Development of Insurance Agreement Transfer Assignment

Mithilesh R. Karuka
St. Cloud State University

Follow this and additional works at: http://repository.stcloudstate.edu/mme_etds

Recommended Citation
Development of Insurance Agreement Transfer Assignment

by

Mithilesh Reddy Karuka

A Starred Paper
Submitted to the Graduate Faculty of
St. Cloud State University
in Partial Fulfillment of the Requirements
for the Degree
Master of Engineering Management

December, 2015

Starred Paper Committee:
Hiral Shah, Chairperson
Ben Baliga
Balasubrahmanian Kasi
Abstract

This project was implemented in an insurance company where they offer different insurance for various commercial and personal line of business. XYZ group offer a full array of benefits solutions—including education, enrollment services and valuable claim support—to meet the needs of both employers and their workers. This project will focus on implementation of algorithms to automatically switch agreements between sales representatives. As this project involves interaction with other departments, Integration testing along with user acceptance testing will also be added to testing phase to maintain consistency. The main objective is to implement a new system from the ground up that will allow the company to easily configure/make changes on the go and efficiently address sales and customer service needs in a nimble fashion. Finally, the results will be depicted in a chart representing the calculations indicating the time savings, cost savings, and the customer feedback after implementing the automation.
Acknowledgments

This project would not be possible without the help and encouragement from the professors of my committee Dr. Hiral Shah, Dr. Ben Baliga, and Dr. Balsy Kasi. The professors really helped me in gaining knowledge in every subject that was taken during my Master’s in Engineering Management at St. Cloud State University. I would also like to thank Dr. Ben Baliga. The resources that were provided during the study at St. Cloud State University were tremendous. Finally, I would like to thank my friends and family for providing a great support in the fulfillment of my dream study at St. Cloud State University.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>6</td>
</tr>
<tr>
<td>List of Figures</td>
<td>7</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>8</td>
</tr>
<tr>
<td>Nature and Significance of the Problem</td>
<td>9</td>
</tr>
<tr>
<td>Objective of the Project</td>
<td>9</td>
</tr>
<tr>
<td>Project Questions</td>
<td>10</td>
</tr>
<tr>
<td>Limitations of the Project</td>
<td>10</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>10</td>
</tr>
<tr>
<td>Summary</td>
<td>11</td>
</tr>
<tr>
<td>2. Background and Review of Literature</td>
<td>12</td>
</tr>
<tr>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>Background Related to the Problem</td>
<td>12</td>
</tr>
<tr>
<td>Literature Related to the Problem</td>
<td>12</td>
</tr>
<tr>
<td>Literature Related to the Methodology</td>
<td>16</td>
</tr>
<tr>
<td>Summary</td>
<td>17</td>
</tr>
<tr>
<td>3. Methodology</td>
<td>18</td>
</tr>
<tr>
<td>Introduction</td>
<td>18</td>
</tr>
<tr>
<td>Design of the Study</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter | Page
--- | ---
Data Collection | 20
Data Analysis | 22
Budget | 25
Timeline | 25
4. Data Presentation and Analysis | 27
Introduction | 27
Data Presentation | 27
Data Analysis | 29
5. Results, Conclusion, and Recommendations | 31
Introduction | 31
Results | 31
Project Questions | 31
Conclusion | 32
Recommendations | 32
References | 34
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Number of Insurance Agreements Owned by XYZ on Yearly Basis</td>
<td>15</td>
</tr>
<tr>
<td>2. Organizational Hierarchy</td>
<td>22</td>
</tr>
<tr>
<td>3. Timeline of the Project</td>
<td>26</td>
</tr>
<tr>
<td>4. Time Taken for Transfer before Implementing this Project</td>
<td>27</td>
</tr>
<tr>
<td>5. Time Taken for Transfer after Implementing this Project</td>
<td>28</td>
</tr>
<tr>
<td>6. Number of Unaddressed Customers before Implementing this Project</td>
<td>29</td>
</tr>
<tr>
<td>7. Number of Unaddressed Customers after Implementing this Project</td>
<td>29</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pictorial Representation of the Entire Process</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>Software Development Architecture</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>Flow in which the Assignment Logic is Implemented</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Criteria Based on which the Transfer Decision is Made</td>
<td>21</td>
</tr>
<tr>
<td>5.</td>
<td>Performance Chart before Implementing this Project</td>
<td>30</td>
</tr>
<tr>
<td>6.</td>
<td>Performance Chart after Implementing this Project</td>
<td>30</td>
</tr>
</tbody>
</table>
Chapter 1: Introduction

Introduction

XYZ group offer a full array of benefits solutions—including education, enrollment services and valuable claim support—to meet the needs of both employers and their workers. Their award-winning absence management and vocational rehabilitation services help ease the disruption to both businesses and employers by enabling them to return to full capacity as soon as they are able. Unum’s three distinct, but similarly focused businesses—XYZ US, XYZ UK and XYZ Life—are each a market leader in making disability, life, accident and critical illness insurance accessible in the workplace (Unum, n.d.).

This capstone project proposal will focus on implementation of algorithms to automatically switch agreements between sales representatives. As this project involves interaction with other departments, Integration testing along with user acceptance testing will also be added to testing phase to maintain consistency. In addition, the proposal also includes the problem statement, objective and nature and significance of the problem.

Problem Statement

XYZ group uses Advantage Computing Systems to manage Sales and Customer Service functions. Over time, some business processes were modified in order to fit into the Advantage mold. We want to implement a new system from the ground up that will lot of manual processes that include transfer of insurance agreements and sending confirmation E-Mails. Also, the existing legacy applications are unable to meet the modern day demand leading to server breakdowns.
Nature and Significance of the Problem

The Sales Managers at various locations dealing with insurance policies were facing issues when an employee dealing with certain number of insurance policies leaves. The handing over of the agreements under the previous employee to a new or existing employee was semi-automated.

Also, the existing application was facing issues like high response times leading to dis-satisfied end user experience. Un-responsiveness of a few applications due to high user volumes has become a hassle in the production, where downtime of an application during a critical period can result in a loss of business, thereby resulting in a revenue downfall.

In another case, a few web based services that invoke instant information from an open source data center, have been facing issues due to large amounts of data. This was due to the technology on which the application was built. It was obsolete and no longer capable of meeting the demand.

Objective of the Project

The objectives of the project are:

1. Reduce the time in transferring agreements between different representatives by 30%.

2. Improve the sort capability by at least 4 times.

3. Improve the performance of accessing the application by 20% and reducing the maintenance by 30%.
Project Questions

1. What are the time savings after implementing the automation?
2. What are the cost savings after implementing the automation?
3. What is the maximum limit to which the performance can be improved?

Limitations of the Project

This project was implemented with limited real time data and the results that are obtained for the maximal product quantity will be available in real time implementation where in which it also considers the platform on which the project is executing and the resources that are available at that point of time. However, the calculations are accurate at every point in measuring irrespective of the quantity that is available.

Definition of Terms

Customer–A customer is an individual person or company who has one or more insurance agreement with XYZ company.

Tasks–Tasks are activities that are defined as to-do items and typically require follow up by a person or team.

Representative–A representative is an individual who represents XYZ company to the customer.

Broker–An insurance broker sells, solicits, or negotiates insurance for compensation.

Agreement–An agreement is a mutual consent between the insured and the insurer. All the details with reference to any particular insurance are captured in the agreement.
Account—Each agreement or a group of agreements have an account associated with it.

Activities—Activities represent a history of the interactions related to an account, contact or agreement. Activity history may include interactions such as emails, calls, meetings, and their associated notes. Activity history helps account teams and sales teams keep up-to-date on interactions that have occurred.

Summary

This chapter briefly covered many aspects of this project prominently to determine the actual problem that exists and how it affects in real time, main motive of the project, list of questions that are going to be answered at the end of the study, basic limitations of the project and, finally, the definition of all the terms that are used in this project to fully understand the meaning of each term. The next chapter covers the literature background knowledge associated with this project.
Chapter 2: Background and Review of Literature

Introduction

This chapter focuses towards reviewing the literature of the problem, literature related to the methodology that has been implemented in the process of solving the problem and the background of Company XYZ Corp and the issues related to it.

Background Related to the Problem

The Sales Managers at various locations dealing with insurance policies were facing issues when an employee dealing with certain number of insurance policies leaves. The handing over of the agreements under the previous employee to a new or existing employee was semi-automated.

Also, the existing application was facing issues like high response times leading to dis-satisfied end user experience. Un-responsiveness of a few applications due to high user volumes has become a hassle in the production, where downtime of an application during a critical period can result in a loss of business, thereby resulting in a revenue downfall.

In another case, a few web based services that invoke instant information from an open source data center, have been facing issues due to large amounts of data. This was due to the technology on which the application was built. It was obsolete and no longer capable of meeting the demand.

Literature Related to the Problem

Agile software development is a group of software development methods based on iterative and incremental development in which requirements and solutions evolve through collaboration between self-organizing, cross-functional teams. It
promotes adaptive planning, evolutionary development and delivery, a time-boxed iterative approach, and encourages rapid and flexible response to change. It is a conceptual framework that promotes foreseen tight iterations throughout the development cycle (Highsmith, 2001).

Adaptive Software Development (ASD) is a software development process that grew out application development work by Jim Highsmith and Sam Bayer. It embodies the principle that continuous adaptation of the process to the work at hand is the normal state of affairs.

Adaptive Software Development replaces the traditional waterfall cycle with a repeating series of speculate, collaborate, and learn cycles. This dynamic cycle provides for continuous learning and adaptation to the emergent state of the project. The characteristics of an ASD life cycle are that it is mission focused, feature based, iterative, time boxed, risk driven, and change tolerant (A Collaborative Approach to Managing Complex Systems, Highsmith, J.A., 2000).

Description of the process that has to be automated:

Insurance agreements are loaded everyday into Salesforce CRM, which is acting as a system of records to store data. In case of heavy loading of agreements on one representative or if a representative is leaving his/her job, then the transfer of agreements is automated based on the total number of representatives under that particular area and is split accordingly using a Sales Split.

The algorithm for the automation process is based on a load-sharing model. The total number of representatives is taken into account and then the system checks for any parity in the number of agreements between representatives and adjusts
accordingly. Example, if a sales representative is to retire, the agreements currently under him will be directly transferred to a new representative or split between the other representatives.

The sharing of agreements is not directly depending on the just the number of agreements but several other factors such as the level of agreement, skill-set of the representative, duration of the agreement etc.

![Figure 1: Pictorial Representation of the Entire Process](image)

When the agreements are transferred between representatives, the old representative is end-dated in the object and a new record is created for the new
representative with a new effective date. A relationship is also established based on
the HR Job Code of the representative.

In order to enhance the sorting capability, the terminated agreements are no
longer retrieved and the record fetched is increased by 4 times. Only the Inforce
policies are retrieved.

Table 1: Number of Insurance Agreements Owned by XYZ Corp on Yearly Basis

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Year</th>
<th>No of Insurance Agreements</th>
<th>No of Insurance Agreements per Representative (AVG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2010</td>
<td>8,638,222</td>
<td>2231</td>
</tr>
<tr>
<td>2</td>
<td>2011</td>
<td>9,124,214</td>
<td>2334</td>
</tr>
<tr>
<td>3</td>
<td>2012</td>
<td>9,243,678</td>
<td>2278</td>
</tr>
<tr>
<td>4</td>
<td>2013</td>
<td>9,213,212</td>
<td>3098</td>
</tr>
<tr>
<td>5</td>
<td>2014</td>
<td>10,231,243</td>
<td>2956</td>
</tr>
<tr>
<td>6</td>
<td>2015</td>
<td>10,123,758</td>
<td>3279</td>
</tr>
</tbody>
</table>

At the end of the day, the sales director would like to analyze all the data,
would like to have all the reports for each day. Reasons to have reports are:

1. Realized revenue by representatives
2. Net revenue (sales-cancels) by representatives
3. Activities (number of calls made/taken, number of emails sent/received)
4. Agreement transfer rate
5. Time spent on transfer of agreements
The main point right now is the rate of transfer of agreements. In order for the sales team to see transfers, currently it typically takes a few weeks to receive the list and reconcile it with the revenue. This is usually made available 3-6 days after the old representative leaves, it would be ideal to have this information in real time.

Literature Related to the Methodology

Various tasks that will be executed through the Agile Methodology are:

1. Planning
 - Identification of stakeholders and sponsors
 - Infrastructure Requirements
 - Security related information and gathering
 - Service Level Agreements and its conditions

2. Analysis
 - Capturing of Stories in Parking lot
 - Prioritize stories in Parking lot
 - Scrubbing of stories for estimation
 - Define Iteration SPAN (Time)

3. Resource planning for both Development and QA teams

4. Design
 - Break down of tasks
 - Test Scenario preparation for each task
 - Regression Automation

4. Execution
 - Coding
• Unit Testing
• Execution of Manual test scenarios
• Defect Report generation
• Conversion of Manual to Automation regression test cases
• Mid Iteration review
• End of Iteration review

5. Closure
• Pilot Launch
• Training
• Production Launch
• SLA Guarantee assurance
• Review SOA strategy

Summary
This chapter briefly covered the background and literature of the problem. It also described the methodology used and explained different phases of the Agile methodology.
Chapter 3: Methodology

Introduction

This chapter covers the architecture and the methodology used for the design of the project. It also covers the data collection, data analysis, budget, and timeline.

Design of the Study

This project is implemented using Salesforce.com. This is developed based on model, view, and controller (MVC) model. View represents the client interface through which a user can communicate with the application. Controller represents the business logic that is available within the application. Business logic helps the application to run as expected. Model represents the database, which holds a collection of data for providing data to the business logic as requested. This project mainly deals with the quantitative approach. The quantitative parameters can be speed, time, and cost, etc. As compared to the qualitative approach, the quantitative approach takes the advantage of describing the problem of a current project and providing solutions to it. The current project mainly suffers with three main quantities namely speed, time, and cost. These three quantity parameters help the application for describing the problems of a project and which need to be addressed for a better performance and business gains. The qualitative approach deals with the appearance and style of a project, which is not a real requirement for this project. The qualitative approach will not increase the performance and business gains.
A controller can send commands to the model to update the model’s state (e.g., editing a document). It can also send commands to its associated view to change the view’s presentation of the model.

A model notifies its associated views and controllers when there has been a change in its state. This notification allows the views to produce updated output, and the controllers to change the available set of commands. In some cases an MVC implementation might instead be “passive,” so that other components must poll the model for updates rather than being notified.

A view requests information from the model that it uses to generate an output representation to the user.
Data Collection

Agreement assignment rules. Criteria for agreement to be assigned: There will be a look back if the old representative is retiring or leaving the company. In such a scenario, the agreements under him will be transferred to other representatives based on the assignment logic. Also there is another criterion where the old representative is overloaded with agreements. In such a case, the agreements are shared among the different representatives in the office. Some other scenarios are:

1. The agreement is not terminated.
2. Has the old representative left the company?
3. Check if the user is out of office today, then the case is handled by a backup representative.

Assignment logic:

![Diagram](image)

Figure 3: Flow in which the Assignment Logic is Implemented

Step 1: On old representative transfer, check if there are any agreements under him of any status except terminated.

Step 2: If false, exit assignment logic. If true, check for the available representatives in the office.
Step 3: Based on the factors mentioned below, the agreements are transferred to one or more representatives.

- The available representatives within the office.
- Experience of the available representatives.
- The type of agreements to be transferred.

Figure 4: Criteria Based on which the Transfer Decision is Made

Step 4: Also, the entire hierarchy of the agreement is revised based on the new representative it is assigned to. The hierarchy is shown in Table 2.
Table 2: Organizational Hierarchy

<table>
<thead>
<tr>
<th>User Title in SFDC</th>
<th>Relationship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Manager</td>
<td>Service</td>
</tr>
<tr>
<td>Client Manager Associate</td>
<td>Service</td>
</tr>
<tr>
<td>National Client Manager</td>
<td>Service</td>
</tr>
<tr>
<td>Client Specialist</td>
<td>Service</td>
</tr>
<tr>
<td>Sales Manager</td>
<td>Sales</td>
</tr>
<tr>
<td>Sr Market Manager</td>
<td>Sales</td>
</tr>
<tr>
<td>Sales Trainees</td>
<td>Sales</td>
</tr>
<tr>
<td>Sales Consultants I</td>
<td>Sales</td>
</tr>
<tr>
<td>Sales Consultants II</td>
<td>Sales</td>
</tr>
<tr>
<td>Sr. Sales Consultants I</td>
<td>Sales</td>
</tr>
<tr>
<td>Sr. Sales Consultants II</td>
<td>Sales</td>
</tr>
<tr>
<td>Account Executives</td>
<td>Sales</td>
</tr>
<tr>
<td>Sr. Account Executives</td>
<td>Sales</td>
</tr>
<tr>
<td>National Client Service manager</td>
<td>Service</td>
</tr>
<tr>
<td>Dir, HO National Acct Svcs</td>
<td>Service</td>
</tr>
</tbody>
</table>

Data Analysis

Agreement transfer process: Agreements are generated when a user visits the website or any store, looks at specific product and buys one. Once the user purchases an agreement, a representative is assigned.

Systems that are used in capturing all this information are:

- Store Service
- Store Consumer Service
- Tracker Reporting Service
- RDS
- Redshift
- SQS
• SFDC
• Kinesis

Amazon Relational Database Service or **Amazon RDS** is a distributed relational database service by Amazon.com. It is a web service running “in the cloud” and provides a relational database for use in applications. It is aimed at simplifying the set-up, operation, and scaling a relational database. Complex administration processes like patching the database software; backing up databases and enabling point-in-time recovery are managed automatically (Amazon Web Service, 2010).

Amazon S3 (Simple Storage Service) is an online file storage web service offered by Amazon Web Services. Amazon S3 provides storage through webservice interfaces (REST, SOAP, and BitTorrent). Amazon launched S3, its first publicly available web service, in the United States in March, 2006.

Amazon Redshift is a hosted data warehouse product, which is part of the larger cloud-computing platform Amazon Web Services (ZDNet, n.d.). It is built on top of technology from the massive parallel processing (MPP) data warehouse ParAccel by Actian. Redshift differs from Amazon’s other hosted database offering Amazon RDS by being able to handle analytics workloads on large-scale datasets stored by a column- oriented DBMS principle. To be able to handle large scale datasets Amazon is making use of massive parallel processing.

Amazon Kinesis streams data in real time with the ability to process thousands of data streams on a per-second basis. The service, designed for real-
time apps, allows developers to pull any amount of data, from any number of sources, scaling up or down as needed.

There are sequences of operations that are performed to capture agreements. User visits company website and store service hosted with-in company captures user email, products interested and sends this tracking information to tracker service which then sends information to Kinesis where all in-coming data is processed with threshold limit is set to batch 2. That means only two batches of information is processed.

Sprint cycle outline:

Iteration Structure:

- Sprints will run for duration of one week.
- Backlog Refinement will be every Tuesday and Friday at 10:30 a.m.
- Retro and iteration planning will be every Wednesday at 2:30 p.m.
- Tasking will immediately follow iteration planning at 3:00 p.m.
- A public demo will be held at the end of each sprint at 11:30 a.m. every Wednesday.
- Stories will be considered “Done” when they have been approved by the project owner and ready for demo in a staging environment.

Deployment locations:

- All development work will be done on local developer environments and test.
• All development work will be deployed to QA when ready for certification.
• Staging will be used for all feature/update reviews and presentation to Stakeholders.
• No feature/update branches will go to production without project owner review on staging.

Definition of ready:
• Invest worthy stories.
• Pointed with estimates.

Definition of done:
• Acceptance criteria have been satisfied.
• QA (Quality analysis) certified unless specified by PO (Project owner).
• UAT (User acceptance testing) and accepted by PO.
• Demo ready in a staging environment for presentation to Stakeholders.
• Deployable upon business owner's request.

Budget

The entire project is completed within the cost provided by the industry.

No extra costs were incurred during the development of this project.

Timeline

The total time taken by the project was 3 months. Requirements Specification and Analysis and Design were completed in 1 month. Development
and Integration Testing also took 1 month to complete the project in time. Finally, in 1 month, users were trained and took over the maintenance support.

Table 3: Timeline of the Project

<table>
<thead>
<tr>
<th>Activity</th>
<th>Timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature Review Proposal</td>
<td>June 2015</td>
</tr>
<tr>
<td>Final Defense Presentation</td>
<td>November 2015</td>
</tr>
</tbody>
</table>
Chapter 4: Data Presentation and Analysis

Introduction

This chapter will primarily focus on data representation strategies, and data analysis. Data representation uses a strategy of displaying the data in terms of rows and columns. Data analysis will implement the analyzing the data for validity.

Data Presentation

Analysis of time taken for transfer of agreements. Table 4 shows a list of accounts for different agreements which would either be initiated by a sales representative or would be assigned to a sales representative.

Table 4: Time Taken for Transfer before Implementing this Project

<table>
<thead>
<tr>
<th>Account</th>
<th>Agreements</th>
<th>BrokerID</th>
<th>BrokerName</th>
<th>Deadline</th>
<th>Goal</th>
<th>LapseINTime</th>
<th>NumberOfAgreements</th>
<th>NumberOfRecords</th>
<th>RepresentativeID</th>
<th>RepresentativeName</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-454-54358</td>
<td>4478</td>
<td>H243787</td>
<td>PQRS</td>
<td>345,600</td>
<td>259,200</td>
<td>423,843</td>
<td>4478</td>
<td>1000</td>
<td>u342318</td>
<td>Tim</td>
</tr>
<tr>
<td>24-324-34759</td>
<td>2898</td>
<td>H213535</td>
<td>XYZ</td>
<td>345,600</td>
<td>259,200</td>
<td>298,356</td>
<td>2398</td>
<td>1000</td>
<td>S234543</td>
<td>Dave</td>
</tr>
<tr>
<td>43-759-64512</td>
<td>2756</td>
<td>H637278</td>
<td>XYZ</td>
<td>345,600</td>
<td>259,200</td>
<td>284,302</td>
<td>2756</td>
<td>1000</td>
<td>S37421</td>
<td>John Smith</td>
</tr>
<tr>
<td>54-342-54345</td>
<td>2843</td>
<td>H324465</td>
<td>ABC</td>
<td>345,600</td>
<td>259,200</td>
<td>302,758</td>
<td>2843</td>
<td>1000</td>
<td>S677665</td>
<td>John</td>
</tr>
<tr>
<td>78-321-34212</td>
<td>3322</td>
<td>H793487</td>
<td>ABCD</td>
<td>345,600</td>
<td>259,200</td>
<td>235,400</td>
<td>3322</td>
<td>1000</td>
<td>S786033</td>
<td>Max</td>
</tr>
</tbody>
</table>

From Table 4, it can be seen that the goal, deadline and lapsed time are all higher before implementing this project.

The average of the total lapsed time = 308,931.8 sec

The average of the goal time = 259,200 sec

The average of the deadline time = 345,600

This was because of the manual process involved with the transfer of agreements. Now that the process has been automated, let’s look at the new readings below:
Table 5: Time Taken for Transfer after Implementing this Project

<table>
<thead>
<tr>
<th>Account*</th>
<th>Agreements</th>
<th>BrokerID</th>
<th>BrokerName</th>
<th>Deadline</th>
<th>Goal</th>
<th>LapseInTime</th>
<th>NumberOfAgreements</th>
<th>NumberOfRecords</th>
<th>RepresentativeID</th>
<th>RepresentativeName</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-453-67568</td>
<td>4679</td>
<td>H894372</td>
<td>test</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4679</td>
<td>200</td>
<td>s353b04</td>
<td>Jim</td>
</tr>
<tr>
<td>34-345-33442</td>
<td>6723</td>
<td>H213423</td>
<td>test1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6723</td>
<td>200</td>
<td>s374h0w2</td>
<td>Rebecca</td>
</tr>
<tr>
<td>43-452-57876</td>
<td>6672</td>
<td>H384683</td>
<td>office4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6672</td>
<td>200</td>
<td>s32/3bh</td>
<td>George</td>
</tr>
<tr>
<td>66-786-32467</td>
<td>5544</td>
<td>H343288</td>
<td>office</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5544</td>
<td>200</td>
<td>s3532w99</td>
<td>Kirsten</td>
</tr>
<tr>
<td>87-478-67823</td>
<td>7788</td>
<td>H839476</td>
<td>office1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7788</td>
<td>200</td>
<td>s3233b</td>
<td>Bush</td>
</tr>
</tbody>
</table>

The average of the total lapsed time = 0 sec

The average of the goal time = 0 sec

The average of the deadline time = 0 sec

We can observe the drastic fall in all the three readings after implementing the project using Salesforce.com.

Sorting capability. From Tables 4 and 5, it can be seen that the number of records retrieved fell from 1000 to 200 after using Salesforce.com thus enhancing the sort functionality for the user.

The expected improvement in sort functionality was four times during the initial planning of the project but the end result came out to be five times the earlier because of some additional enhancements made within Salesforce.com.

Number of unaddressed customers: Unaddressed customers arise because of the delay involved in the transfer of agreements in the manual process.

Table 6 shows the total average of unaddressed customers before implementing the project = 172.
Table 6: Number of Unaddressed Customers before Implementing this Project

<table>
<thead>
<tr>
<th>UnaddressedCustomers* ↑</th>
<th>ElapsedTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>204,334</td>
</tr>
<tr>
<td>176</td>
<td>344,879</td>
</tr>
<tr>
<td>194</td>
<td>267,567</td>
</tr>
<tr>
<td>245</td>
<td>302,756</td>
</tr>
<tr>
<td>89</td>
<td>198,234</td>
</tr>
</tbody>
</table>

Table 7: Number of Unaddressed Customers after Implementing this Project

<table>
<thead>
<tr>
<th>UnaddressedCustomers* ↑</th>
<th>ElapsedTime</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 7 shows the total average of unaddressed customers after implementing the project = 0.

Since there is no delay in the transfer of agreements after using salesforce.com, the number of unaddressed customers is down to 0.

Data Analysis

One of the main objectives of taking up this project is performance. The target was to increase the performance by at least 20%.
Figure 5: Performance Chart before Implementing this Project

From Figure 6, it can be seen that the total elapsed time which is used as a parameter to test the performance = 46.42 sec.

Figure 6: Performance Chart after Implementing this Project

From Figure 6, from the readings taken after implementing Salesforce.com, it can be seen that the total elapsed time which is used as a parameter to test the performance = 38.35 sec.
Chapter 5: Results, Conclusion, and Recommendations

Introduction

This chapter will focus on the project results that are obtained after the implementation of the project, conclusion of the project and finally the recommendations that are considered during the implementation of the project.

Results

Implemented the Agile methodology for the automation of transfer of insurance agreements. The results obtained are accurate and precisely define.

Project Questions

1. What are the time savings after implementing the automation?

 Manual Program: The average of the total lapsed time = 308,931.8 sec
 Automation Program: The average of the total lapsed time = 0 sec.
 Time savings (average): 308,931.8 sec

 Even the goal and deadline time came down to zero from an average of 3 and 4 (approx.) days, respectively.

2. What is the cost savings after implementing the Automation?

 Cost is one of the important factors that need to be considered in any industry. By implementing this automation, company saved a considerable amount of cost.

 Manual Program: $2,400 per month (1.5 hours per day (3 directors) x 20 days x $80 per hour).
 Automation Program: $0 per month.
Cost savings: $2,400 per month.

3. What is the maximum limit to which the performance can be improved?

The target was to increase the performance by at least 20%.

Manual Program: Total elapsed time which is used as a parameter to test the performance = 46.42 sec.

Automation Program: Total elapsed time which is used as a parameter to test the performance = 38.55 sec.

Improvement in performance = 16.9%.

Conclusion

Customer was satisfied with the results and they could see the potential of expanding these automations to other departments as well. They were also impressed by Agile methodology where business decisions were changing fast and agile process helped in managing those changes and providing what customers needed with in short span of time. Sales directors were extremely pleased by the amount of time this automation has save.

This study was about automating sales process using Agile methodology. The company tried to accomplish automatic agreement transfers, send mass emails, and improving the sorting capability. This project was mainly implemented to overcome the issues of time, cost, scalability, and flexibility in changing assignment logic.

Recommendations

Despite the fact that the task was effectively actualized, there were a few hazy areas that required consideration. Following are a few of them:
- Any logic changes in agreement transfer assignment needed code change and maintenance.
- This project doesn’t account for representatives who are out of office for a particular period of time.
- Database must be up to date to perform any of these operations.
- The target increase in performance fell short by 3.1%.
References

