The Repository @ St. Cloud State

Open Access Knowledge and Scholarship

Date of Award


Culminating Project Type

Starred Paper

Degree Name

Information Assurance: M.S.


Information Assurance and Information Systems


Herberger School of Business

First Advisor

Dennis Guster

Second Advisor

Susantha Herath

Third Advisor

Balasubramanian Kasi

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Keywords and Subject Headings

MD5, MoveIt, AES, .Net, Mobile Healthcare


The improvement of science and technology has made life so easy and fast that smartphones and other touch-screen minicomputers have become the most trusted personal storage and communication devices for individuals. Comparable to the rich enhancement in wireless body sensor networks, it is valuable to the development of medical treatment to be exceptionally adaptable and become very flexible by means of smartphones through 2G and 3G system bearers. This has made treatment simple even to the common individual in the general public with less payable cash.

In this paper, we introduce privacy-preserving support for mobile healthcare using message digest where we have used an MD5 algorithm instead of AES, which can certainly achieve an efficient way and minimizes the memory consumed and the large amount of PHI data of the medical user (patient) is reduced to a fixed amount of size compared to AES which in parallel increases the speed of the data to be sent to TA without any delay which in-turn. This study implements a secure and privacy-preserving opportunistic computing framework (SPOC) for mobile-health care emergency. Utilizing smartphones and SPOC, assets like computing power and energy can be gathered to reliably to take care of intensive personal health information (PHI) of the medicinal client when he/she is in critical situation with minimal privacy disclosure.

With these, the healthcare authorities can treat the patients (restorative clients) remotely, where the patients live at home or at different spots they run. This sort of a treatment can be done under mHealth (Mobile-Healthcare). In malice of the fact that in them-medicinal services administration, there are numerous security and information protection issues to be succeed.

The main aim of this paper is to bring medical health to patients in remote locations by providing the basic triage of an emergency to increase the patient’s body acceptance until they can reach a proper medical facility, in addition to providing emergency care in minimal payable cash.