
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2020

Kernel Memory Leakage Detection for Intrusion Detection Kernel Memory Leakage Detection for Intrusion Detection

Systems (IDS) Systems (IDS)

Lee Ho
lee.ho@owasp.org

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Ho, Lee, "Kernel Memory Leakage Detection for Intrusion Detection Systems (IDS)" (2020). Culminating
Projects in Information Assurance. 98.
https://repository.stcloudstate.edu/msia_etds/98

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an
authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/98?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Kernel Memory Leakage Detection for

Intrusion Detection Systems (IDS)

by

Lee Hong Ho

A Thesis Paper

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

in Information Assurance

 May, 2020

Thesis Paper Committee:
Dennis C. Guster, Chairperson

Erich P. Rice
Kasi, Balasubramanian

2

Abstract

Data leakage from kernel memory occurs when the memory block is not released back
to the kernel after the memory block is unoccupied. The data leaked is arbitrary and
confidential data such as, encryption key and password may leak out. Meltdown and
Spectre are methods from side channel attacks that takes advantage of this data
leakage to gain confidential data (Graz University of Technology, 2018a). This study is
on how kernel memory leakage can be read as kernel memory is a protected memory
area that even the root account of an operating system is unable to access (Ning, Qing,
& Li, 2006). Reading kernel memory leakage is only a part of the solution to mitigate
Meltdown and Spectre. To provide a solution, the leaked data from kernel memory must
be of use to an Intruder Detection System (IDS) for alerts to determine if there is a
possible attack on kernel memory to attain confidential data. As a result, kmemleak is
used as a module created to provide a way to detect possible kernel memory leaks that
is similar to a tracing garbage collector(gc) (The kernel development community, n.d.a).

3

Acknowledgements

 I would like to thank Al-Sharabati, Abdulrahman for his technical knowledge

contribution that resolved and completed the technical issues of this study much faster

and accurate. It would not have occurred to me that a hard disk space can be partition

or extend while the operating system is been rebuild. Many thanks for your help.

4

Table of Contents

 Page

List of Tables ...6

List of Figures...7

Chapter

 I. Introduction .. 8

 Introduction ... 8

 Problem Statement ... 9

 Nature and Significance of the Problem .. 9

 Objective of the Study ... 10

 Study Questions/Hypotheses .. 10

 Limitations of the Study ... 10

 Definition of Terms ... 11

 Summary .. 12

 II. Background and Review of Literature .. 13

 Introduction ... 13

 Background Related to the Problem .. 13

 Literature Related to the Problem ... 13

 Literature Related to the Methodology .. 17

 Summary ... 19

 III. Methodology .. 20

5

Chapter Page

 Introduction ... 20

 Design of the Study ... 20

 Data Collection ... 26

 Tools and Techniques ... 27

 Summary .. 27

 IV. Data Presentation and Analysis ... 28

 Introduction ... 28

 Data Presentation ... 28

 Data Analysis .. 34

 Summary .. 38

 V. Results, Conclusion, and Recommendations ... 40

 Introduction ... 40

 Results .. 40

 Conclusion .. 41

 Future Work .. 42

References ... 44

Appendices

 A. Additional Information .. 48

 B. More Information .. 56

6

List of Tables

Table Page

1. The record of the first suspected memory leak..31

2. Data Analysis of kernel memory leakage ……..……………………………………35

7

List of Figures

Figure Page

 1. Spectre and Meltdown classification...16

 2. Methodology Framework...……………………………………………………………….23

 3. First suspected memory leakage………………………………………………………..29

 4. Second suspected memory leakage detected 10 minutes later……………………..29

 5. Twenty-three hours later, 12 new suspected memory leaks (total 14)……………...30

 6. Kmemleak showing 2 data leaks during the 73 hours………………...………..……..33

 7. Kmemleak showing the next 2 data leaks during the 73 hours………...…….………33

 8. Kmemleak showing another 2 data leaks during the 73 hours……………………….34

 9. Syslog showing “no debug enabled”………………………………..….……………….37

 10.Result of mounting kmemleak and kmemleak-test…………………………………….38

8

Chapter I: Introduction
Introduction

 Intrusion Detection Systems (IDS) started back in 1985 with lots of struggles and

challenges to deliver efficient monitoring that are rule-based and managing time

consuming interpretation of huge volume of log files. A constant scanning and updating

the signature list is draining resources that made IDS remain in an unpopular stand until

late 1980s where there is a growth for network IDS based on the need for user access

and user monitoring (Threat Stack, Inc, 2015). In today’s world, the challenges have

grown, and we must recognize that protecting network data transmission is a part of the

solution. In addition to protecting network data transmission, there is a need to protect

computer memory from attacks. Memory attack can be performed on a computer or any

other electronic device such as a mobile phone and Internet of Things (IoT). For

example, Meltdown uses side-channel techniques to attack leaking arbitrary data from

kernel memory (Schwarz, Canella, Giner, & Gruss, Store-to-Leak Forwarding:

LeakingDataonMeltdown-resistantCPUs, 2019.a). A patch known as CVE-2017-5754 is

created to prevent further attacks from this Meltdown variant (NIST, 2019). However, the

patch provided resolves a specific vulnerability in side-channel attack. However, the

original Meltdown variant created other variants of Meltdown as the kernel memory is

still vulnerable (Schwartz, 2018). Thus, there is a need to perform software fixes to

ensure that the kernel and user space are isolated properly. Another side-channel

attack on computer memory is known as Spectre with two patches known as CVE-2017-

5753 and CVE-2017-5715 (Technology, 2018). As side-channel attack grows into a major

threat for secure embedded systems (The MITRE Corporation , 2014), additional

9

solutions to patch management are needed. In 2014, a research for a fast, inexpensive,

and automated technique to test software for side-channel attacks vulnerability was

developed. This side-channel leakage evaluator and analysis kit is called SLEAK

(Walters, Hagen, & Kedaigle, 2014). In addition to software testing, a Host-based IDS is

useful because the Host-based IDS monitors the system after the system is live and

running. Therefore, Host-based IDS is an additional security to SLEAK to identify when

a kernel memory leakage has occurred and provide an alert for further investigation to

determine if this kernel memory leakage has exposed any confidential data.

As kernel memory attack increases, patch management of threats are only a part

of the solution. As security solutions are a layered solution, there is an importance to

identify more solutions that can fit into different layer of the security solution. Therefore,

the scope of this study is a proof-of-concept to prove if kernel memory leakage can be

read to create an alert warning system for an IDS.

Problem Statement

Data leakage in kernel memory resulting in exposed confidential data such as,

encryption key or password of a user from side-channel attack.

Nature and Significance of the Problem

 Side channel attack such as Meltdown and Spectre are known to exploit

microarchitectural changes the CPU makes during transient out-of-order execution

resulting in leaking arbitrary data from memory. As a workaround, software mitigations

are disabled on recent processors. However, Meltdown-like attacks are still possible on

recent CPUs that are not vulnerable to the original Meltdown attack. As a solution,

10

software fixes are necessary to ensure proper isolation between the kernel and user

space (Schwarz, Canella, Giner, & Gruss, Store-to-LeakForwarding:

LeakingDataonMeltdown-resistantCPUs, 2019.b).

This study is useful as the result of this study provides a basis to design an early

warning system for kernel memory attacks. For example, a Host-based IDS can act as

an early warning system with Indicators of Attack (IoA) as filtering rules for anomalies.

Objective of the Study

 The objective of this study is to perform a qualitative study approach to determine

if kernel memory leakage can be read in log files and if security tools, such as a host-

based IDS can create alerts based on the log files.

Study Questions/Hypotheses

 The first research question is to determine how can the kernel memory leakage

be read? Then if the kernel memory leakage can be read, will there be any log files

created and where are the files stored? The final question is to determine if the log files

can be read by an IDS? Thus, this study creates a solution on how to detect kernel

memory leakage for the use of an IDS.

Limitations of the Study

 The first limitation is kmemleak by design is limited to the following processors

x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390 and tile (The kernel

development community, n.d.b). The next limitation is any major updates to the Linux

11

kernel version 4.15.0 or the firmware will make changes that may not be compatible

with this study.

Definition of Terms

Intrusion Detection Systems (IDS): A device or software application used to

monitor malicious activity and anomalies in computer activities.

Institute of Electrical and electronics Engineers (IEEE): A professional

association for electronic engineering and electrical engineering.

Indicators of Attack (IoA): A unique construction of unknown attributes, IoCs,

and contextual information, including organizational intelligence and risk, into a

dynamic, situational picture that guides response (McAfee, 2014).

Indicators of Compromise (IoC): Forensic evidence of potential intrusions on a

host system or network (Trend Micro, 2019).

kmemleak: The Linux module that scans the kernel memory for memory

leakage.

LSM: Linux Security Module is a list of mechanisms to reduce the kernel attack

surface and improve security (Smalley, Fraser, & Vance, n.d.).

CONFIG_DEBUG_KMEMLEAK: This is the option that is enabled in kernel

hacking in order to scan the kernel memory leakage.

Garbage Collector (GC): A program written to automatically free up unused

memory block in user space.

12

Summary

 Network IDS became popular because there is a growth in networks in late

1980s that develop a need for user access and user monitoring. Now there is a new

question to ask, that is will the increasing threat of side-channel attacks on kernel

memory be enough to create a demand to develop a monitoring tool for the kernel

memory to be re-compile into a Host-based IDS? To help understand the increasing

threats and demand better, let’s review the background and literature related to the

problem.

13

Chapter II: Background and Review of Literature

Introduction

 This chapter introduces what is kernel memory leakage, why kernel memory

leakage happens, the existing threats to kernel memory leakage and the components

needed to provide a solution for the problem statement.

Background Related to the Problem

 Kernel memory leaks happen when memory is no longer needed and is not

release back to the kernel. When memory leaks in an application at the user level, the

garbage collector (GC) will release the memory back to the system. However, GC

function is at the user level and not at the kernel level. That is why all leaked kernel

memory is not available to the system until the next reboot. The cause of the memory

leakage can be of several reasons and one of these reasons is that when the LKM is

unloaded, the changes made were not undone and the kernel memory will remain

locked by the unloaded LKM. Furthermore, tracking down memory leakage is difficult

and as kernel developers depend more on automated tools to find bugs, the need to

create a kernel memory leak detector becomes more obvious.

Literature Related to the Problem

Meltdown and Spectre are side-channel attacks techniques that utilizes kernel

memory leakage to gain confidential data. The systems that are affected by Meltdown

are computers, laptops and clouds with out-of-order execution implemented. In general,

this means all Intel processors created since 1995 are affected. That is 25 years of

14

processors that were created are vulnerable to Meltdown (Graz University of

Technology, 2018b).

The variants of both side-channel attack, Meltdown and Spectre are increasing

and as of May 15, 2019, there are 13 Spectre variants and 14 Meltdown variants. In

addition to the number of variants, the number of affected devices are expected to

increase as Internet of Things (IoT) (Sanders, 2019) and both Android and Apple mobile

phones (Abrams, 2018) are affected. To understand these variants better, a brief

description of these common variants will provide a general idea of how both Spectre

and Meltdown operates (Kerner, 2018).

• The first variant of the three original variants is Spectre variant 1 (Bounds

Check Bypass/CVE-2017-5753). This variant allows the attacker to abuse

an operating system kernel to read the memory of another system

process.

• The next variant is Spectre variant 2 (Branch Target Injection/CVE-2017-

5715). This variant abuses the CPU branch predictor function to allow an

attacker to read data from an operating system kernel.

• The last original variant is Meltdown (Rogue Data Cache Load/CVE-2017-

5754). Meltdown abuses memory page tables to read operating system

kernel data from user space.

15

• The variant, Meltdown (Rogue System Register Read/CVE-2018-3640)

allows an attacker with local access to speculatively read system

parameters via side channel analysis and obtain confidential information.

• The fourth variant is Speculative Store Bypass/CVE-2018-3639. This

variant allows the attacker to read older memory values in a CPU’s stack

or other memory location. Though the implementation is complex, less

privileged code could read arbitrary privileged data and run older

commands resulting in using cache allocations to exfiltrate data by

standard side channel methods.

• The fifth variant is Lazy Floating Point State Restore/CVE-2018-3665. Intel

advisory warn, “System software may utilize the Lazy FP state restore

technique to delay the restoring of state until an instruction operating on

that stat is actually executed by the new process.”.

• The last common variant is L1TF – L1 Terminal Fault “Foreshadow”/CVE-

2018-3615, CVE-2018-3620, CVE-2018-3646. Foreshadow is a collection

of three CVE vulnerabilities that enables an attacker to extract privileged

information from vulnerable CPUs, hypervisors and Intel Software Guard

Extension (SGX) secure enclave technologies.

For a description of all the variants, refer to the Systematic Evaluation paper (Canella,

et al., 2019). Below, in figure 1 on page 16 is a diagram of Spectre and Meltdown

categorization.

16

Classification tree of Spectre and Meltdown variants, with demonstrated attacks (red, bold), and
negative results (white).

Graph Data: Canella et al. Edited Image: James Sanders/TechRepublic

Figure 1: Spectre and Meltdown classification

 A paper was published by IEEE in 2010 about the importance of monitoring for

intrusion, malware infection and information leakage with the objective to explain the

importance of protecting the monitoring module and results for security inspection. This

applies to this study as the monitoring module will be like the Host-based IDS and the

17

results are syslog and kmemleak output. In this article, Linux Security Module (LSM) is

a set of hook functions implemented to monitor and control the system calls. The author

proposed to secure the monitoring scheme that is implemented with LSM-based

function and protected by kernel protection techniques. The integrity of the results is

then protected by using a Mandatory Access Control (MAC) of Linux kernel and a

mechanism of the trusted process invocation (Isohara, Takemori, Miyake, Qu, & Perrig,

2010).

Literature Related to the Methodology

 Loadable Kernel Module (LKM) is a mechanism that adds and removes

programming code from the kernel at runtime. This feature allows LKM to be loaded into

an electronic device without restarting the device. Therefore, LKM is convenient if the

user does not need the features of the LKM to be installed into the kernel and yet need

the features of the LKM (Molloy, 2015). For the purpose of this study, LKM serves the

purpose of accessing the kernel memory. However, accessing the kernel memory is a

kernel mode that consist of rights that are permitted by the kernel. In general, the

protected area of a kernel memory is not accessible to all users, even the root user.

Reason is that the root user is from the user level of the operating system and not from

the kernel level. In addition to the inaccessibility of the kernel, the data collection of this

study needs to run the LKM continuously for a few days to collect data of memory

leakage for analysis. This brings up the next available option of kmemleak.

 In 2006, Catalin Marinas developed a debug similar to GC tri-color concept of

scan-and-mark with the objective to detect kernel memory leakage (Corbet, 2006). This

18

debug program is now known as kmemleak. The difference between GC and kmemleak

is that the orphan objects found are not freed but reported via kmemleak at

/sys/kernel/debug/kmemleak. The data leaked from kernel memory is random.

However, with side-channel attack techniques, confidential data can be leaked as

explained by Systematic Evaluation paper. For example, in brief, a kmemleak-test

module that deliberately leaks memory (The kernel development community, n.d.a) can

be installed into the attacker’s code and executed after the attacker perform social

engineering to a user to make the user login to their computer system. Kmemleak is the

preferred method tool for this study as kmemleak will be re-compile into the kernel.

Kmemleak provides a report of the actual data that is leaked. This report is done

manually when there is a need to view what type of data is been leaked out. In order to

know when to view kmemleak, syslog is used. Syslog is a log file that stores event

messages from network devices. Both network and Host-based IDS collects data with

syslog protocol and the syslog format is a general format used by other monitoring tool

including Splunk as a Security Information and Event Management (SIEM) tool.

Therefore, syslog will report any new suspected memory leaks that can be used by the

Host-IDS to create an alert.

An open source Host-based IDS named OSSEC is selected to explain the study

of this paper. OSSEC is capable of monitoring and analyzing data from multiple log data

points in real-time. This feature will allow OSSEC to monitor and analyze syslog in real-

time and produce the alert immediately. Other OSSEC capabilities are detecting rootkit

and malware, integration with 3rd party software and firewalls, application and system

19

level auditing, file integrity monitoring and collects system information (OSSEC

PROJECT TEAM, 2020).

Summary

 Reviewing the reasons for kernel memory leakage and the threats that are a risk

to exposing confidential data through side-channel attacks lead to the literature in

explaining the background of how to identify and create the alerts for a Host-based IDS.

The next step is to explain the methodology on how to detect kernel memory leakage

for IDS. There are two options in this methodology, the first option is to detect kernel

memory leakage with a Loadable Kernel Module (LKM). The other option is to re-

compile the Linux kernel with kmemleak module. There are advantages and

disadvantages in both these techniques, that are explained in more detail in the next

chapter of methodology.

20

Chapter III: Methodology

Introduction

 This chapter explains about what options are available to read the kernel

memory leakage, how the kernel memory leakage is read, and the reasons that help

determine which is the preferred method to use to complete this study. These

explanations are discussed in figure 2, that is the methodology framework on page 23.

In addition to the study design that answers the problem statement, the recommended

solution that includes the host-based IDS and creation of bash scripts are explained.

Design of the Study

 A qualitative approach is taken to conduct this study because as of Mar 2020,

there are no other published paper or conference that research into how to monitor and

detect kernel memory leakage for a Host-based IDS. To design the study framework,

first the problem statement of “confidential data is leaked from kernel memory” must be

understood. Confidential data is the result of an action that is leaked from the subject

kernel memory. Therefore, the focus is on how to access the kernel memory? In order

to determine if the kernel memory leakage can be accessed and read, it is important to

understand that the kernel memory is in a protected memory area that is not accessible

even by the root account of the operating system (Ning, Qing, & Li, 2006) and is located

in between the hardware and the operating system. Even though the kernel is secured

by design, the kernel consists of functions that links both hardware and the operating

system. Refer to figure 24 in the Appendix A on page 55 to understand that system calls

are used by the kernel memory to communicate with the operating system that is used

21

in device drivers in the kernel memory to communicate between the operating system

and hardware control. Then the kernel memory will use interrupt numbers with the

hardware control to communicate with the hardware. As device driver is in the kernel

memory and communicates with the operating system, this brings up the idea of an

object file that contains code to extend the running kernel. This object file is called

Loadable Kernel Module (LKM) (Clinton, 2018) shown in figure 2 on page 23, under the

Option 1 heading. The advantage of LKM is that the module is loaded and unloaded as

needed without the need to reboot the computer (ArchWiki, 2020). The kernel size will

remain the same as codes are not written into the kernel. However, LKM has its

disadvantages, that is the module management of LKM consumes un-pageable kernel

memory. This means that when the LKM is unloaded, the changes that were made must

be undone. Otherwise the memory will not be released back to the kernel causing a

possible kernel memory leakage. In addition, loading numerous modules will consume

more memory compare to re-compiling the modules into the kernel image itself

(Silberschatz, Galvin, & Gagne, 2012). The other drawback of LKM is that the LKM can

be used to modify the running kernel by attackers and prevent detection of the

attacker’s processes and files. This is made popular by LKM rootkits where operating

system modules do not allow privilege elevation that is required to load LKM. Therefore,

LKM became a targeted attack vector (Phrack Inc). For example, an attacker performs

code injection and remains stealth by renaming the initialization module and insert the

attacker’s module that calls for the initialization module. This ensures that the LKM

behavior remains the same with additional functions from the attacker (Phrack

22

Magazine, 2003). The malicious intent used of LKM as a kernel mode rootkit is further

emphasized on by MITRE. MITRE is a globally-accessible knowledge base of adversary

tactics and techniques based on real world observations of specific threat models and

methodologies in the private sector, government, cybersecurity product and service

community (MITRE Corporation, 2015 - 2020). Therefore, the usage of LKM is

dependent on the frequency of use and if there are any pre-linked device driver with the

kernel (Silberschatz, Galvin, & Gagne, 2012). For the purpose of this study, the second

option to re-compile the kernel is selected as for the data collection stage will require

the system to be run continuously for a few days. LKM has a higher possibility to stop

responding compare to a re-compiled kernel.

23

Problem Statement:

Confidential data leaked

from kernel memory

Question:

Can kernel memory be read?

Option 1: Loadable

Kernel Module (LKM)

Recompile Linux kernel

with kmemleak

Enable Config kernel to

run kmemleak

Kmemleak log: Display arbitrary

data from memory leakage

Run kemeleak to find

memory leakage in kernel

Improvement: Created

bash script to install Debian

file into computers

Disadvantages: Possible

memory leakage from

LKM. Use LKM as attack

vector and remain hidden.

Host-based IDS

installation:

OSSEC

Syslog: Event messages

from network devices

Evaluate kmemleak arbitrary data to determine

if data leaked is confidential. Option to use out-

of-memory (OOM) killer program to free up

kernel memory as needed

OSSEC:

Create rule for

alert in Syslog

Option 2: Re-compile

Linux kernel with

kmemleak module

Figure 2: Methodology Framework

Created Debian file with

kernel image

24

The other option is to build and re-compile the Linux kernel with a module that

can identify and read kernel memory leakage. This module is known as kmemleak (The

kernel development community, 2017). A pre-configuration to the “Config” kernel is

needed to enable the kmemleak module in the kernel configuration. This is shown in

figure 2 on page 23, under the heading “Option 2: Re-compile Linux operating system

with kmemleak module”. For a step by step screenshot on what to select, please refer to

figure 11, 12 and 13 on page 48 and 49 that shows the selection of Kernel hacking to

Memory Debugging to enable Kernel Memory Leak detector. The next step to re-

compile Linux kernel from source file with kmemleak is shown in figure 14 on page 49.

As the figure shows the source code files with the extension .o are been convert to

kernel modules with .ko extension. At the end of the re-compilation that took a day to re-

compile, a Debian file with the kernel image is created. Now with a Debian file, the

kmemleak can be installed to a computer within an hour without the need to re-compile

the Linux kernel (The kernel development community, n.d.). For improvement, a bash

script file is created to make the installation of the Debian file to a new computer easier

as shown figure 15 and figure 16 on page 50. Figure 15 shows the bash script named

runme2.sh and figure 16 shows the contents in the script file. As the kmemleak code is

re-compile into the kernel, the kernel size grew pass 20 GB of hard disk space and the

re-compilation stalled as shown in figure 17 on page 51. Fortunately, this is a virtual

machine where the hard disk space can be re-partitioned using gparted to 32 GB while

the re-compiling is running. Therefore, planning the kernel hard disk space is important

as re-compiling the kernel will increase the hard disk space. The following figures 18 to

25

figures 21 on page 51 to 53 are commands needed to complete the re-compiling. These

commands are included in the bash script written to install the Debian file that is shown

in figure 16 on page 50. After re-compiling the kernel, kmemleak module is executed

with the command “echo scan > /sys/kernel/debug/kmemleak” as shown in figure 22 on

page 53 to view the actual data that is leaked in memory. The output of the actual data

that is leaked from kernel memory is shown in figure 23 on page 54. In addition to the

log file that shows the actual data leakage, the other log file format is from syslog.

Syslog is a log file that stores event messages from network devices. Figure 3, 4 and 5

on page 29 and 30 under the data presentation heading shows a sample of the syslog.

For the purpose of this study, these syslog files consist of the event messages needed

by the Host-based IDS to create alerts.

In figure 2 on page 23, OSSEC is shown as the Host-based IDS that is for

collecting and analyzing the data log in plain text or syslog format (OSSEC Project

Team, 2010-2020). As OSSEC reads syslog format, the syslog files collected from

network devices can be collected and analyzed at a central location using SIEM such as

Splunk (Lhotsky, 2013). The reason for selecting a Host-based IDS (OSSEC) than a

network based IDS is that OSSEC can be installed on the same host with kmemleak.

For OSSEC to read the syslog files, an entry must be added into ossec.conf file located

at /var/ossec/etc. For example, the script in ossec.conf will look like:

<localfile>

 <log_format>syslog</log_format>

 <location>/path_to_log_file</location>

26

</localfile>

The ossec.conf will allow OSSEC to read the syslog that identifies the new

suspected memory leak. The next step is to write a custom decoder to generate the

output from syslog showing the new suspected memory leak. The decoder is added into

the local_decoder.xml file located at /var/ossec/etc. However, the location of this file can

be changed by the administrator. Recommendation is to protect this .xml file from

tampering by using OSSEC file integrity check. To generate an alert with an output in

OSSEC, the following code is added into local_decoder.xml file.

<decoder name =”OSSEC-kernel-leak”>

 <program_name>kmemleak</program_name>

</decoder>

As for the purpose of this study, the syslog generated from the kernel memory leakage

is been read into a Host-based IDS to alert the user of a kernel memory leakage.

Data Collection

 The first step of data collection process is to gather event messages from syslog.

This serves the purpose of an alert message for kernel memory leakage. Ensure that

the user account has root access and navigate to the syslog file location at /var/log/sys/

folder. Then using a text editor, open the syslog file and perform a search for the

keyword “/sys/kernel/debug/kmemleak”. This keyword is the location of the kmemleak

file that is used to scan for kernel memory leakage. This entry will indicate how many

new kernel leaks were found. Once an entry is found, this indicates that there is a kernel

memory leakage. Search for all the entries with this keyword in syslog. Next, to confirm

27

that the kernel memory is leaking, trigger an immediate memory scan using kmemleak.

This is performed with an echo scan command that is executed as “echo scan >

/sys/kernel/debug/kmemleak”. For better analysis, a redirector command is used to

send kmemleak output result to a text file. After the memory scan is triggered, the

following command “cat /sys/kernel/debug/kmemleak” is executed to view the actual

data leaked from kernel memory. The output of the actual data leaked is kept in

kmemleak file until the data is cleared with the following command “echo clear >

/sys/kernel/debug/kmemleak”.

Tools and Techniques

 The tools used to collect the data for this study are syslog and the Kmemleak

module. Syslog is the log file format that is used by most network devices including IDS

and firewall. Whereas, kmemleak module is a tool that is designed to detect kernel

memory leakage that uses the same concept from GC. Both tools are log files that is

viewed using notepad. For analysis, the data were categorized into number of hours

monitored, number of leaks and number of times scanned based on date and time.

Summary

Now that the methodology of solving the problem statement is explained, the

next step is to determine if the data from the kernel memory leakage can be read. This

is shown in the next chapter that the kernel memory leakage can be read and log into a

text file for the actual data leaked and syslog for the event message stating that a kernel

memory leakage has occurred. After presenting the data, the data will be analyzed to

determine the amount of data that is leaked.

28

Chapter IV: Data Presentation and Analysis

Introduction

 This chapter covers the data collected from 2 log formats. The first log format is

syslog that receives event messages from network devices as data. The second log

format is from kmemleak that records the actual data leaked from kernel memory. The

actual data leaked is arbitrary and if there are any confidential data leaked, kmemleak

will display the data in this log.

Data Presentation

 The data collected are in the form of syslog that contains event messages from

network devices. As syslog only shows the event messages, the other form of data

collection is from kmemleak that shows the actual arbitrary data leakage to determine if

any confidential data is exposed as shown in Appendix A, figure 23 on page 54.

Syslog files collected in the first 23 hours. Data are collected into two formats.

The first format is generated automatically by network devices and stored in syslog.

Network devices just send event messages to the syslog. This log file will store the

information of a possible kernel memory leakage as shown below in the figure 3, 4 and

5 on page 29 and 30.

29

Figure 3: First suspected memory leakage

Figure 4: Second suspected memory leakage detected 10 minutes later

30

Figure 5: Twenty-three hours later, 12 new suspected memory leaks (total 14)

Kmemleak files showing actual data leak collected in the first 23 hours. The

second method of data collection is the actual arbitrary data leaked from kernel

memory. After reviewing the syslog, this data collection method is executed by issuing

the following command “echo scan > /sys/kernel/debug/kmemleak” to view the kernel

leaked data. The first record of the 14 new suspected memory leaks is shown in table 1

below on page 31. The remaining 13 new suspected memory leaks are found in the

Appendix B, table 3 on page 56.

31

Table 1: The record of the first suspected memory leak

unreferenced object 0xffff942aba315c18 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892395 (age 1173.260s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 02 00 00 01

 9b 57 02 40 54 b6 ff ff 0e 00 00 00 00 00 00 00 .W.@T...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<0000000025f2a706>] acpi_ds_build_internal_object+0xe5/0x1cc

 [<0000000019bb4fb0>] acpi_ds_build_internal_package_obj+0x1ea/0x331

 [<00000000f66c35a7>] acpi_ds_eval_data_object_operands+0x17d/0x219

 [<000000005c7c7ddb>] acpi_ds_exec_end_op+0x4b5/0x764

 [<000000007b93b1b9>] acpi_ps_parse_loop+0xa38/0xadc

 [<000000009fbe3906>] acpi_ps_parse_aml+0x1ac/0x4bd

 [<000000009f450676>] acpi_ds_execute_arguments+0x18b/0x1d2

 [<00000000033ee6ee>] acpi_ds_get_package_arguments+0xfd/0x12c

 [<00000000badb67db>] acpi_ns_init_one_object+0xeb/0x155

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000edaf2427>] acpi_walk_namespace+0xf9/0x144

32

 [<00000000c7ffe1b1>] acpi_ns_initialize_objects+0x108/0x1f5

 [<00000000fd360aaf>] acpi_initialize_objects+0x4b/0xd5

Syslog files collected in the next 73 hours. For the next 73 hours, the syslog

file did not show any entries from kmemleak. Reason is that the system stopped

responding and network devices could not deliver the event messages to syslog.

However, the exact time when the system stopped responding is unknown as the syslog

showed only the time and date that is after the 73 hours.

Kmemleak files showing actual data leak collected in the next 73 hours.

There is a total of 16 leaks during these 73 hours as shown by kmemleak. 6 leaks

showed arbitrary data with 10 leaks showing empty data. The 6 leaks are displayed in

the following figure 6, 7 and 8 on page 33 and 34. Even though the data leaked from the

kernel memory is arbitrary, the second memory leaked data in figure 6 on page 33,

coincidently leaked data that looks sensible. Therefore, this does show that even

randomly data leaked out can be of use. The remaining kernel memory leak that did not

show any data are placed in Appendix B as additional information on page 69, 70 and

71 as figure 25, 26, 27, 28 and 29.

33

Figure 6: Kmemleak showing 2 data leaks during the 73 hours

Figure 7: Kmemleak showing the next 2 data leaks during the 73 hours

34

Figure 8: Kmemleak showing another 2 data leaks during the 73 hours

Data Analysis

 To perform data analysis, the plan is to collect data continuously for 5 days.

However, referring to table 2 on page 35, 71 hours later, the performance of the

computer degraded to a point of where the system stopped responding and needed a

reboot. When the system stopped responding, the network devices could not send any

more event messages to syslog. Therefore, syslog did not record anymore events of

kernel memory leakage. However, after a system reboot, the syslog did show a total

number of 30 new suspected memory leaks. This brings to light that an attacker can

modify the syslog file to avoid been detected (O’Reilly Media, Inc., 2020). Fortunately,

kmemleak was re-compile with the Linux kernel and not an LKM. That is the reason why

kmemleak was still operating and showed kernel memory leakage that was not reported

35

in syslog before the reboot. This means that the syslog needs to be protected and if the

system stopped responding, kmemleak needs to be analyzed for kernel memory

leakage.

Table 2: Data Analysis of kernel memory leakage

Date Mar 29 Mar 30 Mar 31 Apr 1 Apr 2 Apr 3

Time (am) 9:07 8:03 8:13 8:13 8:13 9:19 11:05

Hours
monitoring
kernel leaks

23 hours 73 hours 26 hours

71 hours

96 hours

122 hours

Number of
leaks

14 leaks 16 leaks N/A

30 leaks N/A

Number of
times scan

138 times Unknown number of times scan N/A

 System stopped responding

Event A

Based on the syslog records in figure 3, 4 and 5 on page 29 and 30, 14 new

suspected memory leaks were found. By default, kmemleak will scan for kernel memory

leakage is performed every 10 minutes and the even is recorded in syslog. For the first

data collection, the total time monitored for kernel memory leakage is 23 hours. Based

on the 10 minutes interval of scanning, the memory is scan 6 times in an hour and

multiply by 23 hours will equal to 138 times of scan performed for the total duration.

During this fata collection time, 14 new suspected leaks were found. That is

approximately 10% of leakage based on the number of scans compared with the

36

number of suspected new leaks for the system that is been monitored. In the following

73 hours when the syslog stopped responding, there were 16 kernel memory leakage

found. 6 leaks had arbitrary data in the memory leak and 10 leaks did not had any data

in the memory leak. The calculation for the output during the 73 hours will not be

measured against the first 23 hours monitored as the syslog had stopped responding.

The output from the 73 hours of monitoring shows that 37.5% percent of the data leaked

from kernel memory contains arbitrary data while the remaining data leaked that does

not show any data is 62.5% percent as shown in figure 6, 7 and 8 on page 33 and 34.

Though syslog has stopped responding and both the 23 hours and 73 hours data

collection period cannot be compared based on the number of scans, the measurement

of total time and number of leaks can still be compared. At this time referring to table 2

on page 35, the total time of kernel memory monitored is 96 hours with a total of 30

leaks. That is, on the average 1 leak in every 3.2 hours of the time monitored.

Therefore, this computer system average leak of kernel data in the first 23 hours is 1.4

leak in every 2.3 hours compare to the total 96 hours with 1 leak in every 3.2 hours.

This shows that from the beginning of the data monitoring collected, the number of

leaks is decreasing as time increases. The last day of data collection did not show any

data collected in the syslog. When a trigger was initiated to scan for memory leakage,

permission was denied even though the scan was done with a root account. The

computer was rebooted and after a closer look at the syslog, there is an entry from the

kernel stating “no debug enabled” as shown in figure 9 on page 37.

37

Figure 9: Syslog showing “no debug enabled”

A command was executed to mount the debug and the mount point is already

mounted or mount point busy as shown figure 10 on page 38. Then a test was done to

deliberately cause a leak in kernel memory to test if kmemleak is working. The system

response is “FATAL: Module kmemleak-test not found in directory” as shown in figure

10 on page 38. The kmemleak file itself is missing from the /sys/kernel/debug/ directory.

38

Figure 10: Result of mounting kmemleak and kmemleak-test

Therefore, no data is available for the last day of data collection. The

investigation done leads to an understanding that kmemleak has crashed after running

non-stop for 73 hours. In addition, as the mount point is already mounted, the kmemleak

will automatically load itself as shown in table 2 on page 35 listed as “Event” at the

bottom of the table indicated with the letter “A” on Mar 30 at 8:03am. However, of

course this autoloading is before the crash.

Summary

In conclusion, the data of kernel memory leakage that was collected for 4 days

concludes that the kernel memory leakage did reduce from 1.4 leak in every 2.3 hours

to 1 leak in every 3.2 hours for this computer system. As for the purpose of this study,

39

the kernel memory leakage can be read and recorded in syslog file format and a text file

format for the actual data leaked from kernel memory.

40

Chapter V: Results, Conclusion, and Recommendations

Introduction

 After designing and testing the methodology, and presenting and analyzing the

data, this chapter concludes the findings and recommends the future work.

Results

 To address the first study question at the beginning of this study, that is how can

the kernel memory be read? There are two methods available to access the kernel

memory. The first method is to use Loadable Kernel Module (LKM) that can be loaded

and unloaded as needed. However, if the LKM is unloaded without removing the

changes made, the kernel memory will be locked until a reboot takes place. That is why

kernel developers need to know the exact location of the memory and what was done to

the memory as there is no Garbage Collector (GC) to clean up after them. Otherwise

the LKM will be the reason why there is a kernel memory leakage (Day, 2009). The

second method to access the kernel memory is to re-compile the Linux kernel image.

This method is better as the kernel memory leakage detector, kmemleak is in the kernel

and prove to be an advantage for this study because when kmemleak crashed, the

syslog was updated to reflect the 30 new suspected memory leakage. LKM may not

have reflected these changes after the system was rebooted. The second study

question addresses the concern of, if there is any log file created from the scanning of

kernel memory leakage? There are 2 log files created, one is from syslog that records

the event messages from the network devices. The other log file is from kmemleak that

shows the actual data leaked from kernel memory. The final question is concern over

41

the readability of the log files by a Host-based IDS? The answer to this question is yes,

a Host-based IDS can read a syslog file format and capture the details from the syslog

file based on the program that generated the event message.

Conclusion

 This study is a proof-of-concept to address the need of having a Host-based IDS

to promote an alert system for side-channel attacks such as Meltdown and Spectre. To

complete this study, scripts were written to facilitate an improved environment where the

kernel memory leak detector can be installed with only a few inputs needed from the

user such as the root account password and selection to confirm the installation.

Analysis was done to compare the leaked data collected from the kernel memory over a

period of 5 days showing a reduction in kernel memory leakage detected over a longer

time period. Therefore, kernel memory leakage can be read, and alerts created for the

Host-based IDS.

 As a result of identifying and reviewing that there is or are kernel memory

leakage in the Host-based IDS, the Linux program out-of-memory killer (OOM) or

kmemleak free internal objects is an option free up more kernel memory space to

mitigate the risk of an attack or use. In conclusion, the solution to use a Host-based IDS

to monitor and alert side-channel attacks related to kernel memory leakage is available.

However, the technology is not integrated into one software that is needed to mitigate

the risk of side-channel attacks. Hopefully this solution will be in the real-world soon as

the current attack vector is not just data breach from a database, data in transmission,

infrastructure, and web applications, but it includes data in memory.

42

Future Work

 The main challenge faced by this study is the huge amount of log files created at

every 10 minutes interval (The kernel development community, n.d.a). This can mean

importing the data into a database server for storage and analysis. A data analysis

study can then be performed on the log files to determine if the arbitrary data has any

pattern or caused by specific process? This data analysis study will provide a method to

narrow down the specific part of the kernel that is generating the arbitrary data leak. For

example, is there a specific LKM that did not undo the changes when the LKM is

unmounted? The second suggested future work is to identify the Indicators of Attack

(IoA) to find out the conditions that are needed to detect when confidential data in the

kernel memory is leaked. After the data analysis is performed and IoA are identified,

future work for the Host-based IDS to develop a filtering rule based on anomalies to

mitigate zero-day attacks. As more IoA are developed, the Host-based IDS will be more

accurate in identifying kernel memory attacks to reduce the attack vectors for kernel

memory. Another possible study is how to integrate kmemleak or LKM with a Host-

based IDS that will result in a faster monitoring and alert system. The next future work is

related to kmemleak where further research is needed to determine if date and time

stamp can be included in kmemleak output. In addition, the results and methodologies

for this study to develop a Host-based IDS as an alert system, can provide additional

information for other security tools. For example, antivirus or malware program to

identify zero-day threats in the kernel memory exploitations. The fifth future work is to

enable kernel memory leakage monitoring for mobile phones. This is important for

43

mobile phone has limited resources and the operating system does leak kernel memory

(Talexop, 2020).

44

References

Canella, C., Bulck, J. V., Schwarz, M., Lipp, M., Berg, B. V., Ortner, P., . . . College of

William and Mary. (2019, May 15).

ASystematicEvaluationofTransientExecutionAttacksandDefenses. Retrieved from

ASystematicEvaluationofTransientExecutionAttacksandDefenses:

https://arxiv.org/pdf/1811.05441.pdf

Abrams, L. (2018, January 3). List of Meltdown and Spectre Vulnerability Advisories,

Patches, & Updates. Retrieved from List of Meltdown and Spectre Vulnerability

Advisories, Patches, & Updates:

https://www.bleepingcomputer.com/news/security/list-of-meltdown-and-spectre-

vulnerability-advisories-patches-and-updates/

ArchWiki. (2020, January 18). Kernel module. Retrieved from Kernel module:

https://wiki.archlinux.org/index.php/Kernel_module

Clinton, D. (2018, May 30). How to load or unload a Linux kernel module. Retrieved

from Set up a Tor proxy with Raspberry Pi to control internet traffic:

https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module

Corbet. (2006, June 19). Detecting kernel memory leaks. Retrieved from Detecting

kernel memory leaks: https://lwn.net/Articles/187979/

Day, R. (2009, July 8). The Kernel Newbie Corner: Loadable Kernel Modules, Coming

And Going. Retrieved from https://www.linux.com: https://www.linux.com/training-

tutorials/kernel-newbie-corner-loadable-kernel-modules-coming-and-going/

Graz University of Technology. (2018a). Meltdown and Spectre. Retrieved from

Meltdown and Spectre: https://meltdownattack.com/

Graz University of Technology. (2018b). Meltdown and Spectre. Retrieved from

Meltdown and Spectre: https://meltdownattack.com/

Isohara, T., Takemori, K., Miyake, Y., Qu, N., & Perrig, A. (2010). LSM-Based Secure

System Monitoring Using Kernel Protection Schemes. 2010 International

Conference on Availability, Reliability and Security (p. 286). Krakow, Poland:

IEEE.

Kerner, S. M. (2018, September 10). Protecting Against the 7 Vulnerabilities of

Meltdown and Spectre. Retrieved from Protecting Against the 7 Vulnerabilities of

45

Meltdown and Spectre: https://www.esecurityplanet.com/applications/meltdown-

and-spectre-vulnerabilities.html

Lhotsky, B. (2013). OSSEC Host-based Intrusion Detection. July: Packt Publishing

Limited.

McAfee. (2014, October). Indicators of Attack (IoA). Retrieved from Solution Brief:

https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-indicators-of-

attack.pdf

MITRE Corporation. (2015 - 2020). Kernel Modules and Extensions. Retrieved from

MITRE Att&ck: https://attack.mitre.org/techniques/T1215/

Molloy, D. (2015). Writing a Linux Kernel Module — Part 1: Introduction. Retrieved from

Writing a Linux Kernel Module — Part 1: Introduction:

http://derekmolloy.ie/writing-a-linux-kernel-module-part-1-introduction/

Murali, R. (2013, November 25). Os concepts. Retrieved from Featured SlideShares:

https://www.slideshare.net/SUDHEESHPENATHU/os-concepts-28589673

Ning, P., Qing, S., & Li, N. (2006). Information and Communications Security: 8th

International Conference, ICICS 2006. 8th International Conference, ICICS 2006

(p. 182). Raleigh: Springer.

NIST. (2019, October 8). NATIONAL VULNERABILITY DATABASE. Retrieved from

NATIONAL VULNERABILITY DATABASE: https://nvd.nist.gov/vuln/detail/CVE-

2017-5754

O’Reilly Media, Inc. (2020). Protect Your Logs from Tampering. Retrieved from Protect

Your Logs from Tampering: https://www.oreilly.com/library/view/network-security-

hacks/0596006438/ch01s06.html

OSSEC Project Team. (2010-2020). Log monitoring/analysis. Retrieved from OSSEC is

a scalable, multi-platform, open source Host-based Intrusion Detection System

(HIDS): https://www.ossec.net/docs/docs/manual/monitoring/index.html

OSSEC PROJECT TEAM. (2020). OSSEC is a scalable, multi-platform, open source

Host-based Intrusion Detection System (HIDS). Retrieved from OSSEC is a

scalable, multi-platform, open source Host-based Intrusion Detection System

(HIDS): https://www.ossec.net/about/

46

Phrack Inc. (n.d.). Infecting loadable kernel modules. Retrieved from Phrack News:

http://www.phrack.org/archives/issues/68/11.txt

Phrack Magazine. (2003, August 13). Infecting Loadable Kernel Modules. Retrieved

from PHRACK NEWS: http://phrack.org/issues/61/10.html

Sanders, J. (2019, May 19). Spectre and Meltdown explained: A comprehensive guide

for professionals. Retrieved from Spectre and Meltdown explained: A

comprehensive guide for professionals:

https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-

comprehensive-guide-for-professionals/

Schwartz, M. J. (2018, May 22). Spectre and Meltdown Flaws: Two More Variants

Discovered. Retrieved from Bank Info Security:

https://www.bankinfosecurity.com/spectre-meltdown-flaws-two-more-variants-

discovered-a-11021

Schwarz, M., Canella, C., Giner, L., & Gruss, D. (2019.a). Store-to-Leak Forwarding:

LeakingDataonMeltdown-resistantCPUs. ArXiv, 1.

Schwarz, M., Canella, C., Giner, L., & Gruss, D. (2019.b). Store-to-LeakForwarding:

LeakingDataonMeltdown-resistantCPUs. ArXiv 2019, 1.

Silberschatz, a., Galvin, P. B., & Gagne, G. (2012). Solutions to Practice Exercises of

the Ninth Edition of Operating System Concepts. In a. Silberschatz, P. B. Galvin,

& G. Gagne, Solutions to Practice Exercises of the Ninth Edition of Operating

System Concepts (p. 61). New Haven: John Wiley & Sons, Inc.

Smalley, S., Fraser, T., & Vance, C. (n.d.). Linux Security Modules: General Security

Hooks for Linux. Retrieved from The Linux Kernel documentation:

https://www.kernel.org/doc/html/latest/security/lsm.html

Talexop. (2020, February 2). Android 10 - kernel memory leak bug. Retrieved from

Andrroid Develoopment and Hacking: https://forum.xda-developers.com/galaxy-

note-10+/help/android-10-kernel-memory-leak-bug-t4044415

Technology, G. U. (2018). Meltdown and Spectre. Retrieved from Meltdown and

Spectre: https://meltdownattack.com

47

The kernel development community. (2017, September 5). Development tools for the

Kernel . Retrieved from Development tools for the Kernel :

https://www.scribd.com/document/382273976/Kernel-Doc-Guide

The kernel development community. (n.d.a). Kernel Memory Leak Detector. Retrieved

from The Linux Kernel documentation:

https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

The kernel development community. (n.d.b). Kernel Memory Leak Detector. Retrieved

from The Linux Kernel documentation:

https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

The kernel development community. (n.d.). The Linux Kernel documentation. Retrieved

from The Linux Kernel documentation: https://www.kernel.org/doc/

The MITRE Corporation . (2014). SLEAK: A Side-channel Leakage Evaluator and

Analysis Kit. Retrieved from SLEAK: A Side-channel Leakage Evaluator and

Analysis Kit: https://www.mitre.org/sites/default/files/publications/pr-14-3463-

sleak-side-channel-leakage-evaluator.pdf

Threat Stack, Inc. (2015, September 9). The History of Intrusion Detection Systems

(IDS) – Part 1. Retrieved from CLOUD SECURITY AND COMPLIANCE:

https://www.threatstack.com/blog/the-history-of-intrusion-detection-systems-ids-

part-1

Trend Micro. (2019). Indicators of Compromise. Retrieved from Prepare for, withstand,

and rapidly recover from threats - now and in the future. :

https://www.trendmicro.com/vinfo/us/security/definition/indicators-of-compromise

Walters, D., Hagen, A., & Kedaigle, E. (2014). SLEAK: A Side-channel Leakage

Evaluator and Analysis Kit. Retrieved from SLEAK: A Side-channel Leakage

Evaluator and Analysis Kit: www.mitre.org

48

Appendix A: Additional Information

Figure 11: Select module kernel hacking in Configure Kernel using “make menuconfig”.

Figure 12: Selected Memory Debugging from Kernel Configuration

49

Figure 13: Enable the kernel memory leak detector

Figure 14: Rebuild Linux kernel modules from source

50

Figure 15: Bash script runme2.sh to install kmemleak

Figure 16: Content of bash script runme2.sh

51

Figure 17: Allocated memory is low.

Figure 18: Compile a new kernel package source

52

Figure 19: Generate kmemleak kernel image

Figure 20: Installing SSL library

53

Figure 21: Install Linux kernel and kmemleak kernel image

Figure 22: Run kmemleak to view if there is any memory leak

54

Figure 23: Kmemleak output showing memory leakage

55

Figure 24: Reena Murali. (2013). Block Diagram of the System Kernel [Figure]. Os

concepts. Retrieved from https://www.slideshare.net/SUDHEESHPENATHU/os-

concepts-28589673

56

Appendix B: More Information

Table 3: The remaining thirteen new suspected memory leak

unreferenced object 0xffff942ab9939948 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892400 (age 1173.244s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 02 00 00 01

 7e f1 02 40 54 b6 ff ff 08 00 00 00 00 00 00 00 ~..@T...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<0000000025f2a706>] acpi_ds_build_internal_object+0xe5/0x1cc

 [<0000000019bb4fb0>] acpi_ds_build_internal_package_obj+0x1ea/0x331

 [<00000000f66c35a7>] acpi_ds_eval_data_object_operands+0x17d/0x219

 [<000000005c7c7ddb>] acpi_ds_exec_end_op+0x4b5/0x764

 [<000000007b93b1b9>] acpi_ps_parse_loop+0xa38/0xadc

 [<000000009fbe3906>] acpi_ps_parse_aml+0x1ac/0x4bd

 [<000000009f450676>] acpi_ds_execute_arguments+0x18b/0x1d2

 [<00000000033ee6ee>] acpi_ds_get_package_arguments+0xfd/0x12c

 [<00000000badb67db>] acpi_ns_init_one_object+0xeb/0x155

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

57

 [<00000000edaf2427>] acpi_walk_namespace+0xf9/0x144

 [<00000000c7ffe1b1>] acpi_ns_initialize_objects+0x108/0x1f5

 [<00000000fd360aaf>] acpi_initialize_objects+0x4b/0xd5

unreferenced object 0xffff942ab9939e10 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.148s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 c0 17 d4 b8 2a 94 ff ff 0e 00 00 00 00 00 00 00 *...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

58

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<00000000df8728c3>] acpi_early_processor_set_pdc+0x4c/0x4f

 [<00000000031ef9e1>] acpi_init+0x1b8/0x341

unreferenced object 0xffff942ab8d417c0 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.152s)

 hex dump (first 16 bytes):

 56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

59

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<00000000df8728c3>] acpi_early_processor_set_pdc+0x4c/0x4f

 [<00000000031ef9e1>] acpi_init+0x1b8/0x341

 [<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939b40 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.152s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 80 10 d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00 *...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

60

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<00000000df8728c3>] acpi_early_processor_set_pdc+0x4c/0x4f

 [<00000000031ef9e1>] acpi_init+0x1b8/0x341

unreferenced object 0xffff942ab8d41080 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.152s)

 hex dump (first 16 bytes):

 41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPI0012........

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

61

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<00000000df8728c3>] acpi_early_processor_set_pdc+0x4c/0x4f

 [<00000000031ef9e1>] acpi_init+0x1b8/0x341

 [<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939630 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.156s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 e0 1e d4 b8 2a 94 ff ff 0e 00 00 00 00 00 00 00 *...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

62

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

 [<00000000af939fd7>] acpi_init+0x1bd/0x341

unreferenced object 0xffff942ab8d41ee0 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.156s)

 hex dump (first 16 bytes):

 56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

63

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

 [<00000000af939fd7>] acpi_init+0x1bd/0x341

 [<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab99399d8 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.156s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 60 14 d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00 `...*...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

64

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

 [<00000000af939fd7>] acpi_init+0x1bd/0x341

unreferenced object 0xffff942ab8d41460 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

 hex dump (first 16 bytes):

 41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPI0012........

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

65

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

 [<00000000af939fd7>] acpi_init+0x1bd/0x341

 [<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939168 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 50 1f d4 b8 2a 94 ff ff 0e 00 00 00 00 00 00 00 P...*...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

66

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000006ff3d6c5>] acpi_processor_init+0x40/0x62

 [<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

unreferenced object 0xffff942ab8d41f50 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

 hex dump (first 16 bytes):

 56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

67

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000006ff3d6c5>] acpi_processor_init+0x40/0x62

 [<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

 [<00000000a733c9a6>] acpi_init+0x2f2/0x341

unreferenced object 0xffff942ab99390d8 (size 72):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.172s)

 hex dump (first 32 bytes):

 00 00 00 00 00 00 00 00 0e 02 01 00 00 00 00 00

 c0 1e d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00 *...........

 backtrace:

 [<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0

 [<000000002b330b88>] acpi_ut_allocate_object_desc_dbg+0x62/0x10c

 [<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117

 [<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

68

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000006ff3d6c5>] acpi_processor_init+0x40/0x62

 [<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

unreferenced object 0xffff942ab8d41ec0 (size 16):

 comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.172s)

 hex dump (first 16 bytes):

 41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPI0012........

 backtrace:

 [<0000000007a58044>] __kmalloc+0x15b/0x250

 [<00000000b1765366>] acpi_os_allocate_zeroed+0x34/0x36

 [<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5

 [<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108

 [<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

 [<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

 [<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/0xc2

69

 [<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

 [<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252

 [<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

 [<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

 [<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278

 [<00000000ceef9850>] acpi_get_devices+0xd4/0x111

 [<000000006ff3d6c5>] acpi_processor_init+0x40/0x62

 [<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

 [<00000000a733c9a6>] acpi_init+0x2f2/0x341

Figure 25: Kmemleak showing empty data leak for the 73 hours

70

Figure 26: Example of kmemleak showing empty data leak for the 73 hours

Figure 27: Next example of kmemleak showing empty data leak for the 73 hours

71

Figure 28: Another example of kmemleak showing empty data leak for the 73 hours

Figure 29: Another kmemleak showing empty data leak for the 73 hours

	Kernel Memory Leakage Detection for Intrusion Detection Systems (IDS)
	Recommended Citation

	tmp.1587408888.pdf.oZ9iw

