
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2019

Building Security Aware E-Commerce Web Applications Building Security Aware E-Commerce Web Applications

Sai Teja Reddy Kommuri
skommuri@stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Kommuri, Sai Teja Reddy, "Building Security Aware E-Commerce Web Applications" (2019). Culminating
Projects in Information Assurance. 92.
https://repository.stcloudstate.edu/msia_etds/92

This Starred Paper is brought to you for free and open access by the Department of Information Systems at
theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information
Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact
rswexelbaum@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/92?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F92&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:rswexelbaum@stcloudstate.edu

Building Security Aware E-Commerce Web Applications

by

Sai Teja Reddy Kommuri

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

 in Information Assurance

December, 2019

Starred Paper Committee:

Dennis Guster, Chairperson

Lynn Collen

Sneh Kalia

2

Abstract

In the past decade, there has been a rapid increase in Electronic commerce (e-commerce) activity

via web applications. With this increase, there is a need for building a good quality application.

One of the major factors to achieve quality is the application’s security. This paper discusses

about how alarming the threats posed to the e-commerce applications are, how can one

counteract against the threats, what are the mistakes made by the current e-commerce

applications which enabled them to get affected by the security attacks, how they recovered from

the incidents, takes the opinions from the consumers with the help of a survey, proposes a

methodology to be followed while developing an e-commerce web application to make the

application aware about the threats and take countermeasures accordingly.

3

Acknowledgement

The effective finish of this paper could not have been conceivable without the direction

of my professors Dr. Dennis Guster and Dr. Lynn Collen. I also would like to thank Dr. Sneh

Kalia for being part of the committee.

4

Table of Contents

 Page

List of Figures .. 6

Chapter

I. Introduction .. 8

Introduction .. 8

Problem Statement ... 9

Nature and Significance of the Problem .. 9

Objective of the Research .. 9

Study Questions ... 10

Summary .. 10

II. Background and Review of Literature ... 11

Introduction .. 11

Background Related to the Problem .. 11

Literature Related to the Problem .. 13

Literature Related to the Methodology .. 17

Summary .. 25

III. Methodology .. 26

Introduction .. 26

Design of the Study ... 26

Software and Hardware Requirements .. 26

Budget .. 27

System Design ... 27

5

Chapter Page

Summary .. 43

IV. Data Analysis ... 44

Introduction .. 44

Analysis.. 44

Summary .. 49

V. Conclusions and Future Work ... 50

Introduction .. 50

Conclusion ... 50

Future Work ... 50

References .. 52

Appendices

A. Backend Code of Cars API..

B. Backend Code of Authentication API..

C. Backend Code of Orders API...

54

73

89

6

List of Figures

Figure Page

1. E-Commerce Application’s Flow Diagram ... 18

2. High level design of the system .. 28

3. Entity-Relationship diagram of all the tables used from RDBMS 31

4. List of selectable regions available in the EC2 instance 33

5. Network & Security’s navigation pane in EC2 instance 33

6. List of Cars in the built application.. 37

7. Options to Filter and Sort the cars in the application 37

8. Filter options in the application ... 38

9. Sort options in the application ... 38

10. Details of a selected car in the application .. 39

11. Car added to the cart ... 39

12. Cart module .. 40

13. Unauthenticated checkout attempt ... 40

14. Payment details form ... 41

15. Shipping details form ... 41

16. Order summary ... 42

17. Log in module of the application ... 42

18. Registration module .. 43

19. Packet capture of communication through insecure channel 44

20. Packet capture of communication through insecure channel 45

21. Successful mitigation of SQL injection .. 46

7

Figure Page

22. Successful mitigation of Cross site scripting .. 47

23. Successful mitigation of Brute force attack ... 48

8

Chapter I: Introduction

Introduction

 With the low cost and high availability of the Internet, there has been a spike in the usage

of web applications, may it be with the mobile phones or with the computers. To make use of

this, many businesses are making their way into providing e-commerce services. E-Commerce,

which stands for Electronic Commerce is a way of making commerce online with the use of

internet. This business model has shown a massive growth in the past couple of decades all

around the world. There are some businesses which are providing exclusive e-commerce services

with zero physical retail business. From the past few years, there have also been debates that

there will be a significant loss of business if not concentrated correctly on e-commerce trend.

The success or failure of an e-commerce application depends upon numerous numbers of factors

of which the business model, the products, customers, investors, data security, transactional

security, etc., are some of them.

With the fast growth of internet and e-commerce along with it, there have been a wide

variety of criminal attacks and intrusions because of which it is very essential that security of the

application must be a part of the application design. If it is not included in the design, then the

application team should be constantly addressing new security issues every now and then which

make the application untrustworthy. A customer does not use an application if it is not

trustworthy. Besides, we should also consider the financial losses when there is a successful

launch of an attack on the e-commerce application. Hence, security should be an integral part of

an e-commerce application. In a broader perspective, here, security also refers to Confidentiality,

Integrity and Authenticity (the CIA triad). To place an order, there will be a numerous number of

9

requests and transactions between the customer and the merchant most of which is private

information. So, maintaining confidence should be the utmost priority of the application.

Problem Statement

There have been many studies on the security of e-commerce applications, but they have

failed to address the methodology to be followed to implement the security aspects in the

applications. It is true that most of the e-commerce applications nowadays are being developed

providing security but the cost of implementation is somewhat not economical. Hence, there is a

need of a methodology, using which the cost of security in the applications becomes cost

effective and time effective.

Nature and Significance of the Problem

 Making use of the e-commerce applications makes our busy life easy. But these e-

commerce applications should also be reliable in order to use them extensively. All the security

threats that are to be discussed in this study poses a big threat to that reliability. It is very

important that those threats are addressed in a cost-effective way. So, this study is an effort to

analyze those threats, finding a way to address them and suggesting a methodology to be

followed while developing an e-commerce application which is intended to counteract with

almost every security threat out there in the real world.

Objectives

The major objective of this study is to find the current posing security threats against e-

commerce applications, to suggest a way to counteract them and to propose a methodology such

that a given e-commerce application which is developed making use of this methodology is

aware of almost every security threat against it.

10

Study Questions

1. What are the different security threats in concerned to the e-commerce applications?

2. What is the difference between internal and external threats?

3. How do you provide secure online payments?

4. How do you prevent fraud?

5. How do you minimize the payment risk?

6. How do you limit financial losses?

Summary

 In this chapter, we have seen what e-commerce is and how important it is to provide

security to e-commerce applications. It also covered about the problem statement, objectives of

the study and study questions. Now let us take discuss about the background of the problem and

related literature review in the next chapter.

11

Chapter II: Background and Review of Literature

Introduction

 In this chapter let us discuss about the background of e-commerce, its posing threats in

today’s world and the different ways to mitigate them, and the literature review from the studies

done by various researchers.

Background

 E-Commerce application (sometimes also known as e-tail or e-business (Rouse, 2018)) is

a virtual place where the commercial transactions like buying and selling takes place in exchange

for money. The emergence of e-commerce was possible because of three key developments:

emergence of Electronic Data Interchange (EDI) in the 1960s, Electronic Funds Transfer (EFT)

in the late 1970s and the major breakthrough of 1991, the Internet (Rouse, 2018). EDI and EFT

allowed the companies to transfer the commercial documents electronically in the late 1970s, but

the transfer was limited to the local network. With the help of internet, it became possible to

transfer those documents globally (History of Ecommerce, n.d.). In late 1990s, the rise of the e-

commerce giants eBay and Amazon revolutionized the industry and a lot of e-commerce

companies had emerged. Because of the dotcom crash on March 11, 2000, many e-commerce

businesses had to get disappeared (History of Ecommerce, n.d.). Fortunately, new e-commerce

businesses have emerged after the crash make it possible for the e-commerce industry to make

billions of dollars in transactions. The e-commerce services provided by the businesses can be

broadly divided into types based on their business models.

1. Business to Consumer (B2C):

In Business to Consumer model, a business organization sells its goods or services to a

consumer. For example, buying textiles from an online retailer.

12

2. Business to Business (B2B):

In Business to business model, a business organization sells its goods or services to another

business organization. For example, Amazon gives its cloud services to other businesses for

usage purposes.

3. Consumer to Consumer (C2C):

In Consumer to Consumer model, a consumer sells his/her goods or services to another

consumer. eBay is the best example for this model where the consumers list their products to sell

to the other consumers.

4. Consumer to Business (C2B):

In Consumer to Business model, a consumer sells their own products or services to a business

organization. For example, a software developer freelances himself to give his services to a

business organization (Sharma, 2016).

 For any business model, there are a lot of things which remain common, but for the

products or services on which they are doing the commerce by which we can say that the

security threats for all the business models remain the same. There is a threat only when there is

a vulnerability in the application which the attacker exploits. The possibility of the exploitation

of vulnerability is called a threat. There are three places where the vulnerabilities occur.

1. Client-side vulnerabilities

2. Server vulnerabilities

3. Communication Channel vulnerabilities

Client-side vulnerabilities occur with the mistakes or ignorance of the clients. It is the

duty of a security professional to anticipate such vulnerabilities and design the system

13

accordingly. These vulnerabilities are often due to the design flaws at the server-side. Some such

vulnerabilities are:

1. Concurrency Flaws

2. Cross Site Scripting

3. Weak Authentication Vulnerability

4. SQL Injection

5. Buffer Overflow

6. Broken Session Management

7. Insecure Direct Object References

Communication Channel vulnerabilities plays a major role in the security of any

application. Insecure Communications makes the applications lose confidentiality and integrity

(Hardin, 2009).

Literature Related to the Problem

In order for an application to be a trustworthy and reliable application in the customers’

minds, there are four security aspects in e-commerce applications.

1. Unauthorized Access:

Unauthorized Access is a state when the people who are not intended to access a

particular resource gets access to it. In the recent years, most of the data breaches were led

caused by unauthorized access. One such data breach is Acer e-commerce website’s 2015-2016

data breach. This breach exposed the contact information and payment information of around

34,500 customers. The exposed information included the customer’s name, address, credit card

number, credit card expiry date, and the three-digit CVV code (Loshin, 2016). With this

information exposed to the hackers, the customers could lose their money within no time. As

14

explained in the article by Loshin (2016), this breach went unnoticed for almost an year which

might be because of the Acer’s audit time duration which might be once an year.

There is a saying which could be relatable to security that “No one should be trusted no

matter what”. Supporting that saying, there are two types of threats caused by unauthorized

access.

Internal Threats: Internal threats are very difficult to detect as they operate within the network

and are authorized to access the resources. These threats can be the employees, contractors or the

freelancers who are given access to the application’s resources (Hau, 2012). These threats are

very difficult to identify unless there is a good audit in place.

External Threats: External threats are performed if the network is compromised or because of the

application vulnerabilities like weak authentication, broken session management or SQL

Injection. Of these, the most common vulnerability exposed by the hackers is weak

authentication. Once the hacker gets into the system, they can store, retrieve, edit and remove the

data from the system or monitor the transactions being performed between the client and the

server or the server and the database.

 To prevent unauthorized access, there is a need to incorporate one of the security policies

of access control models. There a various access control models but the significant ones are:

Discretionary Access Control: Commonly referred to as DAC, this model allows the subject to

change the access types to the objects it owns. This model makes use of the Access Control Lists

(ACL) for this purpose. Because of its advantage of being able to change access types whenever

needed, this model is widely used in commercial and industrial environments (Hau, 2012).

Mandatory Access Control: Commonly referred to as MAC, this model allows the administrator

rather than the subject to change the access types to the objects based on the given security

15

labels. This model is usually implemented in military and hospital environments where the

access restrictions are very strict (Hau, 2012).

Role Based Acces Control: Referred to as RBAC, this model allows set of access control rules

that are authorized centrally based on the roles of the individuals who are involved (Hau, 2012).

Gambhir (n.d.) of Hitachi Soultions discussed about their access control mechanism to reduce

security threats in e-commerce applications. He said that their company uses Role Based Acces

Control (RBAC) management to achieve it. He gave a classic example of Content Management

team who are responsible and limited to the content management who wouldn’t need the orders’

information, the customers’ information, etc. This model can be implemented where there are a

lot of teams with different roles are involved.

2. Confidentiality:

 Confidentiality is an assurance that the information is not being accessed by the personnel

who do not have a legitimate permission and need. The issues related to confidentiality are

considered to be the subsets of unauthorized access (Kaur, 2015). To ensure the confidentiality

across the system, the information flow direction and the security levels should be addressed

with a security model. There are various models for this purpose of which the most significant

one is the Bell-LaPadula model. This model uses security levels to decide the access rights based

on the following rules:

• The flow of information with higher security level to lower security level is forbidden

• The subjects with higher security levels cannot own (i.e., write) the objects with lower

security levels

16

The changes to the objects’ security level can be changed only by the administrator (Hau, 2012)

and this model is used in the environments where there is a high need of confidentiality like

military.

3. Data Integrity:

Data integrity is an assurance that the data is consistent and correct. In the field of e-

commerce, the data that is transferred between two entities (In B2B, between the two businesses,

in B2C, between business and the customer and in C2C, between the customers) is subject to

integrity checks. There are a numerous number of ways how the data integrity can be

compromised. Some of them are:

• Human errors when data is entered

• Errors that occur when data is transmitted between two entities

• Hardware malfunctions, such as disk crashes

• Natural disasters, such as floods and earthquakes

• Exploiting application vulnerability

Here, our intention is to prevent the attackers from the exploiting the application

vulnerability affecting the data integrity. To ensure the data integrity, there are various security

policies for integrity model, but the significant ones are Biba Model and Clark-Wilson Model

(Hau, 2012).

Biba model is the opposite of Bell-LaPadula model focusing on the integrity of the

application. The access rights are based on the following rules:

• The flow of information with lower security level to higher security level is forbidden

(Hau, 2012)

17

• The subjects with lower security levels cannot own (i.e., write) the objects with higher

security levels (Hau, 2012)

 The Clark-Wilson model enforces and certifies the data items and processes to ensure the

integrity of the data (Hau, 2012). The core of the model based on the following:

• Well Formed Transactions

• The principle of separation of duties

This model is used to address the security issues in the commercial applications.

4. Non-Repudiation:

 To repudiate means to deny. Repudiation is the phenomenon of denying the validity of

the resource. Non-Repudiation is the opposite of it i.e., not being able to deny the validity of the

resource. In online transactions, non-repudiation makes it possible for a service or an entity in

communication to not deny the origin and authenticity of the transaction.

Now, let us discuss about the costs of implementing the security in e-commerce. Many

businesses do not consider security while developing the applications. They realize its necessity

once they got affected by an attack. For an application, security can be integrated in two ways –

design time security, runtime security. Design time security is when we consider the aspects of

security right from the beginning of the application. Runtime security is when we provide

security to the application when it is in production phase. When the application is in the

production phase, it is very difficult and complex to make considerable changes to the

application. Also it is not recommended to do so. While in production, if we make changes to the

application, there is a chance of data loss as well.

Literature Related to the Methodology

In general, any e-commerce application’s flow is as shown in the following figure:

18

Figure 1. E-Commerce Application’s Flow Diagram, reprinted from Transaction Security for

Internet E-commerce Application, by Khandare, 2015 Retrieved from

http://ijarcsse.com/Before_August_2017/docs/papers/Volume_5/2_February2015/V5I2-0207.pdf

1. In step-1, the consumer logs into his/her account of the e-commerce application or creates

a new account and then logs in if the consumer is new, requests for the product/service

for transaction

2. In step-2, the merchant acknowledges the request by returning the list of

products/services

3. In step-3, the consumer selects the products/services required and requests the merchant

for purchase order with the payment information included like the name, credit/debit card

number, credit/debit card expiry date, and the three-digit CVV code

4. In step-4, the merchant verifies the purchase order, saves the payment information in the

database and acknowledges the consumer

19

5. In step-5, the merchant transmits the consumer’s payment information for the bank to

start the financial transaction

6. In step-6, the bank verifies the consumer’s payment information with the bank’s database

and acknowledges the merchant

7. In step-7, the consumer queries for the payment status

8. In step-8, the merchant replies with the verification of the information

9. In step-9, the merchant requests the bank for the payment

10. In step-10, the bank verifies the payment, deducts the money from the consumer’s

account and adds it in the merchant’s account and acknowledges the merchant

Let us look at the security concerns beginning with step-1. In this step, there is a chance

that the hacker might exploit the weak authentication vulnerability by numerous numbers of

methods. Authentication is the process of verifying the user’s information for validation which

requires the username/email/user id and password. If this authentication process is weak, hacker

can launch a series of attacks to get into the system with false identification. Some of the major

concerned authentication attacks are:

Dictionary Attack: In this attack, a program is developed with built in dictionaries which

would use all the words in the dictionary in an attempt to find the correct password. Here, the

attack will only be successful if the user’s password is a proper dictionary word. In the other

words, the attack will fail if the user’s password is not a dictionary word (Authentication and

access control attacks, n.d.).

Brute Force Attack: In this attack, the hacker tries to break the password by entering all

the possible combinations. This attack makes sense if the number of letters is less than 3. If the

length of the password is more than that even though this attack is effective, it proves out to be

20

non-efficient. For the cases where the password is more than 3 letters, the attackers uses a brute

force program which tries every possible combination. In the modern days, with processing

power of the computers and the cloud resources, the attacker can launch the brute force attack

within no time using the software program (Authentication and access control attacks, n.d.).

One way to mitigate with the dictionary attacks and brute force attack, the application can

be programmed to limit the number of login attempts. If the user exceeds the limit, we can

program the application to lock the user’s account. But there is a bad side for it. A hacker can

intentionally make the application to lock the user’s account thus, successfully launching Denial

of Service (DoS) attack. The other way of mitigating with dictionary attack is to provide a strong

password policy.

To mitigate with DoS, we can program the application to send an e-mail to the user with

a URL which is generated randomly and exclusively for this purpose with a preset expiry period

(Sawma & Probert).

In 2015, Starbucks’s mobile application was used by the hackers to hack the users’

accounts launching Brute Force attack on the credentials. Then with the feature of autoload

which enables the mobile app to reload the money from the users’ bank account or PayPal

account, the hackers added money into a gift card which can be used whenever needed by the

hacker. This attack was made possible because of a flaw in the application’s architecture and also

because of the lack of the implementation of two-factor authentication (Weise, 2015).

Even after these counter measures, if the communications channel is compromised the

hacker can launch a complete different set of network attacks. Some of the significant network

attacks are

21

Sniffing attack: Also known as packet sniffing or Man-in-the-middle attack, this attack

allows the hacker to eavesdrop on the information which is flowing between the client and the

server and the ability to capture the TCP/IP transmissions which contain the username and

password information. Then, the hacker can retrieve the credentials from the TCP/IP packet and

use them to falsify the authentication. One way to mitigate with this attack is to provide

encryption for the communications channel (Authentication and access control attacks, n.d.).

Replay Attack: In this attack, the hacker traps the authentication sequence and of an

authorized user and replays it in the same sequence with same set of values. This attack can be

mitigated by providing encryption to the communications channel and setting a time-stamp to all

the sensitive transmissions which are sent across the network.

Then there is SQL Injection vulnerability. This is a database vulnerability. When a user

inputs the username and password, the application sends it to the database server to verify the

information. This verification is done using the following SQL query

SELECT * FROM user_table WHERE user_name= ‘’ and password = ‘’;

The input which the users enters comes into the single quotes. So, when a malicious user

who either knows the username or doesn’t know it enters the below strings, he/she could break in

to the application by tricking the database server.

correct_username’ AND ‘1’ = ‘1’ -- //To get into the system impersonating a user

‘ OR ‘1’ = ‘1’ -- //If the malicious user does not know any username

SQL injection can be mitigated in two ways both of which are validations. One is client-

side validation and the other is server-side validation. In client-side validation, the input text

should be validated such that it does not contain any meta characters. In server-side validation,

the input string which is received from the client-side will be validated with a set of validation

22

methods which may be predefined, or user defined. If the validation mechanism throws any

errors, then the user must be notified with an appropriate message.

In the beginning of March 2014, eBay which is one of the C2C giants only next to

Alibaba, noticed a database session which was scanning all the password files which was later

announced by the company officials that close to 120 million users’ credentials and personal

information might have been compromised. This breach was caused by a phishing scam where

the hacker scammed one of the company’s employee whose account has the access to this

information. The hacker catching hold of the employee’s credentials, thus entered into the

system and created the breach. This breach wouldn’t have occurred if the company had two-

factor authentication imposed on its employees’ accounts or if they had encrypted the users’

information using some of the best algorithms out there (Kh, 2014).

In step 3, when a particular user selects a product/service which is very limited in

quantity and another user who also selects the same product/service simultaneously and one of

the users selects and orders the whole quantity but still the other user will be able to place an

order. When it come to the delivery of goods, one of the consumers could not get the

product/service. In this entire process, the fault lies in the server which could not keep track of

the inventory due to the concurrency flaw. This vulnerability can be exploited by malicious

users. Once such exploitation is shopping cart exploitation. In this exploitation, the malicious

user opens the applications in two different pages simultaneously, selects the quantity of a

product/service, updates the shopping cart, goes to another page where the quantity is not

updated yet, selects another quantity and checks out without updating the cart this time where the

malicious user has successfully placed the order of greater quantity for lesser price. We can

23

mitigate with concurrency flaws by incorporating the concurrency control techniques such as

multithreading, locks, thread synchronization, etc. (Vogel, 2016)

Again in steps 3 and 5, if the network is compromised, there is a possibility of attackers

launching sniffing and replay attacks. To mitigate these attacks we can encrypt the transactions

and set the timestamps as discussed above. But for the protection of Payment Gateway, there is a

compliance standard which we can incorporate into the e-commerce application called PCI DSS

compliance which stands for Payment Card Industry Data Security Standard. PCI DSS consists

of twelve requirements which are categorized into six goals which are as follows:

Goal-1: Build and Maintain a Secure Network

1. Install maintain a firewall configuration to protect cardholder data

2. Do not use vendor-supplied defaults for system passwords and other security

parameters

Goal-2: Protect Cardholder Data

3. Protect stored cardholder data

4. Encrypt transmission of cardholder data across open, public networks

Goal-3: Maintain a Vulnerability Management Program

5. Use and regularly update anti-virus software

6. Develop and maintain secure system and applications

Goal-4: Implement Strong Access Control Measures

7. Restrict access to cardholder data by business need-to-know

8. Assign a unique ID to each person with computer access

9. Restrict physical access to cardholder data

Goal-5: Regularly Monitor and Test Networks

24

10. Track and monitor all access to network resources and cardholder data

11. Regularly test security systems and processes

Goal-6: Maintain an Information Security Policy

12. Maintain a policy that addresses information security

By maintaining PCI DSS compliance, the e-commerce applications can make sure that

they are handling the payment gateway vulnerabilities (Maintaining Payment Security, n.d.)

Apart from these, there are coding vulnerabilities too which could turn out be biggest the

threats. There are two significant coding vulnerabilities which the developer should keep in mind

while developing the applications. They are

Buffer Overflow: It is a condition when the program tries to store more data in the buffer

than it can hold. When the program overflows the buffer, the data is stored forcefully into the

memory past the buffer. Doing so could corrupt the data of another program or crash the

program of which the memory belongs to. There is also a possibility to execute malicious code

using this memory. To mitigate this vulnerability, we have check for the upper boundary and

lower boundary and send an error message if the input is out of the boundary values (Buffer

Overflow, 2016).

Cross Site Scripting: Commonly referred as XSS, this is one of the top vulnerabilities of

web applications. It occurs when malicious scripts are injected from an untrusted source into a

trusted source. This usually occurs when the attacker sends the malicious code in the form of a

browser side script. To mitigate XSS attacks, the sensitive information should not be transmitted

with get requests and also validating the input texts helps reducing the probability of XSS

attacks (Cross-site Scripting (XSS), 2018).

25

Summary

 In this chapter, we have discussed about the background of e-commerce and the

information which we must know about e-commerce security like different security

vulnerabilities of an e-commerce application, different aspects of e-commerce security, different

security attacks in each step of the application flow and various security policies in order to

create a methodology which enables the e-commerce applications to mitigate with almost every

security attack.

26

Chapter III: Methodology

Introduction

 In this chapter we will be discussing the methodology about how we make an e-

commerce application aware of most of the security risks. We shall also discuss about the

hardware and software requirements in order to run this security aware e-commerce application.

Design of the Study

 The approach that we are going to use is a quantitative study. To begin with, we shall

learn about how the vulnerabilities mentioned in the previous chapter affect an e-commerce

application and how we mitigate them in our implementation. We would be needing some tools

and technologies using which we shall be able to do the desired implementation. Once we

acquire them, we can start our implementation.

Hardware and Software Requirements

• Operating System: Linux (Ubuntu 16.04)

• Hard Disk Volume: a minimum of 30 GB

• RAM: a minimum of 8 GB

• Server-Side Technologies: JDK 1.8, Spring Boot, Gradle

• Client-Side Technologies: ReactJS, Material UI

• Hosting Platform: AWS EC2

• Storage Platform: AWS S3

• Databases: PostgreSQL, MongoDB

• Version Control and Source Code Management: GitHub

• IDEs: Visual Studio Code, IntelliJ (IDEA)

• Load Balancer: NGINX

27

Budget

 Most of the technologies used are Open Source Technologies. So, there is no need of

investing too much to build the application in context. The application will be hosted on AWS

cloud using its free tier instance EC2. The IDE IntelliJ which will be used is the Enterprise

version which costs around $150. But as student, it can be acquired with a free subscription. The

PostgreSQL database service which will be used in the application is hosted on GCP’s free tier

service which is free up to an amount of $300 in spending for a year and MongoDB Atlas’s M0

Sandbox cluster which is also a free tier hosted in GCP. The only real expense would be the

domain names. Two domains name servers are required for the development of the application.

One for the Front-End of our application and one for the API.

1. cargaraage.now.sh - $0.99

2. saiteja.dev - $12.00

System Design

 As an e-commerce application cannot be made as a static application, it would need two

implementations; Client-side implementation for the Front-end (UI) and the server-side

implementation which does all the heavy lifting of the application, including the business logic

because of which server-side implementation may sometimes be referred to as business layer.

For this project, we will be using ReactJS for front-end and Spring Boot Java for back-end.

 The reasons for choosing ReactJS over the other front-end technologies are that it

facilitates the writing for reusable components which can be used in or alongside the other

components. This concept yields productivity and facilitates quick maintenance by isolating the

root cause of a problem. Moreover, it is a light weight library which renders on a virtual DOM

unlike Angular which renders on the regular DOM which increases the performance of the UI.

28

One of the biggest advantages of using ReactJS is that it is SEO friendly, i.e., it enables the

search engines like Google, Yahoo, Bing, etc., to find your application content. For e-commerce

applications, it necessary that these search engines find your content to attract the potential

customers.

 The reasons for choosing Java are its Object-Oriented Programming (OOPs) features

which avoids most of the coding risks just with their concepts. One such risk is buffer overload.

This risk is mitigated by one of its features of garbage collection. The reasons for choosing

Spring Boot Java for the server-side implementation is that Spring Boot makes it easy to create

stand-alone applications which have production quality builds, it is easy to configure the 3rd

party libraries and it enables the avoidance of writing lots of boilerplate code. The packaging will

be done using Gradle.

High Level Design

 There are several components involved in the application which are aligned as shown in

the below high-level diagram:

Figure 2. High level design of the system

29

UI

It facilitates the interaction between the customer and the application. This is the place

where a potential customer can sign up, login, view the product(s), add the product(s) to the cart,

and place order(s).

Nginx Server

It acts as a proxy server, load balancer, redirects all the HTTP requests to HTTPS to

make it a secure connection, and redirects the requests to appropriate services running in the

server.

Authentication API

This service authenticates the user based on the user’s username and password, generates

a JWT token with the user’s information such as username, user id, email, first name, last name,

full name, status of the user’s account, roles of the user and token expiry time. It also creates a

new user and returns a JWT token with the above-mentioned information.

Orders API

This service takes the request for a new order with payment information in it, verifies the

payment details, places the order and returns the order id as a response.

Cars API

This service is a repository of cars, its makes and body styles. You can create a new car,

update and existing car details, create a new make, create a new body style, etc.

PostgreSQL

PostgreSQL is a free open source RDBMS. In this application, the components

Authentication API and Orders API use this database which has the following tables in it

• User

30

• Roles

• Order

• Order_Details

• Roles_Users

• Shipping_Address

The tables user and roles have many-to-many relationship i.e., a single user can have

multiple roles and a single role can have multiple users in it. In order to map this relationship, the

table roles_users is created. The mapping will be based on the column user_id (foreign key to the

column user.id) and role_id (foreign key to the column roles.id).

The tables order and user have many-to-one relationship i.e., a single user can have

multiple orders but a single order can have only one user. They are mapped based on the column

order.user_id (foreign key to user.id).

The tables order and shipping have one-to-one unidirectional relationship i.e., a single

order can have only one shipping address but the shipping address can be repeated for another

order. They are mapped based on the column order. shipping_address_id (foreign key to

shipping_address.id).

The tables order_details and order have many-to-one relationship i.e., one order can have

multiple order details. They are mapped with the column order_details.order_id (foreign key to

order.id).

The tables order_details and user have many-to-one relationship i.e., one user can have

multiple order details. They are mapped with the column order_details.user_id (foreign key to

user.id).

31

Figure 3: Entity-Relationship diagram of all the tables used from RDBMS

MongoDB

MongoDB is an open source non-relational database classified as NoSQL database. It

stores the data in the form of JSON-like documents. The collections in MongoDB are like tables

and documents are like records in a traditional RDBMS. It does not have a defined schema. So,

one can freely add or remove fields to a document; there is no restriction. MongoDB by default

provides a primary key for a document which is of type String. In this application, the

components Orders API and Cars API use MongoDB which has the following collections in it:

• Cars

• Makes

• Body_Styles

32

Setting up the AWS cloud services

 To begin with, AWS cloud services could be used either as a free tier for the first-time

users for one year or paid tier. Once an AWS account is created from the URL

https://portal.aws.amazon.com/billing/signup, an IAM user must be created using the following

steps:

1. Navigate to https://console.aws.amazon.com/iam/

2. In the navigation pane, select Users < Add User

3. Enter a User Name (Administrator is a recommended user name)

4. Select AWS Management Console Access < Custom Password and enter a password

5. Uncheck the box User must create a new password at next sign-in, as a password is

already created

6. Select Next: Permissions > Set permissions > Add user to group > Create group

7. In the dialog box, enter a group name (Administrators is recommended)

8. Select Filter policies > AWS managed -job function to filter the table contents.

9. In the policy list, select AdministratorAccess > Create group

After creating the IAM user, a key pair should be generated in order to access the EC2

instances from the remote terminal. The following steps can be followed to create a new key

pair. This would be the private key of the user who is just created.

1. From the AWS dashboard, select EC2 to open the Amazon EC2 management console.

33

2. From the navigation bar, select a region for the key pair

Figure 4. List of selectable regions available in the EC2 instance

3. In the navigation pane, go to NETWORK & SECURITY > Key Pairs

Figure 5. Network & Security’s navigation pane in EC2 instance

4. Select Create Key Pair

5. Enter a name for the new key pair in the Key pair name field and select Create

6. The private key file will be downloaded automatically by your browser (The format of

the private key file will be .pem)

7. Once the file gets download, open the terminal, go to the file location and perform the

command “chmod 400 <user_name>-key-pair-<selected_region_name>. pem”

34

Once the IAM user and the key pair is created, proceed to launch a new EC2 instance. It can

be created by the following steps

1. Navigate to https://console.aws.amazon.com/ec2/

2. Select Launch instance

a. Choose an Amazon Machine Image: Select a desired image (for example, Ubuntu

Server 18.04 LTS

b. Choose Instance Type: Select the desired instance type from the given list and

proceed to Next: Configure Instance Details

c. Configure Instance Details: Enter the desired configuration details and select

Review and Launch or Add Storage

3. In the Review page click Launch which will launch the instance

This created instance can be accessed from a remote terminal or an SSH client like PuTTY

using the private key which is downloaded. From the remote terminal the instance can be

accessed by executing the command “ssh -i "<file-location>/<private-key-name>.pem"

<username>@<instance-public-address>”

Now, set up an S3 storage bucket by following the steps below

1. Navigate to the URL https://console.aws.amazon.com/s3/

2. Select Create bucket

3. Enter the name of the bucket in the Bucket name field (should be a DNS-compliant name)

4. Select the desired region where the bucket should be created and then select Create

Setting up the PostgreSQL server on GCP

 Create a new GCP account either a trial version or a paid version. Once the account is

created, navigate to the GCP console and select SQL in the navigation pane. Select Create an

35

Instance. Select one of the database engines displayed (at this moment, the available database

engines are MySQL, PostgreSQL, SQL Server). Enter the database instance information and

click Create.

Setting up MongoDB server

To set up a MongoDB server, create an account in MongoDB Atlas. Once an account is

created, create a new project. After creating the project, follow the steps below

1. Select Build a New Cluster

2. Select a Cloud provider from the given list (at this moment there are 3 providers

available; namely AWS, GCP, Azure)

3. Select a Region

4. Select a Cluster Tier from the list of available tiers (for the first-time user, M0 sandbox

cluster offers a free tier for the lifetime)

5. Enter the Cluster name

6. Select Create Cluster

Implementing the backend Code

 All the resources in the backend implementation are exposed to the world using REST

web services. Unlike the other web services such as SOAP, REST is not a protocol; it is an

architecture. These web services are stateless. So, the client must keep the session state alive and

send all the necessary information in the request and wait for the response to proceed further.

REST adheres to the HTTP standards, thus implements all the concepts of HTTP. All the HTTP

methods are implemented and GET, POST, DELETE, PUT, PATCH, etc., are the most

commonly used methods. GET is used when a resource is to be retrieved i.e., READ, POST is

used when a resource has to be created,

36

Cars API

The Cars API deals with the repository of cars. The cars are usually differentiated based on

the body style. Some of the examples of body style are Sedan. SUV, Coupe, etc. This is

considered as a resource and it has an end point “/bodyStyles”.

Authentication API

Authentication API mainly has two functionalities; namely, authenticating a user, and

registering a new user. In the process of authenticating a user, the API retrieves the username and

password. It then queries the database table ‘USER’ with that username. If the username is

found, it will verify the password with the one the user has provided. If anyone of them do no

match, it will say that the user is not found. In the process of registering a new user, it will first

persist the user in ‘USER’ table, then assigns the user to the role ‘User’. This user to role

relationship will be kept maintained in the table ‘USER_ROLES’.

Orders API

Orders API deals with two functionalities. One of them being creating an order and the other

one is retrieving an order. While creating an order, the API retrieves the payment details,

shipping details and the order details. First, it will verify the payment details. If the payment

details are good, then it will proceed to place the order. In the process of creating the order, it

will add the shipping details to the order and then persist it. Once the order is saved, the API will

respond back with the order number. This order number can be used to retrieve the order.

37

Implementing the UI

The UI has several modules which include the following

Cars for Sale

In this module, the end-user can view a list of cars which are available for sale. Each car is

made with a component called Card. This Card has several child components such as picture of

the car, price in USD, exterior color and interior color of the car, transmission, drive terrain and

an option to view more details of the car.

Figure 6. List of Cars in the built application

There is one more module where the end-user can filter the cars as well as sort them.

Figure 7. Options to Filter and Sort the cars in the application

38

In the filter, the end-user can filter out the cars based on its make, body style, and price.

Figure 8. Filter options in the application

The user can sort the cars based on the order or makes or body styles, newest car, oldest car,

highest to lowest price, and lowest to highest price.

Figure 9. Sort options in the application

39

View Car

The end-user can navigate to this module by clicking on the VIEW MORE option inside the

card in the cars for sale module where he/she can view the selected car in detail, multiple images

of the car, add the car to the cart, and checkout.

Figure 10. Details of a selected car in the application

Figure 11. Car added to the cart

40

If the end-user tries to check out directly from this module, it first adds the car to the cart and

takes the user to the checkout module.

Cart

The end-user can navigate to this module by clicking on the cart icon in the navigation bar

where all the items which the user have added in the intention to buy are displayed in this

module. There is also an option to change the quantity of items, and remove the item from the

cart.

The Order summary shows the total price of all the items in the cart, estimated shipping cost,

estimated tax, and the grand total at the bottom. The user can review this information and

proceed to the check-out module.

Figure 12. Cart module

 If the end-user is not logged in, it will prompt to Log in, thus restricting the

unauthenticated end-user to check out the item.

Figure 13. Unauthenticated checkout attempt

41

Check Out

The end-user can navigate to the checkout from either the Cart module or from the view car

module. It has three important components in it.

1. Payment Details

In this component, the end-user can enter the payment information like Credit/Debit card

information, Expiry Date, three-digit CVC number, and Name on Card.

Figure 14. Payment details form

2. Shipping Address

In this component, the end-user can enter the shipping address details to where he/she

intend the order to be shipped to.

Figure 15. Shipping details form

42

3. Order Summary

Order summary has the details of the total price of all the items in the cart, estimated

shipping cost, estimated tax, and the grand total. If the end-user decides to continue the

shopping, it provides that option.

Figure 16. Order summary

If the user is not logged in, it will redirect the user to the Unauthorized page.

Log In

The end-user can get authenticated by logging in to the application from here by enter the

username and password. There is also an option provided to new users to get registered by

redirecting them to the registration module by clicking on “Sign up Here”.

Figure 17. Log in module of the application

43

Registration

If the end-user is not registered with the application, this module provides an interface to get

registered. In order to get registered successfully, the end-user should enter the first name, last

name, user name, gender, email address, and password. The end-user can also enter the date of

birth but it is optional.

Figure 18. Registration module

Summary

 In this chapter, I have discussed about the study design, what are the software and

hardware requirements to build the application, cost of implementing, installations, how to

develop each module and its implementation.

44

Chapter IV: Data Analysis

Introduction

 In this chapter, the security of the built application will be discussed.

Analysis

 Secure Communication channel

Starting off, let us see how secure the communication channel of the application is. For

that purpose, first let us see what would happen if the communication channel is not secured.

From the UI, I have tried to log in to the application. The UI makes a REST call to the

Authentication API through an insecure channel exposing the payload as shown in the figure 19.

Figure 19. Packet capture of communication through insecure channel

45

 The data from figure 19 is retrieved by capturing the tcpdump. If we notice the last line of

the captured data, we can see that the payload is visible in plain text. With this information, the

attacker can mimic the user to perform malicious activities. This threat to the application is

mitigated by securing the communication channel with the help of Secure Socket Layer (SSL).

For this, I have generated an SSL certificate in the server with the respective DNS names of UI

and API and got them signed with a Certification Authority (CA) called “Let’s Encrypt”. All the

communications made through SSL is secure as it encrypts all of them. Once the server receives

the encrypted data, it knows how to decrypt it with its private key. Once again, the authentication

request is made by the UI to Authentication API, but this time in a secure channel. In figure 20,

we can see how the communication is encrypted in intelligible form.

Figure 20. Packet capture of communication through secure channel

46

SQL Injection

To mitigate SQL injection, I have used Spring Data JPA. Most of the applications while

making a query with the information received from the user, just replace a particular string

pattern in the query with the string received. The Spring Data JPA library deals with this

differently. Instead of replacing the string, it will insert the string into the placeholder. For

example, let us say that the Authentication API is called for authentication a user. The query for

that is ‘SELECT * FROM USER WHERE USERNAME=?’. When the user tries to inject SQL

with the string “saiteja77’ AND ‘1’ = ‘1’ --”, JPA queries the database for the username

“saiteja77’ AND ‘1’ = ‘1’ --” excluding all the SQL escape characters. Figure 21 confirms that.

Figure 21. Successful mitigation of SQL injection

Cross Site Request Forgery

 The threat of cross site request forgery is mitigated by following the REST architecture.

According to REST architecture, all the sensitive information should be passed through a request

payload. For example, to make a log in request, we must send the username and password details

to the API. Instead of send these details in the request parameters, we should send them in the

request body. Following this method ensures that the request is not forged.

47

 Cross Site Scripting

 The threat of cross site scripting is mitigated by the application’s information security

policy. According to the policy, only users who are authorized will be able to change the

application data thus ensuring the data integrity. Even if the authorized user is compromised, the

UI will not allow scripts from the data. If any such data is found, it will be converted into a text

and will be displayed as shown in the figure 22.

Figure 22. Successful mitigation of Cross Site Scripting

 Brute Force Attack

 Brute force attack is always made easy with weak authentication. For this purpose, the

user is prompted to have a password with some predefined patterns like it should not start or end

with a non-alphanumeric character, should be 8-32 characters length, at least one lowercase

letter, one upper case letter, one number and, one of the symbols .!@#$%^&*. This would make

it harder for the attackers to guess the password, yet the attacker can get through by using a script

file or running a program. To mitigate this risk, the application is designed in such a way that if

48

there are more than five invalid log in attempts, that account will be locked as shown in the

figure 23.

Figure 22. Successful mitigation of Brute Force attack

Insecure Direct Object References

This threat is mitigated by securing all the resources which have sensitive information.

The sensitivity of a resource can be defined by the information it holds. Any resource which has

the personal information of a user, payment information, etc., can be as sensitive resource. These

resources are secured in such a way that only an authenticated or authorized person can access it.

For example, defined the roles of a user is a private information. This is a privileged operation

which should be performed by an admin.

For this purpose, the APIs related to those operations would require an authorization

header whose value is a JWT token, which includes the user information like fist name, last

name, email address, username, roles, token issued time, token expiry time, etc. This information

would be used to determine the roles of the user. If a user has a role of “ADMIN”, then the

request will be proceeded further or else the API responds back saying that the user is not

authorized to request that particular resource.

49

Summary

 In this chapter, we discussed about how the built ecommerce application mitigated most

of the security risks. Even after mitigating those risks, there are still some improvements and

better approaches to some threats. Those improvements and approaches will be continued in the

future.

50

Chapter V: Conclusions and Future Work

Introduction

 This chapter concludes all the discussions made and methods implemented along with

discussing how this is a better solution over the existing ones and the works which are to be

carried in the future.

Conclusion

 As discussed earlier in the problem statement, there have been many studies about the

security in ecommerce application, but all of them failed to define a methodology how to

incorporate security into the application from the beginning of the application development. In

this research, I have shown how I have secured all the resources in the APIs which are sensitive,

how to store the passwords, how to mitigate the security threats right from the beginning of the

application development, how to use cloud to increase the cost efficiency of the application, what

are latest trends of application development, etc.

With all these discussions and provided evidences, I conclude that my study is better than

the many existing studies related to ecommerce security.

Future Work

 Even though the cross site request forgery is mitigated, there are more better approaches

for it. One such approach is to maintain CSRF tokens across the application. The CSRF tokens

are a unique, secret, and unpredictive values. These tokens will be unique for each module of the

application and will be generated dynamically by the server which shall be included in each API

request made by the client to the server.

 We have seen how the brute force attack is mitigated by improving the password policy

and minimizing the number of invalid tries. In this process, the user account is being locked

51

which can be leading to denial of service. This can be better approached by giving an option to

the user to unlock the account.

52

References

Authentication and access control attacks. (n.d.). Retrieved from Internet-Computer-

Security.com : http://www.internet-computer-security.com/Security-

Terminology/Authentication-Attacks.html

Buffer Overflow. (2016, 06 29). Retrieved from OWASP:

https://www.owasp.org/index.php/Buffer_Overflow

Cross-site Scripting (XSS). (2018, 06 05). Retrieved from OWASP:

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

Gambhir, J. (n.d.). Reduce Security Threats with Role-Based Access Control in Ecommerce.

Retrieved from Hitachi Soultions: https://us.hitachi-solutions.com/blog/role-based-

access-control-and-security-in-ecommerce/

Hardin, B. (2009, October 12). Insecure Communications. Retrieved from bretthard:

http://bretthard.in/post/insecure-communications

Hau, D. (2012). Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8. Global Information

Assurance Certifications, 1-10. Retrieved from

https://www.giac.org/paper/gsec/3161/unauthorized-access-threats-risk-control/105264

History of Ecommerce. (n.d.). Retrieved from Ecommerce Land: https://www.ecommerce-

land.com/history_ecommerce.html

Kaur, K. (2015). E-Commerce Privacy and Security System. International Journal of

Engineering Research and Applications, 63-73.

Kh, R. (2014, 09 10). 4 E-commerce Security Failure Case Studies. Retrieved from Benzinga:

https://www.benzinga.com/14/09/4840193/4-e-commerce-security-failure-case-studies

53

Khandare, N. (2015). Transaction Security for Internet E-commerce Application. International

Journal of Advanced Research in Computer Science and Software Engineering, 629-640.

Loshin, P. (2016, June 21). Acer's e-commerce website hit by a customer data breach. Retrieved

from TechTarget: https://searchsecurity.techtarget.com/news/450298892/Acers-

ecommerce-website-hit-by-a-customer-data-breach

Maintaining Payment Security. (n.d.). Retrieved from PCI Security Standards:

https://www.pcisecuritystandards.org/pci_security/maintaining_payment_security

Rouse, M. (2018, June). e-commerce (electronic commerce or EC). Retrieved from Techtarget:

https://searchcio.techtarget.com/definition/e-commerce

Sawma, V. D., & Probert , R. L. (n.d.). E-COMMERCE AUTHENTICATION An Effective

Countermeasures Design Model. Ottawa, Ontario, Canada.

Sharma, A. (2016). A Survey on E-Commerce Security Issues and Solutions. International

Journal of Advanced Research in, 300-302.

Vogel, L. (2016, 06 07). Java concurrency (multi-threading) - Tutorial. Retrieved from Vogella:

http://www.vogella.com/tutorials/JavaConcurrency/article.html

Weise, E. (2015, 05 16). Starbucks customers' mobile accounts breached by thieves. Retrieved

from USA Today: https://www.usatoday.com/story/tech/2015/05/15/starbucks-gift-card-

hack/27370491/

54

Appendix A: Backend Code of Cars API

BodyStylesController.java

package com.bitbyte.cargaraage.controller;

import com.bitbyte.cargaraage.enitities.BodyStylesEntity;

import com.bitbyte.cargaraage.service.BodyStyleService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.data.domain.Page;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import javax.validation.constraints.NotNull;

import java.util.Optional;

@RestController

@CrossOrigin

public class BodyStylesController {

 @Autowired

 private BodyStyleService service;

 @GetMapping("/bodyStyles")

 public ResponseEntity<Iterable<BodyStylesEntity>> getBodyStyles() {

 return new ResponseEntity<>(service.getAll(), HttpStatus.OK);

 }

 @GetMapping("/bodyStyles/{id}")

 public ResponseEntity<BodyStylesEntity> getBodyStyles(@NotNull @PathVariable String

id) {

 BodyStylesEntity make = service.getById(id);

 if (make != null)

return new ResponseEntity<>(make, HttpStatus.OK);

 else

return new ResponseEntity<>(new BodyStylesEntity(null), HttpStatus.NOT_FOUND);

 }

 @PostMapping("/bodyStyles")

 public ResponseEntity<BodyStylesEntity> saveBodyStyles(@NotNull @RequestBody

BodyStylesEntity make) {

 BodyStylesEntity makesEntity = service.save(make);

 return new ResponseEntity<>(makesEntity, HttpStatus.CREATED);

 }

 @PutMapping("/bodyStyles")

55

 public ResponseEntity<BodyStylesEntity> updateBodyStyles(@NotNull @RequestBody

BodyStylesEntity make, @NotNull @PathVariable String id) {

 BodyStylesEntity makesEntity = service.update(make, id);

 if (makesEntity != null)

return new ResponseEntity<>(makesEntity, HttpStatus.OK);

 else

return new ResponseEntity<>(make, HttpStatus.BAD_REQUEST);

 }

 @DeleteMapping("/bodyStyles")

 public ResponseEntity<BodyStylesEntity> deleteBodyStyles(@NotNull @PathVariable

String id) {

 Optional<BodyStylesEntity> make = service.delete(id);

 if (make.isPresent())

return new ResponseEntity<>(make.get(), HttpStatus.OK);

 else

return new ResponseEntity<>(new BodyStylesEntity(null),

HttpStatus.BAD_REQUEST);

 }

 @GetMapping("/bodyStyles/pageable")

 public ResponseEntity<Page<BodyStylesEntity>> getPageableBodyStyles(@NotNull

@RequestParam Integer pageNumber, @NotNull @RequestParam Integer pageSize) {

 return new ResponseEntity<>(service.getPageableBodyStyles(pageNumber, pageSize),

HttpStatus.OK);

 }

}

CarsController.java

package com.bitbyte.cargaraage.controller;

import com.bitbyte.cargaraage.enitities.CarsEntity;

import com.bitbyte.cargaraage.service.CarsService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import org.springframework.web.server.ResponseStatusException;

@RestController

@CrossOrigin

public class CarsController {

 @Autowired

 private CarsService service;

56

 @GetMapping("/cars")

 public ResponseEntity<Iterable<CarsEntity>> getCars(){

 return new ResponseEntity<>(service.getCars(), HttpStatus.OK);

 }

 @GetMapping("/cars/{id}")

 public ResponseEntity<CarsEntity> getCarsById(@PathVariable String id){

 CarsEntity car = service.getCarsById(id);

 if(car != null)

return new ResponseEntity<>(car, HttpStatus.OK);

 else

throw new ResponseStatusException(HttpStatus.NOT_FOUND);

 }

 @PostMapping("/cars")

 public ResponseEntity<CarsEntity> saveCar(@RequestBody CarsEntity car){

 return new ResponseEntity<>(service.saveCar(car), HttpStatus.CREATED);

 }

 @PutMapping("/cars")

 public ResponseEntity<CarsEntity> updateCar(@RequestBody CarsEntity car) {

 return new ResponseEntity<>(service.updateCar(car), HttpStatus.OK);

 }

}

MakesController.java

package com.bitbyte.cargaraage.controller;

import com.bitbyte.cargaraage.enitities.MakesEntity;

import com.bitbyte.cargaraage.service.MakesService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import javax.validation.constraints.NotNull;

import java.util.Optional;

@RestController

@CrossOrigin

public class MakesController {

 @Autowired

 private MakesService service;

 @GetMapping("/makes")

 public ResponseEntity<Iterable<MakesEntity>> getMakes(){

57

 return new ResponseEntity<>(service.getAll(), HttpStatus.OK);

 }

 @GetMapping("/makes/{id}")

 public ResponseEntity<MakesEntity> getMakesEntity(@NotNull @PathVariable String id){

 MakesEntity make = service.getById(id);

 if(make!=null)

return new ResponseEntity<>(make, HttpStatus.OK);

 else

return new ResponseEntity<>(new MakesEntity(null), HttpStatus.NOT_FOUND);

 }

 @PostMapping("/makes")

 public ResponseEntity<MakesEntity> saveMakes(@NotNull @RequestBody MakesEntity

make){

 MakesEntity makesEntity = service.save(make);

 return new ResponseEntity<>(makesEntity, HttpStatus.CREATED);

 }

 @PutMapping("/makes")

 public ResponseEntity<MakesEntity> updateMakes(@NotNull @RequestBody MakesEntity

make, @NotNull @PathVariable String id){

 MakesEntity makesEntity = service.update(make, id);

 if (makesEntity != null)

return new ResponseEntity<>(makesEntity, HttpStatus.OK);

 else

return new ResponseEntity<>(make, HttpStatus.BAD_REQUEST);

 }

 @DeleteMapping("/makes")

 public ResponseEntity<MakesEntity> deleteMakes(@NotNull @PathVariable String id){

 Optional<MakesEntity> make = service.delete(id);

 if(make.isPresent())

return new ResponseEntity<>(make.get(), HttpStatus.OK);

 else

return new ResponseEntity<>(new MakesEntity(null), HttpStatus.BAD_REQUEST);

 }

}

UsersController.java

package com.bitbyte.cargaraage.controller;

import com.bitbyte.cargaraage.enitities.UserEntity;

import com.bitbyte.cargaraage.service.UserService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

58

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.security.NoSuchAlgorithmException;

import java.util.List;

@RestController

@CrossOrigin

public class UsersController {

 @Autowired

 private UserService service;

 @GetMapping("/users")

 public ResponseEntity<Iterable<UserEntity>> getAll(){

 return new ResponseEntity<>(service.getAll(), HttpStatus.OK);

 }

 @GetMapping("/users/{id}")

 public ResponseEntity<UserEntity> getUserById(@PathVariable String id){

 return new ResponseEntity<>(service.getUserById(id), HttpStatus.OK);

 }

 @GetMapping("users/validate_credentials")

 public ResponseEntity<Boolean> checkPassword(@RequestParam String emailAddress,

@RequestBody String password) throws NoSuchAlgorithmException {

 return new ResponseEntity<>(service.checkPassword(password, emailAddress),

HttpStatus.OK);

 }

 @PostMapping("/users")

 public ResponseEntity<UserEntity> saveUser(@RequestBody UserEntity user){

 return new ResponseEntity<>(service.save(user), HttpStatus.CREATED);

 }

 @DeleteMapping("/users/{id}")

 public ResponseEntity<UserEntity> deleteUser(@PathVariable String id){

 return new ResponseEntity<>(service.delete(id), HttpStatus.OK);

 }

}

BodyStylesEntity.java

package com.bitbyte.cargaraage.enitities;

import com.fasterxml.jackson.annotation.JsonProperty;

import org.springframework.data.annotation.Id;

59

import org.springframework.data.mongodb.core.mapping.Document;

@Document(collection = "body_styles")

public class BodyStylesEntity {

 @Id

 private String id;

 @JsonProperty(value = "value")

 private String styleName;

 public BodyStylesEntity() {

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getStyleName() {

 return styleName;

 }

 public void setStyleName(String styleName) {

 this.styleName = styleName;

 }

 public BodyStylesEntity(String styleName) {

 this.styleName = styleName;

 }

}

CarsEntity.java

package com.bitbyte.cargaraage.enitities;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.mapping.Document;

import java.util.List;

@Document(collection = "cars")

public class CarsEntity {

 @Id

60

 private String id;

 private String carName;

 private Integer carPrice;

 private Properties specs;

 private List<String> pictures;

 public CarsEntity() {

 }

 public CarsEntity(String carName, Integer carPrice, Properties specs, List<String> pictures) {

 this.carName = carName;

 this.carPrice = carPrice;

 this.specs = specs;

 this.pictures = pictures;

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

 public String getCarName() {

 return carName;

 }

 public void setCarName(String carName) {

 this.carName = carName;

 }

 public Properties getSpecs() {

 return specs;

 }

 public void setSpecs(Properties specs) {

 this.specs = specs;

 }

 public List<String> getPictures() {

 return pictures;

 }

 public void setPictures(List<String> pictures) {

61

 this.pictures = pictures;

 }

 public Integer getCarPrice() {

 return carPrice;

 }

 public void setCarPrice(Integer carPrice) {

 this.carPrice = carPrice;

 }

}

FuelConsumption.java

package com.bitbyte.cargaraage.enitities;

public class FuelConsumption {

 private Integer city;

 private Integer highway;

 private Integer combined;

 public FuelConsumption() {

 }

 public Integer getCity() {

 return city;

 }

 public void setCity(Integer city) {

 this.city = city;

 }

 public Integer getHighway() {

 return highway;

 }

 public void setHighway(Integer highway) {

 this.highway = highway;

 }

 public Integer getCombined() {

 return combined;

 }

 public void setCombined(Integer combined) {

 this.combined = combined;

 }

62

}

MakesEntity.java

package com.bitbyte.cargaraage.enitities;

import com.fasterxml.jackson.annotation.JsonProperty;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.index.IndexDirection;

import org.springframework.data.mongodb.core.index.Indexed;

import org.springframework.data.mongodb.core.mapping.Document;

@Document(collection = "makes")

public class MakesEntity {

 @Id

 private String id;

 @Indexed(direction = IndexDirection.ASCENDING)

 @JsonProperty(value = "value")

 private String makeName;

 public MakesEntity(String makeName) {

 this.makeName = makeName;

 }

 public String getId() {

 return id;

 }

 public String getMakeName() {

 return makeName;

 }

 public void setMakeName(String makeName) {

 this.makeName = makeName;

 }

 public void setId(String id) {

 this.id = id;

 }

 public MakesEntity() {

 }

}

Properties.java

63

package com.bitbyte.cargaraage.enitities;

public class Properties {

 private BodyStylesEntity bodyStyle;

 private MakesEntity make;

 private String fuelType;

 private FuelConsumption mileage;

 private Integer fuelCapacity;

 private Integer accelerationTime;

 private Integer seatingCapacity;

 private Integer horsePower;

 private Integer torque;

 private String engineType;

 private Integer year;

 private String interiorColor;

 private String exteriorColor;

 private String transmission;

 private String driveterrain;

 public Properties(BodyStylesEntity bodyStyle, MakesEntity make, String fuelType,

FuelConsumption mileage, Integer fuelCapacity, Integer accelerationTime, Integer

seatingCapacity, Integer horsePower, Integer torque, String engineType, Integer year, String

interiorColor, String exteriorColor, String transmission, String driveterrain) {

 this.bodyStyle = bodyStyle;

 this.make = make;

 this.fuelType = fuelType;

 this.mileage = mileage;

 this.fuelCapacity = fuelCapacity;

 this.accelerationTime = accelerationTime;

 this.seatingCapacity = seatingCapacity;

 this.horsePower = horsePower;

 this.torque = torque;

 this.engineType = engineType;

 this.year = year;

 this.interiorColor = interiorColor;

 this.exteriorColor = exteriorColor;

 this.transmission = transmission;

 this.driveterrain = driveterrain;

 }

 public BodyStylesEntity getBodyStyle() {

 return bodyStyle;

 }

 public void setBodyStyle(BodyStylesEntity bodyStyle) {

64

 this.bodyStyle = bodyStyle;

 }

 public MakesEntity getMake() {

 return make;

 }

 public void setMake(MakesEntity make) {

 this.make = make;

 }

 public String getFuelType() {

 return fuelType;

 }

 public void setFuelType(String fuelType) {

 this.fuelType = fuelType;

 }

 public FuelConsumption getMileage() {

 return mileage;

 }

 public void setMileage(FuelConsumption mileage) {

 this.mileage = mileage;

 }

 public Integer getFuelCapacity() {

 return fuelCapacity;

 }

 public void setFuelCapacity(Integer fuelCapacity) {

 this.fuelCapacity = fuelCapacity;

 }

 public Integer getAccelerationTime() {

 return accelerationTime;

 }

 public void setAccelerationTime(Integer accelerationTime) {

 this.accelerationTime = accelerationTime;

 }

 public Integer getSeatingCapacity() {

 return seatingCapacity;

65

 }

 public void setSeatingCapacity(Integer seatingCapacity) {

 this.seatingCapacity = seatingCapacity;

 }

 public Integer getHorsePower() {

 return horsePower;

 }

 public void setHorsePower(Integer horsePower) {

 this.horsePower = horsePower;

 }

 public Integer getTorque() {

 return torque;

 }

 public void setTorque(Integer torque) {

 this.torque = torque;

 }

 public String getEngineType() {

 return engineType;

 }

 public void setEngineType(String engineType) {

 this.engineType = engineType;

 }

 public Integer getYear() {

 return year;

 }

 public void setYear(Integer year) {

 this.year = year;

 }

 public String getInteriorColor() {

 return interiorColor;

 }

 public void setInteriorColor(String interiorColor) {

 this.interiorColor = interiorColor;

 }

66

 public String getExteriorColor() {

 return exteriorColor;

 }

 public void setExteriorColor(String exteriorColor) {

 this.exteriorColor = exteriorColor;

 }

 public String getTransmission() {

 return transmission;

 }

 public void setTransmission(String transmission) {

 this.transmission = transmission;

 }

 public String getDriveterrain() {

 return driveterrain;

 }

 public void setDriveterrain(String driveterrain) {

 this.driveterrain = driveterrain;

 }

}

Status.java

package com.bitbyte.cargaraage.pojo;

public enum Status {

 ACTIVE,INACTIVE,DELETED;

 @Override

 public String toString() {

 return super.toString();

 }

}

BodyStylesRepository.java

package com.bitbyte.cargaraage.repository;

import com.bitbyte.cargaraage.enitities.BodyStylesEntity;

import org.springframework.data.domain.Page;

import org.springframework.data.domain.Pageable;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

67

import java.util.Optional;

@Repository

public interface BodyStylesRepository extends CrudRepository<BodyStylesEntity, String> {

 Page<BodyStylesEntity> findAll(Pageable page);

 Optional<BodyStylesEntity> findByStyleName(String styleName);

}

CarsRepository.java

package com.bitbyte.cargaraage.repository;

import com.bitbyte.cargaraage.enitities.CarsEntity;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface CarsRepository extends CrudRepository<CarsEntity, String> {

}

MakesRepository.java

package com.bitbyte.cargaraage.repository;

import com.bitbyte.cargaraage.enitities.MakesEntity;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

import java.util.Optional;

@Repository

public interface MakesRepository extends CrudRepository<MakesEntity, String> {

 Optional<MakesEntity> findByMakeName(String makeName);

}

BodyStyleService.java

package com.bitbyte.cargaraage.service;

import com.bitbyte.cargaraage.enitities.BodyStylesEntity;

import com.bitbyte.cargaraage.repository.BodyStylesRepository;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.data.domain.Page;

import org.springframework.stereotype.Service;

import javax.validation.constraints.NotNull;

import java.util.Optional;

68

import static org.springframework.data.domain.PageRequest.*;

@Service

public class BodyStyleService {

 @Autowired

 private BodyStylesRepository repository;

 public Iterable<BodyStylesEntity> getAll() {

 return repository.findAll();

 }

 public BodyStylesEntity getById(@NotNull String id){

 Optional<BodyStylesEntity> make = repository.findById(id);

 if(make.isPresent()) {

return make.get();

 }

 else{

return null;

 }

 }

 public BodyStylesEntity save(@NotNull BodyStylesEntity make) {

 BodyStylesEntity newEntity = repository.save(new

BodyStylesEntity(make.getStyleName()));

 return newEntity;

 }

 public BodyStylesEntity update(@NotNull BodyStylesEntity bodyStyle, @NotNull String id)

{

 Optional<BodyStylesEntity> entity = repository.findById(id);

 if(entity.isPresent()){

entity.get().setStyleName(bodyStyle.getStyleName());

return repository.save(entity.get());

 } else

return null;

 }

 public Optional<BodyStylesEntity> delete(String id) {

 Optional<BodyStylesEntity> entity = repository.findById(id);

 if(entity.isPresent())

repository.delete(entity.get());

 return entity;

 }

69

 public Page<BodyStylesEntity> getPageableBodyStyles(int pageNumber, int pageSize){

 return repository.findAll(of(pageNumber,pageSize));

 }

}

CarsService.java

package com.bitbyte.cargaraage.service;

import com.bitbyte.cargaraage.enitities.BodyStylesEntity;

import com.bitbyte.cargaraage.enitities.CarsEntity;

import com.bitbyte.cargaraage.enitities.MakesEntity;

import com.bitbyte.cargaraage.repository.BodyStylesRepository;

import com.bitbyte.cargaraage.repository.CarsRepository;

import com.bitbyte.cargaraage.repository.MakesRepository;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import java.util.Optional;

@Service

public class CarsService {

 @Autowired

 private CarsRepository repository;

 @Autowired

 private BodyStylesRepository bodyStylesRepository;

 @Autowired

 private MakesRepository makesRepository;

 public Iterable<CarsEntity> getCars() {

 return repository.findAll();

 }

 public CarsEntity getCarsById(String id) {

 Optional<CarsEntity> car = repository.findById(id);

 return car.isPresent() ? car.get() : null;

 }

 public CarsEntity saveCar(CarsEntity car) {

 Optional<BodyStylesEntity> bodyStyle =

bodyStylesRepository.findByStyleName(car.getSpecs().getBodyStyle().getStyleName());

 Optional<MakesEntity> make =

makesRepository.findByMakeName(car.getSpecs().getMake().getMakeName());

 if(bodyStyle.isPresent() && make.isPresent()){

70

car.getSpecs().getBodyStyle().setId(bodyStyle.get().getId());

car.getSpecs().getMake().setId(make.get().getId());

 } else if(bodyStyle.isPresent() || make.isPresent()){

if(bodyStyle.isPresent())

car.getSpecs().getBodyStyle().setId(bodyStyle.get().getId());

else

car.getSpecs().getMake().setId(make.get().getId());

 }

 return repository.save(car);

 }

 public CarsEntity updateCar(CarsEntity car) {

 return repository.save(car);

 }

}

MakesService.java

package com.bitbyte.cargaraage.service;

import com.bitbyte.cargaraage.enitities.MakesEntity;

import com.bitbyte.cargaraage.repository.MakesRepository;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import javax.validation.constraints.NotNull;

import java.util.Optional;

@Service

public class MakesService {

 private static final Logger LOGGER = LoggerFactory.getLogger(MakesService.class);

 @Autowired

 private MakesRepository repository;

 public Iterable<MakesEntity> getAll() {

 return repository.findAll();

 }

 public MakesEntity getById(@NotNull String id){

 Optional<MakesEntity> make = repository.findById(id);

 if(make.isPresent()) {

LOGGER.info("Found One Make");

return make.get();

 }

71

 else{

LOGGER.error("No makes were found for the given ID: {}", id);

return null;

 }

 }

 public MakesEntity save(@NotNull MakesEntity make) {

 MakesEntity newEntity = repository.save(new MakesEntity(make.getMakeName()));

 return newEntity;

 }

 public MakesEntity update(@NotNull MakesEntity make, @NotNull String id) {

 Optional<MakesEntity> entity = repository.findById(id);

 if(entity.isPresent()){

entity.get().setMakeName(make.getMakeName());

return repository.save(entity.get());

 } else

return null;

 }

 public Optional<MakesEntity> delete(String id) {

 Optional<MakesEntity> entity = repository.findById(id);

 if(entity.isPresent())

repository.delete(entity.get());

 return entity;

 }

}

Applicaton.properties

spring.data.mongodb.host=cluster1-shard-00-00-xhqwl.gcp.mongodb.net

spring.data.mongodb.port=27017

spring.data.mongodb.database=car_garaage

spring.data.mongodb.username=app_user

spring.data.mongodb.password=ENC(9BjwpfuG2CyJk2POOz36JKcZFP5t1TwVTsP7gBl0XI0=)

spring.data.mongodb.uri = mongodb+srv://app_user:rbtQ3a4T22eZkUvR@cluster1-

xhqwl.gcp.mongodb.net/car_garaage?retryWrites=true

password.hashing-algorithm = MD5

spring.application.name=cars-api

server.servlet.context-path=/cars-api

server.port=8082

build.gradle

plugins {

 id 'org.springframework.boot' version '2.1.8.RELEASE'

 id 'io.spring.dependency-management' version '1.0.8.RELEASE'

72

 id 'java'

}

group = 'com.bitbyte'

version = '0.0.1-SNAPSHOT'

sourceCompatibility = '1.8'

configurations {

 developmentOnly

 runtimeClasspath {

 extendsFrom developmentOnly

 }

}

repositories {

 mavenCentral()

}

dependencies {

 implementation 'org.springframework.boot:spring-boot-starter-actuator'

 implementation 'org.springframework.boot:spring-boot-starter-data-mongodb'

 implementation 'org.springframework.boot:spring-boot-starter-web'

 compile group: 'com.github.ulisesbocchio', name: 'jasypt-spring-boot-starter', version: '2.1.2'

 developmentOnly 'org.springframework.boot:spring-boot-devtools'

 testImplementation 'org.springframework.boot:spring-boot-starter-test'

}

73

Appendix B: Backend Code of Authentication API

AuthController.java

package com.bitbyte.cargaraag.auth.controllers;

import com.bitbyte.cargaraag.auth.entities.User;

import com.bitbyte.cargaraag.auth.exceptionhandlers.WrongCredentialsException;

import com.bitbyte.cargaraag.auth.models.AuthorizationResponse;

import com.bitbyte.cargaraag.auth.models.Credentials;

import com.bitbyte.cargaraag.auth.services.AuthenticationService;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.security.NoSuchAlgorithmException;

@RestController

@CrossOrigin

public class AuthController {

 private static final Logger LOG = LoggerFactory.getLogger(AuthController.class);

74

 @Autowired

 private AuthenticationService authenticationService;

 @PostMapping(value = "/login/authorize", produces = "application/json")

 public ResponseEntity<AuthorizationResponse> authorizeUser(@RequestBody Credentials

userCreds){

 try{

String token = authenticationService.authenticateUser(userCreds);

LOG.info("Successfully Authenticated the the user {}", userCreds.getUserName());

return new ResponseEntity<>(new AuthorizationResponse("Log in Successful!,", token),

HttpStatus.OK);

 } catch (WrongCredentialsException wce){

LOG.info("{}: {}", wce.getMessage(), userCreds.getUserName());

return new ResponseEntity<>(new AuthorizationResponse(wce.getMessage(), null),

HttpStatus.UNAUTHORIZED);

 } catch (NoSuchAlgorithmException nsae){

LOG.info("{}: {}", nsae.getMessage(), userCreds.getUserName());

return new ResponseEntity<>(new AuthorizationResponse("It's not you. It's. We're trying

to fix some things up. Please try later", null), HttpStatus.INTERNAL_SERVER_ERROR);

 }

 }

75

 @PostMapping("/sign_up")

 public ResponseEntity<AuthorizationResponse> signUpUser(@RequestBody User user){

 try{

String token = authenticationService.signUpNewUser(user);

LOG.info("Successfully created the user: {}", user.getUserName());

return new ResponseEntity<>(new AuthorizationResponse("Sign up successful. Please

use your user name: " + user.getUserName() + " to Log In for the next time", token),

HttpStatus.CREATED);

 } catch (NoSuchAlgorithmException nsae){

 LOG.info("{}: {}", nsae.getMessage(), user.getUserName());

return new ResponseEntity<>(new AuthorizationResponse("It's not you. It's. We're trying

to fix some things up. Please try later", null), HttpStatus.INTERNAL_SERVER_ERROR);

 }

 }

}

Roles.java

package com.bitbyte.cargaraag.auth.entities;

import javax.persistence.*;

import java.util.HashSet;

import java.util.Set;

@Entity

76

public class Roles {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 int id;

 @Column(unique = true)

 private String role;

 @ManyToMany(fetch = FetchType.EAGER, cascade = CascadeType.ALL)

 @JoinTable(inverseJoinColumns = @JoinColumn(name = "userId", referencedColumnName

= "id"),

joinColumns = @JoinColumn(name = "roleId", referencedColumnName = "id"))

 private Set<User> users;

 public Roles(String role) {

 this.role = role;

 }

 public Roles() {

 }

 public int getId() {

77

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getRole() {

 return role;

 }

 public void setRole(String role) {

 this.role = role;

 }

 public Set<User> getUsers() {

 return users;

 }

 public void setUsers(Set<User> users) {

 this.users = users;

 }

78

 public void addUser(User user) {

 if (users == null) {

users = new HashSet<>();

 }

 users.add(user);

 }

}

User.java

package com.bitbyte.cargaraag.auth.entities;

import com.bitbyte.cargaraag.auth.models.Gender;

import com.bitbyte.cargaraag.auth.models.Status;

import com.fasterxml.jackson.annotation.JsonIgnore;

import com.fasterxml.jackson.annotation.JsonIgnoreProperties;

import javax.persistence.*;

import java.util.Date;

import java.util.Set;

@Entity

@JsonIgnoreProperties(value = "password", allowSetters = true)

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long id;

 private String firstName;

 private String lastName;

 @Column(unique = true)

 private String userName;

 private String password;

 private Gender gender;

 private String email;

 private Date dob;

 @JsonIgnore

 private byte[] salt;

 @JsonIgnore

79

 private String hashingAlgorithm;

 private Status status;

 @ManyToMany(mappedBy = "users",fetch = FetchType.EAGER)

 private Set<Roles> roles;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

80

 public Gender getGender() {

 return gender;

 }

 public void setGender(Gender gender) {

 this.gender = gender;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

 public Date getDob() {

 return dob;

 }

 public void setDob(Date dob) {

 this.dob = dob;

 }

 public byte[] getSalt() {

 return salt;

 }

 public void setSalt(byte[] salt) {

 this.salt = salt;

 }

 public String getHashingAlgorithm() {

 return hashingAlgorithm;

 }

 public void setHashingAlgorithm(String hashingAlgorithm) {

 this.hashingAlgorithm = hashingAlgorithm;

 }

 public Status getStatus() {

 return status;

 }

81

 public void setStatus(Status status) {

 this.status = status;

 }

 public Set<Roles> getRoles() {

 return roles;

 }

 public void setRoles(Set<Roles> roles) {

 this.roles = roles;

 }

}

WrongCredentialsException.java

package com.bitbyte.cargaraag.auth.exceptionhandlers;

public class WrongCredentialsException extends RuntimeException {

 private String message;

 public WrongCredentialsException(String exceptionMessage){

 this.message = exceptionMessage;

 }

 @Override

 public String getMessage() {

 return message;

 }

}

AuthorizationResponse.java

package com.bitbyte.cargaraag.auth.models;

public class AuthorizationResponse {

 private String message;

 private String token;

 public String getMessage() {

 return message;

 }

 public void setMessage(String message) {

 this.message = message;

 }

 public String getToken() {

82

 return token;

 }

 public void setToken(String token) {

 this.token = token;

 }

 public AuthorizationResponse(String message, String token) {

 this.message = message;

 this.token = token;

 }

}

Credentials.java

package com.bitbyte.cargaraag.auth.models;

public class Credentials {

 String userName;

 String password;

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

}

Gender.java

package com.bitbyte.cargaraag.auth.models;

public enum Gender {

 Male, Female, Other

}

Role.java

83

package com.bitbyte.cargaraag.auth.models;

public enum Role {

 USER, ADMIN

}

Status.java

package com.bitbyte.cargaraag.auth.models;

public enum Status {

 ACTIVE, INACTIVE, DELETED

}

RolesRepository.java

package com.bitbyte.cargaraag.auth.repository;

import com.bitbyte.cargaraag.auth.entities.Roles;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

import java.util.Optional;

@Repository

public interface RolesRepository extends CrudRepository<Roles, Long> {

 Optional<Roles> findByRole(String role);

}

UserRepository.java

package com.bitbyte.cargaraag.auth.repository;

import com.bitbyte.cargaraag.auth.entities.User;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

import java.util.Optional;

@Repository

public interface UserRepository extends CrudRepository<User, Long> {

 Optional<User> findByUserName(String userName);

}

PasswordUtils.java

package com.bitbyte.cargaraag.auth.securityutils;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

84

public class PasswordUtils {

 private static final char[] HEX_ARRAY = "0123456789ABCDEF".toCharArray();

 public static byte[] createSalt() {

 byte[] salt = new byte[20];

 SecureRandom random = new SecureRandom();

 random.nextBytes(salt);

 return salt;

 }

 public static byte[] generateSaltedHash(String password, String hashingAlgorithm, byte[] salt)

throws NoSuchAlgorithmException {

 MessageDigest digest = MessageDigest.getInstance(hashingAlgorithm);

 digest.reset();

 digest.update(salt);

 byte[] hash = digest.digest(password.getBytes());

 return hash;

 }

 public static String convertByteArrayToHexString(byte[] passwordHash) {

 char[] hexChars = new char[passwordHash.length * 2];

 for (int j = 0; j < passwordHash.length; j++) {

int v = passwordHash[j] & 0xFF;

hexChars[j * 2] = HEX_ARRAY[v >>> 4];

hexChars[j * 2 + 1] = HEX_ARRAY[v & 0x0F];

 }

 return new String(hexChars);

 }

 public static boolean comparePasswords(String password, String hash, byte[] salt, String

hashingAlgorithm) throws NoSuchAlgorithmException {

 String generatedHash = convertByteArrayToHexString(generateSaltedHash(password,

hashingAlgorithm, salt));

 return hash.equals(generatedHash);

 }

}

TokenGenerator.java

package com.bitbyte.cargaraag.auth.securityutils;

import com.bitbyte.cargaraag.auth.entities.Roles;

import com.bitbyte.cargaraag.auth.entities.User;

import io.jsonwebtoken.Claims;

import io.jsonwebtoken.Jwts;

85

import io.jsonwebtoken.SignatureAlgorithm;

import org.apache.commons.lang3.time.DateUtils;

import java.util.Date;

import java.util.stream.Collectors;

public class TokenGenerator {

 public static String generateToken(User authenticatedUser) {

 Claims claims = Jwts.claims()

.setSubject(authenticatedUser.getUserName())

.setExpiration(DateUtils.addHours(new Date(), 24))

.setIssuedAt(new Date())

.setIssuer("");

 claims.put("clientId", "");

 claims.put("userId", authenticatedUser.getId());

 claims.put("userName", authenticatedUser.getUserName());

 claims.put("email", authenticatedUser.getEmail());

 claims.put("firstName", authenticatedUser.getFirstName());

 claims.put("lastName", authenticatedUser.getLastName());

 claims.put("fullName", authenticatedUser.getFirstName() + " " +

authenticatedUser.getLastName());

 claims.put("sts", authenticatedUser.getStatus());

 claims.put("group",

authenticatedUser.getRoles().stream().map(Roles::getRole).collect(Collectors.toList()));

 return Jwts.builder()

.setClaims(claims)

.signWith(SignatureAlgorithm.HS512, "clientSecret")

.compact();

 }

}

AuthenticationService.java

package com.bitbyte.cargaraag.auth.services;

import com.bitbyte.cargaraag.auth.entities.Roles;

import com.bitbyte.cargaraag.auth.entities.User;

import com.bitbyte.cargaraag.auth.exceptionhandlers.WrongCredentialsException;

import com.bitbyte.cargaraag.auth.models.Credentials;

import com.bitbyte.cargaraag.auth.models.Role;

import com.bitbyte.cargaraag.auth.repository.RolesRepository;

import com.bitbyte.cargaraag.auth.repository.UserRepository;

import com.bitbyte.cargaraag.auth.securityutils.PasswordUtils;

import com.bitbyte.cargaraag.auth.securityutils.TokenGenerator;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Value;

86

import org.springframework.stereotype.Service;

import java.security.NoSuchAlgorithmException;

import java.util.HashSet;

import java.util.Optional;

import java.util.Set;

@Service

public class AuthenticationService {

 @Autowired

 private UserRepository userRepository;

 @Autowired

 private RolesRepository rolesRepository;

 @Value("${hashing.algorithm}")

 private String hashingAlgorithm;

 public String authenticateUser(Credentials userCreds) throws NoSuchAlgorithmException {

 User authenticatedUser = validateUserCredentials(userCreds);

 String token = TokenGenerator.generateToken(authenticatedUser);

 return token;

 }

 public String signUpNewUser(User user) throws NoSuchAlgorithmException {

 byte[] salt = PasswordUtils.createSalt();

 byte[] saltedHashPassword = PasswordUtils.generateSaltedHash(user.getPassword(),

hashingAlgorithm, salt);

 user.setPassword(PasswordUtils.convertByteArrayToHexString(saltedHashPassword));

 user.setSalt(salt);

 user.setHashingAlgorithm(hashingAlgorithm);

 Roles role = rolesRepository

.findByRole(Role.USER.name())

.orElseGet(() -> rolesRepository.save(new Roles(Role.USER.name())));

 role.addUser(userRepository.save(user));

 rolesRepository.save(role);

 User savedUser = userRepository.findByUserName(user.getUserName()).get();

 return TokenGenerator.generateToken(savedUser);

 }

 private User validateUserCredentials(Credentials userCreds) throws

NoSuchAlgorithmException {

87

 Optional<User> optionalUser =

userRepository.findByUserName(userCreds.getUserName());

 if (optionalUser.isPresent()) {

User user = optionalUser.get();

boolean isValidUser = PasswordUtils.comparePasswords(userCreds.getPassword(),

user.getPassword(), user.getSalt(), user.getHashingAlgorithm());

if (isValidUser)

return user;

else

throw new WrongCredentialsException("Invalid credentials");

 } else

throw new WrongCredentialsException("User Name doesn't exist");

 }

}

Application.properties

Spring DATASOURCE (DataSourceAutoConfiguration & DataSourceProperties)

spring.datasource.url=jdbc:postgresql://35.184.163.17:5432/cargaraage

spring.datasource.username=

spring.datasource.password=

The SQL dialect makes Hibernate generate better SQL for the chosen database

spring.jpa.properties.hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

Hibernate ddl auto (create, create-drop, validate, update)

spring.jpa.hibernate.ddl-auto = update

spring.jpa.properties.hibernate.jdbc.lob.non_contextual_creation=true

spring.jpa.properties.hibernate.show_sql=false

spring.jpa.properties.hibernate.jdbc.batch_size=1000

spring.servlet.multipart.max-file-size=6000KB

spring.servlet.multipart.max-request-size=6000KB

spring.jpa.properties.hibernate.default_schema=public

build.gradle

plugins {

 id 'org.springframework.boot' version '2.2.0.RELEASE'

 id 'io.spring.dependency-management' version '1.0.8.RELEASE'

 id 'java'

}

group = 'com.bitbyte.cargaraag'

version = '0.0.1-SNAPSHOT'

sourceCompatibility = '1.8'

repositories {

88

 mavenCentral()

}

dependencies {

 implementation 'org.springframework.boot:spring-boot-starter-data-jpa'

 implementation 'org.springframework.boot:spring-boot-starter-web'

 runtimeOnly 'org.postgresql:postgresql'

 testImplementation('org.springframework.boot:spring-boot-starter-test') {

 exclude group: 'org.junit.vintage', module: 'junit-vintage-engine'

 }

}

test {

 useJUnitPlatform()

}

89

Appendix C: Backend Code of Orders API

AdminController.java

package com.bitbyte.cargaraage.api.controllers;

import com.bitbyte.cargaraage.api.entities.Role;

import com.bitbyte.cargaraage.api.services.AdminService;

import com.bitbyte.cargaraage.api.services.AuthorizationService;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import org.springframework.web.server.ResponseStatusException;

@RestController("/admin")

@CrossOrigin

public class AdminController {

 private static final Logger LOG = LoggerFactory.getLogger(AdminController.class);

 @Autowired

 private AdminService adminService;

90

 @Autowired

 private AuthorizationService authorizationService;

 @PostMapping("/roles")

 public ResponseEntity<Role> createRole(@RequestHeader String token, @RequestBody

Role role){

 if(authorizationService.isAuthorized(token, "ADMIN")){

 LOG.info("AdminController -> createRole -> start");

Role createdRole = adminService.createRole(role);

LOG.info("AdminController -> createRole -> end");

return new ResponseEntity<>(createdRole, HttpStatus.CREATED);

 } else {

throw new ResponseStatusException(HttpStatus.UNAUTHORIZED);

 }

 }

}

OrdersController.java

package com.bitbyte.cargaraage.api.controllers;

import com.bitbyte.cargaraage.api.entities.Order;

import com.bitbyte.cargaraage.api.services.AuthorizationService;

import com.bitbyte.cargaraage.api.services.OrderService;

import com.bitbyte.cargaraage.api.services.PaymentService;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

91

import org.springframework.web.server.ResponseStatusException;

@RestController

@CrossOrigin

public class OrdersController {

 private static final Logger LOG = LoggerFactory.getLogger(OrdersController.class);

 @Autowired

 private OrderService orderService;

 @Autowired

 private AuthorizationService authorizationService;

 @Autowired

 private PaymentService paymentService;

 @PostMapping("/orders")

 public ResponseEntity<Long> saveOrder(@RequestHeader("access-token") String token,

@RequestBody Order order){

 try {

if(authorizationService.isAuthorized(token, "USER")){

if(paymentService.authorizePayment(order.getPayment())){

Long orderId = orderService.saveNewOrder(order);

return new ResponseEntity<>(orderId, HttpStatus.CREATED);

} else

throw new ResponseStatusException(HttpStatus.NOT_FOUND);

} else {

LOG.error("Unauthorized request for new Order");

throw new ResponseStatusException(HttpStatus.UNAUTHORIZED);

}

 } catch (Exception e){

LOG.error(e.getMessage());

 throw new ResponseStatusException(HttpStatus.INTERNAL_SERVER_ERROR);

 }

 }

}

Order.java

package com.bitbyte.cargaraage.api.entities;

import com.bitbyte.cargaraage.api.models.Payment;

import com.fasterxml.jackson.annotation.JsonSetter;

import javax.persistence.*;

import java.util.Date;

import java.util.Set;

92

@Entity

public class Order {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private Long userId;

 @Transient

 @JsonSetter

 private Payment payment;

 @ManyToOne(optional = false)

 @JoinColumn(name = "userId", referencedColumnName = "id", insertable = false, updatable

= false)

 private User user;

 @Temporal(value = TemporalType.DATE)

 private Date orderDate;

 @OneToMany(cascade = CascadeType.REMOVE, mappedBy = "order", targetEntity =

OrderDetails.class, fetch = FetchType.EAGER)

 private Set<OrderDetails> orderDetails;

 @OneToOne(cascade = CascadeType.ALL)

 @JoinColumn(name = "shippingAddressId", referencedColumnName = "id")

 private ShippingAddress shippingAddress;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public Long getUserId() {

 return userId;

 }

 public void setUserId(Long userId) {

 this.userId = userId;

 }

93

 public User getUser() {

 return user;

 }

 public void setUser(User user) {

 this.user = user;

 }

 public Date getOrderDate() {

 return orderDate;

 }

 public void setOrderDate(Date orderDate) {

 this.orderDate = orderDate;

 }

 public Set<OrderDetails> getOrderDetails() {

 return orderDetails;

 }

 public void setOrderDetails(Set<OrderDetails> orderDetails) {

 this.orderDetails = orderDetails;

 }

 public ShippingAddress getShippingAddress() {

 return shippingAddress;

 }

 public void setShippingAddress(ShippingAddress shippingAddress) {

 this.shippingAddress = shippingAddress;

 }

 public Payment getPayment() {

 return payment;

 }

 public void setPayment(Payment payment) {

 this.payment = payment;

 }

}

OrderDetailsId.java

package com.bitbyte.cargaraage.api.entities;

import java.io.Serializable;

94

import java.util.Objects;

public class OrderDetailsId implements Serializable {

 private Long orderId;

 private Long userId;

 private String carId;

 public OrderDetailsId() {

 }

 public OrderDetailsId(Long orderId, Long userId, String carId) {

 this.orderId = orderId;

 this.userId = userId;

 this.carId = carId;

 }

 public Long getOrderId() {

 return orderId;

 }

 public void setOrderId(Long orderId) {

 this.orderId = orderId;

 }

 public Long getUserId() {

 return userId;

 }

 public void setUserId(Long userId) {

 this.userId = userId;

 }

 public String getCarId() {

 return carId;

 }

 public void setCarId(String carId) {

 this.carId = carId;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

95

 OrderDetailsId that = (OrderDetailsId) o;

 return orderId.equals(that.orderId) &&

userId.equals(that.userId) &&

carId.equals(that.carId);

 }

 @Override

 public int hashCode() {

 return Objects.hash(orderId, userId, carId);

 }

}

Role.java

package com.bitbyte.cargaraage.api.entities;

import com.fasterxml.jackson.annotation.JsonInclude;

import javax.persistence.*;

import java.util.HashSet;

import java.util.Set;

@Entity(name = "roles")

@JsonInclude(JsonInclude.Include.NON_NULL)

public class Role {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 @Column(name = "id")

 int id;

 @Column(unique = true)

 private String role;

 private String roleDescription;

 @ManyToMany(fetch = FetchType.EAGER, cascade = CascadeType.ALL)

 @JoinTable(inverseJoinColumns = @JoinColumn(name = "userId", referencedColumnName

= "id"),

joinColumns = @JoinColumn(name = "roleId", referencedColumnName = "id"))

 private Set<User> users;

 public Role(String role) {

 this.role = role;

 }

 public Role() {

 }

96

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getRole() {

 return role;

 }

 public void setRole(String role) {

 this.role = role;

 }

 public Set<User> getUsers() {

 return users;

 }

 public String getRoleDescription() {

 return roleDescription;

 }

 public void setRoleDescription(String roleDescription) {

 this.roleDescription = roleDescription;

 }

 public void setUsers(Set<User> users) {

 this.users = users;

 }

 public void addUser(User user) {

 if (users == null) {

users = new HashSet<>();

 }

 users.add(user);

 }

}

ShippingAddress.java

package com.bitbyte.cargaraage.api.entities;

import javax.persistence.*;

@Entity

97

public class ShippingAddress {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String street;

 private String unit;

 private String city;

 private String state;

 private String country;

 private Integer zipcode;

 @OneToOne(mappedBy = "shippingAddress")

 private Order order;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getStreet() {

 return street;

 }

 public void setStreet(String street) {

 this.street = street;

 }

 public String getUnit() {

 return unit;

 }

 public void setUnit(String unit) {

 this.unit = unit;

 }

 public String getCity() {

 return city;

 }

 public void setCity(String city) {

 this.city = city;

98

 }

 public String getState() {

 return state;

 }

 public void setState(String state) {

 this.state = state;

 }

 public String getCountry() {

 return country;

 }

 public void setCountry(String country) {

 this.country = country;

 }

 public Integer getZipcode() {

 return zipcode;

 }

 public void setZipcode(Integer zipcode) {

 this.zipcode = zipcode;

 }

 public Order getOrder() {

 return order;

 }

 public void setOrder(Order order) {

 this.order = order;

 }

}

User.java

package com.bitbyte.cargaraage.api.entities;

import com.bitbyte.cargaraage.api.models.Gender;

import com.bitbyte.cargaraage.api.models.Status;

import com.fasterxml.jackson.annotation.JsonIgnore;

import com.fasterxml.jackson.annotation.JsonIgnoreProperties;

import javax.persistence.*;

import java.util.Date;

import java.util.Set;

99

@Entity

@JsonIgnoreProperties(value = "password", allowSetters = true)

public class User {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 private Long id;

 private String firstName;

 private String lastName;

 @Column(unique = true)

 private String userName;

 private String password;

 private Gender gender;

 private String email;

 private Date dob;

 @JsonIgnore

 private byte[] salt;

 @JsonIgnore

 private String hashingAlgorithm;

 private Status status;

 @OneToMany(mappedBy = "user", targetEntity = Order.class, fetch = FetchType.LAZY)

 private Set<Order> orders;

 @ManyToMany(mappedBy = "users", fetch = FetchType.EAGER)

 private Set<Role> roles;

 @OneToMany(mappedBy = "user", targetEntity = OrderDetails.class, fetch =

FetchType.LAZY)

 private Set<OrderDetails> orderDetailsSet;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

100

 public void setFirstName(String firstName) {

 this.firstName = firstName;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String lastName) {

 this.lastName = lastName;

 }

 public String getUserName() {

 return userName;

 }

 public void setUserName(String userName) {

 this.userName = userName;

 }

 public String getPassword() {

 return password;

 }

 public void setPassword(String password) {

 this.password = password;

 }

 public Gender getGender() {

 return gender;

 }

 public void setGender(Gender gender) {

 this.gender = gender;

 }

 public String getEmail() {

 return email;

 }

 public void setEmail(String email) {

 this.email = email;

 }

101

 public Date getDob() {

 return dob;

 }

 public void setDob(Date dob) {

 this.dob = dob;

 }

 public byte[] getSalt() {

 return salt;

 }

 public void setSalt(byte[] salt) {

 this.salt = salt;

 }

 public String getHashingAlgorithm() {

 return hashingAlgorithm;

 }

 public void setHashingAlgorithm(String hashingAlgorithm) {

 this.hashingAlgorithm = hashingAlgorithm;

 }

 public Status getStatus() {

 return status;

 }

 public void setStatus(Status status) {

 this.status = status;

 }

 public Set<Order> getOrders() {

 return orders;

 }

 public void setOrders(Set<Order> orders) {

 this.orders = orders;

 }

 public Set<Role> getRoles() {

 return roles;

 }

 public void setRoles(Set<Role> roles) {

102

 this.roles = roles;

 }

 public Set<OrderDetails> getOrderDetailsSet() {

 return orderDetailsSet;

 }

 public void setOrderDetailsSet(Set<OrderDetails> orderDetailsSet) {

 this.orderDetailsSet = orderDetailsSet;

 }

}

DecodedToken.java

package com.bitbyte.cargaraage.api.models;

public class DecodedToken {

 private final String header;

 private final String payload;

 private boolean validExpiration;

 private boolean validIssuer;

 private boolean authorized;

 public DecodedToken(String header, String payload) {

 this.header = header;

 this.payload = payload;

 }

 public String getHeader() {

 return header;

 }

 public String getPayload() {

 return payload;

 }

 public boolean isValidExpiration() {

 return validExpiration;

 }

 public void setValidExpiration(boolean validExpiration) {

 this.validExpiration = validExpiration;

 }

 public boolean isValidIssuer() {

 return validIssuer;

103

 }

 public void setValidIssuer(boolean validIssuer) {

 this.validIssuer = validIssuer;

 }

 public boolean isAuthorized() {

 return authorized;

 }

 public void setAuthorized(boolean authorized) {

 this.authorized = authorized;

 }

}

Gender.java

package com.bitbyte.cargaraage.api.models;

public enum Gender {

 Male, Female, Other

}

Payment.java

package com.bitbyte.cargaraage.api.models;

public class Payment {

 private Integer card;

 private Integer exp;

 private Integer cvc;

 private String name;

 private Integer total;

 public Integer getCard() {

 return card;

 }

 public void setCard(Integer card) {

 this.card = card;

 }

 public Integer getExp() {

 return exp;

 }

 public void setExp(Integer exp) {

104

 this.exp = exp;

 }

 public Integer getCvc() {

 return cvc;

 }

 public void setCvc(Integer cvc) {

 this.cvc = cvc;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public Integer getTotal() {

 return total;

 }

 public void setTotal(Integer total) {

 this.total = total;

 }

}

Status.java

package com.bitbyte.cargaraage.api.models;

public enum Status {

 ACTIVE, INACTIVE, DELETED

}

OrderDetailsRepository.java

package com.bitbyte.cargaraage.api.repositories;

import com.bitbyte.cargaraage.api.entities.OrderDetails;

import com.bitbyte.cargaraage.api.entities.OrderDetailsId;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface OrderDetailsRepository extends CrudRepository<OrderDetails, OrderDetailsId>

{

105

}

OrderRepository.java

package com.bitbyte.cargaraage.api.repositories;

import com.bitbyte.cargaraage.api.entities.Order;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface OrderRepository extends CrudRepository<Order, Long> {

}

RoleRepository.java

package com.bitbyte.cargaraage.api.repositories;

import com.bitbyte.cargaraage.api.entities.Role;

import org.springframework.data.repository.CrudRepository;

public interface RoleRepository extends CrudRepository<Role, Long> {

}

ShippingAddressRepository.java

package com.bitbyte.cargaraage.api.repositories;

import com.bitbyte.cargaraage.api.entities.ShippingAddress;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface ShippingAddressRepository extends CrudRepository<ShippingAddress, Long>

{

}

UserRepository.java

package com.bitbyte.cargaraage.api.repositories;

import com.bitbyte.cargaraage.api.entities.User;

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface UserRepository extends CrudRepository<User, Long> {

}

AdminService.java

package com.bitbyte.cargaraage.api.services;

import com.bitbyte.cargaraage.api.entities.Role;

import com.bitbyte.cargaraage.api.repositories.RoleRepository;

106

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class AdminService {

 private static final Logger LOG = LoggerFactory.getLogger(AdminService.class);

 @Autowired

 private RoleRepository roleRepository;

 public Role createRole(Role role){

 LOG.info("AdminService -> createRole -> start");

 Role createdRole = roleRepository.save(role);

 LOG.info("AdminService -> createRole -> end");

 return createdRole;

 }

}

AuthorizationService.java

package com.bitbyte.cargaraage.api.services;

import com.bitbyte.cargaraage.api.entities.User;

import com.bitbyte.cargaraage.api.models.DecodedToken;

import com.bitbyte.cargaraage.api.models.Status;

import com.bitbyte.cargaraage.api.repositories.UserRepository;

import com.google.gson.JsonObject;

import com.google.gson.JsonParser;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.beans.factory.annotation.Autowired;

import static org.springframework.security.jwt.JwtHelper.decode;

import org.springframework.stereotype.Service;

import java.util.Optional;

@Service

public class AuthorizationService {

 @Autowired

 private UserRepository userRepository;

 private static final Logger LOG = LoggerFactory.getLogger(AuthorizationService.class);

 public boolean isAuthorized(String token, String role){

107

 DecodedToken decodedToken = new DecodedToken(decode(token).toString(),

decode(token).getClaims());

 validateTokenExpiration(decodedToken);

 validateIssuer(decodedToken);

 try {

 JsonObject jsonObject = new

JsonParser().parse(decodedToken.getPayload()).getAsJsonObject();

 Long userId = jsonObject.get("userId").getAsLong();

 Optional<User> user = userRepository.findById(userId);

 if (user.isPresent() && user.get().getRoles().stream().filter(r ->

r.getRole().equals(role)).findAny().isPresent() && user.get().getStatus().equals(Status.ACTIVE)

&& decodedToken.isValidExpiration() && decodedToken.isValidIssuer()){

 return true;

 } else

 return false;

 } catch (Exception e){

 LOG.error(e.getMessage());

 return false;

 }

 }

 private void validateIssuer(DecodedToken decodedToken) {

 try {

 JsonObject jsonObject = new

JsonParser().parse(decodedToken.getPayload()).getAsJsonObject();

 if(jsonObject.get("iss").getAsString().equals("")){

 decodedToken.setValidIssuer(true);

 } else

 decodedToken.setValidIssuer(false);

 } catch (Exception e){

 LOG.error(e.getMessage());

 decodedToken.setValidIssuer(false);

 }

 }

 private void validateTokenExpiration(DecodedToken decodedToken) {

 try {

 JsonObject jsonObject = new

JsonParser().parse(decodedToken.getPayload()).getAsJsonObject();

 if(isExpirationValidated(jsonObject.get("exp").getAsLong())){

 decodedToken.setValidExpiration(true);

 } else {

 decodedToken.setValidExpiration(false);

 }

 } catch (Exception e) {

108

 e.printStackTrace();

 }

 }

 private boolean isExpirationValidated(Long dateToCheckInMillis) {

 return System.currentTimeMillis() < (dateToCheckInMillis.longValue() * 1000);

 }

}

OrderService.java

package com.bitbyte.cargaraage.api.services;

import com.bitbyte.cargaraage.api.entities.Order;

import com.bitbyte.cargaraage.api.entities.OrderDetails;

import com.bitbyte.cargaraage.api.entities.User;

import com.bitbyte.cargaraage.api.repositories.OrderDetailsRepository;

import com.bitbyte.cargaraage.api.repositories.OrderRepository;

import com.bitbyte.cargaraage.api.repositories.UserRepository;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

import java.util.Optional;

import java.util.Set;

@Service

public class OrderService {

 @Autowired

 private OrderRepository orderRepository;

 @Autowired

 private UserRepository userRepository;

 @Autowired

 private OrderDetailsRepository orderDetailsRepository;

 public Long saveNewOrder(Order order){

 Long userId = order.getUserId();

 Optional<User> user = userRepository.findById(userId);

 order.setUser(user.get());

 Order savedOrder = orderRepository.save(order);

 Set<OrderDetails> orderDetailsSet = order.getOrderDetails();

 orderDetailsSet.forEach(orderDetails -> {

 orderDetails.setOrderId(savedOrder.getId());

 orderDetails.setUserId(savedOrder.getUserId());

 });

 orderDetailsRepository.saveAll(orderDetailsSet);

109

 return savedOrder.getId();

 }

}

	Building Security Aware E-Commerce Web Applications
	Recommended Citation

	tmp.1576211939.pdf.IlkKt

