
Linguistic Portfolios Linguistic Portfolios 

Volume 13 Article 6 

2024 

SYNTHESIZERS DEMONSTRATED ON BETINE SYNTHESIZERS DEMONSTRATED ON BETINE 

CLARE MILLER 

ISABELLA RANDOLPH 

Follow this and additional works at: https://repository.stcloudstate.edu/stcloud_ling 

 Part of the Applied Linguistics Commons 

Recommended Citation Recommended Citation 
MILLER, CLARE and RANDOLPH, ISABELLA (2024) "SYNTHESIZERS DEMONSTRATED ON BETINE," 
Linguistic Portfolios: Vol. 13, Article 6. 
Available at: https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6 

This Article is brought to you for free and open access by The Repository at St. Cloud State. It has been accepted 
for inclusion in Linguistic Portfolios by an authorized editor of The Repository at St. Cloud State. For more 
information, please contact tdsteman@stcloudstate.edu. 

https://repository.stcloudstate.edu/stcloud_ling
https://repository.stcloudstate.edu/stcloud_ling/vol13
https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6
https://repository.stcloudstate.edu/stcloud_ling?utm_source=repository.stcloudstate.edu%2Fstcloud_ling%2Fvol13%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/373?utm_source=repository.stcloudstate.edu%2Fstcloud_ling%2Fvol13%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6?utm_source=repository.stcloudstate.edu%2Fstcloud_ling%2Fvol13%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu


                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 80 

DIGITALIZED SPEECH SYNTHESIS: A COMPARATIVE ANALYSIS OF SPEECH 
SYNTHESIZERS DEMONSTRATED ON BETINE 

 

CLARE MILLER AND ISABELLA RANDOLPH1  

 
ABSTRACT 

This paper provides basic information on developing speech synthesis to help preserve and 
revitalize critically endangered languages. It uses Betine, (ISO 639-3:eot), as a model. The 
death of minority languages is escalating globally, and 90% are predicted to die by 2100, 
which results in the loss of cultural heritage and knowledge. Synthesizing speech in dying 
and near-extinct languages can preserve and even revitalize them. The paper includes 
spectrographs and waveforms of the given Beti name <Adjo> transcribed phonetically as 
[aːɟo]. It also contains voice component measurements and the synthesizing programs used 
for comparison. The measurements taken from the data include F0/pitch, formants (F1, 
F2, F3, F4, F5), amplitudes (A1, A2, A3, A4), and A5, intensity, duration, and bandwidths 
(B1, B2, B3, B4, and B5). The paper notes that chunking longer phonemes into multiple 
short samples can give better synthesized results. Klatt, KlattGrid, and WORLD 
synthesizers are used for synthesizing the Betine speech segment. The paper proposes that 
vocoder synthesizers such as WORLD may be worth greater research concerning their 
capabilities in artificial speech synthesis.  

 
Keywords: Betine, Beti, Speech Synthesis, Formant Synthesis, Klatt Synthesizer, KlattGid, 
Tdklatt, WORLD Synthesizer, Formant Extraction, Formant Bandwidths, Endangered Languages 
 
1.0 Introduction 

While the death of languages is not a new phenomenon, it is quickly escalating on a global 
scale. The United Nations Educational, Scientific, and Cultural Organization (UNESCO) estimates 
that by the year 2100, 90% of the world's languages will have died, as cited by Koffi (2021:23). 
As a language dies, the accumulated knowledge of all the generations who spoke it vanishes, not 
to mention the loss of cultural heritage. With this gravity in mind, the paper attempts to find an 
efficient and effective way to synthesize speech, using the critically endangered language Betine 
(ISO 639-3:eot) as a model. It is spoken in the lagoon areas of Côte d’Ivoire, West Africa.  
Successfully synthesized speech for dying languages should be interactive and have the same 
capabilities as systems such as Siri and Alexa.  If it does, it could indefinitely preserve and even 
revitalize the languages that will otherwise disappear. For this demonstration, our final class 
project focused on an audio sample of the female Beti name <Adjo> transcribed phonetically as 
[aːɟo]. The paper includes codes and synthesizing programs that made the synthesis possible, as 
well as a comparison of our results from each of those programs.   
 
2.0 Spectrograms and Measurements 

There are many instruments used in speech synthesis. Spectrographs, visual representations of 
sound, are helpful for viewing pitch and formants, among other speech components. Spectrographs 

 
1 Recommendation: This paper was recommended for publication by Dr. Ettien Koffi and Dr. Mark Petzold who 
taught the Speech Signal Processing and Coding course from which the paper originated.  Dr. Koffi verified the 
accuracy of the acoustic phonetic information and Dr. Petzold did the same for the accuracy of the scripts and codes. 

1

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 81 

give information about frequency over time, while waveforms display amplitude over time. All 
the spectrographs shown in this paper are generated by Praat, an acoustic speech signal processing 
program that is user-friendly and widely accepted for various uses involving speech. Below is a 
spectrograph and waveform of our given word, [à:ɟó]. It also includes the measurements taken. 
There is a notable gap between the segments [à:] and [ɟ]. This is because the space was determined 
to have a drawn-out and echo-like quality exhibited by the speaker, likely due to an exaggerated 
and drawn-out pronunciation, which would otherwise not be the case in running speech. This area 
is indicated by the red rectangle in Figure 1: 

 

 
Figure 1: Spectrograph of [à:ɟó] 

 
3.0 Measurements 
 The measurements taken from our data and used in synthesis are as follows: F0/pitch, also 
known as fundamental frequency, formants (F1, F2, F3, F4, F5), amplitude (A1, A2, A3, A4, A5), 
intensity, duration, and bandwidth (B1, B2, B3, B4, and B5). F0 is the baseline pitch in a sound.  
It changes depending on the sound uttered and the characteristics of the speaker. Upon F0 are built 
other frequency elements such as formants, which are sound qualities formed by resonances in the 
vocal tract and produce a filter effect. F1 corresponds to how wide the mouth is (mouth aperture), 
F2 to the length of the oral cavity (depending on horizontal tongue movement), F3 to the rounding 
of the lips, and F4 to head size. F5 was also collected from Praat but considered a possibly 
inaccurate result due to the abstract definition of Formant 5 mentioned in Koffi and Petzold (2022). 
B1 to B5 refers to the bandwidth measurements corresponding to F1 to F5. A1 to A5 refers to the 
amplitude of the corresponding formant (F1 to F5). This is obtained by converting the sound 
segment to a spectrum and finding the nearest maximum intensity for a given frequency. The 
equivalent method in Praat would be to convert the sound to a spectrum and call the query function 
“Get sound pressure level of nearest maximum…” 
 
 The sound file was also downsampled from 44100 Hz to 10000 Hz, as recommended by 
Koffi and Petzold (2022). These measurements were taken by hand after setting boundaries in 
Praat and using simple "get __" functions. We would like to note that the gap previously mentioned 
between [à:] and [ɟ] similar measurements to the first segment, indicating that it might be an 
extension of the vowel. However, the intensity decreases noticeably as indicated by the faint 
yellow line found in the spectrograph (Figure 1), and synthesis of the gap results in a distorted 
sound. 

2

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 82 

 
 Originally, we tried to synthesize speech by plugging in values obtained from Praat (see 
Figure 10). However, due to the time it takes to manually get each value and the decision to “chunk” 
longer phonemes into shorter ones, we decided to use Parselmouth to dynamically find the average 
values. Previous projects showed that these values are slightly different from what one would find 
through Praat - likely due to some subtle difference in the algorithm Praat uses to calculate mean 
values - but are nonetheless close enough to use without worry. We are including the measurements 
from Praat for the sake of comparison, even though they were not used for synthesis. We note in 
passing that the only measurements we used from Praat are the start time and end time of a speech 
segment. This is only used for the Klatt synthesizer and not the KlattGrid or WORLD 
synthesizers.  As for chunking phonemes, the Klatt synthesizer does not sound correct when we 
are playing a single phoneme over a long duration. As such, we decided to split longer phonemes 
into shorter ones. Our first version with Praat synthesis chunks the first and last phoneme into two 
separate speech segments for a total of 5 chunks. A revised version chunks each speech segment 
into even smaller chunks around 10 msec long, for a total of 33 chunks.2  Below are the code 
samples that can be used to obtain each measurement. 
 

 
Figure 2: Pitch Extraction Code  

 
 GetPitch() returns F0/pitch measurements for a given time range (Figure 2). Note that we 
call the Praat method via Parselmouth rather than getting each pitch data frame and averaging it. 
We do not use this method for KlattGrid measurements. 
 

 
Figure 3: Intensity Extraction Code 

 
GetIntensity() returns the average intensity for a given time range (Figure 3).  GetFormant() also 
returns the average formant and bandwidth for a given formant number (Figure 4). 
 

 
2 Editor’s note: In speech signal processing, 20 msecs are usually preferred because it is deemed that speech signals 
are invariant within 20 msec frames. 

3

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 83 

 
Figure 4: Formant Extraction Code 

 
GetFormantAmplitude() converts the sound to a spectrum and gets the intensity for a given 
formant number (Figure 5). We were unsure whether or not this needed to be pre-emphasized 
first. 
 

 
Figure 5: Amplitude Extraction Code 

 
  
For our Klatt synthesizer, this is the function we used to fill every parameter we want to obtain 
(Figure 6).  
 

4

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 84 

 
Figure 6: Extraction Codes in Klatt Synthesizer 

 
 The method used to get the value for each pitch data frame and add it to the KlattGrid 
object (Figure 7). Note that unlike in Klatt, we obtain the measurement by obtaining the pitch 
value for every frame. This is because we do not need an average for a given time value, just 
what the value is at that time.  
 

 
Figure 7: Pitch Codes for KlattGrid 

 
 The method used to get the value for each intensity data frame and add it to the KlattGrid 
object (Figure 8). 
 

 
Figure 8: Intensity Codes for KlattGrid 

 

5

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 85 

 The method used to get each formant, alongside corresponding bandwidth and amplitude 
(Figure 9). It is then added to the KlattGrid object. For the Klatt synthesizer and the KlattGrid 
synthesizer, we obtain data roughly the same way through Parselmouth. However, the WORLD 
synthesizer uses a different set of measurements. It uses new algorithms to estimate various 
measurements as quickly as possible. These measurements include the F0 contour at each time 
point, the harmonic spectral envelope, and the aperiodic spectral envelope. These measurements 
may be obtainable through Praat, but if they are, the method is unknown to us.  
 

 
Figure 9: Formant Codes for KlattGrid 

 
 The F0 contour represents the pitch values at a given time frame. In this regard, it should 
be roughly the same as what Praat would give us. However, the method used is different. WORLD 
uses an algorithm called DIO (Distributed Inline-Filter Operation), as explained by Morise et al. 
(2009).  According to Boesma (1993), Praat, on the other hand, uses an autocorrelation algorithm 
by default. In order to estimate F0, we also looked at using the Harvest algorithm (Morise, 2017). 
This gives better results than DIO but is slower. F0 is also refined using the Stonemask algorithm 
(Morise, 2017). Harmonic spectral envelope, or timbre, is roughly the spectrum of a sound - that 
is, the intensity value at each frequency value. WORLD uses the CheapTrick algorithm (Morise, 
2014).  
  

The Aperiodic spectral envelope is calculated (relative to the harmonic spectral envelope) 
using the Harvest algorithm. This is used in order to make for a more natural sound synthesis. 
Without it, the synthesized sound ends up having several robotic-sounding sections. However, we 
noticed that it had very little impact on our sound example. We are also using D4C (Definitive 
Decomposition Derived Dirt-Cheap) that estimates "band-aperiodicity."  
  

Following the steps outlined above, we moved on to our measurements themselves.  The 
tables below contain data extracted manually from Praat.  

 
Segment [aː] [ɟ] [o] 
F0 129 130 130 
F1 666 574 412 
F2 1166 1976 1624 
F3 2119 2724 2973 
F4 3501 4015 4119 
F5 4552 4550 4572 
Intensity 82 76 84 

6

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 86 

Duration 136 34 161 
B1 111 508 209 
B2 284 525 1117 
B3 1701 563 1178 
B4 171 586 89 
B5 913 178 270 

Table 1: Data Extracted Manually from Praat 
 

 Here, we would like to note the bandwidth measurements from Praat. Bandwidth is 
infamously difficult to measure, and many of our first attempts included values that were, for each 
formant respectively, 20% of the formant itself (Koffi, 2023). 3  As indicated by the B4 
measurement of the third segment [o], the results from Praat do not always align with the 
parameters we would expect to see. However, for our later attempts, we used values extracted 
directly from the sound, as we detected no difference in the sounds produced, so they were kept in 
the final syntheses.  
 
 In our Klatt synthesis, we attempted two different methods: synthesis with almost as few 
chunks as possible and synthesis with a chunk size of 10 msec. The latter resulted in 33 chunks. 
Our first attempt was done using five chunks, effectively splitting the first and last vowels into two 
sections. We have listed the measurements for the first segment in the word to give the reader an 
idea as to the accuracy of measurements generated generated by code using Parselmouth. Our 
Parselmouth data was used for synthesis in KlattGrid, while our manual data from Pratt was used 
for our first attempt with five chunks. Data from Parselmouth was used in our attempt with more 
chunks, but the duration values from Praat were still imported. The measurements from 
Parselmouth are as follows: 

 
Segment [aː] Chunk 1 Chunk 2 Average 
F0 127 130 128 
F1 776 587 681 
F2 1176 1182 1179 
F3 2075 1839 1957 
F4 3595 3490 3542 
F5 4708 4380 4544 
Intensity 82 82 82 
Chunk size  0.068415 0.068415 - 
B1 156 100 128 
B2 361 202 281 
B3 542 808 675 
B4 184 121 152 
B5 617 342 479 

 
3 Editor’s note: Bandwidth estimates mentioned here are actually based on Rabiner and Juang (1993:152).  Full 
citation: Rabiner, Lawrence and Bin-Hwang Juang.  1993.  Fundamentals of Speech Recognition.  Prentice Hall, 
Englewood Cliffs: New Jersey. 

7

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 87 

                     Table 2: Measurements from Parselmouth 
 
4.0 Klatt Synthesizer 
 Klatt is a formant speech synthesizer that uses a grid approach (pre-set speech parameters) 
for its data. It relies on manual tuning and measurement input to produce natural-sounding speech. 
As a result, the output depends almost entirely upon what measurements are being used. The first 
paper published by Klatt on voice synthesis in 1980 lists 39 parameters that may be used (Klatt, 
1980). We utilized 16 of those, including F0, F1-F5, AV (amplitude of voicing), A1-A5, and B1-
B5. Due to limited information on how to obtain the data needed to use other measurements, we 
focused on other areas as well as the parameters for our synthesis. For example, the chunk size 
mentioned earlier.  
  
 Formant synthesizers view voice linearly, which allows for a direct correlation for 
programming. Klatt's formula is as follows:  
 

P(f) = S(f) * T(f) * R(f)  
 
Here, (f) in each symbol indicates frequency. S(f) is the source volume velocity, T(f) is a ratio of 
lip-plus-nose volume velocity, U(f) is lip volume velocity, and R(f) is the radiation from the head 
(Klatt, 1980). According to Klatt, sound energy is activated by lung pressure, then as it travels 
through the vocal tract, is excited by the natural resonances of the body (formants). Voicing, 
aspiration, and frication are all part of the initialization of sound, which then goes through a 
filtering system that results in radiated sound pressure (P(f)), or the final sound. The Klatt 
synthesizer mimics this theory by placing frequency (F0) through filters that imitate the 
physiological qualities of the head and vocal tract.  
 
 For our project, we used tdklatt to synthesize each sound using the previously mentioned 
parameters (Guest, 2018). With the way it works, we had to create several different sound samples, 
play them, store the buffer data for each sound played, and then combine all of the sounds together 
in order to create a single sound. So, this is the code for this step-by-step. 
 

 
Figure 11: Codes Used for tdklatt 

8

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 88 

 The first step is defining the parameters for which we wanted to obtain measurements. 
Thereafter, we needed to define the start and end time for each phoneme. We added the custom 
parameter SW for each sound segment to have the Klatt synthesizer use parallel resonators rather 
than cascade. 
 

 
Figure 12: Sound Parameters 

 
 The next step was to separate the phonemes previously defined into chunks.  We found the 
measurement data and created a KlattParam1980 object using tdklatt. This information was 
appended into a list. 
 

 
Figure 13: Klatt Parameter Object 

 
 With the list of each of the parameters, we had tdklatt create the actual object that 
synthesizes the sound. We ran it and appended it to a list to play each one later. 
 

 
Figure 14: Sound Parameters 

 

9

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 89 

 
Figure 15: Sound Output 

 
 We went through each sound and played them one by one. For this, we modified tdklatt’s 
play() method in order to return the buffer object of the sound played, as well as the data used to 
play the  sound. 
 

 
Figure 16: Modified tdklatt 

 
 Finally, with a list of sound chunks, we wanted to combine it all into a single sound file. 
Since we did not want to simply list each sound right next to each other, we interpolated sound 
chunks that were right next to each other. At the end, we used Simpleaudio to play a test version 
of the sound. 
 

 
Figure 17: Test Version Code 

 
5.0 KlattGrid Synthesizer 
 The KlattGrid synthesizer works in effectively the same way as the Klatt synthesizer. The 
key difference is that it uses a graphical user interface to input values. We did not do this in our 
example, partially due to the different API (Application Programming Interface), but also because 
of another difference. The KlattGrid synthesizer does not rely on discrete data points for each time 
period. Instead, it works on a continuous set of data over time. Of course, in our example, we input 

10

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 90 

a discrete set of data points. This gives us the most accurate results. However, in theory, we can 
get away with using a lot less - the synthesizer will simply draw a line between sequential data 
points. The result of this difference is a more natural-sounding voice, as it does not contain as 
many sudden jumps in frequency or intensity. Previously, we showed how data points are input 
into a KlattGrid. Below is the Python code that uses Parselmouth to create the KlattGrid object, 
and then the code to save it. 
 

 
Figure 18: Parselmouth for KlattGrid 

 
 After doing so, we could open the file in Praat and convert it to the sound. It should also 

be possible to automate that step in Parselmouth.  However, it was not necessary for our purposes.  
During experimentation with KlattGrid, we were surprised to find that bandwidth had a dramatic 
effect on synthesis. After entering data for F0, F1-F5, duration, and intensity, the sound produced 
was nothing like a voice, instead monotone and unintelligible. Inputting bandwidth data, however, 
transformed the sound into speech.4 We were previously unaware of the dynamic power that 
bandwidth gives to speech, and thus consider this is a benefit of grid approaches such as Klatt and 
KlattGrid that allow the user to experiment with the effects of speech components (Koffi & Petzold, 
2022). 

 
6.0 World Vocoder Synthesizer 

 The WORLD Vocoder Synthesizer is a modern method developed by a team led by 
Masanori Morise at the Nation Institute of Information and Communications Technology (NICT) 
in Japan in 2016 (Kawahara et al., 1999). Its main application is speech analysis, manipulation, 
and synthetization with very little processing time but a high degree of accuracy. Using algorithms 
to estimate F0, the harmonic spectral envelope, and the aperiodic spectral envelope, it is able to 
synthesize a very realistic-sounding voice in a short amount of time. The algorithm it uses to do 
this is based on a similar one called STRAIGHT (Kawahara et al., 1999). There are several 
variations of STRAIGHT, such as TANDEM-STRAIGHT (Kawahara et al., 1997). WORLD, 
however, uses a convolution of both the harmonic and aperiodic spectral envelopes for a more 
natural-sounding voice. We did not write any code for WORLD. Instead, we used PyWORLD and 
the included demo to see what sort of results we would obtain. We are including this in the paper 
as a demonstration that formant-based synthesis is not the only method – or, indeed, the best. It is 
also useful for comparing our results to what modern methods can achieve. 

 
 
 
 
 
 

 
4 Editor’s comment: This is the reason why bandwidth data has to be produced in order for speech synthesis to work. 

11

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 91 

7.0 Comparison 
 Below, we have listed each of the results obtained from our methods.  
 

 
Figure 19a: Waveform of the original sound sample. 

 

 
Figure 19b: Spectrogram of original sound sample 

 

 
Figure 20a: Waveform of Klatt Synthesis with 5 chunks 

 

 
Figure 20b: Spectrogram of Klatt synthesis with 5 chunks. 

 

 
Figure 21a: Waveform of Klatt synthesis with 33 chunks. 

 

12

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 92 

 
Figure 21b: Spectrogram of Klatt Synthesis with 33 chunks. 

 

 
Figure 22a: Waveform of KlattGrid Synthesis. 

 

 
Figure 22b: Spectrogram of KlattGrid Synthesis. 

 

 
Figure 23a: Waveform of KlattGrid Synthesis without Bandwidths 

 

 
Figure 23b: Spectrogram of KlattGrid synthesis without Bandwidths 

 
 

13

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 93 

 
Figure 24a: Waveform of WORLD synthesis. 

 

 
Figure 24b: Spectrogram of WORLD synthesis. 

 
 Based on these results, the most accurate synthesizer that sounded closest to the original 

audio sample was WORLD. In both the spectrographs and waveforms (Figures 19a and 24b), 
WORLD produced a speech sample that compared favorably to the original audio. As can be seen, 
our Klatt sample with five chunks resulted in an extremely choppy spectrograph whereas our Klatt 
sample with 33 chunks produced a more fluid-looking spectrograph and waveform.  However, in 
both, a lot of information regarding intensity is missing. Neither of them looks at all natural when 
compared to the original sample. With more development, our Klatt sample could replicate the 
original speaker's voice to an extent, but it would be difficult to make it indistinguishable from her 
real voice. This only poses a problem if the ultimate goal is obtaining a synthesized voice that 
matches human speakers. For the purposes of Betine speech synthesis, an automated-sounding 
voice is not an issue for native speakers. However, given that this population is rapidly decreasing, 
in order for people in the future to be able to listen and interact with a synthesizer, we want the 
speech to be as close to a naturally-sounding Betine voice as possible. The WORLD synthesizer 
holds the most promise in this area.  

 
 KlattGrid produced speech closer to the original sample, but as seen in the spectrograph, 

much of the noise data is different. The formants are remarkably similar, which is a win for 
formant-based synthesis. Our formants produced in Klatt have little variation comparatively. We 
are optimistic that with a larger sample size, Klatt may produce a better replication of the formants.  
 

When speech synthesis results from using Klatt, KlattGrid, and WORLD are compared, we 
notice that the latter has far better results. The noise gap between [à:] and [ɟ] that was mentioned 
early in the paper is also replicated faithfully in WORLD, suggesting that its synthesis has one of 
the most effective methods of filtering audio.  It relies on more than formants to create the most 
natural sound.  It is worth noting that WORLD relies more heavily on obtaining measurements 
from a sample sound. As a result, it is likely more difficult to synthesize new sounds based on a 
collection of other sounds. It is possible that machine learning could be used to find and extract 
patterns from sounds, but those patterns may not be understandable to human minds. Klatt, on the 
other hand, has relatively intuitive parameters for its synthesis. This being said, if WORLD can be 
harnessed to replicate a voice bank and rearrange phonemes in an effective way, which it seems to 

14

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6



                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 94 

possess, we believe that using vocoder synthesizers may be a viable route in the future of artificial 
speech synthesis.  

 
8.0 Conclusion 
 We are hopeful that the work done in this course can bring technology one step closer to 
help dying languages.  It can also breathe new life into disappearing cultures and people groups. 
Our research and experience have shown us that there is a wealth of knowledge and programming 
available, but the process of channeling it into a relevant program that can be applied is difficult 
and in need of much more research. The program developed by Klatt paved the way for much of 
what speech synthesis has accomplished in the last fifty years, but there are new synthesizers and 
programs constantly being developed that might bring the lightbulb solution for synthesizing dying 
languages. In the process of working on this project, we have gained a greater appreciation and 
understanding of the massive scope of this field. We have only just barely touched the surface on 
what is possible and what the future holds. 
 
ABOUT THE AUTHORS 
Clare Miller (she/her) is an undergraduate student at Saint Cloud State University, majoring in 
Computer Science. She has experience with Lua, C++, and Java. This was her first large project 
using Python. Until recently, she has had little formal education on the topic of acoustic phonetics. 
She is interested in ways speech analysis and machine learning can be used to assist with language 
learning, particularly phoneme identification. She can be reached at crmiller@go.stcloudstate.edu 
or miller.clare@outlook.com. 
 
Isabella Randolph is an undergraduate student at Saint Cloud State University, majoring in 
Linguistics with an emphasis in Communication Sciences and Disorders (CSD). She has focused 
on the acoustic phonetics area of linguistics in her studies and is currently involved in research 
with acoustic analyses of English as a Foreign Language (EFL) speech. She plans to pursue 
research at a graduate level in speech pathology. She can be reached at  Randolph, Isabella J 
isabella.randolph@go.stcloudstate.edu or isabella.randolph21@gmail.com. 
 

References 
Boesma, P. (1993): "Accurate short-term analysis of the fundamental frequency and the 

harmonics-to-noise ratio of a sampled sound." Proceedings of the Institute of Phonetic 
Sciences 17:97-110. University of Amsterdam. Available on 
http://www.fon.hum.uva.nl/paul/. 

Guest, D. (2018). tdklatt, Github. Accessed: 4/26/2023. [Online]. Available: 
https://github.com/guestdaniel/tdklatt.  

Hsu, J. (2016). PyWORLD, Github. Accessed: 4/26/2023. [Online]. Available: 
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder. 

Kawahara, H., Masuda-Katsuse, I., and de Cheveigné, A. (1999). “Restructuring speech 
representations using a pitch-adaptive time–frequency smoothing and an instantaneous-
frequency-based F0 extraction: Possible role of a repetitive structure in sounds,” Speech 
Communication, vol. 27, no. 3-4, pp. 187–207. 

Kawahara, H., Estill, J., and Fujimura, O. (1997). "Speech representation and transformation 
using adaptive interpolation of weighted spectrum: vocoder revisiter," in Proc 
ICASSP1997, pp.1303-1306. 

15

MILLER and RANDOLPH: SYNTHESIZERS DEMONSTRATED ON BETINE

Published by The Repository at St. Cloud State, 2024

mailto:crmiller@go.stcloudstate.edu
mailto:miller.clare@outlook.com
mailto:isabella.randolph@go.stcloudstate.edu
mailto:isabella.randolph21@gmail.com
https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder


                                                     Linguistic Portfolios – ISSN 2472-5102 –Volume 13, 2024 | 95 

Klatt, D. H. (1980). “Software for a cascade/parallel formant synthesizer,” The Journal of the 
Acoustical Society of America, vol. 67, no. 3, pp. 971–995. 

Koffi, E. (2021). “Language endangerment threatens Phonetic diversity,” Acoustics Today, vol. 
17, no. 2, p. 23. 

Koffi, E. (April 2023). Personal Communication [In-person]. 
Koffi, E. and Petzold, M. (2022). "A Tutorial on Formant-based Speech Synthesis for the 

Documentation of Critically Endangered Languages," Linguistic Portfolios: Vol. 11, 
Article 3.  

Morise, M. (2014). “Cheaptrick, a spectral envelope estimator for high-quality speech 
synthesis,” Speech Communication, vol. 67, pp. 1–7. 

Morise, M., Kawahara, H., and Katayose, H. (2009). "Fast and reliable F0 estimation method 
based on the period extraction of vocal fold vibration of singing voice and speech," 
Journal of the Audio Engineering Society. 

Morise, M. (2017). Harvest: A high-performance fundamental frequency estimator from speech 
signals, in Proc. INTERSPEECH 2017, pp. 2321–2325, 2017. http://www.isca-
speech.org/archive/Interspeech_2017/abstracts/0068.html. 

Morise, M. (2012). “Platinum: A method to extract excitation signals for voice synthesis 
system,” Acoustical Science and Technology, vol. 33, no. 2, pp. 123–125, Oct. 2012. 

Morise, M. (2016). D4C: a band-aperiodicity estimator for high-quality speech synthesis, Speech 
Communication, vol. 84, pp. 57-65, Nov. 
2016. http://www.sciencedirect.com/science/article/pii/S0167639316300413 

Morise, M., Yokomori, F., and Ozawa, K.: WORLD: a vocoder-based high-quality speech 
synthesis system for real-time applications, IEICE transactions on information and 
systems, vol. E99-D, no. 7, pp. 1877-1884, 
2016. https://www.jstage.jst.go.jp/article/transinf/E99.D/7/E99.D_2015EDP7457/_article 

Petzold, M. (2023). Personal Communication [In-person]. 
 

16

Linguistic Portfolios, Vol. 13 [2024], Art. 6

https://repository.stcloudstate.edu/stcloud_ling/vol13/iss1/6

http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0068.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/0068.html
http://www.sciencedirect.com/science/article/pii/S0167639316300413
https://www.jstage.jst.go.jp/article/transinf/E99.D/7/E99.D_2015EDP7457/_article

	SYNTHESIZERS DEMONSTRATED ON BETINE
	Recommended Citation

	tmp.1713137038.pdf.J3xEB

