
St. Cloud State University St. Cloud State University 

theRepository at St. Cloud State theRepository at St. Cloud State 

Culminating Projects in Information Assurance Department of Information Systems 

5-2020 

Performance Analysis of NIST Round 2 Post-Quantum Performance Analysis of NIST Round 2 Post-Quantum 

Cryptography Public-key Encryption and Key-establishment Cryptography Public-key Encryption and Key-establishment 

Algorithms on ARMv8 IoT Devices using SUPERCOP Algorithms on ARMv8 IoT Devices using SUPERCOP 

Sean Zakrajsek 
St. Cloud State University, stzakrajsek@stcloudstate.edu 

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds 

Recommended Citation Recommended Citation 
Zakrajsek, Sean, "Performance Analysis of NIST Round 2 Post-Quantum Cryptography Public-key 
Encryption and Key-establishment Algorithms on ARMv8 IoT Devices using SUPERCOP" (2020). 
Culminating Projects in Information Assurance. 104. 
https://repository.stcloudstate.edu/msia_etds/104 

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository 
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an 
authorized administrator of theRepository at St. Cloud State. For more information, please contact 
tdsteman@stcloudstate.edu. 

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/104?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F104&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu


 
Performance Analysis of NIST Round 2 Post-Quantum Cryptography Public-key 

Encryption and Key-establishment Algorithms on  

ARMv8 IoT Devices using SUPERCOP 

By 

Sean Zakrajsek 

 

 

 

A Thesis 

Submitted to the Graduate Faculty of 

St. Cloud State University 

in Partial Fulfillment of the Requirements 

for the Degree of 

Master of Science 

in Information Assurance 

 

 

 

May, 2020 

 

 

 

Thesis Committee: 
Dennis Guster, Chairperson 

 Erich Rice 
Mark Schmidt  



2 
Abstract 

 
With tens of billions of new IoT devices being utilized, and the advent of quantum computing, 
our future and our security needs are rapidly changing. While IoT devices have  great potential 
to transform the way we live, they also have a number of serious problems centering on their 
security capabilities. Quantum computers capable of breaking today’s encryption are just 
around the corner, and we will need to securely communicate over the internet using the 
encryption of the future. Post-quantum public-key encryption and key-establishment algorithms 
may be the answer to address those concerns. This paper used the benchmarking toolkit 
SUPERCOP to analyze the performance of post-quantum public-key encryption and 
key-establishment algorithms on IoT devices that are using ARMv8 CPUs. The performance of 
the NIST round 2  algorithms were found to not be significantly different between the two 
ARMv8 devices.  
  



3 
Acknowledgement 

A sincere thank you to my thesis committee, and all those at NIST who provided support 

and guidance. I am especially grateful to those at NIST who took their time to meet with me, and 

generously shared their PQC expertise. 

 

  

 

 

  



4 
Table of Contents 

Page 

List of Tables……………………………………………………………………………………….6 

List of Figures……………………………………………………………………………………... 7 

Chapter 

I. Introduction……………………………………………………………………………….. 8 

Introduction………………………………………………………………..……...8 

Problem Statement………………………………………………………...…….9  

Nature and Significance of the Problem……………………………………….9 

Objective of the Study…………………………………………………….......... 10 

Study Questions/Hypothesis…………………………………………………....10 

Limitation of the Study…………………………………………………………...11 

Definition of Terms……………………………………………………………….11 

Summary…………………………………………………………………………. 12 

II. Background and Review of Literature ……………………………………………….... 14 

Introduction………………………………………………………………………. 14 

Background and Literature Related to the Problem…………………………. 14 

Literature Related to the Methodology………………………………………... 17 

Summary…………………………………………………………………………. 18 

III. Methodology……………………………………………………………………………….19 

Introduction………………………………………………………………………. 19 

Design of Study…………………………………………………………………..19 

Data Collection…………………………………………………………….......... 20 

Hardware and Software Environment………………………………………….21 



5 
Chapter Page  

Summary…………………………………………………………………………. 22 

IV. Data Presentation and Analysis………………………………………………………... 24 

Introduction………………………………………………………………………. 24 

Data Presentation - Key-Encapsulation Mechanisms………………………..24 

Data Presentation - Public-Key Cryptosystems……………………………....31 

Data Analysis……………………………………………………………………..34 

Summary…………………………………………………………………………. 38 

V. Results, Conclusion, and Future Work………………………………………………....39 

Introduction………………………………………………………………………. 39 

Results…………………………………………………………………………….39 

Conclusion……………………………………………………………………….. 40 

Future Work…………………………………………………………………….... 41 

References………………………………………………………………………………………....43 

Appendix A………………………………………………………………………………………....45 

Appendix B………………………………………………………………………………………....51 

Appendix C………………………………………………………………………………………....55 

Appendix D…………………………………………………………………………………………63 

  



6 
List of Tables 

Table Page 

1. Cycles to generate a key pair for KEM on Raspberry Pi 3b+...................................26 

2. Cycles to generate a key pair for KEM on Raspberry Pi 4…………………………...27 

3. Cycles for encapsulation on Raspberry Pi 3B+........................................................28 

4. Cycles for encapsulation on Raspberry Pi 4 …………………………………………. 29 

5. Cycles for decapsulation on Raspberry Pi 3B+........................................................30 

6. Cycles for decapsulation on Raspberry Pi 4…………………………………………...31 

7. Cycles to generate a key pair for public-key encryption on Raspberry Pi 3B+........ 32 

8. Cycles to generate a key pair for public-key encryption on Raspberry Pi 4………..32 

9. Cycles to encrypt 59 bytes on Raspberry Pi 3B+.....................................................33 

10. Cycles to encrypt 59 bytes on Raspberry Pi 4 ……………………………………….. 33 

11. Cycles to decrypt 59 bytes on Raspberry Pi 3B+ ……………………………………. 34 

12. Cycles to decrypt 59 bytes on Raspberry Pi 4 ……………………………………….. 34 

 

 

 

  



7 
List of Figures 

Figure Page 

1. Raspberry Pi 3 B+....................................................................................................21 

2. Raspberry Pi 4……...……………………………………………………………………..22 

3. KEM Key Generation Time……………………………………………………………....35 

4. KEM Encapsulation Time……………………………………………………………….. 36 

5. KEM Decapsulation Time……………………………………………………………….. 37 

 

 

  



8 
Chapter I: Introduction 

Introduction 

Today’s network environment is seeing an exponential increase in the use of devices 

collectively known as the Internet of Things (IoT). These devices, such as sensors, medical 

devices, TVs, webcams, home thermostats, remote power outlets, lights, door locks, home 

alarms, etc., are all everyday objects that have been embedded with computing devices that 

allow them to send and receive data via the Internet, and also to be interconnected with each 

other. These IoT devices frequently operate on a Low power and Lossy Network (LLN), and 

their applications are often quite constrained. As production costs decrease, IoT devices are 

becoming more and more ubiquitous in all aspects of our lives.  

Many of the IoT devices use Advanced RISC Machine(ARM) processors. ARM is an 

instruction set for processors that uses the reduced instruction set computing (RISC) 

architecture. ARM cores are used in products ranging from smartphones, digital cameras, 

handheld game consoles, and single-board computers such as the Raspberry Pi. ARM 

processors have improved cost, power consumption, and heat dissipation compared to 

processors used in desktop computers (Aroca & Gonçalves, 2012). According to ARM Holdings 

CEO Simon Segars, in 2017 there has been 100 billion ARM-based chips shipped since 1991. 

ARM estimates that it will only take 5 years for them to ship the next 100 billion ARM-based 

chips, leading to their prediction that IoT devices will skyrocket into the hundreds of billions 

(Hughes, 2017). 

While IoT has great potential, it also has a number of serious problems centering on the 

security capabilities of the connected devices. Post-quantum public-key encryption and 

key-establishment algorithms may be the answer to address those concerns. Currently, there 

are algorithms for post-quantum public-key encryption and key-establishment that are 



9 
undergoing the second round of National Institute of Standards and Technology (NIST) 

evaluation. Of the 26 algorithms that made it to the second round, 17 of them are public-key 

encryption and key-establishment algorithms. “In 2020, NIST plans to either select finalists for a 

final round or select a small number of candidates for standardization” (Alagic et al., 2019, 

p.18).  

Problem Statement 

With the tens of billions of new IoT devices being utilized in the near future, they will 

need to be able to securely communicate over the internet using the encryption of the future. 

Tomorrow’s encryption algorithms must be able to function on today’s IoT devices. 

Nature and Significance of the Problem 

Security for today's IoT devices is actually a multifaceted issue. One of the most 

pressing issues is its lack of public-key encryption and key-establishment schemes, which 

leaves all the devices vulnerable to attack from hackers. “If one thing can prevent the Internet of 

things from transforming the way we live and work, it will be a breakdown in security” (Oxford 

dictionary, example sentence). This prophetic quote not only provides an eloquent warning, it 

perfectly sums up the significance of having adequate security for IoT devices. While adding 

current public-key encryption will be an acceptable short term security solution, it will fail to be 

proactive in addressing future security needs.  In the not too distant future, the advent of 

quantum computers capable of breaking today’s encryption will bring new security challenges, 

and left unaddressed, will render IoT devices vulnerable once again.  

It is imperative that those responsible for providing security for IoT Devices be forward 

thinking, and take into account how technologies will likely evolve. In order for IoT security to 

possess long term viability, algorithms must either be initially designed with post quantum 

security, or the applications must allow for algorithms to be easily replaced with ones that do 



10 
have post-quantum security (McKay et al., 2016). Public key cryptography can still be 

considered for inclusion if it can meet the necessary conditions, which include being robust 

against quantum attacks, and using a combination of general public key cryptographic schemes 

along with lightweight primitives, such as lightweight hash function. Unfortunately, “because the 

majority of modern cryptographic algorithms were designed for desktop/server environments, 

many of these algorithms cannot be implemented in the constrained devices used by these 

applications” (McKay et al., 2016, p. iii).  Either new algorithms must be created, or existing 

algorithms must be modified to fit in the constrained devices as well as meet the new standards 

for post-quantum public-key encryption and key-establishment. The performance of these 

algorithms need to be tested in other environments as well as the desktop/server environment. 

Objective of the Study 

The objective for this study is to use the SUPERCOP toolkit to collect performance data 

on post-quantum public-key encryption and key-establishment algorithms that are running on 

IoT devices using ARMv8 CPU architecture. The performance metrics collected for the 

key-encapsulation mechanisms include the number of cycles for generating a key pair, 

encapsulation of keys, and decapsulation of keys. The performance metrics collected for 

public-key cryptosystems include cycles to generate a key pair, to encrypt a short message, and 

to decrypt a short message. 

Study Questions/Hypothesis 

There will be no significant difference between the Raspberry Pi 3B+ and the Raspberry 

Pi 4 ARMv8 devices when measuring the benchmarked performance of public-key encryption 

and key-establishment algorithms using SUPERCOP. 

 

 



11 
Limitations of the Study 

This study is limited by the compatibility of the different post-quantum algorithm 

implementations with the SUPERCOP benchmarking toolkit. Not all of the post-quantum 

algorithm implementations in the second round of the NIST competition have public-key 

cryptosystems available for benchmarking in the SUPERCOP toolkit. Another limitation of this 

study is the C compiler compatibility to compile the post-quantum algorithm implementations. 

More on the compiler errors can be viewed in Appendix A. 

Definition of Terms 

Internet of Things (IoT) - There is no universally-accepted definition that exists for IoT. 

In the NIST special publication titled “Network of ‘Things’”, the author describes the underlying 

foundations for IoT without defining the IoT. He claims “That is useful since there is no singular 

IoT, and it is meaningless to speak of comparing one IoT to another” (Voas, 2016, p. 1). He 

describes Primitives as building blocks to describe the IoT, which will allow for comparisons 

between the different IoT’s.  

Primitives offer a unifying vocabulary that allows for composition and information 

exchange among differently purposed networks. They offer clarity regarding 

concerns that are subtle, including interoperability, composability, and 

continuously-binding assets that come and go on-the-fly…. This model does not 

specify a definition for what is or is not a ‘thing'. Instead, we consider that each 

primitive injects a behavior representing that ‘thing’ into a NoT’s(IoT) workflow 

and dataflow. ‘Things’ can occur in physical space or virtual space. (Voas, 2016, 

p. 1) 



12 
The primitives that are defined for the IoT are sensors, aggregators, communication channels, 

external utilities, and decision triggers. These make up the core components for the Internet of 

Things. 

Low power and Lossy Network (LLN) - A network of embedded devices that have 

limited power, memory, and processing capability.  

ARM - Advanced RISC Machine is a family of reduced instruction set computing (RISC) 

architectures for computer processors.  

RISC - Reduced Instruction Set Computer is a computer that has a small set of simple 

and general instructions. 

Post-Quantum Cryptography -  Cryptographic algorithms that are resistant to attacks 

from quantum computers. 

Public-key Encryption - Cryptographic system that utilizes a pair of keys, one public 

and one private. To ensure security, only the private key is required to be kept secret. The 

public key can be openly distributed without compromising security. 

SUPERCOP - System for Unified Performance Evaluation Related to Cryptographic 

Operations and Primitives. SUPERCOP is a toolkit developed for measuring the performance of 

cryptographic software. 

Summary 

Today’s IoT devices are very vulnerable to attack from hackers. While current public-key 

encryption will provide immediate protection, and should be standard on all network connected 

devices, it will not address future security needs that will arise with the advent of the quantum 

computer. The number of new IoT devices is going to be in the billions. They will need to be 

able to securely communicate over the internet using post-quantum encryption. Tomorrow’s 

encryption algorithms must be able to function on today’s IoT devices. The primary objective for 



13 
this study is to analyze the performance of post-quantum public-key encryption on IoT devices 

that are using ARM CPUs.   



14 
Chapter II: Background and Review of Literature 

Introduction 

This chapter will focus on the background information and literature reviewed in this 

study, as well as literature that is related to the methodology used. The articles published to 

date discuss the importance of having encryption on IoT devices, but are lacking in detailed 

information regarding the topic of this paper. Topics that this chapter covers include IoT 

guidelines, why devices should be made powerful enough to use encryption, introduction to the 

NIST algorithms, and literature related to the methodology used. 

Background and Literature Related to the problem 

According to Hewlett Packard’s 2015 report “Internet of Things research study,” 70 

percent of IoT devices did not encrypt communications to the Internet and local network, and 60 

percent did not use encryption when downloading software updates. These numbers were 

pulled from testing 10 devices that they believed to be a good indicator for the IoT market at that 

time. It's a good bet that IoT security has changed very little since then.  

By the year 2020, Cisco predicts there will be over 50 billion IoT devices connected to 

the internet, while Gartner, a global research and advisory firm, more modestly predicts the 

internet of things will be closer to 20 billion units. While there is no clear consensus on the exact 

number of IoT devices that will be in use by 2020 and beyond, the range for the predictions of 

total number devices is consistently in the tens of billions. That makes for a lot of vulnerable 

devices that are connected to the internet. 

As IoT data travels through multiple hops in a network, a proper encryption 

mechanism is required to ensure the confidentiality of data. Due to a diverse 

integration of services, devices and network, the data stored on a device is 

vulnerable to privacy violation by compromising nodes existing in an IoT network. 



15 
The IoT devices susceptible to attacks may cause an attacker to impact the data 

integrity by modifying the stored data for malicious purposes. (Khan & Salah, 

2018, p. 397) 

If you don’t use encryption in your IoT environment, then you may get hacked.  

In 2019, NIST came out with a list of guidelines called the “Core Cybersecurity Feature 

Baseline for Securable IoT Devices: A Starting Point for IoT Device Manufacturers”.  These 

guidelines were developed to help promote the best available practices for mitigating risks to 

IoT devices. Topics covered by the guidelines include the common risk mitigation area of Data 

Protection, which includes protecting data in transmission from unauthorized access and 

modification. These are just recommendations from NIST, and are not regulations that have to 

be followed.  

There are several potential barriers to using encryption on IoT devices. “Encryption can 

protect sensor data transmission integrity and confidentiality including cloud-to cloud 

communication, but it might render the IoT sensors unusable due to excessive energy 

requirements” (Voas, 2016, p. 22).  In order to make sure that a device is capable of using 

encryption, it needs to be designed with a powerful enough CPU and have enough energy to 

power it. 

Many sensor networks depend on the timely transmission of sensor data to 

aggregators or other controllers. Any delay of sensor data — especially in 

time-critical applications such as CO alarms — due to latency can have serious 

consequences or can render the sensor data useless. Security solutions (e.g., 

device authentication, encryption) applied to sensor networks may introduce 

latency. (Cichonski et al., 2019, p. 29) 

 



16 
Devices need to be designed with powerful enough CPUs because encryption is a 

processing-intensive operation. “Be forward-looking and size hardware resources for potential 

future use. As an example, if a device has a 10-year lifespan, it may be necessary to update the 

encryption algorithm or key length the device uses, and the new algorithm or key length may 

make encryption more processing-intensive” (Fagan et al.,2019, p. 14). 

As we look towards the post-quantum future, encryption processing needs will increase. 

With this increase, the devices that we have today may not be powerful enough to perform 

cryptography. That is why when we design an IoT device today, we need to keep the resources 

of the hardware in mind.  

Select or build a device with sufficient hardware resources (e.g., processing, 

memory, storage, network technology, power), as well as firmware and software 

resources, to support the desired features. For example, encryption is 

processing-intensive, and a device with limited processing might not be able to 

support encryption that customers need. Some devices cannot support the use of 

an operating system or Internet Protocol (IP) networks. (Fagan et al., 2019, p. 14) 

Making a device powerful enough to use encryption can be difficult when the device is 

battery-powered. When a device runs on a battery, the most important thing is keeping the 

power draw low, and in particular low standby power, as devices can be asleep for minutes or 

hours before waking up briefly. The power needed for the device to use encryption may be 

unattainable, or may unacceptably shorten the battery life.  

Currently NIST is on round 2 for the selection of the standards for post-quantum 

cryptography. Round 3 will begin sometime in 2020 or 2021. NIST considers the cost and 

performance of the algorithms to be the second most important characteristic for selecting the 

next standards. Memory requirements and computational efficiency are both considerations in 



17 
the cost of the algorithm. “NIST has completed preliminary efficiency analysis of the 

post-quantum public-key encryption algorithms on the reference platform, an Intel x64 running 

Windows or Linux and supporting the GNU Compiler Collection (GCC) compiler” (Alagic et al., 

2019, p. 5). NIST has only been considering the performance of these algorithms using an Intel 

x64 CPU and not any ARM processors. This is one area that is lacking an efficiency analysis for 

these algorithms.  

Out of the starting 82 candidate public-key encryption and digital signature algorithms, 

only 26 remain in the second round of the NIST Post-Quantum Cryptography Standardization 

Process. The 17 Second-Round Candidate public-key encryption and key-establishment 

algorithms include; BIKE, Classic McEliece, CRYSTALS-KYBER, FrodoKEM, HQC, LAC, 

LEDAcrypt, NewHope, NTRU, NTRU Prime, NTS-KEM, ROLLO, Round5, RQC, SABER, SIKE, 

and Three Bears. The 9 digital signature candidate algorithms in the second round include; 

CRYSTALS-DILITHIUM, FALCON, GeMSS, LUOV, MQDSS, Picnic, qTESLA, Rainbow, and 

SPHINCS+. 

Literature Related to the Methodology 

To compare other partially related methodologies, the research paper on “A 

Comprehensive Evaluation of Cryptographic Algorithms: DES, 3DES, AES, RSA and Blowfish,” 

was examined. In it, the authors go over the different evaluation parameters that they used in 

their experiment. In this project, the parameters that will undergo analysis include encryption, 

decryption time, and memory used. Encryption time is the time it takes for the encryption 

algorithm to convert plaintext into ciphertext. Decryption time is the opposite, the ciphertext is 

converted back into plaintext. The encryption and decryption time will be measured in 

milliseconds. This time will affect the performance of the system. The different algorithms will 

use different key sizes, number of operations done by the algorithm, initialization vectors used 



18 
and type of operations. This leads to requiring different memory sizes for implementation of the 

different algorithms (Patil et al., 2016). 

Summary 

This chapter reviewed IoT guidelines, discussing the common risk mitigation area of 

Data Protection. It also examined the roadblocks to using encryption on IoT devices, with lack of 

enough power being the biggest obstacle. The 17 NIST post-quantum public-key encryption 

algorithms were introduced, and although somewhat limited, the available literature related to 

the methodology was reviewed.  

Although the articles published to date do show a robust discussion about the 

importance of having encryption on IoT devices, there is a lack of detailed information regarding 

the topic of this paper, which is focused on analyzing the performance of post-quantum 

public-key encryption algorithms on IoT devices that are using ARM CPUs. 

 

  



19 
Chapter III: Methodology 

Introduction 

This chapter will provide an explanation of the methodology used and the procedures 

applied in order to achieve the objectives of this research. The first section covers aspects of 

how the study was designed, including a discussion of the data collected and the hardware 

used. The next section focuses on the algorithm implementations that were used in this study, 

and it includes an explanation of the selection criteria used to choose the algorithms tested. The 

last section of this chapter focuses on the benchmarking toolkit SUPERCOP, and its use in this 

research.  

Design of the Study 

This study used a quantitative approach to determine how well each of the post-quantum 

public-key encryption and key-establishment algorithms, found in the second round of NIST 

standardization, performed on chosen hardware. Due to the large number of different 

implementations that each of the algorithms have, this paper only focused on the performance 

of one of the implementations per post-quantum algorithm. If none of the implementations for 

one of the algorithms were able to compile on the chosen device and operating system, then 

that algorithm was not included in the study. The operating system and processor architecture 

were chosen to maximize the number of working implementations for analysis. 

The implementation chosen for each of the post-quantum schemes were the optimized 

versions if they were available. If an optimized version was not available, then the reference 

implementation was used instead. If there were multiple versions with different key lengths, then 

the implementation with the shortest key was chosen. The implementations of the post-quantum 

schemes were integrated into the benchmarking toolkit SUPERCOP. 

 



20 
Data Collection 

Data collection was conducted using the benchmarking toolkit SUPERCOP version 

20191221. This toolkit includes key-encapsulation mechanisms for all 17 of the post-quantum 

public-key encryption and key-establishment algorithms. It also includes several of the 

public-key cryptosystems. All of the Key-Establishment Mechanisms (KEM) data was collected 

using the SUPERCOP toolkit ECRYPT Benchmarking of Asymmetric Systems (eBATS). 

Performance measurements for KEM that SUPERCOP collects are listed on the bench.cr.yp.to 

website. (Bernstein, n.d.) 

● Time in cycles to generate a key pair - the secret key and the corresponding public key. 

● Time for encapsulation - time to compute a ciphertext and corresponding session key. 

● Time for decapsulation - the time to compute the session key from the ciphertext. 

● Space in bytes for a public key. 

● Space in bytes for a ciphertext. 

● Space in bytes for a session key. 

Performance measurements for the public-key cryptosystems that SUPERCOP collects are 

listed on the bench.cr.yp.to website. (Bernstein, n.d.) 

● Time in cycles to generate a key pair - the secret key and the corresponding public key. 

● Time to encrypt a short 59 byte message. 

● Time to decrypt a short 59 byte message 

● Space in bytes for a secret key. 

● Space in bytes for a public key. 

● Ciphertext length for a 0-byte message. 

● Ciphertext overhead for a 23-byte message. 

● Ciphertext overhead for a long message. 



21 
Hardware and Operating System Environment 

This study used both the Raspberry Pi 3 B+ and Raspberry Pi 4 to conduct the 

performance tests. The operating system used was the current version of Ubuntu 19.10. This 

allowed both the Raspberry Pi 3B+ and Raspberry Pi 4 to run the ARMv8 instruction set 

architecture. The ARMv8 architecture introduced the 64 bit execution state AArch64, making it 

compatible with the benchmarking toolkit SUPERCOP (Arm Ltd, n.d.). 

The first ARMv8 device to be tested was the Raspberry Pi 3B+. It has the Broadcom 

BCM2837B0 quad-core A53 processor running at 1.4 GHz as well as 1 GB of RAM.  The 

Raspberry Pi 3B+ is shown below in Figure 1. 

 

Figure 1. Raspberry Pi 3 B+ 



22 
The other system on a chip (SoC) that was tested was the Raspberry Pi 4. It has a 

Broadcom BCM2711, Quad coreCortex-A72 processor running at 1.5GHz. It also has twice as 

much memory as the Raspberry Pi 3B+ at 2 GB of RAM. The Raspberry Pi 4 is shown in Figure 

2 below. 

 

Figure 2. Raspberry Pi 4 

Summary 

This chapter discussed how this study was designed, which data measurements were 

germane to collect, and important details about the hardware used. For the scope of this study, 

it is important to define why each of the implementations were chosen. The benchmarking 

toolkit SUPERCOP was very useful for testing out many different measurements related to 



23 
cryptographic performance. The toolkit came prepackaged with all of the latest post-quantum 

cryptographic algorithms needed for this study. Although the Raspberry Pi 3B+ and the 

Raspberry Pi 4 look practically identical on the outside, under the hood, the Raspberry Pi 4 

possesses superior processing speed and RAM. The tests listed in this chapter put the 

hardware to the test to see if the algorithms would perform significantly different depending on 

which device was being used.  



24 
Chapter IV: Data Presentation and Analysis 

Introduction 

This chapter presents and analyzes the data collected by the methods mentioned in the 

previous chapter.  First, the data that was collected will be presented in a series of tables and 

graphs.  Next, the performance of each of the different key-encapsulation methods will be 

analyzed for both the Raspberry Pi 3B+ and Raspberry Pi 4. The last section of this chapter will 

focus on analyzing the performance of the public-key cryptosystems. 

Data Presentation - Key-Encapsulation Mechanisms 

The following tables include data collected from 14 of the 17 post-quantum 

key-encapsulation mechanisms using version 20191221 of SUPERCOP. There were 3 

algorithms that had failed to compile while running the tests. More information on those 3 

algorithms and why they failed can be viewed in Appendix A. For information on the compile 

time, primitive, implementation and the compiler used for the algorithm implementations that 

were able to successfully compile, see Appendix B. The tables for space size, in bytes, that 

each algorithm used for a secret key, public key, ciphertext, and session key, can be viewed in 

Appendix C. Each of the algorithm implementations in the tables are either the optimized 

versions, the version with the smallest key length, or the version that was able to compile. The 

following tables show the first quartile, median, and third quartile cycles it took to either generate 

a key pair, encapsulation, or decapsulation of keys for both of the devices tested. The values 

are the average of many speed measurements ("eBACS: ECRYPT Benchmarking of 

Cryptographic Systems", n.d.). 

Table 1 and Table 2 show the cycles to generate a key pair for the Raspberry Pi 3B+ 

and Raspberry Pi 4 respectively. For both devices, the fastest key-encapsulation mechanism to 

generate key pairs was lightsaber and the slowest key-encapsulation mechanism to generate 



25 
key pairs was mceliece348864f. There was a massive difference between the fastest and 

slowest key-encapsulation mechanism tested. The fastest key-encapsulation mechanism, 

lightsaber, was over 4500 times faster than the slowest mceliece348864f for key generation. For 

both the RAspberry Pi 3B+ and the Raspberry Pi 4 there were stability issues with many of the 

Classic McEliece algorithm implementations generating keys. The key-encapsulation 

mechanism mceliece348864f was one of the only Classic McEliece algorithm implementations 

that did not have stability issues. The algorithm implementations that did have stability issues 

tended to produce a large variance between the first, median, and third quartile.  

  



26 
Table 1 

Cycles to generate a key pair for KEM on Raspberry Pi 3b+ 

quartile median quartile system 

161220 161702 162019 lightsaber 

194547 196753 205281 r5nd0kem2iot 

266971 265331 268275 kyber512 

283474 282306 286272 newhope512cca 

331105 331725 332057 threebears624r2cpax 

1505188 1517069 1536146 hqc1281 

3944721 3995211 4012819 ntrukem443 

21096658 21111815 21172881 sntrup653 

21968557 21975555 21985111 frodokem640 

53282599 101947929 151081615 bike2l1nc 

112207782 112577462 112777600 ledakem13 

148714473 161685593 190310821 ntskem1264 

170332098 170273427 171121725 sikep503 

735216332 741023508 745088028 mceliece348864f 

 

  



27 
Table 2 

Cycles to generate a key pair for KEM on Raspberry Pi 4 

quartile median quartile system 

100288 99373 99529 lightsaber 

107115 108324 112041 r5nd0kem2iot 

134446 133962 134134 kyber512 

134772 134505 135136 newhope512cca 

208662 209888 210125 threebears624r2cpax 

1036922 1068988 1079539 ntrukem443 

1175044 1183380 1206649 hqc1281 

12367120 12385844 12442216 sntrup653 

15911486 15944148 15981147 frodokem640 

25234359 47522680 69974155 bike2l1nc 

69931488 70185868 70424832 ledakem13 

94252120 141133288 312818998 ntskem1264 

144212647 144185373 144533570 sikep503 

437367115 449889390 454446677 mceliece348864f 

 

The next two tables show the number of cycles it took for encapsulation. This is the time 

it takes to compute a ciphertext and corresponding session key, given a user's public key. The 

fastest and slowest key-encapsulation mechanisms for key generation were the two fastest 

encapsulation schemes for both Raspberry Pi 3B+ and Raspberry Pi 4.  

  



28 
Table 3 

Cycles for encapsulation on Raspberry Pi 3B+ 

quartile median quartile system 

228944 227909 228451 lightsaber 

283309 295304 463256 mceliece348864f 

288099 289925 298868 r5nd0kem2iot 

330755 331240 332722 ledakem13 

377220 378673 381677 kyber512 

414093 414212 418681 threebears624r2cpax 

440119 441561 453019 newhope512cca 

450100 459282 478675 ntrukem443 

508543 544320 607653 ntskem1264 

727667 729533 735709 sntrup653 

2211011 2229902 2249088 bike2l1nc 

3024409 3046613 3069753 hqc1281 

24180080 24185866 24209172 frodokem640 

280446444 280476545 281379281 sikep503 

  



29 
Table 4 

Cycles for encapsulation on Raspberry Pi 4 

quartile median quartile system 

142244 149368 154765 mceliece348864f 

143773 143444 143490 lightsaber 

160110 161077 166302 r5nd0kem2iot 

179223 180000 180322 kyber512 

210296 208937 209215 ledakem13 

210882 210550 211079 newhope512cca 

214501 217742 249918 ntrukem443 

258894 261057 261494 threebears624r2cpax 

424221 459114 523020 ntskem1264 

482848 487049 488390 sntrup653 

1343338 1359618 1442061 bike2l1nc 

2342002 2368109 2415056 hqc1281 

18255132 18356963 18388720 frodokem640 

237423418 237557045 238075832 sikep503 

 

The next two tables show the number of cycles it took for decapsulation. This is the time 

it takes to compute the session key from the ciphertext, given the user's secret key. Once again 

the slowest algorithm implementation was sikep503 for both the Raspberry Pi 3B+ and the 

Raspberry Pi 4. Lightsaber was beaten by both threebears624r2cpax and r5nd0kem2iot for the 

fastest implementation for decapsulation.  

 



30 
Table 5 

Cycles for decapsulation on Raspberry Pi 3B+ 

quartile median quartile system 

61266 61233 61334 threebears624r2cpax 

146201 156040 156925 r5nd0kem2iot 

276788 277128 277370 lightsaber 

491568 488199 490089 kyber512 

538448 540960 557435 newhope512cca 

738774 741586 753260 ntrukem443 

1227650 1239358 1335353 mceliece348864f 

1343348 1357655 1383831 ntskem1264 

1666956 1666587 1671357 sntrup653 

2131109 2134735 2161925 ledakem13 

5162268 5172510 5237488 hqc1281 

24401849 24436275 24498193 frodokem640 

64049890 64152064 76001578 bike2l1nc 

298374048 298407255 299534009 sikep503 

  



31 
Table 6 

Cycles for decapsulation on Raspberry Pi 4 

quartile median quartile system 

38522 38339 38391 threebears624r2cpax 

82311 83016 84223 r5nd0kem2iot 

167236 167685 168379 lightsaber 

218907 219436 219466 kyber512 

243330 243308 244938 newhope512cca 

291892 292805 298973 ntrukem443 

669115 676821 679115 mceliece348864f 

863900 899553 927884 ntskem1264 

1083039 1083628 1087204 sntrup653 

1383899 1390815 1414088 ledakem13 

3613350 3744759 3796920 hqc1281 

18208288 18235332 18249562 frodokem640 

26192249 26254360 27222465 bike2l1nc 

252600237 253272348 253456422 sikep503 

 

Data Presentation - Public-Key Cryptosystems 

The following tables include data collected from the three cryptosystems that were 

available in version 20191221 of SUPERCOP. These are the cryptosystems that were 

submitted to the second round of the NIST competition for public-key encryption. SUPERCOP 

included other cryptosystems of algorithms other than the ones submitted to the NIST 

competition. However, they were not relevant to this paper and therefore were not included in 



32 
the tables below. The tables for the secret key, public key, encrypting 0 bytes, encrypting 23 

bytes, and encrypting many bytes are included in Appendix D. Each of the algorithm 

implementations in the tables are the optimized versions. The following tables show the first 

quartile, median, and third quartile cycles it took to either generate a key pair, encrypt 59 bytes, 

or decrypt 59 bytes for both of the devices tested. The three public-key cryptosystem algorithms 

tested in this paper are NTRU Prime, LEDAcrypt, and Round 5. 

Table 7 and 8 below show the cycles to generate a key pair for the Raspberry Pi 3B+ 

and Raspberry Pi 4 respectively. There was a huge discrepancy between the fastest and 

slowest algorithm. The algorithm implementation r5nd1pke5d was over six thousand times 

faster than ledapkc10 for both devices. For each of the algorithms, the Raspberry Pi 4 

outperformed the Raspberry Pi 3B+. 

Table 7 

Cycles to generate a key pair for public-key encryption on Raspberry Pi 3B+ 

quartile median quartile system 

173636 174079 175740 r5nd1pke5d 

1712548 1722841 1799144 ntruees401ep2 

1068451694 1070934568 1072781948 ledapkc10 

 

Table 8 

Cycles to generate a key pair for public-key encryption on Raspberry Pi 4 

quartile median quartile system 

97220 99188 99784 r5nd1pke5d 

621187 637728 641796 ntruees401ep2 

655194875 683602187 685294895 ledapkc10 



33 
 

The tables 9 and 10 below show the number of cycles it took to encrypt 59 bytes of data 

on the Raspberry Pi 3B+ and Raspberry Pi4 respectively. The implementation ntruees401ep2 

had a faster time for encryption than r5nd1pke5d, even though the latter was much faster for 

key generation. 

Table 9 

Cycles to encrypt 59 bytes on Raspberry Pi 3B+ 

quartile median quartile system 

102309 103019 109573 ntruees401ep2 

290008 290793 292096 r5nd1pke5d 

20689497 20700112 20710384 ledapkc10 

 

Table 10 

Cycles to encrypt 59 bytes on Raspberry Pi 4 

quartile median quartile system 

61229 62513 62837 ntruees401ep2 

163139 166090 166737 r5nd1pke5d 

13714784 13644864 13658967 ledapkc10 

 

Table 11 and Table 12 show the number of cycles for decrypting a 59 byte message. 

Once again, ledapkc10 was the slowest algorithm out of the three by far on both the Raspberry 

Pi 3B+ and Raspberry Pi 4.  

 

 



34 
Table 11  

Cycles to decrypt 59 bytes on Raspberry Pi 3B+ 

quartile median quartile system 

149209 150341 158108 ntruees401ep2 

420210 421204 422267 r5nd1pke5d 

5694057 5698432 5702822 ledapkc10 

 

Table 12 

Cycles to decrypt 59 bytes on Raspberry Pi 4 

quartile median quartile system 

75879 75248 76495 ntruees401ep2 

230025 230488 231765 r5nd1pke5d 

3218949 3267138 4427467 ledapkc10 

 

Data Analysis 

The data collected by SUPERCOP was first examined by creating several graphs that 

show how closely the grouping was for the algorithms on both of the devices. Then calculations 

were done for a two-tailed paired t-test. The null hypothesis for each of the different 

key-encapsulation mechanisms were tested using this t-test.  

The performance of the KEM key generation time comparing the Raspberry Pi 3B+ and 

the Raspberry Pi 4 can be seen in Figure 3 below. The graph is on a log scale for both the x and 

y axis. The x axis shows the time in CPU cycles and the y axis shows the public key size in 

bytes. The data points to the farthest left are the algorithms that were the fastest. The data 

points are on the same level vertically, because the algorithms generate a public key that is the 



35 
same length on both of the devices.

 

Figure 3. KEM Key Generation Time. Key-encapsulation mechanism cycles to generate key 

pairs vs. size of public key. 

The next graph shows how the data for KEM encapsulation time is grouped for both the 

Raspberry Pi 3B+ and the Raspberry Pi 4. This graph has a log scale on both the x and y axis. 

The x axis shows the time in CPU cycles and the y axis shows the ciphertext length in bytes. 

The data points are on the same level vertically, because the algorithms generate a public key 

that is the same length on both of the devices.  



36 

 

Figure 4. KEM Encapsulation Time. Key-encapsulation mechanism cycles to encapsulate keys 

vs size of the ciphertext in bytes. 

The next graph shows how the data for KEM decapsulation time is grouped for both the 

Raspberry Pi 3B+ and the Raspberry Pi 4. This graph has a log scale on both the x and y axis. 

The x axis shows the time in CPU cycles and the y axis shows the ciphertext length in bytes. 

The data points are on the same level vertically, because the algorithms generate a public key 

that is the same length on both of the devices. 



37 

 

Figure 5. KEM Decapsulation Time. Key-encapsulation mechanism cycles to decapsulate keys 

vs size of the ciphertext in bytes.  

While the graphs above give a good visualization of several different performance 

metrics, including the time to generate a key pair, the time for encapsulation, and the time for 

decapsulation, the two-tailed paired t-test was used to determine if the null hypothesis should be 

rejected. The probabilities were created by comparing the difference in the mean time for each 

of the algorithms on both the Raspberry Pi 3B+ and the Raspberry Pi 4. These probabilities 

were compared against a significance level of ⍺ = 0.05. This process was repeated for all of the 

different performance metrics collected. Due to the limited scope of this paper, described in the 

methodology chapter of this paper, the statistical analysis has a limited sample size that only 

includes the best algorithm implementations.  

 

 



38 
Summary 

This chapter presented the data collected using the SUPERCOP toolkit. During testing, 

only 14 of the 17 KEM algorithms were able to compile to run the tests. The graphs give a good 

visualization of how all of the performance metrics for each of the algorithms compare on the 

Raspberry Pi 3B+ and Raspberry Pi 4. The three cryptosystem algorithms tested showed that 

one of the algorithms was way slower than the other two. Finally, this chapter also discussed 

how the two-tailed paired t-test was used to determine if the null hypothesis should be rejected.  

 

 

 

  



39 
Chapter V: Results, Conclusions, and Future Work 

Introduction 

This chapter will review the results of the data that was analyzed in the previous chapter. 

First, the null hypothesis will be broken down into its different measurable performance metrics. 

Next, the conclusions of this study will be presented. Finally, future work related to this study will 

be discussed. 

Results 

The null hypothesis of this study proposes that there is no difference between the two 

ARMv8 devices regarding the benchmarked performance of public-key encryption and 

key-establishment algorithms using SUPERCOP. The null hypothesis was tested by doing a 

statistical analysis for each of the measurable performance metrics to see if the two devices 

performed significantly different. This study explores several different performance metrics, 

including the time to generate a key pair, the time for encapsulation, and the time for 

decapsulation. 

The first null hypothesis proposes that there will be no difference between the two 

ARMv8 devices regarding the performance of the time to generate a key pair for the KEMs. The 

time to generate a key pair for the key-encapsulation mechanisms is the number of cycles it 

takes to generate a secret key and a corresponding public key. The results from the Raspberry 

Pi 3B+ (M = 95524670, SD = 196217289) and the Raspberry Pi 4 (M = 63156072, SD = 

122431006) indicate that there was no significant difference between the two devices, t(13) = 

1.58, p = .137. With the probability being higher than the ⍺ = 0.05 in the two-tailed paired t-test, 

the null hypothesis is accepted and the alternative hypothesis is rejected.  

The second null hypothesis proposes that  there will be no difference between the two 

ARMv8 devices regarding the performance of the time for encapsulation. The time for 



40 
encapsulation  is the number of cycles it takes to compute a ciphertext and corresponding 

session key, given a user's public key. The results from the Raspberry Pi 3B+ (M = 22432206, 

SD = 74536171) and the Raspberry Pi 4 (M = 18722862, SD = 63166994) indicate that there 

was no significant difference between the two devices, t(13) = 1.22, p = .244. With the 

probability being higher than the ⍺ = 0.05 in the two-tailed paired t-test, the null hypothesis is 

accepted and the alternative hypothesis is rejected. 

The third null hypothesis proposes that  there will be no difference between the two 

ARMv8 devices regarding the performance of the time for decapsulation. The time for 

decapsulation  is the number of cycles it takes to compute the session key from the ciphertext, 

given the user's secret key. The results from the Raspberry Pi 3B+ (M = 28630827, SD = 

79576776) and the Raspberry Pi 4 (M = 21900157, SD = 67066381) indicate that there was no 

significant difference between the two devices, t(13) = 1.69, p = .115. With the probability being 

higher than the ⍺ = 0.05 in the two-tailed paired t-test, the null hypothesis is accepted and the 

alternative hypothesis is rejected. 

Conclusion 

The results of this study show that the speed for the public-key encryption and 

key-establishment algorithms tested on the Raspberry Pi 3B+ and Raspberry Pi 4 were not 

significantly different. Taking a look at the number and selection of the samples may help 

explain how this result was not totally unexpected. This study was narrowly focused on testing 

only the fastest implementation (optimized or had the shortest key length) for each of the tested 

post-quantum algorithms. With only 14 post-quantum algorithms tested, this selection process 

generated a small sample size. Having such a small sample size can affect the quality of the 

results for the statistical analysis. 



41 
This study does not take into account the different security levels for each of the algorithm 

implementations. If the focus of the algorithm was to be as robust as possible to attacks, such 

as perfect forward secrecy, resistance to side-channel and multi-key attacks, as well as 

resistance to misuse, then that algorithm would need to sacrifice speed for increased security. 

Depending on the security needs, it may be more beneficial to use the slower algorithm 

implementation for encryption. The implementations that are more optimized were able to 

perform better on all hardware without causing a significant bottleneck, while poorly optimized 

implementations may lead to bottlenecks and exacerbated differences in algorithm speed.  

Future Work 

When NIST moves onto round 3 of the post-quantum cryptography public-key encryption 

and key-establishment algorithms standardization, even more performance testing should be 

done. For example, this study does not include memory testing. Future studies should include 

testing on how much memory is used for generating keys, encapsulation, decapsulation, etc.  

Other hardware to consider for future testing are ARM Cortex-M series processors. 

These processors are optimized for cost and power-efficient microcontrollers. They use less 

energy and are less powerful than the ARM Cortex-A. Neither of the Raspberry Pi 3B+ nor 

Raspberry Pi 4 are considered to be constrained devices. The ARM Cortex-M series processors 

are used on constrained devices where memory, CPU processing power, and CPU power draw 

can be a problem.  

The SUPERCOP version 20191221 had problems compiling on the ARMv6 Raspberry 

Pi Zero W. The Raspberry Pi Zero W only runs AArch32, and had problems trying to compile the 

different post-quantum algorithms. Of the 17 post-quantum algorithms, there were three 

algorithms ( ROLLO, LAC, and RQC) that had problems compiling on the Raspberry Pi devices 



42 
used in this study. Future testing of the post-quantum algorithms should take this into account 

and make sure that there are implementations available that are able to compile correctly.  

  



43 
References 

Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., ... & Perlner, R. (2019). Status 

report on the first round of the NIST post-quantum cryptography standardization process. 

US Department of Commerce, National Institute of Standards and Technology. 

Arm Ltd. (n.d.). ARM Cortex-A Series Programmer's Guide for ARMv8-A: ARMv8-A. Retrieved 

April 1, 2020, from 

https://developer.arm.com/docs/den0024/latest/armv8-a-architecture-and-processors/ar

mv8-a 

Aroca, R. V., & Gonçalves, L. M. G. (2012). Towards green data centers: A comparison of x86 

and ARM architectures power efficiency. Journal of Parallel and Distributed Computing, 

72(12), 1770-1780. 

Bernstein, D.J., & Lange, T. (n.d.). eBACS: ECRYPT Benchmarking of Cryptographic Systems. 

https://bench.cr.yp.to, accessed 7 March 2020. 

Cichonski, J., Marron, J., Hastings, N., Ajmo, J., & Rufus, R. (2019). Security for IoT Sensor 

Networks: Building Management Case Study (Draft) (pp. 29-29). National Institute of 

Standards and Technology. 

eBACS: ECRYPT Benchmarking of Cryptographic Systems. (n.d.). Retrieved April 1, 2020, from 

https://bench.cr.yp.to/results-kem.html 

Fagan, M., Megas, K., Scarfone, K., & Smith, M. (2019). Core Cybersecurity Feature Baseline for 

Securable IoT Devices: A Starting Point for IoT Device Manufacturers (No. NIST Internal 

or Interagency Report (NISTIR) 8259 (Draft)). National Institute of Standards and 

Technology. 



44 
HP Study Finds Alarming Vulnerabilities with Internet of Things (IoT) Home Security Systems. 

(2015, February 10). Retrieved from 

https://www8.hp.com/us/en/hp-news/press-release.html?id=1909050 

Hughes, P. (2017, February 27). Inside the numbers: 100 billion ARM-based chips. Retrieved 

from 

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts

/inside-the-numbers-100-billion-arm-based-chips-1345571105 

McKay, K., Bassham, L., Sönmez Turan, M., & Mouha, N. (2016). Report on lightweight 

cryptography (No. NIST Internal or Interagency Report (NISTIR) 8114 (Draft)). National 

Institute of Standards and Technology. 

Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open 

challenges. Future Generation Computer Systems, 82, 395-411. 

Patil, P., Narayankar, P., Narayan, D. G., & Meena, S. M. (2016). A comprehensive evaluation of 

cryptographic algorithms: DES, 3DES, AES, RSA and Blowfish. Procedia Computer 

Science, 78, 617-624. 

Voas, J. (2016). Networks of ‘things’. NIST Special Publication, 800(183), 800-183. 

  



45 
Appendix A 

The three post-quantum key-encapsulation mechanisms that failed to compile include 

ROLLO, LAC, and RQC. When the algorithms failed to compile, SUPERCOP produced an error 

output. The error output is listed here in Appendix A. 

ROLLO is a compilation of the three post-quantum schemes Rank-Ouroboros, LOCKER, 

and LAKE. Both LAKE and LOCKER are included in SUPERCOP version 20191221. For 

ROLLO, neither LAKE nor LOCKER would compile correctly. Due to the compiler errors it is not 

included in the main analysis of this study. The Compiler output is pasted below.  

Compiler output for locker1: 

Implementation: crypto_kem/locker1/ref 

Compiler: g++ -march=native -mtune=native -O2 -fomit-frame-pointer -fwrapv -fPIC -fPIE 

try.cpp: /usr/bin/ld: 

/home/djb/benchmarking/supercop-20191221/supercop-data/pi3bplus/aarch64/lib/libntl.a(GF2E.

o): undefined reference to symbol 'pthread_setspecific@@GLIBC_2.17' 

try.cpp: /usr/bin/ld: //lib/aarch64-linux-gnu/libpthread.so.0: error adding symbols: DSO missing 

from command line 

try.cpp: collect2: error: ld returned 1 exit status 

Compiler output for lake1: 

Implementation: crypto_kem/lake1/ref 

Compiler: g++ -march=native -mtune=native -O2 -fomit-frame-pointer -fwrapv -fPIC -fPIE 

try.cpp: /usr/bin/ld: 

/home/djb/benchmarking/supercop-20191221/supercop-data/pi3bplus/aarch64/lib/libntl.a(GF2E.

o): undefined reference to symbol 'pthread_setspecific@@GLIBC_2.17' 



46 
try.cpp: /usr/bin/ld: //lib/aarch64-linux-gnu/libpthread.so.0: error adding symbols: DSO missing 

from command line 

try.cpp: collect2: error: ld returned 1 exit status 

The LAC implementation lac128 had both a checksum failure and test failure outputs 

after trying to compile. It is not included in the main analysis of this study. The compiler output is 

pasted below. 

Checksum failure for lac128: 

Implementation: crypto_kem/lac128/opt 

Compiler: gcc -march=native -mtune=native -O2 -fomit-frame-pointer -fwrapv -fPIC -fPIE 

Test failure for lac128: 

Implementation: crypto_kem/lac128/opt 

Compiler: clang -mcpu=native -O3 -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC 

-fPIE 

error 111 

crypto_kem_dec does not match k 

Compiler output for lac128: 

Implementation: crypto_kem/lac128/avx2 

Compiler: clang -mcpu=native -O3 -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC 

-fPIE 

bin-lwe.c: In file included from bin-lwe.c:1: 

bin-lwe.c: In file included from /usr/lib/llvm-9/lib/clang/9.0.0/include/immintrin.h:14: 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:50:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_vec_init_v2si(__i, 0); 



47 
bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:129:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_packsswb((__v4hi)__m1, (__v4hi)__m2); 

bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:159:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_packssdw((__v2si)__m1, (__v2si)__m2); 

bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:189:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_packuswb((__v4hi)__m1, (__v4hi)__m2); 

bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:216:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_punpckhbw((__v8qi)__m1, (__v8qi)__m2); 

bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:239:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_punpckhwd((__v4hi)__m1, (__v4hi)__m2); 

bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:260:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_punpckhdq((__v2si)__m1, (__v2si)__m2); 



48 
bin-lwe.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

bin-lwe.c: /usr/lib/llvm-9/lib/clang/9.0.0/include/mmintrin.h:287:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

bin-lwe.c: return (__m64)__builtin_ia32_punpcklbw((__v8qi)__m1, (__v8qi)__m2); 

bin-lwe.c: ... 

Implementation: crypto_kem/lac128/opt 

Compiler: clang -mcpu=native -O3 -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC 

-fPIE 

bin-lwe.c: bin-lwe.c:98:10: warning: result of comparison of constant -1 with expression of type 

'const char' is always false [-Wtautological-constant-out-of-range-compare] 

bin-lwe.c: if(s[i]==-1) 

bin-lwe.c: ~~~~^ ~~ 

bin-lwe.c: bin-lwe.c:160:10: warning: result of comparison of constant -1 with expression of type 

'const char' is always false [-Wtautological-constant-out-of-range-compare] 

bin-lwe.c: if(s[i]==-1) 

bin-lwe.c: ~~~~^ ~~ 

bin-lwe.c: 2 warnings generated. 

Implementation: crypto_kem/lac128/avx2 

Compiler: gcc -march=native -mtune=native -O2 -fomit-frame-pointer -fwrapv -fPIC -fPIE 

bin-lwe.c: bin-lwe.c:1:10: fatal error: immintrin.h: No such file or directory 

bin-lwe.c: 1 | #include <immintrin.h> 

bin-lwe.c: | ^~~~~~~~~~~~~ 

bin-lwe.c: compilation terminated. 



49 
The RQC implementation rqc128/opt had a compiler error that ends with compilation 

terminated and is not included in the main analysis of this study. The compiler output is pasted 

below. 

Compiler output for rqc128/opt: 

Implementation: crypto_kem/rqc128/opt 

Compiler: clang -mcpu=native -O3 -fomit-frame-pointer -fwrapv -Qunused-arguments -fPIC 

-fPIE 

ffi_elt.c: In file included from ffi_elt.c:6: 

ffi_elt.c: In file included from ./ffi.h:11: 

ffi_elt.c: In file included from /usr/lib/llvm-7/lib/clang/7.0.1/include/x86intrin.h:29: 

ffi_elt.c: In file included from /usr/lib/llvm-7/lib/clang/7.0.1/include/immintrin.h:28: 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:64:12: error: invalid conversion between 

vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_vec_init_v2si(__i, 0); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:143:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_packsswb((__v4hi)__m1, (__v4hi)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:173:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_packssdw((__v2si)__m1, (__v2si)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



50 
ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:203:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_packuswb((__v4hi)__m1, (__v4hi)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:230:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_punpckhbw((__v8qi)__m1, (__v8qi)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:253:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_punpckhwd((__v4hi)__m1, (__v4hi)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: /usr/lib/llvm-7/lib/clang/7.0.1/include/mmintrin.h:274:12: error: invalid conversion 

between vector type '__m64' (vector of 1 'long long' value) and integer type 'int' of different size 

ffi_elt.c: return (__m64)__builtin_ia32_punpckhdq((__v2si)__m1, (__v2si)__m2); 

ffi_elt.c: ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

ffi_elt.c: ... 

Implementation: crypto_kem/rqc128/opt 

Compiler: gcc -march=native -mtune=native -O2 -fomit-frame-pointer -fwrapv -fPIC -fPIE 

ffi_elt.c: In file included from ffi_elt.c:6: 

ffi_elt.c: ffi.h:11:10: fatal error: x86intrin.h: No such file or directory 

ffi_elt.c: #include <x86intrin.h> 

ffi_elt.c: ^~~~~~~~~~~~~ 

ffi_elt.c: compilation terminated.  



51 
Appendix B 

The following tables include SUPERCOP output for crypto_kem that includes the time in 

processor cycles,  primitive, implementation of the algorithm, and compiler used for both the 

Raspberry Pi 3B+ and the Raspberry Pi 4. 

Table 13 

aarch64, pi3bplusubuntuserver64, crypto_kem compiler output 

Time Relative 
time 

Primitive Implementation Compiler 

28681863 1.00 bike2l1nc crypto_kem/bike2l
1nc/ref_ossl 
(BIKE_v1.0_Additi
onal_11/18/2018) 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

840038 1.00 mceliece348864
f 

crypto_kem/mceli
ece348864f/vec 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

399185 1.00 kyber512 crypto_kem/kyber
512/ref 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

64181560 1.00 frodokem640 crypto_kem/frodok
em640/optimized 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

6044516 1.00 hqc1281 crypto_kem/hqc12
81/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

1592907 1.00 ledakem13 crypto_kem/ledak
em13/portableopt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 



52 
Table 13 continued 

Time Relative 
time 

Primitive Implementation Compiler 

454115 1.00 newhope512cca crypto_kem/new
hope512cca/ref 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

536038 1.00 ntrukem443 crypto_kem/ntruk
em443/ref 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

1569796 1.00 sntrup653 crypto_kem/sntru
p653/factored 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

992215 1.00 ntskem1264 crypto_kem/ntsk
em1264/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

244617 1.00 r5nd0kem2iot crypto_kem/r5nd
0kem2iot/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

312320 1.00 lightsaber crypto_kem/light
saber/portable 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

489846260 1.00 sikep503 crypto_kem/sike
p503/opt 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

298911 1.00 threebears624r2
cpax 

crypto_kem/three
bears624r2cpax/
opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE 



53 
Table 14 

aarch64, pi4ubuntuserver64, crypto_kem compiler output 

Time Relative 
time 

Primitive Implementation Compiler 

28323497 1.00 bike2l1nc crypto_kem/bike2l1n
c/ref_ossl 
(BIKE_v1.0_Addition
al_11/18/2018) 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

836798 1.00 mceliece3488
64f 

crypto_kem/mceliece
348864f/vec 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

402344 1.00 kyber512 crypto_kem/kyber51
2/ref 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

63898904 1.00 frodokem640 crypto_kem/frodoke
m640/optimized 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

6043445 1.00 hqc1281 crypto_kem/hqc1281
/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

1582114 1.00 ledakem13 crypto_kem/ledakem
13/portableopt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

457541 1.00 newhope512c
ca 

crypto_kem/newhop
e512cca/ref 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

 



54 
Table 14 continued 

Time Relative 
time 

Primitive Implementation Compiler 

534005 1.00 ntrukem443 crypto_kem/ntruke
m443/ref 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

1570757 1.00 sntrup653 crypto_kem/sntrup6
53/factored 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

992119 1.00 ntskem1264 crypto_kem/ntskem
1264/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

245236 1.00 r5nd0kem2io
t 

crypto_kem/r5nd0k
em2iot/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE (9.2.1 20191008) 

311889 1.00 lightsaber crypto_kem/lightsa
ber/portable 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

489766721 1.00 sikep503 crypto_kem/sikep5
03/opt 

clang -mcpu=native -O3 
-fomit-frame-pointer -fwrapv 
-Qunused-arguments -fPIC 
-fPIE (Clang 9.0.0 
(tags/RELEASE 900/final)) 

298022 1.00 threebears62
4r2cpax 

crypto_kem/threebe
ars624r2cpax/opt 

gcc -march=native 
-mtune=native -O3 
-fomit-frame-pointer -fwrapv 
-fPIC -fPIE 

  



55 
Appendix C 

The following tables include the SUPERCOP output for the amount of space in bytes for 

a secret key, public key, ciphertext, and session key for Raspberry Pi 3B+ and Raspberry Pi 4. 

aarch64, pi3bplusubuntuserver64, crypto_kem 

Table 15 

Secret key 

bytes system 

16 r5nd0kem2iot 

434 sikep503 

540 ledakem13 

701 ntrukem443 

804 threebears624r2cpax 

1518 sntrup653 

1568 lightsaber 

1632 kyber512 

1888 newhope512cca 

3165 hqc1281 

4964 bike2l1nc 

6452 mceliece348864f 

9216 ntskem1264 

19872 frodokem640 

 

 

 



56 
Table 16 

Public key 

bytes system 

342 r5nd0kem2iot 

378 sikep503 

611 ntrukem443 

672 lightsaber 

800 kyber512 

804 threebears624r2cpax 

928 newhope512cca 

994 sntrup653 

1271 bike2l1nc 

2080 ledakem13 

3125 hqc1281 

9616 frodokem640 

261120 mceliece348864f 

319488 ntskem1264 

 

  



57 
Table 17 

Ciphertext 

bytes system 

128 mceliece348864f 

128 ntskem1264 

394 r5nd0kem2iot 

402 sikep503 

611 ntrukem443 

736 kyber512 

736 lightsaber 

897 sntrup653 

917 threebears624r2cpax 

1040 ledakem13 

1120 newhope512cca 

1271 bike2l1nc 

6234 hqc1281 

9736 frodokem640 

 

  



58 
Table 18 

Session key 

bytes system 

16 frodokem640 

16 r5nd0kem2iot 

16 sikep503 

32 bike2l1nc 

32 mceliece348864f 

32 kyber512 

32 ledakem13 

32 newhope512cca 

32 ntrukem443 

32 sntrup653 

32 ntskem1264 

32 lightsaber 

32 threebears624r2cpax 

64 hqc1281 

 

  



59 
aarch64, pi4ubuntuserver64, crypto_kem 

Table 19 

Secret key 

bytes system 

16 r5nd0kem2iot 

434 sikep503 

540 ledakem13 

701 ntrukem443 

804 threebears624r2cpax 

1518 sntrup653 

1568 lightsaber 

1632 kyber512 

1888 newhope512cca 

3165 hqc1281 

4964 bike2l1nc 

6452 mceliece348864f 

9216 ntskem1264 

19872 frodokem640 

 

  



60 
Table 20 

Public key 

bytes system 

342 r5nd0kem2iot 

378 sikep503 

611 ntrukem443 

672 lightsaber 

800 kyber512 

804 threebears624r2cpax 

928 newhope512cca 

994 sntrup653 

1271 bike2l1nc 

2080 ledakem13 

3125 hqc1281 

9616 frodokem640 

261120 mceliece348864f 

319488 ntskem1264 

 

  



61 
Table 21 

Ciphertext 

bytes system 

128 mceliece348864f 

128 ntskem1264 

394 r5nd0kem2iot 

402 sikep503 

611 ntrukem443 

736 kyber512 

736 lightsaber 

897 sntrup653 

917 threebears624r2cpax 

1040 ledakem13 

1120 newhope512cca 

1271 bike2l1nc 

6234 hqc1281 

9736 frodokem640 

 

  



62 
Table 22 

Session key 

bytes system 

16 frodokem640 

16 r5nd0kem2iot 

16 sikep503 

32 bike2l1nc 

32 mceliece348864f 

32 kyber512 

32 ledakem13 

32 newhope512cca 

32 ntrukem443 

32 sntrup653 

32 ntskem1264 

32 lightsaber 

32 threebears624r2cpax 

64 hqc1281 

 

  



63 
Appendix D 

The following tables include the SUPERCOP public-key cryptosystem output for the 

secret key, public key, encrypting 0 bytes, encrypting 23 bytes, and encrypting many bytes for 

Raspberry Pi 3B+ and Raspberry Pi 4.  

aarch64, pi3bplusubuntuserver64, crypto_encrypt 

Table 23 

Secret Key 

bytes system 

26 ledapkc10 

493 r5nd1pke5d 

607 ntruees401ep2 

 

Table 24 

Public Key 

bytes system 

461 r5nd1pke5d 

557 ntruees401ep2 

4488 ledapkc10 

 

  



64 
Table 25 

Encrypting 0 bytes 

bytes system 

552 ntruees401ep2 

636 r5nd1pke5d 

8976 ledapkc10 

 

Table 26 

Encrypting 23 bytes 

bytes system 

529 ntruees401ep2 

636 r5nd1pke5d 

8953 ledapkc10 

 

Table 27 

Encrypting many bytes 

bytes system 

544 ntruees401ep2 

636 r5nd1pke5d 

4521 ledapkc10 

 

  



65 
aarch64, pi4ubuntuserver64, crypto_encrypt 

Table 28 

Secret Key 

bytes system 

26 ledapkc10 

493 r5nd1pke5d 

607 ntruees401ep2 

 

Table 29 

Public Key 

bytes system 

461 r5nd1pke5d 

557 ntruees401ep2 

4488 ledapkc10 

 

Table 30 

Encrypting 0 bytes 

bytes system 

552 ntruees401ep2 

636 r5nd1pke5d 

8976 ledapkc10 

 

  



66 
Table 31 

Encrypting 23 bytes 

bytes system 

529 ntruees401ep2 

636 r5nd1pke5d 

8953 ledapkc10 

 

Table 32 

Encrypting many bytes 

bytes system 

544 ntruees401ep2 

636 r5nd1pke5d 

4521 ledapkc10 

 

 


	Performance Analysis of NIST Round 2 Post-Quantum Cryptography Public-key Encryption and Key-establishment Algorithms on ARMv8 IoT Devices using SUPERCOP
	Recommended Citation

	tmp.1589477502.pdf.udbgq

