double the normal pulmonic pressure (i.e., 
about 16 cm H2O).  The oral closure is then released, and, owing to the greater supraglottal 
pressure, there is a greater amplitude in the burst.”   They occur in 16.40% of world languages, 
many of which are in West Africa (Maddieson 1984:101).   Hausa is well known for its ejective 
stops [p’, t’, k’].   We deduce from Ladefoged and Maddieson (1996:80, Figure 3.15), that the 
VOT of ejectives will be considerably long, ³ 50 ms.   Hausa in an interesting language in that it 
has plain stops, implosives, and ejectives.  Studying its VOT will provide insights into how the 
speakers encode and decode subtle variations in stops.  
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5.4 Focus on Labiovelars 
The feature double closure is used to describe the labiovelars [k͡p] and [g͡b].  These 

segments have two simultaneous closures, “the labial-velar closure does have a similarity to a velar 
one while its release has similarity to a labial one.” (Ladefoged and Maddieson 1996:336).  Thirty-
three of the 61 (54%) West African languages in Ladefoged’s (1968) survey have labiovelars.  
Various instrumental tools have been used and continue to be used to investigate their articulatory 
and aerodynamic characteristics. Yet, comprehensive VOT measurements of [k͡p] and [g͡b] that 
include F0, F1, F2, F3, VOT, and duration are hard to find.  We note in passing Connell (1994) 
provide some measurements on five Nigerian languages, and De Jong (1997) also investigated the 
F2 of [g͡b] in relation to back vowels.    
 
5.5 Focus on Clicks 

Some of the rarest sounds in world languages are clicks.  They are mostly found in southern 
African languages.   As many as five clicks have been identified in Zulu: the bilabial [ʘ], the dental 
[ǀ], the alveolar [ǃ], the lateral [ǁ], and the palatal [ǂ] (Ladefoged and Maddieson 1996:258).  An 
important acoustic characteristic of clicks highlighted by Ladefoged and Maddieson (1996:259) is 
intensity.  They note that, in general, their intensity is 6 dB greater than that of surrounding sounds.   
 
5.6 Arpabet Notation of Stops in African Languages 

All in all, 13 unique stops are found in African languages in addition to those commonly 
found in world languages.  This calls for an expanded Arpabet system to accommodate: [pʼ, ɓ, tʼ, 
ɗ, kʼ, ɠ, k͡p, g͡b, ʘ, ǀ, ǃ, ǁ, ǂ ].  A two-letter Arpabet is suggested for these unique segments.  The 
grapheme “H” is added to indicate ejectives, “Q” for implosives, and “K” for clicks. 
 

Arpabet IPA F0 F1 F2 F3 VOT Duration 
P p       
B b       
T t       
D d       
K k       
KP kp       
G g       
GB gb       
PH pʼ       
TH tʼ       
KH kʼ       
BQ ɓ       
DQ ɗ       
GQ ɠ       
BK ʘ       
FK ǀ       
TK ǃ       
LK ǁ       
ZK ǂ       

Table 5: Expanded Arpabet for Stops 
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5.7 Extracting Fricatives and Affricates Features 
   From Clements (2000:125), Welmers (1973:50-56), and Ladefoged (1968), we know that 
the following fricatives [ɸ, β, f, v, s, z, ɕ, ʑ, z, ʃ, χ , ɣ h, ɦ] and affricates [tʃ, dʒ, tɕ, dʑ] occur in 
African languages.  An important acoustic correlate of fricatives and affricates is center of gravity 
(COG) (Jongman and Wayland’s 2000).  Extracting this feature makes it possible to know as 
precisely as possible the articulatory characteristics of these segments.  This is the reason why 
COG is listed in Table 6 as an additional extractable feature.  Ladefoged and Maddieson 
(1996:139) lament the fact that there is a worldwide shortage of acoustic phonetic data on 
fricatives, “There have been surprisingly few studies of the acoustics of fricatives.”  Extracting 
many features helps to document the acoustic behavior of fricatives in African languages, thereby 
helping to address the shortage of data.  In an expanded Arpabet, I suggest that fricatives and 
affricates that do not have counterparts in English be represented with “H” as the first digraph for 
glottal fricatives and F as the second diagraph for all other fricatives.   “H” should be the first 
diagraph because H as the second diagraph is already used to represent <i>.  The Arpabet 
annotation of fricatives that do not occur in English appear in the last 10 rows of Table 6. 
 
Arpabet IPA F0 F1 F2 F3 Duration CoG 
F f       
V v       
S s       
Z z       
SH  ʃ       
CH tʃ       
JH dʒ       
HY ç       
HH   h       
HJ ɥ       
FF ɸ       
BF β       
CF ɕ       
ZF ʑ       
XF χ       
GF ɣ       
XF ɦ       

Table 6: Expanded Arpabet for Fricatives and Affricates 
 
5.8 Extracting Nasal Features 

The segments [m, n, ɲ, ŋ] are the most commonly found nasals in world languages. 
Ladefoged’s (1968:45-63) survey shows that 47 of the 61 West African languages (77.04%) have 
all four nasals.   Ladefoged and Maddieson (1996:117) note that “There have been relatively few 
studies of the acoustic distinctions between nasals in natural languages, and many of those that do 
exist are limited to m and n.” Extracting five features from nasals will document less studied 
nasals.   
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Arpabet IPA F0 F1 F2 F3 Duration 
M m      
N n      
NG ŋ      
NY ɲ      

Table 7: Expanded Arpabet for Nasals 
 
Nasals are particularly difficult to synthesize because their pronunciation involves two cavities: 
the oral and the nasopharyngeal cavities.  In producing nasal sounds, a more or less significant 
portion of air molecules are diverted into the sinuses when the velum lowers.  This causes the areas 
above F2 to be less intense on spectrographs.  This area is known as zeros.   The difficulties in 
synthesizing nasals and nasalized segments are amply discussed by Rabiner and Schafer 
(1978:450).   
 

Additional difficulties surface in extracting features from prenasalized segments, that is, 
nasal sounds that occur immediately before an obstruent.  These clusters are pervasive in African 
languages but relatively uncommon in world languages.   Maddieson (1984:67) found that only 19 
languages out of the 317 in the UCLA Phonological Segment Inventory Database (UPSID) have 
prenasalized obstruents.  Welmers (1973:69-72) opines that prenasalized segments may have 
started as prefixes in an earlier stage of Niger-Congo languages.  The IPA transcription of 
prenasalized consonants is controversial.  When a prenasalized segment occurs before [f], [v], [k͡p], 
and [g͡b], some transcribe the sequence as [ɱf], [ɱv] while others write them as [nf] and [nv].   
Controversial also is the way in prenasalized [k͡p], and [g͡b] are transcribed.  Welmers (1973:65)4 
offers the following opinion, “I have personally preferred /ŋkp, ŋgb/ in the cases I have met, but 
again no great theoretical issue is at state.”  Yet others prefer transcribing them as [ɱk͡p] and [ɱg͡b].  
Ladefoged and Maddieson (1996:334, 6) indicate that spectrographic evidence from Efik and 
Logbara are inconclusive as to the preferred method of transcription.    Martinez and Rosenbaum 
(2017) offer acoustic phonetic and aerodynamic descriptions of prenasalized segments in Somali 
Chizigula which underscore the articulatory complexity of these segments.   
 

The orthographic representation of prenasalized consonants that occur in word-medial 
positions are no less challenging because such clusters raise theoretical questions about syllable 
structure.  Koffi (2009:92-102, 112-114) devotes 15 pages sorting out various orthographic 
options.  The same issues surface in the Arpabet transcription of word-medial prenasalized 
segments.  For example, in the word [kɪs̃ndɛ] (to look for), there are two possible options, both of 
which have theoretical undertones.5    If the vowel [ɪ] of the first syllable is nasalized, one would 
have to assume that the underlying phonemic representation is /kɪnsndɛ/.  In this case, the nasal 
tilde on [ɪ]̃ is the result of a tautosyllabic nasalization rule.  The other option would posit that the 
underlying phonemic representation is /kɪsndɛ/.  Therefore, the surface form [kɪñdɛ] is the result 
of a nasalization rule that crosses syllable boundaries.   The tendency in the phonological literature 
is to assume that nasalization rules are tautosyllabic.  If this assumption is accepted, the 
orthographic form of [kɪs̃ndɛ] should be <kɪnndɛ>, not <kɪndɛ>.  Thus, the Arpabet transcription 
should be K IH N ND EH, not K IH ND EH.   In other words, one should expect the digitalization 

 
4 Transcriptions such as [mŋkp, mŋgb] and [ŋ͡mk͡p] or [ŋ͡mg͡b] that appear in Welmers (1973:65) or Clements 
(2000:129) are hard to justify acoustically. 
5 Here, the symbol “�” is used as a marker of syllable boundary. 
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of prenasalized segments to present formidable challenges in speech digitalization, as they are for 
phonological theory.   
 
5.9 Extracting Liquid Features 

Most African languages have the liquids [l] and [r] (Ladefoged 1968).  However, in most 
cases, /l/ is the basic phoneme and [r] is an allophone.  In Anyi, for example, /l/ is the basic 
phoneme, and [r] is an allophone that occurs only immediately after coronals.  In some languages, 
[l] and [r] occur in free variation.  Regardless of their phonological status, [l] and [r] features need 
to be extracted separately because they have salient acoustic characteristics that make them 
perceptually different.  F3 is an important feature to extract because, according to O’Connor et 
al.’s (1976:301, 306), “The distinction between /l/ and /r/ seems to depend primarily on the third-
formant transition.”  A comprehensive study done by Epsy-Wilson (1992) support the view that a 
liquid is perceived as a lateral if its JND is ≥ 2,600 Hz, unless it is trilled.   Laterals include clear 
[l]s, syllabic [l]s, or approximant [ɭ].   Segments whose F3 are below £ 2,200 Hz, are taken to be 
rhotics such as [r],  [ɾ], or the approximant rhotic [ɻ] .  Segments whose F3 fall between 2,500 Hz 
and 2,200 Hz are hard to perceive clearly.  Such is the case of the pronunciation of /l/ in /bala/ 
(woman) in Anyi Morofu which produced in the Anyi Bona dialect of either as [baɭa] or [baɻa].   
In such cases, a vibration calculation may help disentangle the perceptual difficulties.  Ladefoged 
(2003:151) provides the following formula for calculating the degree of trilling.  

 
The numerator is the absolute duration in milliseconds.  It is always 1000 because 1 second equals 
1000 milliseconds.  The denominator is the duration of the actual segment under consideration.  
The JND for trilling is ≥ 22 Hz.   Any [r] whose value below this threshold is considered flapped, 
tapped, or not trilled.  If the vibration rate of [r] exceeds this JND, it must be accounted for in the 
Arpabet system by transcribing it as [RR].  Trilling effectively differentiates between laterals and 
rhotics because no human language has a trilled lateral.  As soon as trilling is heard, whether it is 
forceful or faint, it should be transcribed in Arpabet as R or RR. 
 

Arpabet IPA F0 F1 F2 F3 Vibration 
L l      
R r      
RR R      

Table 8: Expanded Arpabet for Liquids 
 
5.10 Extracting Glide Features 

Ladefoged (1968) lists [w], [j], and [ɥ] as the glides commonly found in West African 
languages.   Espy-Wilson (1997) and others have noted that F2 is the most robust correlate for 
discriminating between [j] and [w].    
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Arpabet IPA F0 F1 F2 F3 Duration 
W w      
Y j      
HJ ɥ      

Table 9: Expanded Arpabet for Glides  
 
The phonological literature on African languages reports pervasive co-articulated when the glides 
[w] and [j] occur immediately after [p], [b], [t], [d], [k],[g], [f], [v], [s], [z], [tʃ], and [dʒ].  When 
[j] occurs with [p], phonologists refer to it as palatalization.  It is transcribed in the IPA system 
as  [pj], [bj], [tj], [dj], [kj], [gj], [fj], [sj], [zj], [tʃj], [dʒj].  When [w] follows the same segments, it is 
known as labialization and transcribed as [pw], [bw], [tw], [dw], [kw],[gw], [fw], [vw], [sw], [zw], [tʃw], 
[dʒw].   F3 can help gauge the degree of palatalization and labialization.  The same JND of ≥ 2,600 
Hz used to discriminate between [l] and [r] also applies here.  Palatalized segments call for lip 
protrusion and therefore have F3 values that exceed ≥ 2,600 Hz.  Consequently, its F3 values are 
expected to be < 2,600 Hz.  Labialized segments have F3 values similar to [m], [r], and [w] because 
lip rounding entails the lowering of the velum.   If palatalization and labialization are deemed 
salient enough to be worth represented in the Arpabet system, then palatalized segments could be 
represented as segment + j, and labialized segments as segment + W.   Caution should be 
exercised before implementation so as not to introduce three-segment symbols into the Arpabet 
transcription system.   
 
6.0 Extracting and Measuring Vowel Features  

Vowels are fewer than consonants in all languages.  Yet, they play as great a role, and 
sometimes a greater role in intelligibility than consonants.  Prator and Robinett (1985:13) 
overemphasize their role in teaching English as a second language, arguing that when vowels are 
poorly pronounced, intelligibility is severely compromised.  Rabiner and Juang (1993:21-3) 
express a similar view regarding the role of vowels in ASR and TTS systems:  

 
The vowel sounds are perhaps the most interesting class of sounds in English.  Their 
importance to the classification and representation of written text is very low; however, 
most practical speech-recognition systems rely heavily on vowel recognition to 
achieve high performance.6 … The vowel sound produced is determined primarily by the 
position of the tongue, but the position of the jaw, lips, and to a small extent, the velum, 
also influences the resulting sound.   
 

According to Welmers (1973:20-45), vowel systems in African languages vary in size from five 
to ten vowels.  However, seven /i, u, e, ɛ, o, ɔ, a/ or nine /i, ɪ, u, ʊ, e, ɛ, o, ɔ, a/ vowel systems are 
the most common.   In such systems, /a/ is the only central vowels.  There are a few exceptions.  
Welmers (1973:20) lists some languages as having [ɨ, ə, ɪ̈].  Marchese (1989:128) notes that Bete 
and Godie, and possibly other Eastern Kru languages have [ʉ] and [ʌ].  I should hasten to add that 
both Welmers’ and Marchese’s descriptions of these vowels are based on impressionistic data 
analysis.    If indeed [ɨ, ɪ̈, ʉ, ə, ʌ, a] occur as central vowels, they should be presented in the Arpabet, 
as shown in Table 10.  I make the following suggestions for represented central vowels.  Except 
for [a], [ʌ], and [ə], for which Arpabet symbols exist already, I suggest adding “C” to represent 

 
6 Highlighting not in the original quote. 
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the central vowels for which no Arpabet is available.  Thus, [ɨ] is transcribed as IC, [ʉ] as UC, and 
[ɪ̈] as [YC].   
  

Arpabet IPA F0 F1 F2 F3 Duration 
IY i      
IH ɪ      
IC ɨ      
YC ɪ̈      
EY e      
EH ɛ      
AE æ      
AA a      
AO ɔ      
OW o      
UW u      
UH ʊ      
UC ʉ      
AH ʌ      
AX ə      

Table 10: Arpabet for Vowels  
 
6.1 Vowel Length Transcription in the Arpabet System 
 Very little research has been done on vowel length in African languages.  The silence may 
be due to the fact that vowel length and tonal contour go hand in hand.  Ladefoged (1968:33) 
explains the complexities of correlation between vowel length and tone as follows: 
 

Discussion of vowel length is always complicated by the interaction of the phonological 
analysis of length and tone.  … In general, it would seem that when, as in many Kwa 
languages, perceptually long vowels can be on one pitch or involve a change in pitch, and 
when these vowels can occur in the same phonological structures as sequences of different 
vowels, then it is preferable to regard them as two vowels. 

 
Let’s set tone aside for the moment and focus purely on vowel quality.  Here is an example from 
Anyi for dealing with vowel length by itself.  The language makes a three-way contrast between 
[bó] (to break), [bô] (nose), and [bǒ] (forest).  Impressionistically and instrumentally, there is a 
durational difference between the [o] in the three vowels.  The [o] of [bó] is differentiated from 
[bô] (nose) by being slightly longer.  Thus, in an Arpabet system, the two can be transcribed 
respectively as follows: [B OW] and [B OW OW].  Duration is indicated in Arpabet by doubling 
the vowel.  The [bǒ] (forest) is also slightly longer than [bô] (nose).  How then, should it be 
represented in the Arpabet system?  Transcribing it as [B OW OW] is not enough because this 
transcription does not differentiate it from [bô] (nose), which is also transcribed as [B OW OW].   
What can be done in such cases?  A solution is proposed in 6.3 that takes into account information 
about vowel duration and tone contrasts, as discussed in 6.2 below. 
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6.2 Tone Transcription in the Arpabet System 
Before answering the question as to how [bǒ] (forest) and [bô] (nose) are to be 

differentiated in the Arpabet system, a little detour is necessary in order to discuss auditory illusion 
and the Critical Band Theory (CBT).  Katz (2013:179) notes that auditory illusions are as common 
as optical illusions.  Baken and Orlikoff (2000:1) state that “The ear is too easily fooled.”  These 
realities caution us not to rely solely on impressionistic methodologies to make statements about 
tonal structures in African languages.    Koffi (2017) has proposed an acoustic phonetic analysis 
of tone that is firmly anchored in the Critical Band Theory (CBT).   This approach takes the view 
that the 1/3-octave response system used in audio engineering is “close to the critical bandwidth 
of the ear” (Pohlmann 2015: 36, 529).  Handbook of the IPA (1999:14) reports that phoneticians 
all over the world accept the view that there are only five pitch registers in all human languages: 
extra low, low, mid, high, and extra high.   Furthermore, it is accepted as uncontroversial that the 
pitch that the human vocal apparatus can produce “extends from about 60 Hz to about 500 Hz” 
(Fry 1979:68).  However, the default settings in Praat go from 75 Hz to 500 Hz because nobody 
speaks with an F0 lower than 75 Hz.  The maximum pitch level is set at 500 Hz because, except 
for colicky babies, nobody produces F0 ≥ 500 Hz.  Putting all these acoustic phonetic facts 
together, Koffi (2017) has proposed the thresholds in Table 11 in which F0 measurements correlate 
with pitch registers systematically:  

 
N0 Tone Registers Lower Limits Center Frequency Upper Limits Arpabet 
1. Extra low 71 80 88 0 
2. Low 89 100 113 1 
3. Mid 114 125 141 2 
4. High 142 160 176 3 
5. Extra high 177 200 225 4 

Table 11: Critical Bands for Men and Arpabet Notation 
 
Except for Anyi data that I collected and analyzed myself, I have not come across outside data to 
verify the postulates in Table 11.   F0 measurements on African languages are extremely hard to 
come by because, as noted previously, most of the statements about tone and tone patterns are 
based solely on the impressionistic evaluation of the linguist doing the research.  I was therefore 
elated to have run into Professor Bearth in Geneva in December 2019.   He informed me that he 
had done an instrumental study of Toura tones and willingly sent me a copy of the paper he 
published in 1968, that is, almost 49 years before I published my paper demonstrating that the 
JNDs in Table 11 correlate F0 measurements with tone registers accurately.   His instrumental and 
statistical analyses and my CBT-based correlations are astoundingly identical.  Below are the 
correlations between F0s and tone registers proposed by Bearth (1968:47) for Toura: 
   

N0 Tone Registers Center Frequency 
1. Low 110 Hz 
2. Mid 120 Hz 
3. Mid-high 140 Hz 
4. High 160 Hz 
Table 12: Center Frequency of Toura Level Tones 

 
Now, when one is dealing with female speech, the measurements in Table 11 (and Table 12, too) 
should be raised by 50%, or multiplied by 1.5 (Kent and Read 2002:191).  Table 13 correlates 
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female F0 with tone registers: 
 

N0 Tone Registers Lower Limits Center Frequency Upper Limits Arpabet 
1. Extra low 106 120 132 0 
2. Low 133 150 169 1 
3. Mid 170 185 211 2 
4. High 212 240 264 3 
5. Extra high 265 300 337 4 

Table 13: Critical Bands for Women and Arpabet Notation  
 
6.3 Transcribing Vowel Length and Tonal Patters in the Arpabet System 

The information in the two previous sections makes it possible to provide an Arpabet 
transcription that combines both vowel duration and tone contrasts.  The tone bearing unit (TBU) 
of the word [bó] (to break) is high tone.  In the suprasegmental annotation in Arpabet, this 
corresponds to the numerical index of “3.”  Consequently, [bó] is transcribed as a [B OW3].  The 
TBU of [bô] (nose) has a high-low contour tone and corresponds in the Arpabet system to “3” and 
“1.”  Therefore, [bô] is transcribed as [B OW3 OW1].   Similarly, the TBU of [bǒ] (forest) is low-
high and corresponds to “1” and “3.”  The Arpabet transcription of [bǒ] is [B OW1 OW3].   The 
Arpabet system can accommodate segmental duration correlated with any combination of contour 
tone patterns.   

 
7.0 Beyond Acoustic Phonetic Feature Extraction 

The ultimate goal of feature extraction is to get to a point where indigenous languages can be 
fully digitalized and used in speech synthesis for ASR and TTS applications.  As this tutorial has 
shown, the process is long and tedious.   Even though various scripts are available to automatize 
various aspects of the task, to the best of my knowledge, there is not a single script that can extract 
five or more correlates at once.  Furthermore, many phoneticians are leery about the accuracy of 
scripts.  Because of misgivings about scripts, one is better off annotating and extracting all the 
information oneself, even though doing so is laborious and even if speech synthesis is based off 
on one prototypical speaker.  When all the features have been extracted, the first step is complete.  
However, the overall goal of ASR and TTS is far from being achieved.  Figure 1, which displays 
the overall architecture, shows that two more blocks remain.   The third block is “Segmentation 
and Labelling.”  It involves several subsidiary steps, such as phoneme lattice, segment lattice, 
probabilistic labelling, decision trees, and parsing strategies.   The “Control Strategy” block also 
remains to be implemented.  In light of all that remains, the following statement by Kent and Read 
(2003:243) appears to be too optimistic: 

 
The remaining of this chapter describes different types of speech synthesis.  Most of these are 
based on acoustic models of the speech signal and are most commonly used today.  Because 
many of these have been implemented on ordinary microcomputers, anyone with a personal 
computer and some ancillary equipment can experiment with speech synthesis.  This fact has 
accelerated progress in the field. 

 
This optimism should be tampered with a dose of reality.  It is uncontroversial that personal 
computers abound, but what are “some ancillary equipment” that are needed?  Almost all the 
speech synthesizer currently in use call for a large amount of speech data for “deep” learning neural 
networks (Haley et al. 2020:2-6). The data needed is astronomical, amounting dozens of hours, 
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and in some cases, hundreds of hours of good quality audio recordings.  What we badly need for 
the indigenous languages in Africa is an acoustic phonetic synthesizer that can produce authentic 
speech quality based on a comparatively small dataset, i.e., 500 to 1,000 words.  Moreover, in my 
experience and practice, a successful ASR or TTS systems cannot be designed by a single person.  
It calls for a collaboration with (signal processing) engineers and computer scientists with expertise 
in artificial intelligence and/or natural language processing.  I’m fortunate to work with such a 
team of experts at my university.  We have embarked on a speech synthesis project that obviates 
the need for “deep” learning.   
 
8.0 Summary  
 The steps outlined in this tutorial opens up possibilities that were unimaginable just a few 
years ago.  With the ongoing revolution in speech technologies and speech enable-AI systems, 
developing, endangered, and moribund indigenous languages of Africa and elsewhere have a new 
lease on life.  Whatever status a language finds itself in, feature extraction can help modernize, 
revitalize, and preserve it for current and future generations.   Armed with a vocabulary of only 
500 words, an AI agent endowed with an adequate phonological, morphological, and syntactic 
description and rules can generate novel utterances and understand new ones as it encounters them.  
There is hope that, not too far from now, moribund and even “dead” languages can be revitalized 
again if their features are extracted.  With the proliferation of mobile devices that are becoming 
increasingly smarter and smarter, speech-enabled AI agents can be designed for indigenous 
languages that will teach indigenous peoples their own native tongues.   Speech synthesis will pay 
huge dividends for linguists, language activists, speakers of indigenous languages, and 
policymakers as they endear to preserve linguistic diversity.     
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Appendices 
 

 
Appendix 1: Anyi Consonant Phonemes (Koffi 2009) 

 
Note: The segments between parentheses, (v) and (z) are morphophonological variants of /f/ and 
/s/ respectively.  The segment (r) is an allophone of /l/ when it occurs after coronals. 
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Note on Consonant Measurements 
Unless otherwise noted, the measurements of consonants are based on the speech of a single 
speaker who produced these segments in running speech.   
 

Arpabet IPA F0 F1 F2 F3 VOT7 Duration 
P p 608 763 1725 3159 15 20 
B b 130 483 1164 2663 -8 47 
T t 60 711 2062 3186 0 23 
D d 133 332 1861 3019 -43 45 
K k 60 1081 1958 3250 7 73 
KP kp 114 523 1235 2738 -24 46 
G g 60 1075 2062 2750 -45 40 
GB gb 139 445 1396 2927 -37 37 

Appendix 2: Stop Measurements in Anyi 
 

Arpabet IPA F0 F1 F2 F3 CoG Duration 
F f 60 1012 2015 3036 6968 82 
V v 122 652 1982 3016 1338 57 
S s 60 1180 2552 3242 5660 137 
Z z 127 581 1626 3065 5050 115 
CH tʃ 60 974 2466 3278 6045 44 
JH dʒ 175 535 2313 3419 753 97 
HH   h 60 958 1906 3220 1213 98 

Appendix 3: Fricative and Affricate Measurements in Anyi 
 

Arpabet IPA F0 F1 F2 F3 Duration 
M m 130 972 1834 2975 93 
N n 135 445 1670 3009 136 
NG ŋ 169 509 1627 2586 117 
NY ɲ 131 748 1800 3236 109 

Appendix 4: Nasal Measurements in Anyi 
 

Arpabet IPA F0 F1 F2 F3 Vibration Duration 
L l 138 650 1501 2548 16 64 
R r 135 660 1531 2576 26 38 

Appendix 5: Liquid Measurements in Anyi 
 
 
 
 

 
7 The VOT measurements must be taken with a grain of salt.  VOT in running speech may not work well for languages 
with open syllables such as Anyi because the voicing of the vowel that immediately precedes the stop consonant bleeds 
into it.  This is particularly tricky if the stop itself is a voiced segment.  I did not know this when I started! 
8 Fry (1978:68) notes that 60 Hz is the lowest possible pitch that the human voice can produce.   However, the default 
pitch setting in Praat is ³ 75 Hz.  Any time Praat F0 measurement as “undefined,” I select the default value of 60 Hz 
for that segment.   
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Arpabet IPA F0 F1 F2 F3 CoG Duration 
W w 139 485 2075 3455 NA 52 
Y j 124 294 1996 3245 NA 46 
HJ ɥ 60 718 2151 2817 1997 130 

Appendix 6: Glide Measurements in Anyi 
 

Note on Vowel Measurements 
The measurements in Appendix 7 are based on data published by Koffi (2017).  The measurements 
are based on data collected from 10 speakers.  The vowels containing the vowels were produced 
three times each in citation form.   
 

 
Appendix 7: Anyi Vowel Phonemes (Koffi 2009) 

 
Note: There are some important differences between a prototypical vowel quadrant such as the 
one above and an actual acoustic such as the one in Appendix 9 based on F1 and F2 measurements 
obtained by 10 male speakers.   
 

Arpabet IPA F0 F1 F2 F3 Duration 
IY i 141 348 2206 3174 118 
IH ɪ 142 399 2174 3055 113 
EY e 146 392 2141 2877 121 
EH ɛ 140 589 2038 2738 114 
AA a 137 925 1486 2506 102 
AO ɔ 139 635 1056 2545 109 
OW o 152 477 1392 2897 121 
UW u 144 388 1249 2832 117 
UH ʊ 147 523 1182 2716 116 

Appendix 8: Vowel Measurements in Anyi 
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Appendix 9: Acoustic Vowel Space of Anyi 

 
 

Appendix 9 
Seventeen Anyi popular proverbs used in various data collections. 
 

1. Sɛ ɛsʋn kʋla wɔ, ɔ di wɔ boó. 
2. Sanran b’ɔ si ɛsʋn sʋ, nyanzuo ngan man yi. 
3. Kannzɛ ɛsʋn tɩ kpili bɔbɔ ɔ, ɔ nɩn asɩɛ nzɛ man. 
4. Anʋnman nvɛ man ɛyaá, bakaá wʋn. 
5. Bɛlɛbɛlɛ, yɩɛ anʋnman fá yɔ yɩ suá ɔ. 
6. Akɔ ja ngu man yɩ wáa. 
7. Sɛ akɔ nyan nɩnka fɩa ɔ, yɩɛ ɔ bisa cɔmaán kosan ɔ. 
8. Ekpóo kpa yɩ pieto yuo ɔ, yɩ wʋla nvi man yɩ dua nɩnka. 
9. Dodohɔlɔ wan, “Ndɛndɛ tɩ yie, bɛlɛbɛlɛ tɩ yie.” 
10. Jɩjɩlɩwáa bakaá: bie mɔ lɛ fʋ sʋ ɔ, nɩɩ́n bie mɔ lɛ jura ba. 
11. Bakaá tɔ nzuo nun ɔ, ɔ ngaci man ɛlɛngɛ. 
12. Ketebʋɔ nnyʋn kan bo nun ɔ, bɛ ndara man jɩra. 
13. Kpɛnzɛ wan, “alɩɛ́ atɩ́ɩn nnʋn man mmʋ́a. 
14. Sanran b’ɔ tin dufalɛ, ɔ njici man yɩ sa nʋan. 
15. Wʋntɩnwʋntɩn wan, ɔ́ɔ kɔ Kelegbe, naán kɔ́ nían kɛ, awʋnman a fita yi. 
16. Bɛ́ɛ tu nanmuo nun ɔ, bɛ́ɛ nje man nun. 
17. Bɛ fulalɩ kʋn naán bɛ finlɩ man yi asɩ ɔ, bɛ nzea kɛ, b’ɔ tɩ ɛlɔ a je. 
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