St. Cloud State University
theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2020

Kernel Memory Leakage Detection for Intrusion Detection
Systems (IDS)

Lee Ho
lee.ho@owasp.org

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation

Ho, Lee, "Kernel Memory Leakage Detection for Intrusion Detection Systems (IDS)" (2020). Culminating
Projects in Information Assurance. 98.

https://repository.stcloudstate.edu/msia_etds/98

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an
authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/98?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Kernel Memory Leakage Detection for

Intrusion Detection Systems (IDS)

by

Lee Hong Ho

A Thesis Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfilment of the Requirements
for the Degree of
Master of Science

in Information Assurance

May, 2020

Thesis Paper Committee:
Dennis C. Guster, Chairperson
Erich P. Rice
Kasi, Balasubramanian

Abstract

Data leakage from kernel memory occurs when the memory block is not released back
to the kernel after the memory block is unoccupied. The data leaked is arbitrary and
confidential data such as, encryption key and password may leak out. Meltdown and
Spectre are methods from side channel attacks that takes advantage of this data
leakage to gain confidential data (Graz University of Technology, 2018a). This study is
on how kernel memory leakage can be read as kernel memory is a protected memory
area that even the root account of an operating system is unable to access (Ning, Qing,
& Li, 2006). Reading kernel memory leakage is only a part of the solution to mitigate
Meltdown and Spectre. To provide a solution, the leaked data from kernel memory must
be of use to an Intruder Detection System (IDS) for alerts to determine if there is a
possible attack on kernel memory to attain confidential data. As a result, kmemleak is
used as a module created to provide a way to detect possible kernel memory leaks that
is similar to a tracing garbage collector(gc) (The kernel development community, n.d.a).

Acknowledgements

| would like to thank Al-Sharabati, Abdulrahman for his technical knowledge
contribution that resolved and completed the technical issues of this study much faster
and accurate. It would not have occurred to me that a hard disk space can be partition

or extend while the operating system is been rebuild. Many thanks for your help.

Table of Contents

Page

LISt Of TADIES ... e e et e e 6

IS A0 T U PSS 7
Chapter

T [011 oo (U1t i [o] o IR PP T PP PPPPPPP 8

INEFOAUCTION .. 8

Problem Statement ... 9

Nature and Significance of the Problemcccc 9

Objective Of the StUAYccoooeiiiiie e 10

Study QUESHIONS/HYPOLNESES ..o 10

Limitations of the Study ... 10

Definition Of TEIMS ..o 11

YU [1 4= Y PP 12

[I. Background and Review of LIteraturecccccceeeiiiiieiiiieeeiiici e, 13

INEFOAUCTION ... e e e e e e e e e e 13

Background Related to the Problem ... 13

Literature Related to the Problem ..., 13

Literature Related to the Methodologyccooviiiiiiiiiii e, 17

YU [] 4= Y/ 19

1. MEthOUOIOQY .. oo 20

Chapter Page

INEFOAUCTION ... e e e e e e e e e e e 20

Design Of the StUAYcoovriee e 20

Data COllECHONeeeiiieeiiiie e 26

TOOIS aNd TECNNIQUES ... e e 27

YU [] 4= YR 27

V. Data Presentation and ANAIYSIScccocoeiiiiiiiiiiiiiie e 28

INEFOAUCTION ...t e e e e e e e e e e e 28

Data PreSEentationoccceiiiiiiiieeeieiiiie e 28

D= U= A g =11 R 34

YU [] 4= YT SPP 38

V. Results, Conclusion, and Recommendationsooccuuvireieeeeennniniiiiiieeeeenn 40

INEFOAUCTION ... e e e e e e e e e e 40

RESUILS . 40

CONCIUSION .ttt e e e e e e e e eeeeeeas 41

FULUIE WOTK .. 42

REFEIENCES oo 44
Appendices

A. Additional INfOrmation ... 48

B. Y (o] (=M a1 (o]0 4 1= 11To] o I T T TR 56

List of Tables
Table

1. The record of the first suspected memory leak

2. Data Analysis of kernel memory leakage

List of Figures

Figure Page
1. Spectre and Meltdown classSifiCation................uuueiiiiiiiiii e 16
2. Methodology FrameWOorK............oiuiii e e 23
3. First suspected memory leakage...........ccoooiiiiiiiii 29
4. Second suspected memory leakage detected 10 minutes later.......................... 29
5. Twenty-three hours later, 12 new suspected memory leaks (total 14).................. 30
6. Kmemleak showing 2 data leaks duringthe 73 hours...............ccooiiiiiiiii e, 33
7. Kmemleak showing the next 2 data leaks duringthe 73 hours............................ 33
8. Kmemleak showing another 2 data leaks during the 73 hours............................ 34
9. Syslog showing “no debug enabled”..............oiiiii 37

10.Result of mounting kmemleak and kmemleak-test....................oooiiL 38

Chapter I: Introduction
Introduction

Intrusion Detection Systems (IDS) started back in 1985 with lots of struggles and
challenges to deliver efficient monitoring that are rule-based and managing time
consuming interpretation of huge volume of log files. A constant scanning and updating
the signature list is draining resources that made IDS remain in an unpopular stand until
late 1980s where there is a growth for network IDS based on the need for user access
and user monitoring (Threat Stack, Inc, 2015). In today’s world, the challenges have
grown, and we must recognize that protecting network data transmission is a part of the
solution. In addition to protecting network data transmission, there is a need to protect
computer memory from attacks. Memory attack can be performed on a computer or any
other electronic device such as a mobile phone and Internet of Things (loT). For
example, Meltdown uses side-channel techniques to attack leaking arbitrary data from
kernel memory (Schwarz, Canella, Giner, & Gruss, Store-to-Leak Forwarding:
LeakingDataonMeltdown-resistantCPUs, 2019.a). A patch known as CVE-2017-5754 is
created to prevent further attacks from this Meltdown variant (NIST, 2019). However, the
patch provided resolves a specific vulnerability in side-channel attack. However, the
original Meltdown variant created other variants of Meltdown as the kernel memory is
still vulnerable (Schwartz, 2018). Thus, there is a need to perform software fixes to
ensure that the kernel and user space are isolated properly. Another side-channel
attack on computer memory is known as Spectre with two patches known as CVE-2017-
5753 and CVE-2017-5715 (Technology, 2018). As side-channel attack grows into a major

threat for secure embedded systems (The MITRE Corporation , 2014), additional

9
solutions to patch management are needed. In 2014, a research for a fast, inexpensive,
and automated technique to test software for side-channel attacks vulnerability was
developed. This side-channel leakage evaluator and analysis kit is called SLEAK
(Walters, Hagen, & Kedaigle, 2014). In addition to software testing, a Host-based IDS is
useful because the Host-based IDS monitors the system after the system is live and
running. Therefore, Host-based IDS is an additional security to SLEAK to identify when
a kernel memory leakage has occurred and provide an alert for further investigation to
determine if this kernel memory leakage has exposed any confidential data.

As kernel memory attack increases, patch management of threats are only a part
of the solution. As security solutions are a layered solution, there is an importance to
identify more solutions that can fit into different layer of the security solution. Therefore,
the scope of this study is a proof-of-concept to prove if kernel memory leakage can be
read to create an alert warning system for an IDS.

Problem Statement

Data leakage in kernel memory resulting in exposed confidential data such as,
encryption key or password of a user from side-channel attack.
Nature and Significance of the Problem

Side channel attack such as Meltdown and Spectre are known to exploit
microarchitectural changes the CPU makes during transient out-of-order execution
resulting in leaking arbitrary data from memory. As a workaround, software mitigations
are disabled on recent processors. However, Meltdown-like attacks are still possible on

recent CPUs that are not vulnerable to the original Meltdown attack. As a solution,

10
software fixes are necessary to ensure proper isolation between the kernel and user
space (Schwarz, Canella, Giner, & Gruss, Store-to-LeakForwarding:

LeakingDataonMeltdown-resistantCPUs, 2019.b).

This study is useful as the result of this study provides a basis to design an early
warning system for kernel memory attacks. For example, a Host-based IDS can act as

an early warning system with Indicators of Attack (IoA) as filtering rules for anomalies.

Objective of the Study

The objective of this study is to perform a qualitative study approach to determine
if kernel memory leakage can be read in log files and if security tools, such as a host-
based IDS can create alerts based on the log files.

Study Questions/Hypotheses

The first research question is to determine how can the kernel memory leakage
be read? Then if the kernel memory leakage can be read, will there be any log files
created and where are the files stored? The final question is to determine if the log files
can be read by an IDS? Thus, this study creates a solution on how to detect kernel
memory leakage for the use of an IDS.

Limitations of the Study

The first limitation is kmemleak by design is limited to the following processors

x86, arm, powerpc, sparc, sh, microblaze, ppc, mips, s390 and tile (The kernel

development community, n.d.b). The next limitation is any major updates to the Linux

11
kernel version 4.15.0 or the firmware will make changes that may not be compatible
with this study.

Definition of Terms
Intrusion Detection Systems (IDS): A device or software application used to
monitor malicious activity and anomalies in computer activities.
Institute of Electrical and electronics Engineers (IEEE): A professional
association for electronic engineering and electrical engineering.
Indicators of Attack (lIoA): A unique construction of unknown attributes, 10Cs,
and contextual information, including organizational intelligence and risk, into a
dynamic, situational picture that guides response (McAfee, 2014).
Indicators of Compromise (IoC): Forensic evidence of potential intrusions on a
host system or network (Trend Micro, 2019).
kmemleak: The Linux module that scans the kernel memory for memory
leakage.

LSM: Linux Security Module is a list of mechanisms to reduce the kernel attack
surface and improve security (Smalley, Fraser, & Vance, n.d.).

CONFIG_DEBUG_KMEMLEAK: This is the option that is enabled in kernel
hacking in order to scan the kernel memory leakage.
Garbage Collector (GC): A program written to automatically free up unused

memory block in user space.

Summary

Network IDS became popular because there is a growth in networks in late
1980s that develop a need for user access and user monitoring. Now there is a new
guestion to ask, that is will the increasing threat of side-channel attacks on kernel
memory be enough to create a demand to develop a monitoring tool for the kernel
memory to be re-compile into a Host-based IDS? To help understand the increasing
threats and demand better, let’s review the background and literature related to the

problem.

12

13

Chapter Il: Background and Review of Literature

Introduction

This chapter introduces what is kernel memory leakage, why kernel memory
leakage happens, the existing threats to kernel memory leakage and the components
needed to provide a solution for the problem statement.
Background Related to the Problem

Kernel memory leaks happen when memory is no longer needed and is not
release back to the kernel. When memory leaks in an application at the user level, the
garbage collector (GC) will release the memory back to the system. However, GC
function is at the user level and not at the kernel level. That is why all leaked kernel
memory is not available to the system until the next reboot. The cause of the memory
leakage can be of several reasons and one of these reasons is that when the LKM is
unloaded, the changes made were not undone and the kernel memory will remain
locked by the unloaded LKM. Furthermore, tracking down memory leakage is difficult
and as kernel developers depend more on automated tools to find bugs, the need to
create a kernel memory leak detector becomes more obvious.
Literature Related to the Problem

Meltdown and Spectre are side-channel attacks techniques that utilizes kernel
memory leakage to gain confidential data. The systems that are affected by Meltdown
are computers, laptops and clouds with out-of-order execution implemented. In general,

this means all Intel processors created since 1995 are affected. That is 25 years of

14
processors that were created are vulnerable to Meltdown (Graz University of
Technology, 2018b).

The variants of both side-channel attack, Meltdown and Spectre are increasing
and as of May 15, 2019, there are 13 Spectre variants and 14 Meltdown variants. In
addition to the number of variants, the number of affected devices are expected to
increase as Internet of Things (1oT) (Sanders, 2019) and both Android and Apple mobile
phones (Abrams, 2018) are affected. To understand these variants better, a brief
description of these common variants will provide a general idea of how both Spectre
and Meltdown operates (Kerner, 2018).

e The first variant of the three original variants is Spectre variant 1 (Bounds
Check Bypass/CVE-2017-5753). This variant allows the attacker to abuse
an operating system kernel to read the memory of another system
process.

e The next variant is Spectre variant 2 (Branch Target Injection/CVE-2017-
5715). This variant abuses the CPU branch predictor function to allow an
attacker to read data from an operating system kernel.

e The last original variant is Meltdown (Rogue Data Cache Load/CVE-2017-
5754). Meltdown abuses memory page tables to read operating system

kernel data from user space.

15

e The variant, Meltdown (Rogue System Register Read/CVE-2018-3640)
allows an attacker with local access to speculatively read system
parameters via side channel analysis and obtain confidential information.

e The fourth variant is Speculative Store Bypass/CVE-2018-3639. This
variant allows the attacker to read older memory values in a CPU'’s stack
or other memory location. Though the implementation is complex, less
privileged code could read arbitrary privileged data and run older
commands resulting in using cache allocations to exfiltrate data by
standard side channel methods.

e The fifth variant is Lazy Floating Point State Restore/CVE-2018-3665. Intel
advisory warn, “System software may utilize the Lazy FP state restore
technique to delay the restoring of state until an instruction operating on
that stat is actually executed by the new process.”.

e The last common variant is L1TF — L1 Terminal Fault “Foreshadow”/CVE-
2018-3615, CVE-2018-3620, CVE-2018-3646. Foreshadow is a collection
of three CVE vulnerabilities that enables an attacker to extract privileged
information from vulnerable CPUs, hypervisors and Intel Software Guard
Extension (SGX) secure enclave technologies.

For a description of all the variants, refer to the Systematic Evaluation paper (Canella,
et al., 2019). Below, in figure 1 on page 16 is a diagram of Spectre and Meltdown

categorization.

=
(o]

Mistraining strategy (

[Spectre-PHT

Cross-address-space
2
~ Same-address-space
e —

microarchitectural buffer

Spectre-BTB
-

in-place (IP) vs., out-of-place (OP) PHT-CA-IP
" PHT-CA-OP

-

PHT-SA-IP

PHT-SA-OP

L Spectre-RSB

'd

Cross-address-space
N

-
| Spectre-type

(Spo«n-STL

Same-address-space

%

prediction

Transient Cause?

N\

BTB-CA-IP
\ BTB-CA-OP

Cross-address-space

k(sn-s»w
) [BTB-SA-OP

.
Same-address-space

~\n

RSB-CA-IP

Meltdown-NM

fault "
fault type

Meltdown-US

RSB-CA-OP

@

F
\Meltdown-type

:)
| Meltdown-DE

Meltdown-P

)
) RSB-SA-IP

Meltdown-RW

RSB-SA-OP

A A & & & A & A & &

(Meltdown-PF

Meltdown-PK

| Meltdown-XD

' Meltdown-SM

2
Meltdown-BR

Meltdown-MPX

Meltdown-GP

J Meltdown-BND

Classification tree of Spectre and Meltdown variants, with demonstrated attacks (red, bold), and

negative results (white).
Graph Data: Canella et al. Edited Image: James Sanders/TechRepublic

Figure 1: Spectre and Meltdown classification

A paper was published by IEEE in 2010 about the importance of monitoring for

intrusion, malware infection and information leakage with the objective to explain the

importance of protecting the monitoring module and results for security inspection. This

applies to this study as the monitoring module will be like the Host-based IDS and the

17
results are syslog and kmemleak output. In this article, Linux Security Module (LSM) is
a set of hook functions implemented to monitor and control the system calls. The author
proposed to secure the monitoring scheme that is implemented with LSM-based
function and protected by kernel protection techniques. The integrity of the results is
then protected by using a Mandatory Access Control (MAC) of Linux kernel and a
mechanism of the trusted process invocation (Isohara, Takemori, Miyake, Qu, & Perrig,
2010).

Literature Related to the Methodology

Loadable Kernel Module (LKM) is a mechanism that adds and removes
programming code from the kernel at runtime. This feature allows LKM to be loaded into
an electronic device without restarting the device. Therefore, LKM is convenient if the
user does not need the features of the LKM to be installed into the kernel and yet need
the features of the LKM (Molloy, 2015). For the purpose of this study, LKM serves the
purpose of accessing the kernel memory. However, accessing the kernel memory is a
kernel mode that consist of rights that are permitted by the kernel. In general, the
protected area of a kernel memory is not accessible to all users, even the root user.
Reason is that the root user is from the user level of the operating system and not from
the kernel level. In addition to the inaccessibility of the kernel, the data collection of this
study needs to run the LKM continuously for a few days to collect data of memory
leakage for analysis. This brings up the next available option of kmemleak.

In 2006, Catalin Marinas developed a debug similar to GC tri-color concept of

scan-and-mark with the objective to detect kernel memory leakage (Corbet, 2006). This

18
debug program is now known as kmemleak. The difference between GC and kmemleak
is that the orphan objects found are not freed but reported via kmemleak at
/sys/kernel/debug/kmemleak. The data leaked from kernel memory is random.
However, with side-channel attack techniques, confidential data can be leaked as
explained by Systematic Evaluation paper. For example, in brief, a kmemleak-test
module that deliberately leaks memory (The kernel development community, n.d.a) can
be installed into the attacker’s code and executed after the attacker perform social
engineering to a user to make the user login to their computer system. Kmemleak is the
preferred method tool for this study as kmemleak will be re-compile into the kernel.

Kmemleak provides a report of the actual data that is leaked. This report is done
manually when there is a need to view what type of data is been leaked out. In order to
know when to view kmemleak, syslog is used. Syslog is a log file that stores event
messages from network devices. Both network and Host-based IDS collects data with
syslog protocol and the syslog format is a general format used by other monitoring tool
including Splunk as a Security Information and Event Management (SIEM) tool.
Therefore, syslog will report any new suspected memory leaks that can be used by the
Host-IDS to create an alert.

An open source Host-based IDS named OSSEC is selected to explain the study
of this paper. OSSEC is capable of monitoring and analyzing data from multiple log data
points in real-time. This feature will allow OSSEC to monitor and analyze syslog in real-
time and produce the alert immediately. Other OSSEC capabilities are detecting rootkit

and malware, integration with 3 party software and firewalls, application and system

19
level auditing, file integrity monitoring and collects system information (OSSEC
PROJECT TEAM, 2020).

Summary

Reviewing the reasons for kernel memory leakage and the threats that are a risk
to exposing confidential data through side-channel attacks lead to the literature in
explaining the background of how to identify and create the alerts for a Host-based IDS.
The next step is to explain the methodology on how to detect kernel memory leakage
for IDS. There are two options in this methodology, the first option is to detect kernel
memory leakage with a Loadable Kernel Module (LKM). The other option is to re-
compile the Linux kernel with kmemleak module. There are advantages and
disadvantages in both these techniques, that are explained in more detail in the next

chapter of methodology.

20
Chapter lll: Methodology

Introduction

This chapter explains about what options are available to read the kernel
memory leakage, how the kernel memory leakage is read, and the reasons that help
determine which is the preferred method to use to complete this study. These
explanations are discussed in figure 2, that is the methodology framework on page 23.
In addition to the study design that answers the problem statement, the recommended
solution that includes the host-based IDS and creation of bash scripts are explained.
Design of the Study

A qualitative approach is taken to conduct this study because as of Mar 2020,
there are no other published paper or conference that research into how to monitor and
detect kernel memory leakage for a Host-based IDS. To design the study framework,
first the problem statement of “confidential data is leaked from kernel memory” must be
understood. Confidential data is the result of an action that is leaked from the subject
kernel memory. Therefore, the focus is on how to access the kernel memory? In order
to determine if the kernel memory leakage can be accessed and read, it is important to
understand that the kernel memory is in a protected memory area that is not accessible
even by the root account of the operating system (Ning, Qing, & Li, 2006) and is located
in between the hardware and the operating system. Even though the kernel is secured
by design, the kernel consists of functions that links both hardware and the operating
system. Refer to figure 24 in the Appendix A on page 55 to understand that system calls

are used by the kernel memory to communicate with the operating system that is used

21
in device drivers in the kernel memory to communicate between the operating system
and hardware control. Then the kernel memory will use interrupt numbers with the
hardware control to communicate with the hardware. As device driver is in the kernel
memory and communicates with the operating system, this brings up the idea of an
object file that contains code to extend the running kernel. This object file is called
Loadable Kernel Module (LKM) (Clinton, 2018) shown in figure 2 on page 23, under the
Option 1 heading. The advantage of LKM is that the module is loaded and unloaded as
needed without the need to reboot the computer (ArchWiki, 2020). The kernel size will
remain the same as codes are not written into the kernel. However, LKM has its
disadvantages, that is the module management of LKM consumes un-pageable kernel
memory. This means that when the LKM is unloaded, the changes that were made must
be undone. Otherwise the memory will not be released back to the kernel causing a
possible kernel memory leakage. In addition, loading numerous modules will consume
more memory compare to re-compiling the modules into the kernel image itself
(Silberschatz, Galvin, & Gagne, 2012). The other drawback of LKM is that the LKM can
be used to modify the running kernel by attackers and prevent detection of the
attacker’s processes and files. This is made popular by LKM rootkits where operating
system modules do not allow privilege elevation that is required to load LKM. Therefore,
LKM became a targeted attack vector (Phrack Inc). For example, an attacker performs
code injection and remains stealth by renaming the initialization module and insert the
attacker’'s module that calls for the initialization module. This ensures that the LKM

behavior remains the same with additional functions from the attacker (Phrack

22
Magazine, 2003). The malicious intent used of LKM as a kernel mode rootkit is further
emphasized on by MITRE. MITRE is a globally-accessible knowledge base of adversary
tactics and techniques based on real world observations of specific threat models and
methodologies in the private sector, government, cybersecurity product and service
community (MITRE Corporation, 2015 - 2020). Therefore, the usage of LKM is
dependent on the frequency of use and if there are any pre-linked device driver with the
kernel (Silberschatz, Galvin, & Gagne, 2012). For the purpose of this study, the second
option to re-compile the kernel is selected as for the data collection stage will require
the system to be run continuously for a few days. LKM has a higher possibility to stop

responding compare to a re-compiled kernel.

Problem Statement:

Confidential data leaked
from kernel memory

l

Question:

23

Can kernel memory be read?

= =

Option 1: Loadable
Kernel Module (LKM)

Option 2: Re-compile
Linux kernel with

¢ kmemleak module
Disadvantages: Possible l
memory leakage from
LKM. Use LKM as attack Enable Config kernel to
vector and remain hidden. run kmemleak

l

Created Debian file with Recompile Linux kernel

kernel image with kmemleak
Improvement: Created Run kemeleak to find
bash script to install Debian memory leakage in kernel

file into computers

L A 4

Host-based IDS
installation:
OSSEC

OSSEC:

Create rule for
alert in Syslog

v

Kmemleak log: Display arbitrary Syslog: Event messages
data from memory leakage from network devices

l l

Evaluate kmemleak arbitrary data to determine
if data leaked is confidential. Option to use out-
of-memory (OOM) killer program to free up
kernel memory as needed

Figure 2: Methodology Framework

24

The other option is to build and re-compile the Linux kernel with a module that
can identify and read kernel memory leakage. This module is known as kmemleak (The
kernel development community, 2017). A pre-configuration to the “Config” kernel is
needed to enable the kmemleak module in the kernel configuration. This is shown in
figure 2 on page 23, under the heading “Option 2: Re-compile Linux operating system
with kmemleak module”. For a step by step screenshot on what to select, please refer to
figure 11, 12 and 13 on page 48 and 49 that shows the selection of Kernel hacking to
Memory Debugging to enable Kernel Memory Leak detector. The next step to re-
compile Linux kernel from source file with kmemleak is shown in figure 14 on page 49.
As the figure shows the source code files with the extension .o are been convert to
kernel modules with .ko extension. At the end of the re-compilation that took a day to re-
compile, a Debian file with the kernel image is created. Now with a Debian file, the
kmemleak can be installed to a computer within an hour without the need to re-compile
the Linux kernel (The kernel development community, n.d.). For improvement, a bash
script file is created to make the installation of the Debian file to a new computer easier
as shown figure 15 and figure 16 on page 50. Figure 15 shows the bash script named
runme2.sh and figure 16 shows the contents in the script file. As the kmemleak code is
re-compile into the kernel, the kernel size grew pass 20 GB of hard disk space and the
re-compilation stalled as shown in figure 17 on page 51. Fortunately, this is a virtual
machine where the hard disk space can be re-partitioned using gparted to 32 GB while
the re-compiling is running. Therefore, planning the kernel hard disk space is important

as re-compiling the kernel will increase the hard disk space. The following figures 18 to

25
figures 21 on page 51 to 53 are commands needed to complete the re-compiling. These
commands are included in the bash script written to install the Debian file that is shown
in figure 16 on page 50. After re-compiling the kernel, kmemleak module is executed
with the command “echo scan > /sys/kernel/debug/kmemleak” as shown in figure 22 on
page 53 to view the actual data that is leaked in memory. The output of the actual data
that is leaked from kernel memory is shown in figure 23 on page 54. In addition to the
log file that shows the actual data leakage, the other log file format is from syslog.
Syslog is a log file that stores event messages from network devices. Figure 3, 4 and 5
on page 29 and 30 under the data presentation heading shows a sample of the syslog.
For the purpose of this study, these syslog files consist of the event messages needed
by the Host-based IDS to create alerts.

In figure 2 on page 23, OSSEC is shown as the Host-based IDS that is for
collecting and analyzing the data log in plain text or syslog format (OSSEC Project
Team, 2010-2020). As OSSEC reads syslog format, the syslog files collected from
network devices can be collected and analyzed at a central location using SIEM such as
Splunk (Lhotsky, 2013). The reason for selecting a Host-based IDS (OSSEC) than a
network based IDS is that OSSEC can be installed on the same host with kmemleak.
For OSSEC to read the syslog files, an entry must be added into ossec.conf file located
at /var/ossec/etc. For example, the script in ossec.conf will look like:

<localfile>

<log_format>syslog</log_format>

<location>/path_to_log_file</location>

26

</localfile>

The ossec.conf will allow OSSEC to read the syslog that identifies the new
suspected memory leak. The next step is to write a custom decoder to generate the
output from syslog showing the new suspected memory leak. The decoder is added into
the local_decoder.xml file located at /var/ossec/etc. However, the location of this file can
be changed by the administrator. Recommendation is to protect this .xml file from
tampering by using OSSEC file integrity check. To generate an alert with an output in
OSSEC, the following code is added into local_decoder.xml file.

<decoder name ="OSSEC-kernel-leak™

<program_name>kmemleak</program_name>

</decoder>
As for the purpose of this study, the syslog generated from the kernel memory leakage
is been read into a Host-based IDS to alert the user of a kernel memory leakage.
Data Collection

The first step of data collection process is to gather event messages from syslog.
This serves the purpose of an alert message for kernel memory leakage. Ensure that
the user account has root access and navigate to the syslog file location at /var/log/sys/
folder. Then using a text editor, open the syslog file and perform a search for the
keyword “/sys/kernel/debug/kmemleak”. This keyword is the location of the kmemleak
file that is used to scan for kernel memory leakage. This entry will indicate how many
new kernel leaks were found. Once an entry is found, this indicates that there is a kernel

memory leakage. Search for all the entries with this keyword in syslog. Next, to confirm

27
that the kernel memory is leaking, trigger an immediate memory scan using kmemleak.
This is performed with an echo scan command that is executed as “echo scan >
/sys/kernel/debug/kmemleak”. For better analysis, a redirector command is used to
send kmemleak output result to a text file. After the memory scan is triggered, the
following command “cat /sys/kernel/debug/kmemleak” is executed to view the actual
data leaked from kernel memory. The output of the actual data leaked is kept in
kmemleak file until the data is cleared with the following command “echo clear >
/sys/kernel/debug/kmemleak”.

Tools and Techniques

The tools used to collect the data for this study are syslog and the Kmemleak
module. Syslog is the log file format that is used by most network devices including IDS
and firewall. Whereas, kmemleak module is a tool that is designed to detect kernel
memory leakage that uses the same concept from GC. Both tools are log files that is
viewed using notepad. For analysis, the data were categorized into number of hours
monitored, number of leaks and number of times scanned based on date and time.
Summary

Now that the methodology of solving the problem statement is explained, the
next step is to determine if the data from the kernel memory leakage can be read. This
is shown in the next chapter that the kernel memory leakage can be read and log into a
text file for the actual data leaked and syslog for the event message stating that a kernel
memory leakage has occurred. After presenting the data, the data will be analyzed to

determine the amount of data that is leaked.

28
Chapter IV: Data Presentation and Analysis

Introduction

This chapter covers the data collected from 2 log formats. The first log format is
syslog that receives event messages from network devices as data. The second log
format is from kmemleak that records the actual data leaked from kernel memory. The
actual data leaked is arbitrary and if there are any confidential data leaked, kmemleak
will display the data in this log.
Data Presentation

The data collected are in the form of syslog that contains event messages from
network devices. As syslog only shows the event messages, the other form of data
collection is from kmemleak that shows the actual arbitrary data leakage to determine if
any confidential data is exposed as shown in Appendix A, figure 23 on page 54.

Syslog files collected in the first 23 hours. Data are collected into two formats.
The first format is generated automatically by network devices and stored in syslog.
Network devices just send event messages to the syslog. This log file will store the
information of a possible kernel memory leakage as shown below in the figure 3, 4 and

5 on page 29 and 30.

29

Mar 29 09:04:53 husky-virtual-machine systemd[1]: Started Daily apt download activities.

Mar 29 09:04:53 husky-virtual-machine systemd[1]: Starting Daily apt upgrade and clean activities...

Mar 29 09:05:82 husky-virtual-machine anacron[507]: Job “cron.daily" terminated

Mar 29 09:05:82 husky-virtual-machine anacron[507]: Normal exit (1 job run)

Mar 29 09:05:82 husky-virtual-machine systemd[1]: Started Run anacron jobs

Mar 29 89:05:@2 husky-virtual-machine anacron[5689]: Anacron 2.3 started on 2020-83-29

Mar 29 89:05:82 husky-virtual-machine anacron[5689]: Normal exit (@ jobs run)

Mar 29 09:05:@5 husky-virtual-machine systemd[1]: Started Daily apt upgrade and clean activities,

Mar 29 €9:07:21 husky-virtual-machine kernel: [38330.636703] kmemleak: 1 new (see /sys/kernel/debug/kmenleak)

Mar 29 09:07:22 husky-virtual-machine dhclient[5056]: DHCPREQUEST of 192.168.117.128 on ens33 to 192.168.117.254 port 67 (xid=Gx4ee92d26)
Mar 29 09:07:22 husky-virtual-machine dhclient[5056]: DHCPACK of 192.168.117.128 from 192.168.117.254
Mar 29 09:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585498042.2656] dhcpd (ens33):
Mar 29 9:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585498042.2681] dhcp4 (ens33):
Mar 29 09:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585498042.2682] dhcp4 (ens33): gateway 192.168.117.2
Mar 29 89:07:22 husky-virtual-machine Networkianager[735]: <info> [1585498042.2685] chcpd (ens33): lease time 1300

)i address 192.168.117.128
(ens33)
(ens33)
(ens33)
Mar 29 89:07:22 husky-virtual-machine NetworkiManager[735]: <info> [1585498042.2689] dhcp4 (ens33): nameserver '192,168,117.2'
(ens33)
(ens33)
(ens33)

plen 24 (255.255.255.0)

Mar 29 09:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585498042.269] dhcp4 (ens33): domain name 'localdomain
Mar 29 09:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585498042.2690] dhcpd (ens33): wins '192,168.117.2'
Mar 29 09:07:22 husky-virtual-machine NetworkManager[735]: <info> [1585493042.2698] dhcpd (ens33): state changed bound -> bound

......

Figure 3: First suspected memory leakage

fy-uirtua achine dbus-daerﬁon[ﬁés]: [systen] Successtully activated service “org.freedesktop.nn dispatcher

Mar 29 09:07:23 husk L-mach

Mar 29 09:07:23 husky-virtual-nachine systema[1]: Started Network Manager Script Dispatcher Service,

Mar 29 09:07:23 husky-virtual-nachine nn-dispatcher: req:1 ‘dncpd-change’ [ens33]: new request (1 scripts)

Mar 29 09:07:23 husky-virtual-nachine nn-dispatcher: req: ‘dhepd-change” [ens33]: start rumning ordered scripts...,

Mar 29 09:17:02 husky-virtual-nachine CRON[5741]: (root) CD (cd / && run-parts --report /etc/cron.hourly)

Mar 29 09:17:26 husky-virtual-nachine kernel: [38935,962616] knenleak: 2 new (see /sys/kernel /debug/kmenleak)

Mar 29 09:20:15 fusky-virtual-nachine dhclient[5e50]: DHCPREQUEST of 192,168.117.128 on ens33 to 192,168,117.254 port 67 (xid=9xdeed2d2e)
Mar 29 09:20:15 husky-virtual-nachine dhclient[5e50]: OHCPACK of 192,188,117.128 from 192,168.117,254

Mar 29 09:20:15 husky-virtual-nachine NetworkManager[735]: <infoy [1585498815.1404] dhopd (ens33): address 192,168,117.128

Mar 29 09:20:15 fusky-virtual-nachine NetworkManager[735]: <info [1585498815.1421) dhopd (ens33): plen 24 (295.255.255.0)

Figure 4: Second suspected memory leakage detected 10 minutes later

30

Mar 30 08:12:17 husky-virtual-nachine systend[2013]: Listening on D-Bus User Message Bus Socket,
Mar 30 28:12:17 husky-virtusl-nachine systend[2013): Reached target Sockets,

Mar 30 08:12:17 husky-virtual-nachine systend[2013]: Reached target Basic System,

Mar 30 88:12:17 husky-virtusl-nachine systemd[1]: Started User Manager for UID 0.

Mar 30 08:12:17 husky-virtual-nachine systend[2013]: Reached target Default.

Nar 30 08:12:17 husky-virtual-nachine systend[2013]: Startup finished in 305us.

Mar 30 28:13:09 husky-virtusl-nachine kernel: | 639.823920] kmenlesk: 14 new(see [sys/kernel [debug/ knenleak)

Mar 30 08:15:07 husky-virtual-nachine pvfsd-netadata[1699]: g udev device has property: assertion ‘6 UDEV IS DEVICE (device)' failed

Mar 30 88:15:07 husky-virtusl-nachine gufsd-netadata[1699]: nessage repeated 7 tines: [g udev device has property: assertion 'G UDEV IS DEVICE (device)' failed]
Mar 30 8:15:11 husky-virtual-nachine nautilus[1712]: Called "net usershare info" but it failed: Failed to execute child process “net” (No such file or directory)
Mar 30 08:17:01 husky-virtusl- machlne ERON[Z@?H (root) D cd /& run-parts --report /etc/cron.hourly)

Figure 5: Twenty-three hours later, 12 new suspected memory leaks (total 14)
Kmemleak files showing actual data leak collected in the first 23 hours. The
second method of data collection is the actual arbitrary data leaked from kernel
memory. After reviewing the syslog, this data collection method is executed by issuing
the following command “echo scan > /sys/kernel/debug/kmemleak” to view the kernel
leaked data. The first record of the 14 new suspected memory leaks is shown in table 1
below on page 31. The remaining 13 new suspected memory leaks are found in the

Appendix B, table 3 on page 56.

31

Table 1: The record of the first suspected memory leak

unreferenced object 0xffff942aba315c18 (size 72):

comm "swapper/0", pid 1, jiffies 4294892395 (age 1173.260s)

hex dump (first 32 bytes):
00000000000000000e02010002000001
9b 57 02 40 54 b6 ff ff 0e 00 00 00 00 00 00 00 W.@T...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<0000000025f2a706>] acpi_ds_build_internal_object+0xe5/0x1cc
[<0000000019bb4fb0>] acpi_ds_build_internal_package obj+0x1lea/0x331
[<00000000f66c35a7>] acpi_ds_eval data_object_operands+0x17d/0x219
[<000000005c7c7ddb>] acpi_ds_exec_end_op+0x4b5/0x764
[<000000007b93b1b9>] acpi_ps_parse_loop+0xa38/0xadc
[<000000009fbe3906>] acpi_ps_parse_aml+0xlac/Ox4bd
[<000000009f450676>] acpi_ds_execute _arguments+0x18b/0x1d2
[<00000000033ee6ee>] acpi_ds_get package arguments+0xfd/0Ox12c
[<00000000badb67db>] acpi_ns_init_one_object+0xeb/0x155
[<00000000913d2796>] acpi_ns_walk namespace+0x128/0x278

[<00000000edaf2427>] acpi_walk _namespace+0xf9/0x144

32

[<00000000c7ffelb1>] acpi_ns_initialize_objects+0x108/0x1f5

[<00000000fd360aaf>] acpi_initialize_objects+0x4b/0xd5

Syslog files collected in the next 73 hours. For the next 73 hours, the syslog
file did not show any entries from kmemleak. Reason is that the system stopped
responding and network devices could not deliver the event messages to syslog.
However, the exact time when the system stopped responding is unknown as the syslog
showed only the time and date that is after the 73 hours.

Kmemleak files showing actual data leak collected in the next 73 hours.
There is a total of 16 leaks during these 73 hours as shown by kmemleak. 6 leaks
showed arbitrary data with 10 leaks showing empty data. The 6 leaks are displayed in
the following figure 6, 7 and 8 on page 33 and 34. Even though the data leaked from the
kernel memory is arbitrary, the second memory leaked data in figure 6 on page 33,
coincidently leaked data that looks sensible. Therefore, this does show that even
randomly data leaked out can be of use. The remaining kernel memory leak that did not
show any data are placed in Appendix B as additional information on page 69, 70 and

71 as figure 25, 26, 27, 28 and 29.

~ e 2 P72 Player ¥ v oo oL
ea e a elp
0000000040db95d S A 64_a ame+0
00000000aT9ac6bs 0
efere ed obje 0 Sde4 a63800
o appa (o) pa e pid 660 e 42948966 age
ex dump byte
9 a 8 e a4 6 8 d d 4b 6 9 96
e a7 a a ba 00 0O 00 00 00 00 00 00 00 00 00
ba ace
00000000762bb479 alloc+0 b/o 0
00000000aae191d aa_ca pro a 0) 0
0000000057e38ces8 aa P 0x38b/0

00000000fa26f3d
0000000056€ 9
00000000038
00000000b2b
00000OOOb596 d e+0
i) 000000004ad2bob e+0x49/0
0000000061292a do 3 64+0
0000000040db95d S A 64

00000000af9ac6b9 0

u R 0 ek o

P0000000762bb4a79 allo

00000000830d0O6 aa pro

00000000f8a3f998 aa p

0000000056e18394 po pda

00000000038dbd26 Dro

00000000b2bibelb
00000000b596 d

000000004ad2bsb

0000000612924 do

0000000040dbo5d

00000000af9ac6bs 0

s El Terminal ~

File Edit View Search Terminal
3 fap—
nreferenced

comm "apparmor_parser”, pid 660,
- hex dump (first 32 bytes):
432 81 c5 32 e5 9d ff

Help

jiffies 4294896612 (age

root@husky-virtual-machine: /

1654.164s)

16 ac 30 35 eS 9d ff
backtrace:
[<68800090e3283401>]
[<60660000eadee84c>]
[<660000606T3c6296>]
[<660000003718caef>]
[<66060060fa26f3d6>]
[<6600000056e18394>]
[<6000800000638dbd26>]
[<686680006b2b1be1b>]
[<68800066b596715d>]
[<606860084ad2b9b2>]
[<0000000061292a71>]
[<©000600046db95d7>]
[<60000000af9ac6b9>]

ff 44 01 c5 32 e5 9d ff ff D..2.
Tf 00 02 060 60 00 00 ad de ..@5.

knen_cache_al1oc_trace+exf8/ex1ee
aa_alloc_profile+0x3b/exfe
unpack_profile+6x133/6xdse
aa_unpack+6x103/6x4a5
aa_replace_profiles+6x82/6xcbe
policy update+0x187/6x1de
profile_replace+6x82/0x96
__vfs_write+0x1b/ex4e
vfs_write+0xb1/6x1ae
SyS_write+0x49/6xbe
do_syscall_64+6x73/6x130
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
OXFFFffffrfrrrfrffr

unreferenced object exffffode532a6c360 (size 96):

comm "apparmor_parser”, pid 660, jiffies 4294896612 (age 1654.236s)

hex dump (first 32 bytes):
©1 00 660 60 66 60 60 66 66 00 2b 33 e5 9d ff ff
60 a® do 32 e5 9d ff ff 60 e0 do6 32 e5 9d ff ff
backtrace:
[<©00006000ea28a401>] kmem_cache_alloc_trace+0xf8/0x1e6
[<00000000a1b31676>] aa_dfa_unpack+6x34/ex4afe
[<eee0000021b9ecf5>] unpack_dfa+0x66/6x80
[<00000000436307F5>] unpack_profile+0x5f4/60xdse
[<60e000003718caef>] aa_unpack+6x103/6x4as
[<ceeee000fa26f3d6>] aa_replace.
[<0000000056€18394>] policy_!
[<ee000000038dbd26>] profile_rep’
[<0e000006b2b1be1b>] _ vfs_writ
[<00000000b596715d>] vfs_writ
[<000000004ad2b9b2>] SyS_write+Ox

a2

+3....
«2....

Ubuntu 64-bit copy <<

Figure 7: Kmemleak showing the next 2 data leaks during the 73 hours

W = 9

I

33

34

Ubuntu 64-bit copy << @ c @ x

root@husky-virtual-machine: /

File Edit View Search Terminal Help
LSUUUUUUUUG! JaLUUT -] UAL L
unreferenced object 0xffff9de532d0800@ (stze 8192):
comm "apparmor_parser", pid 660,
hex dump (first 32 bytes):
07 00 02 00 0O GO 0O 00 41 08 0O 0O OO 0O 10 00

Jiffies 4294896612 (age 1654.272s)

02 00 1e 00 02 00 11 00 2b 0O 03 00 Oc 00 04 0O
backtrace:
[<00000000f0cffbib>] _ kmalloc_node+0x1a9/0x2f0
[<00000000c0f6b299>] kvmalloc_node+0x4b/0x80
[<00000000c8ae49a2>] aa_dfa_unpack+0x14e/0x4f0
[<0000000021b9ecf5>] unpack_dfa+0x66/0x80
[<00000000436307f5>] unpack_profile+0x5f4/0xdg8o
[<000000003718caef>] aa_unpack+0x103/0x4as
[<00000000fa26f3d6>] aa_replace_profiles+0x82/0xcbo
[<0000000056€18394>] policy_update+0x187/0x1d0
[<00000000038dbd26>] profile_replace+0x82/0x90
[<00000000b2blbelb>] __ vfs_write+0x1b/0x40
[<00000000b596715d>] vfs_write+0xbl/0x1a0
[<000000004ad2b9b2>] SyS_write+0x49/0xbo
[<00PPO00E61292a71>] do_syscall_64+0x73/6x130
[<0000000040db95d7>] entry_SYSCALL_64_after_hwframe+0x3d/0xa2
[<00000000af9ac6b9>] Qxffffffffffffffff
unreferenced object exffff9de53236c6ce (size 96):
comm "apparmor_parser", pid 660, jiffies 4294896612 (age 1654. 308s)
hex dump (first 32 bytes):
01 00 00 GO 6O 00 00 00 00 co do 32 e5 od ff ff
00 20 45 34 e5 9d ff ff 00 40 06 34 e5 od ff ff .
backtrace:
[<00000000ea28a401>] kmem_cache_alloc tra:e+exf810x1ee
<00000000a1b31676>]
E<0000600621b9ecf5>] unpack dfa+ex§6[e 0
[<0000000014ea0bd8>] unpack_profile+
[<000000603718caef>] aa_unpack+0x103/0;
[<00000000fa26f3d6>] aa replace P
[<0000000056€18394>] poltcy update+o /
[<000600000038dbd26>] profile_| replace+ox82/ex9e
[<000006000b2bibeib>] __vfs wrtte+ox1b/ax4e
[<00000006b596715d>] Vfs wrtte+axb1/ex1a0
f<0nAAAARNAAAThOh? =T Sue wri FasAxda/axha

Figure 8: Kmemleak showing another 2 data leaks during the 73 hours
Data Analysis

To perform data analysis, the plan is to collect data continuously for 5 days.
However, referring to table 2 on page 35, 71 hours later, the performance of the
computer degraded to a point of where the system stopped responding and needed a
reboot. When the system stopped responding, the network devices could not send any
more event messages to syslog. Therefore, syslog did not record anymore events of
kernel memory leakage. However, after a system reboot, the syslog did show a total
number of 30 new suspected memory leaks. This brings to light that an attacker can
modify the syslog file to avoid been detected (O’Reilly Media, Inc., 2020). Fortunately,
kmemleak was re-compile with the Linux kernel and not an LKM. That is the reason why

kmemleak was still operating and showed kernel memory leakage that was not reported

35
in syslog before the reboot. This means that the syslog needs to be protected and if the

system stopped responding, kmemleak needs to be analyzed for kernel memory

leakage.

Table 2: Data Analysis of kernel memory leakage

Date Mar 29 Mar 30 Mar 31 Aprl Apr 2 Apr 3
Time (am) 9:07 8:03 | 8:13 8:13 8:13 9:19 11:05
Hours 23 hours 73 hours 26 hours
monitoring 71 hours
kernel leaks 96 hours

122 hours
Number of 14 leaks 16 leaks N/A
leaks 30 leaks N/A
Number of 138 times Unknown number of times scan N/A
times scan \ \ System stopped responding
Event | [A | | | | |

Based on the syslog records in figure 3, 4 and 5 on page 29 and 30, 14 new
suspected memory leaks were found. By default, kmemleak will scan for kernel memory
leakage is performed every 10 minutes and the even is recorded in syslog. For the first
data collection, the total time monitored for kernel memory leakage is 23 hours. Based
on the 10 minutes interval of scanning, the memory is scan 6 times in an hour and
multiply by 23 hours will equal to 138 times of scan performed for the total duration.
During this fata collection time, 14 new suspected leaks were found. That is

approximately 10% of leakage based on the number of scans compared with the

36
number of suspected new leaks for the system that is been monitored. In the following
73 hours when the syslog stopped responding, there were 16 kernel memory leakage
found. 6 leaks had arbitrary data in the memory leak and 10 leaks did not had any data
in the memory leak. The calculation for the output during the 73 hours will not be
measured against the first 23 hours monitored as the syslog had stopped responding.
The output from the 73 hours of monitoring shows that 37.5% percent of the data leaked
from kernel memory contains arbitrary data while the remaining data leaked that does
not show any data is 62.5% percent as shown in figure 6, 7 and 8 on page 33 and 34.
Though syslog has stopped responding and both the 23 hours and 73 hours data
collection period cannot be compared based on the number of scans, the measurement
of total time and number of leaks can still be compared. At this time referring to table 2
on page 35, the total time of kernel memory monitored is 96 hours with a total of 30
leaks. That is, on the average 1 leak in every 3.2 hours of the time monitored.
Therefore, this computer system average leak of kernel data in the first 23 hours is 1.4
leak in every 2.3 hours compare to the total 96 hours with 1 leak in every 3.2 hours.
This shows that from the beginning of the data monitoring collected, the number of
leaks is decreasing as time increases. The last day of data collection did not show any
data collected in the syslog. When a trigger was initiated to scan for memory leakage,
permission was denied even though the scan was done with a root account. The
computer was rebooted and after a closer look at the syslog, there is an entry from the

kernel stating “no debug enabled” as shown in figure 9 on page 37.

37

Figure 9: Syslog showing “no debug enabled”

A command was executed to mount the debug and the mount point is already
mounted or mount point busy as shown figure 10 on page 38. Then a test was done to
deliberately cause a leak in kernel memory to test if kmemleak is working. The system
response is “FATAL: Module kmemleak-test not found in directory” as shown in figure

10 on page 38. The kmemleak file itself is missing from the /sys/kernel/debug/ directory.

38

R': Ubuntu 64-bit copy - orkstation 15 Player

(Non-commercial use only)

Fri0si40e

. root@husky-virtual-machine: ~
File Edit View Search Terminal Help

root@husky-virtual-machine:~# mount -t debugfs nodev /sys/kernel/debug/

! mount: /sys/kernel/debug: nodev already mounted or mount point busy.
root@husky-virtual-machine:~# modprobe kmemleak-test
modprobe: FATAL: Module kmemleak-test not found in directory /lib/modules/5.3.8-45-ge
root@husky-virtual-machine:~# B

Figure 10: Result of mounting kmemleak and kmemleak-test

Therefore, no data is available for the last day of data collection. The
investigation done leads to an understanding that kmemleak has crashed after running
non-stop for 73 hours. In addition, as the mount point is already mounted, the kmemleak
will automatically load itself as shown in table 2 on page 35 listed as “Event” at the
bottom of the table indicated with the letter “A” on Mar 30 at 8:03am. However, of
course this autoloading is before the crash.
Summary

In conclusion, the data of kernel memory leakage that was collected for 4 days
concludes that the kernel memory leakage did reduce from 1.4 leak in every 2.3 hours

to 1 leak in every 3.2 hours for this computer system. As for the purpose of this study,

39
the kernel memory leakage can be read and recorded in syslog file format and a text file

format for the actual data leaked from kernel memory.

40
Chapter V: Results, Conclusion, and Recommendations

Introduction

After designing and testing the methodology, and presenting and analyzing the
data, this chapter concludes the findings and recommends the future work.
Results

To address the first study question at the beginning of this study, that is how can
the kernel memory be read? There are two methods available to access the kernel
memory. The first method is to use Loadable Kernel Module (LKM) that can be loaded
and unloaded as needed. However, if the LKM is unloaded without removing the
changes made, the kernel memory will be locked until a reboot takes place. That is why
kernel developers need to know the exact location of the memory and what was done to
the memory as there is no Garbage Collector (GC) to clean up after them. Otherwise
the LKM will be the reason why there is a kernel memory leakage (Day, 2009). The
second method to access the kernel memory is to re-compile the Linux kernel image.
This method is better as the kernel memory leakage detector, kmemleak is in the kernel
and prove to be an advantage for this study because when kmemleak crashed, the
syslog was updated to reflect the 30 new suspected memory leakage. LKM may not
have reflected these changes after the system was rebooted. The second study
guestion addresses the concern of, if there is any log file created from the scanning of
kernel memory leakage? There are 2 log files created, one is from syslog that records
the event messages from the network devices. The other log file is from kmemleak that

shows the actual data leaked from kernel memory. The final question is concern over

41
the readability of the log files by a Host-based IDS? The answer to this question is yes,
a Host-based IDS can read a syslog file format and capture the details from the syslog
file based on the program that generated the event message.

Conclusion

This study is a proof-of-concept to address the need of having a Host-based IDS
to promote an alert system for side-channel attacks such as Meltdown and Spectre. To
complete this study, scripts were written to facilitate an improved environment where the
kernel memory leak detector can be installed with only a few inputs needed from the
user such as the root account password and selection to confirm the installation.
Analysis was done to compare the leaked data collected from the kernel memory over a
period of 5 days showing a reduction in kernel memory leakage detected over a longer
time period. Therefore, kernel memory leakage can be read, and alerts created for the
Host-based IDS.

As a result of identifying and reviewing that there is or are kernel memory
leakage in the Host-based IDS, the Linux program out-of-memory killer (OOM) or
kmemleak free internal objects is an option free up more kernel memory space to
mitigate the risk of an attack or use. In conclusion, the solution to use a Host-based IDS
to monitor and alert side-channel attacks related to kernel memory leakage is available.
However, the technology is not integrated into one software that is needed to mitigate
the risk of side-channel attacks. Hopefully this solution will be in the real-world soon as
the current attack vector is not just data breach from a database, data in transmission,

infrastructure, and web applications, but it includes data in memory.

42

Future Work

The main challenge faced by this study is the huge amount of log files created at
every 10 minutes interval (The kernel development community, n.d.a). This can mean
importing the data into a database server for storage and analysis. A data analysis
study can then be performed on the log files to determine if the arbitrary data has any
pattern or caused by specific process? This data analysis study will provide a method to
narrow down the specific part of the kernel that is generating the arbitrary data leak. For
example, is there a specific LKM that did not undo the changes when the LKM is
unmounted? The second suggested future work is to identify the Indicators of Attack
(IoA) to find out the conditions that are needed to detect when confidential data in the
kernel memory is leaked. After the data analysis is performed and IoA are identified,
future work for the Host-based IDS to develop a filtering rule based on anomalies to
mitigate zero-day attacks. As more I0A are developed, the Host-based IDS will be more
accurate in identifying kernel memory attacks to reduce the attack vectors for kernel
memory. Another possible study is how to integrate kmemleak or LKM with a Host-
based IDS that will result in a faster monitoring and alert system. The next future work is
related to kmemleak where further research is needed to determine if date and time
stamp can be included in kmemleak output. In addition, the results and methodologies
for this study to develop a Host-based IDS as an alert system, can provide additional
information for other security tools. For example, antivirus or malware program to
identify zero-day threats in the kernel memory exploitations. The fifth future work is to

enable kernel memory leakage monitoring for mobile phones. This is important for

43
mobile phone has limited resources and the operating system does leak kernel memory

(Talexop, 2020).

44
References

Canella, C., Bulck, J. V., Schwarz, M., Lipp, M., Berg, B. V., Ortner, P., . .. College of
William and Mary. (2019, May 15).
ASystematicEvaluationofTransientExecutionAttacksandDefenses. Retrieved from
ASystematicEvaluationofTransientExecutionAttacksandDefenses:
https://arxiv.org/pdf/1811.05441.pdf

Abrams, L. (2018, January 3). List of Meltdown and Spectre Vulnerability Advisories,
Patches, & Updates. Retrieved from List of Meltdown and Spectre Vulnerability
Advisories, Patches, & Updates:
https://www.bleepingcomputer.com/news/security/list-of-meltdown-and-spectre-
vulnerability-advisories-patches-and-updates/

ArchWiki. (2020, January 18). Kernel module. Retrieved from Kernel module:
https://wiki.archlinux.org/index.php/Kernel_module

Clinton, D. (2018, May 30). How to load or unload a Linux kernel module. Retrieved
from Set up a Tor proxy with Raspberry Pi to control internet traffic:
https://opensource.com/article/18/5/how-load-or-unload-linux-kernel-module

Corbet. (2006, June 19). Detecting kernel memory leaks. Retrieved from Detecting
kernel memory leaks: https://lwn.net/Articles/187979/

Day, R. (2009, July 8). The Kernel Newbie Corner: Loadable Kernel Modules, Coming
And Going. Retrieved from https://www.linux.com: https://www.linux.com/training-
tutorials/kernel-newbie-corner-loadable-kernel-modules-coming-and-going/

Graz University of Technology. (2018a). Meltdown and Spectre. Retrieved from
Meltdown and Spectre: https://meltdownattack.com/

Graz University of Technology. (2018b). Meltdown and Spectre. Retrieved from
Meltdown and Spectre: https://meltdownattack.com/

Isohara, T., Takemori, K., Miyake, Y., Qu, N., & Perrig, A. (2010). LSM-Based Secure
System Monitoring Using Kernel Protection Schemes. 2010 International
Conference on Availability, Reliability and Security (p. 286). Krakow, Poland:
IEEE.

Kerner, S. M. (2018, September 10). Protecting Against the 7 Vulnerabilities of
Meltdown and Spectre. Retrieved from Protecting Against the 7 Vulnerabilities of

45

Meltdown and Spectre: https://www.esecurityplanet.com/applications/meltdown-
and-spectre-vulnerabilities.html

Lhotsky, B. (2013). OSSEC Host-based Intrusion Detection. July: Packt Publishing
Limited.

McAfee. (2014, October). Indicators of Attack (IoA). Retrieved from Solution Brief:
https://www.mcafee.com/enterprise/en-us/assets/solution-briefs/sb-indicators-of-
attack.pdf

MITRE Corporation. (2015 - 2020). Kernel Modules and Extensions. Retrieved from
MITRE Att&ck: https://attack.mitre.org/techniques/T1215/

Molloy, D. (2015). Writing a Linux Kernel Module — Part 1: Introduction. Retrieved from
Writing a Linux Kernel Module — Part 1: Introduction:
http://derekmolloy.ie/writing-a-linux-kernel-module-part-1-introduction/

Murali, R. (2013, November 25). Os concepts. Retrieved from Featured SlideShares:
https://www.slideshare.net/SUDHEESHPENATHU/o0s-concepts-28589673

Ning, P., Qing, S., & Li, N. (2006). Information and Communications Security: 8th
International Conference, ICICS 2006. 8th International Conference, ICICS 2006
(p. 182). Raleigh: Springer.

NIST. (2019, October 8). NATIONAL VULNERABILITY DATABASE. Retrieved from
NATIONAL VULNERABILITY DATABASE: https://nvd.nist.gov/vuln/detail/CVE-
2017-5754

O’Reilly Media, Inc. (2020). Protect Your Logs from Tampering. Retrieved from Protect
Your Logs from Tampering: https://www.oreilly.com/library/view/network-security-
hacks/0596006438/ch01s06.html

OSSEC Project Team. (2010-2020). Log monitoring/analysis. Retrieved from OSSEC is
a scalable, multi-platform, open source Host-based Intrusion Detection System
(HIDS): https://www.ossec.net/docs/docs/manual/monitoring/index.html

OSSEC PROJECT TEAM. (2020). OSSEC is a scalable, multi-platform, open source
Host-based Intrusion Detection System (HIDS). Retrieved from OSSEC is a
scalable, multi-platform, open source Host-based Intrusion Detection System
(HIDS): https://www.ossec.net/about/

46

Phrack Inc. (n.d.). Infecting loadable kernel modules. Retrieved from Phrack News:
http://lwww.phrack.org/archives/issues/68/11.txt

Phrack Magazine. (2003, August 13). Infecting Loadable Kernel Modules. Retrieved
from PHRACK NEWS: http://phrack.org/issues/61/10.html

Sanders, J. (2019, May 19). Spectre and Meltdown explained: A comprehensive guide
for professionals. Retrieved from Spectre and Meltdown explained: A
comprehensive guide for professionals:
https://www.techrepublic.com/article/spectre-and-meltdown-explained-a-
comprehensive-guide-for-professionals/

Schwartz, M. J. (2018, May 22). Spectre and Meltdown Flaws: Two More Variants
Discovered. Retrieved from Bank Info Security:
https://www.bankinfosecurity.com/spectre-meltdown-flaws-two-more-variants-
discovered-a-11021

Schwarz, M., Canella, C., Giner, L., & Gruss, D. (2019.a). Store-to-Leak Forwarding:
LeakingDataonMeltdown-resistantCPUs. ArXiv, 1.

Schwarz, M., Canella, C., Giner, L., & Gruss, D. (2019.b). Store-to-LeakForwarding:
LeakingDataonMeltdown-resistantCPUs. ArXiv 2019, 1.

Silberschatz, a., Galvin, P. B., & Gagne, G. (2012). Solutions to Practice Exercises of
the Ninth Edition of Operating System Concepts. In a. Silberschatz, P. B. Galvin,
& G. Gagne, Solutions to Practice Exercises of the Ninth Edition of Operating
System Concepts (p. 61). New Haven: John Wiley & Sons, Inc.

Smalley, S., Fraser, T., & Vance, C. (n.d.). Linux Security Modules: General Security
Hooks for Linux. Retrieved from The Linux Kernel documentation:
https://www.kernel.org/doc/html/latest/security/lsm.html

Talexop. (2020, February 2). Android 10 - kernel memory leak bug. Retrieved from
Andrroid Develoopment and Hacking: https://forum.xda-developers.com/galaxy-
note-10+/help/android-10-kernel-memory-leak-bug-t4044415

Technology, G. U. (2018). Meltdown and Spectre. Retrieved from Meltdown and
Spectre: https://meltdownattack.com

a7

The kernel development community. (2017, September 5). Development tools for the
Kernel . Retrieved from Development tools for the Kernel :
https://www.scribd.com/document/382273976/Kernel-Doc-Guide

The kernel development community. (n.d.a). Kernel Memory Leak Detector. Retrieved
from The Linux Kernel documentation:
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

The kernel development community. (n.d.b). Kernel Memory Leak Detector. Retrieved
from The Linux Kernel documentation:
https://www.kernel.org/doc/html/latest/dev-tools/kmemleak.html

The kernel development community. (n.d.). The Linux Kernel documentation. Retrieved
from The Linux Kernel documentation: https://www.kernel.org/doc/

The MITRE Corporation . (2014). SLEAK: A Side-channel Leakage Evaluator and
Analysis Kit. Retrieved from SLEAK: A Side-channel Leakage Evaluator and
Analysis Kit: https://www.mitre.org/sites/default/files/publications/pr-14-3463-
sleak-side-channel-leakage-evaluator.pdf

Threat Stack, Inc. (2015, September 9). The History of Intrusion Detection Systems
(IDS) — Part 1. Retrieved from CLOUD SECURITY AND COMPLIANCE:
https://www.threatstack.com/blog/the-history-of-intrusion-detection-systems-ids-
part-1

Trend Micro. (2019). Indicators of Compromise. Retrieved from Prepare for, withstand,
and rapidly recover from threats - now and in the future. :
https://www.trendmicro.com/vinfo/us/security/definition/indicators-of-compromise

Walters, D., Hagen, A., & Kedaigle, E. (2014). SLEAK: A Side-channel Leakage
Evaluator and Analysis Kit. Retrieved from SLEAK: A Side-channel Leakage
Evaluator and Analysis Kit: www.mitre.org

48

Appendix A: Additional Information

Figure 11: Select module kernel hacking in Configure Kernel using “make menuconfig”.

Figure 12: Selected Memory Debugging from Kernel Configuration

49

0139A aweJJ /uw
0°31p1 abed /uu
0°pJ31neyiasn/uw
o.:owuumasoulcocﬂﬂma\sz
0" BuWd [uiy
o.amzm;ownxﬁgmm\zz
0°307118Wsz /uuw
0°pnqz /uu
0°100dz /uw
0°uo13e)0s1 abed /uw
0°3ysesuea)d/uuw
0°yeawauwy /uww
o.wgaﬂwmu-agosms\se
o.a:o;munnﬂummsc\ss
o.a:o;auﬁamzm\ss
0°3unssaidun fuu
0°10J3U0oWaw /ww
c.;wu::oulwmma\ss
0" pabedabnyy /uw
@.h;@gWElUm::\ss
0° 332461/
07 1531Wsu /uw
Q.mmmuwanlmgeemE\ss
9°qn1s/uw
a.aumwaalmmma\aa
O WSy /uy

i

utilization instrumentati

] >
+ P
U
71 o B
1 40 B
VB
6-)
&l o
-0
o~
(]
:

e
(=
o
=
v
= =
e}
(=
)
=
Fe)
@
g}
P
7
e
a

=Ey

runtime memory debugger

=
=
Y=
o
o
2
=~
"
[
=
=
v
E
X
g}
-
=

i

. 4
SR

Debug access to per_cpu maps
'] theck for stack overflows (NEW)

Memory hotplug notifier error i

I

] bebug memory initialisation
ASan:

M> |

Figure 13: Enable the kernel memory leak detector

Figure 14: Rebuild Linux kernel modules from source

50

4 Light Ubuntu 64-bit - VMware Workstation 15 Player (Non-commercial use only)
vayer - | 1] ~ & H

test@test-pc:

tions Edit View Help

test@test-pc: ~/Downloads

4096 Apr :15
4096 Apr o
49848184 Mar 2€ :03 linux-

442 Apr 1 :03 runme2

1 :14 runme.sh

Actions | Edit View Help

I;rest@test-pc: ~/Downloads

. fakeroot
€p -r [usi /1inux-source-4,15.0
-/linux-source-4,15.0
unzip2 linux-source-4.15.0.tar.bz?
= -xf linux-source-4.15.0.tar
i Linux-source-4.15.0.tar
linux-source-4.15.0

I

Figure 16: Content of bash script runme2.sh

wad onfiguration. : 7
< E::(::en::a:e‘ :3 start the build or try make help

1At
sesky-virtual-nachine: - ‘.\rux-saurce-4.15.0/Ilnux-source-4.15.ﬂs make menuconfilg
pusky@husky-¥ sk~ i
seripts/kee fig
S(ﬂ“sﬂtwﬁglnm’.f i hotce values not supported

~393:warning: defaults for cholc

m“::w;:::g:uﬂ:arning: defaults for cholce values not supporte=
ﬁ:ﬂg[xcnnﬂg:«nuaming: defaults for choice values not snpport:d
secnrity[xcu-ﬂg:dos:-nrn\ng: defaults for choice values not support
secuﬂtyn(:mfig:m:-arning: defaults for cholce values not supported

«++ End of the configuration.
«s+ Execute 'make’ to start the build or try ‘make help'.

Euskvahusky—virwal-mchlne:—llimlx-sour:e-4.ls.o/llnux-source-d.15.35 make-kpkg clean
exec e kpkg_version=13.618+nmul -f [usr/share[kernel-package[ruleset/ntn\nal.nk clean
naking target minimal_clean [new prereqs:]======
This is kernel package version 13.018+nmul.
test ! - .config || cp -pf .config config.preclous
test ! -e stamp-building || rm -f stamp-buillding
test ! -f Makefile [] \
nmake ARCH=x86_64 distclean
make[1]: Entering directory '/home/husky/linux-source-4.15.8/1linux-source-4.15.8"'
CLEAN scripts/basic
CLEAN scripts/kconfig
CLEAN include/config include/generated 1
naﬁljﬂ L;(onﬂg‘imﬂ.g.old
: aving directo * /home /hus! = -4.15. o e
i e ry */home/husky/linux-source-4 ao[umu; source:

er
emplates.master /home /husky /1inux-

< Ce- Y 1
ource-4, lS.O/llnux-source-4.15.L-)/debian/linux-imaqe-4.1%

ky/linux-source-4.15 0/1linux

2 -15. -source-4, i i ; ;

L ce-4.15.0/debian/linux-image-4.15.18/

regex './DEBIAN/.*' | -regex './var/.*' e g '

e T G s printf '%P\0' | xargs -r0 md5sum > DEBIAN/md5

/home /husky/1inux-source-4.15.0/1inux {8

source‘4.15.0/1iljux-source—4.15.0/debian/1'1nux-image—4.15,18
oua.’ce-4..15.O/deblan/linux-image-4.15.18//boot/vm11'.nuz-4.15‘18 || chmod og-rx /home/h
/1linux-image-4.15.18//boot/vmlinuz-4.15.18
ource-4.15.0/debian/linux-image-4.15.18//boot/System.map-4.15.18 || \
.15.0/1linux-source-4.15.0/debian/1linux-image-4.15.18//boot/System.map-4.15.18 /home/husky/1l
-image-4.15.18//boot/vmlinuz-4.15.18
source-4.15.0/1linux-source-4.15.0/debian/linux-image-4.15.18
source-4.15.0/1inux-source-4.15.0/debian/linux-image-4.15.18 ..

in '../linux-image-4.15.18_1.0.kmemleak_amd64.deb"'.

irce-4.15.0/1inux-source-4.15.0"

rce-4.15.0/1inux-source-4.15.0"'

) /1inux-source-4.15.08$ sudo apt install fakeroot kernel-package linux-source

Figure 18: Compile a new kernel package source

51

52

! -regex VAR X’ -printf '%P\0' | xargs -r® md5sum > DEBIAN/md54"
} ; create_md5sums_fn /home /husky/linux-source-4.15.0/1inux

linux-source-4.15.0/debian/1linux-image-4.15.18
ebian/linux-image-4.15.18//boot/vmlinuz-4.15.18 || chmod og-rx /home/ht
.15.18//boot/vmlinuz-4.15.18
.ebian/linux-image—4.15.18//boot/System.map-4.15.18 il A
.urce-4.15.0/debian/11nux—inage-4.15.18//boot/5ystem.map-4.15.18 /home /husky/1
/ /boot/vmlinuz-4.15.18

1inux-source-4.15.0/debianllinux—image-4.15.18
/linux-source-4.15.0/debian/11nux-image—4.15.18 i
image—4.15.18_1.0.kmem1eak_amd64.deb'.

nux-source-4.15.0"'
nux-source-4.15.0'

-4.15.05 fakeroot make-kpkg --initrd - _revision=1.0.kmemleak kernel_image

Figure 19: Generate kmemleak kernel image

15.?éltnux}iource-4.15.0/debian/1inux-image-4.15.18

15.0/debian/linux-image-4.15.18 inuz- :

age-4.15.18//boot/vm%inuz-4.15{4200t/vm11nuz bl aa /hOME/hE
5.0/debian/linux-image-4.15.18//boot/System.map-4.15.18 || \ |
ux-source-4.15.0/debian/1inux-image-4.15.18//boot/System.map-4.15.18 /home/husky/1{
.15.18//boot/vmlinuz-4.15.18

.15.0/1inux-source-4.15.0/debian/1linux-image-4.15.18
.15.0/1inux-source-4.15.0/debian/linux-image-4.15.18 .
inux-image-4.15.18_1.0.kmemleak_amd64.deb’.

b.0/1linux-source-4.15.0"

b.0/1inux-source-4.15.0"
Lource-4.15.0$ sudo apt install libssl-devil

Figure 20: Installing SSL library

53

(97
8 UBate 64 kit - MiAwige Workstation U5 Phagen (bdogy v iy il 4

Activities = Terminal » Wed 08:04

husky@husky-virtual-machine: =/linux-source-4,15,0

) . :
File Edit View Search Terminal Help
: nei~§ ed Linux-source-4,15,0/
hu s Iy ahas k)) Ne b /TAnux=source«4,15,08 1s
dabian \ | { | d6d , deb
deblan. master Linux=source«4,15.0 3 ; R i
hushey@husky svirtualsmachines=/\inux=souree=4,15,0$ sudo dpkg -1 inux-image-4,15,18_1.0, knemleak_ando4,deb fi

| km Lea

Figure 21: Install Linux kernel and kmemleak kernel image

.master
/templates.master /home/husky/linux—

scurce—4.15.0/1'1nux-source—4.15.O/debian/linux-imaqe»4.15

t 1s without effect
-regex './DEBIAN/.*'

! -regex './var/.*'
EBIAN/md5sums"

¢ -Printf '%P\0' | xargs -r® mdSsum > DEBIAN
MG Y create_mdSsums_fn ; s

/home/husky/1inux-source-4, 15.0/1inu

x-source~4.15.0/1'1nux-source-4.15.0/debian/1inux-image-4.15.18
-source-4.15.0/debian/11‘.nux-image-4.15.18//boot/vml1’.nuz-4.1s.18
an/linux-image-4.15.18//boot/vmlinuz-4.15.18
-source-4.15.0/deb1'.an/1'1nux—'1mage-4.15.18//boot/System.map-4.15.18 ik
-4.15.0/1'1nux~source-4.15.0/debian/linux-image-4.15.18//boot/System.map-4.15.18 /home /husky/1
x-image-4.15.18//boot/vmlinuz-4.15.18

|| chmod og-rx /home/hd

X-source-4.15.0/1inux-source-4.15.0/debian/1inux-image-4.15.18
X-source-4.15.0/1linux-source-4.15.0/debian/linux-image-4.15.18 ..
''in '../linux-image-4.15.18_1.0.kmemleak_amd64.deb'.
purce-4.15.0/1inux-source-4.15.0"'
purce-4.15.0/1linux-source-4.15.0'

.0/1linux-source-4.15.8$ echo clear > /sys/kernel/debug/kmemleak

Figure 22: Run kmemleak to view if there is any memory leak

54

Player~ |]I » & [0, %
Activities [Terminal ¥ Wed 08:16

% root@husky-virtual-machine: /home /husky
il
#¥ File Edit View Search Terminal Help

[<000000008080f289>] acpi_ns_get_device_callback+0xd6/0x172
— [<0000000009b51a25>] acpi_ns_walk_namespace+0x128/0x278
ﬂ@?ﬁ [<000000000feea71c>] acpi_get_devices+0xd4/0x111
[<00000000bac2c12d>] acpi_early_processor_set_pdc+0x4c/0x4f
[<0000000060198437>] acpi_init+0x1b8/0x341
unreferenced object Oxffffoc5eb8foddoe (size 16):
comm "swapper/@", pid 1, jiffies 4294892353 (age 392.988s)
hex dump (first 16 bytes):
56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER. .
backtrace:
[<000000006€4725¢9>] __kmalloc+0x15b/0x250
[<0000000077ea0a3a>] acpi_os_allocate_zeroed+0x34/0x36
[<000000009d2ab5fd>] acpi_ut_create_string_object+6x79/0xf5
[<0000000041fa5f54>] acpi_ns_repair_HID+0x5f/0x108
[<000000002999e7d4>] acpi_ns_repair_CID+0x53/0x7b
[<000000008c070bc3>] acpi_ns_complex_repatrs+0x33/0x35
[<0000000040617e83>] acpt_ns_cheik_;et;rg§§7;u§:gxaa/exc2
<000000OA3f8cal75>] acpi_ns_evaluate+Ox X
E<00000000c699104f>] acpt_ut_evaluate_object+exb7/ex252
[<00000000857d9730>] acpi_ut_execute_CID+ex52/ex1az
[<000000008089f289>] acpt_ns_get_devtce_callback+exd6/ex172
[<0000000099b51a25>] acpt_ns_walk_nanespace+ax128/ex278
[<006006009feea71c>] acpt_get_devtces+exd4/ex111
[<eeeeeeeebac2c12d>] acpi_garly_processor_set_pdc+ex4c[ex4f
[<6006000060198437>] acpi_init+6x1b8/€x341
[<000000004ed1boab>] do_on:_:ntt§;1}+:x434g§171
bject exffffocsebs8fed9 size £
""Ei:ﬁerEEﬂerﬂe», pid 1, jiffies 4294892353 (age 392.988s)

hex dump (first 32 bytes):

Figure 23: Kmemleak output showing memory leakage

55

\
s, L libraries]
gy, Sl I e S M = “.:..-...'_".l'.".".'-.-u
e :

v s

v inter-process

file subsystem \ Process feeses ': ?2?.:..-2

e \ """""""""""

= control scheduler

Jt subsystem S T o el

buffer cache memory

: management E

chasaeter. block
devieefdnveu
v hardware control v

R R I L P o R s A T Y DTS T LTS N Rk Ak e

Hardware Level ~
hardware

Figure 2.1. Block Diagram of the System Kernel

Figure 24: Reena Murali. (2013). Block Diagram of the System Kernel [Figure]. Os
concepts. Retrieved from https://www.slideshare.net/SUDHEESHPENATHU/os-

concepts-28589673

Appendix B: More Information

Table 3: The remaining thirteen new suspected memory leak

56

unreferenced object 0xffff942ab9939948 (size 72):

comm "swapper/0", pid 1, jiffies 4294892400 (age 1173.244s)

hex dump (first 32 bytes):
00 000000000000000e02010002000001
7e f1 02 40 54 b6 ff ff 08 00 00 00 00 00 00 00 ~..@T...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<0000000025f2a706>] acpi_ds_build_internal_object+0xe5/0x1cc
[<0000000019bb4fb0>] acpi_ds_build_internal_package obj+0x1lea/0x331
[<00000000f66c35a7>] acpi_ds_eval data_object_operands+0x17d/0x219
[<000000005c7c7ddb>] acpi_ds_exec_end_op+0x4b5/0x764
[<000000007b93b1b9>] acpi_ps_parse_loop+0xa38/0xadc
[<000000009fbe3906>] acpi_ps_parse_aml+0xlac/Ox4bd
[<000000009f450676>] acpi_ds_execute _arguments+0x18b/0x1d2
[<00000000033eebee>] acpi_ds_get package arguments+0xfd/Ox12c
[<00000000badb67db>] acpi_ns_init_one_object+0xeb/0x155

[<00000000913d2796>] acpi_ns_walk _namespace+0x128/0x278

57

[<00000000edaf2427>] acpi_walk _namespace+0xf9/0x144
[<00000000c7ffelbl>] acpi_ns_initialize_objects+0x108/0x1f5

[<00000000fd360aaf>] acpi_initialize_objects+0x4b/0xd5

unreferenced object 0xffff942ab9939e10 (size 72):

comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.148s)

hex dump (first 32 bytes):
00 00 00 00 00 0000 00 0e 0201 0000000000ccvuvnnnnn.
c0 17 d4 b8 2a 94 ff ff 0Oe 00 00 00 00 00 00 00*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2

[<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

58

[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<00000000df8728c3>] acpi_early processor_set pdc+0x4c/Ox4f

[<00000000031ef9el1>] acpi_init+0x1b8/0x341

unreferenced object 0xffff942ab8d417c0 (size 16):
comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.1525s)

hex dump (first 16 bytes):

56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172

[<00000000913d2796>] acpi_ns_walk _namespace+0x128/0x278

59

[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<00000000df8728c3>] acpi_early processor_set pdc+0x4c/Ox4f
[<00000000031ef9el1>] acpi_init+0x1b8/0x341

[<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939b40 (size 72):

comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.1525s)

hex dump (first 32 bytes):
00 00 00 00 00 000000 0e 02010000000000cceuennnnnn.
80 10 d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252

[<00000000efe25f55>] acpi_ut_execute CID+0x52/0x1a2

[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk _namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111

[<00000000df8728c3>] acpi_early processor_set pdc+0x4c/Ox4f

[<00000000031ef9el1>] acpi_init+0x1b8/0x341

unreferenced object 0xffff942ab8d41080 (size 16):

comm "swapper/0", pid 1, jiffies 4294892424 (age 1173.1525s)

hex dump (first 16 bytes):
41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPIOO12........

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute CID+0x52/0x1a2

[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172

61

[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<00000000df8728c3>] acpi_early processor_set pdc+0x4c/Ox4f
[<00000000031ef9el1>] acpi_init+0x1b8/0x341

[<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939630 (size 72):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.1565s)

hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 0e 0201 0000000000cceuvnnnnn.
e0 le d4 b8 2a 94 ff ff 0e 00 00 00 00 00 00 00*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252

62

[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

[<00000000af939fd7>] acpi_init+0x1bd/0x341

unreferenced object 0xffff942ab8d41ee0 (size 16):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.1565s)

hex dump (first 16 bytes):
56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252

[<00000000efe25f55>] acpi_ut_execute CID+0x52/0x1a2

63

[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78
[<00000000af939fd7>] acpi_init+0x1bd/0x341

[<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab99399d8 (size 72):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.1565s)

hex dump (first 32 bytes):
00 00 00 00 00 000000 0e 0201 0000000000ccvuennnnn.
60 14 d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00 "...*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/Oxc2

[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78

[<00000000af939fd7>] acpi_init+0x1bd/0x341

unreferenced object 0xffff942ab8d41460 (size 16):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

hex dump (first 16 bytes):
41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPIOO12........

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252

65

[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<000000008b6803ff>] acpi_ec_dsdt_probe+0x43/0x78
[<00000000af939fd7>] acpi_init+0x1bd/0x341

[<00000000a68a04cd>] do_one_initcall+0x43/0x171

unreferenced object 0xffff942ab9939168 (size 72):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

hex dump (first 32 bytes):
00 00 00 00 00 000000 0e 02010000000000cceuvnnnnn.
50 1f d4 b8 2a 94 ff ff 0e 00 00 00 00 00 00 00 P...*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dcbh33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

[<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/Oxc2

66

[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device_callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get devices+0xd4/0x111
[<000000006ff3d6¢5>] acpi_processor_init+0x40/0x62

[<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

unreferenced object 0xffff942ab8d41f50 (size 16):
comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.164s)

hex dump (first 16 bytes):

56 4d 5f 47 45 4e 5f 43 4f 55 4e 54 45 52 00 00 VM_GEN_COUNTER..

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcb33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35
[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2

[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445

67

[<000000007e7b4d58>] acpi_ut_evaluate_object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get_devices+0xd4/0x111
[<000000006ff3d6¢5>] acpi_processor_init+0x40/0x62
[<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

[<00000000a733c9a6>] acpi_init+0x2f2/0x341

unreferenced object 0xffff942ab99390d8 (size 72):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.172s)

hex dump (first 32 bytes):
00 00 00 00 00 000000 0e 02010000000000ccvvennnnn.
c0 1e d4 b8 2a 94 ff ff 08 00 00 00 00 00 00 00*...........

backtrace:
[<000000002517a863>] kmem_cache_alloc+0xf8/0x1e0
[<000000002b330b88>] acpi_ut_allocate object_desc_dbg+0x62/0x10c
[<00000000f5fb5003>] acpi_ut_create_internal_object_dbg+0x53/0x117
[<00000000cfe8a0c3>] acpi_ut_create_string_object+0x4a/0xf5
[<00000000961dch33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b

[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

68

[<00000000ac9086ad>] acpi_ns_check_return_value+0xaa/Oxc2
[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get devices+0xd4/0x111
[<000000006ff3d6¢5>] acpi_processor_init+0x40/0x62

[<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

unreferenced object 0xffff942ab8d41ecO (size 16):

comm "swapper/0", pid 1, jiffies 4294892425 (age 1173.172s)

hex dump (first 16 bytes):
41 43 50 49 30 30 31 32 00 00 00 00 00 00 00 00 ACPIOO12........

backtrace:
[<0000000007a58044>] _ kmalloc+0x15b/0x250
[<00000000b1765366>] acpi_os_allocate _zeroed+0x34/0x36
[<0000000049f3fede>] acpi_ut_create_string_object+0x79/0xf5
[<00000000961dcbh33>] acpi_ns_repair_HID+0x5f/0x108
[<00000000b7344f17>] acpi_ns_repair_CID+0x53/0x7b
[<00000000f823f531>] acpi_ns_complex_repairs+0x33/0x35

[<00000000ac9086ad>] acpi_ns_check return_value+0xaa/Oxc2

69

[<00000000ca650011>] acpi_ns_evaluate+0x395/0x445
[<000000007e7b4d58>] acpi_ut_evaluate object+0xb7/0x252
[<00000000efe25f55>] acpi_ut_execute_CID+0x52/0x1a2
[<00000000ffc430e6>] acpi_ns_get_device callback+0xd6/0x172
[<00000000913d2796>] acpi_ns_walk_namespace+0x128/0x278
[<00000000ceef9850>] acpi_get devices+0xd4/0x111
[<000000006ff3d6¢5>] acpi_processor_init+0x40/0x62
[<00000000b27b33c0>] acpi_scan_init+0x1f/0x22c

[<00000000a733c9a6>] acpi_init+0x2f2/0x341

Ubuntu 64-bit copy <<
root@husky-virtual-machine: /
e Edit View Search Terminal Help
| <0000000061292371> | do_syscall_64+0x73/0x130
[<0000000040db95d7>] entry_SYSCALL_64_after hwframe+6x3d/0xa2
[<00000000af9ac6b9>] OxXFFffffffffffffrf 5
aferenced object Oxffffode5332b0000 (size 8192):
“apparmor_parser", pid 660, jiffies 4294896612 (age 1654.236s)
X dump (first 32 bytes):
00 00 04 00 00 00 00 00 f6 04 0O 00 00 00 060 06
A 00 00 00 00 04 60 00 00 04 GO 60 0O 04 6O 00 0
backtrace:
[<00000000f6cFfbib>] __kmalloc_node+6x139/0x2f0
[<00000000c0f6b299>] kvmalloc_node+8xab/ex80
[<00000000c8ae49a2>] aa_dfa_unpack+bx14e/0x4fe
[<0000000021b9ecf5>] unpack_dfa+0x66/0x80
[<00000000436307f5>] unpack_profile+6x5f4/0xd8e
[<000000003718caef>] aa_unpack+0x103/6x4a5

[<00000000fa26f3d6>] aa_replace_profiles+8x82/6xcbe
[<0000000056e18394>] policy_update+8x187/6x1d0
[<00000000038dbd26>] profile_replace+8x82/0x90

[<00000000b2b1belb>] _ vfs_write+0x1b/6x46
[<00000008b596715d>] vfs_write+6xb1/0x1a6
[<000000004ad2bob2>] SyS write+0x49/6xbo
[<0000000061292a71>] do_syscall_64+6x73/6x130
[<0000000040db95d7>] entry SYSCALL_64_after hwframe+6x3d/exa2
[<00000000af9ac6b9>] OXFFFFffffffffffff
unreferenced object @xffff9de5332b66686 (size 8192):
comm "apparmor_parser", pid 660, jiffies 4294896612 (age 1654.236s)
hex dump (first 32 bytes):
06 00 64 60 00 00 60 00 f6 04 0O 66 60 0O €0 60 ..
00 60 06 00 00 60 60 6O 6O 60 OO 60 OO 66 60 60 ..
backtrace:
[<00000000f0cffbib>] _ kmalloc_node+©x1
[<00000000c0f6b299>] C Z
[<00000000c8ae49a2>]
[<0000000021b9ecf5>]
[<0000000043630715>] LSS
[<000000063718caef>] aa_unpack+0x1
[<00000000fa26f3d6>] aa_replace_profiles+0x82/6xcbe
[<0000000056€18394>] policy update+0x187/6x1de

aLoaa- Am A

Figure 25: Kmemleak showing empty data leak for the 73 hours

File Edit View Search Terminal Help

[<UUUUUUUUU$UUDGI_O>J
[<00000000b2b1be1b>]
[<00000000b596715d>]
[<0000000043d2bob2>]
[<0000000061292a71>]
[<0000000040db95d7>]
[<00000000af9ac6b9>]

unreferenced object Oxffffode
comm "apparmor_parser", pid
hex dump (first 32 bytes):

00 00 04 00 00 00 00
00 00 60 60 00 00 00
backtrace:
[<00000000f0cffbib>]
[<00000000c0f6b299>]
[<00®00600c86e4932>]
[<0096006021b9ecf5>]
[<0000000014ea0bd8>]
[<00e000003718caef>]
[<00000000fa2613d6>]
[<0000000056€18394>]
[<00000000038dbd26>]
[<00000000b2b1be1b>]
[<00000000b596715d>]
[<000000004ad2b9b2>]
[<0000000061292371>]
[<0000000040db95d7>]
[<00000000af9ac6b9>]

B
E
»
-

root@husky-virtual-machine: /

ProTlie_replace+uxusz/uxyy
_vfs_write+0x1b/0x40
vfs_wrltemxbl/exlae
SYS_write+0x49/0xbo
do‘syscall_64+0x73/0x130
entry_SYSCALL_64_after_hwframe*0x3d/exa2
OXFFFEFfFfffffrrere

532d0c000 (size 8192):

660, jiffies 4294896612 (age 1654.308s)

60 d1 85 00 00 66 00 00 00
CO Be 80 03 00 00 00 0O cO

__kmalloc_node+0x1a9/6x2fe0
kvmalloc_node+0x4b/ex80
aa_dfa_unpack+0x14e/0x4fe
unpack_dfa+0x66/06x80
unpack_profile+0x505/6xdse
aa_unpack+0x103/6x4as
aa_replace_profiles+0x82/6xcbe
policy_update+6x187/6x1de
profile_replace+6x82/0x90
__vfs_write+0x1b/ex40
vfs_write+0xb1/ex1ae
SyS_write+0x49/6xbe
do_syscall_64+6x73/6x130
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
OxFIFEFFFFrrffffff

unreferenced object exffff9de534454000 (size 8192):
comm "apparm?—_parser", pid 660, jiffies 4294896612 (age 1654.388s)
hex dump (first 32 bytes):

Ubuntu 64-bit copy <<

B

=
= [0 2%

70

06 60 04 60 60 00 00 00 d1 ©5 60 60 60 00 60 00
00 60 00 00 00 00 00 00 00 60 60 00 80 00 00 00
backtrace: § 3
[<00600006f0cffbib>] _ kmalloc_node+0x1a9/0x2fo
[<66600000c0f6b299>] kvmalloc_node+@x4b/0x80
[<00000000cB8aed9a2>] aa_dfa_unpack+0x14e/0x4f0

[<0000000021b9ecf5>]

F AABBABARS AnaBRADT

0%66/0%80

£41~.0ucnc Invdon

unpacl

c
H Frf Ff:
""" bd of{lesoxses
..... 2a_unpack+0x103/0x4a"
'r d Lac i X1
56018394 X187 /@x1d
18db ce+Ox82 /0x¢
te+Ox1b/
Lt b1/0x]1

(=)

Figure 27: Next example of kmemleak showing empty data leak for the 73 hours

71

Ubuntu 6
File ffv; n:rl:;mi::rfg Terminal Help root@husky-virtual-machine: /
I9a> w
[<eeeseeeeessdbdzs>i ﬁ:of;{éu?:;{:::i;:éévx‘uu
il /0x90
[<80060000b2b1be1b>] __\fs Write+0x1b/0x40
[<88080000b596715d>] vfs Write+0xb1/6x120
[<000866604d2b9b2>] Sys_write+x49/0xbo
[<8088080861292a71>] do_syscall 64+0x73/0x130
[<0000860040db9547>] entry_SYSCALL 64_after huf
[<00000000a70aceb9>] OXFFFTFFererrrrrrr — o oo/ 0Xe2
o e T (o e
hex dump (first 32 bytésg: N (age 1654.340s)
g; :g gé :g :g :g 60 60 d1 65 86 60 06 60 62 60
b 05 80 65 60 65 00 65 60 05 00
[<eeeeeeeefecffb1b>] __knalloc_node+ex1a9/0x2f0
[<0888008601325aadb>] kvmalloc_node+0x75/6x80
’ aa_dfa_unpack+0x14e/6xafo
- [<00B0000021b9ecfs5>] unpack_dfa+0x66/0x80
[<0800000614ea0bd8>] unpack_profile+6x505/6xdse
[<600000003718caef>] aa_unpack+0x163/0x4a5
[:::] [<00000000Ta263d6>] aa_replace_profiles+0x82/0xcbo
[<0000800056e18394>] policy_update+Ox187/6x1de
[<60000000038dbd26>] profile_replace+0x82/6x90
[<00000000b2b1be1b>] _ vfs write+0x1b/6x4e
[<00000000b596715d>] vfs_write+0xb1/0x1a8
[<000000004ad2b9b2>] SyS write+0x49/6xbo.
[<0000000061292a71>] do_syscall_64+0x73/0x136
[<0000000040db95d7>] entry SYSCALL_64_after_hwframe+0x3d/0xa2
[<00000000af9ac6b9>] Oxffffffffffffffff
unreferenced object Oxffff9de534638000 (size 9496):
;omnd“apparnor_parszr;, gtd 660, jiffies 4294896612 (age 1654.340s)
ex dump (first 32 es):
07 eapag 00 00 00 ge 00 86 12 00 60 60 00 00 GO ..
13 00 13 00 00 60 13 60 13 00 13 00 13 00 13 00 ..
backtrace:
[<0000000009ede218>] kmalloc_large_node+8x75/0x90
[<00000000c023b658>] __knalloc_nade+@x247/ox2f0
[<00000000cOf6b299>] kvmalloc_node+0x4b/0x80

[-AAAAAAAA~D3aA037~1 a3 AFfs linnarbiAvida/AvaFa

[<000060800C8ae49a2>]

Search Terminal Help
g Mieend

Ot § b et ¢t wwr _sives

b9>] OXFFFFfffffrffeere
Bxffff9de534064000 (size 9496):

rser”, pld 660, jiffies 4294896612 (age 1654.376s)
32 bytes):

B0 00 00 60 86 12 00 00 00 60 02 00
: 00 06 00 68 60 6b 00 18 00

e iy i

veveescrvne

veeeevsvene

kmalloc_large_node+0x75/6x90
__kmalloc_node+0x247/0x2f0
kvmalloc_node+0x4b/0x80
aa_dfa_unpack+0x14e/0x410
unpack_dfa+0x66/0x80
unpack_profile+06x505/0xdse
aa_unpack+0x103/6x4a5
. 90 aa_replace_profiles+0x82/0xcbo
8600000056e18394>] policy_update+0x187/0x1d6
[<€ 80038dbd26>] profile_replace+0x82/0x90
[<66006600b2b1be1b>] _ vfs_write+0x1b/0x40
[<000600000b596715d>] vfs_write+8xb1/0x1a0
[<6660660804ad2b9b2>] g,urtt:{ax«/o;:;“l”
<6000000061292a71>] do_syscall_64+0x
Leoeoooooudbesdb] entry_SYSCALL_64_after_hwframe+0x3d/0xa2
<00000000af9ac6b9>] OXFIffffffffffffff

Figure 29: Another kmemleak showing empty data leak for the 73 hours

	Kernel Memory Leakage Detection for Intrusion Detection Systems (IDS)
	Recommended Citation

	tmp.1587408888.pdf.oZ9iw

