
St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

3-2019

Application of an Artificial Neural Network as a
Third-Party Database Auditing System
Amirali Daghighi
adaghighi@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository at St. Cloud State. It has been
accepted for inclusion in Culminating Projects in Information Assurance by an authorized administrator of theRepository at St. Cloud State. For more
information, please contact rswexelbaum@stcloudstate.edu.

Recommended Citation
Daghighi, Amirali, "Application of an Artificial Neural Network as a Third-Party Database Auditing System" (2019). Culminating
Projects in Information Assurance. 86.
https://repository.stcloudstate.edu/msia_etds/86

https://repository.stcloudstate.edu?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/iais?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/86?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu


 

Application Of An Artificial Neural Network As A Third-Party Database Auditing System 

 

by 

 

Amirali Daghighi 

 

 

 

A thesis  

Submitted to the Graduate Faculty of 

St. Cloud State University 

In Partial Fulfilment of the Requirements  

for the Degree 

Master of Science in 

Information Assurance 

 

 

May, 2019 

 

 

Committee Members: 

Jim Chen 

Jie Meichsner  

Mark Schmidt 



                                                                                                                                                                         2 
 

Abstract 

Data auditing is a fundamental challenge for organizations who deal with large databases.  

Databases are frequently targeted by attacks that grow in quantity and sophistication every day, 

and one-third of which are coming from users inside the organizations. Database auditing plays a 

vital role in protecting against these attacks. Native features in data base auditing systems 

monitor and capture activities and incidents that occur within a database and notify the database 

administrator. However, the cost of administration and performance overhead in the software 

must be considered. As opposed to using native auditing tools, the better solution for having a 

more secure database is to utilize third-party products. The primary goal of this thesis is to utilize 

an efficient and optimized deep learning approach to detect suspicious behaviors within a 

database by calculating the amount of risk that each user poses for the system. This will be 

accomplished by using an Artificial Neural Network as an enhanced feature of analyzer 

component of a database auditing system. This ANN will work as a third-party product for the 

database auditing system. The model has been validated in order to have a low bias and low 

variance. Moreover, parameter tuning technique has been utilized to find the best parameters that 

would result in the highest accuracy for the model.  
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Chapter I: Introduction 

 Database Management Systems have traditionally been used to store and secure data in 

computer systems. Databases are frequently targeted by attacks that grow in quantity and 

sophistication every day. Armeding (2018) from CSO online, identified a list of 18 biggest data 

breaches of 21st century. This list contains data breaches that happen to companies such as: 

Yahoo, JP Morgan Chase, Marriott International, eBay, Target, Facebook to name just a few. 

The list is based upon damage or risk that the breach caused for users and account holders. As 

Conway et al. (2005) point out, according to the US Secret Service and the Computer Emergency 

Readiness Team (CERT), one-third of threats to an organization’s databases come from the 

individuals inside those organizations with data access privileges. These insider individuals 

cause 29% of intrusions to database systems. According to Wagner et al (2017), in order to 

achieve security in such systems, detecting security breaches and implementing preventive 

mechanisms such as access control policies must be performed. Knowing when these security 

breaches and security policy violations have taken place is the primary purpose of an auditing 

system. Due to its value in maintaining this security, database auditing has had grown 

exponentially in the past decade. The enormous presence of data in social media and other 

networks such as LinkedIn (LinkedIn, n.d), Facebook (Facebook, n.d), Twitter (Twitter, n.d), the 

health-care industry for example in Hosseini et al (2017), and scientific research has caused these 

organizations’ database administrators to reevaluate the importance of database auditing. To 

maximize database security, administrators must create and implement new policies that go 

beyond what is required by government regulations (such as the Sarbanes-Oxley act or HIPAA). 
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According to Bishop (2003), a database auditing system has three major components: a 

“Logger”, an “Analyzer”, and a “Notifier”, as illustrated in Figure 1.1. 

 

 

Figure 1.1: Main components of an auditing system (Bishop, 2003) 

 

 The logger records the information through binary or textual content. Pertinent events 

occurring within the database will be logged in the vault.  What constitutes a pertinent event is 

dictated by the system security policy.  The analyzer analyzes the content of the log file to detect 

anomalies, and to identify the need for policy modification, and to take over responsibility of the 

users’ actions. Performing frequent analyzing operations in a database management system can 

lead to an increased number of violations detected. The output of the analyzer may result in 

changes to the data or error discovery in events. After the analyzer performs its duties, the output 

is passed to the notifier. The notifier’s job is to inform the database administrator about the 

outcome of the auditing process. 

 Most database management systems have built-in auditing features to capture predefined 

auditing data and events. Some preliminary automatic alert functionality can be found in some 

DBMSs. However, there is very limited data auditing analysis capabilities built in these systems. 

The common practice is to extract auditing data and use embedded SQL tools to conduct manual 

data analysis to detect any breaches and policy violations. Clearly, there is a need for third party 

auditing tools to provide robust data analysis capabilities Woo et al (2010). 
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 The primary goal of this thesis is to utilize an efficient and optimized deep learning 

approach to analyze user activities within a database and calculate the amount of risk that each 

user poses for the system. According to Najafabadi et al (2015), deep learning is a subset of 

machine learning which is used in big data analytics which extracts complex patterns in data by 

utilizing a hierarchical learning process. A deep neural network has more than one hidden layer. 

 In previous works that will be mentioned Chapter II, neural networks were used to process audit 

data using machine learning techniques. However, by utilizing new technologies such as deep 

learning, more optimized SGD algorithms, and also utilizing new libraries which has been 

mentioned in Chapter III, a more precise implementation of previous works is available. This 

thesis is organized as follows. Chapter II, discusses previous research on audit data and 

demonstrates similar applications of Artificial Neural Networks. Chapter III, discusses the design 

and implementation of the deep learning model. Chapter IV, illustrates the results. Finally, 

Chapter V includes the discussion and future work.  
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Chapter II: Literature Review 

 Many studies have tackled different applications of Artificial Neural Network (ANN). In 

this chapter, the previous and similar applications of ANN to this work such as improving the 

accuracy of ANN by adding extra hidden layers will be mentioned briefly. As mentioned in 

Chapter I, third-party database auditing products specifically tackle the lack of comprehensive 

audit analysis by providing useful recovery and auditing tools to cover the flaws of native 

database. Third-party auditing tools have much more flexibility when compared to the tools that 

come with the products. In case of a potential problem, a real-time third-party database auditing 

system would work faster and be more reliable than database administrators. Based on the users 

pattern activities, the auditing system will provide valuable reports for database administrators 

and organization’s executives. Therefore, organizations are able to be more prepared for any 

possible threat. Some of the third-party products are designed to work proactively and alert the 

database administrators about possible threats, which could happen from either insiders or other 

users who have access to databases.  

 According to Oracle database security guide Oracle (2017), audit trails were separated in 

previous releases of Oracle products, but Oracle 12C release came with a new approach 

regarding audit trails. In the previous versions, the audit trails were separated for each 

component. SYS.AUD$ was used for audit trail, SYS.FGA_LOG$ was used for FGA auditing, 

and DVSYS.AUDIT_TRAIL$ was used for database vault. However, in the latest release, all the 

audit trails were unified as one audit trail. The unified audit trails can be viewed from data 

dictionary view, UNIFIED_AUDIT_TRAIL. Unified audit has provided an easier way and a 

better opportunity for running analysis on the audits of a database. The problem in the previous 
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versions was that the analyzer had to gather all the audit files together and then perform the 

desired analytics tasks. By using the unified audit, users can access a single formatted audit of 

the database, which will provide a wide variety of services and can be allied with the audit vault 

as well as the database firewall. Unified auditing reduced the overhead in the performance of the 

system. Moreover, unified auditing makes it easy to audit conditionally and introduces new roles 

such as AUDIT_ADMIN or AUDIT_VIEWER, which increases the integrity of logs and 

policies.  

 

Figure 2.1: Unified auditing architecture 

 Figure 2.1 Salama (2014), demonstrates the unified auditing architecture. Unified 

auditing makes the analysis of audit logs more effective. In order to store audit trail, AUDSYS 

table is used. It is worth mentioning that if there is already any audit log in the FGA_LOG$ or 

AUD$ tables, then that data would still remain in the SYS schema. It is highly valuable to have a 

good analysis of the database system activities to identify suspicious activity as soon as possible. 

Audit record is a place to save auditing activities within Oracle Database. Audit trails can be 

saved as a data dictionary or an operating system file. According to Yang (2009), audits saved in 



                                                                                                                                                                         13 
 

a data dictionary are called database audit trail, while audits saved as an operating system file are 

called operating system audit trail. Oracle 12C has the unified audit trail option. The unified 

audit trail provides for more effective context-dependent logging and produces a superior single 

formatted audit log. For the majority of organizations who deal with personal information of 

their customers securing their data is extremely important, and there is no place for mistakes. 

Even one data breach within such organization would cost a fortune. On the other hand, the price 

of audit maintenance and analysis is relatively high and many of the auditing products, which 

come with purchasing the databases, will not guarantee a high state of protection for the 

organizations.  

 Third-party database auditing products specifically tackle the lack of comprehensive 

audit analysis by providing useful recovery and auditing tools. Third party auditing tools have 

much more flexibility when compared to the tools that come with the products. In case of a 

potential problem, a real-time third party database auditing system would work faster and be 

more reliable for database administrators. Based on the users pattern activities, the third-party 

auditing system will provide valuable reports for database administrators and organizations 

executives. Therefore, organizations are able to be prepared for any possible threats by updating 

their current policies and implementing new policies. Some of the third-party products are 

designed to work proactively and alert the database administrators about possible threats, which 

could happen from either insiders or other users who have access to database. Improvements 

suggested by monitoring the system using the third party systems decrease the risks down the 

road. Improvements suggested by monitoring the system using the third party systems decrease 

the risks down the road. The followings are some of the applications of ANN in many different 
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fields such as auditing and accounting, finance, tax cases, business, forecasting inflation, and 

bankruptcy prediction.  

Another reason for choosing a deep learning approach is that, as the amount of training 

data increases, the model would have more data points to learn from, and the performance of the 

system would increase over time. The number of false alarms of the system will decrease and the 

outcome would then be more precise. A deep learning model with low bias and low variance 

would be beneficial to improve the database auditing process and implement more accurate 

policies. To carry this out, the ANN would be implemented by using the Python programming 

language in Spyder which is a distribution in Anaconda platform. The dataset that has been used 

for this project is a simulated dataset that contains information about 10000 employees of an 

organization. The ANN will be built in the Spyder distribution of Anaconda. The next steps are 

building, fitting, and then checking the validation of the ANN which has been explained in 

details in Chapter III. Having a well-trained deep neural network will significantly increase the 

chances of detecting unauthorized access by monitoring the user's activities. Using a third-party 

auditor that utilized an ANN would be beneficial for organizations because they would be able to 

create more efficient policies and policy modifications that would result in a more secure 

database system. 

 Machine leaning, and Artificial Intelligence in general, can have a big impact in the 

future of database auditing. Finding certain patterns and analyzing data in great volume is nearly 

impossible for humans whereas the machine is able to perform millions of calculations in a short 

period of time. On the other hand, having such a large amount of data available will result in a 

better training for the ANN, due to a better weight adjustment in the ANN. Weights are crucial 
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for ANN, since the system will learn how to function based on the values that are being updated 

on weights. Generally speaking, in order to train an ANN with SGD, the following steps should 

be taken. First, weights should be randomly initialized to small numbers close to (but not 

exactly) zero. The first data observation would then be given to ANN as input. Each of the nodes 

will have one feature. In a deep learning model there are one or more layers other than input 

layer and output layer. Next step is the forward propagation, or left to right propagation. After 

this step, the gradient error will be calculated. Based on the result of this step, the back 

propagation will take place. Back propagation will update the weights based on the error that 

happened according to the target weight. The above steps have to be followed and weights must 

be updated after each observation.  

 Kotsiantis et al. (2002) emphasize the fact that “unintentional nonfraudulent financial 

statement errors are static in that their incidence is unaffected by the anticipated audit. But fraud 

is intentional and strategic such that its incidence is affected by the anticipated audit.” 

 Khare and Gaibhiye (2013) stated that an ANN is a parallel-distrubuted-information-

processing system that simulated neural network of human brain. The authors worked on 

application of an ANN on operation of reservoirs. The theory of this work was basically 

explaining the basic architecture of an ANN and did not provide any detail explanation on how 

to achieve the best model. They have presented the previous applications of an ANN on water 

resources engineering with a focus on reservoir field.  
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Figure 2.2 : Demonstration of an ANN with one hidden layer (Khare and Gaibhiye, 2013) 

  In auditing and accounting, Etheridge et al. (2000) and Gaganis et al. (2007) showed that 

ANN could decrease the misclassification in auditor’s works. Another brilliant aspect of ANN 

has been shown in this work on how ANN could transfer categorical variables to binary values. 

They had two types of errors in their work. Errors in these works have been called “Type I” and 

“Type II”; Type I error is in correlation of failed banks and Type II error represented the non-

failed banks. In this work the goal was to focus on Type I errors since misclassification of a true 

negative outcome would be more harmful than misclassification of a false positive outcome. 

 In classification of tax cases, Wu (1994) used one hundred and eighty samples of tax 

audit case files to train and test an ANN to show if there is a need for further audit in a tax case. 

Information about income tax behavior were in each tax case. Wu also showed that the 

classification accuracy would increase by one percent by adding a new hidden layer to ANN. 

The total number of hidden layers after increasing the accuracy was three. The accuracy of this 

model has been increase from ninety four percent to ninety five percent by adding another 

hidden layer.  
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In a similar work to Wu (1994), Koshivaara (2000) demonstrated the application of an 

ANN to help planning the auditing monthly balances. The outcome of this ANN model was 

illustrated by telling the user whether further audit is required; (“no further audit is required” or 

“further audit is required”). The accounts that were used to train the ANN model in this work 

were chosen by a CPA-auditor. The researcher compared two different models to achieve better 

results. First model works inside the quartile and second model includes previous input variables. 

The results showed that the model with previous input variables had better results. 

 Another interesting application of ANN in financial statements to identify modified and 

unmodified audit options have been presented by Pourheydari et al. (2012). The authors used an 

ANN to different classes of audit options on financial statements. They achieved an accuracy of 

eighty seven percent on both modified and unmodified audit options. This work is another 

application of an ANN and shows how powerful and useful MLP and deep learning could be on 

financial statements.  

 Six different ANN designs have been studied by Busta and Weinberg (1998) to classify 

normal and manipulated financial data and find the best model. The limitation on this work is the 

size of the dataset which is relatively small in comparison to the other financial dataset and 

similar works that have been done in this field. This work utilized Benfors’s law that shows the 

predictable distributed pattern on digits of naturally occurring numbers. This work focused on 

digit distribution of numbers in financial data. The input layer for each of six classifiers consisted 

of thirty four nodes. This work had a big variance in the results section. The author claims that 

the model is reliable with the accuracy of seventy point eight percent. However, the variance of 

the results for this model is very big which will lead in inconsistency in the accuracy of the 



                                                                                                                                                                         18 
 

model and would bring up the question of reliability. Accuracy of different models that have 

been utilized in this work, were between sixty seven percent to one hundred percent.  

 There are other approaches for training neural networks or other classification methods 

on unbalanced data sets, including over sampling, Synthetic Minority Over-sampling Technique 

(SMOTE), Borderline-SMOTE takes the critical data samples on the border of each class into 

account, and Hybrid methods. All the above methods have their own cons and pros, e.g. the 

pairwise distance of all data nodes should be measured in SMOTE based methods, which is 

expensive, or different weak learners should be trained in Hybrid based methods and Adaboost is 

used to combine the weak learners into a better classifier, which has expensive training overhead. 

 ANN has been used in audit problems to identify certain patters to detect anomalies in 

different systems and organizations. This type of application of ANNs is very efficient in 

detecting frauds within organizations. Calderon and Cheh (2002) came to the conclusion that 

ANN can be superior than other methods after analyzing twelve different papers in categories of: 

risk assessment, issue of going concern opinion, fraud and error identification, identification of 

too much risk in financial field, and bankruptcy forecast. 

 Cerullo and Cerrullo (1999) stated that ANN is far more proficient for the purpose of 

analyzing large amounts of data and to recognizing complex patterns and relationships in 

financial statements. They analyzed the use of ANN in fraud prediction on financial statements 

using the coefficients and information of the accounting statements. They came to the conclusion 

that ANN can be more accurate in recognizing certain patterns which are not noticeable for other 

computational approaches. In a similar work, Taha (2012) compared the ANNs with statistical 

models in planning and managing audits. Taha stated that ANNs are could show which financial 
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statements are likely to have substantial errors which would help the auditor to have a better 

understanding of the depth of audit test and creating more accurate point of view on financial 

statements.  

 Shin et al. (2005) compared Back Propagation Neural Network (BPN) and Support 

Vector Machines (SVMs) in corporate bankruptcy prediction. They stated that SVMs has a better 

accuracy and generalization performance  than BPN when the training size is smaller in the 

problem of bankruptcy prediction. The challenged the fact that training a neural network and 

updating weights takes a lot of training loads whereas SVM captures the geometric 

characteristics of the feature space and is capable of generating more accurate results than BPN.  

 Koshivaara (2000) compared four different ANN models to compare the information of a 

firm with similar information for the industry. The author used financial statements of 31 

manufacturing companies over a four-year period of time. The pre-processing phase of data in 

this work was divided into four different sections: one a yearly basis, all together, on company 

basis, and finally combined yearly and company basis. In order to calculate quick ratio, sixteen 

income statement accounts were selected to demonstrate the financial statements and short-term 

liabilities. The average number of staffs were also included in the model. After comparison of 

the results of different models, the best results were achieved when the pre-processing stage was 

on a yearly basis or all together.  

 In Onural et al (2016), Musavi et al (2016), and also Musavi et al (2018), Musavi (2019), 

authors used another application of ANN in using the AI agents that trying to find an optimal 

approach to achieve a specific goal or improve performance on a specific task which is called 

Reinforcement learning. Reinforcement learning is a mathematical learning mechanism that is 
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based on human learning process. The objective of reinforcement learning is to come up with a 

policy, by which we mean a mapping from states to actions, that maximize a reward function. An 

agent observes the environment’s state, choses an action, moves to a new state of environment 

and receives a reward from environment. In the structure of reinforcement learning agent and 

environment interact with each other with a scalar signal named as reward. Reinforcement 

learning has applications in finding solutions for tasks in engineering problems where either the 

system model or the interaction model with the environment is complex. Reinforcement learning 

can be used for multi agents’ systems as well. In these works, authors used the reinforcement 

learning to predict the outcomes of 2D and 3D scenarios where both manned and unmanned 

aircraft systems coexist. The classical and deep versions of reinforcement leaning is combined 

with level-k reasoning method which is a game theoretical concept is used to model the human 

pilot reaction model. The multi-armed bandit problems are also applied to network settings 

including load balancing for data centers which is studied in Yekkehkhany and Nagi (2019), 

Yekkehkhany (2017), and Yekkehkhany et al. (2018). For more details regarding scheduling 

with multi-level data locality and load balancing see Xie et al (2016). 

 Coakley and Brown (1991) used ANN for predicting values of financial ratio and 

recognizing patterns. They used monthly account balances to train the ANN. They evaluated 

their model with a simulation to test whether the model is viable for this application or not. The 

results showed the efficiency and effectiveness of using an ANN in a financial data set to detect 

certain patterns. In another work, Coakley and Brown (1993) targeted the performance of 

material misstatements using an ANN. They test if the trend prediction ANN offers any 

performance improvement in detecting the material misstatements. Fifteen income statements 
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and balance sheet accounts were selected for training the ANN. However, due to the nature of 

their data set the process of training the ANN was very time-intensive because of the impact of 

number of neurons in the training process. In order to evaluate the performance of the model, the 

authors compared an assumed lack of actual errors and seeded material errors on the model.  

After comparison of the results achieved from financial ration and regression models, the 

results of this study indicated that ANN shows better performance to predict values with less 

variation. These results were based on: financial ratios, comparison of methods, error size effect, 

statistical level of confidence, and source of material error effect. The limitation in this work was 

the question of effectiveness of the results due to fluctuating nature of financial data. After this 

work, Coakley (1995) focused on patterns of related fluctuations in different financial accounts. 

The goal was to detect the probable source of a material monetary errors in mentioned financial 

accounts. The results indicate that by using ANN on top of traditional analytical procedures 

would improve performance in recognizing material misstatements within financial accounts. 

 Koskivaara (1996) also studied the fluctuations that could happen in monthly income 

statements based on the accounts that presented in Coakley and Brown (1993)  work. Koshivaara 

implemented a new prediction model called “one-step-ahead” to monitor the fluctuations based 

on the non-linear dynamics of the statements and the relationships between the accounts based 

on income statements. 

 Finally, Wesner et al. (2014) and Sanders et al. (2006) both defended the importance of 

computational intelligence and use of ANNs in auditing while maintaining the continues auditing 

procedures. They mentioned that the new technologies such as cloud computing and data science 

techniques will increase and improve the effectiveness as well as the efficiency of the auditing 
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process. Sanders et al. also highlighted the applications of ANN that were utilized in Calderon 

and Cheh (2002) and Koskivaara (2003) works. Moreover, Byrnes et al discussed the 

applications of computational intelligence and ANNs would allow the auditors and researchers to 

have continuous and predictive audits and more efficient fraud detection. 
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Chapter III: Methodology and Dataset 

 The main implementation that will be used for this project has been demonstrated in this 

chapter. There are other possible alternative implementations or modifications based on the 

nature of the dataset that is going to be used to train, test, and evaluate the model. De Sousa 

(2016) showed that the main advantage of this methodology is optimizations that “Keras” library 

has provided which resulted in a more accurate classification and more efficient NN. Keras, is 

one of the most popular neural network open source libraries in python. For the implementation 

of the ANN in this project, Spyder 3 distribution of the Anaconda platform has been chosen. 

Nowadays, Python is one of the best languages in machine learning and AI programing. Python 

provides powerful and comprehensive libraries. One of the most powerful libraries that has been 

invented by the Google Brain team is Tensorflow (Chollet, 2017). In this work Keras is running 

using the Tensorflow backend. Theano is another powerful library, which according to Bergstra 

et al. (2010) is a compiler for mathematical expressions in Python that combines the convenience 

of NumPy’s syntax with the speed of optimized native machine language . The second library is 

Tensorflow, and the next one is Keras. Keras library is built on top of Theano and/or Tensorflow 

in order to avoid thousands lines of codes and increase the proficiency and accuracy. Keras 

library uses the Tensorflow backend in this work which has been shown in Chapter IV. Features 

that are needed to initialize the nodes of NN will be extracted from the simulated dataset. 

 The dataset that has been chosen for this work consists of 10,000 records. Each row 

represents the information about employees of a company. The main features (independent 

variables) that have been utilized for this work including: location, gender, age, tenure, balance, 

umber of devices, has admin warnings, less than three warnings, salary, and number of attempts.  
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Data Preprocessing 

 The main goal in this stage is to prepare data as an input for ANN. Several steps have to 

be taken in the following order to achieve a well-preprocessed input. First and foremost, the right 

features from the dataset have to be selected. The selected independent variables will shape the 

matrix of features. Thanks to Spyder 3, the matrix of features can be seen in the variable 

explorer. After this, the dependent variables will be saved in a vector. As mentioned in Dowson 

et al (2004) and Gijarati (1970) in order to have a well-preprocessed data, multi-collinearity and 

dummy variable trap has to eliminated. Multi-collinearity is a situation in which the effect of the 

independent variables on dependent variables is hard to distinguish which will result in an 

unstable estimation of the result. Therefore, some of the dummy variables have to be removed so 

that the independent variables can be free of multi-collinearity. Furthermore, as mentioned in 

Zhang et al. (2015) most of the datasets contain multivariate data, all of the categorical variables 

have to be encoded, meaning that all the independent variables that are in categorical form 

should be transformed into numerical values. Numerical numbers that have been assigned to 

independent categorical variables have been chosen totally random, because there should not be 

any relational order between the categories of the categorical variables. The model should not be 

able to predict one independent variable from the other one. For the installation of the libraries 

the following commands has been used in the Anaconda Prompt window. 

Installing theano: 

pip install theano 

Installing tensorflow: 

pip install tensorflow 
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Installing Keras: 

pip install keras 

If the libraries are already install the following messages will appear on the Anaconda Prompt or 

the Terminal.  

 

Figure 3.1 : Installation of  Theano and Tensorflow libraries 
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Figure 3.2 : Installation of Keras library 

The installations could be done in several different ways based on the operating system. In order 

to install the libraries in windows operating systems, the Anaconda Prompt, and for Linux 

operating systems, the main terminal on the machine could be used. After installation, all the 

mentioned libraries should be updated to the last version using the following command. 

conda update –all 

The above command will update the libraries as well as the Anaconda platform which includes 

Spyder 3. The next step is to set up the working directory for in Spyder 3. The working directory 

is the location of the code file and the dataset. Active directory could be set by selecting the “File 

Explorer” icon on the top right side of the Spyder and then selecting the path.  
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Figure 3.3 : Setting console working directory 

After installing Theano, Tensorflow, and Keras, and setting the console working directory the 

following libraries (numpy, matplotlib, and pandas) need to be imported: 

Import numpy as np 

Import matplotlib.pyplot as plt 

Import pandas as pd 

The dataset for the project is imported by running the next line of code. 

dataset = pd.read_csv('Thesis Dataset.csv') 

CVS extension in general, is any tabular data such as spreadsheet or database type of data. In the 

next line the matrix of features has been created. The index in Python starts from zero. In the 

dataset there are some independent variables that have no impact on the outcome of the deep 
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learning model, for instance last name or employee ID has no impact of whether an employee 

behavior would lead to a data breach or not. Therefore, some of these irrelevant independent 

variables can be eliminated in this step. Based on the dataset, matrix of features (X) has been 

selected as follow.  

X = dataset.iloc[ : ,  [ 1 ,  12 ] ].values 

 Here, “X” is the matrix of features. “1” and “12” indicate the indexes of the independent 

variables inside the dataset that could have impact on the outcome of the model. Basically, they 

are indicating the indexes of the independent variables which have been selected as features. 

Y = dataset.iloc[:, 12].values 

“12” indicates the number of index in the dataset which contains the dependent variable. “Y” is 

called the dependent variable vector. This vector is usually the outcome of the previous 

observations. In the implementation of this project, the dependent variable indicates weather the 

user committed an act that lead to data breach or not which is a binary outcome.  

 All of the categorical variables within the dataset need to be encoded. Therefore, before 

splitting the dataset into training and test sets, all of the categorical variables should turn into 

numerical variables. There is no need to encode the dependent variables since vector “Y” has 

already have all the dependent variables as numerical values (zeros and ones). 

from sklearn.preprocessing import LabelEncoder, OneHotEncoder 

labelencoder_A = LabelEncoder() 

X[ : ,  1 ] = labelencoder_A.fit_transform( X [ : ,  1] ) 

 The “fit_transform” method converts the categorical variable into numerical variable 

(encoding). These numbers are randomly assigned to the categorical variables. “1” indicates the 



                                                                                                                                                                         29 
 

index of the categorical variable. Based on the number of the categorical variables that exist in 

the chosen index. Random non-negative integer numbers will be assigned to these categorical 

variables. If there are more than one categorical variables in the dataset, for each of them, the 

fit_transform method should be used. Since some of the categorical variables have more than 

two elements, and in order to avoid the dummy variable trap, the following code can be utilized. 

“1” is the index of the variable that needs to be eliminated. It is worth mentioning that the 

following step happens after the fit_tranform method has been compiled. Therefore, matrix of 

features has been changed.  

onehotencoder = OneHotEncoder( categorical_features = [ 1 ] ) 

X = onehotencoder.fit_transform(X).toarray() 

X =  X [:, 1 : ]  

“1” indicates the index of the first variable that is going to be part of the new matrix. In the other 

word, the new matrix of features will have all the columns of “X” except the first one. 

The next step is splitting the dataset into training set and test set. In the most recent update of 

Spyder 3 (Spyder 3.6.3), the “cross_validation” has been modified to “model_selection”. 

However, both of the methods will be complied by Spyder 3. 

from sklearn.model_selection import train_test_split 

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.20, random_state = 0) 

After running the above code, the dataset will be divided into a train set and a test set. “test_size” 

indicates that twenty percent of the dataset will be considered as data for the test and eighty 

percent will be used to train the ANN.  
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 Now we need to apply feature scaling that was mentioned in Zhou et al (2017) to scale 

the independent variables. Due to highly intensive calculations and parallel computations there a 

lot of computational overhead in the program, it is necessary to use feature scaling to ease these 

computations. Additionally, there should not be any independent variable dominating the other 

one. 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() 

X_train = sc.fit_transform(X_train) 

X_test = sc.transform(X_test) 

 In order to create the ANN the Keras library will be imported as follow. Notice that keras 

library will be built on top of the Tnsorflow. The other alternative solution is to use Theano 

back-end. 

Import keras 

 The “Dense” module is required for building the layers and the “Sequential” module is 

used for the initialization of the NN. 

from keras.models import Sequential 

from keras.layers import Dense 

Building the ANN 

 In order to start initializing the ANN, there are two possible approaches. The first one is 

defining the NN as a sequence of layers (deep learning) which is the selected approach in this 

project. The second approach is to create a graph. An object of the sequential model (a classifier) 

needs to be created in this step. Dense function will randomly initialize the weights. 
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Classifier = sequential() 

The “Classifier” object is an object of the sequential class. Since the problem that has been 

tackled in this project is a classification problem. This classifier will be the ANN that will be 

built in the next steps.  

  Now the first layer of the neurons which is the input layer is going to be created. This is 

the second step in training an ANN. The number of inputs is equal to the number of independent 

variables in the matrix of features. Based on the previous variable that has been selected in the 

beginning of the code this number is equal to “6”. In this implementation the number of nodes in 

the hidden layer has been chosen as the average of the number of nodes in the input layer and the 

number of nodes in the output layer. As mentioned in Smit and Eiben (2009) Parameter Tuning 

Technique could be used in order to test different models with different parameters to achieve 

the best performance. Bengion and Grandvalet (2004) studied K-fold cross validation technique. 

This technique could be used to create a separate set in the dataset (other than test set and 

training set), that is called the “cross validation set”.  Cross validation set can be used to measure 

the performance of different models with different parameters on the dataset. Using such 

techniques will help a lot in choosing the optimal parameters for a model. The K-fold Cross 

Validation technique has been used to evaluate the accuracy of the model at the end of this 

section. The “uniform” function will randomly initialize the weights. It is mandatory to specify 

the “input_dim” argument. Input_dim shows the number of independent variables. In the other 

word, the features that are being used as inputs of the NN. Since the NN doesn’t know this 

number yet, it has to be specified for the first hidden layer at least. If the activation function 

value of a neuron is higher, then it means that node is going have a higher impact on the NN. 
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Simply it means that node will more pass on the signal. The sigmoid function allows us to have 

the probabilities for each observation. Therefore, the sigmoid function has been chosen for the 

activation function of the output layer. The activation function of the hidden layers will be the 

rectifier activation function. By pressing “Ctrl + I” the variables of the Dense function will be 

shown in the help section.  

 

Figure 3.4 : Definition of Dense function in Spyder 3 

The rectifier function will be shown as “relu” in the code. The following line adds the first 

hidden layer to the NN. Relu (F(x) = max ( 0 , x)) is zero for all negative values and linear for all 

positive values. 
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classifier.add( Dense ( units =  6, kernel_initializer  =  ‘uniform’, activation  =  ‘relu’ , input_dim 

= ( 12 ))). The second hidden layer will be created in the following line. There is no need for 

input_dim in this layer. 

classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’, activation = ‘relu’)) 

The best accuracy for this deep learning model was a result of having three hidden layers in the 

ANN. The learning curve would be slightly better. The third and the last hidden layer is just like 

the second hidden layer. 

classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’ , activation  =  ‘relu ’)) 

 Next layer is creating the output layer. Notice that there is only 1 node as output for this 

ANN. The goal is to have probabilities of different records of the dataset to see whether a user 

activities will lead in a data breach. If there is only one node as output, then the activation 

function would be “sigmoid” (see Figure 3.5) . If there are more than one output variable then, 

the “softmax” function has to be a better choice as activation function. 

classifier.add ( Dense (units = 1, kernel_initializer = ‘uniform’,  activation = ‘ sigmoin’ ) ) 

 Next, There are several types of SGD algorithms. In this step a SGD algorithm needs to 

be applied on the ANN (as the optimizer). Optimizer is simply the algorithm that would be used 

to optimize the weights on the neurons of the ANN. According to Kingma and Lei Ba (2015) 

Adam algorithm is a very efficient optimizer and it has been chosen as the optimizer in this 

project after parameter tuning. SGD is based on a loss function that needs to be optimized in 

order to optimizing the parameters(weights). As Weissman et al (2015) mentioned, loss function 

in here is not sum of the square errors like linear regression. Loss function for the NN can be a 

logarithmic loss. If the output is binary, then the “binary_crossentropy” would be selected, and if 
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the loss function is going to be used in an output with multiple variables, then 

“categorical_crossentropy” would be selected. The metric will define the accuracy and the 

accuracy of the model will increase because of this method (only accuracy metric has been 

chosen). Metric has to be entered as a list. Therefore, the brackets are necessary to define a list. 

classifier.compile( optimizer =  ‘adam’, loss  = ‘binary_crossentropy ‘,  metrics = [ ‘accuracy’ ] ) 

 

Figure 3.5 : Sigmoid function (Weisstein, n.d.) 

Fitting the ANN and Validation 

 In the next step, the ANN is going to be fit to the training set. Weights can be updated 

after each observation, or a batch of observations. Batch size 10, and 100 number of epochs has 

been chosen. Batch size is the number of observations that after which the weights are going to 

be updated. 

Classifier.fit( X_train,  Y_train,  batch_size  =  10 ,  epochs  =  100 ) 
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Figure 3.6 : Fit method in Spyder 3 

As it has been demonstrated in Chapter IV, over different rounds of epochs the accuracy will be 

increased. 

By utilizing the “predict” method, it is possible to make the prediction on the test set. 

Y_pred = classifier.predict (X_test) 

Making this prediction will provide a situation to compare the predicted test set with the 

accuracy of the model on the training set. Therefore, model could be validated on this particular 

test set and training set. The validated model can be applied to all the database users and based 
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on their behaviors, they can be sorted from, most suspicious to least. In order to use the 

confusion matrix, the prediction vector has to be in the form of true or false. 

 One of the most important parts in creating such a model is to create a threshold for the 

predicted vector. If the predicted result is over threshold, then the value would be one (1), and if 

the predicted result is below the threshold then, zero (0) will be assigned to that value. If the 

prediction is for very sensitive situations, then a higher threshold has to be chosen. 0.7 have been 

chosen for this work. Meaning that if one of the employees has more than 70 percent chance of 

committing a data breach then they will be shown as 1 in the results. 

Y_predict = (Y_predict > 0.7) 

 After the execution of the above line, the prediction vector will only contain true or false 

results. 

The next step is to making the confusion matrix. The goal here is to evaluate the model 

for the first time. Confusion matrix results will show the number of correct predictions and 

number of incorrect predictions on the test set in the format of true positive, false positive, true 

negative and finally false negative.  

from sklearn.metrics import confusion_matrix 

evaluate = confusion_matrix(Y_test, Y_pred) 

The accuracy of the model could be simply calculated at this step by dividing the number of the 

correct predictions by 2000 which is the size of test set that has been chosen. 

 If the accuracy that the confusion matrix is showing on the test set was the same as the 

accuracy of the model on the train set, then the model has been validated. However, in order to 

make sure that the accuracy of the model is correct, K-fold Cross Validation technique has been 
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utilized to run the model on different random training sets and test sets to make sure that the 

accuracies don’t fluctuate. If there was low bias and low variance between the outcome 

accuracies of K-fold Cross Validation technique then the model is reliable and is ready to use. A 

good model will have low bias and low variance.  

 

Figure 3.7 : Bias and Variance trade off (Fortmann-Roe, 2012) 

As has been shown in the Figure 3.7 , the desired model has to have a low bias and low variance. 

Since the model accuracy could be different on different training session with different training 

and test sets it is very important to evaluate the model. K-fold Cross Validation will split the 

training set into “K” folds, and then the model would be validated based on “K” different 

combinations of training sets and test sets the model can be validated. “K” is usually equals to 
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10. The model performance would be much more relevant by validating it by using K-fold Cross 

Validation technique. K-fold Cross Validation technique belongs to “scikit_learn” so it is needed 

to add this function to “KerasClassifier”.  

from keras.wrappers.skcikit_learn import KerasClassifier 

from sklearn.model_selection import cross_val_score 

The “KerasClassifier” expects a function for one of its arguments. Therefore, a function has to be 

written to meet the “KerasClassifier” requirement. The following function has the entire 

architecture of the deep learning model that has been created in this project. This function will 

return the classifier.  

def build_classifier(): 

classifier.add( Dense ( units =  6, kernel_initializer  =  ‘uniform’, activation  =  ‘relu’ ,        

input_dim = ( 12 ))) 

 classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’, activation = ‘relu’)) 

 classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’ , activation  =  ‘relu ’)) 

 classifier.add ( Dense (units = 1, kernel_initializer = ‘uniform’,  activation = ‘ sigmoin’ )) 

return classifier 

After running the above function, the classifier object is an object that is local for the function. 

So a new classifier needs to be created to apply the K-fold Cross Validation technique. The 

training part for the new classifier is the same as what was implemented earlier with the 

“batch_size” of 10 and 100 number of “epochs”. 

Classifier = classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, epochs = 

100)  
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K-fold Cross Validation is going to be used to return a relevant measure of accuracy in the ANN. 

So a new variable is created to have the outcome of the K-fold Cross Validation which are the 

accuracies of 10 different training sets and test sets. 

Accuracies = cross_val_score(estimator = classifier, X = X_train, Y = Y_train, cv = 10, n_jobs = 

-1) 

In the figure 3. and figure 3. the definition of “cross_val_score” function has been demonstrated.  

 

Figure 3.8 : Inspecting K-fold Cross Validation method in Spyder 3 (part 1) 

The “estimator” is the classifier that was built to use to fit the data. The training sets have been 

added after the “estimator”. “cv” is the number of folds in the K-fold Cross Validation. 
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Figure 3.9 : Inspecting K-fold Cross Validation method in Spyder 3 (part 2) 

Since the training and applying K-fold Cross Validation on 10 different training and test sets 

would take a long time, “n_jobs = -1” has been used to utilized parallel computation and using 

all the CPU’s  of the system to accelerate the speed.  

After this step the “mean” and the “variance” of different accuracies of the model will be 

calculated. The accuracies vector contains the accuracies of the model on 10 different training 

sets and datasets.  

mean = accuracies.mean() 

variance = accuracies.std() 
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Improving the Model 

 Dropout regularization. Over fitting and under fitting are two common problems in an 

ANN. Over fitting usually happens when after training and fitting the ANN there is a large 

difference in accuracies between the training set and the test set. When over fitting happens there 

is a much higher accuracy between the training set and the test set and this indicates that the 

model learned too much on the training set. Moreover, if there is a high variance (some high 

accuracies and some low accuracies) after applying K-fold Cross validation then it means that 

the model is over fitted. High variance is one of the most conspicuous characteristics of an over 

fitted model. “Dropout” would be applied on one or more layers of the NN. This technique will 

prevent the over fitting problem by randomly disabling some of the neurons to prevent them to 

be too dependent on each other when they are learning the correlations of the data. In order to 

apply “Dropout” the following code has to be implemented in the ANN.  

from keras.layers import Dropout 

To eliminate the over fitting, the Dropout should be applied after creating each layer of the NN. 

For example, for the first layer the Dropout could be implemented as follow. 

classifier.add( Dense ( units =  6, kernel_initializer  =  ‘uniform’, activation  =  ‘relu’ , input_dim 

= ( 12 ))) 

classifier.add ( Dropout ( p = 0.2 ) ) 

The argument “p” in Dropout indicates the fraction of the neurons that are needed to drop or 

disable. In the above example, “p = 0.2” means that 20 percent of the neurons will be disabled at 

each iteration. If the over fitting problem still exist after applying the Dropout technique to all 

the layers of the model then, the value of “p” should be increased until the over fitting has been 
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eliminated. If p = 1, then the weights on that layer of neurons will not be update. In the other 

word, that layer will not learn at all and it would cause under fitting problem.  

 

Figure 3.10 : Inspecting Dropout in Spyder 3 

 Parameter tuning. Parameter tuning can be used to find the best optimal values for the 

model such as number of neurons in hidden layers, type of optimizer, and the number of epochs 

as well as the batch size for each iteration. This phase is a critical phase in developing the model 

since there could be better values to improve the performance and accuracy of the model. The 

“GridSearchCV” class can be used to implement parameter tuning.  
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Figure 3.11 : Inspecting GridSearchCV in Spyder 3 (part 1) 

“GridSearch” will test several combination of different values for the model and will return the 

best values. In this step the parameters of the model will be tuned to reach a better model. 

Parameter tuning technique for this project has been implemented as follow.  

from keras.wrappers.scikit_learn import KerasClassifier 

from sklearn.model_selection import GridSeachCV 

from keras.models import Sequential 

from keras.layers import Dense 

def build_classifier (optimizer): 

classifier.add( Dense ( units =  6, kernel_initializer  =  ‘uniform’, activation  =  ‘relu’ ,        

input_dim = ( 12 ))) 

 classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’, activation = ‘relu’)) 
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 classifier.add( Dense ( units = 6, kernel_initializer = ‘uniform’ , activation  =  ‘relu ’)) 

 classifier.add ( Dense (units = 1, kernel_initializer = ‘uniform’,  activation = ‘ sigmoin’ )) 

 classifier.compile(optimizer = optimizer, loss = ‘binary_crossentropy’, metrics = 

[‘accuracy’]) 

return classifier 

classifier = KerasClassifier ( build_fn = build_classifier) 

parameters = { ‘batch_size’: [25, 32], ‘epochs’: [100, 500], ‘optimizer’: [‘adam’, ‘rmsprop’]} 

grid_search = GridSearchCV(estimator = classifier, param_grid = parameters, scoring = 

‘accuracy’, cv = 10) 

grid_search.fit(X_train, Y_train) 

better_parameters = grid_search.best_params_ 

better_accuracy = grid_search_best_score_ 

Instead of having the name of the optimizer in compile method the argument “optimizer” has 

been given as the argument of build_classifier function. Since, the goal here is also test the type 

of optimizer that should be used in the model as one of the parameters. “parameters” is a 

dictionary type and contains hyper parameters that have been used in the model. In order to see 

which optimizer is a better fit for the model the optimizer feature has been used in this 

dictionary. The model will be tested with both “adam” and “rmsprop” optimizers who are SGD 

optimizing algorithms to compare which one would be a better fit for the model. 
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Figure 3.12 : Inspecting GridSearchCV in Spyder 3 (part 2) 

Running the above parameter tuning technique will take several hours since the model will be 

run and tested against different parameters to achieve a better accuracy. In the end, the 

grid_search method will return the best parameters and best accuracy for the model as 

“grid_search.best_params_” and “grid_search.best_score_”. These numbers would be 

demonstrated as “better_parameters” and “better_accuracy”.  
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Chapter IV: Results 

In this chapter, the results of the running the python code that have been explained in Chapter III 

has been demonstrated step by step. After importing the libraries, the dataset should be 

preprocessed to use in the ANN. Therefore, the dataset has been imported to the Spyder 3 

platform.  

Data Preprocessing 

 The variable explorer section in the Spyder 3 provides the option of seeing values of 

different vectors or data dictionaries and variables. Notice that the type of data in the dataset is 

“DataFrame” which contains both numerical and categorical values. 

 

Figure 4.1: Imported dataset in variable explorer in Spyder 3 

After opening the dataset that has been imported, in variable explorer section(as shown in Figure 

4.1) the values of all the variables would be shown. As it has been shown in Figure 4.1, there are 
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10,000 rows and 13 columns in the dataset which represent the information about the 10,000 

employees.  

 

Figure 4.2: Values of the Dataset 

In the next step of the data preprocessing stage, the dataset will be splitted into two different 

parts. The independent variable matrix or the matrix of features (X), and the dependent variable 

vector (Y). As mentioned in Chapter III, the indexes in python start from zero. Therefore, the 

indexes for matrix of features(X) would be from 1 to 12 and the index of the dependent variable 

vector (Y) is 12. The DataFrame type will be converted to object and the object type will not be 

shown in Spyder 3. Therefore, in order to see the data again, X should be converted into the 

DataFrame type. This could be done by running the below line of code. 

df = pd.DataFrame(X) 
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Figure 4.3: Variable explorer after splitting the dataset into X and Y 

 

Figure 4.4 : Dependent variable vector (Y) 
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As it has been shown in Figure 4.3, the dependent variable vector (Y) has only 1 column and 

matrix of features (X) has 11 columns. Y contains the binary outcome of the Data Breach 

process.  

 

Figure 4.5: IPython console 

Figure 4.5, demonstrates the results of the encoding and fixing the dummy variable trap that has 

been explained in Chapter III. Matrix of features has been encoded in this section. Since Y 

already has numerical (binary in this case) values, there is no need for encoding the dependent 

variable vector. All the categorical values such as location and gender in the matrix of features 

have been transformed into numerical values.  
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Figure 4.6: Encoding the matrix of features 

Figure 4.6 shows the matrix of features after being encoded. After this step, matrix of features 

and the dependent variable vector has been splitted into training set and test sets. Eighty percent 

of data has been considered as the training set and twenty percent for the test set.  

 

Figure 4.7 : Demonstration of test set and training set in variable explorer 
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As it has shown in Figure 4.7, X_test contains two thousand, X_train eight thousand, y_test two 

thousand and eventually y_train eight thousand records. In order to ease the computation 

process, feature scaling has been applied to both training set and the test set (X_train and X_test), 

and the results of applying feature scaling on X_train has been demonstrated in Figure 4.8. 

 

Figure 4.8 :X_train after feature scaling 
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Building the ANN 

In this step the classifier will be built based on what was discussed in Chapter III. There 

are twelve different features in the matrix of features. So, the input of the first layer of ANN has 

twelve neurons. The model has three hidden layers. Each hidden layer has six neurons and the 

output layer contains only one neuron which is the desired probability and the main goal of this 

project. Based on this probability, the amount of risk that a certain employee could possess for 

the organization can be determined. Note that the activation function for all the layers except the 

output layer is rectifier function. Sigmoid function is the activation function for the output layer.  

 

Figure 4.9: Building the ANN 
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Figure 4.9 shows the results of the code for building the NN. At this point, the dataset can be 

fitted to the model.  

Fitting the ANN and Validation 

As it has been shown below in Figure 4.10 and Figure 4.11, after each epoch, the accuracy is 

increasing and the weights are being updated. 

 

Figure 4.10 : Fitting the training set (part 1) 
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Figure 4.11 : Fitting the training set (part 2) 

The accuracy of the model will increase as the number of training data increases. The 

accuracy of the model for this specific training set and the test set is at 88.02 percent. In the 

Figure 4.12, the results of the prediction of the model on the test set has been demonstrated. 

Since the threshold for this model has been set on 70 percent, any outcome which has the 

probability of higher than the threshold will be considered as red flag. 
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Figure 4.12 : The predictions of the model on test set 

 

Figure 4.13 : Results of the prediction in Boolean 
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In order to demonstrate a better graphical outcome of the model, the results of prediction 

on test set have been transformed to Boolean. Figure 4.13 demonstrates the outcome of the 

model on y_pred vector. Any row that has probability of more than 70 percent would be count as 

a suspicious behavior and a potential threat to the system. Having the results in Boolean will also 

help us to have the confusion matrix. The next step is to validate the model on this particular 

training and test set using the confusion matrix. 

 

Figure 4.14 : The confusion matrix  

Figure 4.14 demonstrates the confusion matrix on this particular training and test set. Out 

of 2000 new observations there are 1573 true negative, 22 false negative, 229 false positive, and 

eventually 176 true positive predictions. The accuracy of the model on this training and test set 
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can be calculated by adding the number of true positive and true negative results from the 

confusion matrix and then dividing the results by 2000.  

(1573 + 176) / 2000 = 0.8745 

In order to validate the model in terms of bias and variance the K-fold Cross validation has been 

implemented in the next step.  

 

Figure 4.15 : Vector of accuracies after performing K-fold Cross Validation 

As mentioned in Chapter III, in order to validate the model, K-fold Cross Validation 

technique (K = 10) has been implemented. Figure 4.15 demonstrates the results of this technique 

which will test and train the model on 10 different combinations of test sets and training sets. By 

taking the average of the accuracies vector, and calculating the standard deviation, it is possible 
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to have a look at the variance and have a much more relevant analysis. Moreover, the model can 

be validated by having the variance and the mean of these accuracies.  

 

Figure 4.16 : Mean and Variance of the accuracies 

As it has been demonstrated in Figure 4.16, the model has the mean accuracy of 86.17 

percent and the variance is relatively low which results in a stable and reliable model. The most 

important part of this work after achieving a low bias and low variance model is to analyze the 

parameters that has been used and find the best parameters to improve the model’s accuracy.  

 

4.17 : Best parameters after parameter tuning 
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As it has been shown in Figure 4.17 best parameters for the model include of: batch_size = 32, 

number of epochs = 500, and optimizer (SGD algorithm) = Adam. 

 

Figure 4.18 : Best accuracy of the model after parameter tuning 

As it has been demonstrated in Figure 4.18, using the aforementioned best parameters for the 

model will result in the accuracy of 86.72 percent. 
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Chapter V: Discussion and Conclusion 

 As mentioned earlier, a deep learning NN model has been selected to create a new, 

efficient, and optimal approach to detect suspicious behavior caused by insiders within a 

database system by utilizing an artificial neural network as a third-party database auditing 

system. Thanks to the deep learning model, the accuracy will increase as the size of the dataset 

increases. Independent variables which are the input of the ANN are the features that a user has 

within database. After training and fitting the ANN on dataset, the ANN has been validated by 

comparing the accuracy that the ANN is predicting on the training set with the calculated 

accuracy of the ANN on test set. After evaluating the performance of the deep learning model, 

the parameter tuning technique has been applied to the model to find the best hyper parameters 

for the model. It is worth mentioning that, in scenarios in which detecting users suspicious 

behavioral patterns are of high value, the threshold of the prediction vector could be set on a 

different value as per requirements. Overall the model has an accuracy of 86.72 percent. To 

interpret and understand the result of this model in simple terms, one can look at the accuracy of 

the model as the level of confidence; meaning that the percentage of risk that a certain employee 

poses based on the outcome of the model is 86.72 percent trustworthy. 

In order to find the best number of hidden layers in the model, several different models with 

different number of hidden layers have been compared to each other. By increasing the number 

of hidden layers from two to three, the accuracy of the model will increase by one percent. 

Accuracy of the model will not significantly increase by adding more hidden layers and adding 

more layers will only cause the over fitting problem due to complexity of the architecture of the 

model. In the other words, adding more than three hidden layers to the model will cause 
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inconsistency (high variance) in predicting the results which is not in line with the purpose of an 

ideal model.  

 All in all, the outcome of the proposed model on top of data base auditing system would 

be beneficial for organizations to analyze their users behaviors. Based on the users behavioral 

patterns, the policies can be modified and new policies or restrictions could be applied to certain 

users which would result in a more secure database system. 

Future Work 

Although a simulated dataset could be as good as real-world experiment and could have a 

very close outcome to a real-world scenario, a real-world scenario would be ideal. The NN 

model that has been presented in this project could be used on a real-world dataset. In order to 

tackle the problem of over fitting or under fitting the Dropout Regularization technique could be 

used. Parameter tuning approach that has been tackled in this thesis can be utilized to improve 

the accuracy of the model on the new dataset to find the best hyper parameters of the model such 

as best accuracy, best parameters and best optimizer. Moreover, such model could be also built 

into the existing database auditing systems to detect fraud patterns and suspicious behaviors. 

Additionally, the mutli-armed bandit approaches can be used to predict the percentage of risk 

that a certain employee poses. For more details, refer to different types of multi-armed bandit in 

Yekkehkhany et al., (2019), and the references therein. 
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