
St. Cloud State University St. Cloud State University

The Repository at St. Cloud State The Repository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

12-2022

¬¬Challenges and Solutions in the Implementation of DevOps ¬¬Challenges and Solutions in the Implementation of DevOps

Tools & Security (DevSecOps): A Systematic Review Tools & Security (DevSecOps): A Systematic Review

Gautam Bollieddula
St. Cloud state university

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Bollieddula, Gautam, "¬¬Challenges and Solutions in the Implementation of DevOps Tools & Security
(DevSecOps): A Systematic Review" (2022). Culminating Projects in Information Assurance. 127.
https://repository.stcloudstate.edu/msia_etds/127

This Starred Paper is brought to you for free and open access by the Department of Information Systems at The
Repository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance
by an authorized administrator of The Repository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/127?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Challenges and Solutions in the Implementation of DevOps Tools & Security (DevSecOps):

A Systematic Review

by

Gautam Bollieddula

A Starred Paper

Submitted to the Graduate Faculty of

St. Cloud State University

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

In Information Assurance

December, 2022

 Starred Paper Committee:

Akalanka B. Mailewa, Chairperson

Mark Schmidt

Erich P. Rice

 2

Abstract

DevOps (Development & Operation) is a set of practices that combine software development

(Dev) and IT Operations (Ops). It aims to shorten the Software Development Life Cycle (SDLC)

process by providing Continuous Integration (CI) and Continuous Deployments (CD). The effort

to increase Security in DevOps has resulted in the DevSecOps paradigm. Which is a set of

practices, cultural approaches, and tools that bring together software development (Dev), IT

Operations (Ops), and security (Sec) to increase an organization's ability to deliver applications

and services at high velocity securely. We conducted a Systematic Literature Review of 54 peer-

reviewed studies. The Thematic analysis method was applied to analyze the extracted data. We

identified challenges related to adopting DevSecOps, Solutions, and Integration. We also

identified key gaps by evaluating various solutions against the challenges. The results of the

study were classified into DevOps tools and Security tools.

Key Words: Azure, DevOps, DevSecOps, security, systematic literature review

 3

Table of Contents

 Page

List of Figures ... 5

Chapter

 Ⅰ. Introduction ... 7

 Problem Domain ... 7

 Problem Statement .. 8

 Research Questions ... 8

 Objectives and Scope .. 9

 Research Contributions ... 9

 Expected Results ... 10

Ⅱ. Background (Literature Review) ... 11

 Development and version control ... 11

 Azure Pipelines ... 11

 Azure Boards .. 12

 Azure Repos ... 12

 Continuous Integration ... 13

 Continuous Delivery (CD) ... 13

 DevOps Tools and Security .. 14

 Fortify Static Code Analyzer (SCA) Static Application Security Testing 15

Ⅲ. Methodologies .. 17

 DevOps tools install on-premises ... 18

 4

Chapter Page

DevOps tools Cloud Services .. 22

 Azure Repos .. 23

 Azure Boards .. 25

 Azure Pipelines ... 26

Ⅳ. Results and Discussion .. 33

 Sensitive Data Exposure ... 33

 XML External Entities .. 34

 Broken Access Controls .. 34

 Security Misconfiguration .. 35

 Cross-site Scripting ... 35

 Insecure Deserialization .. 36

 Using Components with known vulnerabilities .. 36

 Insufficient Logging and Monitoring.. 37

 Broken Authentication .. 37

 Injection .. 38

Ⅴ. Discussion ... 39

 The challenges of implementing DevSecOps ... 39

Ⅵ. Conclusion .. 42

 Future Research .. 42

References ... 44

 5

List of Figures

Figure ... Page

3.1. Azure DevOps Server Configuration Centre ... 19

3.2. Azure DevOps Server Configuration ... 20

3.3. Provide Search Configuration Settings .. 19

3.4 Configuration validation readiness ... 21

3.5. Configuration Progress .. 20

3.6 Azure DevOps Services Cloud ... 22

3.7 TFVC Repository .. 22

3.8. Security Control Access Levels ... 24

3.9. Version Control History ... 24

3.10. Work Items... 25

3.11. Azure Boards ... 26

3.12 .TFVC .Net Application .. 27

3.13. Selecting Template... 27

3.14. Azure Pipelines with Tasks .. 28

3.15. Server Path ... 29

3.16. Browsing Market Extensions ... 30

3.17. Extensions for Azure DevOps ... 30

3.18. Selecting and Installing Micro Focus Fortify .. 30

3.19. Micro Focus Fortify ... 31

3.20. Task .. 31

 6

Figure Page

3.21. Run Fortify On ... 32

 7

CHAPTER Ⅰ: INTRODUCTION

The term DevOps has come to be applied in many ways. Organizations will use the term

'DevOps' or 'DevOps culture' to mean a certain software development environment where a tight-

knit community of engineers, testers and operations personnel share the same goal of continuous

delivery. This can take the form of an agile methodology; an open-source toolkit; or even a loose

organizational construct. Everything from microservices architecture to interaction with the

customers ought to be considered. The term "DevOps" is beginning to show up more and more in

sources such as news articles, blogs and marketing materials as businesses recognize that DevOps

can help them deliver high-quality software faster with less risk of failure.

A. Problem Domain

Before the Development of DevOps, there was a tendency of organizations to divide work

and communicate. Work would be completed by one team and then passed on to another team and

then at the end of the project, the security team would be clued. The lack of communication caused

confusion and conflict between teams, slowed down production time and introduce more

vulnerable products to the consumers affecting the path of value for companies. When software

developed in a non DevSecOps Environment security related problems can lead to huge delay and

compromise of Assets includes Critical Data (PHI & PII) [1]. This article is intended for

organization who are planning or in the process of adopting DevSecOps to be aware of the

frequently reportedly problems in this domain.

 8

B. Problem Statement

A security expert and consulting firm, iSEC Partners conducted a survey of software

vulnerabilities between January and March and found that NIST estimated that 4.1 billion records

are at risk of being compromised because they are not properly protected with encryption,

authentication, or other safeguards. A reported 88% of respondents have seen attacks against their

software over the past 12 months [22]. The National Institute of Standards and Technology (NIST)

says almost 450 million records were exposed due to insecure web applications in 2017 alone [2].

The most recently released NIST Special Publication 800-53 Cyber Security Framework (CSF) is

intended to help organizations identify risks, develop controls strategies, and build a roadmap

towards cybersecurity maturity using an enterprise architecture perspective [23]. The time it takes

a vulnerability to be discovered and disclosed is shrinking. More vulnerabilities are being

discovered that affect multiple vendors. Vulnerabilities are being uncovered using new techniques

such as reverse engineering or fuzzing. The integration of security into the concept of DevOps has

led to the development of DevSecOps whereby at the core, there is the principle of keeping security

controls and practices into the DevOps Cycle.

C. Research Questions

To give this research paper a framework, there have been research questions that have been

developed that will act as a guide for the research work. This will be critical in solving the problem

in question. They are as follows:

1. What are the specific challenges related to adopting DevSecOps?

2. What are the solutions proposed during implementations?

 9

3. What are the opportunities for future research?

D. Objectives and Scope

This study aims to systemize the knowledge about the challenges faced by organizations

when adopting DevSecOps and proposed solutions reported in the literature. We also aim to

identify the areas that need further research in the future. To achieve automation, security processes

and tools must be aligned with the specific needs of the organization. As DevOps is a relatively

new activity in software development organizations are still at a phase where processes are in a

transitional state. DevSecOps is an umbrella term for approaches for collaboration between IT

teams and developers to improve security before, during and after development, deployment, and

operation of software products [24]. It therefore requires the alignment of processes and tools from

across an organization regardless of their location.

E. Research Contributions

1) Early adoption of the concept of DevSecOps: This research contributes to the early

adoption of the concept of DevSecOps and the systematic peer reviews that analyze the

adoption problems. There is a presentation of empirical research that provides a platform

to test the early adoption of DevSecOps as a systematic approach and to assess the

effectiveness and suitability of this business operation.

2) Finding solutions in terms of guidelines, framework, tools, and technologies: Additionally,

it contributes to the growing prospect of finding solutions in terms of guidelines,

framework, tools, and technologies. Comprehension of testing and validation mechanisms

has not been a priority, despite their importance in information security management. The

 10

detection and prevention of IT threats is paramount, but as stated by IT security

professionals, "good security without DevSecOps is like locking the stable door after the

horse has bolted." Many organizations have become aware that they need to develop

DevSecOps to prevent attacks through DevSecOps methods.

3) Future Studies: It is also without a doubt that this is an area of interest that is growing

within the research community and that for the purposes of future studies research gaps

should be identified. This is in addition to the tools being analyzed here.

F. Expected Results

1. There are loopholes in the DevOps systems in the current situation.

2. DevSecOps is an efficacious and effective way to improve DevOps quality, efficiency, and

performance.

3. The DevSecOps approach has potential to increase productivity, performance, and security of

applications as well as reduce the overall cost of software supply chain procurement by reducing

the time to market.

4. There is a need for a systematic approach to integrate the principles of DevSecOps with the

concepts, patterns, and tools based on systems thinking; with this approach we can achieve better

results in terms of development processes and security of applications with minimal efforts on the

part of analysts and developers in both independent teams associated with each environment

(DevOps/IT Operations) working on their specialized tasks.

 11

CHAPTER Ⅱ: BACKGROUND (LITERATURE REVIEW)

In this section we define tools install, Security tools integration and concepts used in this

study. The first part of DevSecOps is:

A. Development and Version Control

These are one of the key tools. In this context we are referencing tools Azure repos, Azure

Boards. And in Operations, Continuous Integration and Continuous Delivery are key parts and

Azure pipelines fulfill this part. Security tools integration includes SAST (Static Application

Security Testing) Integration with Devops [3]. This is a set of tools that are being used to deploy

and integrate security into the DevOps lifecycle.

B. Azure Pipelines

Azure Pipelines is a continuous delivery service that allows teams to rapidly deliver

software-based changes like code and configuration updates, web pages, and more to their

application. It has a built in "blue/green" deployment feature that automatically deploys code to

actively running servers when it is ready [25]. In our study we focus on Azure Blue/Green

deployment strategy for an individual repository as an example. In this case the team is deploying

a change to a running server. DevOps process: The cloud marketplace is full of tools for improving

software delivery processes including PaaS (Platform as a Service) offerings from Google and

Microsoft [4]. We narrow our research focus to Azure Pipelines because of its integration with

Visual Studio Team Services, the Microsoft ecosystem, and its popularity in different industries

such as finance, media, manufacturing, and others. We do not consider GitHub's CI or Jenkins as

deployments services because of their limited scope for automating tasks other than build.

 12

C. Azure Boards

Azure Boards is an interactive application that teams use as a central hub for their DevOps

workflows. It allows all team members to manage software and test deployments, track time and

resources, organize tasks, and generate reports. Azure boards integrates with GitHub, Bitbucket,

GitLab and Visual Studio Team Services to capture a full-fidelity record of work items and code

changes [26]. With the ability to create new work items from commits, pull requests, deployments

and other actions, Azure Boards keeps teams connected with their source code. It is used to

integrate with CI/CD, it can be used for visually monitoring the status of builds in CI/CD servers.

DevOps Azure Boards is designed by developers, for developers.

Every user enters their own account and team, which is used to store their own work and

records. DevOps Azure Boards allow the communication of bugs, tasks, and other interesting

matters between users within a team. All information is stored in a private gallery of work items

that either user can edit or manage [27]. An administrator can always be contacted regarding

overall functionality or any other issues relating to the application. DevOps Azure Boards records

every small step that completes a task or bug report [28]. The collected information enables

complex analysis tools to backtrack how projects were developed, track time spent on specific

tasks, identify bottlenecks in development cycles and provide feedback on potential issues with

the application.

D. Azure Repos

Is the service that makes all this possible by providing version control, continuous

integration (CI), release management (RM), and DevOps services that allow you to scale your

 13

development team without scaling your infrastructure. Azure Boards in the study, we define a

scenario where DevOps are ready to deploy code changes to servers by using Azure Boards. So,

they need an Azure Repo that they can link with the source Git repo and the build pipeline on

Azure Pipeline. They also need an Azure Board that is used as a Scrum Master application.

E. Continuous Integration

Continuous Integration (CI) build automation is a process that automates building, testing,

and deploying software components to production under defined conditions (for example, every

time a developer commits code). CI can be performed entirely using a build server, or the build

server can pass some tests to the integration environment (environment used by Continuous

Integration tools), which uses a VM. The development team uses a build (also called check-in)

tool (such as Jenkins) [29] which monitors the source code repository and triggers builds when

changes are made to the source code [5]. When every developer uses the same software version in

their local environment, builds usually succeed and tests are successful. However, if developers

use different versions of software from different sources and then submit those changes to a shared

repository, builds will fail.

F. Continuous Delivery (CD)

This means making changes continuously and delivering them automatically to end users;

it is a service offered by providers like Microsoft in repos Blue Az. Continuous Delivery involves

having an automated continuous unit test system in place prior to release and includes a process

that verifies every change made to the app. Additionally, it uses automation to build and deploy

changes to a production instance (server) before release.

 14

G. DevOps Tools and Security

DevOps Security or DevSecOps is set of practices, cultural approach that brings together

Development, Operations, Security to achieve secure application development and increase

organization’s ability to deliver applications and services securely. One of the DevSecOps tool is

Fortify SCA, which was recently acquired by HPE and branded as HPE Fortify SCA Integrity [6].

It is a static application security testing tool, that analyses android and java applications to discover

and report security vulnerabilities. Some of the security risks faced by organizations are due to the

increase in the number of third-party software applications such as libraries and frameworks used

in a organization’s code base [30]. These applications can introduce vulnerabilities into an

organization’s apps. Thus, it is important to identify these vulnerabilities at an early stage, that are

not present in the original application code itself. It is difficult to check whether these

vulnerabilities are present in the organization’s code base or not. Using test automation, one can

easily check the application code to ensure that it is free from any vulnerability before deployment

[31]. It also comes in handy when a vulnerability is reported after an application has been deployed,

on-premises/cloud.

To build a secure internet of things, organizations will have to consider leveraging "IoT

gateway", which takes advantage of IoT security tools and standards such as ISO27001 and IEC

62443. As an example, the Link It One IoT Gateway leverages Fortify SCA for security testing of

IoT gateways by enabling baseline scanning and risk assessment functionality for IoT gateway

devices. "SaaS" is a software as a service [32]. It is one of the most common ways to deliver

applications, which runs on a cloud platform. Although the security of SaaS application is still

relatively more complex than traditional enterprise applications, it is getting better with use of

 15

modern tools like Fortify SCA that allow quick and easy application scanning. Scans are done on

the target web server. It finds vulnerabilities such as XSS, SQL, OSI Layer 7 – web application

attack surface and many more by leveraging the methods of code analysis in Fortify SCA.

H. Fortify Static Code Analyzer (SCA) Static Application Security Testing

Fortify SCA is a tool that integrates with Azure pipelines and analyze the source code and

identifies the vulnerabilities and provide guidelines to mitigate the issues based on the industrial

compliances like healthcare follows FISMA (Federal Information Security Management Act)

guidelines and OWASP (Open web applications security project) top 10 issues. Fortify SCA

integrates with existing IDEs like Visual Studio, Eclipse and scan the code and generate reports of

various threats in the application [33]. It can be integrated with Azure pipelines that scans the build

artifacts to generate report on issues based on priority level in analyzer window. Fortify SCA

provides many languages for threats assessment like Java, .Net, Ruby, Perl etc.

Fortify's Dynamic Code Analyzer helps you quickly find vulnerabilities in your code. The

IDE plug-in enables real-time security analysis as you build applications in C#, C++, Java, PHP

and more [34]. Robust security analysis lets you deliver better software, faster. Fortify SCA

provides threat level on different categories like SQL Injection, Cross Site Scripting, Broken

Authentication and Session Management etc. Fortify SCA offers different types of scanning which

includes –

1) Static Application Security Testing (SAST) scans for code issues at the application source. It

identifies the potential vulnerabilities in the code like SQL Injection and concludes with the

mitigation techniques to handle them. SAST scans the static application only such as web

 16

applications or web services [37]. It can be integrated with Azure pipelines using build task to

integrate with analysis engine performing after successful builds in VSTS /Azure DevOps pipeline.

2) Dynamic Application Security Testing (DAST) scans for the vulnerabilities of web applications

such as ASP.Net, JAVA and WordPress websites at the runtime using web application firewall

rules. DAST scans through web request and generates location on the application where it might

be vulnerable to threats like SQL injection, XSS threats etc. [36]. If it is an .net application, then

it performs Code Analysis and provides feedback where you can find an issue in your code to fix

them with minimum effort.

3) Analysis of third-party libraries: Fortify SCA can analyze third party libraries that might have

vulnerabilities before they are used in your application. If you are using a third-party library with

your code, then you should manage the library to be secure before use in your application.

Fortify SCA uses from static and dynamic analysis. For static analysis it scans the code,

analyzes the security issues, and find out potential vulnerabilities

For dynamic analysis it scans at runtime for potential vulnerabilities in web request. Fortify

SCA integrates with Azure DevOps pipelines VSTS) for analyzing the build artifacts like JRE,

JVM, PERL etc. [35]. It provides real time scan of applications to check if there is any security

issue found in them. Fortify SCA scans through scanner engine and generates report based on

priority level as per defined rules.

 17

CHAPTER Ⅲ: METHODOLOGIES

We included multiple studies to capture all relevant information for our tool’s integration.

Azure DevOps provides Services including Azure Boards, Azure Pipelines, Azure Repos, Azure

Test plans, and Azure Artifacts are collectively known developer services which allow teams to

plan work through Agile Boards, collaborate on code development through Azure Repos, Build

and deploy applications through Azure Pipelines. This collective Azure Services can be installed

on-premises or consumed through the cloud.

Azure DevOps provides Services includes Azure Boards, Azure Pipelines, Azure Repos,

Azure Test plans and Azure Artifacts collectively known developer services which allows teams

to plan work through Agile Boards, collaborate on code development through Azure Repos, Build

and deploy applications through Azure Pipelines. This collective Azure Services can be installed

on-premises or consumed through cloud. Azure Devops has its own DevSecOps Framework which

can be used by organizations to secure their Azure infrastructure, security, and engineering

practices. The Azure Devsecure Framework contains four important components: DevSecOps

Organizational Model, DevSecOps Process Model, Developer Security Workflow and Developer

Tools. The main aim of this framework is to enhance the digital identity of developers in the

organization using their identity. This will allow organizations to define security controls based on

the need of different roles within the organization and use them for evaluating risk caused by code

vulnerabilities.

 18

A. DevOps Tools Install On-Premises

Azure DevOps Services on-premises: The installer places executables on our servers and

runs an installer. The Configuration steps get all the features for our installation.

The system requirements for single server minimum 4GB Ram which supports up to 250

users and supports Windows Server Operating system 2019 & 2016 [7].

When the installation finishes the installer starts the Azure DevOps Server Configuration

center and start wizard to install Application tier. Choose Configure Azure DevOps Server and

then choose start wizard

The Azure DevOps Server Configuration center runs under the configuration management

(CM) domain and the user that runs it is created specifically to run this tool. The App Center

administrator and the service administrator, both have access to this tool as well. Application Tier

Installer has a configuration center for application tier which contains all the modules of

Application tier installation [38]. It also includes 20 pre-built services, each with a setup file that

can be used to install all of those components if they are part of an application. Alternatively, one

can copy the setup files into their own directory and use them manually.

 19

Fig. 0.1. Azure DevOps Server Configuration Centre

After the setting up of application tier, Configuration Tier installs the Network service,

which manages Azure DevOps Server configuration. Configuration tier creates a resource as well.

When it creates the resource it creates a new container in Azure Active Directory with name

"DevOps" [39]. In Azure DevOps Server there are several features like Report Manager, Log

Service and Scheduled Tasks for desktop automation using PowerShell.

The Log Service is used to store logs for Azure DevOps Server and configure alert

thresholds for tickets.

It also has a scheduler which automatically runs tasks anytime there are changes to different

aspects of Azure DevOps server.

SQL Server Instance: Select the SQL server instance as this is for implementation. I did select

SQL Server Express.

20

Fig. 0.2. Azure DevOps Server Configuration

Application Tier: Choose the web site settings which includes whether to use HTTP or

HTTPS bindings. Use service accounts for production environments and click on review for

readiness check.

Fig. 0.3. Provide Search Configuration Settings

21

When checks have passed click on configure:

Fig. 0.4 Configuration validation readiness

When configuration completed it shows completed successfully.

Fig. 0.5. Configuration Progress

22

B. DevOps Tools Cloud Services

Azure DevOps Services Cloud solutions allow to create an account using outlook email

and use the services and its pay per usage. There are different services for various purposes and a

lot of configuration options. There is also a pricing calculator which enables you to find the best

deals for DevOps Services.

There are many features available within the Azure DevOps Services Cloud, that make this an

ideal cloud solution for developers and those who do DevOps with other applications or tools.

Some of these features include Continuous Integration; Continuous Delivery; Application

Lifecycle Management; and Containerization with Kubernetes on Azure cloud. Microsoft have

also announced that they will be releasing continuous integration/continuous deployment

workflows soon.

Fig. 0.6 Azure DevOps Services Cloud

23

C. Azure Repos

Azure Repos are set of version control tools to manage code. Version control system helps

to track your changes in the code. As we edit the code version control system take snapshot of the

files and this history is maintained permanently and at given point of time you can go back to

history to view your changes.

Azure Repos provide two types of version controls

• Team Foundation Version Control (TFVC) Centralized version control

• GIT Distributed version control

Team Foundation Version Control (TFVC): TFVC is a centralized version control system. For

this paper I am selecting TFVC repository. TFVC also provides access controls to enable granular

level permissions and restrict developers to access on projects they are working or files they are

assigned. Below picture I am selecting TFVC repository.

Fig. 0.7 TFVC Repository

24

I created my project as starred paper22 and created a file with security control access levels.

Fig. 0.8. Security Control Access Levels

The picture below shows version control history. At any given point I can go back and get

the code that I started in the beginning and do the development again.

Fig. 0.9. Version Control History

25

D. Azure Boards

Azure Boards provides software development teams with the interactive and customizable

tool. It provides rich capabilities including Agile, Scrum, Kanban process, Calendar \views,

configurable dashboard, and integrated reporting. Track User Stories, Bugs, features, Epic Board

hubs to view work items as cards and perform quick status updates through drag and drop. The

feature is like sticky notes on a physical white board

Fig. 0.10. Work Items

26

Fig. 0.11. Azure Boards

E. Azure Pipelines

Azure Pipelines is a development environment that enables you to build and manage your

production pipelines, with support for on-premises VMs. You can create Pipes that orchestrate

data processing across compute clusters and storage systems as well as Azure and OneDrive

accounts. When you have complex jobs, it is often better to build the job from code than from the

UI. With Azure Pipelines, you can code your workflows using several languages and run them on

Windows or Linux environment. Azure Pipelines also provides a wide range of APIs for various

services in order to integrate any business logic in your pipelines with other services as shown in

this diagram: First, we need to select the version control and in this paper I am selecting TFVC.

And select the template. Here we are working on .Net application

27

Fig. 0.12 .TFVC .Net Application

Fig. 0.13. Selecting Template

28

After selecting .Net Application template below is the pipelines with tasks.

Fig. 0.14. Azure Pipelines with Tasks

There are multiple tasks seen here, like the NuGet package restore that consumes and build

NuGet packages in the solutions. Build solution file is the key file which is associated with the

project and after building the solution file all the binaries also called as build artifacts are

generated.

We can include testing steps and for Continuous deployment we can give the Server path

or hosted application path.

29

Fig. 0.15. Server Path

We can pass MS Build arguments and select the solution file.

DevOps Security-Fortify SCA

Azure Fortify SCA integration

Fortify SCA helps to scan for vulnerabilities. Azure Pipelines has tasks and for the fortify

static analyzer task we need to browse market extensions. Below picture shows how to browse

market extensions.

30

Fig. 0.16. Browsing Market Extensions

In the Market extensions type Fortify and search

Fig. 0.17. Extensions for Azure DevOps

Once you see the extension for fortify select the one Micro Focus Fortify and install it.

Fig. 0.18. Selecting and Installing Micro Focus Fortify

31

Fig. 0.19. Micro Focus Fortify

Once installed go back to Azure pipelines and add task

Fig. 0.20. Task

And add Fortify task Run Fortify On and pass the parameters for build artifacts and SCA file which

has results for vulnerabilities.

32

Fig. 0.21. Run Fortify On

33

CHAPTER Ⅳ: RESULTS AND DISCUSSION

Based on the compliance selected there were top ten vulnerabilities that were noticed in

the Open Web Application Security Project (OWASP).

A. Sensitive Data Exposure

According to OWASP, sensitive data exposure is one of the ten vulnerabilities identified.

In DevSecOps, this is a critical factor. In a DevOps environment, it is crucial to apply security

practices throughout the entire process of software development [8]. Data should not be

transmitted during certain stages of development or testing. You may want to write an application

with many features, but if you do not perform proper testing, that data could be exposed at any

stage of the process [40]. Security threats in DevOps include malicious code from human

operators, accidental data exposure from developers to clients as well as third parties who may

have malicious plans for hackers trying to infiltrate. Their objective is to exploit weaknesses that

are present within the system and by exploiting them, they can gain access to sensitive data which

could be used for malicious purposes such as identity theft.

DevSecOps" which incorporates security into the DevOps process through automation with

high-definition protection from cyberattacks and malicious code. This new way of treating security

in DevOps will not only minimize the number of vulnerabilities but also reduce risk of data

exposures that other methods create [41]. DevSecOps will allow organizations to manage the entire

software process, be it development, testing, or production. By incorporating security in DevOps

and using this new method, organizations can minimize the number of vulnerabilities and data

exposures while simultaneously increasing the quality of each application release.

34

B. XML External Entities

XML External entities is another vulnerability in DevSecOps. Just as in the case of SQL

Injection vulnerability, for this vulnerability an attacker will inject a malicious XML document

with an external entity such as a reference to a resource on the Internet [42]. This can allow for

cross-site scripting that allows the attackers to execute commands and potentially gain access to

sensitive information, like credentials or other private data.

DevOps is never without risks. But by using DevSecOps tools like OWASP ZAP and Strut

safe, developers can eliminate any security vulnerabilities they create while also making their code

more secure and reliable [43]. It is important to note that to be effective, an attacker would need

to have some control over the entity being referenced. For example, this could be a server

controlled by the attacker, or a misconfigured third-party server. To prevent this vulnerability, it

is recommended that developers use W3C XML Schema, instead of an XSD schema [9].

Strict Transport Security (HSTS) is a way for a browser to indicate that it will only

communicate with websites in a secure manner [44]. This means the browser will refuse all

connections with the less secure variants of the website regardless of whether the Browser supports

HSTS.

C. Broken Access Controls

Broken Access Controls in DevOps is a common vulnerability under the DevSecOps topic.

In a DevOps environment, access control is often outsourced to third-party applications and people

have no insight or control over these external systems [45]. This leaves teams exposed to security

and compliance issues as well as data loss due to accidental deletion or overwriting of files in these

new systems.

35

D. Security Misconfiguration

The term "security misconfiguration" is defined as an issue with the application

configuration which causes a vulnerability. In the DevOps world, where continuous deployment

often occurs, security issues have become more of a concern as there are many points in time where

a configuration could be altered and cause an exploit to occur without notice.

Common and costly issues:

Cloud provider misconfiguration - Lost or compromised access keys and credentials can

jeopardize your entire infrastructure. This is a result of technical difficulties in managing cloud

configurations [46].

Web server misconfiguration - Web server misconfigurations are one of most common

issues in the DevOps world because these servers often interact heavily with the application code.

The web servers exposed configuration parameters that allow attackers to obtain sensitive

information like usernames and passwords, or even use certain functionality of the web application

(e.g., email functionality) to attack users [10]. In addition, some applications use hardcoded (static)

credentials, which may be inadvertently committed into the code.

E. Cross-site Scripting

Cross-site scripting is another vulnerability identified by OWASP in DevOps. The

vulnerability is typically exploited by sending an HTTP request to a vulnerable site that includes

arbitrary JavaScript in the Referrer or the Cookie header. If the script is successfully allowed, then

the attacker can access data on the server that they would not normally have access to [47]. It can

be identified by the browser giving an error message or warning when viewing a particular page

while the script is running. Voluntary Cross-site scripting is any XSS attack that is carried out by

36

a user, willingly. They may be carried out through a malicious payload they have inserted into a

form or URL, or they could happen by mistake. The user may not be aware of the consequences

of their actions, but they do know they’re executing some code on the site.

F. Insecure Deserialization

Insecure Deserialization is a vulnerability that is addressed by DevSecOps. It is due to a

lack of security analysis in the development stages. This vulnerability allows attackers to perform

unauthorized data access by presenting themselves as a serialization mechanism (for example,

XML or JSON) and manipulating/modifying the data in transit or at rest [48]. A deep analysis of

typical application architectures reveals several weaknesses that malicious actors can exploit to

achieve their goals. For example, in a typical enterprise application architecture using a

microservice approach and cloud-based infrastructure, there are different layers that are each

responsible for a specific task and communicate with each other in a protocol specific way

(typically, using socket connections). As an example, one of these layers could be responsible for

user credentials management and the other one for providing some kind of "API" service to

external systems [11]. The problem is that by trusting the services from these two layers implicitly

(i.e., assuming they don’t have security bugs), the application cannot protect itself against

malicious actors who attack them.

G. Using Components with Known Vulnerabilities

Using components with known vulnerabilities can be a security threat. It's important to

keep your systems up to date with vendor patches. As a side note, there might be conflicts between

packages that cause problems and make it difficult for you to use them on the same system. It's

37

important to resolve these conflicts before implementing any changes [49]. Systems like Icinga 2

Log Collector can help you monitor your systems for security breaches and rule out any potential

risk factors or vulnerabilities. The logs are stored safely in the database and can't be accessed

without someone logging into the database itself.

H. Insufficient Logging and Monitoring

Without proper monitoring and logging, attackers can evade detection. Without the right

tools in place, a DevOps team can’t see what’s happening or take action to prevent new flaws.

Monitoring tools need to focus on functions, not tasks. Only by understanding what is happening

can you ensure that problems don’t occur again [50]. When upgrading your organization's DevOps

toolset should be one of the first things you do to take advantage of DevSecOps. Developing a

well-coordinated, successful security program is crucial to getting the most out of new technology.

Without proper monitoring and logging, attackers can evade detection. This can dramatically

impact both the performance and security of your organization.

I. Broken Authentication

Here, an attacker can bypass authentication, taking advantage of a vulnerability in the

application. The most common form of this vulnerability is where local users are trusted with more

privileges than they should be allowed. This error has been found in many web applications that

have not implemented modern security controls, such as strong passwords and proper

authorization. Once an attacker has access to the system, they can gain access to data or perform

other malicious activity.

38

J. Injection

Here, the HTTP parameters are sent, instead of the values from the URL. Hackers can use

this to get their data back into your database through the URL parameter. This is quite useful for

exploiting SQL injection vulnerabilities and other vulnerabilities that rely on parameters in URLs.

39

CHAPTER Ⅴ: DISCUSSION

In comparison with traditional IT, where security was often an afterthought or an add-on,

DevSecOps is focused on integrating security into the development phase, rather than treating it

as an afterthought. Moreover, it requires security defenders to be extremely proactive instead of

reactive. This approach requires DevOps teams to spend more time on security, rather than simply

ignoring it. More importantly, security staff will need to be constantly plugged into the

development process and not just waiting for an issue to pop up [12]. This makes it easier for them

to discover vulnerabilities and work with those behind them to fix it before an attacker does.

A. The Challenges of Implementing Devsecops

Current solutions to these challenges exist but they are often inflexible and require heavy

investment. For instance, static code analysis tools can perform static code analysis (i.e., static

code analysis is not an entirely automated process - humans still need to verify that the results of

a static code analysis match their expectations) [51]. This can take a long time, especially for small

applications. Also, these tools often integrate with build or continuous integration systems, and do

not always work as expected with container orchestration systems like Docker or Kubernetes.

The NCC Group proposed a solution called SecRules. SecRules uses machine learning and

automation to create secure code and to automatically build Docker images that can be used in

production environments. SecRules works with tools like static analysis, container orchestration

tools (like Docker), continuous integration and build systems, and can integrate with Jenkins,

GitLab CI, TeamCity, TravisCI or any other CI or CD system [13].

40

SecRules is available as a service on Azure as well as a hosted self-hosted solution. By

using the hosted option, developers can simply use an API to integrate secure coding into their

development lifecycle. This API is accessible through any code editor, IDE, or CI/CD system.

The SecRules API allows developers to integrate SecRules into their development process

with a single line of code and offers users the ability to automatically create secure Docker images.

SecRules is free for open-source software and the first 1000 builds per month are free for private

projects and public (on Azure) projects [52]. It is an agentless, continuous integration and

continuous deployment solution.

The technical foundation of SecRules is a combination of machine learning and software

analysis. During the development phase, SecRules assists developers to write secure code by

training with a large set of secure source code and rule violations (bugs) found in open-source

software. Similarly, SecRules can use analysis of existing code to prevent vulnerabilities from

entering a code base in the first place [21]. The way that this is done is through static analysis and

machine learning: static analysis reports the likely errors or defects in a set of source code based

on other projects with similar characteristics; machine learning matches these defects against

malicious behavior observed in collected threat data.

Another solution for implementing DevSecOps that has been proposed, apart from

SecRules, is the use of a Security Development Lifecycle (SDL). Here, a computer program that

is under development is analyzed for security issues [14]. This analysis can take place during every

phase of development, using multiple tools. These tools should be custom-made for each phase,

as this allows them to best serve their purpose. At the end of each phase there should be some

41

verification or review that is done by a human, to see if there are any errors in the execution and

how it affects the product [53].

The SDL Model is not an actual model, and it is more of a description of the ideal

development process. It is suggested that a software developer starts with a problem to solve and

specifies the solution in terms of functionality, architecture, etc [20]. This solution can then be

evaluated and integrated into the SDL process. Some aspects of the product, such as security, can

be added at any time during the development stage but are recommended to be added after each

phase has been completed [15].

A traditional SaaS-based DevOps strategy focused on software delivery automation in

provisioning new code environments. Hence, DevOps practices and tools are not necessarily

always necessary to implement Security Development Lifecycle (SDL).

42

CHAPTER Ⅵ: CONCLUSION

In conclusion, it has been discovered that security solutions are critical in the field of IT,

and in this case, DevSecOps. This study has presented the reasons for this. Additionally, the study

has proposed a few possible solutions for the challenges faced in implementing DevSecOps

systems. One of them is SecRules which uses machine learning and automation to create secure

code and automatically build Docker images. Another possible solution is the use of a Security

Development Lifecycle (SDL), which may be more applicable for organizations that have well-

established SDL processes. This research has also provided insights into the importance of security

in software development and the field of IT in general.

Pros: This research has been eye opening on matters to do with web security. Cyber-attacks

have been on the rise in recent years and this research provides an opportunity to address these

issues systematically [18]. An analysis of the Azure tools has also been instrumental in providing

a detailed, step-by step analysis, providing evidence of the working mechanism of the various

Azure tools, integrated with the Fortify SCA.

Cons: The research was limited to a few DevOps tools and techniques. This provides a

narrow scope through which the research can be handled. It is important for research to cover a

wider scope when it comes to active issues in the current world.

A. Future Research

This research has provided opportunity for future research in this field by identifying how

to improve existing tools for DevSecOps. Future improvements should consider the increase in

digital information and data creation which would require a higher level of security than previously

43

thought necessary by analyzing possible changes to software development lifecycle management

practices such as agile methodologies or product development process models [19].

Future research might improve the security practices of DevSecOps by finding ways to

protect IP, data, and digital goods [16]. This research would look at techniques to detect intrusions

and cybercrimes within organizations that implement DevSecOps. One possible way to increase

the effectiveness of DevSecOps is through innovation in technology and emerging trends in

information security [17]. Future research could look at how technology has been applied by

DevSecOps practitioners by using cases such as the barcode scan ability (Bartender) and WALA,

a Human-driven Aid system for non-expert users.

44

REFERENCES

[1] L. Leonardo, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles. "A survey of DevOps concepts

and challenges," ACM Computing Surveys (CSUR) vol. 52, no. 6, pp. 1-35, 2019.

[2] B. Len, I. Weber, and L. Zhu. DevOps: A software architect's perspective. Addison-Wesley

Professional, 2015.

[3] A. Mann, A. Brown, M. Stahnke, and N. Kersten. “State of DevOps report 2018,” in Tech.

rep., 2018.

[4] K. Gene. “A DevOps roadmap for security.” 3rd ed. Tech. rep., Signal Sciences, 2020.

[5] L. Riungu-Kalliosaari, S. Mäkinen, L.E. Lwakatare, J. Tiihonen, and T. Männistö, “DevOps

adoption benefits and challenges in practice: A case study,” in International Conference on

Product-Focused Software Process Improvement, Springer, 2016, pp. 590–597.

[6] H. Myrbakken, and R. Colomo-Palacios. “DevSecOps: A multivocal literature review,” in

International Conference on Software Process Improvement and Capability Determination,

Springer, 2017, pp. 17–29.

[7] S. Prince. “The product managers’ guide to continuous delivery and DevOps.” Mind the

product. Englewood Cliffs, NJ, 1970.

[8] M. Shahin, M.A. Ali Babar, and L. Zhu. “Continuous integration, delivery and deployment: A

systematic review on approaches, tools, challenges and practices,” IEEE Access, vol. 84, pp.

1234-1276, 2017.

[9] M. Shahin, M. Zahedi, M.A. Babar, and L. Zhu. “An empirical study of architecting for

continuous delivery and deployment,” Empir. Softw. Eng., vol. 24 (3), pp. 1061–1108, 2019.

45

[10] I. Fléchais, “Designing secure and usable systems,” PhD dissertation, University College

London, UK, 2005.

[11] R. Kumar, and R. Gomar, “Modeling continuous security: A conceptual model for

automated DevSecOps using open-source software over cloud (ADOC),” Computers &

Security, vol. 97, p. 101967, 2020.

[12] R. Mao et al., “Preliminary findings about devsecops from grey literature,” in 2020 IEEE

20th International Conference on Software Quality, Reliability and Security (QRS), 2020, pp.

450-457. IEEE.

[13] M.A. Howard. “A process for performing security code reviews,” IEEE Security &

Privacy, vol. 4, no.4, pp. 74–79, 2006.

[14] J. Peterson. “Dynamic application security testing: DAST basics.”

Whitesourcesoftware.Com. https://resources.whitesourcesoftware.com/blog-

whitesource/dast- dynamic- application- security- testing. (Accessed July 27th, 2022).

[15] S. Alromaihi, W. Elmedany, and C. Balakrishna. “Cyber security challenges of deploying

IoT in smart cities for healthcare applications,” in 2018 6th International Conference on Future

Internet of Things and Cloud Workshops (FiCloudW), August 2018, pp. 140-145,

DOI: 10.1109/W-FiCloud.2018.00028.

[16] J. Pan, and Z. Yang, “Cybersecurity challenges and opportunities in the new edge

computing+ IoT world,” in Proceedings of the 2018 ACM International Workshop on Security

in Software Defined Networks & Network Function Virtualization, 2018, pp. 29-32.

[17] J. Singh, “Cyber-attacks in cloud computing: A case study,” International Journal of

Electronics and Information Engineering, vol. 1, no. 2, pp. 78-87. 2014.

https://doi.org/10.1109/W-FiCloud.2018.00028

46

[18] T. Mariarosaria, T. McCutcheon, and L. Floridi. "Trusting artificial intelligence in

cybersecurity is a double-edged sword," Nature Machine Intelligence, vol. 1, no. 12, pp. 557-

560, 2019.

[19] A. Hind, M. Alshurideh, B. Al Kurdi, and S. A. Salloum. "The impact of ethical leadership

on employees performance: A systematic review," in International Conference on Advanced

Intelligent Systems and Informatics, Springer, Cham, 2020, pp. 417-426.

[20] M. T. Javier, C. I. Comesaña, and P. J. García-Nieto. "Machine learning techniques applied

to cybersecurity," International Journal of Machine Learning and Cybernetics, vol. 10, no. 10,

pp. 2823-2836, 2019.

[21] C. Prathamesh, and N. T. Rao. "Teaching cyber security course in the classrooms of

NMIMS University," International Journal of Modern Education and Computer Science

(IJMECS) vol. 13, no. 4, pp 1-15, 2021.

[22] B. Nodeland, S. Belshaw, and M. Saber. "Teaching cybersecurity to criminal justice

majors," Journal of Criminal Justice Education, vol. 30, no. 1, pp 71-90, 2019.

[23] T. Chee-Wooi, J. Hong, and C. Liu. "Anomaly detection for cybersecurity of the

substations," IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 865-873, 2011.

[24] L. Zhiyi, M. Shahidehpour, and F. Aminifar. "Cybersecurity in distributed power

systems," Proceedings of the IEEE, vol. 105, no. 7, pp. 1367-1388, 2017.

[25] T. Benjamin, and R. Karri. "Challenges and new directions for ai and hardware security,"

in 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS),

Springfield, MA, USA, August 2020, pp. 277-280.

47

[26] L. Fang, and J. Wang. "A user-centric machine learning for learning support system with

adequate cyber security," Wireless Personal Communications, pp. 1-22, 2021.

[27] A. Norita, P. Laplante, J. Defranco, and M. H. Kassab. "A cybersecurity educated

community," IEEE Transactions on Emerging Topics in Computing, 2021.

[28] T. Chee-Wooi, G. Manimaran, and C.-C. Liu. "Cybersecurity for critical infrastructures:

Attack and defense modeling," IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, vol. 40, no. 4, pp. 853-865, 2010.

[29] E. Zeinab, K. Sadatsharan, N. Sugunaraj, D. F. Selvaraj, S. Plathottam, and P.

Ranganathan. "Cybersecurity attacks in vehicular sensors," IEEE Sensors Journal, vol. 20, no.

22, pp. 13752-13767, 2020.

[30] G. Justin Scott, J. K. McDonald, J. Balzotti, D. L. Hansen, D. M. Winters, and E.

Bonsignore. "Increasing cybersecurity career interest through playable case

studies," TechTrends, vol. 65, no. 4, pp. 496-510, 2021.

[31] S. Iqbal H., A. S. M. Kayes, S. Badsha, H. Alqahtani, P. Watters, and A. Ng.

"Cybersecurity data science: An overview from machine learning perspective," Journal of

Big Data, vol. 7, no. 1, pp. 1-29, 2020.

[32] L. Yang, and L. Xu. "Internet of Things (IoT) cybersecurity research: A review of current

research topics," IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2103-2115, 2018.

[33] D. Jessica, J. E. Pérez, M. A. Lopez-Peña, G. A. Mena, and A. Yagüe. "Self-service

cybersecurity monitoring as enabler for devsecops," IEEE Access, vol. 7, pp. 100283-100295,

2019.

48

[34] W. Carol, T. Chick, A. Reffett, S. Pavetti, R. Laughlin, B. Frye, and M.

Bandor. “DevSecOps pipeline for complex software intensive systems: Addressing the

cybersecurity challenges.” The Journal on Systemics, Cybernetics and Informatics: JSCI, vol.

18, no. 5, pp. 31-36, 2020.

[35] O. Muñoz, and J. Mejja. “Responsive infrastructure with cybersecurity for automated high

availability DevSecOps processes,” in 2019 8th International Conference On Software Process

Improvement (CIMPS), Leon, Mexico, October 2019, pp. 1-9.

[36] D. Ashenden, and G. Ollis. “Putting the sec in devsecops: Using social practice theory to

improve secure software development,” in New Security Paradigms Workshop, Basel,

Switzerland, July 2019, pp. 34-44. [Online]. Accessed December, 2020).

[37] W. Carol. “CERT GBSD Projects: Designed in Assurance.” Carnegie-Mellon University,

May 2019.

[38] R.N. Roshan, M. Zahedi, M. A. Babar, and H. Shen. "Challenges and solutions when

adopting DevSecOps: A systematic review," Information and Software Technology, no. 141,

pp. 106700, 2022.

[39] B. Ahmed, A. Abdelaziz, A. Sayed, L. Elfangary, and H. Fahmy. "Monitoring real time

security attacks for IoT systems using DevSecOps: A systematic literature

review," Information, vol. 12, pp. 154-189, 2021.

[40] E. Luiijf, K. Besseling, and P. de Graaf. “Nineteen national cyber security

strategies.” International Journal of Critical Infrastructure Protection, vol. 9, no. 1-2, pp. 3-

31, 2013.

49

[41] C. Colliander. "Challenges of DevSecOps," thesis, University Of Helsinki, Helsinki,

Finland, 2022.

[42] R. Roshan, M. Zahedi, M. Ali Babar, and H. Shen. "Challenges and solutions when

adopting DevSecOps: A systematic review." Information and Software Technology, vol. 32,

pp. 141-156, 2022.

[43] H. Mitchell. “The Influence of Cybersecurity on Modern Society,” Foundations of

Computation and Intelligence, no. 5882, June 2021.

[44] K. Geers. Strategic cyber security. NATO CCDCOE Publications, 2011.

[45] N. Chaillan, & H. Yasar. “Waterfall to DevSecOps in DoD.” Carnegie Mellon University

Software Engineering Institute Air Force, 2019.

[46] M.D. Cavelty, “Cyber-security”, in The Routledge Handbook of New Security Studies, J.

P. Burgess, Ed., Oxfordshire, England, UK: Routledge, 2010, ch. 23, pp. 154-162,

[47] T.A. Chick, A. Reffett, N. Shevchenko, & J. Yankel. 2021. “Modeling DevsecOps to

reduce the time-to-deploy and increase resiliency.” Carnegie-Mellon University, Pittsburgh,

PA, report # AD1121063, 2021.

[48] T.A. Chick. “MBSE for DevSecOps CI/CD Pipeline.” Carnegie-Mellon University,

Pittsburgh, PA, USA, 2021.

[49] R. Kumar and R. Goyal. “Modeling continuous security: A conceptual model for

automated DevSecOps using open-source software over cloud (ADOC),” Computers &

Security, vol. 97, no. 101967, 2020.

[50] T.E. Gasiba, I. Andrei-Cristian, U. Lechner, & M. Pinto-Albuquerque, “Raising Security

Awareness of Cloud Deployments using Infrastructure as Code through CyberSecurity

50

Challenges,” ARES 21: Proceedings of the 16th International Conference on Availability,

Reliability and Security, no. 63, pp. 1-8, 2021.

[51] H. Myrbakken, & R. Colomo-Palacios. “DevSecOps: A multivocal literature

review,” International Conference on Software Process Improvement and Capability

Determination, September, 2017, pp. 17-29.

[52] C. Dongliang, P. Wawrzynski, and L. Zhihan. "Cyber security in smart cities: A review of

deep learning-based applications and case studies." Sustainable Cities and Society, vol. 66, pp.

534-657, 2021.

[53] A. Osama, N. Moustafa, and B. Turnbull. "A review of intrusion detection and blockchain

applications in the cloud: Approaches, challenges and solutions." IEEE Access, vol. 8, pp 234-

345, 2020.

	¬¬Challenges and Solutions in the Implementation of DevOps Tools & Security (DevSecOps): A Systematic Review
	Recommended Citation

	tmp.1665166726.pdf.F43G_

