
 ii

Table of Contents

 Page

List of Tables .. v

List of Figures .. vi

Chapter

1. Introduction ... 1

Problem Statement .. 1

Nature and Significance of the Problem ... 2

Objective of the Study ... 2

Study Questions... 2

Limitations of the Research ... 3

Definition of Terms ... 3

Summary ... 4

2. Background and Review of Literature .. 6

Background Related to the Problem.. 6

Literature Related to the Problem ... 7

Literature Related to the Methodology ... 10

Summary ... 12

3. Methodology ... 13

Process ... 15

Summary ... 16

4. Analysis of Results ... 17

 iv

Results ... 54

Practical Implication ... 56

Conclusion ... 58

Future work ... 58

References ... 60

 v

List of Tables

Table Page

1. ACID properties in Cassandra .. 46

2. ACID properties in MongoDB.. 48

3. ACID properties in DynamoDB ... 49

4. ACID properties in Neo4j ... 50

5. ACID properties on NOSQL databases side by side .. 51

6. BASE properties on NOSQL databases side by side .. 52

 vi

List of Figures

Figure Page

1. Transaction processing in ACID ... 8

2. Read-write operations in NOSQL and RDBMS ... 9

3. Comparison of different categories in NOSQL and RDBMS .. 11

4. Column orientated compared to Row orientated database ... 18

5. Relational database compared to a document database .. 19

6. Key-value orientated database .. 20

7. Graph orientated database ... 20

8. Replication in Cassandra... 24

9. Common CQL Statements .. 26

10. Setting Time to Live in Cassandra .. 27

11. MongoDB data model ... 29

12. MongoDB administrator steps and queries ... 33

13. MongoDB sharding model .. 34

14. Defining Partition Key in MongoDB .. 35

15. Example of Items table in DynamoDB ... 39

16. Key types examples in DynamoDB .. 40

17. Relationship in Neo4j ... 43

18. Labels in Neo4j ... 44

 1

Chapter 1: Introduction

 Databases are important components of Information Systems and are concurrent to the

existence of computer technology. Storing and retrieving of data in a meaningful manner

requires the use of appropriate databases. This paper discusses two major types of databases –

Relational and NOSQL (Not Only SQL) – and analyzes the different models used by these

databases. SQL stands for Structured Query Language often referring relational database

systems. Relational databases have always been the staple when it comes to databases. They are

popular because of their consistency and functionality. However, in the present context of

constantly changing data landscape, these databases have limitations when it comes to non-

structured and vast amount of data. This has given rise to a new type of database known as

NOSQL.

 The focus of discussion in this paper is the use of appropriate model by each of these

databases. Relational databases use the ACID (Atomicity, Consistency, Isolation and Durability)

model for transaction processing because of strong reliability and consistency. The same cannot

be said about NOSQL databases because of different priorities and emphasis. In fact, NOSQL

databases use the BASE (Basic Availability, Soft state, Eventual consistency) model. Over the

years, there have been many researches conducted in this field to justify the use of BASE in

NOSQL databases and that of ACID in relational databases. But, there is no unanimous answer

to the question. Therefore, this paper presents a survey of existing literature in an effort the to

explain this complex issue.

Problem Statement

NOSQL is a new concept in the database world where relational databases have been

around for decades, which makes it important to know how the model used by NOSQL compares

 2

to ACID properties. Also, the properties of BASE implemented by the four NOSQL databases

should be evaluated in the context of ACID. Since ACID is a benchmark model for data

integrity, comparing NOSQL against ACID properties will give good indication of NOSQL data

integrity.

Nature and Significance of the Problem

 The problem stems from the fact that NOSQL follows a different approach that is

yet to take off unlike ACID, which has been known to provide consistency and reliability to

transactions in relational databases. On the other hand, RDBMS (Relational Database

Management System) has been around for a while whereas NOSQL is comparably, a new

phenomenon. This study will make light into the advantages and disadvantages of using BASE

and also point out any data integrity in following it.

Objective of the Study

 The objective of this study is to highlight what BASE has to offer and compare that with

ACID. The study will enlist the positive and negative effects of this approach in NOSQL

databases. Any negative effects found will also be evaluated in terms of data integrity of the

NOSQL database as a whole. The purpose is to evaluate if BASE gives comparable data integrity

as ACID.

Study Questions

 How does the BASE model used in NOSQL databases compare to the ACID model?

How do these differences affect consistency, performance or scalability among others? Do these

differences, if any, compromise data integrity more than ACID would?

 3

Limitations of the Research

This research is strictly restricted to existing studies that range from scholarly articles to

research white papers to blogs and other credible sources. The research’s aim is not to conduct

any specific lab tests or experiments.

Definition of Terms

 Different terms used throughout this research are described here. This will give a clear

understanding of what the terms mean and clarify any misunderstanding going forward. Any

acronyms used will also be described here.

RDBMS: RDBMS stands for Relational Database Management Systems. RDBMS in this

research stands for a model database management system. Relational databases follow relational

model invented by Edgar F. Codd that identify three components in a data model that are data

structure, operators and integrity rules [1]. Relations, attributes, tuples and keys give structure in

RDBMS. Operations such as select, insert, update and delete are common operators in relational

databases. Keys (primary) among other different referential integrity rules primarily define

integrity rules.

ACID: ACID stands for Atomicity, Consistency, Isolation and Durability. ACID was an

idea developed in the 1970s by Jim Gray and is a property required to run RDBMS without any

errors [2]. ACID is a measure of determining if a database is good where transaction in a

database run as a single logical operation [3]. Atomicity means that transaction(s) either succeed

or fail as a unit where a failed transaction will result in the database being left in the state before

that transaction started. Consistency means that the database conforms to a stable state before

and after a transaction. Isolation means that an incomplete transaction is not visible to other

 4

transaction(s), a transaction has to wait for other to finish in order for it to start. Durability means

that effects of a completed transaction are permanent in the event of a later system failure.

NOSQL: NOSQL systems are mostly non-relational database systems that are distributed

and are understood as Not Only SQL. NOSQL databases are known to provide easier scalability,

storage flexibility, and greater data manipulation and performance improvement. There are

various types of NOSQL database systems among which Key-value stores; Wide-column stores,

Graph databases and Document stores are identified most commonly [1]. MongoDB, Cassandra,

DynamoDB and CouchDB, Neo4j, Riak are the more popular NOSQL databases used commonly

in today’s environment.

CAP theorem: CAP theorem was proposed by Dr. Eric Brewer in 2000 AD which stated

that three important components namely Consistency, Availability and Partition-tolerance were

needed for the successful implementation of a networked shared-data system [2]. The theorem

further states that two of the three components have to be at least satisfied for CAP theorem

compatibility. Consistency means having a single copy of up to date data. Availability means

that the data is readily available for updates. Partition-tolerance means that the data in not

susceptible to network-partitions needed for stability.

BASE: BASE is an acronym for basically available, soft state, eventually consistent.

BASE is regarded as an alternative to ACID in the database community in very large systems

that are unable to follow ACID. BASE is derived from CAP theorem.

Summary

 This chapter introduced readers to the database in information systems and different types

of databases. A basic introduction to RDBMS and NOSQL databases was also provided. This

chapter also defined other terms that will be used throughout this paper providing readers a clear

 5

understanding of what those terms mean. This chapter provided an overview of the research. The

next chapter will focus on relevant literature and scholarly articles written in this area.

 6

Chapter 2: Background and Review of Literature

 There have been many researches done in the ACID, BASE and CAP (Consistency,

Availability and Partition Tolerance) area where their differences, advantages and disadvantages

have been identified. Some researchers have also identified various advantages and

disadvantages of these models. This chapter will focus on those literature and scholarly articles

written in this area. This will provide the reader and this research a base to where this research

will continue. Review of literature in this section will also bring light into the suggested research.

Background Related to the Problem

 RDBMS and NOSQL are two different database systems. RDBMS provide certain

functionalities that give them greater stability, performance and consistency. These database

systems are extremely successful and have become synonymous to data access. RDBMS came

into existence out of research at IBM and the University of California at Berkeley in the 1970s

[4]. Relational databases solved many problems like providing logical view of data and also

provided a specific language to fetch data. However, these database systems could not

accommodate non-structured data and specifically big data. Big data is defined as a collection of

data sets that is large and complex that becomes difficult to process using traditional data

processing applications. The rise of web applications produced more complex data and the size

of data grew tremendously which is when NOSQL was born.

 ACID compliance in RDBMS is of paramount importance where consistency is required

which ensures that transactions are completed in a single instance before changes are committed

to the master database [5]. ACID has a long history of keeping data safe and consistent in its

long existence. BASE on the other hand focuses more on high availability, thus differentiating

itself from ACID. Even though CAP theorem, also known as Brewer’s theorem desires to have

 7

two of three properties: consistency, availability and partition tolerance; it’s ultimate goal is to

maximize consistency and availability for the specific application [6].

 These different approaches are better fit for their particular type of databases; ACID is

better suited for RDBMS and BASE is better suited for NOSQL databases. There are no one size

fits all. This is why it is important that these different approaches be compared to find out if one

is better than the other, to know if one approach provides better data integrity than the other.

Database servers are of upmost important when it comes to data integrity. Information Week’s

State of the database technology survey conducted in November 2012 found out that 14% of all

breaches that year were because of compromised database servers [7]. As NOSQL databases go

more mainstream and unstructured data grow profoundly, data integrity in these technologies

must be evaluated. Since, NOSQL databases mostly use BASE as their model, it is important that

we compare and contrast how BASE fares against ACID.

Literature Related to the Problem

It is important to understand how ACID works in a database environment. An example

from Service Architecture states an example in such a manner, “Imagine more than one person

trying to buy the same size and color of a sweater at the same time -- a regular occurrence. The

ACID properties make it possible for the merchant to keep these sweater purchasing transactions

from overlapping each other, hence saving the merchant from erroneous inventory and account

balances” [8]. ACID properties make it possible for a safe sharing of data by avoiding

inaccuracies in data. ACID properties also allow for greater flexibility and efficiency.

According to an article by Mihalcea [9], which explains how ACID makes transactions

safe and secure and can be described as successful by having all operations succeed or else the

transaction fails. This is also shown below:

 8

As the figure above shows, transactions are a collection of read-write operations that

either succeed or fail as a whole leaving behind no incomplete transaction. Another thing is that

a transaction cannot leave a system in an inconsistent state regardless of concurrent transactions.

This provides a safety blanket to the database in a sense that any unwarranted event such as

power failure, error or crash won’t allow to be in a state with partial change. The database stays

Figure 1

Transaction processing in ACID [9]

 9

in consistent state when the transaction begins and end. Data integrity is also achieved in ACID

transactions because of how relational database transactions are processed. The same cannot be

said about using BASE, where database consistency will be in a state of flux [10]. However, this

makes BASE highly scalable compared to that of ACID. Consistency in BASE is not reached

right away after finishing the transaction, but rather in some time during the operation thus being

eventually consistent [11].

One of the biggest challenges with RDBMS is their scalability, where many NOSQL

databases are better suited. An article by Kopp [12] differentiates RDBMS and NOSQL

scalability where horizontal distribution of load and data along with their table-based nature

limits RDBMS. Figure below shows exactly how scalability is difficult in RDBMS. The example

here shows that in NOSQL, Client1 could read from node 1 and write 20 entities to node 2

without having to check consistency between the two nodes, whereas in RDBMS, node 1 and

node 2 need to have consistent data in order to perform either one of the operations because of

ACID compliance [12].

Figure 2

 Read-write operations in NOSQL and RDBMS [12].

 10

There are many similar differences between NOSQL and RDBMS where because of the

model that they use; the transactions are processed differently giving one edge over the other in

certain area. This research’s focus is similar to all the literatures that have been reviewed thus

far.

Literature Related to the Methodology

 Englund et al. [13] wrote a research paper about ‘Investigating NOSQL from a SQL

Perspective’ where they compare and contrast NOSQL and SQL. In the research, they go into

detail of how these different databases are composed of, how they operate and also list and

describe various NOSQL databases. They also do performance testing on some of the NOSQL

databases. The research is a good example of methodology that will be used in this research. This

research will do similar comparison of ACID and BASE and also point out some data integrity

features that are present or absent in some NOSQL databases that follow BASE approach.

 Another research done by Hammes et al. [5] compares SQL and NOSQL databases in the

cloud. This research paper examines design, performance and execution between RDBMS and

NOSQL database systems. They do this in the same cloud environment using structured and

unstructured data. The research by Hammes et al. [5] similar to the research mentioned in the

earlier paragraph is significant to this research because of the methodology followed in these

approaches. This research paper will do similar comparison between ACID and BASE model

using literatures and articles.

 Mapanga et al. [2] in their analysis of NOSQL databases have also done similar

comparisons of ACID and BASE along with other comparisons. Other comparisons include

query languages and NOSQL database categories. This research will use similar methodology to

compare ACID and BASE by pointing out advantages and disadvantages.

 11

Figure 3

Comparison of different categories in NOSQL and RDBMS [11]

 12

 “Relational vs. NoSQL Databases: A Survey” by Altrafi et al. [11] is another scholarly

article that delves into relational and NOSQL comparison. They do a review of NOSQL

movement and identify issues that are present in these databases. An important part of this

research is to data integrity issues that could be present in NOSQL databases because of using

BASE either directly or indirectly.

Summary

 This chapter described the background related to the problem, which showed how ACID

and BASE have different priorities when it comes to their properties. This chapter also reviewed

some important literature relating to the problem and methodology. Several literatures

showcased current researches done in this area. Next chapter will focus specifically on the

methodology of this research where the framework of the study will be explained.

 13

Chapter 3: Methodology

 This part of the research will discuss how the relevant information will be collected and

how the research will be conducted. There are no empirical data collected in this study.

Evidences will mostly be collected in the form of literature review.

 The research specifically chose four database types which are Cassandra, MongoDB,

DynamoDB and Neo4j. There is a reason for choosing these databases. Cassandra is the most

popular column orientated database type that is available in the market. Cassandra is widely

used, open source and can be run on multiple platforms which makes it a column orientated

database of choice. Similarly, MongoDB is a highly used document orientated database that

implements document features. It is open source whilst also provides extended support on

enterprise editions making it a document orientated database of choice. DynamoDB on the other

hand a strictly pay-only service provided by Amazon Web Services and is also used widely in

the industry when it comes to key value orientated database. It is an interesting database choice

as it is sold as a service. The last database type, Neo4j is a graph orientated database which is

one of the major players in the Graph database arena. Neo4j is the graph orientated database of

our choice as it is known to be ACID compliant and popular.

Cassandra, DynamoDB, MongoDB and Neo4j will each be reviewed, analyzed and

dissected to find out what each is composed of, their configuration and their architecture. Any

query language used by the four NOSQL databases will also be discussed. Before the four

specific database systems are discussed, it is important that types of major NOSQL databases

that are around be discussed.

 14

Further, ACID/BASE properties of each are discussed and compared. Properties of ACID

and BASE will be explored to see how each fit. Each NOSQL database will be dissected and

seen how they compare to ACID properties. This is something that is different from any of the

research studies that have been done before.

Similar to research done by Altrafi et.al. [11], this research tries to understand NOSQL

databases and also conduct ACID/BASE comparisons following similar footsteps as to previous

researchers described in the Literature Related to Methodology section of Chapter II.

The parameters that are discussed in this chapter are as follows:

 Types of NOSQL databases.

o Cassandra

o MongoDB

o DynamoDB

o Neo4j

 One NOSQL databases from each type.

o Introduction

o Configuration/Architecture

o Query language

 ACID analysis of NOSQL databases.

o Atomicity

o Consistency

o Isolation

o Durability

 15

 ACID comparison between NOSQL databases.

 BASE comparison between NOSQL databases.

Process

 The literature review in this study encompasses various scholarly articles, white papers,

blogs and various web sources. The scholarly articles were obtained from searches conducted on

the St. Cloud State University library website. The research uses journal articles from

International Journal of Modern Communication Technologies & Research, Communications of

the ACM, Computer and International Journal of Computer and Information Technology among

others. Various sources also include research papers presented to institutions. Since, not very

many research has not been carried out in this area of research, the research also relies on White

papers and trade journals published by industry experts. About 50% of the research contains

study of journal articles and research papers. About 30% includes white papers and trade

journals. The rest involves other web sources such as technology blogs and informative websites.

 This research paper aims to comprehensively describe four major NOSQL databases in

use today and attempts to incorporate as much information it could find relating to architecture,

configuration, query language and ACID/BASE properties. The research was limited to the

scope of Starred paper and refrained from being excessively broad. Assessing the literature

review conducted by this research, it becomes clear that comparison of NOSQL databases are

adequate to what the research aimed to accomplish, however, more scholarly journals could be

cited as they become available. Future researchers should be able to use this research as a

stepping stone in conducting a comprehensive research on just one major NOSQL database type.

As research continues to grow in the NOSQL landscape because of their growing popularity,

more comprehensive research will continue in this area.

 16

 The research did not conduct any lab experiments or hands on implementation as that

would require time and resources outside of the scope of this Starred paper. A more extensive

research such as a Thesis could perform lab experiment or hands on implementation of either one

or more of the databases types discussed in this paper.

Summary

This chapter described the methodology that will be used to conduct this research. The

next chapter will focus on the main portion of the study where researched materials are

presented.

 17

Chapter 4: Analysis of Results

There are four major NOSQL database types; however, there are many that overlap, so

drawing a line to distinct each other in some cases could be problematic. Some NOSQL

databases combine two or more types of NOSQL databases to form one.

NOSQL Database types

 Column Orientated

 Document Orientated

 Key-value Orientated

 Graph Orientated

Column Orientated

Column orientated databases use a multi-dimensional, sparse, distributed map to store

data. This type of databases is also known as column family stores or wide column stores. A

record could be in one column or multiple columns and also columns can be nested inside other

columns known as super columns. Columns can be grouped together in one column family or

multiple column families. Data retrieval happens by using primary key per column family.

Contrary to relational databases where a particular data is stored in rows of a table, column

orientated databases store data in column(s). On the surface, column orientated databases might

appear to look like a relational database, however they are different as these don’t have any pre-

structured table to work with the data. This property of column orientated database makes

retrieving of large amounts of a particular attribute faster. Column orientated databases are in

essence a two-dimensional array where each key, a record/row has one or more key/value pairs

attached to it [14]. This allows for the management for large unstructured data. Cassandra,

Google’s Big Table and HBase are some of the more popular wide column database systems.

 18

Figure 4

Column orientated compared to Row orientated database [15]

Document Orientated

Document databases originated from the need to develop a database system that did not

rely on schemas. Relational database was introduced to query data using SQL (Structured Query

Language) that rely on schemas where objects are considered as sets of relationships. Because of

the emergence in cloud computing, a need to store unstructured data and a need for agile

development methods, new databases have emerged among which document databases are one

of them. In document orientated databases, each record and its associated data is treated as a

document also known as semi-structured data. In a document database, everything related to a

database object is encapsulated together giving them agility and less dependency. Some of the

formats that the documents encapsulate and encode data are JSON (JavaScript Object Notation),

XML (Extensible Markup Language) and BSON (Binary JSON). Document orientated databases

 19

work in a similar way to column-orientated database but differ in providing deeper nesting and

complex structures that is document within document and so on [14]. Some of the popular

document orientated databases are MongoDB, CouchDB and Couchbase.

Figure 5

Relational database compared to a document database [16]

Key-value Orientated

Key-value orientated databases are the simplest and backbone implementation of NOSQL

database where keys are matched to values similar to dictionary or hash. In computing

terminology, dictionaries contain a collection of objects or records that can have many fields that

contain data. There is neither relation nor structure in key-value orientated databases. Key-value

databases store pair of keys and values, which can be used to retrieve value when a key is

known. Key-value stores work differently than relational databases as relational databases use

pre-defined data structure as a series of tables containing fields with well-defined data types. On

the other hand, key-value stores treat data as a single non-transparent collection that may have

different fields for every record. Scalability is one of the big traits of key-value stores as they

require less or no redesign and could be fast in most cases [17]. Some of the popular Key-value

databases are DynamoDB, Riak and Redis.

 20

Figure 6

Key-value orientated database [18]

Graph Orientated

Graph databases are totally different from the three previous NOSQL database types.

Graph orientated databases are databases that rely on explicit graph structure where nodes and

edges connect to each other through relations in a tree like structure. Each node knows it

adjacent nodes and there is an index for searches. Nodes store data about each entity in the

database, relationships describe relationship between the nodes and property is just the opposite

node of the relationship [19]. Some of the popular graph orientated databases are OrientDB,

MarkLogic and Neo4j.

Figure 7

Graph orientated database [20]

 21

Cassandra

Cassandra is one of the first and widely used NOSQL systems. It is an open source

database management system supported by Apache Software Foundation, used to manage large

structured data. It is a distributed system that relies heavily on availability and having no single

point of failure. Apache Cassandra was born at Facebook, Inc. and built on Amazon’s Dynamo

and Google’s Big Table. Cassandra is a row store, a hybrid between column-orientated and key

value database system with adjustable consistency.

In the beginning, Google and Amazon realized that relational databases were not

sufficient in processing data that were amassed because of increasing user bases of systems,

cloud computing, mobile devices and increasing online presence and large systems. Individually,

they tried to figure out different ways to tackle problems of scale, which is when they each

developed Big Table by Google and Dynamo by Amazon. These challenges could only be

overcome by relaxing the guarantees provided by relational data model to achieve scalability.

Keeping in line with Brewer’s CAP theorem, these systems trade off consistency, and

availability and partition tolerance in lieu of scalability. Cassandra systems are known to provide

high availability with no single point of failure and eventual consistency thereby abiding to

BASE properties.

Architecture of Cassandra

Cassandra is designed to handle big data spreading across multiple nodes and having no

single point of failure. A single point of failure means that system and hardware failures are

bound to happen and will happen. Since failure cannot happen, availability is of upmost

importance. Cassandra addresses this problem by deploying peer-to-peer nodes in homogenous

nodes where data is distributed among all nodes in the cluster [21]. Information are exchanged

 22

between the nodes frequently where commit log is written sequentially on each node to confirm

data durability. Data is indexed into memetable, an in-memory structure. When this memory

structure is full, it is then written to disk in an SSTable data file, these writes are then

automatically partitioned and distributed throughout the cluster. SSTable stands for Sorted String

Table. SSTables are periodically consolidated to discard obsolete data. Cassandra allows an

authorized user to connect to any node in any cluster and query using CQL (Cassandra Query

Language), similar to SQL syntax. A cluster consists of one keyspace per application. Client

read-write requests can be sent to any node in the cluster where the node client connects to act as

a coordinator. Coordinator is a proxy between the client and the node(s) that own the data.

Cassandra consists of some key-structures that are listed as follows:

Node: Basic foundation of Cassandra where data is stored.

Datacenter: A datacenter can be physical or virtual. This is a collection of related nodes.

Cluster: A cluster consists of one or more datacenters.

Commit log: Data is first written to commit log and then to SSTable.

Table: A table is a collection of columns that are ordered. Row serves columns and have

primary key, where the first part of the key is the column name.

SSTable: Sorted String Table is maintained for each Cassandra table and can only be

appended. SSTables are unchangeable data file where memetables are written

periodically.

Cassandra configuration consists of the following components:

 23

Gossiper: A peer to peer communication protocol used to communicate between nodes in

a cluster. The gossiper is responsible for making sure each node in a system knows the

current state of other nodes including nodes that are unreachable [22].

Partitioner: A partitioner decides what nodes take precedence on receiving data and also

how data is distributed across nodes in a cluster. Partition key is used to uniquely identify

each row of data and distributed across the cluster using token calculated by using the

hash function of the partitioner. Murmur3Partitioner is the default partitioning approach

in Cassandra [21].

Replication factor: Replication factor is the number of replicas across the cluster which

do not exceed the number of nodes. A replication factor of one means there is only one

replica of each row on one node. Replication factor should be set at two or more.

Replica placement strategy: Replica placement strategy determines what nodes that the

replicas can be placed. Cassandra utilizes this feature to ensure fault tolerance and

reliability. Cassandra has two replication strategies, namely SimpleStrategy and

NewtworkTopologyStrategy. SimpleStartegy is used for a single datacenter whereas

NewtworkTopologyStrategy is used for multiple datacenters.

Snitch: A snitch determines what datacenter and racks a node belongs to. Snitch provide

Cassandra with important network topology information which helps Cassandra in

distributing replicas efficiently by grouping machines into datacenter and racks.

Commonly in production world, GossipingPropertyFileSnitch is used as it defines node’s

datacenter and rack and also uses gossip to convey information to other nodes.

 24

Cassandra.yaml configuration file: This is the main file for setting various configuration

items such as cluster properties, tuning properties, caching parameters, backup and

security properties among others. A node usually stores its configuration information in

the /var/lib/cassandra directory. YAML stands for “YAML Ain’t Markup

Language”.

System keyspace table properties: Storage configuration properties are set on a per

keyspace or per table basis programmatically or using client application such as CQL

[21].

Figure 8

Replication in Cassandra [23]

 25

Common Cassandra CQL statements

CQL consists of statements, as with SQL, some CQL statements make direct change to

data, some look up data and some change the way data is stored.

cqlsh> CREATE KEYSPACE test with strategy_class =

'SimpleStrategy' and strategy_options:replication_factor=1;

cqlsh> USE test;

cqlsh> CREATE COLUMNFAMILY users (

 ... key varchar PRIMARY KEY,

 ... full_name varchar,

 ... birth_date int,

 ... state varchar

 ...);

cqlsh> CREATE INDEX ON users (birth_date);

cqlsh> CREATE INDEX ON users (state);

cqlsh> INSERT INTO users (key, full_name, birth_date,

state) VALUES ('bsanderson', 'Brandon Sanderson', 1975,

'UT');

cqlsh> INSERT INTO users (key, full_name, birth_date,

state) VALUES ('prothfuss', 'Patrick Rothfuss', 1973,

 26

'WI');

cqlsh> INSERT INTO users (key, full_name, birth_date,

state) VALUES ('htayler', 'Howard Tayler', 1968, 'UT');

cqlsh> SELECT key, state FROM users;

 key | state |

 bsanderson | UT |

 prothfuss | WI |

 htayler | UT |

cqlsh> SELECT * FROM users WHERE state='UT' AND birth_date

> 1970;

 KEY | birth_date | full_name | state |

 bsanderson | 1975 | Brandon Sanderson | UT |

Figure 9

Common CQL Statements [24]

As can be seen in the above example, CQL resembles very closely to SQL in basic

statements. This is done purposefully to make it easier for users coming from SQL background.

However, the similarity lessens beyond the basics. Keyspace in Cassandra require more

specifications like strategy and replication factor spread across datacenters, different than in a

relational database. SQL statements like JOIN, GROUP BY and FOREIGN KEY among others

 27

do not work in Cassandra even though data sets could have relationships. This dilemma is

achieved by organizing any queries that will be run in the future into a column family so that

reads are efficient. Other obvious difference is the ability to set Time to live in a row in

Cassandra, accomplished using TTL command [25] such as:

/* Expiring Data in 24 Hours */

INSERT INTO myTable (id, myField) VALUES (2, 9) USING TTL

86400;

Figure 10

Setting Time to Live in Cassandra [25]

Deleting a data in Cassandra doesn’t actually delete a data immediately instead

tombstone is used to delete data marked to be deleted. Tombstone exist for a specific time period

as set in the gc_grace_seconds value on the table. Then, the data is permanently removed during

the compaction process. This process validates eventual consistency in Cassandra as data is not

deleted immediately.

Tracing queries like TRACING ON; and TRACING OFF; in Cassandra display some

useful debugging information such as network path of a query and latency.

CQL has many useful statements that could be further explored but that would require a

whole new research.

MongoDB

MongoDB is a schema free document orientated database developed by MongoDB Inc.,

 28

formally known as 10gen Inc. released initially in 2009. It is one of the popular NOSQL

databases and the most popular in document orientated database and used by companies such as

Facebook, Craiglist, eBay and Foursquare among many others. MongoDB was originally

developed as a component of a Platform as a Service in 2007, however the software company

decided to shift focus and release it as an open source developmental model in 2009 and is free.

MongoDB also offers commercial support under a propriety license.

Since MongoDB doesn’t rely on schema, this differentiates itself from relational database

structure. This affordability makes it flexibile when it comes time to scale the database.

MongoDB has drivers for almost all popular programming languages including C++,

JavaScript and C. It doesn’t follow relational databases’ table system and favors JSON-like

documents with dynamic schemas, known in MongoDB sphere as BSON. MongoDB

encapsulates and encodes data in the notion of a document in some standard format such as

JSON, XML, BSON, YAML, binary forms (PDF, MS Word). Document is similar to row or

record in relational database yet more flexible and can be retrieved based on the contents such as

collections, tags, non-visible metadata and directory hierarchies.

Architecture of MongoDB

MongoDB stores data as documents in BSON (Binary JSON) where BSON documents

contain one or more fields, where each field contains a value of a specific type of data including

arrays, binary data and sub-documents. Document with almost similar structure are organized as

collections. A collection could have multiple comments, multiple tags and multiple categories

expressed as embedded array. Documents in MongoDB provide all data in one document

whereas in relational databases, information for a given record is spread across multiple tables.

 29

In MongoDB, the idea of schema is dynamic which means that each document can have different

fields. This gives flexibility in terms of modeling of unstructured and polymorphic data.

Figure 11

MongoDB data model [26]

Schema: MongoDB provides schema flexibility but designing it is still necessary.

Developers and DBAs need to know what type of queries will be processed, how objects

are managed and how documents change over time. MongoDB employs a dynamic

schema where a new field can be added to a document without having to update the

central system catalog, without affecting other documents in the system and without

having to take the system offline.

Mongo Shell: MongoDb distributons come with an interactive JavaScript shell

that can be used to issue all the supported commands including administrative processes.

Query model: Since MongoDB has and supports drivers for almost all major

programming languages, MongoDB query model is implemented as methods or functions

within an Application Programming Interface (API) of a programming language different

 30

from relational databases where SQL is used solely as a language. There are various

queries that can be run in MongoDB, some of which are described below:

Key-value queries – Results are based on any field in the document such as

primary key.

Range queries – Results are based on values defined as disparity such as less than,

greater than, between or equal to.

Geospatial queries – Results are based on juxtaposition, intersection or inclusion

criteria such as line, point, circle, etc.

Text search – Results are based on relevance using Boolean operators such as

AND, OR, NOT.

Aggregation framework – Results are based on values returned by query such as

min, max, average.

MapReduce queries – Results are based on complex JavaScript queries that are

executed across the database.

Some basic MongoDB administrator steps and query examples are shown below.

Install MongoDB

mkdir /data/lib

Start Mongod server

.../bin/mongod # data stored in /data/db

 31

Start the command shell

.../bin/mongo

> show dbs

> show collections

Remove collection

> db.person.drop()

Stop the Mongod server from shell

> use admin

> db.shutdownServer()

create a doc and save into a collection

> p = {firstname:"Dave", lastname:"Ho"}

> db.person.save(p)

> db.person.insert({firstname:"Ricky", lastname:"Ho"})

Show all docs within a collection

> db.person.find()

Iterate result using cursor

> var c = db.person.find()

 32

> p1 = c.next()

> p2 = c.next()

> p3 = db.person.findone({lastname:"Ho"})

Return a subset of fields (ie: projection)

> db.person.find({lastname:"Ho"}, {firstname:true})

Delete some records

> db.person.remove({firstname:"Ricky"})

To build an index for a collection

> db.person.ensureIndex({firstname:1})

To show all existing indexes

> db.person.getIndexes()

To remove an index

> db.person.dropIndex({firstname:1})

Index can be build on a path of the doc.

> db.person.ensureIndex({"address.city":1})

A composite key can be used to build index

 33

> db.person.ensureIndex({lastname:1, firstname:1})

Figure 12

MongoDB administrator steps and queries [27]

Indexing: Index is a data structure which collects information about various fields

in the documents of a collection. As such, MongoDB provides support for many types of

indexes that can be declared in any field in the document including arrays. Some of the

indexe type in MongoDB are Unique indexes, Compound indexes, Array indexes, TTL

(Time to Live) indexes, Geospatial indexes, Sparse indexes and Text Search Indexes.

Indexing is something that incurs an overhead which is why optimal balance of deleting

unused indexes and effectiveness of an index should be measured periodically in

MongodDB databases.

Sharding: MongoDB employs a technique called sharding which enables

horizontal scaling out of databases on hardware or cloud infrastructure across multiple

nodes. Sharding can also be interpreted as distributed storage. Sharding is performed by

defining shard key and on a per collection basis. Sharding enables databases to overcome

hardware limitations by spreading data across multiple physical partitions known as

shards. Data is automatically balanced across sharded clusters as sharded servers are

added or removed which is built into the database. This is one important distinction from

relational databases making them highly scalable. Mapreduce queries can also be run on

sharded clusters and is run parallel across shards [26]. There are many sharding policies

available to distribute data across clusters depending on query and locality.

 34

Range based sharding – Documents are distributed according to shard key value.

Hash based sharding – Documents are distributed per MD5 hash of the shard key

value.

Location aware sharding – Documents are partiotioned according to user specified

criteria such as specific datacenter or hardware.

 In sharding model displayed below, there are three MongoDB config servers, one

MongoS (Mongo Shard) server and three replica sets or shards. Replica sets can be divided as

one primary and two secondary. Mongod should be installed in all the config servers, MongoS

routing server and replica sets. Mongod is the primary daemon process for the MogoDB system.

In shard setting, client connects to MonogoS where MongoS forwards the request to the

appropriate shard server.

Figure 13

MongoDB sharding model [28]

In the sharding model, one partition key is specified for every collection stored in the

sharding cluster.

 35

To define the partition key

db.runcommand({shardcollection: "testdb.person",

 key: {firstname:1, lastname:1}})

Figure 14

Defining Partition Key in MongoDB [27]

Map/Reduce in MongoDB

Parallel data processing can be performed in MongoDB by using a Map/Reduce framework

similar to Hadoop Map/Reduce. Hadoop’s MapReduce can be written in Java while MongoDB’s

is in JavaScript. Contrary to Hadoop’s model, MongoDB Map/Reduce works by taking input

from query result of a collection rather than HDFS (Hadoop Distributed File System),

furthermore reduce output can be appended to an existing collection rather than an empty HDFS

directory [27]. Map/Reduce works in the following way:

- Client defines a map function, a reduce function and query to input data and collection to

store the output and sends the request to the MongoS server.

- MongoS distributes the request to all the members of each shard who then execute the

query and pass the output to map function. Map function execute the code and give out

key value pairs.

- The primary shard server will receive the key value pairs and execute the user-defined

reduce function, returning the value to be written to the output collection as defined by

the client.

The presence of multiple shard servers that can respond to Map/Reduce functions making

 36

availability one of the important traits of MongoDB.

DynamoDB

DynamoDB also known as Amazon DynamoDB is a NOSQL database service

proprietary to Amazon.com as part of the Amazon Web Services and released in 2012.

DynamoDB has similar data model to Dynamo and touts itself as “built on the principles of

Dynamo”. Even though DynamoDB says it is built on the principles of Dynamo, it is widely

known that Dynamo and DynamoDB have differences such as the Dynamo paper explains a

simple key value store whereas DynamoDB supports secondary indexes, range keys, complex

data types and conditional writes among others. Dynamo was published by Amazon as a paper

but not as implementation. Dynamo is the name given to set of techniques that together form a

highly available key-value distributed data store or storage system.

DynamoDB is cloud based and customers pay for what they use. DynamoDB is highly

scalable with low latency and high throughput because of the use of key/value stores that are

designed with simpler and less constrained data models than RDBMS [29]. Amazon DynamoDB

releases user from operational overhead and takes that on itself freeing developers to focus on

learning the DynamoDB API using a programming language of their choice. Amazon Web

Services (AWS) provides SDKs (Software Development Kit) to develop applications using

DynamoDB. Some of the SDKs available through AWS are .NET, Java, PHP, JavaScript,

Python, Ruby, iOS and Android.

Architecture of DynamoDB

DynamoDB data model’s key components include tables, items and attributes where the

database is actually a collection of tables. A table is a collection of items and an item is a

collection of attributes. Contrary to relational databases, DynamoDB is schema less except for

 37

primary key meaning there is no predefined schema such as table name, column name and data

types. An item in DynamoDB can have any number of attributes, however, item size is limited to

400 KB. Item size is calculated as the sum of lengths of its attribute name and values where

values could be binary or UTF-8 lengths [30]. An attribute in an item is a name-value pair that

can be single-valued or multi-valued set.

An example of items in a table is shown below where different product items can be

placed in the table where Id is the primary key. In the example below, the table ProductCatalog

has three items, one book and two bicycles. Item 101 has authors as a multi-valued attribute and

items 201 and 202 have color as multi-valued attribute. Null or empty string are not allowed as

attribute values.

{

Id = 101

 ProductName = "Book 101 Title"

 ISBN = "111-1111111111"

 Authors = ["Author 1", "Author 2"]

 Price = -2

 Dimensions = "8.5 x 11.0 x 0.5"

 PageCount = 500

 InPublication = 1

 ProductCategory = "Book"

 44

Figure 18

Labels in Neo4j [31]

Traversal – A traversal is a way of navigating through graph to find paths starting from

one node to related nodes to find answers to queries.

Paths – A path is one or more nodes that connects relationships mostly retrieved as a

query or traversal.

Schema – Schema is optional with Neo4j however introduction of schema allows for

performance and modeling benefits. Schema is available only on a master machine of a Neo4j

cluster.

Indexes – Neo4j creates and updates indexes once the properties to index have been

determined. Indexes give performance boost compared to not having them.

Constraints – Neo4j has the ability to use constraints to keep data clean and any changes

that break the rules are denied. As of this writing, Neo4j only supports unique constraints.

 45

ACID/BASE Comparison of NOSQL databases

The four database systems – Cassandra, MongoDB, DynamoDB and Neo4j are discussed

below. The database types are described by explaining all the four ACID properties and how

they pertain to each database type.

Cassandra

Atomicity – Atomicity is supported at the row-level or partition level which means that

inserting or updating columns in a row is treated as one write operation. However, in high

availability configurations and fast write performance situations, atomicity is ignored. Multiple

row updates into one all or nothing operation is not supported. A write success to one replica and

failure on other replicas doesn’t immediately trigger a rollback. Cassandra utilizes timestamps to

determine a recent update and uses that for a client request.

Consistency – Cassandra seems to offer differing consistency based on the type of

consistency utilized. Consistency could either be in CAP terms or in ACID terms. Most of the

times, consistency in Cassandra is thought to have eventual consistency.

Tunable consistency – Cassandra allows to tune consistency and availability. Data

across all the nodes in a distributed database cluster can be consistent per CAP theorem.

Another thing to note here is the fact that how tuning availability and consistency will

gives way to partition tolerance [32]. Since Cassandra does not lock nor have any

dependencies in updating multiple rows or tables, a user is able to choose on a per

operation basis.

Linearizable consistency – This is used in cases where tunable consistency is not

enough in a distributed, master-less database with quorum reads and writes. Linearizable

 46

consistency gives a serial isolation level for lightweight transactions conforming to ACID

terms. An example of an application that registers new accounts needs to ensure that only

one user can register for one particular account. Linearizable consistency takes on the

challenge by checking for the existence of the account before performing insertion into a

non-concurrent map [33].

Isolation – Cassandra supports full row-level isolation which means that writes to a row

are isolated to the client that is performing a write and are invisible to others until the first write

is complete. This property of Cassandra is different from earlier Cassandra versions where partial

updates in a row were visible to another user.

Durability – Durability is represented well in Cassandra as all writes to a replica are

recorded both in memory and in commit log. Commit log help in recovering any lost writes due

to a server crash or failure. Local durability and replication of data on other nodes strengthens

durability.

Table 1

ACID properties in Cassandra

Atomicity Supported at row-level. Ignored on high availability situations.

Consistency Eventual Consistency. Focused on Partition Tolerance.

Isolation Row-level isolation.

Durability Recorded in memory and in commit log. Replication on nodes.

 47

MongoDB

Atomicity – MongoDB provides atomicity at the single document level where writes

aren’t applied partially to an inserted or updated document. The operation can be called atomic

because it either fails or succeeds for that document in its entirety. Modifying subdocuments

inside a document is still atomic. Atomicity is unsupported to operations that span multiple

documents or collections. There are ways to model operations so that they atomic however doing

that would cause too much overhead and negate benefits of using a NOSQL database.

Consistency – Consistency is strong in primary MongoDB server even in replica set

configurations. However, secondary nodes maybe out of date and MongoDB can only guarantee

eventual consistency with respect to the primary MongoDB server [34]. By default, MongoDB

prohibits reads from secondary servers because of the chances of inconsistent data, however this

can be changed knowing that changing the default could cause inconsistent data reads. As per

CAP theorem Consistency and Availability both cannot be achieved together as in this case.

Isolation – MongoDB, as per guarantees provided by ACID ensures complete isolation

when a document is updated and any errors will cause the operation to roll back so that the client

receives a consistent view of the document. There are patterns such as “update if current” and

operators such as $isolation available in MongoDB that provide a way to achieve isolation.

Durability - MongoDB provides flexibility to developers in terms of MongoDB’s write

concerns where a developer can configure operations to commit to the application only after they

have been flushed to the journal file on the disk. Parameters such as syncdelay and

journalCommitInterval allow for that configuration options. Per MongoDB, this is the same

 48

model used by traditional databases to provide durability guarantees. There are situations where

a developer can specify that a write be considered complete only after writing to N number of

secondary. If durability is primary goal, then MongoDB allows to do that however performance

might suffer because of writing to so many replicas.

Table 2

ACID properties in MongoDB

Atomicity Available at single document level.

Consistency Strong only in primary server. Eventual consistency.

Isolation Complete Isolation.

Durability Durable. Can be further configured.

DynamoDB

Atmoicity – Amazon’s DynamoDB relies on BASE approach so which is why atomicity

is not actually present. Atomicity can be achieved on a single item but this property is lost when

it involves multiple items. There are ways to get around and have atomicity in DynamoDB such

as using Atomic writes that involve applying a set of commands each applied to a DynamoDB

item which when complete assures that either all or none of the commands are executed. The

techniques have been developed by DynamoDB developers and can be used as extension of the

Amazon Web Services for Java.

Consistency – DynamoDB supports both eventually consistent reads and strongly

consistent reads. In case of eventually consistent reads, a read request immediately after a write

 49

operation might not show the latest change. Operations such as GetItem, BatchGetItem, Scan or

Query might not reflect the latest data. In case of strongly consistent reads request, DynamoDB

returns most up to date data which reflects updates related to write operations that were

successful. By default, most operations are eventually consistent and strongly consistent requests

can be obtained by specifying optional parameters

Isolation – By default, DynamoDB does not provide any isolation guarantees however

there are ways to implement isolation levels as discovered by developers. One way is to achieve

isolation is to read only committed changes which can be accomplished by taking advantage of

the fact that the algorithm saves old item image away before it applies changes. This approach is

not a full proof approach; however, it does avoid the weakest consistency read style. Another

way that provides stronger isolation is by using locks where read transaction could be coded

exactly like a write and rollback at the end of the transaction. Writes are expensive than reads

which means there is an overhead here.

Durability – Amazon DynamoDB synchronously replicates data across three facilities

within an Amazon Web Services region which makes it possible for a high uptime and

durability. This could change with the service level agreement that is in place since DynamoDB

is operated as a service on Amazon Web Services.

Table 3

ACID properties in DynamoDB

Atomicity Present only on single item.

Consistency Eventually consistent.

 50

Isolation Isolation absent by default.

Durability Durability option present.

Neo4j

Atomicity – Atomicity is present in Neo4j as the database is left unchanged if any part of

the transaction fails. Neo4j is setup so as all database operations that access the graph, indexes or

the schema must be performed either as a transaction or they fail.

Consistency – Consistency is achieved with Neo4j since a transaction will only leave the

database in a consistent state even to different master slave configurations. Consistency can be

achieved if chosen to do so by manually applying locks, however this could affect performance.

Isolation – Isolation is also achieved as a modified data cannot be accessed by other

operations during a transaction. Neo4j specifically provides a default isolation level which is

READ_COMMITTED that means that only data that have been committed are accessible.

Durability – Neo4j provides durability by making sure the database can recover the

results of a committed transaction. In most cases, Neo4j achieves durability by the use of update

log which acknowledges write once flushed to disk.

Table 4

ACID properties in Neo4j

Atomicity Atomicity is present.

Consistency Consistency is mostly present.

 51

Isolation Isolation provided by default.

Durability Full durability.

Data Analysis

All four database systems discussed provide varying level of ACID compliance, some

more than the other. Some follow the BASE approach while other follow the CAP theorem. Here

below, ACID properties are compared side by side of each database.

Table 5

ACID properties on NOSQL databases side by side

 Atomicity Consistency Isolation Durability

Cassandra Row-level Eventual Row-level Durable

MongoDB Single document Eventual Isolation

present

Durable

DynamoDB Single item Eventual Isolation not

present

Option

available

Neo4j Atomicity present Consistent Provided Durable

Among the four databases, Neo4j seems to be the most ACID compliant satisfying all

four properties to some degree if not all. When it comes to atomicity, all the others i.e.

Cassandra, MongoDB and DynamoDB are present only at the lowest level of data structure. All

 52

three again are eventually consistent suggesting one of the important properties of the BASE

approach focusing more on availability rather than consistency. After Neo4j, MongoDB seems to

provide better isolation whereas Cassandra only provides at the lowest level and DynamoDB

doesn’t provide any isolation at all. All four database systems have some or full degree of

durability.

BASE properties in the different NOSQL systems can be compared as shown below with

examples on how they are implemented. As can be seen, this is derived from the materials that

were discussed above. All four databases show varying degree of availability and consistency.

Soft State of NOSQL databases are not discussed as all NoSQL databases have soft state because

of the consistency property that eventually replicates to other nodes.

Table 6

BASE properties on NOSQL databases side by side

 Basically Available Eventually Consistent

Cassandra Highly available Eventual consistency

Example: Distributed Storage.

Multi data center. Linear

scalability.

Example: Tunable for partition

tolerance. Linearized for strong

consistency.

MongoDB Consistency over availability Strong consistency

Example: Uses replica sets.

Distributed across datacenters.

Example: Consistent data only on

primary MongoDB server. Reads

allowed only from primary.

 53

DynamoDB Highly available (HA) Eventual and strong consistency

Example: data replicated across

three datacenters in availability

zones.

Example: By default, eventual

consistency, hoever, strong

consistency can be achieved.

Neo4j HA configuration available Consistent

Example: Several slave databases

can be configured to replicate

master database.

Example: Data leaves master/slave

only in a consistent state.

 As can be seen the above table, all four databases show either eventual or strong

consistency, however, strong consistency seems to be rare and depends on special configuration

to achieve it.

Summary

The four database types discussed above showed how each could be similar to another

and could be so much different from one another. One database system is more popular while the

other is not as much.

This chapter also went into lengths in discovering BASE properties along with their

relevancy in ACID world. The chapter analyzed each of the properties and compared each

database against the other. This showed how each handled the different properties differently

showing more data integrity in one than the other.

 54

Chapter 5: Results, Conclusion and Recommendations

 This chapter discusses the findings of this starred paper as a whole and conclusion drawn

from the various results that were discovered in earlier chapter and also summarize the overall

methodology in obtaining those results. The chapter presents the study questions and also

describes how each question was answered by this study and provide reasoning as to how some

questions were inadequately answered. Deriving from questions that need future research,

recommendations are provided.

Results

 The methodology used for this study was mostly based on review of materials such as

white papers, manuals, technology blogs, scholarly articles and other publications among others.

Each database type was described as much as they could be provided enough sources were

available. Databases architecture were also described to better understand how they stack up

against relational databases. Query languages were also discussed in the case that they were

present so that the similarities and/or differences could be compared to that of structured query

language commonly used in relational databases.

 Each database type intended for this study were also analyzed to how they fared against

ACID properties. As it is known, almost all databases type that were discussed in this starred

paper are BASE compliant but the paper wanted to compare how they compared to ACID. It is a

well-known fact that ACID compliant databases are more focused on data integrity. This

approach of comparing ACID and BASE models gives us a good baseline to compare to when it

comes to data integrity.

 55

 The following section summarizes the research questions that were intended to be

answered by this starred paper and provides a description of how they were answered throughout

the research paper.

How does BASE model used in NOSQL databases compare to ACID?

The research paper explained how ACID and BASE are different. ACID properties are

different from BASE properties. As explained in the paper, ACID properties are the backbone of

relational databases. ACID properties value data integrity to the fullest whereas BASE properties

value data availability as their backbone. Both ACID and BASE have their own uses, neither can

replace the other. Relational databases that follow ACID are used mostly in places where

transaction concurrency is important such as financial institutions and retail places. These uses

value transaction concurrency to the upmost and where transaction volumes are not enormous.

BASE on the other hand, along with CAP theorem in some cases, value availability as the most

important property in NOSQL databases. In databases that follow BASE properties, consistency

and concurrency is important but only after availability is fulfilled.

How do these differences affect consistency, performance or scalability among others?

As this research paper suggested, BASE does suffer from consistency issues as not all the

nodes in a cluster are updated at the same time giving rise to inconsistent data to users accessing

a data that was modified and not updated concurrently. Consistency is often reached in NOSQL

databases in due time, however that could still lead to concurrency problem.

NOSQL databases do take performance seriously as they are meant to run on multiple

machines unlike RDBMS which usually are meant to run on single machine. Running on

multiple machines makes it such that performance is better as data is readily available.

 56

Scalability is one of the important properties of NOSQL databases and separate

themselves from RDBMS distinctly. RDBMS, because of their data structure and schema, make

them difficult candidate for scalability. In addition, write operations are not cost effective and

horizontal scaling almost unavailable. NOSQL databases are easy to scale, nodes can be added to

cluster with ease and in very cost effective manner. In NOSQL databases, they handle data that

grow exponentially, horizontal scaling as well as vertical scaling is important. Vertical scaling

means upgrading equipment while horizontal scaling means being able to add nodes.

Do these differences, if any, compromise data integrity more than ACID would?

Obviously, as the research found, when there is presence of inconsistent data, there is an

extreme possibility that data integrity could be compromised. In NOSQL, because nodes in a

cluster do not get updated data at the same time, data accuracy is a concern.

In RDBMS, data integrity is handled well and no two write operations on a data can

occur at the same time. There are other different integrity mechanisms such as entity integrity,

domain integrity, referential integrity and other user defined integrity in place in RDBMS that

value data quality.

On the other hand, most of the NOSQL databases do not have built in data integrity

solutions and rely heavily on applications to enforce data integrity which is a hard sell.

Practical Implication

 Now that the different NOSQL databases have been discussed, it is essential to know

where these databases are used. In other words, the business or practical implication of NOSQL

databases should be known. NOSQL databases are mostly used in web applications where there

are enormous amounts of data and where data accuracy is of not much significance. NOSQL

databases are not preferred when it comes to complex transactions that cannot afford to lose data

 57

such as an inventory system, in that case, Relational database is much preferred. NOSQL

databases are ideal where scalability is important that support live addition and removal of

machines, load balancing and fault tolerance. Some use cases are mentioned below for each

NOSQL database.

Cassandra: Cassandra and similar column family stores are used mostly in content

management where contents are stored along with tags, categories, etc. It is used in places where

expiring column feature can be used such as building video/desktop/mobile games. Some of the

industry stalwarts that use Cassandra are Accenture, eBay, Coursera, Comcast, Hulu among

many others.

MongoDB: MongoDB and similar document store databases are used mostly in cases

where small continuous reads and writes are required. These are also popular where there are

wide varieties of data types and access patterns. MongoDB is popular when it comes to

scalability because of its sharding feature. MongoDB is used in industry by The Weather

Channel, MetLife, Bosch, Expedia among many.

DynamoDB: Amazon, DynamoDB and similar key-value stores are used primarily in fast

in-memory access cases, small read write cases and easier upgradability cases. Programming

fluidity similar to MongoDB is another benefit for DynamoDB where it is used to develop APIs

in different languages. Some of the industry pioneers that use DynamoDB are EA Sports,

Nordstorm, Shazam, New York Times among others.

Neo4j: Neo4j and other similar graph orientated databases are popular in social

networking platforms and used also in cases where fast navigation is required between entities.

They are also used in situations where dynamic properties are needed such building

 60

References

[1] Zollmann, J. (2012, August 20). NoSQL Databases. Retrieved from Software

Engineering Research Group: http://www.webcitation.org/6hA9zoqRd

[2] Mapanga, I., & Kadebu, P. (2013). Database Management Systems: A NoSQL Analysis.

International Journal of Modern Communication Technologies & Research (IJMCTR),

1(7), 12-18.

[3] Bartholomew, D. (2010). SQL vs. NoSQL. Linux Journal, (195), 54-59.

[4] Seltzer, M. (2008). Beyond Relational Databases. Communications of The ACM, 51(7),

52-58. doi:10.1145/1364782.1364797

[5] Hammes , D., Medero , H., & Mitchell , H. (2014). Comparison of NoSQL and SQL

Databases in the Cloud . Proceedings of the Southern Association for Information

Systems Conference (pp. 1-8). Macon, GA: Southern Association for Information

Systems Conference.

[6] Brewer, E. (2012). CAP Twelve Years Later: How the “Rules” Have Changed.

Computer, 45(2), 23-29.

[7] Davis, M. A. (2012, April 9). NoSQL Equals NoSecurity. InformationWeek, 29.

Retrieved from St. Cloud State University Library Gale Databases:

http://www.webcitation.org/6hABCqOha

[8] Barry, D. (n.d.). ACID Properties. Retrieved November 1, 2014, from Service

Architecture: http://www.webcitation.org/6hABV4EXq

[9] Mihalcea, V. (2014, January 14). A Beginner's guide to ACID and database transactions.

Retrieved November 10, 2014, from Java Code Geeks:

http://www.webcitation.org/6hABdYCvy

[10] Pritchett, D. (2008). Base: An Acid Alternative. Queue, 48-55.

[11] Altrafi, O., Mohamed, M., & Ismail, M. (2014). Relational vs. NoSQL Databases: A

Survey. International Journal of Computer and Information Technology, 03(03), 598-601.

[12] Kopp, M. (2011, October 5). NoSQL or RDBMS? – Are we asking the right questions?

Retrieved November 11, 2014, from about-performance:

http://www.webcitation.org/6hABvlSHG

