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Abstract

In the modern era, the world has completely relied on software technology. As software
applications became highly demanded, security concerns have arrived. Application security has
become one of the chief concerns where companies have to protect their systems from
vulnerabilities. Various other securities include mobile or end-point security, operating system
security, and network security. All these security categories are intended to protect their users
and clients from malicious intents and hackers. Application security became a prime
requirement. Security risks of the applications are enveloped and lead to a direct threat to the
available business. All the application vulnerabilities take the advantage to compromise the
software application security. Once a flaw has been found, and private data access is determined,
the attacker will have the capability to exploit the software application vulnerability to facilitate
cyber crimes. The confidentiality of the data, availability, and integrity of resources are targeted
by cybercrimes(“What is Application Security?” 2019). Overall, more than 13% of the reviewed
sites were compromised with the web application security vulnerabilities, and they are not
completely extinct even with the traditional security methodologies(Application Security
Vulnerability, 2014). In order to resolve these numerous common security issues, few of the
detection, remediation, and prevention techniques are to be used, which includes defensive
programming, sophisticated input validation, dynamic checks, and static source code analysis. In
this paper, the runtime environment framework has been introduced. This research study
extracted a few publications. All the publications considered various approaches to resolve the
issue. In this research paper framework,machine learning is utilized for training and predicting
the output. Firstly, a sample java code is executed in various CPU cores, and the generated
output files are collected. These output files are then used to train machine learning. Machine
learning results are then compared with actual output for the decision statement.
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Chapter I - Introduction

Introduction

This project focuses on detecting the vulnerabilities in the existing software application
code by considering the metrics of the three distinct Linux machines, train machine learning, and

predict the result in order for decision statement.

Problem Statement

The objective of this research project is to detect software application vulnerability using
machine learning. As my interest inclined towards the development field, and as a developer, it is
beneficial to have exposure on how to detect and able to find a solution to resolve the

vulnerability issues using machine learning.

Nature and Significance of the Problem

In our daily lives, software applications play a vital role. Irrespective of the location,
whether at the workplace or home, the usage of software for various purposes, which includes
communicating with people, staying advanced with the activities happening around the globe,
which serves as entertainment, doing work, and much more. Besides, they are also real threats in
terms of security. Though the security has tightened its privileges, hackers still hit upon new
customs to bypass security resistance. In addition, there is a high probability of performance

issues when resources go down. So in order to track the organization's response to certain
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challenges, the solution to detect various described problems are monitored and hence possible

solutions are been constructed to address these issues.

In the current trend, applications make huge money. According to the researchStatistics,
claims that the worth of applications market range $189B by 2020. Back in 2017, the availability
of Google Play Store is 2.8 million. Whereas in the Apple app store, it has crossed 2.2 million.
Other than smartphones, tablets, pods, and other devices prolong to advance, and the apps count
has increased; at the same time, thousands of websites and apps are createdon a daily basis.
Excluding the benefits, the apps also pose challenges. In specific, the electronically connected
devices with the software application installed have become an objective for hackers. They
actively look for new and utilize old techniques to steal, modify, and delete private and business
data. Research Akamai says, in 2017, count of attacks on applications grew by over 60%, and

about 75% of security risks were application breaches by Alert Logic.

Hence in order to protect the data from risks and breaches, application security has to be
considered primarily. In consideration of application creation and release, developers must
continue to monitor, detect, secure, and prevent vulnerabilities. So, there should be effective
methods utilized to detect the bugs in software applications. In this paper, machine learning is
used to train, construct an algorithm based on the given data as input, and predict. With machine
learning, the systems are trained with data, identify patterns, and show results to make decisions

with the least human involvement.



10

Objective of the Research

e The main objective is to detect application anomalies using machine learning.
e Train and predict the output from machine learning.

e Inan attempt to catch the post-deployment phase anomalies.

Project Questions/Hypothesis

1. Will machine learning help to detect software application anomalies?
2. How can Machine learning be trained? How can it be predicted?

3. Does machine acts intend?

Definition of Terms

e Machine Learning: Machine learning is a way of analyzing data that automatically analyzes
the model building. In other words, machine learning is defined as a science of training
computers to perform by itself without being overly programmed. It is a branch of artificial
intelligence. In this field, the systems are trained with data, identify patterns and show results
to make decisions with least human involvement(“Machine Learning | Coursera,” 2019).

e Java:Java is one of the computer programming languages. Java is fast, secure, and reliable.
The code written in Java is platform-independent. The code needs to be compiled once and
executed many times irrespective of OS. The code, when compiled, is converted into binary
code, which is the combination of 0’s and 1’s. In detail, the.java file is compiled to produce a

.class file, which is basically a compiled code. In this research study, various OS platforms
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have been used. A small piece of java code will be executed in distinct OS’s then compared
in order to test the anomalies.

IP Fragmentation: IP is an internet protocol, and fragmentation is a process of breaking
down packets into small chunks of data (fragments), in such a way that the resulting piece is
allowed to pass through a link with smaller MTU (maximum transmission unit) than the
original packet size.

Vulnerabilities:It is a weakness of the system; it is performed by an attacker by accessing
unauthorized data in the system or gaining sensitive information or any unauthorized action
on a computer.

Anomalies:Anomalies are basically problems. Poor planning or un-organization (un-
normalized) of data in the database is the main cause ofanomalies.

Artificial Intelligence:It is a contrast of natural intelligence. Artificial Intelligence is the
intelligence of machines; sometimes, it is referred to as machine intelligence. Research says
that without human involvement, the decisions are taken by machines, and the environment
is perceived by any device that maximizes the probability of achieving the goals(““Artificial
intelligence,” 2019).

Deployment phase:The final stage of SDLC is the deployment phase. The product which has
been developed is now ready for real-time use in the production environment. The product
once it is deployed and successful, all end users are allowed to utilize the benefits of the

product(Deployment Phase in SDLC - Video & Lesson Transcript | Study.com, n.d.).
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e Breaches:A security breach is known as a security violation. It is incident fallouts to the

activities which include unauthorized access of services, data, networks, applications, or any

Summary

So far, the main objective of the research project, along with the purpose and importance
of application security, will be described in this chapter. In the following lessons, the reader will
get more idea ofhow distinct researchersapproach in order to resolve the issue. In addition, the
following contents will include a literature review on the problem and a literature review of the

solution.
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Chapter 11 - Background and Literature Review

Introduction:

This chapter describes the information about background research related to the problem,

introduction, challenges, and causes of vulnerabilities.

Background literature related to the problem:

Introduction:

As we know, software application vulnerability remainsa serious issue. Numerous
companies, organizations, and end-users faced the software vulnerabilities issue. For a few years,
it is observed that there were several vulnerability attacks reported which occurred with high
distressing effects on users. With this, the need to focus on software vulnerability detection
implementation tools and techniques has raised. Due to the necessity of software security
detection tools, many software developers have invented various tools andmethods which detect
the vulnerabilities in the system and also report the issues which cause a threat to system and
user data. (Amankwah, Kudjo, &Antwi, 2017) In 2003, the CERT/CC (Computer emergency
response team Coordination Center) reported that there were about 6.66 US dollars economic
loss caused by the intrusion attacks. And still, the value of the numbers has increased with the
time passage. The real scenario relevant to the economic loss is, in 2007, the total vulnerabilities
are 7236, and by the end of half year in 2008, the total vulnerabilities in the system incremented

to 4110 (Aboud, 2009).
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The term vulnerability has been described in a broad sense as it is an activity that violates

any security policy. The violation activities can be occurred due to any errors in the software
code or might be due to the weak security rules. In theory, all systems have anomalies, but the

vulnerability effect relies on the damage they cause to the system.

Many authors did tremendous research to know and define vulnerabilities. According to
MITRE’s definition, a vulnerability is a state in which an attacker is allowed to execute
commands, access data which has specified restrictions, pretend as another entity, to conduct

DOS (Denial of Service)(Software vulnerabilities, n.d.).

Though there is no standard definition for software vulnerability, researcher studies
earlier have given various definitions. Software Vulnerability is defined as “fault that can be
viciously used to harm the security of software systems” by Kauang et al.

Author Krsul(Victor Krsul, 2011)defines software vulnerability as “a defect that allows an
attacker to violate an explicit or implicit security policy to achieve some impact”.

In another research article, define the terminology as “software vulnerability as a flaw,
weakness or even an error in the system that can be exploited by an attacker in order to alter the
normal behavior of the system” (Jimenez, Mammar & Cavalli, 2010). Schultz et al.(Jr. Schultz,
Brown, & Longstaff, 1990) say software vulnerability as ‘‘a defect, which enables an attacker to
bypass security measure”. Finally, OIS (Organization of Internet Safety) defines security
vulnerability as “a flaw within a software system that can cause it to work contrary to its
documented design and could be exploited to cause the system to violate its documented security

policy”. By examining all these above-defined statements by various authors clearly indicates
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that the main cause for information security breaches is due to software errors. The report
generated in 2010 by software application security researchers and specialists is evident that
organizations of international cybersecurity say about 25 highly malicious software errors led to
cyber-crime. These software errors were classified into three categories as described below;

1. Software Error based on insecure interaction among components
2. Software Error based on unsafe resource management
3. Software Error based on Porous Defenses.

The cyber attacks on organizations such as Google, SMEs, home users, governmental
organizations, banks, and universities were all affected by the above software errors based on
defined categories.Thus faults are the main cause of software vulnerability. These vulnerabilities
are defined based on the weakness, fault, defects, errors, and failures which arise in
software.Apart from these, there are few other most common causes of software vulnerability.
Analyzing the probable causes can trim down the vulnerabilities in software applications.Krsul et
al. (Krsul et al., 1998) did some research over the past few decades in the investigation and
presented a few common effects of wvulnerabilities. The common attacks include IP
Fragmentation and Buffer overflow. Buffer overflow takes place when a program copies some
data from an object into the other object, during the process program does not check whether the
destination object has enough space to contain the source object's content. A buffer overflow
occurred in 2001 caused vulnerability in Microsoft I1IS Web Server, reported by e-Eye Digital
security (Shaneck, 2003). IP Fragmentation — IP is an internet protocol, and fragmentation is a
process of breaking down a packet into small chunks of data (fragments), in such a way that the

resulting piece is allowed to pass through a link with smaller MTU (maximum transmission unit)
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than the original packet size. Later these fragments are reassembled by the host, which receives
the data. The vulnerabilities which occur during the process/design of the protocol and IP
fragmentation are known as teardrop (“IP fragmentation,” 2018).

In 2015, the ICS-CERT (The Industrial Control system Cyber emergency response team) had
reported the major causes of vulnerabilities affected by the organizations [11].

1. [Insufficient Entropy: This type of vulnerability occurs by random guess by the attacker.
So when the attacker randomly guesses numbers generated by the system to gain access,
which is not authorized to a system.

2. Using cryptographic weak ping: This usually occurs in the cryptographic context, non-
cryptographic PING is used. By this, the cryptography is exposed to certain sorts of
attacks.

3. Spoofing with authentication bypass: Due to the improper implementation authentication
scheme, there will be a possibility of a spoofing attack.

4. And also due to improper check for exceptional conditions or even unusual conditions.
Based on the report generated by research experts in 2010 on 25 extremely dangerous software
errors are caused due to the below software vulnerabilities identified.

A. Software Error based on insecure interaction among components
e Uploading a dangerous file that does not have restrictions.
e Redirecting URL to the site which is not trusted.
e Utilization of special elements in an SQL command which are not properly

neutralized.
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e During web page generation, improper neutralization of input.
e Utilization of special elements in an OS command which are not properly

neutralized.

e Cross-site request forgery

B. Software Error based on unsafe resource management

e Including functionality from a control sphere that is not trusted.

Using a probable highly dangerous function.
e To arestricted directory, there is no proper boundary of a path.
e Wrap around or integer overflow.
e Calculation errors of buffer size.
e Creating a buffer copy without checking the size of an input.
e Format string, which is not controlled.
C. Software Error based on Porous Defenses.
e Assignments of unauthorized permissions for critical resources.
e Missing validation for significant function.
e Authorization errors
e Utilizing one-way hash without salt.
e Misplaced encryption of sensitive data.
e Utilization of cryptographic algorithm which is not working.
e Unnecessary privilege executions.

e Unrestricted access to excessive unauthorized attempts.
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e While security decisions, dependence on untrusted inputs.
e Utilization of hardcoded identifications and credentials.
In addition, there are additional eight vulnerability causes reported by the National
vulnerability database as follows,
1. Exceptional Condition Error Handling
2. Input Validation Error
3. Environmental Error
4. Configuration Error
5. Race Condition Error
6. Access Validation Error
7. Design Error
8. Others: nonstandard errors
So far, the probable causes for Software vulnerabilities have been discussed in the paper, and
now in order to resolve the issues, there is a need to detect vulnerabilities in software.
Researchers came up with various vulnerability detection methods in order to prevent anomalies
in the software application. Detecting vulnerability is like finding 50% of the solution. When we
are able to detect a problem in a system, finding a solution will become easier.
Vulnerability Detection Methods:
In detail, the analysis of tools and techniques utilized to detect vulnerabilities in software

applications have been described in this section of the paper. These tools help to detect the
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system gaps, which can be capitalized by the hacker. With the attack, the security of the system

or where the system platform runs will get compromised.

Fuzzing:

It is one of the vulnerabilities detection methods. The random or invalid inputs are
entered in the software application, and the unexpected output behaviors, errors
identified, and expected vulnerabilities have been captured. These methods are important
because software applications hold some level of vulnerabilities that have to be detected.
Data generation is key to fuzzing. In this technique, significant tests are conducted in
order to break down the source code and to opt suitable tool to supervise the procedure.
However, in order to detect vulnerabilities, currently, developers analyze executable
codes rather than source code. Fuzzed data generation can be executed in two ways:
white box and black box fuzzing. In black-box fuzzing, there is no requirement of
application details. It can be generated by random modification of correct data. This
method of fuzzing is known as Black Box Fuzzing.Whereas for White Box Fuzzing,
complete knowledge of software application codeand also the behavior is assumed for
generating tests. Gray Box Fuzzing is a third type fuzzing, which is the combination of
bothwhite and black box fuzzing. Gray box take the benefits of both the fuzzing tests.
The minimum behavior target knowledge has been utilized in Gray box fuzzing.
According to the fuzzing key — data generation methods are categorized as generation-
based, random, direction-based, and mutation-based fuzzing.Among the above-listed
fuzzing techniques, random fuzzing is the simplest technique. In this technique, a stream

of random data is sent as an input for testing. The input data can be sent either as network
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packets, command lines, or events. This fuzzing is useful when a program reacts to huge
or unacceptable input data. Severe vulnerabilities can be detected by this random fuzzing,

whereasmodern fuzzing has a detailed understanding of an input.

The testing tool in mutation-based will have format knowledge about the program
input. The algorithm improves the efficiency of mutation-based fuzzing, which acts as a
key. Program inputs are generated according to the specifications in Generation based
fuzzing. While testing, generation based attains more coverage compared to random

based fuzzing.

Program control flow has been utilized in direction based fuzzing in order to
direct the testing flow. This is also known as test case generation fuzzing. SAGE is one of
the types of direction based fuzzing. Firstly, the initial and valid inputs INO are given to
the program P, the symbol execution engine monitors path and processes which is in the
form of logical formulae; Secondly, during the execution of the path which is negated
will be encountered then a new constraint will be solved and a new input IN1 will be
created (varied from input INO). Finally, the new process input IN1 is allowed to follow
the same three previous procedures.Apart from the above listed fuzzing methods, there
are many other fuzzing tools invented. The other few research tools on fuzzing are Peach,
Sulley, SPIKE, and others.

Web Application Scanners
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It is a type of scanner which examines web applications automatically for security
vulnerabilities. As web security is monitored through public networks, it is difficult to
handle. As web security takes the requests through HTTP (hypertext transfer protocol), it
makes the processing complicated. The testing in web application security is carried out
in two ways for vulnerability detection: white box and black box testing. White box
testing is the process of analyzing the source code manually with the utilization of tools
such as Pixy, FORTIFY, or Ounce. Because of the complexity of coding, it is not an easy
task with the manual process. And sometimes, with this complexity and manual

procedure, the vulnerabilities might not be detected effectively.

In the black-box testing process, in order to detect vulnerabilities, the scanner uses
the fuzzing technique. It is also known as penetration testing. Penetration testing is
famously known as ethical hacking/pen-testing. It is a process of testing a web
application, network, or system to detect vulnerabilities that an attacker can make use of.
It is an automated process of software application testing, or it can also be executed

manually(“What is pen test (penetration testing)?”” 2018).

The scanners in the web application are mostly applied in the development stage

of testing. This is also capable of doing below functionalities,

e Low false positives ratio will be generated

e Detect vulnerabilities in web applications
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e |t generates an output (causes of vulnerabilities), a report which is to be carried

out in order to protect the system from vulnerabilities.

In addition to the above-described scanners, there are few commercial scanners
which detect vulnerabilities in web application. The scanners include WebKing,

Appscan, and WeblnspectNTOspider(Fong & Okun, 2007).

Brick

This is an integer-based vulnerability scanner that detects at run time. It is one of
the effective approaches which results in less false positives and false negatives. This

process comprises into three stages as follows,

1. Convert the binary code into a dynamic binary instrumented framework
(intermediate representation) on Valgrind(Nethercote & Seward, 2007).

2. Capture statements relevant to integers at run time, and also, it records the
required data.

3. Identify and spot out the vulnerabilities with a set checking format.

CRED:C Range Error Detector

It is also one of the vulnerability detectors but is not capable of detecting
Dynamic Buffer Overrun applications. It is unable to such programs because of its power
lack to guard against buffer overrun attacks, breaking existed code, and also due to

production of high overhead. It has been proved that this is the only tool to protect



23
against 20 distinct buffer overflow attacks. CRED is an effective tool for detecting known
vulnerabilities in programs that are attacked with buffer overrun(Wilander & Kamkar,

2003).

Static Analysis Techniques

As we know, the importance and usage of software applications have grown
tremendously high. Unfortunately, the security issues in software applications lead to
gaps and weaknesses for attacks. The report generated regarding the web application
security statistics states that over 60% of assessed websites are vulnerable. Each
application is affected by a minimum of 6 unsolved flaws (Gupta & Sharma, 2012). The
report generated in 2013 proved that Common Vulnerabilities and Exposures (“CVE -
Home,” 2007) and Open Web Application Security Project specifythat the attacks: SQL.i
(SQL injection), XSS (cross-site scripting) are the most two severe attacks in top ten

attacks occurred in web-based applications in a system.

Static analysis is one of the vulnerabilities detecting technique. It is the most
defensive as well as preventive technique. The chief goal of this technique is to recognize
the defects in the source code prior to the first execution in the user’s environment. This
technique assists in identifying vulnerabilities early enough in its case, financial damage.

This approach is useful in performing the below-described activities:

e Be pertaining to any particular algorithm or set of rules which are known as

inference.



24
e Assess the input code.

e Generates program vulnerabilities list.

Buffer overflow is also an effective attack famous in web applications. The static
analysis technique is one of the effective techniques which detects the errors prior to the
program execution. The errors such as Buffer overflow. Numerous static analysis
techniques have been invented by researchers to detect Buffer overflow vulnerabilities
(Dor, Rodeh & Sagiv, n.d.), (Hackett, Das, Wang & Yang, 2006). The various distinct
approaches are classified as:

e Analysis of sensitivity
e Soundness

e Language

e Interference technique
e Analysis granularity

Literature Related to the Methodology:

Below are the articles and research work methodologies of various publications. The
distinct researcher’s approaches on how to solve the vulnerability issues have been described in

this section.

1. An article named “Automatic detection and correction of web application vulnerabilities
using data mining to predict false positives” written by authors: Ibéria Medeiros, Nuno F.

Neves, and Miguel Correiain 2014. This article is about the detection of anomalies and


https://dl.acm.org/author_page.cfm?id=81100035691&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81100035691&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81100398333&coll=DL&dl=ACM&trk=0
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correction of them in a web application in order to predict false positives utilizing data
mining. As we all know, security has become very important in the internet field. The
main problem arises with the developers who are not proficient insecure coding and leave
the built applications with anomalies.In order to solve this problem, the best approach
believed by the authors in this paper is to use static analysis to detect bugs. But
unfortunately, these tools produce false positives results, which the intern makes the job
complicated in finding bugs in the application. So the authors in this paper found a
solution on how to detect vulnerabilities with fewer false positives using hybrid methods.
In order to achieve that, the initial step in this paper utilizes taint analysis to detect
candidate anomalies and then utilize the data mining method to reduce false positives.
Authors in this paper came up with two opposite approaches: one is about humans
program in regard to vulnerabilities, and the other is obtaining automatic knowledge from
machine learning for data mining. With these approaches, more specific detection can be
implemented, which corrects and fix the source code automatically. This approach is
implemented through the WAP tool, and with the huge set of PHP source applications,

code evaluation has been performed(Medeiros et al., 2014).

. Article “Vulnerability detection with deep learning” written by Fang Wu, Jigiang Liu,
Jigiang Wang, and Wei Wang in 2017. As the protection of software systems against
vulnerabilities has become a very important issue. So, in this paper, the authors came up
with the methodology to detect vulnerabilities. In this paper, in order for vulnerability

detection, three deep learning methods were proposed. The three deep learning models


https://ieeexplore.ieee.org/author/37292860000
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for vulnerability detection, namely, long short term memory (LSTM), convolution neural
network (CNN), and convolution neural network — long short term memory (CNN-
LSTM). Nine thousand eight hundred seventy-two sequences of method calls, which
represent the features of the binary code patterns for the execution, were gathered in
order to check the performance of their methodology approach. After applying these deep
learning models to predict the anomalies, the results obtained show that it is accurate to
83.6%. This approach is more effective than traditional methods like multi-layer

perception (MLP)(Wu, Wang, Liu & Wang, 2017).

“Discovering software vulnerabilities using data-flow analysis and machine learning,”
written by Arjen Hommerson, JorritKronjee, and Harald P. E. VVranken. In their approach,
vulnerability detection, specifically SQL injection (SQLIi) and Cross-Site Scripting
(XSS), is done in PHP applications. Authors came up with a novel method for static type
analysis, which combines machine learning with data-flow analysis. The vulnerable PHP
code, along with the solved solution versions, is collected from the assembled dataset of
the National Vulnerability Database and the SAMATE project. Data-flow techniques,
which include reaching constants, taint analysis, reaching definitions analysis, were
applied in order to extract the features from the samples provided by the code.
Additionally, these features were utilized in their methodology to train the machine

learning with a variety of probabilistic classifiers.
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Once the machine learning is trained, they constructed a tool named WIRECAML for the
effectiveness of their approach. Then results obtained are then allowed to compare their
tool with the other tools for the detection of PHP code vulnerability detection. Results
show better performance of their tool in the detection of SQLi and XXS anomalies. With
the experiment performed on other open source applications, previously unknown
vulnerabilities were also detected in a photo-sharing web application (Kronjee et al.,

2018).

(Russell, Kim, Hamilton, Lazovich, Harer, Ozdemir, Ellingwood & McConley, 2018)In
the article “Automated Vulnerability Detection in source code Using Deep
Representation Learning” written by authors - Rebecca L. Russell, Louis Kim, Lei H.
Hamilton, TomoLazovich, Jacob A. Harer, OnurOzdemir, Paul M. Ellingwood and Marc
W. McConley. As numerous software anomalies were detected, reported, or discovered
openly or secretly in proprietary code. Such type of anomalies poses severe risk exploit
and leads to the various issues such as DOS (denial of service), information leaks, system
compromise, etc., Authors in this papers research methodology, utilize benefits of C and
C++ open-source code which is available and capable to detect huge-scale function-level
vulnerability detection system. This methodology used millions of open-source functions
in order to substitute existing labeled vulnerability datasets. Those data-sets are then
marked with carefully-selected outputs of three distinct static analyzers that point toward
potential exploits. The data-setswhich are marked were available at https://osf.io/d45bw/.

These data-sets were utilized to develop tools that are capable of detecting rapid and


https://osf.io/d45bw/
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scalable vulnerabilities. The tool is based on deep learning featured, which can interpret
the leaked source code. Researchers evaluated their tool from both data-sets NIST SATE
IV benchmark and also the real software packages. This research demonstration
illustrates that deep feature learning with respect to source code is a more effective and
trustable detection approach for software applications.

The below figure demonstrates the approach of neural representation learning with
respect to the source code.

Figure 1

Convolutional neural representation-learning approach to source code classification

(Russell et al., 2018)
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5. (Li, Zou, Xu, Jin, Zhu, Y & Chen, n.d.)Authors - Zhen Li, Deqing Zou, Shouhuai Xu,
Hai Jin, Senior Member, IEEE, Yawei Zhu, and Zhaoxuan Chen, worked on a research
article named “A Framework for Using Deep Learning to detect software vulnerabilities”.

In this paper, the importance of vulnerability detection, which has to be handled as
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apparently various vulnerabilities reported on a daily basis, was described. Consequently,
the purpose of automating anomaly detection machines such as machine learning was
discussed. As it is known that deep learning usage is very attractive for vulnerability
detection as human involvement is very less to manually define the features.Although
there is a tremendous success history behind the deep learning in some domains, still the
vulnerability detection is undetermined. Soauthors in this article focus on how to fill the
void. Hence they first proposed the systematic framework for the detection of
vulnerabilities using deep learning.This framework focuses mainly on obtaining
representations of the program, which contain syntax and semantic content relevant to
vulnerabilities. This can be obtained by dubbing Syntax, Semantic, and Vector
representations (SySeVR, 2018) based. With the help of this framework, authors able to

detect 15 unreported vulnerabilities in the National Vulnerability Database.
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Figure 2

A framework for using deep learning to detect vulnerabilities (Li et al., n.d.)
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The experiments were conducted with four software products, and the results demonstrate
the usefulness of the architecture. Among 15 detected but unreported vulnerabilities,
seven are unknown but have been reported to the vendors, whereas the remaining eight

have been “silently” patched.

(Jimenez et al., 2010)In the article named “Software vulnerabilities, Prevention and
Detection Methods: A Review 1,” authored by Willy Jimenez, AmelMammar, and Ana
Cavalli. The importance of software applications in the current society and about their
complexity development in different programming languages have been described. The
main purpose of vulnerabilities and code errors cause has been described by the authors.
Usually, the programmer’s mistakes would become the major cause of generating

software vulnerabilities. This will be the best approach for the attacker to attain privileges
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to access private data in the system. This states that the vulnerabilities are the possible
doorway for the attacker to access the system. Though it is clear that the vulnerabilities in
the current date still a mounting tendency in the software applications, still regardless, the
demand for software applications never got down. So, in order to detect and catch the
vulnerabilities in the software production field, there is a need for tools which can help
developers to detect the vulnerabilities in the code. Consequently, this research on
anomaly detection presents an outline of vulnerabilities and the respective methods for
detecting them. The below figure shows their methodology of the research on

vulnerability detection.
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Figure 3

Security Goal Indicated Tree (Jimenez et al., 2010)
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7. (Daymont, 2017) In the article “Software vulnerabilities detection system and methods”,
the author invented reveals a scheme and technique of detecting software anomalies in a
computer program. One of the invention methods compiled software has been used for
every single instruction. Basically, this invented compiled software was used to examine
both the properties of data and control flow of the target program.In this article's

methodology, a comprehensive instruction model has been utilized for every instruction



33
of the compiled code. This code is complemented by a graph. The graph is a control flow
model that contains all potential instruction flow paths. Essentially, the data flow models
are used to save the data flow record of unsafe data during the program execution. During
this process, the system analyzes the data flow pattern and generates results
corresponding to each execution, which calls unsafemethods/functions. And thus, the
retrieved results are aggregated along with the related debug information,
recommendations, and all other correlated instructions information that are triggered have

been added in a security report.
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Figure 4

Data flow model to identify vulnerabilities (Daymont, 2017)
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Figure 5

Data flow model to identify vulnerabilities (United States Patent No. US9715593B2,

2017)
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8. Weber, Shah, & Ren, 2008) An article named “Systems and methods for detecting

software security vulnerabilities”, describes the embodiment of the current innovation
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related to software application methods and systems for static analysis.According to the

personification, this framework includes a scanner which has already been programmed

and is couple

d to the analysis engine. The program scanner is used to identify the

numerous software program patterns of vulnerabilities. It also generates a list of

vulnerabilities

in the output file. In order to test the vulnerability potentiality, the analysis

engine is configured to apply additional rules to determine the vulnerable resistance.

Figure 6 descr

Figure 6

ibes the framework of the work.

Analysis engine to determine whether the potential vulnerability is vulnerable (United

States Patent No. US7392545B1, 2008)
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, 2018)The author — Oleksandr Letychevskyi published an article name

“Algebraic methods for detection of Vulnerabilities in software systems” presented an
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approach for detecting vulnerabilities in a program with an algebraic algorithm. The
vulnerabilities in this research framework are found by the sequence of processor
instructions as an input. In a particular methodology, formulas have been used as a logic
language. These formulae are presented as logic and are achieved by transforming the
code into an algebraic specification. Along with the algebraic specifications, symbolic
models were utilized in order to detect vulnerability cases which are represented in the
form of logic language. But with this algebraic approach, the usage of this framework in
order to solve and prove the systems integration along with the Algebraic Programming

system will be anticipated.

(Tevis & Hamilton, 2004)In a few published articles, authors did great research about the
vulnerable attacks on software applications. Their profound research helped them to find
the major reasons, and the necessity to build software has become a dominant goal in the
field of software development. Accordingly, researchers in this software field found that
the users can also be the reason for exploiting the software by their malicious inputs, and
as a result, researchers found a way to fix these issues. In addition to these solutions, in
order to partially mechanize the tasks which perform a security analysis of a program,
researchers also constructed various source codes that automatically check software
applications. Even though researchers came up with immense advances, still the core
issue of how to secure the software applications from vulnerabilities still exists. All in all,

the author’s solution to this problem could transform from imperative to functional
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programming techniques. This solution may be the key approach to get rid of software

vulnerabilities altogether.
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Chapter 111 - Methodology
Introduction:
This chapter describes the approach and the plan to address the issues discussed in
chapter 2.
Design of the Study:
As we know, security for software applications has become a real threat. This framework
implementation is to achieve the following goals,
e Firstly, be able to see if the system acts intended or not
e Enable users to monitor if program execution is consuming more resources in terms of
memory, CPU, network bandwidth, disk usage, 10 requests, etc.
e And with the known resource information such as CPU, RAM, we can predict program
performance on any machine which helps in problem identification.
The architecture of the Framework:
Figure 7

Data Collection and Preparation
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Figure 8

Data Training
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Figure 9

Data Prediction
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Figure 10

Compare and prepare decision statement
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The construction of this framework comprises of 4 phases as follow:

1. Data Collection and Preparation
2. Data Training
3. Data Prediction

4. Compare and Prepare Decision Statement

Phase 1: Data Collection and Preparation

In the first phase - Data Collection and Preparation, a piece of java code is executed in 3
different configurations let’s say A (vVCPU 1, Memory 1GiB); B (vCPU 4, Memory 16GiB); C
(vCPU 16, Memory 32GiB). The outputs generated in these respective machines are saved as
OutputA.txt, OutputB.txt, and OutputC.txt, respectively. The output file has the eightmetrics

captured while programming execution. It captures the CPU performance and memory
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consumption by the specific machine for each java statement. Below are the 11 metrics collected

in .txt files,

Metrics

* FreeCommittedVirtualMemorySize

» TotalSwapSpaceSize

» FreeSwapSpaceSize

* ProcessCpuTime

* FreePhysicalMemorySize

» TotalPhysicalMemorySize

* OpenFileDescriptorCount

» MaxFileDescriptorCount

+ SystemCpuLoad

* ProcessCpuLoad

* ProcessedTimeForEachStatement

Phase 2: Data Training:
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In this second phase - All three or more collected output.txt files in phasel are appended
together and saved in CSV format. This CSV file is given as an input to the Machine Learning,
and it is trained. An algorithm is generated by machine learning according to the data given for
training. Among the given feed, only 70% of the data is given as feed for training. And the

remaining 30% data’s independent values and the dependent values are expected as output.

Phase 3:Data Prediction:

In the third phase — Data in CSV file, among which only 70% of the data is given as feed
for training and the remaining 30% data’s independent columns, and the dependent columns are

expected as output. This is known as predicted data by Machine Learning Algorithm.

Phase 4: Compare and Prepare Decision Statement:

In this last phase of the framework — Compare and Prepare Decision Statement, both
predicted data, the one which is generated by the ML algorithm, and the actual result set are
allowed to compare. If the result predicted by machine learning is similar or reaches its threshold

point, then that particular machine is acting intended; if not, the machine is vulnerable.

Summary:

The research plan, which comprises 4 phases, have been constructed and described in this

chapter. The following chapter demonstrates the implementation steps to address this issue.
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Chapter IV - IMPLEMENTATION OF FRAMEWORK
Introduction:
This chapter shows the implementation steps, an approach to address the anomaly
detection in any system.
Demonstration steps:
1. Login to 3 distinct instances
2. Collect data of 11 metrics for Java code
3. Data Prep
4. Train and Predict Data in SageMaker Notebook instance
5. Plot a graph between Actual and Predicted results
Implementation Process:

Phase 1: Data Collection and Preparation

Steps for connecting to Linux Instance from Windows Using PuUTTY. (Connecting to

Your Linux Instance from Windows Using PUTTY - Amazon Elastic Compute Cloud, n.d.)

Make sure EC2 instance is running before attempt connecting through PuTTY. In order

to start the instance, complete the following steps.

=

Login to AWS console

2. Launch an Instance

.

Generate private key

o

. Connect to the Instance through PuTTY



» Login to AWS console,

e Go to “My Classrooms”

aws § educate My Classrooms  Fortfolio  Career Pathways  Badges Jobs~ AWS Account  Logout

~— —
<(:§% Lakshmipriya Thaduri Consecutive Days: 1 Pathways Completed: 0 Badges Earned: Q
Ny

Preferred Language:

English v

My Classrooms

View your list of Classroom invitations and accept or decline the invitation. Access a Classroom by clicking Go to my classroom.

e Scroll down to the desired course and click on “Go to classroom.”

Abdullah
Starred Paper Master Project Abu 05/01/2020 $200
Hussein

Go to classroom @

e Select AWS Console under “Your Classroom Account Status”

Your Classroom Account Status

( W Active
= full access (Ithaduri@stcloudstate.edu)

R $149.87

remaining credits (estimated)

@ 2:18
session time

T
Account Details | AWS Console
~ —

e Scroll down services, under compute — EC2 services
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@ Compute
E

C2
Lightsail &'
Lambda
Batch
Elastic Beanstalk

Serverless Application Repository
AWS Outposts
ECZ Image Builder

» Launch an Instance:

Launch instance

To get started, launch an Amazon EC2 instance, which is a virtual server in the cloud.

Launch instance ' US East (N. Virginia) Region
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e Click on the dropdown arrow — Launch instance -> Launch instance, as shown in the

above screenshot.

e Below are the steps to be completed to launch an instance

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Add Tags 6. Configure Security Group 7. Review
Step 1: Choose an Amazon Machine Image (AMI) Cancel and Exit

An AMI is a template that contains the software configuration (operating system, application server, and applications) required to launch your instance. You can select an AMI provided by AWS, our user community, or the
AWS Marketplace; or you can select one of your own AMIs.

e Step 1: Choose an Amazon Machine Image (AMI)
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2

e Check “Free tier only.’

Quick Start
My AMIs
AWS Marketplace

Community AMIs

¥ Free tieronly (i)

e Select an instance with desired configurations

® Ubuntu Server 18.04 LTS (HVM), SSD Volume Type - ami-07ebfd5b3428b6f4d (64-bit x86) / ami-0400a1104d5b9caal (64-bit m

Arm)
——— (® B4-bit (x86)
EEACGEEN  Ubuntu Server 18.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (htip://www.ubuntu.com/cloud/services). -, 64-bit (Arm)

Root device type: ebs  Virtualization type: hvm  ENA Enabled: Yes

Step 2: Choose an Instance Type
Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Instances are virtual servers that can run applications. They have varying combinations of CPU, memory, storage, and
networking capacity, and give you the flexibility to choose the appropriate mix of resources for your applications. Learn more about instance types and how they can meet your computing needs.

e Step 2: Choose an instance type -> Review and Launch

12.micro

[ ] General purpose - 1 1 EBS only - Low to Moderate Yes
General purpose t2.small 1 2 EBS only - Low to Moderate Yes
General purpose t2.medium 2 4 EBS only - Low to Moderate Yes
General purpose t2.large 2 8 EBS only - Low to Moderate Yes
General purpose 12.xlarge 4 16 EBS only - Moderate Yes .

Cancel Previous Review and Launch Next: Configure Instance Details



e Select an Instance to run

[ ] 1-030a6655d7a2affed t2.micro

e Below are the properties and respective configurations

Instance: || i-030a6655d7a2affed

Description Status Checks

Instance ID
Instance state
Instance type

Finding

Private DNS

Private IPs
Secondary private IPs
VPC ID

Subnet ID
Network interfaces
IAM role

Key pair name

Owner

Termination protection
Lifecycle

Monitoring

Alarm status

Kemel ID

RAM disk ID

Placement group

Partition number
Virtualization

Reservation

AMI launch index

Tenancy

Host ID

Host resource group name
Affinity

State transition reason

State transition reason message

Public DNS: ec2-52-55-246-37.compute-1.amazonaws.com

Monitoring Tags

i-030a6655d7a2affed
running

t2.micro

You may not have permission to access AWS Compute

Optimizer.
ip-172-31-39-39.ec2.internal
172.31.39.39

vpc-f40cb38e

subnet-b8721de4
ethD

test_lakshmi
393249670316

False
normal
basic
None

hvm
r-00e886884f3f3%e1e
0

default

Public DNS (IPv4)
IPv4 Public IP
IPv6 IPs

Elastic IPs

Availability zone
Security groups
Scheduled events
AMI ID

Platform details
Usage operation
Source/dest. check
T2/T3 Unlimited
EBS-optimized

Root device

Block devices

Elastic Graphics ID

Elastic Inference accelerator ID
Capacity Reservation

Capacity Reservation Setiings
Outpost Am

& 2/2checks... None % ec2-52-55-246-37.com.. 52.55.246.37

ec2-52-55-246-37.compute-1.amazonaws.com
52.55.246.37

us-east-1a

launch-wizard-12. view inbound rules. view outbound rules
No scheduled events
ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-
20200112 (ami-07ebfd5b3428b6f4d)

True
Disabled

False

'devisdal

'devisdal

Open
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As the instance is running, now try connecting through putty. In order to connect

through putty, complete the below steps.

e Make sure PUTTY is installed in your local machine.

e |f not, download the latest version and install PuTTY.

e Also, Install PuTTYgen to convert the private key.
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e Once you launch an instance in AWS services, download .pem file on to your local
by creating a key pair, as shown below.

» Generate private key:

Select an existing key pair or create a new key pair X

A key pair consists of a public key that AWS stores, and a private key file that you store. Together, they
allow you to connect to your instance securely. For Windows AMIs, the private key file is required to
obtain the password used to log into your instance. For Linux AMIs, the private key file allows you to
securely SSH into your instance.

Note: The selected key pair will be added to the set of keys authorized for this instance. Learn more
about removing existing key pairs from a public AMI.

Create a new key pair
Key pair name
Lakshmid]

Download Key Pair

You have to download the private key file (*.pem file) before you can continue. Store
it in a secure and accessible location. You will not be able to download the file again
after it's created.

Cancel Launch Instances

Services ~ Resource Groups ~ * Al er241422=lthad.. ~  N. Virginia ~  Support ~

Launch Status

@ Your instances are now launching
The following instance launches have been initiated: i-0637b710c7782e6a7  View launch log

@ Get notified of estimated charges
Create billing alerts to get an email notification when estimated charges on your AWS bill exceed an amount you define (for example, if you exceed the free usage tier)

How to connect to your instances

Your instances are launching, and it may take a few minutes until they are in the running state, when they will be ready for you to use. Usage hours on your new instances will start immediately and continue to accrue until
you stop o terminate your instances.

Click View Instances to monitor your instances' status. Once your instances are in the running state, you can connect to them from the Instances screen. Find out how to connect to your instances.

» Here are some helpful resources to get you started
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& v 1 ¥ > ThisPC > Downloads

7 Quick access
I Desktop
¥ Downloads
= Documents

&= Pictures

copy

Defence

lakshmid.pem

~nT

e Once you have PEM key downloaded in Downloads, start converting .pem to .ppk
using PuTTYgen.

e Steps to get .ppk file. Do the following steps.

e Open PuTTYgen application, which is installed in your machine.

e In Type of key to generate: select RSA radio button and for Number of bits in a

generated key: 2048 bits

Parameters
Type of key to generate:
(®)RSA ()DSA ( )ECDSA ()Ed25519  ()SSH-1(RSA)

Number of bits in a generated key: 2048

e In Actions, Load an existing private key file



Actions

Generate a public/private key pair Generate
Load an existing private key file Load
Save the generated key Save public key Save private key

e Open the file — browse the .pem key, which is in the Downloads folder.

File name: ‘ ~ ‘ All Files (*.%) Ry

e Select - Load at Load an existing private key file.

g PuTTY Key Generator ? X
File Key Conversions Help

Key
Public key for pasting into OpenSSH authorized_keys file:

ssh-rsa ~
AAAAB3NZaC1yc2EAAAADAQABAAABAQD lcODKSWel o/00KOFwt03bmRLmMEZJxh
hvAeYVbTUgkRIgYm9jPGIdAKEUhm8HsSkYqeOnO5SvnuATCq28zne2VppHRIGRQpx
4.Jq7h00ylrer1Dj7INWmlocbo6VhUsMKpeOzJ44yL 2ev0aVrgHC4uOmnD6zVPsp20el T2
XIECJfonAYHGNANJ84QF|CjqsytsDRIJWEIBEIE7TYOOPGHPUgQHAdSavTvaSntSg0  w

Key fingerprint: |ssh7rsa 2048 eb:f3:fc:3e:4b:c2:87-ee-eb:73:5¢c:8c:fh:4a:e5:00

Key comment: |imp0r‘ted-0penssh-key

|
|
Key passphrase: | ‘
|

Confirm passphrase: |

Actions
Generate a public/private key pair Generate
Load an existing private key file
Save the generated key Save public key Save private key
Parameters
Type of key to generate:
(®)RSA ()DsA (JECDSA () Ed25519 () SSH-1 (RSA)

Number of bits in a generated key: 2048

e Select Ok when the PuTTygen Notice box is populated.
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PuTTYgen Notice X

Successfully imported foreign key

(OpenSSH SSH-2 private key (old PEM format)).
To use this key with PuTTY, you need to

use the "Save private key" command to

save it in PuTTY's own format.

e Choose to Save private key button under Save generated key option.

Actions

Generate a public/private key pair Generate
Load an existing private key file Load
Save the generated key Save public key | Save private key

e Accept the PuTTYgen Warning message.

PuTTYgen Warning

Are you sure you want to save this key
! without a passphrase to protect it?

» Connect to the instance through PuTTY:
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e Make sure instance is running

Launch Instance v eIl IRt (L A o &

Q, Filter by tags and attributes or search by keyword Q 1to6of 6
Name ~ Instance ID - Instance Type =~ Availability Zone - Instance State ~ Status Checks ~ Alarm Status Public DNS (IPv4) ~ IPv4}
i-0154b066888eb317  t2.xlarge us-east-1d @ stopped None w
i-02df9b7eee0d644fb t2.2xlarge us-east-1c @ stopped None ‘4
i-060d8ecd4eaa2(®84  t2.micro us-east-1c @ stopped None %
a i-0637b710c7782e6a7  t2.micro us-east-1c @ running & 2/2checks... None ‘4 ec2-3-91-80-242.comp... 3.91.8
i-0c4817af56306e4f9  t2.2xlarge us-east-1c @ stopped None w
i-0fe07b656968c758b  t2.micro us-east-1a @ stopped None ‘4
Instance: | i-0637b710c7782e6a7 Public DNS: ec2-3-01-80-242.compute-1.amazonaws.com [— =]
Description Status Checks Monitoring Tags
Instance D -0637b710¢7782e6a7 Public DNS (IPv4)  ec2-3-91-80-242.compute-1.amazo ey legeey
Instance state  running IPv4 Public P 3.91.80.242
Instance type  t2.micro IPv6IPs -
Finding  You may not have permission to access ANS Elastic IPs
Compute Optimizer.
Private DNS  ip-172-31-89-218.ec2.internal Availability zone  us-east-1c
Private IPs ~ 172.31.89.218 Security groups  launch-wizard-11. view inbound rules. view

e copy Public DNS (IPv4) from Description

Public DNS (IPv4) ec2-52-55-246-37.compute-1.amazonaws.com €4

e Paste above-copied IPv4 in the Host Name section, Port 22, and connection type is

SSH.
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ﬁ PuTTY Configuration ? X

Category:
[} Session Basic options for your PUTTY session
. *-Logging
= Terminal

--Keyboard Host Name (or IP address) Port

~Bell |-3—9‘\ -80-242 compute-1 ,amazonaws,corr{‘ |22 ‘

--Features -
= Window Connection type:

- Appearance (ORaw  (OTelnet ()Rlogin ®)SSH () Serial

-~ Behaviour
Translation

[+ Selection Saved Sessions

Colours | ‘

[~} Connection
Data Default Settings Load

Specify the destination you want to connect to

Load, save or delete a stored session

Proxy
Telnet Save
Rlogin
3 SSH Delete
Serial

Close window on exit:
(O Aways () Never  (®) Onlyon clean exit

About Help Cancel

Alternatively, if the chosen instance has an IPv6 address, the hosthame can be

user_name@ipv6_address.

For user_name, be sure to specify according to the AMI as listed below,

1. Amazon Linux 2 or the Amazon Linux AMI: ec2-user
2. CentOS: centos

3. Debian: admin or root

4. Fedora: ec2-user or fedora

5. RHEL: ec2-user or root

6. SUSE: ec2-user or root

7. Ubuntu: ubuntu
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8. If any issues connecting instance with the given ec2-user and root, check with the

AMI provider.

On the left section under Category -> SSH -> Auth. Browse, open converted .ppk file

from Downloads.

PuTTY Configuration

Category:

- Keyboard A
- Bell
--Features

= Window

- Appearance
- Behaviour

- Translation
[+ Selection

- Colours

[= Connection
-Data

- Proxy

- Telnet

- Rlogin

= SSH

. Kex
--Host keys
- Cipher
G >
X117

- Tunnels

- Bugs
--More bugs

... Sernal

About Help

Options controlling SSH authentication

Display pre-authentication banner (SSH-2 only)
[ ] Bypass authentication entirely (SSH-2 only)

Authentication methods
Attempt authentication using Pageant
[ ] Attempt TIS or CryptoCard auth (SSH-1)
Attempt "keyboard-interactive” auth (SSH-2)

Authentication parameters
[ ] Allow agent forwarding
[ ] Allow attempted changes of username in SSH-2
Private key file for authentication:

‘C:‘LUsers‘llaksh\DownIoads\reﬂsion_test.p‘| Browse...

Open Cancel

e Accept PUTTY Security Alert, as shown below.
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PuTTY Security Alert X

The server's host key is not cached in the registry. You
! have no guarantee that the server is the computer you

think it is.

The server's ssh-ed25519 key fingerprint is:

ssh-ed25519 255 91:72:37:22:17:f6:b8:5a:e8:2d:96:6a:a1:7:49:44

If you trust this host, hit Yes to add the key to

PuTTY's cache and carry on connecting.

If you want to carry on connecting just once, without

adding the key to the cache, hit No.

If you do not trust this host, hit Cancel to abandon the

connection.

Yes No Cancel Help

e Ubuntu shell will be opened, now login with “ubuntu” user.

&2 ubuntu@ip-172-31-39-39: ~

[ .
o~ login as: ubuntu

e Once you successfully login to the instance, make sure java is installed. To verify,

follow the below commands.

alled with:
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31-39-39:~5

ubuntu@ip-172-

ubuntu@ip-172-31-39-39:~5 sudo

ubuntuldip-1

mmand ']

Now we have java 8 version installed. In order to run a java program, we need to

copy the java program into our ec2 instance using WinSCP.

Below steps will show how to copy files from local to ec2 instance.

Start, WIinSCP, open application. Before make sure this application is download and

installed in your local. If not, get the latest application installed.
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i New Site

Tools v

Manage

e Fill below details:

L 4

Session

File protocol:

SFTP

Host name: Port number:

\ I 23
User name: Password:

Save

Login

Advanced... ‘V

Close Help

hostname: ec2-52-55-246-37.compute-1.amazonaws.com

User name: ubuntu
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For password: Click on the Advanced button. On your left, select authentication under

SSH.

Advanced Site Settings

Environment
Directories
Recycle bin

----- Encryption

SSH
- Key exchange

----- Authentication

In authentication parameters, browse the private key file and OK
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Authentication parameters
[] Allow agent forwarding
Private key file:

Display Public Key Tools v

Private key file:
C:\Users\laksh\Downloads\lakshmi4.ppK

Below the left window is a local directory, and the right is ubuntu. Copy respective files

from the left window and paste it in the right window.

5
Local Mark Files Commands Session Options Remote Help
FBl & (2 synchronize M @® &F @ () Queue = Transfer Settings Default - @-
B ubuntu@ec2-52-55-246-37.compute-1.amazonaws.com X [ New Session
Bl Desktop FEB-ER e ad T wbuntu - (5 - [F - & @D [B FindFiles |
S New- _[# = [¥ B New- “[# - ¥
C:\Users\laksh\Desktop\Defence\Java code\, /home/ubuntu/
Name B Size Type Changed Name B Size Changed Rights
T Parent directory 3/17/2020 11:33:59 PM 2 3/17/2020 10:35:18 PM Wxr-Xrl
| 2xLarge_Output.txt 22 KB Text Document 3/17/2020 11:30:22 PM MemaoryCalculations.class 3KB 3/18/2020 12:18:24 AM W-rw-
HighConfig_Qutput.txt 22 KB Text Document 3/17/2020 11:30:22 PM MemoryCalculations java 3KB 3/17/2020 11:30:22 PM rwxrw]
| MemoryCalculations.cl... 3 KB CLASS File 3/17/2020 11:30:22 PM Output.txt 3KB 3/18/2020 12:18:39 AM W-Tw-
MemoryCalculations.ja... 3 KB JAVA File 3/17/2020 11:30:22 PM
micro_freeTier_Output.... 21KB Text Document 3/17/2020 11:30:22 PM
| Output bt 21KB Text Document 3/17/2020 11:30:22 PM

Once files copied, right-click on the respective .java file, go to properties and grant
permission “777” which means read, write and execute permissions to owner, group, and

others
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MemoryCalculations.java Properties ? s
Common  Checksum
j MemoryCalculations.java
Location: /home/ubuntu
Size: 2.71KB (2,777 B)
Group: ubuntu [1000 ~
Owner: [ubuntu [1000] v |

Permissions:  Owner [V]R [V]W [/]X []SetUID
Group  [v]R []W [w]X []Set GID
Others  [VJR []W [¥]x []Sticky bit

Octal:

0K Cancel Help

Now we have .java file in ubuntu instance root folder with all required permissions.
Java code:
Lets drive into java code, andthe name of the file is — MemoryCalculations.java

import java.io.FileOutputStream;

import java.io.lOException;

import java.io.PrintStream;

import java.lang.management.ManagementFactory;
import java.lang.management.OperatingSystemMXBean;
import java.lang.reflect. Method;

import java.lang.reflect. Modifier;

public class MemoryCalculations {

public static void main(String[] args) throws I0Exception {

boolean append = true;

booleanautoFlush = false;

PrintStream out = new PrintStream(new FileOutputStream(*'/home/ubuntu/Output.txt”,
append), autoFlush);

System.setOut(out);

System.out.printin("**********Console Qutput*******x*x1y.



long startTimel = System.currentTimeMillis();
printUsage();

long stopTimel = System.nanoTime();

long elapsedTimel = stopTimel - startTimel,

System.out.printIn("*Time calculated in millisecond : "

System.out.printIn(*'------------- ");

long startTime2 = System.currentTimeMillis();
int x = 10;

inty =10;

printUsage();

long stopTime2 = System.nanoTime();

long elapsedTime2 = stopTime2 - startTime2;

System.out.printIn("Time calculated in millisecond : "

System.out.printIn(*'------------- ");
long startTime3 = System.currentTimeMillis();
intz=x+y;

printUsage();

long stopTime3 = System.nanoTime();

long elapsedTime3 = stopTime3 - startTime3;
System.out.printIn("Time calculated in millisecond :
System.out.printin(**------------- ");

long startTime4 = System.currentTimeMillis();
enhancedLoop();

printUsage();

long stopTime4 = System.nanoTime();

long elapsedTime4 = stopTime4 - startTime4;

System.out.printIn("*Time calculated in millisecond : "

System.out.printIn("*------------- ");

long startTime5 = System.currentTimeMillis();
printUsage();

long stopTime5 = System.nanoTime();

long elapsedTime5 = stopTime5 - startTime5;
System.out.printIn("Time calculated in millisecond :
System.out.printin(*'------------- ");

k
public static String printUsage() {

OperatingSystemMXBeanoperatingSystemMXBean

ManagementFactory.getOperatingSystemMXBean();
for (Method method :operatingSystemMXBean.getClass().getDeclaredMethods()) {

method.setAccessible(true);

" + elapsedTime3);

" + elapsedTime5);

+ elapsedTimel);

+ elapsedTime2);

+ elapsedTime4);
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if (method.getName().startsWith(*'get") &&Modifier.isPublic(method.getModifiers())) {

Obiject value;



try {
value = method.invoke(operatingSystemMXBean);

} catch (Exception e) {

value = e;

Y try

System.out.printin(method.getName() + " =" + value);
I if

} // for

return ",

}

public static void enhancedLoop() {
System.out.printin(*Using regular for loop.");
for (inti=0; 1< 50; i++) {
System.out.printin(i);

¥
k
¥

Code Description:

1.

2.

First, all necessary packages were imported.

Get into the public class, which has 3 methods - main(), printUsage()

enhancedLoop().
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and

The first method main() throws IOException. This method has mainly divided into

sixparts:

e Partl (L14 - L18): Created an object “out” from PrintStream class in order to save

executed console Output to the Output.txt file in the given directory.

e Part2 (L20 — L25) : Simply callingprintUsage() method to see the performance

metrics. Performance is calculated by doing elapsed time is the time difference

between after and before the execution of code.
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In Simple way, elapsed time = stopTime - startTime

e Part3 (L27 — L33): Assign two integer values to two different variables x and y.

e Part4 (L35 — L41): Perform the addition of x and y, and then assign addition value to
variable z.

e Part5 (L43 — L49) : Calling enhancedLoop().

e Part6 (L51 — L56) : No additional execution of code, just calling performance
calculation method printUsage().

. Second method — printUsage() will result all various performance calculation metrics of

the resources as listed below,

getCommittedVirtualMemorySize

getTotalSwapSpaceSize

getFreeSwapSpaceSize

getProcessCpuTime

getFreePhysicalMemorySize

getTotalPhysicalMemorySize

getOpenFileDescriptorCount

getMaxFileDescriptorCount

getSystemCpulLoad

getProcessCpuload

Time calculated in millisecond
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5. Third method — enhancedLoop(). This is an enhanced forloop which prints 1 to 49

integers.

As .java file is in place and ready to execute in the ubuntu instance, now execute above

.Jjava file as shown below,

Compile java code with javac MemoryCalculations.java

After code is executed, we see the Output.txt file generated. This .txt has the console

output of the executed file, as shown below.
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o DD U

Similarly, repeate same process for other two instances. Figure 11 shows all the three

instances with respective configurations.

Figure 11

Three Ubuntu Instances

e |

Three instance configuration details are described below,
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1. t2.micro:
e Instance type: Ubuntu
e VCPUs: 1
e Memory (GB): 1
2. t2.xlarge:
e Instance type: Ubuntu
e VCPUs: 4
e Memory (GB) : 16
3. t2.2xlarge:
e Instance type: Ubuntu
e VCPUs: 8
e Memory (GB) : 32
The above-described java code has been executed in the above listed three instances. As
shown, three output files generated in three different machines are micro_freetier.txt,
Highconfig_Output.txt, and 2xLarge Output.txt files, respectively. These .txt files details

described below,

1. micro_freetier.txt - Contains Runl to Run10 with 11 performance metrics for fivelines of
Java code.
2. HighConfig_Output.txt - Contains Runl to Run10 with 11 performance metrics for five

lines of Java code.



67
3. 2xLarge_Output.txt - Contains Runl to Run10 with 11 performance metrics for five lines

of Java code.

The data collected in these files are used to train machine learning and expect to generate
an algorithm out of it. So, in order to train Machine Learning, these .txt files are modified from

horizontal records to vertical retrieving records and saved in .xIsx format as described below,

1. micro_freetier.xlsx - Contains columnar based values of micro_freetier.txt

2. HighConfig_Output.xIsx - Contains columnar based values of HighConfig_Output.txt

3. 2xLarge_Output.xIsx - Contains columnar based values of 2xLarge_Output.txt

All data from the above.txt files are gathered together and prepared table and saved in
DataPrep.xlIsx and this file format is converted to .csv as Notebook instance accepts .csv file
formats. Columns which have similar values are eliminated. After similar value columns

elimination, DataPrep.xIsx contains below columns,

1. CPU

2. Memory

3. Int_CommittedVirtualMemorySize
4. Int_ProcessCpuTime

5. Int_FreePhysicalMemorySize

6. Int_TotalPhysicalMemorySize



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Int_SystemCpulLoad
Int_ProcessCpulLoad

Int_Time
Var_CommittedVirtualMemorySize
Var_ProcessCpuTime
Var_FreePhysicalMemorySize
Var_TotalPhysicalMemorySize
Var_SystemCpuLoad
Var_ProcessCpulLoad

Var_Time
Sum_CommittedVirtualMemorySize
Sum_ProcessCpuTime
Sum_FreePhysicalMemorySize
Sum_TotalPhysicalMemorySize
Sum_SystemCpuload

Sum_Time
loop_CommittedVirtualMemorySize
loop_ProcessCpuTime
loop_FreePhysicalMemorySize
loop_TotalPhysicalMemorySize
loop_SystemCpulLoad

loop_ProcessCpuload

68
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29. loop_Time
30. final_CommittedVirtualMemorySize
31. final_ProcessCpuTime
32. final_FreePhysicalMemorySize
33. final_TotalPhysicalMemorySize
34. final_Time

Access AWS SageMaker — Notebook Instance

Amazon SageMaker is one of the Machine Learning Services, where data can be feed as
input for the ML Algorithm to train and predict. Create a Notebook Instance in the SageMaker

where the set of commands can be executed to test and train data.

Below are the instructions which are followed to create Notebook Instance:

Once you access Amazon SageMaker, scroll down to Notebook services, and select
Notebook Instance. Once you get into the page, create new Instance with the details shown in

Figure 12.



Figure 12

Notebook Instance Settings, Permission and Encryption details

Notebook instance settings

Notebook instance name

Maximum of 63 alphanumeric char yphens (-), but n 2s. Must be unique within your account in an AWS Region
Notebook instance type

ml.t2.medium v
Elastic Inference Learn more [4

none v

» Additional configuration

Permissions and encryption

IAM role
Notebook instances require pe r services including SageMaker and S3. Choose a role or let us create a role with the
AmazonSageMakerFullAccess |

AmazonSageMaker-ExecutionRole-20191220T211599 v

Root access - optional
© Enable - Give users root access to the notebook

Disable - Don't give users root access to the notebook
Lifec

ycie configurations always have root acces

Encryption key - optional

Encrypt your n ook data. Choose an existing KMS key or enter a key's ARN

No Custom Encryption v
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Once Instance is created, under Actions -> select Open Jupyter and wait until the status

shows InService in Figure 13.
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Figure 13

Notebook instance status

Amazon SageMaker Notebook instances
Notebook instances Create notebook instance
Q, Search notebook instances 1 &
Name v Instance Creation time v Status v Actions
python-test-1 ml.t2.medium Mar 30, 2020 04:46 UTC @ InService Open Jupyter | Open JupyterLab

Once Jupyter Notebook is opened, upload DataPrep.csv file into the instance as shown in

Figure 14.

Figure 14

Upload option in Notebook Instance

: J upyter Open JupyterLab Quit
Files Running Clusters Conda SageMaker Examples
Select items to perform actions on them. Upload || New » | &

Also, create a conda_python3 shell to execute commands. For that, select dropdown button

New > conda_python3 as shown in Figure 15.
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Figure 15

Notebook type — conda_python3

Upload [New~ || &

Notebook:

e
R
Sparkmagic (PySpark) kB
Sparkmagic (Spark) kB
Sparkmagic (SparkR) B
conda_amazonei_mxnet_p27
conda_amazonei_mxnet_p36 kB

conda_amazonei_tensorflow_p27 kB
conda_amazonei_tensorflow_p36
conda_chainer_p27
conda_chainer_p36
conda_mxnet_p27
conda_mxnet_p36
conda_python2

conda_python3
conda_pytorch_p27
conda_pytorch_p36
conda_tensorflow_p27

conda_tensorflow_p36

Figure 16

File uploaded in Jupyter Python nNotebook — PredictData_Instance

: Ju pyter Open JupyterLab Quit
Files Running Clusters SageMaker Examples Conda
Select items to perform actions on them. Upload | New~ | &
0~ W/ Name ¥ | Last Modified File size
& PredictData_Instance ipynb 2 days ago 136 kB

Few testing sheets were created to test the code. The actual results were captured in
PredictData_Instance.ipynb. DataPrep.csv is the file uploaded that contains data for training and

prediction.
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Phase 2 — Data Training

Import “pandas” package to read DataPrep.csv and save the data in the panda's data

frame “df” As shown in Figure 17.

df.head () prints the contents of the data frame.(Machine Learning Tutorial Python—7: Training

and Testing Data—YouTube, 2018)

Figure 17

Read CSV file into a dataframe

In [1]: M dimport pandas as pd
df = pd.read_csv("DataPrep.csv")

df.head()
out[1]:
CPU Memory Int_CommittedVirtualMemorySize Int_ProcessCpuTime Int_FreePhysi ySize Int_TotalPhysi 1orySize Int_Sy puLoad Int

0 1 1 2208010240 60000000 143585280 1038839808 0.003497
1 1 1 2208010240 60000000 142438400 1038839808 0.003322
2 1 1 2208010240 60000000 142774272 1038839808 0.003302
3 1 1 2208010240 60000000 143343616 1038839808 0.003305
4 1 1 2208010240 50000000 145678336 1038839808 0.003309

5 rows x 34 columns

Import matplotlib.pyplot, this package will plot graphs across X and Y-axis variables
assigned are shown in Figure 18. (Py/train_test_split.ipynb at master - codebasics/py - GitHub,

2018)

Figure 18

Import matplotlib

In [2]: M dimport matplotlib.pyplot as plt
%matplotlib inline
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The graph is plotted with the below variables CPU on X-axis and the contents of data

frame on Y-axis which is shown in Figure 19.

Figure 19

Dataframe for Graph plot between Dependent and Independent columns |

In [3]:

M plt.
plt.
plt.
plt.
plt.
plt.

.scatter(df['CPU'],df['Int_Time'])

plt

plt.
plt.
plt.
plt.
plt.
plt.
.scatter(df['CPU'],df['Var_Time'])

plt

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
.scatter(df['CPU'],df['final_FreePhysicalMemorySize'])
plt.
plt.

plt

scatter(df['CPU'],df['Int_CommittedVirtualMemorySize'])
scatter(df['CPU'],df['Int_ProcessCpuTime'])
scatter(df['CPU"'],df['Int_FreePhysicalMemorySize'])
scatter(df['CPU'],df[ 'Int_TotalPhysicalMemorySize'])
scatter(df['CPU'],df['Int_SystemCpuload'])
scatter(df['CPU"'],df['Int_ProcessCpuload'])

scatter(df['CPU'],df['Var_CommittedVirtualMemorySize'])
scatter(df['CPU"'],df['Var_ProcessCpuTime'])
scatter(df['CPU'],df[ 'Var_FreePhysicalMemorySize'])
scatter(df['CPU'],df['Var_TotalPhysicalMemorySize'])
scatter(df['CPU'],df['Var_SystemCpuload'])
scatter(df['CPU"'],df['Var_ProcessCpuload'])

scatter(df['CPU'],df['Sum_CommittedVirtualMemorySize'])
scatter(df['CPU"'],df['Sum_ProcessCpuTime'])
scatter(df['CPU"'],df['Sum_FreePhysicalMemorySize'])
scatter(df['CPU'],df['Sum_TotalPhysicalMemorySize'])
scatter(df['CPU"'],df[ 'Sum_SystemCpuload'])
scatter(df['CPU"'],df['Sum_Time'])

scatter(df['CPU'],df['loop CommittedVirtualMemorySize'])
scatter(df['CPU'],df['loop_ProcessCpuTime'])
scatter(df['CPU'],df[ 'loop_FreePhysicalMemorySize'])
scatter(df['CPU'],df['loop_TotalPhysicalMemorySize'])
scatter(df['CPU'],df['loop_SystemCpuload'])
scatter(df['CPU'],df['loop_ProcessCpuload'])
scatter(df['CPU"'],df['loop_Time'])

scatter(df['CPU'],df['final CommittedVirtualMemorySize'])
scatter(df['CPU'],df[ 'final ProcessCpuTime'])

scatter(df['CPU'],df['final TotalPhysicalMemorySize'])
scatter(df['CPU'],df['final_Time'])

Below graph is been plotted between CPU and one of the dependent columns as shown in

Figure 20.
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Figure 20

Graph plot between Dependent and Independent columns |

Out[3]: <matplotlib.collections.PathCollection at @x7f%e26b5c128>
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Similarly, the additional graph is plotted between one of the independent (Memory) and

the dependent columns as shown in Figure 21.



Figure 21

Dataframe for Graph plot between Dependent and Independent columns Il

In [4]:

M plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.

scatter(df[ 'Memory'],df[ 'Int_CommittedVirtualMemorySize'])
scatter(df[ 'Memory'],df[ 'Int_ProcessCpuTime'])

scatter(df[ 'Memory'],df[ 'Int_FreePhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'Int_TotalPhysicalMemorySize'])
scatter(df[ '"Memory'],df[ 'Int_SystemCpuload'])

scatter(df[ "Memory'],df['Int_ProcessCpuload'])

scatter(df[ 'Memory'],df[ 'Int_Time'])

scatter(df[ 'Memory'],df[ 'Var_CommittedVirtualMemorySize'])
scatter(df[ 'Memory'],df[ 'Var_ProcessCpuTime'])

scatter(df[ 'Memory'],df[ 'Var_FreePhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'Var_TotalPhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'Var_SystemCpuload'])

scatter(df[ 'Memory'],df[ "Var_ProcessCpuload'])

scatter(df[ 'Memory'],df[ "Var_Time'])

scatter(df[ "Memory'],df[ 'Sum_CommittedVirtualMemorySize'])
scatter(df[ 'Memory'],df[ 'Sum_ProcessCpuTime'])

scatter(df[ "Memory'],df[ 'Sum_FreePhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'Sum_TotalPhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'Sum_SystemCpuload'])

scatter(df[ 'Memory'],df[ 'Sum_Time'])

scatter(df[ 'Memory'],df[ 'loop CommittedVirtualMemorySize'])
scatter(df[ 'Memory'],df[ 'loop ProcessCpuTime'])

scatter(df[ 'Memory'],df[ 'loop_FreePhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'loop_TotalPhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'loop SystemCpuload'])

scatter(df[ 'Memory'],df[ 'loop ProcessCpuload'])

scatter(df[ 'Memory'],df["loop_Time'])

scatter(df[ "Memory'],df[ ' final_CommittedVirtualMemorySize'])
scatter(df[ '"Memory'],df[ 'final ProcessCpuTime'])

scatter(df[ 'Memory'],df[ 'final_FreePhysicalMemorySize'])
scatter(df[ 'Memory'],df['final_ TotalPhysicalMemorySize'])
scatter(df[ 'Memory'],df[ 'final_Time'])
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Graph is been plotted between Memory and one of the dependent columns as shown in Figure

22.
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Figure 22

Graph plot between Dependent and Independent columns Il

Out[4]: <matplotlib.collections.PathCollection at @x7f9e26abd4a8>
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CPU and Memory are two independent variables that are saved like an array and assigned

to independent_var as derived in Figure 23.

Figure 23

Independent variable assignment

In [5]: M| independent wvar = df[['CPU", "Memory']]

All other 32 columns are dependent variables that are saved like an array and assigned to

dependent_var as derived in Figure 24.
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Figure 24

Dependent variable assignment

In [6]: M mittedVirtualMemorySize','final ProcessCpuTime', 'final FreePhysicalMemorySize','final TotalPhysicalMemorySize','final Time']]

4

In Figure 25, 30% of data is taken out for testing machine learning for prediction whereas

70% of data is to feed data for training.

Figure 25

Independent variable assignment

In [7]: M Ffrom sklearn.model selection import train_test_ split
independent_var_train, independent_var_test, dependent var_train, dependent_var test = train_test split(independent_var,deper

»

The random data picked up by the ML algorithm for training is shown in Figure 26 and Figure

27:

Figure 26

Independent train variable

In [8]: M independent_wvar_ train
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Figure 27

Independent train variable data

Out[8]:

CPU Memory

2 1 1
28 8 32
1 1 1
28 8 32
27 8 32
7 1 1
18 4 16
5 1 1
23 8 32
17 4 16
25 8 32
3 1 1
20 8 32
9 1 1
24 8 32
11 4 16
16 4 16
13 4 16
22 8 32
19 4 16
6 1 1

Figure 28 is the 30% of the data that is given for ML to test. We are not feeding this data
as to not have any clue for the prediction. Figure 28 shows is the actual output predicting from

ML output.



Figure 28

Independent test variable with data

In [9]: M independent_var_test

Out[9]: CPU Memory
26 8 32
4 1 1
15 4 16
14 4 16
0 1 1
8 1 1
10 4 16
21 8 22
12 4 16

Figure 29 represents dependent_var_train is the dataset used to train ML

80



Figure 29

Dependent train variable

In [18]: M | dependent_var_train

Out[10]: Int_CommittedVirtualMemorySize Int_ProcessCpuTime Int_FreePhysicalMemorySize Int_TotalPhysicalMemorySize Int_SystemCpuLoad Int ProcessCpuLo
2 2208010240 60000000 142774272 10388395808 0.003302 0.0000
28 11468390400 60000000 33294565376 33737129984 0.001429 0.0000
1 2208010240 60000000 142438400 1038839508 0.003322 0.0000
29 11468390400 60000000 33295867904 33737129984 0.001426 0.0000
27 11468390400 60000000 33294299136 33737129984 0.001432 0.0000
7 2208010240 50000000 142397440 1038839508 0.003307 0.0000
18 6732087296 60000000 15030919168 16525704448 0.011551 0.0000
5 2208010240 60000000 142438400 1038839508 0.003299 0.0000
23 11468390400 60000000 33295187968 33737129984 0.001437 0.0000
17 6732087296 60000000 15029895168 16525704448 0.011572 0.0000
25 11468390400 60000000 33294458880 33737129984 0.001432 0.0000
3 2208010240 60000000 143343616 1038839808 0.003305 0.0000
20 11468390400 60000000 33294262272 33737129984 0.001490 0.000C
9 2208010240 50000000 142295040 1038839808 0.003291 0.0000
24 11468390400 60000000 33295400960 33737129984 0.001434 0.0000
1 6732087296 60000000 15029694464 16825704448 0.011676 0.0000
16 6732087296 60000000 15030718464 16625704448 0.011588 0.0000
13 6732087296 60000000 15030075392 16625704448 0.011629 0.0000
22 11468390400 60000000 33294704640 33737129984 0.001437 0.0000
19 6732087296 60000000 15029383168 16625704448 0.011535 0.0000
6 2208010240 60000000 142184448 1038839808 0.003303 0.0000

21 rows x 32 columns
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dependent_var _test here refers to the expected output needs to be predicted by the ML algorithm

for the input given from dependent_var _test as represented in Figure30.



Figure 30

Dependent test variable

In [11]: M dependent_var_test

Out[11]: Int_CommittedVirtualMemorySize Int_ProcessCpuTime Int_FreePhysicalMemorySize Int_TotalPhysicalMemorySize Int_SystemCpuLoad Int_ProcessCpulo
26 11468390400 60000000 33295233024 33737129984 0.001434 0.0000

4 2208010240 50000000 145678336 1038839808 0.003309 0.0000

15 6732087296 60000000 15029145600 16825704448 0.011603 0.0000

14 6732087296 50000000 15032500224 16825704448 0.011611 0.0000

0 2208010240 60000000 143585280 1038839808 0.003497 0.0000

8 2208010240 50000000 143708160 1038839808 0.003311 0.0000

10 6732087296 60000000 15030235136 16825704448 0.012339 0.0000

21 11468390400 60000000 33293635584 33737129984 0.001438 0.0000

12 6732087296 60000000 15028113408 16825704448 0.011650 0.0000

9 rows x 32 columns
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Linear regression is a linear approach to modeling the relationship between a scalar

response (or dependent variable) and one or more explanatory variables (or independent

variables). This package is imported as shoen in Figure 31.(Linear regression—Wikipedia, n.d.)

Figure 31

LinearRegression Import

In [12]: M from sklearn.linear model impeort LinearRegression
clf = LinearRegression()

clf.fit(independent_wvar train, dependent_var train)

Out[12]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None,

normalize=False)

Phase 3 - Data Prediction:
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With the regression variable, the prediction is performed to get independent values when

dependent values are fed as input in Figure 32, Figure33, Figure 34.

Figure 32

Prediction of Independent test variable |

In [13]: M clf.predict(independent_var_test)

Out[13]: array([[ 1.14683904e+10, 6.00000000e+87, 3.32048434e+10,
3.37371300e+10, 1.43967338e-083, 9.12938750=-06,
6.92631674e+11, 1.14683904e+10, 6.375000002+07,
3.32947958e+10, 3.37371300e+10, 9.37500000e-02,
2.50000000e-01, 6.92631043e+11, 1.14683904e+10,
6.625000002+07, 3.32926331e+10, 3.37371300e+10,
1.11022382e-16, 6.92630522e+11, 1.14683904e+10,
6.875000002+07, 3.32926331e+10, 3.373713002+10,
1.87500000e-01, 1.25000000e-01, 6.926290973e+11,
1.146839842+10, 6.875000002+07, 3.32926331e+10,
3.37371360e+18, 6.926286032+11],

[ 2.20801024e+89, 5.71428571e+07, 1.42553088e+88,
1.03883981=+09, 3.30408800e-03, 3.55820000=-06,
1.45275861e+13, 2.20801024e+09, 6.000000002+07,
1.425530882+08, 1.03883981e+09, 5.71428571e-01,
3.85311332e-16, 1.45275875e+13, 2.20801024e+89,
6.000000002+07, 1.42498670e+08, 1.03883981e+09,
2.85714286e-01, 1.45275884e+13, 2.208010242+89,
6.57142857e+87, 1.42458670e+08, 1.093883981e+89,
1.428571432-01, 1.52655666e-16, 1.45275908e+13,
2.20801024e+09, 6.71428571e+07, 1.42498670e+08,
1.03883981e+09, 1.452759362+13],

[ 6.73208730e+09, 6.00000000e+07, 1.50301143e+10,
1.68257044e+10, 1.15919003e-082, 7.29775000=-86,
5.06965182e+11, 6.73208730e+09, 6.166666672+07,
1.582991162+18, 1.68257044e+10, 4.16666667=-01,

-1.11022302e-16, 5.06965783e+11, 6.73208730e+089,
6.33333333e+07, 1.50277482e+10, 1.68257044e+10,
1.116223822-16, 5.0696629%9e+11, 6.732087302+89,
6.33333333e+07, 1.50277482e+10, 1.68257044e+10,
3.33333333e-01, -5.55111512e-17, 5.06967763e+11,
6.73208730e+09, 6.50000000e+07, 1.50277482e+10,
1.682570442+18, 5.06968228=+11],



Figure 33

Prediction of Independent test variable 11
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[ 6.73208730e+09, 6.0000000Be+07,
1.68257044e+10, 1.159190032-02,
5.06965182e+11, 6.732087302+09,
1.50299116e+10, 1.68257044e+10,

-1.110223082e-16, 5.86965783e+11,
6.33333333e+87, 1.50277482e+18,
1.11822302e-16, 5.06966299e+11,
6.33333333e+07, 1.50277482e+10,
3.33333333e-01, -5.55111512e-17,
6.73208730e+09, 6.50000000e+07,
1.68257044e+10, 5.06968228e+11],

[ 2.20801024e+09, 5.71428571e+07,
1.03883981e+89, 3.30408800e-03,
1.45275861e+13, 2.20801024e+89,
1.425530882+08, 1.03883981e+09,
3.05311332e-16, 1.45275875e+13,
6.00000000e+07, 1.42498670e+08,
2.85714286e-01, 1.45275884e+13,
6.57142857e+87, 1.42498670e+08,
1.42857143e-81, 1.52655666e-16,
2.208010242+09, 6.71428571e+07,
1.03883981e+09, 1.45275936e+13],

[ 2.20801024e+09, 5.71428571e+07,
1.03883981e+09, 3.30408800e-03,
1.45275861e+13, 2.20801024e+89,
1.42553088e+88, 1.03883981e+09,
3.05311332e-16, 1.45275875e+13,
6.000000002+07, 1.42498670e+08,
2.85714286e-01, 1.45275884e+13,
6.57142857e+07, 1.42498670e+08,
1.42857143e-81, 1.52655666e-16,
2.20801024e+89, 6.71428571e+87,
1.03883981e+89, 1.45275936e+13],

R e e N O N I T T2 T« Y SO R SO T
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.58381143e+18,
.25775000e-06,
.16666667e+07,
.16666667e-01,
. 73208730e+09,
.682578044e+18,
.732887380e+09,
.68257044e+18,
.B6967763e+11,
.50277482e+18,

.42553088e+08,
.55820000e-06,
. 80080000e+87 ,
.71428571e-01,
.20801024e+09,
.683883981e+09,
.20881024e+89,
.683883981e+09,
.45275988e+13,
.42498670e+08,

.42553088e+08,
.55820000e-06,
. 88080008e+87 ,
.71428571e-01,
.20801024e+09,
.B83883981e+09,
.20801024e+09,
.683883981e+09,
.45275988e+13,
.424986780e+08,
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Figure 34

Prediction of Independent test variable 111
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[ 6.73208730e+09, 6.00000000e+87,
1.68257044e+10, 1.159199032-02,
5.06965182e+11, 6.73208730e+89,
1.50299116e+10, 1.68257044e+10,

-1.118223082e-16, 5.86965783e+11,
6.33333333e+07, 1.508277482e+10,
1.11022302e-16, 5.0696629%e+11,
6.33333333e+07, 1.50277482e+10,
3.33333333e-01, -5.55111512e-17,
6.73208730e+09, 6.500000002+87,
1.68257044e+10, 5.06968228e+11],

[ 1.14683984e+10, 6.060000000e+087,
3.37371300e+10, 1.43967338e-03,
6.92631674e+11, 1.14683904e+10,
3.32947958e+10, 3.37371300e+10,
2.50000000e-01, 6.92631843e+11,
6.62500000e+07, 3.32926331e+18,
1.11022302e-16, 6.92630522e+11,
6.87500000e+07, 3.32026331e+10,
1.87500000e-01, 1.25000000e-01,
1.14683904e+10, 6.87500000e+087,
3.37371300e+10, 6.92628603e+11],

[ 6.73208730e+09, 6.00000000e+87,
1.68257044e+10, 1.15919903e-02,
5.06965182e+11, 6.732087302+89,
1.50299116e+10, 1.68257044e+10,

-1.118223@2e-16, 5.86965783e+11,
6.33333333e+07, 1.50277482e+10,
1.11022302e-16, 5.0696629%e+11,
6.33333333e+07, 1.50277482e+10,
3.33333333e-01, -5.55111512e-17,
6.73208730e+09, 6.500000002+87,
1.68257044e+10, 5.06968228e+11]])

Wodn W= Wl D@y 0w e L e N T & A T S T I S
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.58381143e+18,
.259775808e-086,
.16666667e+07,
.16666667e-01,
.73288738e+09,
.6825780442+18,
. 732087 538e+29,
.68257844e+189,
.B6967763e+11,
.5B277482e+18,

.3294843534e+18,
.12938758e-06,
.3758000082+07 ,
.37508008e-02 ,
.146839042+189 ,
.37371308e+18,
.146839604e+189 ,
.37371308+189,
.92629873e+11,
.32926331e+189,

.58381143e+189,
.29775008e-06,
.16666667e+07 ,
.1l6bB6E6Te-01,
. 732087 538e+29,
.68257844e+189,
. 732887382+09,
.682578044e2+189,
.B6967763e+11,
.58277482e+18,
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Figure 35 shows actual dataset of dependent test variable.

In [15]: M dependent_var test predict = clf.predict(independent_var test)

Figure 35

Prediction of Dependent test variable

In [14]: M dependent_var_test

Out[14]: Int_CommittedVirtualMemorySize Int_ProcessCpuTime Int_FreePhysicalMemorySize Int_TotalPhysicalMemorySize Int SystemCpuLoad Int ProcessCpulLo
26 11468390400 50000000 33295233024 33737129984 0.001434 0.0000

4 2208010240 50000000 145678336 1038839808 0.003309 0.0000

15 6732087296 60000000 15029145600 16825704448 0.011603 0.0000

14 6732087296 50000000 15032500224 16625704448 0.011611 0.0000

0 2208010240 50000000 143585280 1038839808 0.003497 0.0000

8 2208010240 50000000 143708160 1038839808 0.003311 0.0000

10 6732087296 50000000 15030235136 16825704448 0.012339 0.0000

21 11468390400 50000000 33293635584 33737129984 0.001438 0.0000

12 6732087296 60000000 15028113408 16625704448 0.011650 0.0000

9 rows x 32 columns

dependent_var _test predict is predicted dataset variable formatting the data type to be suitable

with the actual data type.
Figure 36 shows the Numpy package import is to change the datatype format to float.
Figure 36

Numpy package import

In [16]: M limpor"l: numpy as np
np.set_printoptions(formatter={ 'float_kind':'{:f}'.format})



87
With the regression variable, the prediction is performed to get independent values when

dependent values are fed as input in Figure 37, Figure38, Figure 39.

Figure 37

Prediction of Dependent test variable |

In [17]: M dependent_var_test predict

Out[17]: array([[11468390480.000000, 60000000.000000, 33294843392.000000,
33737129984 .000008, 0.901448, 0.000809, 692631674854.0898633,
11468390400 .000008, 63750000.008000, 33294795775.999992,
33737129984 .000000, ©.0993750, 0.250000, ©6952631043259.231445,
11468399400 .000008, 66250000.000000, 33292633087.999996,
33737129984 .000008, ©.900008, 692638522086.455117,
11468390400 .0000008, 68750000.000000, 33292633087.9999%0,
33737129984 . 660, ©.187500, ©.125000, ©952629072863.894727,
11468399400 .000008, 63750000.000000, 33292633087.99999%6,
33737129984 .000000, 692628683387.866211],

[2208010239.999999, 57142857.142857, 142553088.000002,
183883958058.000005, ©.083304, 0.000084, 14527586131415.859375,
2208010239.999999, 60000000 .000000, 1425530838.0000803,
1838839808.000005, ©.571429, 0.000000, 14527587458637.722656,
2208010239.999999, 60000000 .000000, 1424958669.714288,
1838839865.000005, 0.285714, 14527588421344.867188,
2208010239.999999, b65714285.714286, 142498669.714288,
1938839868.000005, ©.142857, 0.000000, 14527595884591%9.292569,
2208010239.999999, 67142857.142857, 142498669.714288,
10388395888 .0080005, 14527593639241.831258],

[6732087296. 000000, 60000000 .08000080, 156381143064 .00600080,
16825704448 . 600002, ©.0911552, 0.000007, 5086965181506.489258,
6732087296.000000, b61666666.666667, 15029911551.999998,
16825704448.000002, 0.416667, -0.008000, 586965763388.497870,
6732087296.000000, 63333333.333333, 15027748181.333332,
16825704448 .060002, 0.000000, 506966298861.338867,
6732087296.0800000, 63333333.333333, 15027748181.333332,
16825704448.080002, ©.333333, -0.008000, 506967762738.657227,
6732087296.000000, 65000000.000000, 15027748181.333332,
16825704448 .000002, 506968227537.678711],



Figure 38

Prediction of Dependent test variable 11
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[6732087296.000000, 60000000.000000, 150301143064 .000000,
16825794445 .000002, ©.9115%2, ©.000007, 506965181906.489258,
67328087296. 008808, 61666666.0666667, 15829911551.999998,
16825784448 . 800082, 0.416667, -0.000808, S06565783388

6732887296.088808, 63333333.333333,

16825784448 . 888082, ©.000000, S586966298861.338867,
6732087296.000000, ©3333333.333333, 150827748181.333332,
16825784448 . 888082, ©8.333333, -0.000808, 5806567762730
67328087296, 000000, 65000000.800800, 15627748181.333332,
16825704448 .000002, 506968227537.678711],

[2208010239.
1838839808.
22889168239,
1838839808.
2208018239.
1838839808.
2208018239.
1838839808.
2288018239,
1838839808.

[2208010239.
1838839808.
22889168239,
1838839808.
2208018239.
1838839808.
2288018239,
1838839808.
2288018239,
1838839808.

999999,
POO0OS
999999,
900005,
999999,
900005,
999999,
POO0OS,
999999,
900005,
999999,
POO0OS
999999,
900005,
999999,
POO0O5
999999,
900005,
999999,
POO0OS

57142857 .142857, 142553088.000082,
B.083384, 0.0000B4, 14527586131415
EEEe0e0e . BoBERE, 142553088.000083,

8.571429, 9.800000, 14527587458637.

boeoeeee . 00oeed, 142498665.714288,
8.285714, 14527588421344.867188,
65714285.714286, 142498669.714288,

8.142857, B.800086, 14527598845919.

67142857 .142857, 142498669.714288,
14527593639241.63125@],
57142857 .142857, 142553088.800082,

8.083304, B.800004, 14527586131415.

EEEE0R00 . BEBERE, 1425530838.000083,

8.571429, B.800006, 14527587458637.

boeoeeee . 00oeed, 142498665.714288,
8.285714, 14527588421344 867188,
65714285 .714286, 142498669.714288,

8.142857, B©.8000806, 14527599845919.

67142857 .142857, 142498669.714288,
145275936359241.831258],

.4970780,

15827748181.333332,

.657227,

.859375,

722656,

292969,

859375,

722656,

292969,
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Figure 39

Prediction of Dependent test variable 111
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[6732087296. 000000, 600000D00.000000, 15630114304.000000,
16825784448 . 080882, 8.9115%2, 0.800007, 586965181906.489258,
6732087296 .0000088, blbbbbbb.6666LT, 15829911551.999998,
16825704448 080002, 0.416667, -0.000008, S86965783388.497870,
6732087296.0000808, B3333333.333333, 15027748181.333332,
16825704448 000802, ©.000000, 506966298861.338867,
6732087296.0000808, B3333333.333333, 15027748181.333332,
16825704448 080802, ©.333333, -0.000008, S586967762738.657227,
6732087296.000000, B5000000.000000, 15827748181.333332,
16825704448 .000002, 506968227537.678711],

[11468350400.000000, 60000000.000000, 332954843392.000000,
33737129934 .080080, 8.901440, ©0.800809, 692631674854.098633,
11465358400 . 280280, 63750080 .800800, 33294795775.999992,
33737129984 .000000, ©.093750, 0.250000, 692631043259,231445,
11465350400 . 080200, 66250000 .000000, 33292633887.999996,
337371259984 .000000, ©.000000, 692638522806.495117,
11458398400 . 080000, 63750000 .000000, 33292633087.999996,
33737129984 . 000000, ©.187500, ©.125000, 692629072803.094727,
11458398400 . 080000, 63750000 .000000, 33292633087.999996,
33737129984 .000000, ©692628603387.866211],

[6732087296.000000, H0DODODO.00G000, 15030114304.000000,
16825704448 080802, 2.0911592, ©.000007, 5869565181906.489258,
6732087296.0000008, b6l6b6666.666667, 15829911551.999998,
16825764445 . 080882, 8.416667, -0.000008, S86965783388.497870,
6732087296.088088, B63333333.333333, 15827748181.333332,
16825784448 . 080882, B.020000, 506966298861.338867,
6732087296.008088, B3333333.333333, 15827748181.333332,
16825784448 080882, ©.333333, -0.008008, S86567762738.657227,
6732087296 .00000808, B5000000.080080, 15827748181.333332,
16825704448 .000002, 506968227537.678711]1])

Output match of datasets between actual and predicted is 99.72%. this can be seen in Figure 40.



Figure 40

ActualVs Predicted score

In [18]: M clf.score(independent_var_ test, dependent var test)

Out[18]: ©.9972016951887358

Phase 4 - Comparison and Decision statement:

Below graphs are been plotted between Actual and Predicted values.

Figure 41 shows the graph plotted between CPU and Dependent variables.

Predicted results:

Figure 41

Predicted Graph plot between CPU and Dependent variables

In [19]: M newdata = np.squeeze(dependent_var_test_predict)
plt.plot(independent_var_test['CPU'],newdata[:,8], 'g"", independent_var_test['CPU'],newdata[:,1],'g"",independent_var_test['CF
plt.show()

»

1el3
&

Graph is been plotted between Memory and Dependent variables as shown in Figure 42.



Figure 42

Predicted Graph plot between Memory and Dependent variables

In [20]: M newdata = np.squeeze(dependent_var_test_predict)
plt.plot(independent_var_test['Memory'],newdata[:,8], 'r*',independent_var_test[ 'Memory’],newdata[:,1], 'r*',independent_var_t¢
plt.show()
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Actual results:

Figure 43

Actual Graph plot between CPU and Dependent variables

M | plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt.
plt.
plt.
plt.
plt.

scatter(independent_var_test['CPuU'],dependent_var_test['Int_cCcmmittedvirtualMemorySize'],color=["green’])
scatter(independent_var_test['CPuU'],dependent_wvar_test['Int_ProcessCpuTime'],coclor=["green'])
scatter(independent_var_test['CPuU'],dependent_var_test['Int_FreePhysicalMemorySize'],color=["green’])
scatter(independent_var_test['CPuU'],dependent_var_test['Int_TctalPhysicalMemorySize'],color=[ "green’])
scatter(independent_var_test['CPuU'],dependent_var_test['Int_systemCpuload'],color=["green’])
scatter(independent_var_test['CPuU'],dependent_wvar_test['Int_ProcessCpuload’],coclor=["green'])}
scatter(independent_var_test['CPU'],dependent_var_test['Int_Time'],color=['green’])

scatter(independent_var_test['CPuU'],dependent_var_test[ 'Var_CcemittedvirtualMemorySize'],color=["green’])
scatter(independent_var_test['cPu'],dependent_war_test['wvar_ProcessCpuTime'],color=["green'])
scatter({independent_var_test['cru'],dependent_war_test[ 'var_FreePhysicalMemorysize'],color=["green'])
scatter(independent_var_test['cru'],dependent_var_test[ 'var_TotalPhysicalMemorysize'],color=["green'])
scatter(independent_var_test['cru'],dependent_wvar_test[ 'var_systemCpuload'],color=["green’])
scatter(independent_var_test['cru'],dependent_war_test['wvar_ProcessCpuload'],color=["green'])
scatter(independent_var_test['cru'],dependent_var_test['var_Time'],color=['green'])

scatter({independent_var_test['cru'],dependent_var_test['sum_committedvirtualMemorysize'],color=["green’])
scatter(independent_var_test['cPu'],dependent_war_test['sum_ProcessCpuTime'],color=["green'])
scatter(independent_var_test['Cru'],dependent_var_test['sum_FreerhysicalMemorys '1,color=["green'])
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scatter(independent_var_test['cPu'],dependent_var_test['final_committedvirtualMemorysize'],color=['green'])
scatter(independent_var_test['cru'],dependent_war_test['final_ProcesscpuTime'],color=[ 'gresn"])
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scatter(independent_var_test['cru'],dependent_war_test['final_TotalPhysicalMemorysize'],color=['green’])
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Actual results of CPU Vs Dependent variables are shown in Figure 43.
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Figure 44

Actual Graph plot between Memory and Dependent variables
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Figure 44 showns the graph which is been plotted between Memory and Dependent variables.



Graph Plot between Predicted vs. Actual

Predicted resultsf
1e13
14 4
D 12
e 10
P
e
n 06
d o
e
n ©2 .
t o001 a 4 a
1 2 3 H 5 6 8
CPU
Actual results
113
141 ®
D,
e
p 10
e 08
n
d
o 04
n oz
t gof e g H
1 2 3 4 5 6 8

Result Analysis:

CPU

~EocpEOoT OO

~EocpEOoT OO

081

06 1

0414

021

00

14
12
10
08
06
04
02

00

lel3

10

15

.

Memory
le13
0
[ ]
a .
0 0 15 2 3
Memory

94

As we notice, actual and predicted results are within the threshold; by this, we can say

System is acting intended. In the graph plots, the score of the actual and prediction results are

99% accurate.
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With this result analysis, if the predicted values by ML are not tallied, then we can
predict the existence of anomaly in one or the other form. By this, developers can beneficial from
the ML predictictions towards the post deployment failures ahead of time. Also, with known
system configurations’ like CPU and Memory of any machine’s performance metrics can be

achieved with this framework.

In addition, users are enabled to see if program execution consumes more than required

resources in terms of CPU, memory, network bandwidth or disk 10 requests.
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Chapter V - Future work

This framework enables us to identify if any vulnerability exists in the system. Also
enables users to identify program performance if the system key configurations are known. In
addition, this frameworks helps enable users to see the required resources are been utilized by the
program or not with the known configuration details such as CPU, memory, network bandwidth,
etc. Though the identification of anomalies are been successful, still the specification of
anomaly type and the solution towards the issue could not be achieved with this framework. The

research work performed in this paper in order to resolve the issue is limited.

Further findings of the issue type and the possible solutions to resolve certain anomaly
will still be continued. Future work of this research extension will first include identifying the
type of anomaly in the system when the metrics prediction do not meet the threshold values.

Secondly, work on possible solutions in order to address the issue.
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Chapter VI - Conclusion

As software applications hold high demand, application security should be considered as
a chief goal. With the help of this machine learning approach, application anomalies can be
detected with minimal human involvement. Main goal of this framework is to identify anomalies
in Software applications by calculating performance metrics with  the systems key
configurations. With the trained data to the ML, systems performance resources can be captured.
After the demonstration of the project, the predicted results are achieved with an accuracy of
about 99%. Systems performance metrics were successfully able to be achieved with the known

resourcs like CPU, Memory, network bandwidth..
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Below is the data of three VM instances (Ubuntu) 11 metrices 10 runs of each instance. All the

data is been gathered for feeding as an input to the ML for training 70% and prediction 30%

(random data).

Int_CommittedVirtualMemorySize

Int_ProcessCpuTime

1 1 2208010240 60000000
1 1 2208010240 60000000
1 1 2208010240 60000000
1 1 2208010240 60000000
1 1 2208010240 50000000
1 1 2208010240 60000000
1 1 2208010240 60000000
1 1 2208010240 50000000
1 1 2208010240 50000000
1 1 2208010240 50000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 50000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 60000000
4 16 6732087296 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000
8 32 11468390400 60000000




Int_FreePhysicalMemorySize ‘ Int_TotalPhysicalMemorySize Int_SystemCpuload

143585280 1038839808 0.003497052
142438400 1038839808 0.003321757
142774272 1038839808 0.003302004
143343616 1038839808 0.003305015
145678336 1038839808 0.003308768
142438400 1038839808 0.003299414
142184448 1038839808 0.003302786
142397440 1038839808 0.003306789
143708160 1038839808 0.003310753
142295040 1038839808 0.003290851
15030235136 16825704448 0.012338837
15029694464 16825704448 0.01167598
15028113408 16825704448 0.011650133
15030075392 16825704448 0.011629428
15032500224 16825704448 0.011610898
15029145600 16825704448 0.011602982
15030718464 16825704448 0.011587859
15029895168 16825704448 0.011572471
15030919168 16825704448 0.011551093
15029383168 16825704448 0.011534571
33294262272 33737129984 0.001489881
33293635584 33737129984 0.001438163
33294704640 33737129984 0.001437085
33295187968 33737129984 0.00143661
33295400960 33737129984 0.001434442
33294458880 33737129984 0.001432256
33295233024 33737129984 0.001433931
33294299136 33737129984 0.001431869
33294565376 33737129984 0.001428878
33295867904 33737129984 0.001426366
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Int_ProcessCpuLoad Int_Time | Var_CommittedVirtualMemorySize Var_ProcessCpuTime
0.00000399 | 1.352E+13 2208010240 60000000
3.7754E-06 | 1.435E+13 2208010240 60000000
0.000003748 | 1.447E+13 2208010240 60000000
3.7458E-06 | 1.448E+13 2208010240 60000000
3.7451E-06 | 1.448E+13 2208010240 60000000
3.7275E-06 | 1.456E+13 2208010240 60000000
3.7263E-06 | 1.456E+13 2208010240 60000000
3.1044E-06 | 1.457E+13 2208010240 60000000
0.00000372 | 1.457E+13 2208010240 60000000
0.00000308 | 1.47E+13 2208010240 60000000
7.8061E-06 | 3.73E+11 6732087296 60000000
7.3805E-06 | 4.838E+11 6732087296 60000000
7.3564E-06 | 4.905E+11 6732087296 60000000
7.3372E-06 | 4.958E+11 6732087296 60000000
7.3201E-06 | 5.006E+11 6732087296 60000000
7.3074E-06 | 5.042E+11 6732087296 60000000
7.2918E-06 | 5.086E+11 6732087296 60000000
7.2767E-06 | 5.128E+11 6732087296 70000000
0.000007258 | 5.181E+11 6732087296 60000000
7.2423E-06 | 5.226E+11 6732087296 60000000
1.09664E-05 | 7.529E+11 11468390400 70000000
8.9979E-06 | 7.173E+11 11468390400 60000000
8.9168E-06 | 7.097E+11 11468390400 60000000
1.03141E-05 | 7.025E+11 11468390400 70000000
8.7555E-06 | 6.942E+11 11468390400 60000000
8.6803E-06 | 6.868E+11 11468390400 60000000
8.6208E-06 | 6.808E+11 11468390400 60000000
0.00000854 | 6.726E+11 11468390400 70000000
8.4716E-06 | 6.655E+11 11468390400 60000000
8.3904E-06 | 6.569E+11 11468390400 60000000




143585280 1038839808 1
142438400 1038839808 0
142774272 1038839808 0
143343616 1038839808 1
145678336 1038839808 1
142438400 1038839808 0
142184448 1038839808 1
142397440 1038839808 1
143708160 1038839808 1
142295040 1038839808 1
15029981184 16825704448 0
15029239808 16825704448 1
15028113408 16825704448 0
15029821440 16825704448 0
15032246272 16825704448 0.5
15029145600 16825704448 0
15030718464 16825704448 0
15029641216 16825704448 1
15030919168 16825704448 0
15029129216 16825704448 0.5
33293881344 33737129984 0
33293635584 33737129984 0
33294704640 33737129984 0
33295187968 33737129984 0.25
33295400960 33737129984 0
33294458880 33737129984 0.5
33294852096 33737129984 0
33294299136 33737129984 0
33294565376 33737129984 0
33295867904 33737129984 0
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Var_ProcessCpuload Var_Time Sum_CommittedVirtualMemorySize
0| 1.3517E+13 2208010240
0 | 1.4354E+13 2208010240
0| 1.447E+13 2208010240
0| 1.448E+13 2208010240
0 | 1.4483E+13 2208010240
0 | 1.4559E+13 2208010240
0 | 1.4564E+13 2208010240
0 | 1.4568E+13 2208010240
0| 1.4573E+13 2208010240
0 | 1.4698E+13 2208010240
0 | 3.7301E+11 6732087296
0 | 4.8383E+11 6732087296
0 | 4.9048E+11 6732087296
0 | 4.9583E+11 6732087296
0| 5.006E+11 6732087296
0 | 5.0415E+11 6732087296
0 | 5.0856E+11 6732087296
0 | 5.1281E+11 6732087296
0| 5.1814E+11 6732087296
0 | 5.2262E+11 6732087296
0| 7.5292E+11 11468390400
0| 7.1728E+11 11468390400
1| 7.097E+11 11468390400
0 | 7.0245E+11 11468390400
0| 6.942E+11 11468390400
0 | 6.8678E+11 11468390400
0 | 6.8082E+11 11468390400
1| 6.7258E+11 11468390400
0 | 6.6549E+11 11468390400
0 | 6.5692E+11 11468390400
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Sum_ProcessCpuTime

Sum_FreePhysicalMemorySize

Sum_TotalPhysicalMemorySize

60000000 143458304 1038839808
60000000 142438400 1038839808
60000000 142774272 1038839808
60000000 143216640 1038839808
60000000 145551360 1038839808
60000000 142311424 1038839808
60000000 142184448 1038839808
60000000 142270464 1038839808
60000000 143708160 1038839808
60000000 142295040 1038839808
60000000 15027757056 16825704448
60000000 15027142656 16825704448
60000000 15025905664 16825704448
60000000 15027724288 16825704448
70000000 15030022144 16825704448
60000000 15027048448 16825704448
60000000 15028621312 16825704448
70000000 15027400704 16825704448
70000000 15028695040 16825704448
60000000 15026905088 16825704448
70000000 33291800576 33737129984
60000000 33291411456 33737129984
70000000 33292607488 33737129984
70000000 33293090816 33737129984
70000000 33293303808 33737129984
60000000 33292234752 33737129984
60000000 33292754944 33737129984
70000000 33292042240 33737129984
60000000 33292341248 33737129984
60000000 33293643776 33737129984




Sum_SystemCpuLoad Sum_Time @ loop_CommittedVirtualMemorySize
0 | 1.3517E+13 2208010240
1| 1.4354E+13 2208010240
0| 1.447E+13 2208010240
0| 1.448E+13 2208010240
0 | 1.4483E+13 2208010240
1| 1.4559E+13 2208010240
0 | 1.4564E+13 2208010240
0 | 1.4568E+13 2208010240
0 | 1.4573E+13 2208010240
0 | 1.4698E+13 2208010240
0 | 3.7301E+11 6732087296
0 | 4.8383E+11 6732087296
0 | 4.9048E+11 6732087296
0 | 4.9583E+11 6732087296
0 | 5.0061E+11 6732087296
0 | 5.0415E+11 6732087296
0 | 5.0856E+11 6732087296
0| 5.1281E+11 6732087296
0 | 5.1814E+11 6732087296
0| 5.2262E+11 6732087296
0 | 7.5292E+11 11468390400
0| 7.1728E+11 11468390400
0 | 7.0969E+11 11468390400
0 | 7.0245E+11 11468390400
0| 6.942E+11 11468390400
0 | 6.8678E+11 11468390400
0 | 6.8082E+11 11468390400
0 | 6.7258E+11 11468390400
0 | 6.6549E+11 11468390400
0 | 6.5692E+11 11468390400
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loop_ProcessCpuTime

loop_FreePhysicalMemorySize

loop_TotalPhysicalMemorySize

60000000 143458304 1038839808
70000000 142438400 1038839808
60000000 142774272 1038839808
70000000 143216640 1038839808
60000000 145551360 1038839808
60000000 142311424 1038839808
70000000 142184448 1038839808
60000000 142270464 1038839808
60000000 143708160 1038839808
70000000 142295040 1038839808
70000000 15027757056 16825704448
60000000 15027142656 16825704448
60000000 15025905664 16825704448
60000000 15027724288 16825704448
70000000 15030022144 16825704448
70000000 15027048448 16825704448
60000000 15028621312 16825704448
70000000 15027400704 16825704448
70000000 15028695040 16825704448
60000000 15026905088 16825704448
70000000 33291800576 33737129984
70000000 33291411456 33737129984
70000000 33292607488 33737129984
70000000 33293090816 33737129984
70000000 33293303808 33737129984
70000000 33292234752 33737129984
60000000 33292754944 33737129984
70000000 33292042240 33737129984
70000000 33292341248 33737129984
60000000 33293643776 33737129984
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loop_SystemCpuload

o

loop_ProcessCpulLoad

1.3517E+13

1.43541E+13

1.44704E+13

1.448E+13

1.4483E+13

1.45588E+13

1.45636E+13

1.45683E+13

1.45731E+13

1.4698E+13

3.73012E+11

4.83828E+11

o

4.90482E+11

4.95835E+11

5.00606E+11

5.04156E+11

5.08562E+11

5.12812E+11

5.18146E+11

5.22624E+11

7.52923E+11

7.17278E+11

7.09693E+11

7.02452E+11

6.94199E+11

o

6.86782E+11

6.80815E+11

6.72578E+11

o

o

6.65488E+11

o|ln|lo|lo|lo|o|r|o|lo|lo|o|r|o|r|lojlo|jlo|n|jo|o|o|o|o|o|o|o|o|r |o

6.56918E+11
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final_CommittedVirtualMemorySize

final_ProcessCpuTime

final_FreePhysicalMemorySize

2208010240 60000000 143458304
2208010240 70000000 142438400
2208010240 60000000 142774272
2208010240 70000000 143216640
2208010240 60000000 145551360
2208010240 70000000 142311424
2208010240 70000000 142184448
2208010240 60000000 142270464
2208010240 60000000 143708160
2208010240 70000000 142295040
6732087296 70000000 15027757056
6732087296 60000000 15027142656
6732087296 60000000 15025905664
6732087296 70000000 15027724288
6732087296 70000000 15030022144
6732087296 70000000 15027048448
6732087296 60000000 15028621312
6732087296 70000000 15027400704
6732087296 70000000 15028695040
6732087296 60000000 15026905088
11468390400 70000000 33291800576
11468390400 70000000 33291411456
11468390400 70000000 33292607488
11468390400 70000000 33293090816
11468390400 70000000 33293303808
11468390400 70000000 33292234752
11468390400 70000000 33292754944
11468390400 70000000 33292042240
11468390400 70000000 33292341248
11468390400 60000000 33293643776




final_TotalPhysicalMemorySize final_Time
1038839808 1.3517E+13
1038839808 1.4354E+13
1038839808 1.447E+13
1038839808 1.448E+13
1038839808 1.4483E+13
1038839808 1.4559E+13
1038839808 1.4564E+13
1038839808 1.4568E+13
1038839808 1.4573E+13
1038839808 1.4698E+13
16825704448 3.7301E+11
16825704448 4.8383E+11
16825704448 4.9048E+11
16825704448 4.9584E+11
16825704448 5.0061E+11
16825704448 5.0416E+11
16825704448 5.0856E+11
16825704448 5.1281E+11
16825704448 5.1815E+11
16825704448 5.2262E+11
33737129984 7.5292E+11
33737129984 7.1728E+11
33737129984 7.0969E+11
33737129984 7.0245E+11
33737129984 6.942E+11
33737129984 6.8678E+11
33737129984 6.8081E+11
33737129984 6.7258E+11
33737129984 6.6549E+11
33737129984 6.5692E+11
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